WO2015072095A1 - 赤外線検出素子、及び赤外線検出装置、圧電体素子 - Google Patents

赤外線検出素子、及び赤外線検出装置、圧電体素子 Download PDF

Info

Publication number
WO2015072095A1
WO2015072095A1 PCT/JP2014/005433 JP2014005433W WO2015072095A1 WO 2015072095 A1 WO2015072095 A1 WO 2015072095A1 JP 2014005433 W JP2014005433 W JP 2014005433W WO 2015072095 A1 WO2015072095 A1 WO 2015072095A1
Authority
WO
WIPO (PCT)
Prior art keywords
pores
layer
grain boundary
detection
infrared
Prior art date
Application number
PCT/JP2014/005433
Other languages
English (en)
French (fr)
Inventor
敬 久保
俊成 野田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/023,416 priority Critical patent/US20160209273A1/en
Priority to JP2015547625A priority patent/JPWO2015072095A1/ja
Priority to CN201480060933.8A priority patent/CN105705919A/zh
Publication of WO2015072095A1 publication Critical patent/WO2015072095A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/58Radiation pyrometry, e.g. infrared or optical thermometry using absorption; using extinction effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • H10N15/15Thermoelectric active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition

Definitions

  • the present invention relates to an infrared detection element, an infrared detection device, and a piezoelectric element.
  • infrared detection elements Two types are known: a quantum infrared detection element and a thermal infrared detection element.
  • the quantum type infrared detecting element has high sensitivity and high response speed since infrared is regarded as a semiconductor band gap.
  • the quantum infrared detecting element is large and expensive because it needs to be cooled to the temperature of liquid nitrogen during use, and a cooling unit needs to be provided.
  • the quantum infrared detecting element has wavelength selectivity and is poor in response to far infrared rays.
  • Thermal infrared detectors include pyroelectric infrared detectors that use pyroelectric materials that generate charges on the surface due to temperature changes, and resistance bolometer infrared detectors that use resistance bolometer materials whose resistance changes with temperature changes.
  • thermocouple type (thermopile) infrared detecting element using the Seebeck effect that generates a thermoelectromotive force due to a temperature difference.
  • the pyroelectric infrared detection element has a high output signal and a high S / N ratio because the output noise is low in the thermal infrared detection element. Furthermore, since the pyroelectric infrared detection element can detect a human body at a low cost, it is widely used as an automatic switch for automatic illumination or power consumption reduction of equipment.
  • the pyroelectric infrared detector uses the pyroelectric effect of a ferroelectric substance.
  • the ferroelectric layer receives infrared rays, the temperature rises, and the surface charge of the ferroelectric layer changes due to the change in polarizability accompanying the change in temperature.
  • the infrared detection device detects the infrared ray by taking out the change of the surface charge as an output signal of the infrared detection element.
  • the thickness of the ferroelectric layer is reduced compared to the light receiving area of the ferroelectric layer so that the temperature rises with respect to the incident infrared energy.
  • the contact portion between the main body and the ferroelectric layer is made to have a small structure.
  • the pyroelectric material of the pyroelectric infrared detecting element it is desirable that the pyroelectric coefficient ⁇ is high and the relative dielectric constant ⁇ r is small, thereby improving the infrared detecting performance.
  • FIG. 10 is a front sectional view of a conventional infrared detection element 500 disclosed in Patent Document 1.
  • the infrared detecting element 500 is connected to a porous ferroelectric ceramic 32 having a porosity of 20% or more, a dense ferroelectric ceramic 33 sandwiching the ferroelectric ceramic 32, and a dense ferroelectric ceramic 33.
  • Ferroelectric ceramics 32 and 33 are obtained by using a slurry of lead titanate (PT) -based or titanate zirconate (hereinafter referred to as PZT) -based ceramic particles having a relatively large pyroelectric coefficient as a green sheet. The sheet is formed by sintering.
  • PT lead titanate
  • PZT titanate zirconate
  • the infrared detecting element 500 is composed of a dense ferroelectric ceramic 33 having the same volume as the porous ferroelectric ceramic 32 because the porous ferroelectric ceramic 32 having a high porosity is provided in the center. Compared with the infrared detecting element, the dielectric constant ⁇ r is reduced by the pores 31 and, as a result, the infrared detecting performance is improved.
  • Ferroelectric materials such as lead zirconate titanate are oxides having a perovskite structure represented by the general formula ABO 3 and have excellent pyroelectricity, ferroelectricity, piezoelectricity, and electro-optical properties. Show. Such a piezoelectric element made of a ferroelectric material uses this piezoelectric effect and is used for a piezoelectric sensor or a piezoelectric actuator.
  • Ferroelectrics have spontaneous polarization inside and generate positive and negative charges on the surface.
  • the surface In a steady state in the atmosphere, the surface is in a neutral state combined with the charge of molecules in the atmosphere.
  • an external pressure is applied to the ferroelectric, the surface charge appearing on the surface changes according to the amount of the external pressure from the ferroelectric.
  • the piezoelectric sensor takes out the change in the surface charge as an electric signal and detects the pressure applied to the ferroelectric and the displacement of the ferroelectric.
  • the sensitivity of the piezoelectric sensor can be increased by increasing the piezoelectric output constant (piezoelectric g constant) Cd / epsilon r represented by the piezoelectric constant (piezoelectric d constant) Cd and the relative dielectric constant epsilon r of the piezoelectric element .
  • the ferroelectric when a voltage is applied to the ferroelectric, the ferroelectric expands and contracts in accordance with the voltage, and displacement can be generated in the expanding / contracting direction or the direction orthogonal to the direction.
  • the piezoelectric actuator can displace the object using this displacement.
  • the infrared detection element includes a detection laminate having a lower electrode layer, a detection layer provided on the lower electrode layer, and an upper electrode layer provided on the detection layer.
  • the detection layer has a columnar crystal structure.
  • the detection layer is provided with a plurality of pores unevenly distributed at the crystal grain boundaries of the crystal structure.
  • This infrared detector has high infrared detection performance.
  • FIG. 1 is a schematic top view of an infrared detection element according to an embodiment.
  • 2A is a schematic sectional view taken along line IIA-IIA of the infrared detection element shown in FIG. 2B is a schematic sectional view taken along line IIB-IIB of the infrared detection element shown in FIG. 2C is a schematic cross-sectional view of the infrared detection element shown in FIG. 1 taken along line IIC-IIC.
  • FIG. 3 is a view showing a transmission electron micrograph of a cross section of the detection layer of the infrared detection element in the embodiment.
  • FIG. 4 is a schematic view of the detection layer shown in FIG. FIG.
  • FIG. 5 is an X-ray diffraction pattern diagram of a detection layer of an example of the infrared detection element in the embodiment.
  • FIG. 6 is an X-ray diffraction pattern diagram of a detection layer of an example of the infrared detection element according to the embodiment.
  • FIG. 7 is a block diagram of the infrared detecting device according to the embodiment.
  • FIG. 8 is a schematic cross-sectional view of another infrared detection element in the embodiment.
  • FIG. 9 is a schematic cross-sectional view of the piezoelectric element according to the embodiment.
  • FIG. 10 is a front sectional view of a conventional infrared detecting element.
  • FIG. 1 is a schematic top view of an infrared detecting element 1000 according to an embodiment.
  • 2A, 2B, and 2C are schematic cross-sectional views taken along lines IIA-IIA, IIB-IIB, and IIC-IIC, respectively, of the infrared detection element 1000 shown in FIG.
  • the positions Aa and Ab shown in FIG. 2A are the same as the positions Aa and Ab shown in FIG.
  • the infrared detection element 1000 includes a detection laminate 1, a substrate 5, and a beam portion 2.
  • the beam portion 2 is connected to the substrate 5 and holds the detection stacked body 1.
  • the detection laminate 1 includes a lower electrode layer 7, a detection layer 8 provided on the upper surface 7 A of the lower electrode layer 7, and an upper electrode layer 9 provided on the upper surface 8 A of the detection layer 8.
  • the lower surface 8B of the detection layer 8 is located on the upper surface 7A of the lower electrode layer 7.
  • the substrate 5 has an upper surface 5A that is one main surface and a lower surface 5B that is the other main surface.
  • a concave cavity 4 is provided on the upper surface 5 ⁇ / b> A of the substrate 5.
  • the cavity 4 has an opening 4 ⁇ / b> A that opens on the upper surface 5 ⁇ / b> A of the substrate 5.
  • a frame portion 3 is provided around the opening 4A of the cavity 4 on the upper surface 5A of the substrate 5.
  • the cavity 4 can be provided at the center of the upper surface 5A of the substrate 5, but is not limited to this arrangement.
  • the cavity 4 may be open to communicate with the lower surface 5B of the substrate 5.
  • the cross-sectional shape of the cavity 4 can be a dome shape, a triangular shape, a polygonal shape, a trapezoidal shape, or the like.
  • the detection laminate 1 is provided in the opening 4A of the cavity 4. By connecting the detection laminate 1 and a part of the frame 3 via the beam portion 2, the detection laminate 1 is supported so as to be separated from the surface of the substrate 5 surrounding the cavity 4. Therefore, the detection laminate 1 has high thermal insulation with respect to the substrate 5.
  • the detection laminate 1 includes an intermediate layer 6.
  • the intermediate layer 6 is formed on the upper surface 5A of the substrate 5, that is, the lower surface 6B of the intermediate layer 6 is located on the upper surface 5A of the substrate 5.
  • the intermediate layer 6 extends substantially parallel to the upper surface 5 ⁇ / b> A of the substrate 5 and constitutes the beam portion 2 and a part of the detection stack 1.
  • the lower electrode layer 7 of the detection laminate 1 is provided on the upper surface 6A of the intermediate layer 6.
  • the detection laminate 1 may not have the intermediate layer 6.
  • the lower electrode layer 7 is located on the upper surface 5 ⁇ / b> A of the substrate 5.
  • the detection layer 8 is formed on the upper surface 7A of the lower electrode layer 7 and is made of PZT (lead zirconate titanate) oriented in a tetragonal (001) plane.
  • PZT lead zirconate titanate
  • the composition of PZT is preferably a tetragonal composition Zr / Ti molar ratio Zr / Ti near 30/70, but the phase boundary between the tetragonal system and the rhombohedral system (the morphotropic phase boundary). ) Composition (molar ratio Zr / Ti is 53/47) or PbTiO 3 may be used as long as the molar ratio Zr / Ti is 0/100 to 70/30.
  • the constituent material of the detection layer 8 can be a perovskite oxide ferroelectric material mainly composed of PZT.
  • PZT perovskite oxide ferroelectric material
  • La, Ca, Sr, Nb, Mg, Mn, Zn, Al, etc. mainly composed of PZT.
  • the above element is substituted with a part of the PZT element.
  • PMN Pb (Mg 1/3 Nb 2/3 ) O 3
  • PZN Pb (Zn 1/3 Nb 2/3 ) O 3
  • FIG. 3 is a transmission electron microscope (Transmission Electron Microscope, hereinafter referred to as TEM) photograph of a cross section of a detection layer of an infrared detection element of an example to be described later
  • FIG. 4 is a schematic diagram that is a copy of the TEM photograph of FIG. is there.
  • TEM Transmission Electron Microscope
  • the detection layer 8 has a columnar crystal structure.
  • the columnar crystal 21 extends in the vertical direction connecting the lower electrode layer 7 and the upper electrode layer 9.
  • the crystal grain boundaries 22 exist between the columnar crystals 21 and extend in the vertical direction.
  • a plurality of pores 10 and 11 are provided in the detection layer 8.
  • the plurality of pores 10 and 11 have a plurality of grain boundary pores 10 formed in the crystal grain boundaries 22.
  • a plurality of grain boundary pores 10 are formed in at least one of the plurality of crystal grain boundaries 22 extending in the vertical direction, but one grain boundary pore 10 may be formed.
  • the crystal 21 has no pores or may contain pores, but is smaller than the grain boundary pores 10. Crystal pores 11 may be formed in the crystal 21. The crystal pores 11 are randomly formed in the detection layer 8.
  • the pores formed in the detection layer 8 can be confirmed as white contrast when a photograph of the crystal cross section is observed with a TEM.
  • the grain boundary pores 10 are pores at least partially observed in the region of the crystal grain boundaries 22.
  • the crystal pores 11 are pores that are separated from the crystal grain boundaries 22 and are completely surrounded by one crystal 21.
  • the pores 10 and 11 are unevenly distributed in the crystal grain boundary 22.
  • pores are unevenly distributed in the crystal grain boundaries 22 means that the number of grain boundary pores 10 provided in the detection layer 8 is larger than the number of crystal pores 11 provided in the detection layer 8. That is, the uneven distribution rate of the grain boundary pores 10 which is the ratio of the number of grain boundary pores 10 to the sum of the number of grain boundary pores 10 and the number of crystal pores 11 exceeds 50%.
  • the number of grain boundary pores 10 and crystal pores 11 in the detection layer 8 can be calculated from the volume ratio between the predetermined region and the detection layer 8 using the number of the predetermined regions in the detection layer 8.
  • This predetermined area can be appropriately set according to the calculation accuracy and the like.
  • a plurality of equidistant crystal sections parallel to the vertical direction in the detection layer 8 can be used as the predetermined region, and more specifically, equidistant crystal sections with an interval of 20 nm near the center of the detection layer 8 can be used.
  • the infrared detecting element 1000 can reduce the relative permittivity ⁇ r and increase the pyroelectric coefficient ⁇ , so that high infrared detecting performance can be obtained.
  • the infrared detecting performance may not be sufficient.
  • the uneven distribution rate of the grain boundary pores 10 is preferably 60% or more, and the pyroelectric coefficient ⁇ can be increased by using this pore uneven distribution ratio.
  • the uneven distribution rate of the grain boundary pores 10 is more preferably 70% or more, and the pyroelectric coefficient ⁇ can be further increased.
  • the diameter W1 of the grain boundary pore 10 in the direction along the crystal grain boundary 22 is longer than the diameter W2 in the direction perpendicular to the crystal grain boundary 22, and the grain boundary pore 10 has a flat shape having a substantially elliptical cross section. Contains a lot of what you have.
  • the average value of the diameter W1 of the grain boundary pores 10 is desirably 5 nm to 50 nm. If the diameter W1 is less than 5 nm, there is a case where control of the diameter of the pores 10 can not reduce the difficulty stably relative permittivity epsilon r. On the other hand, if the diameter W1 exceeds 50 nm, cracks may easily occur in the columnar crystal structure due to high temperature environment, vibration, or the like.
  • the grain boundary pores 10 and the crystal pores 11 are closed pores. Since the closed pores are difficult to absorb moisture, the moisture resistance deterioration of the detection layer 8 is suppressed. Therefore, the infrared detection element can achieve high reliability in a high humidity environment.
  • the material of the substrate 5 is a material having a larger linear thermal expansion coefficient than that of the detection layer 8, and specifically, stainless steel mainly composed of iron or chromium is used.
  • the linear thermal expansion coefficient of SUS430 is 10.5 ppm / K
  • the linear thermal expansion coefficient of PZT is 7.9 ppm / K. 5 has a linear thermal expansion coefficient larger than that of the detection layer 8.
  • an annealing process is required at the time of film formation. Since the substrate 5 has a larger coefficient of linear thermal expansion than that of the detection layer 8, the PZT of the detection layer 8 is crystallized and rearranged at a high temperature in this annealing step. Stress remains due to the difference in expansion coefficient. At this time, stress in the compression direction along the upper surface 5A of the substrate 5 that compresses the detection layer 8 is applied to the PZT of the detection layer 8.
  • a compressive stress in a direction along the upper surface 5A of the substrate 5 due to thermal stress can be applied to the detection layer 8. Due to this compressive stress, the detection layer 8 is selectively oriented in the (001) direction, which is the polarization axis, and a high pyroelectric coefficient ⁇ is obtained. That is, the polarization axis of the detection layer 8 is selectively oriented in the vertical direction.
  • a material of the substrate 5 having a linear thermal expansion coefficient larger than that of the detection layer 8 for example, a metal material such as titanium, aluminum and magnesium, a single crystal material such as magnesium oxide and calcium fluoride, borosilicate glass, in addition to stainless steel
  • a metal material such as titanium, aluminum and magnesium
  • a single crystal material such as magnesium oxide and calcium fluoride
  • borosilicate glass in addition to stainless steel
  • glass materials as ceramic materials such as titanium oxide and zirconium oxide can be used.
  • the intermediate layer 6 is made of a material mainly composed of silicon oxide. Further, as the intermediate layer 6, a silicon nitride film (SiON) obtained by nitriding silicon oxide may be used. The intermediate layer 6 is preferably made of an oxide material having no crystal grain boundary.
  • the iron and chromium diffused in the intermediate layer 6 have a concentration gradient that decreases from the substrate 5 side toward the lower electrode layer 7 side. That is, the intermediate layer 6 has a region where the concentration of the material (iron and chromium) of the substrate 5 decreases in the direction from the lower surface 6B toward the upper surface 6A.
  • the intermediate layer 6 Since chrome is more easily diffused than iron, chrome is more diffused to the upper layer portion (upper surface 6A) of the intermediate layer 6. Moreover, the linear thermal expansion coefficient of iron is larger than chromium. Accordingly, the intermediate layer 6 has a region in which the linear thermal expansion coefficient is large in the portion close to the substrate 5 side where the iron ratio is large, that is, the lower surface 6B, and the linear thermal expansion coefficient decreases toward the lower electrode layer 7 side, that is, the upper surface 6A. Exists.
  • middle layer 6 can be suppressed, and the crystallinity fall and characteristic deterioration of the lower electrode layer 7 or the detection layer 8 are suppressed. It leads to doing. Moreover, the curvature and destruction of the detection laminated body 1 and the beam part 2 can be suppressed.
  • the elements may be selected in consideration of the linear thermal expansion coefficient and the ease of diffusion as described above. That is, the same effect can be obtained by diffusing an element having a larger linear thermal expansion coefficient and more easily diffusing and an element having a smaller linear thermal expansion coefficient and less diffusible into the intermediate layer 6.
  • the lower electrode layer 7 is made of a material mainly composed of lanthanum nickelate (LaNiO 3 , hereinafter referred to as “LNO”).
  • LNO lanthanum nickelate
  • the detection layer 8 is formed on the upper surface 7A of the lower electrode layer 7.
  • the material mainly composed of LNO includes a material in which a part of nickel is replaced with another metal.
  • the other metal includes at least one metal selected from the group consisting of iron, aluminum, manganese, and cobalt.
  • this material include LaNiO 3 —LaFeO, LaNiO 3 —LaAlO 3 , LaNiO 3 —LaMnO 3 , LaNiO 3 —LaCoO 3, and the like.
  • a material obtained by substituting Ni with two or more metals can be used as this material.
  • the lower electrode layer 7 functions as an orientation control layer of the detection layer 8 by taking lattice matching between the LNO unit lattice of the lower electrode layer 7 and the PZT unit lattice of the detection layer 8.
  • the lattice matching that takes this lattice matching is to try to match the crystal lattice of the crystal plane and the crystal lattice of the film formed thereon when a certain crystal face is exposed on the surface. This is to facilitate the formation of epitaxial crystal nuclei at the interface.
  • the difference between the lattice constant of one of the (001) plane and the (100) plane of the PZT of the detection layer 8 and the lattice constant of the LNO main orientation plane of the lower electrode layer 7 is defined as a lattice constant difference
  • the ratio of the lattice constant difference to the lattice constant is within about ⁇ 10% in absolute value, the orientation of either the (001) plane or the (100) plane of the PZT of the detection layer 8 can be increased.
  • the lower electrode layer 7 is a polycrystalline film preferentially oriented in the (100) plane direction.
  • the lattice matching between the LNO of the lower electrode layer 7 and the (001) plane and (100) plane of the PZT of the detection layer 8 is good, and PZT is generated by being oriented to the (001) plane or the (100) plane. Is done.
  • the orientation of the detection layer 8 is selectively controlled to the (001) plane by applying a compressive stress to the detection layer 8.
  • the detection layer 8 exhibits high selective orientation in the (001) direction that is the polarization axis direction.
  • the ratio is within ⁇ 10% in absolute value.
  • the infrared detection ability of the detection layer 8 is proportional to the pyroelectric coefficient of the detection layer 8.
  • the pyroelectric coefficient shows a high value by realizing a film oriented in the direction of the polarization axis of the crystal.
  • the detection layer 8 is formed on the substrate 5 having a large linear thermal expansion coefficient, and a compressive stress k due to thermal stress is applied to the detection layer 8 in the step of forming the detection layer 8, whereby the polarization axis (001) orientation is realized. Therefore, the high infrared detection ability of the detection layer 8 is obtained.
  • the material of the upper electrode layer 9 is 10 nm thick nichrome (an alloy of Ni and Cr). Nichrome is conductive and has a high infrared absorption performance among metal materials.
  • the material of the upper electrode layer 9 is not limited to nichrome, and any material having conductivity and infrared absorption performance may be used, and the film thickness may be in the range of 5 to 500 nm.
  • a conductive oxide such as titanium, a titanium alloy, lanthanum nickelate, ruthenium oxide, or strontium ruthenate may be used as the material of the upper electrode layer 9.
  • a metal black film such as a platinum black film or a gold black film, which is provided with infrared absorption performance by controlling the crystal grain size of platinum or gold, may be used as the material of the upper electrode layer 9.
  • a silicon oxide precursor solution is applied to form a silicon oxide precursor film.
  • the silicon oxide precursor film is densified by heating to form an intermediate layer 6 of silicon oxide.
  • an LNO precursor solution for forming the lower electrode layer 7 is applied on the intermediate layer 6 to form an LNO precursor film.
  • the LNO precursor film is rapidly heated and crystallized to form the lower electrode layer 7.
  • a PZT precursor solution is applied on the lower electrode layer 7 to form a PZT precursor film.
  • the PZT precursor film is heated to crystallize the PZT precursor film to form the detection layer 8.
  • the upper electrode layer 9 is formed on the detection layer 8.
  • the intermediate layer 6 is formed by first applying a silicon oxide precursor solution to the upper surface 5A of the substrate 5 by spin coating, thereby forming a silicon oxide precursor film.
  • a silicon oxide precursor solution to the upper surface 5A of the substrate 5 by spin coating, thereby forming a silicon oxide precursor film.
  • a film that is not crystallized is referred to as a precursor film.
  • the spin coating method is performed at a rotational speed of 2500 rpm for 30 seconds.
  • a thin film having a uniform film thickness can be simply applied in a plane.
  • a solution mainly containing tetraethoxysilane (TEOS, Si (OC 2 H 5 ) 4 ) is used, but methyltriethoxysilane (MTES, CH 3 Si (OC 2 H) is used. 5 ) 3 ) or a solution containing perhydropolysilazane (PHPS, SiH 2 NH) or the like as a main component may be used.
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • PHPS perhydropolysilazane
  • the silicon oxide precursor film is dried by heating at 150 ° C. for 10 minutes, and then heated at 500 ° C. for 10 minutes to perform thermal decomposition of residual organic substances and densification of the film.
  • the drying step is intended to remove moisture physically adsorbed in the silicon oxide precursor film, and the temperature is desirably higher than 100 ° C. and lower than 200 ° C. This is because decomposition of residual organic components in the silicon oxide precursor film starts at 200 ° C. or higher and prevents moisture from remaining in the produced intermediate layer 6 film.
  • the intermediate layer 6 is formed by repeating the steps from the step of applying the silicon oxide precursor solution on the substrate 5 to the densification process a plurality of times until the thickness of the intermediate layer 6 reaches a desired thickness. .
  • the constituent elements of the substrate 5, iron and chromium diffuse into the intermediate layer 6. Due to this diffusion, there is a region in the intermediate layer 6 in which the linear thermal expansion coefficient is gradually decreased from the substrate 5 side, that is, the lower surface 6B toward the lower electrode layer 7 side, that is, the upper surface 6A.
  • the formation of the silicon oxide layer as the intermediate layer 6 uses a chemical solution deposition (CSD) method, but is not limited to the CSD method, and a silicon oxide precursor thin film is formed on the substrate 5. Any method that forms a film and densifies the silicon oxide by heating can be used.
  • CSD chemical solution deposition
  • the film thickness of the intermediate layer 6 is desirably 300 nm or more, and more desirably 950 nm or less. This is because if the film thickness is smaller than 300 nm, the constituent elements of the substrate 5 such as iron and chromium may diffuse throughout the intermediate layer 6 and reach the lower electrode layer 7. When iron or chromium diffuses into the lower electrode layer 7, the crystallinity of LNO is lowered. When the film thickness is larger than 950 nm, it is not desirable because there is a possibility that the intermediate layer 6 may crack.
  • the lower electrode layer 7 is formed by forming an LNO layer using the CSD method.
  • the LNO precursor solution is applied onto the upper surface 6A of the intermediate layer 6 by using a spin coating method to form an LNO precursor film.
  • LNO precursor solution As starting materials for the LNO precursor solution, lanthanum nitrate hexahydrate (La (NO 3 ) 3 .6H 2 O) and nickel acetate tetrahydrate (CH 3 COO) 2 Ni.4H 2 O) were used. As the solvent, 2-methoxyethanol and 2-aminoethanol can be used. An LNO precursor solution is prepared using this starting material.
  • the LNO precursor film is dried by heating at 150 ° C. for 10 minutes, and then heated at 350 ° C. for 10 minutes to thermally decompose the residual organic matter.
  • the steps from the step of applying the LNO precursor solution on the intermediate layer 6 to the thermal decomposition of the residual organic matter are repeated a plurality of times, and when the thickness of the lower electrode layer 7 reaches a desired thickness.
  • the LNO precursor film is rapidly heated using a rapid heating furnace (Rapid Thermal Annealing, hereinafter referred to as “RTA furnace”) to perform a crystallization process.
  • RTA furnace Rapid Thermal Annealing
  • the crystallization treatment is performed by heating the LNO precursor film at 700 ° C. for 5 minutes and at a temperature rising rate of 200 ° C./min.
  • the lower electrode layer 7 made of an LNO-based material may be formed using various known film formation methods such as a vapor phase growth method such as a sputtering method and a hydrothermal synthesis method.
  • a PZT precursor solution is prepared, and the prepared PZT precursor solution is applied onto the upper surface 7A of the lower electrode layer 7.
  • the PZT precursor solution contains lead (II) acetate trihydrate (Pb (OCOCH 3 ) 2 .3H 2 O) and titanium isopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ) as starting materials.
  • Zirconium normal propoxide (Zr (OCH 2 CH 2 CH 3 ) 4 ) is used. Ethanol was added to these to dissolve and refluxed, and the PZT precursor solution was weighed so that the molar ratio Zr / Ti was 25/75. Further, acetylacetone as a stabilizer was added to the PZT precursor solution in an amount of 0.5 mol equivalent to the total amount of metal cations.
  • acetylacetone is used as the stabilizer, but any substance that forms a metal complex such as acetic anhydride or diethanolamine can be used.
  • the PZT precursor solution prepared using this starting material is applied on the upper surface 7A of the lower electrode layer 7 by a spin coating method. Thereafter, the PZT precursor film coated on the lower electrode layer 7 is dried by heating at 115 ° C. for 10 minutes. It is desirable that the temperature of the drying process is higher than 100 ° C and lower than 200 ° C. This is because decomposition of residual organic components in the PZT precursor solution starts at 200 ° C. or higher.
  • the generation of the pores 10 and 11 of the detection layer 8 and the control of the uneven distribution ratio of the pores 10 and 11 can be performed by changing the heat treatment conditions in the calcination process and the crystallization process of PZT described below.
  • the pores 10 and 11 are unevenly distributed at the crystal grain boundaries 22 by proceeding with the crystallization of PZT after the decomposition of the residual organic components is completed in the calcination step.
  • the PZT precursor film after the drying step is calcined to thermally decompose remaining organic components.
  • the temperature of the calcination step was set to 400 ° C., and the calcination time was changed to adjust the thermal decomposition degree of the residual organic matter.
  • the temperature in the pre-baking step is preferably 380 ° C. or higher and lower than 450 ° C. This is because crystallization of the dried PZT precursor film proceeds at 450 ° C. or higher.
  • the calcining time is preferably 10 minutes or longer.
  • the crystallization temperature of PZT varies depending on the molar ratio Zr / Ti. If the composition is Ti-rich, the crystallization temperature shifts to a lower temperature side. Therefore, when the crystallization temperature is low, the uneven distribution rate of the grain boundary pores 10 can be increased by lowering the temporary firing temperature.
  • the steps from the step of applying the PZT precursor solution to the pre-baking step are repeated a plurality of times, and when the thickness of the detection layer 8 reaches the desired thickness, the crystallization process is performed using the RTA furnace. Do.
  • the crystallization treatment is performed by heating the PZT precursor film at 650 ° C. for 5 minutes and at a heating rate of 200 ° C./min.
  • crystallization is performed after repeating coating and thermal decomposition a plurality of times. However, crystallization is performed each time coating and thermal decomposition are performed. May be performed. That is, the process from coating to crystallization may be repeated a plurality of times.
  • the number of pores 10 in the detection layer 8 can be controlled by a method other than the manufacturing method described above. That is, the number of pores 10 can be controlled by changing the coating conditions of the PZT precursor solution to adjust the thickness of the PZT precursor film per layer. For example, the number of pores 10 can be increased by reducing the thickness per layer of the PZT precursor film and increasing the number of stacked layers.
  • the film thickness of the PZT precursor film can be reduced by increasing the rotation speed of the substrate 5, and when the dip coating method is used. Then, the film thickness of the PZT precursor film can be reduced by reducing the pulling rate of the substrate 5.
  • the method for applying the PZT precursor solution is not limited to the spin coating method, and various coating methods such as a dip coating method, a spray coating method, and a roll coating method may be used. Further, the heating furnace used for the crystallization annealing of the detection layer 8 of the present embodiment is not limited to the RTA furnace, and an electric furnace or laser annealing may be used.
  • the upper electrode layer 9 made of a nichrome (Ni—Cr alloy) material is formed by a film formation method in various processes such as a vacuum evaporation method.
  • Examples 1 and 2 and Comparative Examples having different uneven distribution ratios of the grain boundary pores 10 were produced.
  • the temperature of the calcining process of the detection layer 8 was set to 450 ° C., and the other conditions were manufactured in the same process under the same conditions as in Example 1.
  • FIG. 3 shows a cross section of the detection layer 8 of Example 1.
  • the detection layer 8 made of PZT, it can be seen that the crystals grow in a columnar shape.
  • the detection layer 8 has pores 10 and 11 represented by white contrast, and it can be confirmed that the pores 10 and 11 are unevenly distributed in the crystal grain boundary 22.
  • Example 1 the uneven distribution rate of the grain boundary pores 10 was 90%.
  • the shape of the grain boundary pores 10 in Example 1 was such that the diameter W1 in the direction along the crystal grain boundary 22 was longer than the diameter W2 in the direction perpendicular to the crystal grain boundary 22, and the diameter W1 was about 20 nm. .
  • the uneven distribution rates of the grain boundary pores 10 calculated for Example 2 and the comparative example were 72% and 46%, respectively.
  • FIG. 5 shows that the detection layer 8 of the example is selectively oriented only in the PZT (001) / (100) direction.
  • FIG. 6 shows that the detection layer 8 has the (004) plane and (400) plane peaks separated, and the (004) plane peak with respect to the (400) plane is large. Therefore, it can be seen that the detection layer 8 is selectively oriented in the (004) direction which is the polarization axis direction.
  • the electrical characteristics of the detection layer 8 were measured and the infrared detection performance was evaluated.
  • Infrared detection performance measures pyroelectric coefficient gamma and the dielectric constant epsilon r, it is desirable to evaluate the ratio gamma / epsilon r of the pyroelectric coefficient gamma and the dielectric constant epsilon r.
  • Pyroelectric coefficient ⁇ is a value determined from the temperature dependence of the remanent polarization (Remanent Polarization) P r. And if the Curie temperature is substantially the same PZT material, pyroelectric coefficient ⁇ becomes large residual polarization value P r increases. Remanent polarization P r can be compared accurately measured pyroelectric coefficient gamma.
  • the ratio P r / ⁇ r of the remanent polarization value P r to the relative dielectric constant ⁇ r can also be used. Therefore, in Examples 1 and 2 and the comparative example, the remanent polarization value P r and the relative dielectric constant ⁇ r were measured, and the infrared detection performance was compared using the ratio P r / ⁇ r .
  • the ratio P r / ⁇ r is defined as an infrared detection performance index.
  • Table 1 shows the measurement results of the remanent polarization value P r and the relative dielectric constant ⁇ r and the calculation results of the infrared detection performance index (ratio P r / ⁇ r ).
  • the relative dielectric constant ⁇ r was measured at room temperature with an AC voltage of 1 V having a frequency of 1 kHz using an LCR meter (HP4284A, manufactured by Hewlett-Packard Company).
  • the residual polarization value P r of Example 1 was 40 .mu.C / cm 2, the dielectric constant epsilon r was 350.
  • Remanent polarization P r of Example 2 is 38 ⁇ C / cm 2, the dielectric constant epsilon r was 350.
  • the relative dielectric constant ⁇ r of the comparative example was a relatively low value of about 370, the remanent polarization value Pr was a lower value than those of Examples 1 and 2.
  • Examples 1 and 2 the relative dielectric constant ⁇ r is smaller than that in the comparative example, and the remanent polarization value Pr can be increased. That is, it can be said that Examples 1 and 2 have a higher pyroelectric coefficient ⁇ than the comparative example.
  • the pyroelectric coefficient ⁇ of Example 1 was approximately 40 nC / cm 2 / K
  • the pyroelectric coefficient ⁇ of the comparative example was approximately 30 nC / cm 2 / K.
  • the infrared detection performance index (ratio P r / ⁇ r ) of Example 1, Example 2, and Comparative Example are 0.114, 0.109, and 0.083, respectively. It can be seen that the detection performance index is remarkably improved and the infrared detection performance is improved.
  • the infrared detection performance can be improved by making the pores 10 and 11 unevenly distributed in the crystal grain boundaries 22 to have high crystal orientation.
  • the comparative example it is considered that the decomposition of the residual organic matter and the crystallization of the detection layer proceeded at the same time, the pores were substantially uniformly dispersed in the crystal 21, the crystallinity was lowered, and the residual polarization value Pr was reduced. .
  • the detection laminate 1 in which the intermediate layer 6, the lower electrode layer 7, the detection layer 8, and the upper electrode layer 9 are sequentially formed on the substrate 5 in which the cavity 4 is not formed is prepared by the manufacturing method described above.
  • the upper electrode layer 9 of the detection laminate 1 is processed by a photolithography process.
  • a photoresist is formed on the upper electrode layer 9, and the resist is exposed to ultraviolet rays using a chromium mask having a predetermined pattern.
  • an unexposed portion of the resist is removed using a developer to form a resist pattern, and then the upper electrode layer 9 is patterned by wet etching.
  • various methods such as dry etching can be used as a patterning method for the upper electrode layer 9.
  • the detection layer 8 the lower electrode layer 7, and the intermediate layer 6 are sequentially processed by photolithography and etching.
  • the cavity 4 is formed in the substrate 5 by performing wet etching from the portion of the upper surface 5 ⁇ / b> A of the substrate 5 exposed from the intermediate layer 6.
  • the wet etching is performed until the lower surface 6B of the intermediate layer 6 formed on the detection laminate 1 and the beam portion 2 is separated from the upper surface 5A of the substrate 5. In this way, the infrared detection element 1000 is manufactured.
  • FIG. 7 is a block diagram of the infrared detection apparatus 2000 according to the embodiment.
  • FIG. 7 shows an example of an infrared detection device using an infrared detection element, and the infrared detection device is not limited to this.
  • the infrared detection apparatus 2000 includes an optical system block 2001, an infrared sensor 2002, and a signal processing circuit 2003 that processes an output signal of the infrared sensor 2002.
  • the optical system block 2001 includes an optical member such as a lens that collects infrared incident light and a filter that selectively transmits infrared light. Infrared light is received by the infrared sensor 2002 via the optical system block 2001.
  • an optical member such as a lens that collects infrared incident light and a filter that selectively transmits infrared light. Infrared light is received by the infrared sensor 2002 via the optical system block 2001.
  • infrared rays reflected light of an infrared beam applied to an object such as a human body, an infrared beam shielded by movement of the object, infrared rays emitted from a person, and the like can be used.
  • the infrared sensor 2002 includes a single infrared detection element 1000, a plurality of infrared detection elements 1000 arranged two-dimensionally in a matrix, or a plurality of infrared detection elements 1000 arranged in a row.
  • a lens array may be used for the optical system block 2001 corresponding to the plurality of infrared detection elements 1000.
  • an infrared sensor having one or a plurality of infrared detection elements 1000 and an optical system block 2001 can be regarded as an infrared detection element.
  • the signal processing circuit 2003 receives an output signal output from the infrared sensor 2002 (infrared detection element 1000) and outputs an output signal such as an object detection signal, an object movement signal, an operation signal, an image signal, and a temperature signal.
  • the signal processing circuit 2003 includes active elements such as transistors, FETs, ICs, logic circuits, and semiconductor integrated circuits, and the active elements constitute an amplifier circuit that amplifies the output signal of the infrared detection element, an analog-digital conversion circuit, and the like. To do.
  • the infrared detector 2000 can use a control circuit and a tuning amplifier circuit for controlling the chopper when the incident light is modulated by a chopper or the like.
  • the infrared detection apparatus 2000 may include a lamp that indicates object detection, a monitor that displays an image signal, a recording medium such as a memory that records a temperature signal, and the like.
  • FIG. 8 is a schematic cross-sectional view of another infrared detection element 1001 in the embodiment. 8, the same reference numerals are assigned to the same portions as those of the infrared detecting element 1000 shown in FIGS. 1 and 2A to 2C.
  • the infrared detection element 1001 has a detection laminate 1A instead of the detection laminate 1 of the infrared detection element 1000 shown in FIGS. 1 and 2A to 2C.
  • the detection laminate 1A does not have the intermediate layer 6. That is, in the infrared detection element 1001, the lower surface 7 ⁇ / b> B of the lower electrode layer 7 is located on the upper surface 5 ⁇ / b> A of the substrate 5.
  • the infrared detection element 1001 also has the same effect as that obtained when the pores are unevenly distributed at the grain boundaries in the detection layer 8.
  • the detection layer 8 formed of a ferroelectric has piezoelectric characteristics as well as pyroelectric characteristics. Therefore, the structure of the detection laminate 1 of the infrared detection element 1000 in the embodiment can be used as a piezoelectric element.
  • FIG. 9 is a cross-sectional view of the piezoelectric element 1002 in the embodiment. 9, the same reference numerals are assigned to the same portions as those of the infrared detecting element 1000 shown in FIG. 2A.
  • the piezoelectric element 1002 has the same configuration as the infrared detection element 1000 except for the cavity 4 and the beam portion 2.
  • the piezoelectric element includes a lower electrode layer 7, a piezoelectric layer 58 provided on the lower electrode layer 7, and an upper electrode layer 9 provided on the piezoelectric layer 58.
  • the piezoelectric element includes a substrate 5 and an intermediate layer 6 provided on the substrate 5, and a lower electrode layer 7 is provided on the intermediate layer 6.
  • the piezoelectric layer 58 has a columnar crystal structure similar to the detection layer 8 of the infrared detection element 1000 shown in FIG. 2A, and the piezoelectric layer 58 has a plurality of pores 10 that are unevenly distributed in the crystal grain boundaries 22 of the crystal structure. , 11.
  • the grain boundary pores 10 formed in the crystal grain boundaries 22 have a diameter W1 in the direction along the crystal grain boundaries 22 longer than a diameter W2 in the direction perpendicular to the crystal grain boundaries 22.
  • the average value of the diameter W1 of the grain boundary pores 10 is 5 nm to 50 nm.
  • the uneven distribution rate of the grain boundary pores 10 is preferably 60% or more.
  • the ratio Cd / epsilon r for the relative dielectric constant epsilon r of the piezoelectric d constant Cd is large is desirable.
  • Example 1 and Example 2 have a high piezoelectric constant because the remanent polarization value Pr is larger than that of the comparative example. Moreover, Example 1 and Example 2 have a small relative dielectric constant ⁇ r compared to the comparative example. Accordingly, Example 1, the ratio Cd / epsilon r for the relative dielectric constant epsilon r of the piezoelectric d constant Cd of Example 2, larger than that of Comparative Example.
  • the piezoelectric element of the embodiment the dielectric constant epsilon r can be reduced, it is possible to increase the piezoelectric output constant, it is possible to obtain a high conversion efficiency piezoelectric sensor or a piezoelectric actuator.
  • terms indicating directions such as “upper”, “lower”, “upper surface”, and “lower surface” are the infrared detection element 1000 such as the upper electrode layer 9, the lower electrode layer 7, and the detection layer 8, and the piezoelectric element 1002.
  • the relative direction depending only on the relative positional relationship of the constituent members is shown, and the absolute direction such as the vertical direction is not shown.
  • the infrared detection element according to the present invention has high infrared detection performance and is useful for various sensors such as a human sensor and a temperature sensor, and power generation devices such as a pyroelectric power generation device.
  • the piezoelectric element according to the present invention has high sensitivity and is useful for various sensors such as an angular velocity sensor and various actuators such as a piezoelectric actuator and an ultrasonic motor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 赤外線検出素子は、下部電極層と、下部電極層上に設けられた検出層と、検出層上に設けられた上部電極層とを有する検出積層体を備える。検出層は、柱状の結晶構造を有する。検出層には、結晶構造の結晶粒界に偏在する複数の気孔が設けられている。この赤外線検出素子は高い赤外線検出性能を有する。

Description

赤外線検出素子、及び赤外線検出装置、圧電体素子
 本発明は、赤外線検出素子及び赤外線検出装置と、圧電体素子に関する。
 赤外線検出素子としては、量子型赤外線検出素子と熱型赤外線検出素子の2種類が知られている。このうち量子型赤外線検出素子は赤外線を半導体のバンドギャップとして捉えるので感度が高く、応答速度が大きい。しかし、量子型赤外線検出素子は使用時に液体窒素温度への冷却の必要があり、冷却ユニットを設ける必要があるため大型かつ高価である。また、量子型赤外線検出素子は波長選択性もあり、遠赤外線には応答性に乏しい。
 熱型赤外線検出素子は、温度変化によって表面に電荷を生じる焦電体材料を利用した焦電型赤外線検出素子や、温度変化によって抵抗値が変化する抵抗ボロメータ材料を利用した抵抗ボロメータ型赤外線検出素子、温度差で熱起電力を生じるゼーベック効果を利用した熱電対(サーモパイル)型赤外線検出素子等がある。
 このうち、焦電型赤外線検出素子は、熱型赤外線検出素子の中では出力信号が大きく、出力される雑音が低いのでS/N比が高い。さらに、焦電型赤外線検出素子は低コストで人体検知が可能であるため、自動照明や機器の消費電力削減のための自動スイッチとして広く使用されている。
 焦電型赤外線検出素子は、強誘電体の焦電効果を利用する。強誘電体層が赤外線を受光すると温度が上昇し、この温度の変化に伴う分極率の変化によって、強誘電体層の表面電荷が変化する。赤外線検出装置は、この表面電荷の変化を赤外線検出素子の出力信号として取り出して、赤外線を検知する。
 赤外線の受光感度を高めるために、入射赤外線エネルギーに対し温度上昇が大きくなるように、強誘電体層の受光面積に比べ強誘電体層の厚みを薄くしたり、熱容量の高い基板としたり、基板本体と強誘電体層との接触部分を小さい構造にしたりする場合がある。
 また、焦電型赤外線検出素子の焦電材料としては、焦電係数γの値が高く、比誘電率εの値が小さい方が望ましく、これにより赤外線検出性能が向上する。
 図10は特許文献1に開示されている従来の赤外線検出素子500の正面断面図である。赤外線検出素子500は、気孔率が20%以上の多孔質の強誘電体セラミックス32と、強誘電体セラミックス32を挟む緻密質の強誘電体セラミックス33と、緻密質強誘電体セラミックス33に接続された電極34とを備える。強誘電体セラミックス32、33は、焦電係数が比較的大きいチタン酸鉛(PT)系もしくはチタン酸ジルコン酸(以下、PZTと称す)系のセラミック粒子のスラリーをグリーンシートとした後、そのグリーンシートを焼結して形成されている。
 赤外線検出素子500は、気孔率の高い多孔質強誘電体セラミックス32が中央部に設けられているので、多孔質強誘電体セラミックス32と同じ体積を有する緻密質の強誘電体セラミックス33により構成された赤外線検出素子と比較すると、気孔31により比誘電率εが小さくなり、結果として、赤外線検出性能が向上する。
 チタン酸ジルコン酸鉛等の強誘電体は、一般式ABOで表されるペロブスカイト型構造を有する酸化物であり、優れた焦電性の他に、強誘電性、圧電性、電気光学特性を示す。このような強誘電体よりなる圧電体素子は、この圧電効果を利用し、圧電センサや圧電アクチュエータに用いられる。
 強誘電体は内部に自発分極を有しており、その表面に正電荷および負電荷が発生する。大気中における定常状態では大気中の分子が持つ電荷と結合して表面は中性状態になっている。この強誘電体に外圧がかかると強誘電体から外圧の量に応じて表面に現れる表面電荷が変化する。圧電センサは、この表面電荷の変化を電気信号として取り出して、強誘電体に印加された圧力や強誘電体の変位を検知する。
 圧電センサの感度は、圧電体素子の圧電定数(圧電d定数)Cdと比誘電率εで表される圧電出力定数(圧電g定数)Cd/εを大きくすることで高くすることができる。
 また、強誘電体に電圧を印加すると、その電圧に応じて強誘電体が伸縮し、伸縮する方向あるいはその方向に直交する方向に変位を生じさせることができる。圧電アクチュエータは、この変位を利用して対象物を変位させることができる。
特開平8-62038号公報
 赤外線検出素子は、下部電極層と、下部電極層上に設けられた検出層と、検出層上に設けられた上部電極層とを有する検出積層体を備える。検出層は、柱状の結晶構造を有する。検出層には、結晶構造の結晶粒界に偏在する複数の気孔が設けられている。
 この赤外線検出素子は高い赤外線検出性能を有する。
図1は実施の形態における赤外線検出素子の上面模式図である。 図2Aは図1に示す赤外線検出素子の線IIA-IIAにおける断面模式図である。 図2Bは図1に示す赤外線検出素子の線IIB-IIBにおける断面模式図である。 図2Cは図1に示す赤外線検出素子の線IIC-IICにおける断面模式図である。 図3は実施の形態における赤外線検出素子の検出層の断面の透過型電子顕微鏡写真を示す図である。 図4は図3に示す検出層の概略図である。 図5は実施の形態における赤外線検出素子の実施例の検出層のX線回折パターン図である。 図6は実施の形態における赤外線検出素子の実施例の検出層のX線回折パターン図である。 図7は実施の形態における赤外線検出装置のブロック図である。 図8は実施の形態における他の赤外線検出素子の断面模式図である。 図9は実施の形態における圧電体素子の断面模式図である。 図10は従来の赤外線検出素子の正面断面図である。
 図1は実施の形態における赤外線検出素子1000の上面模式図である。図2Aと図2Bと図2Cはそれぞれ図1に示す赤外線検出素子1000の線IIA-IIA、IIB-IIB、IIC-IICにおける断面模式図である。図2Aに示す位置Aa、Abは図1に示す位置Aa、Abとそれぞれ同じである。赤外線検出素子1000は、検出積層体1と基板5と梁部2とを備える。梁部2は基板5に接続されて、検出積層体1を保持する。
 検出積層体1は、下部電極層7と、下部電極層7の上面7A上に設けられた検出層8と、検出層8の上面8A上に設けられた上部電極層9とを備えている。検出層8の下面8Bは下部電極層7の上面7A上に位置する。
 基板5は一方の主面である上面5Aと、他方の主面である下面5Bとを有する。基板5の上面5Aに凹状の空洞4が設けられている。空洞4は基板5の上面5Aに開口する開口部4Aを有する。基板5の上面5Aで空洞4の開口部4Aの周辺に枠部3が設けられている。
 なお、空洞4は、基板5の上面5Aの中央に設けることができるが、この配置に限定されるものではない。空洞4は、基板5の下面5Bに連通して開口してもよい。空洞4の断面形状は、ドーム形状、三角形状、多角形状、台形形状等とすることができる。
 検出積層体1は、空洞4の開口部4Aに設けられている。梁部2を介して検出積層体1と枠部3の一部とを接続することにより、検出積層体1は、空洞4を囲む基板5の表面から離間されるように支持される。したがって、検出積層体1は、基板5に対して高い熱絶縁性を有する。
 実施の形態における赤外線検出素子1000では、検出積層体1は中間層6を備える。中間層6は、基板5の上面5A上に形成され、すなわち、中間層6の下面6Bは基板5の上面5A上に位置する。中間層6は基板5の上面5Aとほぼ平行に延在され、梁部2と検出積層体1の一部を構成している。検出積層体1の下部電極層7は、中間層6の上面6A上に設けられる。ただし、検出積層体1は中間層6を有していなくてもよい、その場合には、下部電極層7は基板5の上面5A上に位置する。
 検出層8は、下部電極層7の上面7A上に形成され、正方晶系の(001)面に配向したPZT(チタン酸ジルコン酸鉛)よりなる。このように検出層8は、分極軸方向である(001)方向に選択的に配向した結晶であるため、焦電係数γを大きくすることができる。
 PZTの組成は、正方晶系の組成であるZrとTiのモル比Zr/Tiが30/70付近であることが望ましいが、正方晶系と菱面体晶系との相境界(モルフォトロピック相境界)付近の組成(モル比Zr/Tiが53/47)や、PbTiOを用いてもよく、モル比Zr/Tiが0/100~70/30であればよい。
 検出層8の構成材料は、PZTを主成分とするペロブスカイト型酸化物強誘電体を用いることができ、例えば、PZTを主成分としてLa、Ca、Sr、Nb、Mg、Mn、Zn、Al等の元素をPZTの元素の一部と置換したものが挙げられる。
 検出層8の他の構成材料として、PMN(Pb(Mg1/3Nb2/3)O)やPZN(Pb(Zn1/3Nb2/3)O)を用いることができる。
 図3は後述する実施例の赤外線検出素子の検出層の断面の透過型電子顕微鏡(Transmission Electron Microscope、以下、TEMと称す)写真であり、図4は図3のTEM写真を模写した概略図である。
 図2A、図4に示すように、検出層8は、柱状の結晶構造を有している。柱状の結晶21は下部電極層7と上部電極層9間を結ぶ縦方向に延びている。結晶粒界22は柱状の結晶21間に存在し、縦方向に延在している。
 検出層8には複数の気孔10、11が設けられている。複数の気孔10、11は、結晶粒界22に形成された複数の粒界気孔10を有する。縦方向に延在する複数の結晶粒界22のうちの少なくとも一つの結晶粒界22において複数の粒界気孔10が形成されるが、一つの粒界気孔10が形成されていてもよい。
 一方、結晶21中には気孔がない、又は気孔を含んでいる場合もあるが、粒界気孔10に比べ少ない。結晶21中には結晶気孔11が形成されていてもよい。結晶気孔11は、検出層8にランダムに形成されている。
 図3に示すように、検出層8に形成される気孔は、TEMにより結晶断面の写真を観察した際に、白いコントラストとして確認することができる。
 ここで、粒界気孔10は、結晶粒界22の領域で少なくとも一部が観察される気孔である。結晶気孔11は、結晶粒界22から離れておりかつ一つの結晶21内に完全に囲まれている気孔である。
 検出層8において気孔10、11は結晶粒界22に偏在している。
 結晶粒界22に気孔が偏在しているとは、検出層8に設けられた粒界気孔10の数が、検出層8に設けられた結晶気孔11の数より大きいことを意味する。すなわち、粒界気孔10の数と結晶気孔11の数の合計に対する粒界気孔10の数の比である粒界気孔10の偏在率は50%を超える。
 検出層8における粒界気孔10と結晶気孔11の数は、検出層8における所定領域の夫々の数を用いて、この所定領域と検出層8との体積比から算出することができる。この所定領域は算出精度等に応じて適宜設定することができる。例えば、所定領域として、検出層8における縦方向に平行な等間隔の複数の結晶断面、より具体的には検出層8の中央付近において間隔が20nmの等間隔の結晶断面を用いることができる。
 検出層8に複数の気孔を設けることにより検出層8の比誘電率εを低減できる。さらに、検出層8の気孔10、11が結晶粒界22に偏在していることにより、検出層8の結晶性が損なわれないため焦電係数γを高めることができる。そのため本実施の形態の赤外線検出素子1000は、比誘電率εを低減し焦電係数γを高めることができるので、高い赤外線検出性能を得ることができる。
 図10に示す従来の赤外線検出素子500では強誘電体の比誘電率εが小さくなると同時に焦電係数γが大きく低下するので、赤外線検出性能が十分でない場合がある。
 粒界気孔10の偏在率は、好ましくは60%以上であり、この気孔偏在比率とすることにより焦電係数γを高めることができる。また粒界気孔10の偏在率は、より好ましくは70%以上であり、更に焦電係数γを高めることができる。
 粒界気孔10の、結晶粒界22に沿った方向の径W1の方が結晶粒界22に垂直な方向の径W2より長く、粒界気孔10は略楕円状の断面を有する扁平な形状を有するものを多く含んでいる。
 粒界気孔10の径W1の平均値が5nm~50nmであることが望ましい。径W1が5nm未満の場合、気孔10の径の制御が難しく安定して比誘電率εを低減できない場合がある。また径W1が50nmを超えると高温環境や振動等によって柱状の結晶構造にクラックが生じ易くなる場合がある。
 粒界気孔10及び結晶気孔11は閉気孔である。閉気孔は吸湿し難いため、検出層8の耐湿性劣化が抑制される。そのため赤外線検出素子は高湿度環境において高い信頼性を実現することができる。
 基板5の材料は、検出層8より線熱膨張係数が大きいものを用い、具体的には鉄やクロムを主成分とするステンレスを用いている。
 基板5の材料にステンレスとして、例えば、SUS430を用いた場合には、SUS430の線熱膨張係数は10.5ppm/Kであり、PZTの線熱膨張係数は7.9ppm/Kであるので、基板5は検出層8より線熱膨張係数が大きい。
 本実施の形態の赤外線検出素子1000の製造方法における検出層8の成膜過程においては、成膜時にアニール工程が必要である。基板5は検出層8より線熱膨張係数が大きいため、このアニール工程において検出層8のPZTが高温で結晶化再配列することにより、この高温から室温までの冷却時に、基板5との線熱膨張係数の差により応力が残留する。このとき検出層8のPZTには検出層8を圧縮する基板5の上面5Aに沿った圧縮方向の応力が印加される。
 このように検出層8の形成過程において熱応力による基板5の上面5Aに沿った方向の圧縮応力を検出層8に印加することができる。この圧縮応力により検出層8は分極軸である(001)方向への選択的に配向し、高い焦電係数γが得られる。すなわち、検出層8の分極軸は縦方向に選択的に配向している。
 検出層8よりも線熱膨張係数の大きい基板5の材料として、ステンレスの他に、例えば、チタン、アルミ、マグネシウム等の金属材料や、酸化マグネシウムやフッ化カルシウム等の単結晶材料、ホウケイ酸ガラス等のガラス材料、酸化チタン、酸化ジルコニウム等のセラミック系材料などを用いることができる。
 中間層6には、シリコン酸化物を主成分とする材料を用いている。また、中間層6として、シリコン酸化物を窒化したシリコン窒化膜(SiON)などを用いてもよい。中間層6は、結晶粒界を有しない酸化物材料よりなることが望ましい。
 さらに、中間層6には、基板5の材料であるステンレスに主成分として含まれる鉄とクロムが拡散している。
 中間層6に拡散した鉄とクロムは、基板5側から下部電極層7側に向かって減少する濃度勾配ができている。すなわち、中間層6は、基板5の材料(鉄とクロム)の濃度が、下面6Bから上面6Aに向かう方向で減少する領域を有する。
 鉄に比べ、クロムの方が拡散しやすいため、クロムの方が中間層6の上層部(上面6A)までより多く拡散する。また、鉄の線熱膨張係数はクロムより大きい。したがって鉄の比率が大きい基板5側すなわち下面6Bに近い部分では線熱膨張係数が大きく、下部電極層7側すなわち上面6Aに向かうに連れて線熱膨張係数は小さくなる領域が中間層6中に存在する。これにより、基板5と中間層6の線熱膨張係数の差に起因する熱応力による基板5の反りを抑制することができ、下部電極層7や検出層8の結晶性低下や特性劣化を抑制することに繋がる。また、検出積層体1や梁部2の反りや破壊を抑制することができる。
 このように中間層6には、基板5に含有する少なくとも二種の元素が拡散している。基板5から中間層6に拡散する元素として鉄、クロム以外の複数の元素を用いる場合は、上記のように線熱膨張係数と拡散のしやすさを考慮して元素を選択すればよい。すなわち、線熱膨張係数がより大きくてより拡散しやすい元素と、逆に線熱膨張係数がより小さくかつより拡散しにくい元素とを中間層6に拡散させることで同様の効果が得られる。
 下部電極層7は、ニッケル酸ランタン(LaNiO、以降「LNO」と記す)を主成分とする材料よりなる。検出層8は下部電極層7の上面7A上に形成される。
 下部電極層7のLNOはR3cの空間群を持ち、菱面体に歪んだペロブスカイト型構造(菱面体晶系:a0=5.46Å、a0=ap、α=60°、擬立方晶系:a0=3.84Å)を有し、室温での抵抗率が1×10-3(Ω・cm)で、金属的電気伝導性を有する酸化物であって、温度を変化させても金属から絶縁体へ転移が起こらないという特徴を持つ。
 LNOを主成分とする材料としては、ニッケルの一部を他の金属で置換した材料等も含まれる。他の金属には、鉄、アルミニウム、マンガン、そしてコバルトからなる群から選択された少なくとも一種の金属が含まれる。例えば、この材料としては、LaNiO-LaFeO、LaNiO-LaAlO、LaNiO-LaMnO、LaNiO-LaCoO等を挙げることができる。また、必要に応じて、この材料としては、二種以上の金属でNiを置換したものを用いることもできる。
 下部電極層7は、下部電極層7のLNOの単位格子と検出層8のPZTの単位格子との格子整合性をとることにより、検出層8の配向制御層として機能する。
 この格子整合性をとる格子マッチングは、一般的に、ある種の結晶面が表面に露出している場合、結晶面の結晶格子と、その上に形成される膜の結晶格子とがマッチングしようとする力が働き、界面でエピタキシャルな結晶核を形成し易くすることである。
 検出層8のPZTの(001)面と(100)面のうちの一方の格子定数と下部電極層7のLNOの主配向面の格子定数との差を格子定数差とすると、検出層8の格子定数に対する格子定数差の割合が絶対値でおおよそ±10%以内であれば、検出層8のPZTの(001)面もしくは(100)面のいずれかの面の配向性を高くすることができる。
 本実施の形態の擬立方晶構造のLNOは、a=3.84Åの格子定数aを有し、一方、正方晶系のPZTは、バルクセラミックスの値でa=b=4.036Å、c=4.146Åの格子定数a、b、cを有する材料である。さらに、下部電極層7は(100)面方向に優先配向した多結晶膜である。
 したがって、下部電極層7のLNOと、検出層8のPZTの(001)面および(100)面との格子マッチングが良好であり、PZTは(001)面または(100)面に配向して生成される。
 しかしながら、格子マッチングによる配向制御においては、PZTが、(001)面もしくは(100)面の一方が優先して成膜されるように選択的に配向することは困難である。
 本実施の形態の検出層8の製造工程においては、検出層8に圧縮方向の応力を印加することにより、検出層8を(001)面に選択的に配向制御している。これにより、検出層8は分極軸方向である(001)方向に高い選択配向性を示す。
 この検出層8の主配向面であるPZTの(001)面の格子定数に対して、下部電極層7のLNOの主配向面の格子定数と検出層8の主配向面の格子定数との差の割合は、絶対値で±10%以内である。
 検出層8の赤外線検出能は、検出層8の焦電係数に比例する。焦電係数は結晶の分極軸方向に配向した膜を実現することで高い値を示す。
 本実施の形態では、検出層8を線熱膨張係数の大きい基板5の上に形成し、検出層8を形成する工程で検出層8に熱応力による圧縮応力kを印加することにより、分極軸である(001)配向を実現している。そのため検出層8の高い赤外線検出能が得られる。
 上部電極層9の材料は、10nm厚のニクロム(NiとCrの合金)である。ニクロムは導電性を有するとともに、金属系材料の中では、高い赤外線吸収性能を有する材料である。
 なお、上部電極層9の材料としては、ニクロムに限らず、導電性を有し、赤外線吸収性能を有する材料であればよく、膜厚は5~500nmの範囲であればよい。例えば、チタンやチタン合金、ニッケル酸ランタンや酸化ルテニウム、ルテニウム酸ストロンチウムなどの導電性酸化物を上部電極層9の材料として用いてもよい。また、白金や金の結晶粒径を制御して、赤外線吸収性能を付与した、白金黒膜、金黒膜等の金属黒膜などを上部電極層9の材料として用いてもよい。
 次に、本実施の形態の赤外線検出素子の製造方法について説明する。まず、基板5の上に中間層6を形成するためシリコン酸化物前駆体溶液を塗布し、シリコン酸化物前駆膜を形成する。そしてシリコン酸化物前駆膜を加熱により緻密化し、シリコン酸化物の中間層6を形成する。続いて、中間層6の上に下部電極層7を形成するためのLNO前駆体溶液を塗布し、LNO前駆体膜を形成する。その後、LNO前駆体膜を急速加熱し結晶化させ、下部電極層7を形成する。さらに、下部電極層7の上にPZT前駆体溶液を塗布し、PZT前駆体膜を形成する。そしてPZT前駆体膜を加熱し、PZT前駆体膜を結晶化させ、検出層8を形成する。最後に、検出層8の上に上部電極層9を形成する。
 以下に、中間層6の形成工程から上部電極層9の形成工程までを順に詳細に説明する。
 まず、基板5の上面5A上に中間層6を形成する工程を行う。中間層6の形成工程は、まず、シリコン酸化物前駆体溶液をスピンコート法により基板5の上面5Aに塗布することで、シリコン酸化物前駆体膜を形成する。以降、塗布した膜のうち、結晶化していない状態の膜を前駆体膜と称する。
 スピンコート法は回転数2500rpmで30秒行う。スピンコート法は、その回転数を制御することで、膜厚が面内に均一な薄膜を簡便に塗布することができる。
 シリコン酸化物前駆体溶液としては、テトラエトキシシラン(TEOS、Si(OC)を主成分とする溶液を用いているが、メチルトリエトキシシラン(MTES、CHSi(OC)やペルヒドロポリシラザン(PHPS、SiHNH)等を主成分とする溶液を用いてもよい。
 次に、シリコン酸化物前駆体膜を150℃で10分間加熱して乾燥し、その後、500℃で10分間加熱することにより、残留有機物の熱分解および膜の緻密化処理を行う。乾燥工程はシリコン酸化物前駆体膜中に物理吸着した水分の除去を目的としたものであり、温度は100℃を超えて200℃未満であることが望ましい。これは、200℃以上ではシリコン酸化物前駆体膜中の残留有機成分の分解が開始するためであり、作製した中間層6の膜中へ水分が残留するのを防止するためである。
 以上のシリコン酸化物前駆体溶液を基板5上に塗布する工程から緻密化処理までの工程を中間層6の膜厚が所望の膜厚になるまで複数回繰り返すことにより、中間層6を形成する。
 ここで、中間層6のシリコン酸化物前駆体膜を500℃で熱処理する際に、基板5の構成元素である鉄、クロムが中間層6に拡散する。この拡散により、中間層6において、基板5側すなわち下面6Bから下部電極層7側すなわち上面6Aに向かって傾斜的に線熱膨張係数が小さくなっている領域が存在する。
 なお、中間層6であるシリコン酸化物層の形成には、化学溶液堆積(CSD)法を用いているが、CSD法に限定されるものではなく、シリコン酸化物の前駆体薄膜を基板5に成膜し、加熱によりシリコン酸化物の緻密化を行う方法であれば、用いることができる。
 ここで、中間層6の膜厚は300nm以上であることが望ましく、また、950nm以下であることがより望ましい。膜厚が300nmより小さい場合は、基板5の構成元素である鉄とクロムが、中間層6の全体に拡散し、下部電極層7にまで達してしまう可能性があるためである。鉄やクロムが下部電極層7に拡散すると、LNOの結晶性が低下してしまう。膜厚が950nmより大きい場合は、中間層6にクラック等が入ってしまう可能性があるため、望ましくない。
 次に、中間層6の上に下部電極層7を形成する工程を行う。下部電極層7の形成工程は、CSD法を用いてLNO層を形成するものである。まずLNO前駆体溶液を、中間層6の上面6A上にスピンコート法を用いて塗布しLNO前駆体膜を形成する。
 LNO前駆体溶液の出発原料としては、硝酸ランタン六水和物(La(NO・6HO)と酢酸ニッケル四水和物(CHCOO)Ni・4HO)を用い、溶媒としては、2-メトキシエタノールと2-アミノエタノールを用いることができる。この出発原料を用いてLNO前駆体溶液を調製する。
 次に、LNO前駆体膜を150℃で10分間加熱して乾燥し、その後350℃で10分間加熱して、残留有機物の熱分解を行う。
 その後、このLNO前駆体溶液を中間層6の上に塗布する工程から残留有機物の熱分解を行うまでの工程を複数回繰り返し、下部電極層7の膜厚が所望の膜厚になった時点で、急速加熱炉(Rapid Thermal Annealing、以下、「RTA炉」と記す)を用いてLNO前駆体膜を急速加熱し、結晶化処理を行う。結晶化処理の条件はLNO前駆体膜を700℃で5分、昇温速度200℃/minで加熱する。
 なお、LNO系材料からなる下部電極層7は、スパッタリング法等の気相成長法や、水熱合成法等の種々の公知の成膜方法を用いて形成してもよい。
 次に、下部電極層7の上に検出層8を形成する工程を行う。
 検出層8の形成工程は、まず、PZT前駆体溶液の調製を行い、下部電極層7の上面7A上に、作製したPZT前駆体溶液を塗布する。
 PZT前駆体溶液は、出発原料として、酢酸鉛(II)三水和物(Pb(OCOCH・3HO)と、チタンイソプロポキシド(Ti(OCH(CH)と、ジルコニウムノルマルプロポキシド(Zr(OCHCHCH)を用いる。これらにエタノールを加えて溶解し、還流することで、PZT前駆体溶液を、モル比Zr/Tiが25/75となるように秤量した。また、安定化剤としてアセチルアセトンを金属陽イオンの総量に対して0.5mol当量だけPZT前駆体溶液に加えた。
 なお、本実施の形態では、安定化剤として、アセチルアセトンを用いたが、無水酢酸やジエタノールアミンなどの金属錯体を形成する物質であれば用いることができる。
 この出発原料を用いて調製したPZT前駆体溶液を、下部電極層7の上面7A上にスピンコート法により塗布する。その後、下部電極層7の上に塗布したPZT前駆体膜を115℃で10分間加熱して乾燥する。乾燥工程の温度は100℃を超えて200℃未満であることが望ましい。これは、200℃以上ではPZT前駆体溶液中の残留有機成分の分解が開始するためである。
 検出層8の気孔10、11の生成及び気孔10、11の偏在率の制御は、次に述べるPZTの仮焼工程と結晶化工程における熱処理条件を変えて行うことができる。
 仮焼工程において残留有機物成分の分解が完了してから、PZTの結晶化を進行させることにより、気孔10、11が結晶粒界22に偏在して形成すると考えられる。
 まず、仮焼工程においては、乾燥工程後のPZT前駆体膜を仮焼成して残留する有機成分の熱分解を行う。具体的には仮焼工程の温度を400℃とし、仮焼時間を変えて残留有機物の熱分解度を調整した。仮焼成工程の温度は380℃以上450℃未満であることが好ましい。これは、450℃以上では乾燥したPZT前駆体膜の結晶化が進行するためである。また、仮焼時間は10分以上であることが望ましい。
 PZTの結晶化温度は、モル比Zr/Tiによって異なる。Tiリッチの組成になれば、結晶化温度が低温度側にシフトする。そのため結晶化温度が低温度になる場合、仮焼成温度を低くすることにより、粒界気孔10の偏在率を高めることができる。
 続いて、このPZT前駆体溶液を塗布する工程から仮焼成工程までの工程を複数回繰り返し、検出層8の膜厚が所望の膜厚になった時点で、RTA炉を用いて結晶化処理を行う。結晶化処理の条件は650℃で5分、昇温速度200℃/minでPZT前駆体膜を加熱する。
 なお、本実施の形態ではPZT層の形成において、所望の膜厚を得るために、塗布および熱分解を複数回繰り返した後に結晶化を行っているが、塗布および熱分解を行うたびに結晶化を行ってもよい。すなわち塗布から結晶化までの工程を複数回繰り返してもよい。
 また、検出層8の気孔10の数は、上述した製造方法以外により制御することができる。すなわち、PZT前駆体溶液の塗布条件を変更して1層あたりのPZT前駆体膜の膜厚を調整することにより、気孔10の数を制御することができる。例えば、PZT前駆体膜の1層あたりの膜厚を薄くし、積層数を増加させることにより、気孔10の数を多くすることができる。
 PZT前駆体膜の膜厚の調整方法としては、例えば、スピンコート法を用いる場合では、基板5の回転速度を大きくすることで膜厚を薄くすることができ、また、ディップコート法を用いる場合では、基板5の引き上げ速度を遅くすることでPZT前駆体膜の膜厚を薄くすることができる。
 なお、PZT前駆体溶液を塗布する方法については、スピンコート法に限るものではなく、このほかに、ディップコート法、スプレーコート法、ロールコート法等の種々の塗布方法を用いてもよい。また、本実施の形態の検出層8の結晶化アニールに用いる加熱炉としては、RTA炉に限定するものではなく、電気炉やレーザアニールを用いても良い。
 次に、検出層8の上に上部電極層9を形成する工程を行う。上部電極層9の形成工程では、真空蒸着法等の種々の工程の成膜方法により、ニクロム(NiとCrの合金)材料からなる上部電極層9を形成する。
 次に、本実施の形態の検出層8について、粒界気孔10の偏在率が異なる実施例1、2と比較例を作製した。比較例は、検出層8の仮焼工程の温度を450℃として、それ以外の条件は実施例1と同様の条件の下で同じ工程で作製した。
 TEMを用いて、検出層8の断面の中央部の微構造を観察した。図3は実施例1の検出層8の断面を示す。
 図3のTEM写真に示すように、PZTからなる検出層8において、結晶は柱状に成長していることがわかる。検出層8は、白いコントラストで表される気孔10、11を有し、気孔10、11は結晶粒界22に偏在していることが確認できる。
 この検出層8における粒界気孔10と結晶気孔11の数については、検出層8の中央付近における縦方向に平行な等間隔の20個の結晶断面について、各結晶断面の一辺が約1μmの四角領域のTEM写真を用いてカウントした。
 その結果、実施例1については、粒界気孔10の偏在率は90%であった。
 また、実施例1の粒界気孔10の形状は、結晶粒界22に沿った方向の径W1のほうが結晶粒界22に垂直な方向の径W2よりも長く、径W1は20nm程度であった。
 同様に、実施例2、比較例について算出された粒界気孔10の偏在率はそれぞれ72%、46%であった。
 次に、実施例1の検出層8について、X線回折を用いて、結晶性を評価した。図5は、実施例1の検出層8を2θ=10~60°の範囲でX線回折パターンを測定した結果を示すX線回折パターン図である。図6は実施例1の検出層8を2θ=93~103°の範囲でX線回折パターンを測定した結果を示すX線回折パターン図である。
 図5より、実施例の検出層8は、PZT(001)/(100)方向のみに選択配向していることがわかる。また、図6より、検出層8は、(004)面と(400)面のピークが分離しており、(400)面に対する(004)面のピークが大きいことがわかる。よって、検出層8は分極軸方向である(004)方向に選択配向していることがわかる。
 次に、検出層8の電気特性を測定し赤外線検出性能の評価を行った。
 赤外線検出性能は、焦電係数γと比誘電率εを測定し、焦電係数γと比誘電率εとの比γ/εにより評価することが望ましい。
 実際に焦電係数γを直接求めるためには、焦電電流が極めて小さいので高精度の電流計を必要となるため測定が難しいので、焦電係数γを直接求めることが困難な場合がある。
 焦電係数γは、残留分極値(Remanent Polarization)Pの温度依存性から求められる値である。そしてキュリー温度が略同じPZT材料の場合、残留分極値Pが大きくなると焦電係数γが大きくなる。残留分極値Pは焦電係数γに比較し精度良く計測できる。
 したがって、赤外線検出性能を比較する場合には、残留分極値Pの比誘電率εに対する比P/εを用いることもできる。そこで、実施例1、2と比較例については、残留分極値Pと比誘電率εを測定し、比P/εを用い赤外線検出性能を比較した。以下、比P/εを赤外線検出性能指数と定義する。
 残留分極値Pと比誘電率εの測定結果と、赤外線検出性能指数(比P/ε)の算出結果を表1に示す。
 残留分極値Pの測定には、ラジアントテクノロジー社製の強誘電体テスタ(Precision LC)を用いた。測定温度を室温、測定における印加交流電圧を330kV/cmとした。
 また、比誘電率εは、LCRメータ(HP4284A、ヒューレット・パッカード社製)を用いて、1kHzの周波数を有する1Vの交流電圧で室温にて測定した。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1の残留分極値Pは40μC/cmであり、比誘電率εは350であった。実施例2の残留分極値Pは38μC/cmであり、比誘電率εは350であった。比較例の比誘電率εは370程度と比較的低い値ではあるものの、残留分極値Pは実施例1、2に比べて低い値であった。
 このように実施例1、2は、比較例に比べ比誘電率εが小さく、残留分極値Pを高めることができている。すなわち実施例1、2は、比較例に比べ焦電係数γが高いと言える。実際に、実施例1の焦電係数γがおよそ40nC/cm/Kであり、比較例の焦電係数γがおよそ30nC/cm/Kであった。
 また、実施例1と実施例2と比較例の赤外線検出性能指数(比P/ε)はそれぞれ、0.114、0.109、0.083であり、偏在率70%以上では、赤外線検出性能指数が著しく向上し、赤外線検出性能を向上できていることがわかる。
 以上のように、気孔10、11を結晶粒界22に偏在させ高い結晶配向性とすることにより、赤外線検出性能を向上できる。一方、比較例では、残留有機物の分解と検出層の結晶化が同時に進行して結晶21内に気孔が略均一に分散し、結晶性が低下して残留分極値Pが小さくなったと考えられる。
 次に、赤外線検出素子1000の製造方法について説明する。
 まず、上述した製造方法により、空洞4を形成していない基板5の上に、順に中間層6、下部電極層7、検出層8、上部電極層9を形成した検出積層体1を準備する。
 次に、フォトリソグラフィのプロセスにより、検出積層体1の上部電極層9の加工を行う。上部電極層9の上にフォトレジストを形成し、所定のパターンを形成したクロムマスクを用いて、レジストの紫外線露光を行う。その後、現像液を用いてレジストの未露光部分を除去して、レジストのパターンを形成した後に、ウェットエッチングにより上部電極層9のパターニングを行う。なお上部電極層9のパターニング方法としてウェットエッチング以外に、ドライエッチング等の種々の方法を用いることができる。
 続いて、上部電極層9と同様に、検出層8、下部電極層7および中間層6の加工を順次、フォトリソおよびエッチングにより加工する。
 中間層6の加工を行った後、中間層6から露出した基板5の上面5Aの部分から、ウェットエッチングを行うことにより、基板5に空洞4を形成する。ウェットエッチングは、検出積層体1および梁部2に形成された中間層6の下面6Bが、基板5の上面5Aから離間するまで行う。このようにして赤外線検出素子1000を作製する。
 図7は、実施の形態における赤外線検出装置2000のブロック図である。図7は、赤外線検出素子を用いた赤外線検出装置の一例を示しており、赤外線検出装置は、これに限定されない。
 赤外線検出装置2000は、光学系ブロック2001と、赤外線センサ2002と、赤外線センサ2002の出力信号を処理する信号処理回路2003とを有する。
 光学系ブロック2001は、赤外線の入射光を集光するレンズや赤外線を選択的に透過するフィルタ等の光学部材を有する。赤外線が光学系ブロック2001を介して赤外線センサ2002に受光される。赤外線は、人体等の対象物に照射した赤外線ビームの反射光、対象物の移動等により遮蔽される赤外線ビーム、人から放出された赤外線等が利用できる。
 赤外線センサ2002は、単一の赤外線検出素子1000、2次元的にマトリックス状に配列された複数の赤外線検出素子1000、又は一列に配列された複数の赤外線検出素子1000を有する。複数の赤外線検出素子1000に対応して、光学系ブロック2001にレンズアレイを用いてもよい。
 なお、単数又は複数の赤外線検出素子1000や光学系ブロック2001を有する赤外線センサを、赤外線検出素子と見なすことができる。
 信号処理回路2003は、赤外線センサ2002(赤外線検出素子1000)から出力される出力信号を入力し、物体検知信号、物体の移動信号や動作信号、画像信号、温度信号等の出力信号を出力する。信号処理回路2003は、トランジスタ、FET、IC、ロジック回路、半導体集積回路等の能動素子を有し、この能動素子は、赤外線検出素子の出力信号の増幅する増幅回路、アナログデジタル変換回路等を構成する。
 赤外線検出装置2000は、入射光がチョッパなどによって変調されている場合には、チョッパを制御する制御回路、同調増幅回路を用いることができる。赤外線検出装置2000は、物体検出を示すランプ、画像信号等を表示するモニター、温度信号等を記録するメモリ等の記録媒体等を有していてもよい。
 図8は実施の形態における他の赤外線検出素子1001の断面模式図である。図8において、図1と図2Aから図2Cに示す赤外線検出素子1000と同じ部分には同じ参照番号を付す。赤外線検出素子1001は、図1と図2Aから図2Cに示す赤外線検出素子1000の検出積層体1の代わりに、検出積層体1Aを有する。検出積層体1Aは中間層6を有していない。すなわち、赤外線検出素子1001では、下部電極層7の下面7Bは基板5の上面5A上に位置する。赤外線検出素子1001も、検出層8において気孔が結晶粒界に偏在することにより得られるものと同様の効果が得られる。
 前述のように、強誘電体で形成された検出層8は、焦電特性とともに圧電特性を有する。したがって、実施の形態における赤外線検出素子1000の検出積層体1の構造は圧電体素子として利用可能である。
 図9は実施の形態における圧電体素子1002の断面図である。図9において図2Aに示す赤外線検出素子1000と同じ部分には同じ参照番号を付す。圧電体素子1002は空洞4と梁部2以外は、赤外線検出素子1000と同じ構成を有する。
 圧電体素子は、下部電極層7と、下部電極層7上に設けられた圧電体層58と、圧電体層58上に設けられた上部電極層9とを備えている。
 さらに、圧電体素子は、基板5と、基板5の上に設けられた中間層6と、を備え、中間層6の上に下部電極層7が設けられている。
 圧電体層58は、図2Aに示す赤外線検出素子1000の検出層8と同様に、柱状の結晶構造を有し、圧電体層58には結晶構造の結晶粒界22に偏在する複数の気孔10、11に形成されている。
 図4に示すように、結晶粒界22に形成された粒界気孔10は、結晶粒界22に沿った方向の径W1の方が結晶粒界22に垂直な方向の径W2より長い。粒界気孔10の径W1の平均値が5nm~50nmである。
 粒界気孔10の偏在率は60%以上であることが好ましい。
 圧電センサに用いる圧電体素子1002では、圧電d定数Cdの比誘電率εに対する比Cd/εが大きい方が望ましい。
 圧電特性は残留分極値Pと正の相関があり、残留分極値Pが大きくなるほど、圧電特性が向上する。表1に示すように、実施例1、実施例2は、比較例に比べて残留分極値Pが大きいため、高い圧電定数を有する。また、実施例1、実施例2は、比較例と比べて比誘電率εが小さい。したがって、実施例1、実施例2の圧電d定数Cdの比誘電率εに対する比Cd/εは、比較例のそれに比べて大きい。
 以上のように、実施の形態の圧電体素子は、比誘電率εが小さくでき、圧電出力定数を大きくすることができ、変換効率の高い圧電センサや圧電アクチュエータを得ることができる。
 実施の形態において、「上部」「下部」「上面」「下面」等の方向を示す用語は、上部電極層9や下部電極層7、検出層8等の赤外線検出素子1000や圧電体素子1002の構成部材の相対的位置関係にのみ依存する相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。
 本発明に係る赤外線検出素子は、高い赤外線検出性能を有し、人感センサや温度センサ等の各種センサ、焦電発電デバイス等の発電デバイス等の用途として有用である。
 また、本発明に係る圧電体素子は高い感度を有し、角速度センサ等の各種センサ、圧電アクチュエータや超音波モータ等の各種アクチュエータ等の用途として有用である。
1  検出積層体
2  梁部
4  空洞
4A  開口部
5  基板
6  中間層
7  下部電極層
8  検出層
9  上部電極層
10  粒界気孔
11  結晶気孔
21  結晶
22  結晶粒界
58  圧電体層

Claims (17)

  1. 下部電極層と、
    前記下部電極層上に設けられた検出層と、
    前記検出層上に設けられた上部電極層と、
    を有する検出積層体を備え、
    前記検出層は、柱状の結晶構造を有し、
    前記検出層には、前記結晶構造の結晶粒界に偏在する複数の気孔が設けられている、赤外線検出素子。
  2. 前記複数の気孔は、前記複数の柱状結晶内に位置する複数の結晶気孔と、前記結晶粒界に位置する複数の粒界気孔とを含み、
    前記複数の粒界気孔の数と前記複数の結晶気孔の数との合計に対する前記複数の粒界気孔の数の比である偏在率は60%以上である、請求項1に記載の赤外線検出素子。
  3. 前記複数の気孔は、前記結晶粒界に沿った方向の径が前記結晶粒界に垂直な方向の径より長くかつ前記結晶粒界に位置する複数の粒界気孔を含む、請求項1に記載の赤外線検出素子。
  4. 前記複数の粒界気孔の前記結晶粒界に沿った方向の径の平均値は5nm~50nmである、請求項3に記載の赤外線検出素子。
  5. 前記複数の気孔は閉気孔である、請求項1に記載の赤外線検出素子。
  6. 前記検出層はペロブスカイト型酸化物を含有する、請求項1に記載の赤外線検出素子。
  7. 前記検出層は(001)面に選択的に配向する、請求項6に記載の赤外線検出素子。
  8. 前記検出層はPZTを主成分とし、前記検出層においてPZTのZrのTiに対するモル比は0/100~70/30である、請求項6に記載の赤外線検出素子。
  9. 前記下部電極層は導電性を有するペロブスカイト型酸化物を含有し、
    前記検出層の主配向面の格子定数に対する、前記下部電極層の主配向面の格子定数と前記検出層の主配向面の格子定数の差の割合が±10%以内である、請求項6に記載の赤外線検出素子。
  10. 開口部を有する空洞が設けられた基板と、
    前記基板と前記検出積層体とを接続する梁部と、
    をさらに備え、
    前記検出積層体は前記基板の前記空洞の前記開口部に設けられている、請求項1に記載の赤外線検出素子。
  11. 前記基板は前記検出層より線熱膨張係数が大きい、請求項10に記載の赤外線検出素子。
  12. 前記基板上に設けられた第1面と、前記第1面の反対側の第2の面とを有する中間層をさらに備え、
    前記中間層の前記第2面上に前記下部電極層が設けられており、
    前記中間層は、前記第1面から前記第2面に向かうに連れて線熱膨張係数が小さくなる、請求項10に記載の赤外線検出素子。
  13. 請求項1から12のいずれか一項に記載の赤外線検出素子と、
    前記赤外線検出素子の出力信号を処理する信号処理回路と、
    を備えた赤外線検出装置。
  14. 下部電極層と、
    前記下部電極層上に設けられた圧電体層と、
    前記検出層上に設けられた上部電極層と、
    を備え、
    前記圧電体層は柱状の結晶構造を有し、
    前記圧電体層には前記結晶構造の結晶粒界に偏在する複数の気孔が設けられている、圧電体素子。
  15. 前記複数の気孔は、前記複数の柱状結晶内に位置する複数の結晶気孔と、前記結晶粒界に位置する複数の粒界気孔とを含み、
    前記複数の粒界気孔の数と前記複数の結晶気孔の数との和に対する前記複数の粒界気孔の数の比である前記複数の粒界気孔の偏在率は60%以上である、請求項14に記載の圧電体素子。
  16. 前記複数の気孔は、前記結晶粒界に沿った方向の径が前記結晶粒界に垂直な方向の径より長くかつ前記結晶粒界に位置する複数の粒界気孔を含む、請求項14に記載の圧電体素子。
  17. 前記複数の粒界気孔の前記結晶粒界に沿った方向の径の平均値は5nm~50nmである、請求項16に記載の圧電体素子。
PCT/JP2014/005433 2013-11-14 2014-10-28 赤外線検出素子、及び赤外線検出装置、圧電体素子 WO2015072095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/023,416 US20160209273A1 (en) 2013-11-14 2014-10-28 Infrared radiation detection element, infrared radiation detection device, and piezoelectric element
JP2015547625A JPWO2015072095A1 (ja) 2013-11-14 2014-10-28 赤外線検出素子、及び赤外線検出装置、圧電体素子
CN201480060933.8A CN105705919A (zh) 2013-11-14 2014-10-28 红外线检测元件、以及红外线检测装置、压电体元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235669 2013-11-14
JP2013-235669 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072095A1 true WO2015072095A1 (ja) 2015-05-21

Family

ID=53057048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005433 WO2015072095A1 (ja) 2013-11-14 2014-10-28 赤外線検出素子、及び赤外線検出装置、圧電体素子

Country Status (4)

Country Link
US (1) US20160209273A1 (ja)
JP (1) JPWO2015072095A1 (ja)
CN (1) CN105705919A (ja)
WO (1) WO2015072095A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012418A1 (ja) * 2016-07-11 2018-01-18 株式会社村田製作所 焦電センサおよび焦電センサの製造方法
KR101827138B1 (ko) * 2016-08-12 2018-02-08 고려대학교 세종산학협력단 적외선 센서 및 이의 제조 방법
WO2018216227A1 (ja) * 2017-05-26 2018-11-29 アドバンストマテリアルテクノロジーズ株式会社 膜構造体及びその製造方法
JP2022542538A (ja) * 2019-07-29 2022-10-05 エーエスエムエル ネザーランズ ビー.ブイ. 熱機械アクチュエータ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398744B2 (ja) * 2015-01-23 2018-10-03 三菱電機株式会社 半導体デバイス用基板の製造方法
US11428577B2 (en) * 2016-02-17 2022-08-30 Carrier Corporation Pyroelectric presence identification system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862038A (ja) * 1994-08-17 1996-03-08 Kanebo Ltd 赤外線検出素子及びその製造方法
JPH08278197A (ja) * 1995-04-08 1996-10-22 Horiba Ltd 焦電型薄膜赤外線素子
JPH10200059A (ja) * 1997-01-10 1998-07-31 Sharp Corp 強誘電体薄膜素子及びその製造方法
JP2008218716A (ja) * 2007-03-05 2008-09-18 Seiko Epson Corp 圧電素子、インクジェット式記録ヘッド、およびインクジェットプリンター
WO2009157189A1 (ja) * 2008-06-27 2009-12-30 パナソニック株式会社 圧電体素子とその製造方法
JP2011109112A (ja) * 1995-09-19 2011-06-02 Seiko Epson Corp 圧電体素子およびインクジェット式記録ヘッド
WO2012144185A1 (ja) * 2011-04-21 2012-10-26 パナソニック株式会社 誘電体素子用基材とその製造方法、並びにこの誘電体素子用基材を用いた圧電体素子
JP2013171020A (ja) * 2012-02-23 2013-09-02 Seiko Epson Corp 熱型電磁波検出素子、熱型電磁波検出素子の製造方法、熱型電磁波検出装置および電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218460B2 (ja) * 2010-03-26 2013-06-26 セイコーエプソン株式会社 焦電型光検出器、焦電型光検出装置及び電子機器
EP2717344B1 (en) * 2011-05-23 2015-09-16 Konica Minolta, Inc. Lower electrode for piezoelectric element, and piezoelectric element provided with lower electrode
JP5943870B2 (ja) * 2013-04-01 2016-07-05 富士フイルム株式会社 圧電体膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862038A (ja) * 1994-08-17 1996-03-08 Kanebo Ltd 赤外線検出素子及びその製造方法
JPH08278197A (ja) * 1995-04-08 1996-10-22 Horiba Ltd 焦電型薄膜赤外線素子
JP2011109112A (ja) * 1995-09-19 2011-06-02 Seiko Epson Corp 圧電体素子およびインクジェット式記録ヘッド
JPH10200059A (ja) * 1997-01-10 1998-07-31 Sharp Corp 強誘電体薄膜素子及びその製造方法
JP2008218716A (ja) * 2007-03-05 2008-09-18 Seiko Epson Corp 圧電素子、インクジェット式記録ヘッド、およびインクジェットプリンター
WO2009157189A1 (ja) * 2008-06-27 2009-12-30 パナソニック株式会社 圧電体素子とその製造方法
WO2012144185A1 (ja) * 2011-04-21 2012-10-26 パナソニック株式会社 誘電体素子用基材とその製造方法、並びにこの誘電体素子用基材を用いた圧電体素子
JP2013171020A (ja) * 2012-02-23 2013-09-02 Seiko Epson Corp 熱型電磁波検出素子、熱型電磁波検出素子の製造方法、熱型電磁波検出装置および電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012418A1 (ja) * 2016-07-11 2018-01-18 株式会社村田製作所 焦電センサおよび焦電センサの製造方法
JPWO2018012418A1 (ja) * 2016-07-11 2019-03-28 株式会社村田製作所 焦電センサおよび焦電センサの製造方法
KR101827138B1 (ko) * 2016-08-12 2018-02-08 고려대학교 세종산학협력단 적외선 센서 및 이의 제조 방법
WO2018216227A1 (ja) * 2017-05-26 2018-11-29 アドバンストマテリアルテクノロジーズ株式会社 膜構造体及びその製造方法
JP2022542538A (ja) * 2019-07-29 2022-10-05 エーエスエムエル ネザーランズ ビー.ブイ. 熱機械アクチュエータ

Also Published As

Publication number Publication date
CN105705919A (zh) 2016-06-22
US20160209273A1 (en) 2016-07-21
JPWO2015072095A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015072095A1 (ja) 赤外線検出素子、及び赤外線検出装置、圧電体素子
Liu et al. Preparation and properties of multilayer Pb (Zr, Ti) O3/PbTiO3 thin films for pyroelectric application
WO2009157189A1 (ja) 圧電体素子とその製造方法
EP1004007A1 (en) Thermal infrared detector
US8075795B2 (en) Piezoelectrics, piezoelectric element, and piezoelectric actuator
JP5556966B2 (ja) 圧電体素子
US20050105038A1 (en) Thin film multilayer body, electronic device and actuator using the thin film multilayer body, and method of manufacturing the actuator
WO2014080577A1 (ja) 赤外線検出装置
WO2005102958A1 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
US9689748B2 (en) Infrared detection element
JP6247684B2 (ja) 誘電体層及び誘電体層の製造方法、並びに固体電子装置及び固体電子装置の製造方法
US9331261B2 (en) Piezoelectric element
JP5909656B2 (ja) 誘電体素子用基材とその製造方法、並びにこの誘電体素子用基材を用いた圧電体素子
JP5966157B2 (ja) 赤外線検出装置
WO2014185274A1 (ja) 強誘電体膜付きシリコン基板
TWI755445B (zh) 膜構造體及其製造方法
JP5461951B2 (ja) セラミックス膜の製造方法
JP2009280416A (ja) 誘電体薄膜の製造方法及び薄膜電子部品
JP2004152922A (ja) 強誘電体膜の製膜方法
JP2009054934A (ja) 圧電体素子
Popovici et al. Barium Titanate-Based Materials–a Window of Application Opportunities
JP2003017767A (ja) 圧電素子
JP2016186425A (ja) 赤外線検出装置
Liu et al. Pyroelectric properties of Pb (Zr, Ti) O3 and Pb (Zr, Ti) O3/PbTiO3 multilayered thin films
Tang et al. Deposition and characterization of pyroelectric PMN-PT thin films for uncooled infrared focal plane arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547625

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15023416

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861384

Country of ref document: EP

Kind code of ref document: A1