WO2015072076A1 - 植物栽培システム、植物栽培装置及び植物栽培方法 - Google Patents

植物栽培システム、植物栽培装置及び植物栽培方法 Download PDF

Info

Publication number
WO2015072076A1
WO2015072076A1 PCT/JP2014/005172 JP2014005172W WO2015072076A1 WO 2015072076 A1 WO2015072076 A1 WO 2015072076A1 JP 2014005172 W JP2014005172 W JP 2014005172W WO 2015072076 A1 WO2015072076 A1 WO 2015072076A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
cultivation
tank
plant
air
Prior art date
Application number
PCT/JP2014/005172
Other languages
English (en)
French (fr)
Inventor
基広 山根
Original Assignee
高橋 廣介
基広 山根
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高橋 廣介, 基広 山根 filed Critical 高橋 廣介
Priority to US15/033,329 priority Critical patent/US20160262324A1/en
Priority to CN201480060041.8A priority patent/CN105764329A/zh
Priority to EP14862124.6A priority patent/EP3064057A4/en
Publication of WO2015072076A1 publication Critical patent/WO2015072076A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/15Leaf crops, e.g. lettuce or spinach 
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/40Fabaceae, e.g. beans or peas
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/60Flowers; Ornamental plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to artificial cultivation of plants, and more specifically, a plant cultivation system, a plant cultivation apparatus, and a plant cultivation method for simultaneously cultivating multiple items of plants without causing continuous cropping trouble using a simple nutrient solution. About.
  • Plants including vegetables, florets and the like are generally produced by an outdoor or indoor soil cultivation method (open or semi-closed soil cultivation method).
  • the soil cultivation method has problems such as that the harvest is influenced by the season and the weather, the occurrence of continuous cropping failure, and the risk of diseases due to pests and the like.
  • an indoor artificial cultivation method in which plants are cultivated indoors using hydroponic cultivation has been put into practical use.
  • Indoor artificial cultivation methods include a semi-closed artificial cultivation method that uses only sunlight or a combination of sunlight and artificial light, and a closed artificial cultivation method that uses only artificial light.
  • the present invention relates to the former semi-closed artificial cultivation system.
  • the thin film type nutrient solution cultivation method is a method in which a nutrient solution in which nutrients necessary for plant growth are dissolved in water is flowed thinly on a flat surface having a gentle slope, and the plant is cultivated with the nutrient solution.
  • the thin film type nourishing culture method has a drawback that root growth is hindered, which may cause problems in plant growth.
  • the submerged liquid culture method is a method in which a nutrient solution is supplied to a cultivation tank in which a plant grows so that most of the roots of the plant are immersed in the nutrient solution.
  • the submerged type hydroponic culture method has a deep water depth because the amount of nutrient solution is large, root growth is not hindered, and changes in nutrient concentration and temperature are gentle. Therefore, there are advantages such as easy management.
  • the present invention relates to the latter submerged liquid culture method, and hereinafter referred to as submerged liquid culture refers to submerged liquid culture.
  • the indoor artificial cultivation system using hydroponics has many advantages compared to soil cultivation.
  • the indoor artificial cultivation method using hydroponics artificially controls environmental conditions such as natural light and artificial light, temperature, humidity, etc., and immerses plant roots in nutrient solutions containing various nutrients. It makes it possible to grow plants without using soil.
  • the growth and harvest of plants are not easily influenced by the season and weather, and environmental conditions can be easily adjusted, so that plants can be produced in a planned and stable manner.
  • the place to cultivate is not so limited, for example, by providing a cultivation facility in an urban area or its suburbs, it is possible to reduce the time and cost of transportation to a mass consumption area.
  • the amount of agricultural chemicals used can be reduced, so safety is high.
  • there are very few deposits to a plant and the washing process at the time of shipment can be simplified.
  • the cultivation bed is arranged in multiple upper and lower stages, and many types of plants can be cultivated in a small area
  • the nutrient solution flows through the cultivation tank and is discharged out of the tank, it is circulated and reused, so that the breeding of miscellaneous bacteria etc. in the nutrient solution is suppressed and the nutrient solution need not be discarded.
  • a hydroponic device suitable for growing plants it is intended to provide a hydroponic device that is easy to grow and has a high yield by controlling the environment of the nutrient solution to an optimal state.
  • a part of the nutrient solution flowing through the circulation path is branched, and oxygen is supplied to the nutrient solution and the nutrient solution is activated by the aeration and the water heater provided in the branch path.
  • the cultivation apparatus includes an aeration means for aeration of the nutrient solution and a means for adjusting the temperature of the aerated air.
  • the thing which can control the temperature of nutrient solution while increasing the air content in the inside is provided (for example, refer patent document 5).
  • a porous substance that easily settles bacteria is netted.
  • a microbubble generator is provided separately from the diffuser tube, and bubbles and microbubbles from the diffuser tube are provided.
  • the conventional hydroponic cultivation technique cannot avoid the occurrence of continuous cropping failures.
  • the main cause of continuous cropping failure in soil cultivation is that the balance of nutrients and pH is lost by continuously producing the same plant on the same cultivated land, and the state of the soil is deteriorated.
  • conventional hydroponic culture there was no idea of dealing with continuous cropping problems. This is because, assuming that the cycle from seedling to harvesting is one cycle, it is considered that the nutrient solution is discarded for each cycle in the conventional nutrient solution cultivation. Since the nutrient solution is discarded for each cycle and a new nutrient solution is used in the next cycle, it is actually not necessary to consider continuous cropping failures in conventional nutrient solution cultivation.
  • plants that are cultivated simultaneously in one facility are only one item or several items of leafy vegetables, only one item or several items of fruit vegetables, or a combination of several items at best. .
  • plants that are cultivated simultaneously in one facility are only one item or several items of leafy vegetables, only one item or several items of fruit vegetables, or a combination of several items at best.
  • Patent Document 4 a device for increasing the dissolved oxygen concentration of the nutrient solution has been devised.
  • the quality of the air supplied to the nutrient solution is not considered at all, so the dissolved oxygen concentration of the nutrient solution cannot be sufficiently increased to the required concentration.
  • the present invention has been proposed to solve the above-mentioned problems in view of such points, and its purpose is to circulate a simple nutrient solution to make all kinds of vegetables such as leaf vegetables, fruit vegetables, head vegetables and beans. It is to provide a plant cultivation system, an apparatus and a method for producing a plant of an item simultaneously throughout the year without causing continuous cropping failure.
  • the plant cultivation system according to claim 1 of the present invention is a plant cultivation system for simultaneously cultivating multiple items of plants without causing continuous cropping trouble using a simple nutrient solution
  • Air was modified so that the dissolved oxygen concentration of the simple nutrient solution in the cultivation tank was in a state suitable for the predetermined concentration to the simple nutrient solution flowing at a predetermined speed inside the cultivation tank holding the plant.
  • the reformed air is supplied at a predetermined temperature and supplied from the vicinity of the bacterial colonization unit at a flow rate necessary to bring the simple nutrient solution to the predetermined concentration.
  • the plant cultivation system according to claim 2 of the present invention is characterized in that, in claim 1, the modified air is supplied into the simple nutrient solution in a bubble state through the porous body,
  • a plant cultivation system according to a third aspect of the present invention is the plant cultivation system according to the second aspect, wherein the porous body is used as the bacterial colonization part, and the modified air is supplied into the cultivation tank through the bacterial colonization part. It is characterized by Moreover, the plant cultivation system concerning Claim 4 of this invention is that any one of Claim 1 thru
  • the plant cultivation system according to claim 5 of the present invention is characterized in that, in any one of claims 1 to 4, the reformed air is obtained by removing nitrogen from the air,
  • a plant cultivation system according to a sixth aspect of the present invention is the plant cultivation system according to any one of the first to fifth aspects, wherein the reformed air is in the reformed air storage chamber in which the internal temperature is maintained at a constant temperature. It is characterized in that it is supplied to the simple nutrient solution after being held until the temperature reaches the same temperature.
  • the plant cultivation system according to claim 7 of the present invention is the plant cultivation system according to claim 1, characterized in that the electrical conductivity representing the nutrient solubility of the simple nutrient solution is 2.5 mS / cm to 3.5 mS / cm.
  • the predetermined speed of the simple nutrient solution flowing in the cultivation tank is such that the pressure applied to the root of the plant to be cultivated is approximately the same as the pressure in the soil.
  • the predetermined concentration is a concentration of dissolved oxygen suitable for activating the activity of plant roots and aerobic bacteria
  • the predetermined temperature is a plant The temperature of the reformed air is such that it does not adversely affect the roots.
  • the plant cultivation system according to claim 9 of the present invention is characterized in that, in claim 1 or 8, the predetermined speed is 3 cm / second to 5 cm / second,
  • the plant cultivation system according to claim 10 of the present invention is the plant cultivation system according to claim 1 or 8, characterized in that the predetermined concentration is 8 ppm to 12 ppm,
  • the plant cultivation system according to claim 11 of the present invention is characterized in that, in claim 1 or 8, the predetermined temperature is 18 ° C. to 22 ° C.
  • the plant cultivation system according to claim 12 of the present invention is the plant cultivation system according to claim 1 or claim 8, wherein the flow rate of reformed air per hour is the volume of the whole simple nutrient solution circulating in the cultivation tank and tank.
  • the plant cultivation system concerning Claim 13 of this invention is comprised so that a simple nutrient solution may be mixed and circulated in Claim 1 without staying in the circulation path which connects a cultivation tank and a tank. It is characterized by that.
  • the plant cultivation apparatus is the plant cultivation according to any one of claims 1 to 3, wherein a single nutrient solution is used to simultaneously cultivate multiple items of plants without causing continuous cropping troubles.
  • a device A cultivation tank holding a plant and a simple nutrient solution flowing at a predetermined speed; and Air reforming means for modifying the air so that the dissolved oxygen concentration of the simple nutrient solution of the cultivation tank is in a state suitable for a predetermined concentration, A reforming air temperature adjusting means for adjusting the temperature of the reforming air to a predetermined temperature; A reformed air supply means for supplying a reformed air at a flow rate necessary to bring the simple nutrient solution to the predetermined concentration to the simple nutrient solution inside the cultivation tank; A bacteria fixing unit disposed in the vicinity of the reformed air supply unit of the reformed air supply means; A simple nutrient solution circulating means for circulating the simple nutrient solution between the cultivation tank and the tank; It is characterized by providing.
  • the plant cultivation apparatus according to claim 15 of the present invention is characterized in that, in claim 14, the reformed air supply section is a porous body,
  • the plant cultivation apparatus according to claim 16 of the present invention is characterized in that, in claim 15, the porous body is the bacterial colonization part,
  • a plant cultivation apparatus according to claim 17 of the present invention is characterized in that, in any one of claims 14 to 16, a plurality of the reformed air supply units are provided inside the cultivation tank.
  • the plant cultivation apparatus according to claim 18 of the present invention is characterized in that in claim 14, the air reforming means includes a filter for removing nitrogen from the air,
  • the plant cultivation apparatus according to claim 19 of the present invention is the plant cultivation apparatus according to claim 14, wherein the reformed air temperature adjusting means includes a reformed air storage chamber in which an internal temperature is maintained at a constant temperature. The air is supplied by the reformed air supply means after being held in the reformed air storage chamber until it reaches the same temperature as the constant temperature,
  • the plant cultivation apparatus according to claim 20 of the present invention is characterized in that, in claim 14, the electrical conductivity representing the nutrient solubility of the simple nutrient solution is 2.5 mS / cm to 3.5 mS / cm. To do.
  • the plant cultivation apparatus according to claim 21 of the present invention is the plant cultivation apparatus according to claim 14, wherein the predetermined speed of the simple nutrient solution flowing in the cultivation tank is the pressure applied to the root of the plant to be cultivated. And the predetermined concentration is a concentration of dissolved oxygen suitable for activating the activity of plant roots and aerobic bacteria,
  • the predetermined temperature is a temperature of the modified air that does not adversely affect the roots of the plant.
  • the plant cultivation apparatus according to claim 22 of the present invention is characterized in that, in claim 14 or claim 21, the predetermined speed is 3 cm / second to 5 cm / second,
  • the plant cultivation apparatus according to claim 23 of the present invention is characterized in that, in claim 14 or claim 21, the predetermined concentration is 8 ppm to 12 ppm,
  • the plant cultivation apparatus according to claim 24 of the present invention is characterized in that, in claim 14 or claim 21, the predetermined temperature is 18 ° C to 22 ° C,
  • the plant cultivation apparatus according to claim 25 of the present invention is the plant cultivation apparatus according to claim 14,
  • the plant cultivation apparatus according to claim 26 of the present invention is the plant cultivation apparatus according to claim 14, wherein the simple nutrient solution circulation means includes a pump for circulating the simple nutrient solution and a simple nutrient solution discharged from the cultivation tank.
  • a first tank to be mixed, a second tank for mixing a simple nutrient solution to be supplied to the cultivation tank, and a cross pipe connecting between the first tank and the second tank It is characterized by providing.
  • the plant cultivation method according to claim 27 of the present invention is a plant cultivation method for simultaneously cultivating a multi-item plant without causing continuous cropping failure using a simple nutrient solution
  • a simple nutrient solution is poured into the cultivation tank holding the plant at a predetermined speed
  • Air is reformed to reform the air so that the dissolved oxygen concentration of the simple nutrient solution of the cultivation tank is in a state suitable for a predetermined concentration
  • the temperature of the reformed air is set to a predetermined temperature
  • the plant cultivation method according to claim 28 of the present invention is the plant cultivation method according to claim 27, wherein the step of supplying the reformed air to the simple nutrient solution is performed by supplying the reformed air in a bubble state via the porous body. Including a step of supplying the nutrient solution,
  • the plant cultivation method according to claim 29 of the present invention is the plant cultivation method according to claim 28, wherein the step of supplying the reformed air to the simple nutrient solution is performed by supplying the reformed air via a porous body that is a bacteria fixing part.
  • the plant cultivation method according to claim 30 of the present invention is the plant cultivation method according to any one of claims 27 to 29, wherein the step of supplying the reformed air to the simple nutrient solution includes the reformed air inside the cultivation tank. It is characterized by being supplied to simple nutrient solution from multiple locations, Moreover, the plant cultivation method according to claim 31 of the present invention is characterized in that, in claim 27, the step of modifying air includes a step of removing nitrogen from the air, The plant cultivation method according to claim 32 of the present invention is the plant cultivation method according to claim 27, wherein the step of setting the temperature of the reformed air to a predetermined temperature is performed in a reformed air storage chamber in which the internal temperature is maintained at a constant temperature.
  • the plant cultivation method according to claim 33 of the present invention is characterized in that, in claim 27, the electrical conductivity representing the nutrient solubility of the simple nutrient solution is 2.5 mS / cm to 3.5 mS / cm. To do.
  • the plant cultivation method according to claim 34 of the present invention is the plant cultivation method according to claim 27, wherein the predetermined speed of the simple nutrient solution flowing in the cultivation tank is the pressure applied to the root of the plant to be cultivated. And the predetermined concentration is a concentration of dissolved oxygen suitable for activating the activity of plant roots and aerobic bacteria, The predetermined temperature is a temperature of the reformed air that does not adversely affect plant roots.
  • the plant cultivation method according to claim 35 of the present invention is characterized in that, in claim 27 or claim 34, the predetermined speed is 3 cm / second to 5 cm / second,
  • the plant cultivation method according to claim 36 of the present invention is characterized in that, in claim 27 or claim 34, the predetermined concentration is 8 ppm to 12 ppm,
  • the plant cultivation method according to claim 37 of the present invention is characterized in that, in claim 27 or claim 34, the predetermined temperature is 18 ° C to 22 ° C,
  • the plant cultivation method according to claim 38 of the present invention is the plant cultivation method according to claim 27, wherein the flow rate per hour of the reformed air is 3 with respect to the volume of the whole simple nutrient solution circulating in the cultivation tank and tank. It is characterized by being 5 to 5 times,
  • the plant cultivation method according to claim 39 of the present invention further includes the step of mixing and circulating the simple nutrient solution without retaining in the circulation path connecting the cultivation tank and the tank. It is characterized by.
  • the above configuration of the present invention is based on the following points.
  • the inventors of the present invention have made it possible to simultaneously cultivate plants of all items using a simple nutrient solution without causing continuous cropping troubles. Found that it is necessary to construct a plant cultivation environment that satisfies a plurality of conditions.
  • the conditions and the means for satisfying the conditions are as follows.
  • the nutrient solubility is high.
  • a variety of plants are cultivated at the same time using quality nutrient solution.
  • the homogenization of the nutrient solution is promoted without uneven distribution of root acid, and the plant can be cultivated without causing continuous cropping failure (that is, without discarding the simple nutrient solution at a high frequency).
  • the simple nutrient solution is a nutrient solution in which the same nutrients are mixed so as to be homogeneous as a whole and circulated constantly in a certain state among all the cultivation tanks that cultivate multiple items of plants.
  • the multi-item plant is a multi-item plant, preferably 10 or more plants, of which at least about 30% are fruit vegetables and head vegetables.
  • the electrical conductivity (EC) representing the nutrient solubility of a simple nutrient solution is about 0.4 to 1 mS / cm in normal nutrient culture, but about 2.5 mS / cm to about 3 It can be maintained at a high value of .5 mS / cm.
  • Oxygen is stably dissolved at a high concentration in a simple nutrient solution.
  • Oxygen is an aerobic activity that decomposes the root activity during plant growth and the nutrients in the nutrient solution into a state that the plant can absorb. It is indispensable for the activity of bacteria. Therefore, in hydroponic culture, oxygen is a suitable concentration for activating the plant roots and sufficient activity of aerobic bacteria (this concentration is defined in this specification). It must be dissolved in the nutrient solution in a stable manner.
  • DO dissolved oxygen concentration
  • a large amount of air is supplied to the simple nutrient solution, for example, per hour with respect to the total volume of the circulating simple nutrient solution. It is preferable to supply about 3 to 5 times the volume of air. In addition, it is preferable to provide a plurality of air supply units in the cultivation tank and to disperse the air from these supply units, whereby a large amount of air is uniformly distributed over the entire simple nutrient solution in the cultivation tank. And can be supplied stably.
  • the air is reformed into a state suitable for setting the dissolved oxygen concentration of the simple nutrient solution to the above-mentioned concentration, and supplied to the cultivation tank.
  • Air contains about 21% oxygen and about 78% nitrogen, and simply supplying air into the simple nutrient solution preferentially causes nitrogen with a high partial pressure to have a simple nutrient over oxygen with a low partial pressure. It dissolves in the liquid and the required dissolved oxygen concentration cannot be achieved. Therefore, in the present invention, the reformed air having an increased oxygen concentration is supplied into the simple nutrient solution. For example, the reformed air from which nitrogen has been removed from the air is supplied into the simple nutrient solution. Is preferred.
  • the above-mentioned “air” supplied at a volume of about 3 to about 5 times per hour with respect to the total volume of the simple nutrient solution being circulated is such reformed air.
  • the reformed air supplied into the cultivation tank is preferably in a state where impurities such as ammonia, salt and dust are further removed.
  • the reformed air is supplied into the simple nutrient solution in a state of bubbles of an appropriate size. Therefore, in the present invention, for example, the modified air can be supplied into the simple nutrient solution through a porous body made of ceramics.
  • the pore size of the porous body is preferably selected so that the reformed air bubbles have an appropriate size.
  • the reformed air is supplied to the simple nutrient solution while maintaining a temperature that does not adversely affect the roots of the plant (in this specification, this temperature is referred to as a predetermined temperature).
  • the predetermined temperature of the reformed air is preferably about 18 ° C. to about 22 ° C., and most preferably about 20 ° C.
  • the temperature of the nutrient solution must be maintained at an appropriate temperature.
  • conventional nutrient solution cultivation it is common to maintain the nutrient solution at a constant temperature using heat exchange with hot water or cold water.
  • a large amount of reformed air is supplied into the simple nutrient solution while controlling its temperature.
  • the temperature of the simple nutrient solution is also affected by the temperature of the reformed air. It will be. Therefore, in one embodiment of the present invention, the temperature of the simple nutrient solution can be controlled only by the temperature of the reformed air supplied to the simple nutrient solution.
  • the inventors of the present invention reach the control temperature of simple nutrient solution
  • the temperature of the simple nutrient solution is controlled only by the temperature control of the reformed air rather than the temperature control of the reformed air and the temperature control of the simple nutrient solution separately. If management can be performed, it is considered more advantageous than conventional methods in terms of ease of management and cost.
  • aerobic bacteria that decompose nutrients in the nutrient solution into a state that can be used by plants are located near the roots. It is a well-known technical matter that activation is necessary. Therefore, also in the present invention, the aerobic bacteria indispensable for the growth of the plant are appropriately necessary so that they do not flow out in a simple nutrient solution that flows at a predetermined speed to form a solid phase as described later. It is important to make it possible to demonstrate its functions while being fixed on. In particular, in order to sufficiently decompose the simple nutrient solution having high nutrient solubility used in the present invention, it is necessary to sufficiently exert the function of aerobic bacteria.
  • a plurality of bacterial colonies are provided so that the aerobic bacteria stay in the simple nutrient solution in the cultivation tank and inhabit or propagate, and further, the bacteria sufficiently function using oxygen.
  • the supply portion of the reformed air controlled at a predetermined temperature into the simple nutrient solution and the bacteria fixing portion are arranged close to each other.
  • the electric conductivity of the simple nutrient solution can be maintained at a high value of about 3 mS / cm, which means that the aerobic bacteria are functioning sufficiently, and as a result, high nutrient decomposition Indicates that the ability has been achieved.
  • the bacteria fixing unit it is possible to supply the reformed air through the bacteria fixing unit by using the bacteria fixing unit and the reforming air supply unit in common.
  • the bacteria fixing unit and the reforming air supply unit in common.
  • fine irregularities and pores of the porous body function as a place for aerobic bacteria to inhabit or propagate, and the aerobic bacteria sufficiently absorb oxygen. It becomes available.
  • the present inventors consider that it is necessary to create an environment corresponding to the solid phase similar to the soil in soil culture in the simple nutrient solution.
  • the rate at which the pressure applied to the roots of the plant to be cultivated in the simple nutrient solution is approximately the same as the pressure applied to the roots in the soil (in this specification, this The speed flows at a predetermined speed).
  • the flow rate of the simple nutrient solution in the cultivation tank is preferably adjusted to about 3 cm / s to about 5 cm / s.
  • the inventors of the present invention so that the simple nutrient solution can be completely mixed and circulated without deteriorating, the shape of the nutrient solution tank, the method of the nutrient solution piping, the cultivation tank and the water supply / drainage route, The connection method, etc. were examined, and the retention structure and the complete mixing structure of simple nutrient solution were constructed.
  • the state of the simple nutrient solution for example, the values such as pH, nutrient solubility, dissolved oxygen concentration, and oxidation-reduction potential can be maintained in a desired state without discarding the simple nutrient solution at a high frequency.
  • the hydroponic environment with the above conditions can be said to be an optimized pseudo-soil environment.
  • Optimized simulated soil environment is an environment that simulates the ideal state of the soil with respect to the relationship between nutrient solution and plant roots, and selects the characteristics that have a positive effect on plants in soil cultivation
  • the cultivation environment eliminates as much as possible items that may cause adverse effects.
  • the idea of reproducing such an optimized simulated soil environment in the nutrient solution and the method for that are not taken into consideration at all.
  • 1st aspect of this invention provides the plant cultivation system which can grow many items of plants simultaneously using a simple nutrient solution, without producing a continuous cropping disorder.
  • This plant cultivation system is in a state suitable for setting the dissolved oxygen concentration of the simple nutrient solution of the cultivation tank to the predetermined concentration in the simple nutrient solution flowing at a predetermined speed inside the cultivation tank holding the plant.
  • the reformed air obtained by reforming air is supplied from the vicinity of the bacteria fixing part at a predetermined flow rate and at a flow rate necessary to bring the simple nutrient solution to the predetermined concentration. Yes, by satisfying these conditions, an optimized simulated soil environment can be reproduced.
  • the multi-plants are preferably a plurality of plants, preferably 10 or more plants, and at least about 30% of them are fruit vegetables and head vegetables.
  • the reformed air is supplied into the simple nutrient solution in the form of bubbles through the porous body, and more preferably is supplied into the cultivation tank through the porous body used as a bacteria fixing part.
  • the reformed air is supplied to the simple nutrient solution from a plurality of locations inside the cultivation tank.
  • the reformed air is obtained by removing nitrogen from the air.
  • the reformed air is supplied until it reaches the same temperature as the constant temperature in the reformed air storage chamber in which the internal temperature is maintained at a constant temperature, and then supplied into the simple nutrient solution.
  • the electric conductivity representing the nutrient solubility of the simple nutrient solution is 2.5 mS / cm to 3.5 mS / cm.
  • the predetermined speed is a flow rate of a simple nutrient solution adjusted so that the pressure applied to the root of the plant to be cultivated is approximately the same as the pressure in the soil, and the predetermined concentration is This is the concentration of dissolved oxygen suitable for activating the activity of plant roots and aerobic bacteria, and the predetermined temperature is the temperature of the modified air that does not adversely affect the plant roots.
  • the predetermined speed is 3 cm / second to 5 cm / second
  • the predetermined concentration is 8 ppm to 12 ppm
  • the predetermined temperature is 18 ° C. to 22 ° C.
  • the flow rate of the reformed air per hour is 3 to 5 times the total volume of the simple nutrient solution circulating through the cultivation tank and tank.
  • the plant cultivation system is configured so that the simple nutrient solution is mixed and circulated without staying in the circulation path.
  • the second aspect of the present invention provides a plant cultivation apparatus capable of simultaneously cultivating multiple items of plants using a simple nutrient solution without causing continuous cropping failures.
  • This plant cultivation apparatus is in a state suitable for setting the concentration of dissolved oxygen in the cultivation tank and the cultivation medium in the cultivation tank holding the plant and the simple nutrient solution flowing at a predetermined speed.
  • Air reforming means for modifying the air into reformed air, reformed air temperature adjusting means for adjusting the temperature of the reformed air to be a predetermined temperature, and a simple nutrient solution to a predetermined concentration
  • Reformed air supply means for supplying the reformed air at a flow rate required for the cultivation to the simple nutrient solution inside the plurality of cultivation tanks, and a bacterial colonization section disposed in the vicinity of the reformed air supply section of the reformed air supply means
  • simple nutrient solution circulating means for circulating the simple nutrient solution between the cultivation tank and the tank.
  • the reformed air supply unit is a porous body, and more preferably, the porous body is used as a bacterial colonization unit.
  • a plurality of the reformed air supply units are provided inside the cultivation tank.
  • the air reforming means includes a filter for removing nitrogen from the air.
  • the reformed air temperature adjusting means includes a reformed air storage chamber in which the internal temperature is maintained at a constant temperature, and the reformed air is equal to the constant temperature in the reformed air storage chamber. After being held, it is supplied by the reformed air supply means.
  • the simple nutrient solution circulating means is supplied to the pump for circulating the simple nutrient solution, the first tank for storing the simple nutrient solution discharged from the cultivation tank, and the cultivation tank.
  • a second tank for storing the simple nutrient solution to be obtained and a cross pipe connecting the first tank and the second tank are provided.
  • the third aspect of the present invention provides a plant cultivation method that uses a simple nutrient solution to simultaneously cultivate multiple items of plants without causing continuous cropping problems.
  • This plant cultivation method is suitable for the process of flowing a simple nutrient solution at a predetermined speed inside the cultivation tank in which each holds a plant, and for setting the dissolved oxygen concentration of the simple nutrient solution of the cultivation tank to a predetermined concentration.
  • the step of supplying the reformed air to the simple nutrient solution preferably includes the step of supplying the reformed air to the simple nutrient solution in the form of bubbles through the porous body. It is further preferable to include a step of supplying the cultivation tank through the porous body to be used.
  • the step of supplying the reformed air to the simple nutrient solution includes a step of supplying the reformed air to the simple nutrient solution from a plurality of locations inside the cultivation tank.
  • the step of modifying air includes the step of removing nitrogen from the air.
  • the step of setting the temperature of the reformed air to a predetermined temperature holds the reformed air until the reformed air reaches a constant temperature in the reformed air storage chamber in which the internal temperature is maintained at a constant temperature.
  • the plant cultivation method further includes a step of mixing and circulating the simple nutrient solution without retention in the circulation path.
  • the present invention has the following effects. (1) Multiple items of plants can be cultivated simultaneously in the same facility with the same simple nutrient solution without causing continuous cropping troubles. (2) According to the present invention, since the nutritional value is high and no agricultural chemicals are used, safe plant production is possible. (3) In addition, since a large number of plants can be produced efficiently and systematically at one facility, it is possible to establish a plant production business that can flexibly respond to market trends without being affected by the weather. (4) Furthermore, according to the present invention, it is possible to realize an environmentally conscious and sustainable plant production factory because the nutrient solution is not discarded at high frequency and thus has a low environmental load.
  • FIG. 1 is a schematic overall view showing an embodiment of the present invention. It is a plane schematic diagram which shows the principal part which shows embodiment of this invention, and the flow of a simple nutrient solution and reformed air. It is a partially cutaway perspective view showing a cultivation tank according to an embodiment of the present invention. It is sectional drawing of the principal part which shows embodiment of this invention. It is a perspective view which shows some support base material (a) (b) (c) (d) (e) arrange
  • FIG. 14 is an exploded perspective view of FIG. 13.
  • FIG. 14 is an exploded perspective view of FIG. 13.
  • FIG. 14 is a sectional view taken along line AA in FIG. 13. It is a front view which shows the discharge side nutrient solution tank which concerns on embodiment of this invention. It is a front view of the supply side nutrient solution tank concerning an embodiment of the invention. It is explanatory drawing which shows the flow of the simple nutrient solution between the cultivation tank which concerns on embodiment of this invention, and the discharge side nutrient solution tank. It is explanatory drawing which shows the flow of the simple nutrient solution between the cultivation tank which concerns on embodiment of this invention, and a supply side nutrient solution tank. It is a perspective view which shows the bacteria fixing
  • FIG. 1 shows the schematic of the plant cultivation system 1 which concerns on one Embodiment of this invention.
  • the plant cultivation system 1 is housed in the house 60, a plurality of cultivation tanks 10 for cultivating plants, and reforms the outside air A into the reformed air RA and adjusts the temperature of the reformed air RA.
  • Reformed air production means 20 including reformed air temperature adjusting means.
  • Each of the plurality of cultivation tanks 10 extends in a direction perpendicular to the paper surface of FIG. 1, and supports a plurality of plants, and a simple nutrient solution S containing nutrients for growing the plants. It is designed to flow inside.
  • the cultivation tank 10 is supported by the support frame 19, and the plurality of cultivation tanks 10 can be configured in a multi-stage manner so that the types of plants to be cultivated and the period until harvesting can be easily handled.
  • the simple nutrient solution S the roots of many cultivated plants are immersed.
  • the reformed air RA is supplied into the simple nutrient solution S flowing in the cultivation tank 10.
  • the house 60 includes, for example, an underground portion in which necessary devices including a discharge side nutrient solution tank 41 described later are embedded.
  • the reformed air production means 20 is provided outside the house 60, but may be provided inside the house 60.
  • FIG. 2 is a schematic plan view showing the configuration of various means of the plant cultivation system 1 and the flow of the simple nutrient solution S and the modified air RA.
  • the plant cultivation system 1 makes a plurality of cultivation tanks 10 for growing a variety of plants and a modified air RA supplied to the simple nutrient solution S flowing in the plurality of cultivation tanks 10 by modifying the outside air.
  • a reformed air production means 20 including a reformed air temperature adjusting means for adjusting the temperature of the reformed air RA, and a reformed air supply means 30 for supplying the produced reformed air RA to the simple nutrient solution S.
  • nutrient solution circulating means 40 for circulating the simple nutrient solution S between the plurality of cultivation tanks 10.
  • the plant cultivation system 1 may further include an in-house cooling means 50 that is used to lower the temperature of the atmosphere in the house 60. Below, the detail of the cultivation tank 10 shown by FIG. 2 and each means 20, 30, 40, 50 is demonstrated.
  • leafy vegetables such as spinach and leaf lettuce, fruit vegetables such as tomato, eggplant and cucumber, head vegetables such as Chinese cabbage, cabbage and lettuce, beans such as peas, broad beans and peanuts, strawberry and melon
  • Numerous items of plants, such as fruits and flowers can be grown simultaneously throughout the year.
  • it can cultivate simultaneously, mixing the plant from which a growth stage differs immediately after germination to a harvest.
  • the plant items that are cultivated at the same time are a plurality of plants, preferably 10 or more plants, and at least about 30% of them are fruit and vegetables.
  • the nutrient solution mixed so that the same nutrients are homogenized as a whole is constantly circulated in a constant state between all the cultivation tanks 10 that cultivate many items of plants.
  • this nutrient solution is called simple nutrient solution S.
  • the simple nutrient solution S is composed of the same component nutrient solution continuously regardless of the plant item, the growth stage, and the cultivation period, and is reduced by evaporation and absorption by the plant. It is only necessary to replenish nutrients as appropriate.
  • the simple nutrient solution S is not discarded frequently and without causing continuous cropping troubles, at least 30 consecutive crops for leaf vegetables.
  • the above cultivation is performed, and cultivation of five or more continuous crops is performed about fruit vegetables.
  • the components contained in the simple nutrient solution S are not particularly limited, and components used in general nutrient solution cultivation can be used.
  • the simple nutrient solution S is maintained so that its state is kept constant, that is, at least dissolved oxygen concentration (DO), electrical conductivity (EC), temperature Ts, hydrogen ion concentration index (pH) and redox potential ( It is managed so that the value of a parameter such as ORP is maintained substantially constant.
  • the simple nutrient solution S used in the present invention is a conventional nutrient solution cultivation in which the dissolved oxygen concentration (DO) value and the maintenance method, the electrical conductivity (EC) value, and the temperature Ts maintenance method are the same. Is very different.
  • the dissolved oxygen concentration (hereinafter also referred to as “DO”) is the concentration of oxygen dissolved in the simple nutrient solution S.
  • Oxygen dissolved in the simple nutrient solution S is indispensable for the activity of the roots when the plant grows and the activity of bacteria that decompose the components in the nutrient solution into a state that the plant can absorb. Accordingly, it is necessary that a sufficient amount of oxygen is stably dissolved in the simple nutrient solution S so that these activities are appropriately performed.
  • the DO of the simple nutrient solution S is set to a predetermined concentration (that is, a concentration at which oxygen activates the plant roots and aerobic bacteria) higher than the concentration in the conventional nutrient solution cultivation.
  • the simple nutrient solution S is supplied with a predetermined flow of reformed air, preferably in the form of bubbles. The production and supply of the reformed air will be described later.
  • Electrical conductivity (hereinafter, also referred to as “EC”) is a value representing the ease of electricity flow, and is generally used as an index indicating nutrient solubility in nutrient solution in nutrient solution cultivation.
  • the EC of the simple nutrient solution S can be maintained at a value significantly higher than that in conventional hydroponics, and in one embodiment about 2.5 mS / cm to about 3.5 mS / cm. Is preferably maintained.
  • EC of simple nutrient solution is less than 2.5 mS / cm, it can be cultivated if it is 1.0 mS / cm or more, and even if it exceeds 3.5 mS / cm, it can be cultivated if it is up to 4.0 mS / cm.
  • the range of about 2.5 mS / cm to about 3.5 mS / cm is preferable for cultivating many types of plants with high quality.
  • the EC of the nutrient solution is about 0.4 mS / cm to 1.0 mS / cm, and if an EC nutrient solution higher than this is used, the plant is burned with fertilizer (a large amount of nutrients are rooted).
  • the high DO is ensured so that the activities of the plant roots and aerobic bacteria are appropriately activated, and even if EC is high, the nutrients are decomposed and the roots have sufficient nutrients. Therefore, it is possible to use a high EC simple nutrient solution S. By using the simple nutrient solution S having a high EC, plants with high nutritional value can be grown in a short period of time.
  • plants are cultivated in a plurality of stages during the growth process from immediately after germination to harvest, and the nutrient EC is added by adding nutrients to the nutrient solution according to the cultivation stage. Is generally changed. For example, a plant is cultivated using a nutrient solution having a low EC immediately after germination, and then the EC of the nutrient solution is increased along with the growth of the plant. This is because if the EC is not managed according to the growth stage, the plant may burn fertilizer. However, it is possible to select an appropriate EC according to the growth stage if it is a single item or a small number of hydroponics, but the more items, the more difficult it becomes.
  • the nutrients are appropriately decomposed by the activation of plant roots and aerobic bacterial activity by high DO, and the roots sufficiently absorb the nutrients. Since the fertilizer burn does not occur even in plants immediately after germination, it is possible to use the same high EC simple nutrient solution S from immediately after germination to harvest.
  • the temperature Ts of the simple nutrient solution S is maintained at a temperature most suitable for the plant metabolism to be maximized and the plant roots to grow.
  • the temperature Ts is about 18 ° C. to about 22 ° C., although there are some differences depending on the type of plant. In the present invention, Ts is maintained at about 18 ° C. to about 22 ° C., preferably about 20 ° C.
  • the temperature Ts of the simple nutrient solution S is maintained at the above-described temperature by maintaining the temperature of the reformed air RA supplied to the simple nutrient solution S at a predetermined temperature. Details of maintaining the temperature of the reformed air will be described later.
  • the hydrogen ion concentration index (hereinafter referred to as “pH”) is maintained substantially constant. If the pH value of the simple nutrient solution S becomes too high, the roots of the plant will brown and die, and if it becomes too low, the absorption efficiency of nutrients in the nutrient solution will decrease. It is known to adversely affect growth. Accordingly, the pH of the simple nutrient solution S is preferably maintained at about 5.5 to about 7.5, more preferably about 6.2 to about 7.2 in one embodiment. preferable.
  • the simple nutrient solution S further maintains the oxidation-reduction potential (hereinafter also referred to as “ORP”) substantially constant. It is known that the ORP value of the simple nutrient solution S adversely affects the activation of the aerobic bacteria in the simple nutrient solution S even if it is too high or too low. Accordingly, the ORP of the simple nutrient solution S is preferably maintained at about 200 mv to about 350 mv, more preferably about 230 mv to about 320 mv in one embodiment.
  • the dissolved oxygen concentration (DO), electrical conductivity (EC), nutrient solution temperature (Ts), hydrogen ion concentration index (pH), and oxidation-reduction potential (ORP) are all appropriate. These values are constantly monitored and recorded using sensors, and these values can be maintained at a generally constant value by taking necessary measures when they deviate or may deviate from a predetermined range. it can. The values of these indices can be maintained by mixing an appropriate amount of water and / or nutrients in the simple nutrient solution S as required for EC, pH and ORP. About DO, it can carry out by controlling the supply amount of the reformed air supplied. About Ts, it can carry out by controlling the temperature of the reformed air supplied.
  • FIG. 3 is a perspective view showing one of a plurality of cultivation tanks 10 concerning one embodiment, and supports base 11 as a support arranged at the upper opening in cultivation tank 10 so that the inside can be seen. It is shown partially cut away.
  • a plurality of types including a support base material 11 provided with a substantially square-shaped opening 12 in a plan view and a support base material 11 provided with a substantially rectangular-shaped opening 12 in a plan view.
  • the support substrate 11 is used.
  • the kind of the support base material 11 can be suitably selected according to the kind of plant to be cultivated.
  • FIG. 4 shows a side sectional view of the cultivation tank 10 when the small cultivation pot 13 is used.
  • the cultivation tank 10 is a tank configured such that the bottom and side surfaces are surrounded by wall surfaces (that is, the upper part is opened), and the simple nutrient solution S flows in one direction at a predetermined speed. 3 and 4, only one stage of the cultivation tank 10 is depicted. However, if necessary, another cultivation tank 10 may be further provided on the cultivation tank 10 to form a multistage configuration.
  • the plurality of cultivation tanks 10 can have a multi-stage configuration so that leaf vegetables are cultivated in the lower stage and fruit vegetables and headed vegetables are cultivated in the upper stage.
  • the distance between the upper and lower cultivation tanks 10 can be determined according to the size of plants grown in each of the cultivation tanks 10 and the state of sunlight irradiation.
  • the cultivation tank 10 is supported by a support frame 19. Moreover, it is preferable that the cultivation tank 10 is arrange
  • each cultivation tank 10 The length, width, and depth of each cultivation tank 10 are determined according to the type and amount of plants cultivated in each cultivation tank 10 or the scale of the cultivation facility, and particularly the width and depth are cultivated.
  • the roots and stems of the plants are determined so that they can maintain their original growth shape.
  • a cultivation tank 10 having a width of about 200 mm to about 1,000 mm and a depth of about 200 mm to about 1,000 mm can be used depending on the type of plant to be cultivated. .
  • the cultivation tank 10 preferably has a heat insulating structure on the side wall and the bottom wall so that the temperature of the simple nutrient solution S flowing inside is maintained at a constant temperature.
  • the heat insulating structure of the cultivation tank 10 can be realized, for example, by stacking heat insulating materials on the outer surfaces of the side walls and the bottom wall, or by arranging the heat insulating materials in the gaps with the side walls and the bottom wall as a double structure. it can.
  • the material of the cultivation tank 10 is not particularly limited as long as it can maintain an appropriate strength so that the tank 10 itself is not deformed or damaged while the simple nutrient solution S is held therein.
  • a cultivation tank, a resin cultivation tank, a FRP cultivation tank, etc. can be used.
  • the simple nutrient solution S is supplied to the cultivation tank 10 through a nutrient solution supply path 45 from a supply-side nutrient solution tank 44 described later.
  • the nutrient solution supply port 45 a of the nutrient solution supply path 45 is provided so as to be located near the level of the simple nutrient solution S in the cultivation tank 10.
  • the supplied simple nutrient solution S flows in the cultivation tank 10 in a direction indicated by an arrow S in FIGS. 2 and 4 at a predetermined speed.
  • the predetermined speed of the simple nutrient solution S is preferably about 3 cm / second to about 5 cm / second as described above.
  • the cultivation tank 10 is provided with a nutrient solution discharge port 16 (16a, 16b), and the simple nutrient solution S flowing through the cultivation tank 10 passes through the discharge port 16 (16a, 16b). It is discharged to the discharge side nutrient solution tank 41 described later via 46.
  • the outlet 16b is provided at a location close to the water surface of the single nutrient solution S.
  • the nutrient solution discharge path 46 having the second discharge port 16b as an inflow port is preferably an overflow pipe.
  • the simple nutrient solution S in the cultivation tank 10 is located near the liquid surface to the bottom surface of the cultivation tank 10 by making the supply port 45a and the discharge ports 16a and 16b of the simple nutrient solution S in such a positional relationship. While being able to maintain a substantially uniform flow rate, retention in the cultivation tank 10 can be effectively prevented.
  • a plurality of supply units 36 for supplying the reformed air RA to the simple nutrient solution S are arranged. Details of the reformed air supply unit 36 will be described later.
  • the plurality of reformed air supply units 36 can be arranged at the bottom of the cultivation tank 10 at predetermined intervals from upstream to downstream, and in one embodiment, at intervals of about 50 cm.
  • a support for supporting the plant is disposed in the upper opening of the cultivation tank 10.
  • the support can be constituted by the support base 11, the cultivation pot 13, and the culture medium 14.
  • a float or a lid arranged to close the upper opening of the cultivation tank 10 can be used.
  • the support substrate 11 is a float, it is preferable that the support substrate 11 is made of a material that does not sink into the simple nutrient solution S due to the weight of the plant to be cultivated and that has high heat insulating properties.
  • the support base 11 is provided with a plurality of openings 12 penetrating in the thickness direction, and cultivation pots 13 and 13 ⁇ / b> A for supporting plants are arranged in the openings 12. .
  • the cultivation pots 13 and 13A either the small cultivation pot 13 shown in FIG. 6 or the large cultivation pot 13A shown in FIG. 7 is used depending on the type of plant to be supported. it can.
  • the small-sized cultivation pot 13 shown in FIG. 6 is preferably used for plants having a relatively large weight when grown, such as fruit vegetables and headed vegetables, and the large-sized cultivation pot 13A shown in FIG. 7 has grown. It is preferably used for plants having a relatively small weight, such as leaf vegetables.
  • the shape and number of the openings 12 can be appropriately determined according to the shape and number of the cultivation pots 13 and 13A used.
  • the support base 11 shown in FIGS. 5A, 5B, and 5D is provided with a plurality of openings 12 along the longitudinal direction in which the small cultivation pot 13 shown in FIG. 6 can be arranged.
  • the support base material 11 shown in FIGS. 5 (c) and 5 (e) is provided with an opening 12 in which the large cultivation pot 13 ⁇ / b> A shown in FIG. 7 can be arranged along the longitudinal direction. Is.
  • the lower surface of the support substrate 11 has a shape that does not hinder the flow of the simple nutrient solution S in the water tank.
  • the support substrate 11 is a float, the amount of subsidence below the liquid level gradually increases as the plant grows, and as a result, the simple nutrient solution S inside the opening 12 may be retained. Therefore, it is preferable to have a shape that prevents retention in the opening 12.
  • the lower surface of the support base material 11 is preferably formed in a wave shape with respect to the flow direction of the simple nutrient solution S.
  • the flow rate of the simple nutrient solution S in the cultivation tank 10 is preferably about 3 cm / second to about 5 cm / second as described above.
  • 11 is preferably about 100 mm to about 105 mm.
  • the support substrate 11 is a float, a certain range including the apex of the corrugated recess on the lower surface is set so that the simple nutrient solution S does not stay in the opening 12 even when the float sinks. It is preferable that the position in the longitudinal direction is present at the same position as the opening 12 and is present on the liquid level even when the float sinks to the maximum.
  • the support base material 11 is a lid
  • a locking piece 11 a is provided on the edge, and the locking piece 11 a is locked to the upper edge of the opening of the cultivation tank 10, so that the float as the support base 11 is grown in the cultivation tank. You may use like the cover body 3 of 10 opening. By doing so, the float can be prevented from sinking below the liquid level as the plant grows.
  • FIG. 6 is a perspective view (a) and (b) showing an embodiment of a small cultivation pot.
  • the small cultivation pot 13 according to this embodiment is a cultivation pot that is preferably used for cultivation of relatively heavy plants such as fruit vegetables and head vegetables.
  • the small-sized cultivation pot 13 is surrounded by a peripheral side wall 13a rising from each side of a substantially square bottom surface 13b, and is formed in a cubic shape (a substantially square box shape in plan view) with an open top, and each peripheral side wall 3a and bottom surface In 3b, a plurality of openings or windows 17 (hereinafter collectively referred to as windows) are formed in a lattice shape, and as shown in FIG. Is protruding.
  • windows a plurality of openings or windows 17
  • the small-sized cultivation pot 13 is preferably integrally formed with, for example, a synthetic resin, but is not limited thereto.
  • the outer diameter of the small-sized cultivation pot 13 is formed corresponding to the shape of the opening 12 of the support base 11 and can be fitted in the opening 12 of the support base 11 as shown in FIG. Yes.
  • the housing 13 c is locked to the upper surface of the support base 11 and supported by the support base 11.
  • the medium 14 is held on the bottom surface 13b in the small-sized cultivation pot 13, and the roots of the plant extend into the simple nutrient solution S through the plurality of windows 17 as the plant grows.
  • FIG. 6 (d) shows a case where the position of the rod body 13 c is projected in the middle of the peripheral side wall 13 a instead of the periphery of the upper end opening of the small cultivation pot 13.
  • the plurality of windows 17 formed on the peripheral side wall 13a and the bottom surface 13b of the small cultivation pot 13 function as a flow path for the simple nutrient solution S that flows at a predetermined speed. Therefore, the shape of the window 17 may be any shape that allows the root of the plant to advance, allows the simple nutrient solution S to pass therethrough, and allows air to flow, and is limited to a lattice shape as in this example. Other various shapes can be adopted instead of the above. For example, a circular shape and a polygonal shape such as a triangle or a trapezoid can be exemplified. Moreover, the culture medium 14 is hold
  • the peripheral side wall 13a of the small-sized cultivation pot 13 in a tapered shape in which the outer diameter decreases from the upper side to the lower side.
  • This taper shape should just exist in the peripheral side wall 13a located in the vicinity of the opening part 12 of the support base material 11 at the time of attachment at least instead of the whole surface of the peripheral side wall 13a.
  • a clearance gap arises between the peripheral side wall 13a formed in the taper shape, and the inner surface of the opening part 12 of the support base material 11, A ventilation path is formed by this clearance gap and the window 17, and in the root part of a plant Ensuring ventilation, supplying oxygen, preventing germs, and improving sunlight.
  • a notch (not shown) may be provided on the inner surface of the opening 12 of the support base 11. If the peripheral side wall 13a is tapered and a notch is provided on the inner surface of the opening 12, the effect can be further improved by a synergistic effect.
  • the shape is not restrict
  • FIG. 7 is a perspective view (a) (b) showing an embodiment of a large cultivation pot.
  • the large cultivation pot 13A according to this embodiment is a cultivation pot that is preferably used for cultivation of relatively light weight plants such as leaf vegetables, but it goes without saying that it can be used for other plants.
  • the large cultivation pot 13A of this embodiment is different from the small cultivation pot 13 shown in FIG. 6 in that the large cultivation pot 13A is a rectangular parallelepiped with a long upper opening (rectangular box in plan view). Since it is the same as the small cultivation pot 13 shown in FIG. 6, the same code
  • FIG. 9 is a perspective view showing a support according to another embodiment of the present invention.
  • This support is a cultivation pot storage body 11A that is attached to the cultivation tank 10 and accommodates the cultivation pots 13 and 13A.
  • the cultivation pot storage 11A as a support is formed of a frame member, and vertical pieces 8a, 8b, 8c, 8d are erected from each end of the substantially horizontal and cross-shaped bottom piece 7, and the vertical piece 8a The upper end of 8b and the upper ends of the vertical pieces 8c and 8d are connected by connecting members 9 and 9, so that the cultivation pots 13 and 13A can store the range surrounded by the vertical pieces 8a, 8b, 8c and 8d. .
  • This cultivation pot storage body 11A has a casing 8e protruding above the vertical pieces 8a, 8b, 8c, 8d, inserted into the cultivation tank 10 as shown in FIG. 9, and is engaged with the edge of the opening. It can be stopped and attached. This may be inserted into the opening 12 of the support base 11 and attached.
  • the small cultivation pot 13 is inserted into the range surrounded by the vertical pieces 8a, 8b, 8c and 8d and placed on the bottom piece 7 as shown in FIG.
  • the large cultivation pot 13 ⁇ / b> A has a plurality of cultivation pot storage bodies 11 ⁇ / b> A attached thereto, and the large cultivation pot 13 ⁇ / b> A is attached therebetween.
  • this cultivation pot storage body 11A is formed of a frame member and is only surrounded by upright vertical pieces 8a, 8b, 8c, 8d, even if the cultivation pots 13 and 13A are stored and attached, simple cultivation
  • the space above the liquid S is a space, which is preferable because air circulation and sunlight are good.
  • the culture medium 14 is arranged inside the cultivation pot 13.
  • the medium 14 is for supporting the plant immediately after germination so as not to fall into the simple nutrient solution S.
  • the material of the culture medium 14 can be a material used in conventional hydroponics, for example, urethane foam resin, rock wool, coconut fiber, non-combustible paper or the like, but is not limited thereto.
  • the medium 14 of the same material can be used for all plants, or the medium 14 of a different material can be used for each plant. It is preferable to use a cheaper culture medium 14 for plants such as leafy vegetables (short time from sowing to harvesting), and slow growth of fruit vegetables and head vegetables (time from sowing to harvesting).
  • the (long) plant medium 14 does not require the use of a less expensive medium.
  • the thickness and coarseness of the medium 14 are not limited as long as the roots can finally penetrate the medium 14 during the plant growth process.
  • the thickness of the medium 14 is preferably about 1 cm to about 5 cm, depending on the type of plant to be cultivated.
  • FIG. 12 shows the structure of a support in another embodiment of the present invention.
  • the cultivation sheet 15 is arrange
  • the cultivation sheet 15 is formed to have a plurality of peaks 15a and valleys 15b extending in the longitudinal direction by folding a sheet in a bellows shape in the width direction of the large-sized cultivation pot 13A.
  • the culture medium 14 can be arrange
  • the culture medium 14 can also be arrange
  • the peak portions 15a are provided with notches 15c at appropriate intervals along the longitudinal direction.
  • the cutout 15c allows the plant to grow efficiently because it strikes the plant properly without being interrupted by sunlight even in the initial growth stage where the height of the plant is smaller than the height from the valley 15b to the mountain 15a. Even during cultivation, it is possible to realize appropriate irradiation of sunlight on the roots of plants.
  • the material of the cultivation sheet 15 may be any material that does not have a chemical reaction with the simple nutrient solution S, does not absorb the simple nutrient solution S, and has durability to withstand repeated use.
  • a resin material such as polypropylene is used. It is preferable to use it.
  • FIGS. 13 to 15 show other attachment structures for the cultivation sheet
  • FIG. 13 is a partially cutaway perspective view
  • FIG. 14 is an exploded perspective view thereof
  • FIG. 15 is a sectional view taken along line AA in FIG. It is.
  • the attachment structure of the cultivation sheet 15 of this embodiment includes a sheet receiving plate 2.
  • the sheet receiving plate 2 is a rectangular short cylinder with a short wall 3 a standing on the periphery of a rectangular receiving plate main body 3, and sheet hanger members 4 a and 4 b project from the inner surface of the receiving plate main body 3. Yes.
  • the sheet hanger member 4 a is projected at a position corresponding to the top of the mountain portion 15 a of the cultivation sheet 15 in a mountain shape corresponding to the mountain portion of the cultivation sheet 15.
  • the member 4b is located on the way from the mountain part 15a of the cultivation sheet 15 to the valley part 15b, and protrudes in an eight-letter shape with an inclination corresponding to the inclined surface of the cultivation sheet 15. Therefore, when the mountain part 15a of the cultivation sheet 15 is fitted to the sheet hanger member 4a, the sheet hanger member 4b comes into contact with and supports the inside of the inclined surface from the mountain part 15a to the valley part 15b of the cultivation sheet 15,
  • the cultivation sheet 15 can be attached only by hanging on the sheet hanger members 6a and 6b in the same manner as the hanger.
  • FIG. 1 Two of the sheet receiving plates 2 are provided so as to face each other, and the cultivation sheet 15 is installed between the opposing sheet receiving plates 2 and 2.
  • the net plate 5 and the nonwoven fabric 6 are placed on the short wall 3 a of the sheet receiving plate 2 and are laid between the opposing sheet receiving plates 2 and 2.
  • a housing 3 c is provided on the upper part on the outer peripheral side of the sheet receiving plate 2.
  • the housing 3 c is formed at the opening edge of the cultivation tank 10 as shown in FIGS. 13 and 15. It can be locked and attached. Even if it is the support base material 11 as a support body, it can insert and use it by inserting in the elongate rectangular opening part 12.
  • the width of the sheet receiving plate 2 is adjusted to the width of the opening of the cultivation tank 10, and when used for the supporting substrate 11, the width of the opening 12 of the supporting substrate 11. Form according to the width.
  • the receiving plate body 3 of the sheet receiving plate 2 is provided with a plurality of openings 3b so as not to hinder the flow of the simple nutrient solution S.
  • the size, number, and position of the opening 3b are set so as not to hinder the flow of the simple nutrient solution S. From this point, the receiving plate body 3 may be a plate or a net plate provided with openings 3b in a lattice shape.
  • the nutrient solution circulation means 40 includes a discharge side nutrient solution tank 41, a nutrient solution circulation pump 42, a nutrient solution pipe 43, a supply side nutrient solution tank 44, a nutrient solution supply path 45, and a nutrient solution discharge path 46. Including.
  • the simple nutrient solution S flows through each of the plurality of cultivation tanks 10 at a predetermined speed in the direction indicated by the arrow S, and the nutrient solution discharge path provided in each of the cultivation tanks 10 46 is discharged.
  • the nutrient solution discharge path 46 may be provided with a valve (not shown) for opening and closing the path as necessary so that the discharge amount of the simple nutrient solution S can be controlled more precisely.
  • the simple nutrient solution S discharged from the cultivation tank 10 preferably enters the discharge side nutrient solution tank 41 buried in the ground.
  • the simple nutrient solution S in the discharge side nutrient solution tank 41 is sent to the nutrient solution pipe 43 by the nutrient solution circulation pump 42 and preferably enters the supply side nutrient solution tank 42 buried in the ground.
  • the simple nutrient solution S in the supply nutrient solution tank 42 is supplied to each of the plurality of cultivation tanks 10 through the nutrient solution supply path 45.
  • a valve (not shown) for opening and closing the path may be provided as necessary so that the supply amount of the simple nutrient solution S can be controlled more precisely.
  • the present invention is characterized by creating a “solid phase” in the simple nutrient solution S similar to the state in the soil in soil cultivation, and the present inventors
  • the predetermined speed of the simple nutrient solution S in the cultivation tank 10 is preferably about 3 cm / second to about 5 cm / second. This speed is the speed of the simple nutrient solution S adjusted so that the pressure applied to the roots of the plant is approximately the same as the pressure in the soil.
  • This predetermined speed is, for example, the height of the uppermost cultivation tank 10 and the nutrient solution piping 43 with respect to the amount of the simple nutrient solution S determined according to the number and size of the cultivation tanks 10 used.
  • the capacity of the nutrient solution circulation pump 42 can be determined and adjusted. Further, when valves are provided in the nutrient solution supply path 45 and the nutrient solution discharge path 46, the predetermined speed can be adjusted by adjusting the opening degree of these valves.
  • the single nutrient solution S in the cultivation tank 10 When the flow rate of the simple nutrient solution S in the cultivation tank 10 is slower than about 3 cm / second, the single nutrient solution S is not substantially different from the state in which the simple nutrient solution S stays in the cultivation tank 10. On the other hand, it not only gives the same pressure as in the soil, but also causes nutrient solution deterioration due to staying. When the flow velocity is higher than about 5 cm / second, the pressure applied to the root is too high, and this causes excessive stress to the root.
  • the simple nutrient solution S since the simple nutrient solution S does not deteriorate, it does not need to be discarded at high frequency, and is usually only supplemented with water and / or nutrients lost by absorption by plants and natural evaporation as needed. It's okay.
  • Such prevention of deterioration of the simple nutrient solution S is achieved by completely mixing and circulating the simple nutrient solution S in the flow path and preventing the retention in the flow path.
  • the complete mixing and prevention of retention of the simple nutrient solution S in the flow path is achieved mainly by adopting the following configuration.
  • FIG. 16 shows the discharge side nutrient solution tank 41 used in one embodiment of the present invention
  • FIG. 17 shows the supply side nutrient solution tank 44.
  • the double wavy line at the right end indicates that the middle of the long tanks 41 and 44 is omitted, and the structure of the omitted part is shown.
  • the simple nutrient solution S discharged from the plurality of cultivation tanks 10 enters the discharge-side nutrient solution tank 41 via the nutrient solution discharge path 46.
  • the simple nutrient solution S is supplied from the supply-side nutrient solution tank 44 to the plurality of cultivation tanks 10 via the nutrient solution supply path 45.
  • the discharge-side nutrient solution tank 41 extends below the discharge side of the simple nutrient solution S from the cultivation tank 10 so that the longitudinal direction of the tank 41 intersects the longitudinal direction of the cultivation tank 10. Placed horizontally. Further, the supply side nutrient solution tank 44 is horizontally disposed below the supply side of the simple nutrient solution S to the cultivation tank 10 so that the longitudinal direction of the tank 44 extends in a direction intersecting with the longitudinal direction of the cultivation tank 10. The By arranging the nutrient solution tanks 41 and 44 in this way, the simple nutrient solution S discharged from the separate cultivation tanks 10 is mixed in the same discharge side nutrient solution tank 41 and the single nutrient solution S entered from the nutrient solution pipe 43 is supplied.
  • the uniformly mixed simple nutrient solution S circulates in the nutrient solution circulation path.
  • the materials of the discharge side nutrient solution tank 41 and the supply side nutrient solution tank 44 are not particularly limited as long as they do not cause a chemical reaction with the nutrients contained in the simple nutrient solution S and have pressure resistance. Not.
  • the discharge side nutrient solution tank 41 and the supply side nutrient solution tank 44 are preferably made by reinforcing the outside of a polyvinyl chloride tank with fiber reinforced plastic.
  • the discharge side nutrient solution tank 41 and the supply side nutrient solution tank 44 have a cylindrical shape so that the simple nutrient solution S is more uniformly mixed therein.
  • the lengths of the nutrient solution discharge side tank 41 and the supply side nutrient solution tank 44 are simple nutrient solutions discharged from the cultivation tanks 10 at both ends of the plurality of cultivation tanks 10 provided in parallel. It is preferable that the length is approximately the same as the distance between the cultivation tanks 10 at both ends so that S enters a portion close to both ends of the tanks 41 and 44.
  • the supply-side nutrient solution tank 44 preferably has a smaller diameter than the discharge-side nutrient solution tank 41 so as to function as a pressurized tank that increases the pressure of the simple nutrient solution S in the tank 44 and sends it to the cultivation tank 10.
  • the discharge side nutrient solution tank 41 has an inner diameter of about 400 mm and can withstand an internal pressure of 5 kg / cm 2
  • the supply side nutrient solution tank 44 has an inner diameter of about 200 mm and 10 kg. It can withstand an internal pressure of / cm 2 .
  • the discharge-side nutrient solution tank 41 and the supply-side nutrient solution tank 44 are preferably buried underground so that the temperature of the simple nutrient solution S can be managed more stably.
  • a plurality of liquid receiving ports 41a, 41b for receiving the simple nutrient solution S discharged from the plurality of cultivation tanks 10, and A plurality of liquid feed ports 41 c for feeding the simple nutrient solution S in the tank 41 to the nutrient solution pipe 43 are provided.
  • the plurality of liquid receiving ports 41a and 41b are preferably provided in the upper part of the tank 41 disposed horizontally below the cultivation tank 10, and the plurality of liquid feeding ports 41c are preferably provided in the lower part of the tank.
  • the number and diameter of the liquid receiving ports 41a and 41b can be appropriately designed according to the number and stage number of the cultivation tanks 10 provided in parallel.
  • the liquid receiving ports 41a and 41b are a set of one or a plurality of liquid receiving ports 41a and 41b corresponding to each row of the plurality of rows of cultivation tanks 10 provided in parallel. It can be provided on the top. That is, one set of liquid receiving ports 41 a and 41 b is provided in the tank 41 for each row of the cultivation tank 10.
  • the number of liquid receiving ports 41a having a large diameter and the number of liquid receiving ports 41b having a small diameter are determined according to the number of stages in the corresponding row of the cultivation tank 10. . For example, as shown in FIG.
  • the simple nutrient solution S discharged from the upper two cultivation tanks 10a and 10b flows into the liquid receiving port 41a located on the leftmost side of 18 and the simple nutrient solution S discharged from the two upper cultivation tanks 10c and 10d flows into the liquid receiving port 41a located on the rightmost side of the figure,
  • the simple nutrient solution S discharged from the lowermost cultivation tank 10e flows into the liquid receiving port 41b having a small diameter from the liquid receiving port 41a.
  • the cultivation tank 10 since the cultivation tank 10 is provided with the two discharge ports 16a and 16b as described above, the nutrient solution S discharged from the discharge ports 16a and 16b of the upper cultivation tank 10 is It is collected into one flow and flows into the corresponding liquid receiving port 41a. Moreover, the nutrient solution S discharged
  • the fluid resistance at the time of discharge can be reduced, and the flow rate of the simple nutrient solution S in the cultivation tank 10 can be more easily maintained at a predetermined speed.
  • the simple nutrient solution S is uniformly mixed in 41.
  • the receiving ports 41a and 41b of the simple nutrient solution S discharged from the cultivation tank 10 at both ends of the plurality of parallel cultivation tanks 10 are provided at positions as close as possible to both ends of the discharge-side nutrient solution tank 44. .
  • the liquid receiving ports 41a and 41b By disposing the liquid receiving ports 41a and 41b at this position, the flow of the simple nutrient solution S flowing into the discharge side nutrient solution tank 41 from the solution receiving ports 41a and 41b is caused at both ends of the discharge side nutrient solution tank 41.
  • the nutrient solution in the corner portion is washed away, and as a result, the retention of the simple nutrient solution S in the corner portion can be prevented.
  • the supply-side nutrient solution tank 44 used in the present invention includes a plurality of receiving ports 44 a for receiving the simple nutrient solution S sent from the nutrient solution pipe 43, and the tank 44.
  • a plurality of liquid feeding ports 44b for feeding the simple nutrient solution S therein to the cultivation tank 10 are provided. It is preferable that the plurality of liquid receiving ports 44 a and the plurality of liquid feeding ports 44 b are provided on the upper portion of the tank 44 that is disposed horizontally below the cultivation tank 10.
  • the number and the diameter of the liquid receiving ports 44a and the liquid feeding ports 44b can be appropriately designed according to the number of the cultivation tanks 10 and the number of stages.
  • one liquid supply port 44b can be provided in the upper part of the tank 44 corresponding to each row of the plurality of rows of cultivation tanks 10 provided in parallel.
  • the supply port 44a is provided in the supply side nutrient solution tank 44 with the same number as the number of the liquid supply ports 41c of the discharge side nutrient solution tank 41 so as to correspond to the piping configuration of the nutrient solution pipe 43 described later. It is preferable.
  • the simple nutrient solution S delivered from the solution delivery port 44b is supplied to a plurality of cultivation tanks 10, for example, as shown in FIG.
  • the simple nutrient solution S that is uniformly mixed in the discharge-side nutrient solution tank 41 and discharged from the solution feed port 41c is sent to the nutrient solution pipe 43 by the nutrient solution circulation pump 42 as shown in FIG.
  • the One nutrient solution circulation pump 42 is preferably provided for each of the plurality of liquid supply ports 41 c of the discharge side nutrient solution tank 41.
  • the simple nutrient solution S is conveyed to the supply nutrient solution tank 41 through the nutrient solution pipe 43. From the viewpoint of temperature management of the simple nutrient solution S, the nutrient solution pipe 43 is preferably embedded in the ground.
  • the material of the nutrient solution pipe 43 is not particularly limited as long as it does not cause a chemical reaction with the nutrients contained in the simple nutrient solution S and has a certain level of pressure resistance.
  • the nutrient solution piping 43 can illustrate what strengthened the outer side of the pipe
  • the discharge-side nutrient solution tank 41 is devised so that the simple nutrient solution S is uniformly mixed inside.
  • various plants are cultivated in each of the plurality of cultivation tanks 10, and the nutrient and oxygen consumption of the simple nutrient solution S for each cultivation tank 10, and the types and amounts of root acids secreted from the plant roots Therefore, the simple nutrient solution S discharged from each row of the parallel cultivation tanks 10 is greatly different in the state, for example, the amount of nutrients contained, the dissolved oxygen concentration, and the amount of root acid. is there.
  • the simple nutrient solution S discharged from the cultivation tank 10 in which fruit vegetables are cultivated and the simple nutrient solution S discharged from the cultivation tank 10 in which leaf vegetables are cultivated may have greatly different states. .
  • the simple nutrient solution S discharged from the cultivation tank 10 into the discharge-side nutrient solution tank 41 is insufficient to maintain a uniform mixed state only with the above-described device described in the description of the tank 41. There may be cases. Therefore, in the present invention, the nutrient solution piping 43 through which the simple nutrient solution S flows is intersected between the discharge side nutrient solution tank 41 and the supply side nutrient solution tank 44.
  • the intersection is discharged from the uppermost cultivation tank 10 in FIG. 2, enters the discharge side nutrient solution tank 41, and is discharged from the liquid supply port 41 c closest to the position.
  • the single simple nutrient solution S passes through the nutrient solution piping 43 and enters the supply-side nutrient solution tank 44 from the solution receiving port 44a located near the lowermost cultivation tank 10 in FIG.
  • the simple nutrient solution S discharged from the lowermost cultivation tank 10 in FIG. 2 enters the discharge-side nutrient solution tank 41, and is discharged from the solution feeding port 41 c closest to the position is supplied to the nutrient solution pipe 43.
  • the supply side nutrient solution tank 44 is entered from the solution receiving port 44a located near the uppermost cultivation tank 10 in FIG.
  • the discharge side nutrient solution tank 41 to the supply side nutrient solution tank 41 so that the simple nutrient solution S discharged
  • the paths of the nutrient solution piping 43 are arranged so as to intersect each other.
  • the reformed air production means 20 is a mechanism for reforming outside air into reformed air RA suitable for supplying the simple nutrient solution S in the cultivation tank 10 and adjusting the temperature of the reformed air RA. It is.
  • the reformed air RA is obtained by reforming the air A into a state having a high oxygen content.
  • the reformed air production means 20 may be provided inside or outside the house 60, but is preferably provided outside from the viewpoint of further reducing the space in the house 60 that requires temperature management.
  • the reformed air production means 20 When the reformed air production means 20 is provided outside, it is preferable that necessary equipment is disposed, for example, in a closed space so as to reduce the influence of outside air as much as possible.
  • the reformed air RA that has been reformed by the reformed air production means 20 and whose temperature has been adjusted is supplied to the simple nutrient solution S in the cultivation tank 10 by the reformed air supply means 30.
  • the reformed air production means 20 includes an air intake section 21, an air reforming means 22, a suction fan 23, a reformed air storage chamber 24, a geothermal heat pump 25, a heat radiating section 26, and a pipe cooling section. 27 and a temperature sensor 28.
  • Air A is taken into the reformed air storage chamber 24 by the suction fan 23 via the air intake 21.
  • the air A is reformed by the air reforming means 22 before being taken into the reformed air storage chamber 24.
  • the air reforming unit 22 may be a filter unit 22 having at least a denitrification filter.
  • the air reforming means 22 can further include various filters such as a deammonia filter, a desalting filter, and a dustproof filter.
  • the oxygen content of the reformed air RA can be increased, for example, by mixing pure oxygen with the taken-in air, in which case the air reforming means 22 is connected to outside air and pure oxygen. It can be set as the apparatus which mixes.
  • the reformed air RA taken into the reformed air storage chamber 24 is preferably stored in the reformed air storage chamber 24 for a certain period of time for the purpose of stabilizing the supply amount and adjusting the temperature. Details of the temperature adjustment will be described later.
  • the volume of the reformed air storage chamber 24 is determined in consideration of the stability of the supply amount and the ease of temperature management, but at least the amount of the reformed air RA per unit time supplied to the cultivation tank 10 is determined. The volume is preferably 10 times or more.
  • the reformed air storage chamber 24 preferably has a heat insulating function on its wall surface, roof, door, and the like.
  • the reformed air RA is supplied to the plurality of cultivation tanks 10 by the reformed air supply means 30.
  • the reformed air supply means 30 includes a reformed air supply pump 32, a reformed air pipe 34, and a reformed air supply unit 36.
  • the reformed air RA is stored in the reformed air storage chamber 24 and then sent out to the reformed air pipe 34 by the reformed air supply pump 32.
  • the pressure applied to the reformed air RA by the reformed air supply pump 32 is such that the flow rate per hour of the reformed air RA is about 3 to about 5 times the total volume of the simple nutrient solution S circulating. It is preferable to set so as to be doubled.
  • the reformed air pipe 34 can be provided outside the cultivation tank 10 as shown in FIG. 2, but may be provided so as to pass through the inside of the cultivation tank 10.
  • the reformed air pipe 34 serves as a heat storage body, and the temperature of the simple nutrient solution S is more stably maintained.
  • the material of the reformed air pipe 34 is not particularly limited, but when the reformed air pipe 34 is disposed inside the cultivation tank 10, a material that does not cause a chemical reaction with the simple nutrient solution S, for example, polyvinyl chloride. Etc. are preferable.
  • a valve (not shown) for opening and closing the pipe may be provided between the reformed air supply pipe 34 and the reformed air supply unit 36. By providing the valve, the supply amount of the reformed air RA to the reformed air supply unit 36 can be controlled more precisely.
  • a reformed air supply unit 36 is provided in each of the cultivation tanks 10.
  • the reformed air supply unit 36 is not particularly limited as long as it can supply the reformed air RA to the simple nutrient solution S.
  • a hollow cylindrical porous body baked in step (b) The reformed air pipe 34 is connected to a hollow portion 36b provided along the central axis in the longitudinal direction inside the cylindrical porous body 36a, and the reformed air RA that has entered the hollow portion 36b is porous. Air bubbles having a size corresponding to the size of the holes are discharged from the holes of the material 36a into the simple nutrient solution S.
  • the pores of the porous body 36a are preferably as uniform as possible, and the size of the pores is such that the size of the bubbles released into the simple nutrient solution S is generally larger than the order of several hundred microns and smaller than the order of several millimeters. It is preferable that the size be reduced.
  • the required dissolved oxygen concentration that is, about 8 ppm to about 12 ppm can be achieved more easily. Bubbles smaller than the order of several hundred microns increase the amount of nitrogen contained in the simple nutrient solution S, so that the necessary dissolved oxygen concentration may not be achieved.
  • Such a porous body 36a can be obtained from a manufacturer of semi-lux products on the market. By making the modified air supply unit 36 a ceramic porous body 36a, there is also an advantage that the porous body 36a functions as a heat storage body and is more useful for maintaining the simple nutrient solution S at a constant temperature.
  • positioning method of the reforming air supply part 36 is not limited, It is preferable to arrange
  • the reformed air supply unit 36 is a porous body 36 a
  • the longitudinal direction of the porous body 36 a is arranged in a direction extending in the width direction of the cultivation tank 10.
  • the length and diameter of the reforming air supply unit 36 and the arrangement interval are values that require the dissolved oxygen concentration with respect to the simple nutrient solution S according to the width and depth of the cultivation tank 10, the flow rate of the simple nutrient solution S, and the like. It chooses suitably so that it may become.
  • the reformed air supply unit 36 ie, the porous body, has a length of about 10 cm to about 50 cm, a diameter of about 2 cm to about 5 cm, and a distance between the arrangements of about 50 cm, depending on the location. it can.
  • variety of the cultivation tank 10 can also be used for the reformed air supply part 36, in that case, it is arrange
  • the reformed air RA taken into the reformed air storage chamber 24 is supplied to the cultivation tank 10, and the temperature of the reformed air RA supplied to the cultivation tank 10 is related to the temperature of the outside air taken in.
  • a predetermined temperature that is, from about 18 ° C. to about 22 ° C.
  • the following method is adopted.
  • the method for maintaining the temperature of the reformed air RA supplied to the cultivation tank 10 at a predetermined temperature that can be used in the present invention is not limited to the following method, and other known methods.
  • the temperature of the reformed air RA may be maintained at a predetermined temperature using any method, for example, a commercially available boiler or air conditioner.
  • the present inventors consider that the reformed air RA can be maintained at a predetermined temperature efficiently and reliably while reducing the amount of energy used by using the following method.
  • the reformed air temperature adjusting means for setting the reformed air RA to a predetermined temperature includes the underground pipe 21, the reformed air storage chamber 24, the geothermal heat pump 25, and the reformed air.
  • a heat radiating unit 26 provided in the storage chamber 24, a control device (not shown) for controlling a set temperature of the geothermal heat pump 25, and a pipe cooling unit 27 can be used. Heat from the geothermal heat pump 25 is radiated into the reformed air storage chamber 24 by the heat radiating section 26, and the temperature inside the storage chamber 24 is maintained at a constant temperature by this heat.
  • the geothermal heat pump 25 uses a relatively stable geothermal heat throughout the year as a heat source for adjusting the temperature in the reformed air storage chamber 24, and a geothermal heat pump unit available on the market is used. It can be used as appropriate. *
  • the air intake 21 is an underground pipe (earth tube), and outside air is introduced into the reformed air storage chamber 24 after passing through the underground pipe 21.
  • the temperature of the high temperature outside air can be lowered in the summer and the temperature of the low temperature outside air can be raised in the winter.
  • the temperature of the air introduced into the reformed air storage chamber 24 through the underground piping 21 can be stabilized at about 7 ° C. to about 10 ° C. throughout the year.
  • the reformed air RA taken into the reformed air storage chamber 24 via the air reforming means 22 having a denitrification filter is appropriate in the reformed air storage chamber 24 whose interior is maintained at a constant temperature.
  • the temperature is kept constant by being stored for a period of time.
  • the adjustment of the temperature in the reformed air storage chamber 24 takes into account the temperature rise in the reformed air supply pump 32 and the temperature change in the reformed air pipe 34, which will be described later, and is adjusted when supplied to the cultivation tank 10. This is performed by setting the temperature of the heat pump 25 using the geothermal heat so that the temperature of the quality air RA becomes a predetermined temperature.
  • the temperature of the reformed air RA supplied to the cultivation tank 10 becomes higher than a predetermined temperature due to a temperature rise in the reformed air supply pump 32 and a temperature change in the reformed air pipe 34, a heat pump using underground heat is used.
  • the set temperature 25 is changed so that the temperature in the reformed air storage chamber 24 is lowered by the temperature rise.
  • the temperature of the reformed air RA supplied to the cultivation tank 10 is lower than a predetermined temperature due to the temperature rise in the reformed air supply pump 32 and the temperature change in the reformed air pipe 34
  • the use of underground heat is used.
  • the set temperature of the heat pump 25 is changed so that the temperature in the reformed air storage chamber 24 increases by the temperature drop.
  • the change of the set temperature of the geothermal heat pump 25 is configured to be automatically performed based on temperature data from the temperature sensor 28 provided in the reformed air pipe 34 immediately before being sent to the cultivation tank 10. It is preferable.
  • the reformed air RA whose temperature has been adjusted in the reformed air storage chamber 24 is sent to the reformed air pipe 34 by the reformed air supply pump 32.
  • the discharge pressure of the pump 32 must be made high. This pressure can be determined according to the supply amount of air.
  • the reformed air RA thus pressurized is compressed and the temperature rises, for example, by about 10 ° C. to about 15 ° C.
  • a pipe cooling unit 27 can be provided on the downstream side of the pump 32, and the temperature can be lowered by the pipe cooling unit 27 when the temperature of the reformed air RA is excessively increased by the pump 32.
  • the reformed air RA sent from the reformed air supply pump 32 is supplied to the reformed air supply unit 36 through the reformed air pipe 34.
  • the temperature of the reformed air RA may change under the influence of the temperature outside the pipe while flowing through the reformed air pipe 34.
  • the reformed air pipe 34 may be buried underground, using a heat insulating material and / or disposed in the cultivation tank 10 so that the internal reformed air RA is not affected by the temperature outside the pipe as much as possible. preferable.
  • the temperature rise due to the outside air in some ground piping parts can be offset by the pipe cooling unit 29.
  • a bacterial colonization unit 38 is provided for allowing aerobic bacteria to stay in the simple nutrient solution S in the cultivation tank 10 and to live or propagate. Further, the aerobic bacteria living in the bacterial colonization unit 38 can sufficiently perform their functions by using the reformed air RA maintained at a predetermined temperature, and the bacterial colonization. The part 38 is placed in close proximity.
  • the bacteria fixing unit 38 adjacent to the reformed air supply unit 36 is also a simple culture in the cultivation tank 10. As a result, it becomes possible to ensure a uniform amount of aerobic bacteria in the entire cultivation tank 10.
  • the material of the bacterial colonization part 38 is not particularly limited as long as it can colonize aerobic bacteria and does not cause a chemical reaction with the simple nutrient solution S.
  • the medium in the above-mentioned support body The same medium as 14 or porous ceramics can be used.
  • the porous ceramics 36 a of the reformed air supply unit 36 can be used as the bacterial fixing unit 38.
  • the fine pores of the porous ceramic 36a function as a habitat or breeding place for the aerobic bacteria, the aerobic bacteria do not easily flow out even in the flowing simple nutrient solution S.
  • the reformed air RA having a high oxygen concentration supplied from the reformed air pipe 34 to the reformed air supply unit 36 is sent into the simple nutrient solution S through the holes of the porous ceramics 36a, Sufficient oxygen can be supplied to aerobic bacteria that inhabit or propagate in the pores of the porous ceramics 36a.
  • the bacterial colonization unit 38 is formed in a rectangular plate shape having a long side corresponding to the length of the reformed air supply unit 36, and the reformed air supply unit
  • the reformed air RA supplied from 36 can be disposed, for example, immediately above the reformed air supply unit 36 so as to sufficiently hit the aerobic bacteria that have settled.
  • a space is provided between the reformed air supply unit 36 and the bacteria fixing unit 38, and the retention of the simple nutrient solution S may occur in the space.
  • the house 60 is ventilated by opening and closing these windows and operating the ventilation fan.
  • the temperature and humidity in the house 60 can be controlled by using the house cooling means 50 including the filter 52, the underground pipe 54, and the fan 56.
  • the outside air is adjusted to an appropriate temperature by passing through the filter 52 and the underground piping 54 and then taken into the house 60 by the fan 56.
  • the temperature and humidity in the house 60 can be controlled using a commercially available air conditioner.
  • the material of the house 60 is made of a material having a high heat insulation effect
  • a light-shielding curtain is used for the purpose of controlling the irradiation of sunlight into the house 60, or the temperature of the house 60 is reduced on the wall surface of the house 60. It is also possible to adopt a configuration such as providing a heat insulating function.
  • the state of the simple nutrient solution S can be mentioned.
  • DO dissolved oxygen concentration
  • EC electrical conductivity
  • Ts temperature
  • pH hydrogen ion concentration index
  • ORP redox potential
  • Various sensors for monitoring these values are preferably provided, for example, inside the cultivation tank 10, and monitoring data from the sensors is preferably recorded constantly.
  • the monitoring data is preferably recorded and displayed as a graph on a display device that can be appropriately checked by a system administrator and / or printed out on recording paper. When these values deviate from an appropriate range, an alert is preferably issued to the administrator.
  • the parameter value returns to the normal range manually by the administrator or automatically by the system 1.
  • DO dissolved oxygen concentration
  • the value can be returned to the normal range.
  • the temperature Ts shows an abnormal value
  • the value can be returned to the normal range by adjusting the temperature by the temperature adjusting means of the reformed air producing means 20, for example.
  • a state to be monitored in the plant cultivation system 1 includes a state of the reformed air RA.
  • at least the temperature and flow rate of the reformed air RA are managed so as to be maintained at a predetermined temperature and flow rate.
  • Various sensors for monitoring these values are preferably provided, for example, at appropriate positions in the reforming air pipe 34, and monitoring data from the sensors is preferably recorded constantly.
  • the monitoring data is preferably recorded and displayed as a graph on a display device that can be appropriately checked by a system administrator and / or printed out on recording paper. When these values deviate from an appropriate range, an alert is preferably issued to the administrator.
  • an appropriate operation is performed so that the parameter value returns to the normal range manually by the administrator or automatically by the system 1.
  • the temperature of the reformed air RA shows an abnormal value
  • the value can be returned to the normal range by adjusting the temperature by the reformed air temperature adjusting means.
  • the flow rate of the reformed air RA shows an abnormal value, for example, by controlling the operation of the reformed air supply pump 32 and / or opening / closing of a valve (not shown) in front of the reformed air supply unit 36, The value can be returned to the normal range.
  • the state of dirt, etc. is periodically checked for various filters such as a denitrification filter, a deammonia filter, a desalting filter, and a dust filter that allow the outside air A to pass through. It is preferable to check and replace at regular intervals or as necessary. When the filter is clogged or at regular intervals, an alarm is preferably issued to the administrator to prompt replacement.
  • filters such as a denitrification filter, a deammonia filter, a desalting filter, and a dust filter that allow the outside air A to pass through. It is preferable to check and replace at regular intervals or as necessary. When the filter is clogged or at regular intervals, an alarm is preferably issued to the administrator to prompt replacement.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Hydroponics (AREA)

Abstract

【課題】 単質の養液を循環させて、葉菜類、果菜類、結球野菜類及び豆類などといったあらゆる品目の植物を、連作障害を発生させずに通年で同時に生産するための植物栽培システム、装置及び方法を提供する。 【解決手段】 各々が植物を保持する栽培槽の内部を所定速度で流れる単質養液に、栽培槽の単質養液の溶存酸素濃度を所定濃度にするのに適した状態になるように空気を改質した改質空気を、所定温度にして、単質養液を前記所定濃度にするのに必要な流量で、バクテリア定着部の近傍から供給するようにしたことを特徴とする。

Description

植物栽培システム、植物栽培装置及び植物栽培方法
 本発明は、植物の人工栽培に関し、より具体的には、単質養液を用いて連作障害を生じることなく多品目の植物を同時に栽培するための植物栽培システム、植物栽培装置及び植物栽培方法に関する。
 野菜、花卉等を含む植物は、一般に、屋外又は屋内における土耕栽培方式(開放型又は半閉鎖型の土耕栽培方式)によって生産される。しかし、土耕栽培方式には、収穫が季節や天候に左右されること、連作障害が発生すること、害虫などによる病気の恐れがあることなどといった課題がある。こうした土耕栽培方式に対して、近年、養液栽培を利用して植物を屋内で栽培する屋内型人工栽培方式が実用化されている。屋内型人工栽培方式には、太陽光のみを利用するか又は太陽光と人工光とを併用する半閉鎖型人工栽培方式と、人工光のみを利用する閉鎖型人工栽培方式がある。本発明は、前者の半閉鎖型人工栽培方式に関するものである。
 一方、養液栽培には種々の方式があるが、主に用いられている方式は、流動する養液を用いて植物の根に養分を供給するものであり、この方式は、大きく薄膜型養液栽培方式と湛液型養液栽培方式とに分けられる。薄膜型養液栽培方式は、植物の生長に必要な養分を水に溶解させた養液を、緩やかな傾斜を持つ平面上に薄く流下させ、その養液によって植物を栽培する方式である。薄膜型養液栽培方式は、根の伸長が妨げられるため、植物の生長に問題が生じる場合があるという欠点を有する。一方、湛液型養液栽培方式は、植物が生育する栽培槽に、植物の根の大部分が養液に浸漬するように養液を供給する方式である。湛液型養液栽培方式は、薄膜型養液栽培方式と比べて、養液の量が多いため水深が深く、根の生長が妨げられないこと、養分の濃度や温度の変化がゆるやかであるため管理が容易であることなどといった利点がある。本発明は、後者の湛液型養液栽培方式に関するものであり、以下において養液栽培というときは、湛液型養液栽培をいう。
 養液栽培を利用した屋内型人工栽培方式には、土耕栽培と比較して多くの利点がある。養液栽培を利用した屋内型人工栽培方式は、自然光及び人工光、温度、湿度などの環境条件を人為的に制御するとともに、植物の根を種々の養分を含んだ養液に浸漬させることによって、土壌を用いることなく植物を栽培することを可能にする。こうした人工栽培方式では、植物の生長や収穫が季節や天候に左右されにくく、環境条件を容易に調整できるため、植物を計画的、安定的に生産することができる。また、栽培する場所があまり限定されないため、例えば都市部又はその近郊に栽培施設を設けることによって、大量消費地への輸送の時間やコストを削減することができる。また、屋外における土耕栽培と比較して、農薬の使用量を少なくすることができるため安全性が高い。また、植物への付着物が極めて少なく、出荷の際の洗浄工程を簡略化することができる。
 しかしながら、従来の養液栽培には、栽培される品目が限られること、養液を高頻度で廃棄しなければならないこと、養液の溶存酸素濃度を高めるのが難しいこと、根腐れや生長不良が発生する可能性が高いことなどといった課題がある。これらの課題を解決することを目的として、従来、以下のような養液栽培技術が提案されている。
 植物を効率よく栽培する汎用性の高い養液栽培システム及び養液栽培方法として、養液の水位と根の生長との関係に注目し、植物の栽培槽における養液の水位を、植物の根の伸長や日照などの環境条件に応じて自動的に調整することによって、根腐れや生長不良を生じることなく、多くの植物を効率よく栽培することができるものが提供されている(例えば、特許文献1参照)。
 また、単一の施設内で品種や栽培時期、生長段階の異なる植物を同時に栽培することができる植物工場として、植物の種類毎に個別の栽培環境を維持管理することが可能な多数のユニットを栽培室内に設置して、栽培時期や生長段階の異なる複数の植物を同時に栽培することができるものが提供されている(例えば、特許文献2参照)。
 また、雑菌等の繁殖を抑え、植物の生長を促進して効率良く栽培を行うことができる植物栽培システムとして、栽培ベッドが上下複数段に配設され、少ない面積で多種類の植物を栽培できるとともに、養液が栽培槽内を流れて槽外に排出された後に循環して再利用されることによって、養液の雑菌等の繁殖を抑え、養液を廃棄する必要がないものが提供されている(例えば、特許文献3参照)。
 また、栽培ベッドに対して養液が循環供給されるように配設された循環路と、循環路において養液を循環させるように設けられたポンプとを有し、果菜類、葉菜類などといった各種の植物を生長させるのに適した養液栽培装置として、養液の環境を最適な状態にコントロールすることによって、植物が生長しやすく、収穫量の多い養液栽培装置を提供することを目的としており、そのために、循環路を流れる養液の一部を分岐させ、その分岐路に設けたエアレーション及び活水器によって、養液に酸素を供給するとともに養液を活性化させるものが提供されている(例えば、特許文献4参照)。
 また、施設内植物栽培における気温制御を省エネルギーで行う手段として、栽培装置は、養液に対して曝気する曝気手段と、曝気する空気の温度を調整する手段とを備えており、曝気によって養液中の含気量を増加させるとともに、養液の温度を制御することができるものが提供されている(例えば、特許文献5参照)。
 さらに、下方からマイクロ・ナノバブルを送ることによって石などに定着した好気性バクテリアを活性化し、その働きによりアンモニア成分を酸化して亜硝酸に変換させる水槽として、バクテリアが定着しやすい多孔質物質をネットに収めて、そのネットの下方へ空気を送出する散気管を配することができるようにユニット化した装置において、散気管とは別にマイクロバブル発生装置を設け、散気管からの気泡とマイクロバブルとが多孔質物質に接するようにしたことを特徴とするものが提供されている(例えば、特許文献6参照)。
特開2011-177130号 特開2010-279269号 特開2010-88425号 特開2003-265057号 特開2010-233481号 特開2012-95630号
 上述のように、養液栽培に関して様々な従来技術が提案されているが、養液栽培における以下の課題は、これらの従来技術によっても未だに解決されていない。
 第一に、従来の養液栽培技術では、連作障害の発生を回避することができない。土耕栽培における連作障害の主な原因は、同じ耕作地で同じ植物を連続的に生産することによって養分やpHのバランスが崩れ、土壌の状態が悪化することである。一方で、従来の養液栽培においては、連作障害への対応という考え方自体がなかった。これは、苗の状態から収穫までを1サイクルとすると、従来の養液栽培ではサイクル毎に養液を廃棄することが当然のことと考えられているからである。サイクル毎に養液を廃棄し、次のサイクルでは新たな養液を使用するため、従来の養液栽培では連作障害を考慮する必要がなかったというのが現実である。養液をサイクル毎に廃棄することは、環境に与える負荷や栽培コストを考えれば、決して推奨されることではない。しかし、養液を廃棄すること無く連続して使い続けると、土壌と同様に養液の状態のバランスが崩れ、連作障害が発生することになる。このように養液栽培において連作障害を回避するという考え方及びそのための方法について、上述の特許文献を始めとする従来技術においては全く考慮されていない。
 次に、従来の養液栽培技術では、限られた品目の植物しか栽培することができない。従来、1つの施設で同時に栽培される植物は、1品目若しくは数品目の葉菜類のみ、1品目又若しくは数品目の果菜類のみ、又はこれらのうちせいぜい数品目の組み合わせに過ぎないのが現状である。これは、発芽や収穫の時期、生長速度などが異なる多品目の植物を同時に栽培するには、植物の種類に応じて栽培環境や養液の成分を個々に変えることが必要であると考えられており、従来の養液栽培技術では、こうした様々な栽培環境を同時に成り立たせるための条件が見出されていないためである。上述の特許文献に記載されているように、複数の品目を栽培するための技術が提案されているものの、こうした技術では、本発明のような葉菜類、果菜類及び豆類などといったあらゆる品目の植物を同時に栽培することはできない。例えば特許文献2においては、1つの施設内で複数の品目を栽培できるとされているものの、このような技術では、一施設内に多品目の植物を栽培するための異なる複数の環境を構築する必要があり、管理及びコスト面で課題が多い。
 さらに、従来の養液栽培技術では十分な養液の溶存酸素濃度を達成することは難しく、さらに同じ養液を使い続けて栽培を行おうとすると、溶存酸素濃度が低下して根腐れや根の生長不良が発生することは避けられない。養液をサイクル毎に廃棄する場合には、実際には養液の溶存酸素濃度の低下が生じているものの、次のサイクルでは新たな養液を使用するため溶存酸素濃度の低下は問題にならないが、同じ養液を廃棄することなく使用し続ける場合には、従来の技術では、必要な濃度を維持することは難しい。また、従来の技術でも、例えば特許文献4又は特許文献5などに示されるように、養液の溶存酸素濃度を高めるための工夫は行われているものの、こうした技術では、達成可能な溶存酸素濃度に限界があるだけでなく、養液に供給される空気の質については何ら考慮されていないため、養液の溶存酸素濃度を必要な濃度まで十分に高めることはできない。
 さらに、従来の養液栽培技術においては、栽培槽内における好気性バクテリアの安定的な活性化については考慮されていない。養液栽培方法においては、養液中の養分を植物が吸収できる状態に分解する役割を果たすバクテリアの活性化が重要であり、とりわけ、分解能力に優れる好気性バクテリアの活性化が重要である。例えば特許文献6には、好気性バクテリアをユニット化した水槽内に効果的にとどめる点について開示されているものの、この技術は、栽培槽内において養液が流れるシステムにおいて好気性バクテリアを安定的に活性化させることができるものではない。また、上述の他の特許文献における技術では、好気性バクテリアを安定的に活性化させる点については全く考慮されていない。
 本発明者らは、後述するように、単質養液を連続的に用いても、連作障害を発生させることなく、多品目の植物を同時に栽培することを可能にするためには、複数の条件を同時に満たす植物栽培環境を構築する必要があることを見出した。特許文献1~特許文献6を含む従来技術は、本発明者らが見出した条件のうちの一部のみが別個に開示されているに過ぎないだけでなく、見出した条件の他の一部については開示も示唆もされていない。従って、これらの技術を単に組み合わせただけでは、本発明の目的を達成することはできない。
 本発明は、このような点に鑑み前記課題を解決せんと提案されたものであり、その目的は、単質の養液を循環させて、葉菜類、果菜類、結球野菜類及び豆類などといったあらゆる品目の植物を、連作障害を発生させずに通年で同時に生産するための植物栽培システム、装置及び方法を提供することである。
 前記課題を解決するため、本発明の請求項1に係る植物栽培システムは、単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培する植物栽培システムであって、
 植物を保持する栽培槽の内部を所定速度で流れる単質養液に、前記栽培槽の単質養液の溶存酸素濃度を所定濃度にするのに適した状態になるように空気を改質した改質空気を、所定温度にして、単質養液を前記所定濃度にするのに必要な流量で、バクテリア定着部の近傍から供給するようにしたことを特徴とする。
 また、本発明の請求項2にかかる植物栽培システムは、請求項1において、改質空気は、多孔質体を介して気泡状態で単質養液内に供給されることを特徴とし、
 また、本発明の請求項3にかかる植物栽培システムは、請求項2において、前記多孔質体を前記バクテリア定着部として用い、改質空気が前記バクテリア定着部を通って栽培槽内に供給されるようにしたことを特徴とし、
 また、本発明の請求項4にかかる植物栽培システムは、請求項1乃至3のいずれかにおいて、改質空気は、前記栽培槽の内部において複数の箇所から単質養液に供給されることを特徴とし、
 また、本発明の請求項5にかかる植物栽培システムは、請求項1乃至4のいずれかにおいて、改質空気は、空気から窒素を除去したものであることを特徴とし、
 また、本発明の請求項6にかかる植物栽培システムは、請求項1乃至5のいずれかにおいて、改質空気は、内部の温度が一定の温度に維持された改質空気貯留室において、前記一定の温度と同じ温度になるまで保持された後に、単質養液内に供給されることを特徴とする。
 また、本発明の請求項7にかかる植物栽培システムは、請求項1において、単質養液の養分溶解度を表す電気伝導度は2.5mS/cm~3.5mS/cmであることを特徴とし、
 また、本発明の請求項8にかかる植物栽培システムは、栽培槽内を流れる単質養液の前記所定速度は、栽培される植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液の流速であり、前記所定濃度は、植物の根及び好気性バクテリアの活動を活性化させるのに適した溶存酸素の濃度であり、前記所定温度は、植物の根に悪影響を及ぼさない改質空気の温度であることを特徴とする。
 また、本発明の請求項9にかかる植物栽培システムは、請求項1または請求項8において、前記所定速度は3cm/秒~5cm/秒であることを特徴とし、
 また、本発明の請求項10にかかる植物栽培システムは、請求項1または請求項8において、前記所定濃度は8ppm~12ppmであることを特徴とし、
 また、本発明の請求項11にかかる植物栽培システムは、請求項1または請求項8において、前記所定温度は18℃~22℃であることを特徴とし、
 また、本発明の請求項12にかかる植物栽培システムは、請求項1または請求項8において、改質空気の1時間当たりの前記流量は、栽培槽とタンクを循環する単質養液全体の体積に対して3倍~5倍であることを特徴とし、
 また、本発明の請求項13にかかる植物栽培システムは、請求項1において、単質養液が、栽培槽とタンクとを結ぶ循環路内において滞留することなく混合されて循環するように構成されたことを特徴とする。
 さらに、本発明の請求項14にかかる植物栽培装置は、請求項1乃至3のいずれかにおいて、単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培する植物栽培装置であって、
 植物と、所定速度で流れる単質養液とを保持する、栽培槽と、
 前記栽培槽の単質養液の溶存酸素濃度を所定濃度とするのに適した状態になるように空気を改質した改質空気にする、空気改質手段と、
 改質空気の温度が所定温度になるように調整する改質空気温度調整手段と、
 単質養液を前記所定濃度にするために必要な流量の改質空気を前記栽培槽の内部の単質養液に供給する改質空気供給手段と、
 前記改質空気供給手段の改質空気供給部の近傍に配置されたバクテリア定着部と、
 単質養液を前記栽培槽とタンクとの間で循環させる、単質養液循環手段と、
を備えることを特徴とする。
 また、本発明の請求項15にかかる植物栽培装置は、請求項14において、前記改質空気供給部は多孔質体であることを特徴とし、
 また、本発明の請求項16にかかる植物栽培装置は、請求項15において、前記多孔質体は前記バクテリア定着部であることを特徴とし、
 また、本発明の請求項17にかかる植物栽培装置は、請求項14乃至16のいずれかにおいて、前記改質空気供給部は、前記栽培槽の内部において複数設けられたことを特徴とし、
 また、本発明の請求項18にかかる植物栽培装置は、請求項14において、前記空気改質手段は、空気から窒素を除去するためのフィルタを含むことを特徴とし、
 また、本発明の請求項19にかかる植物栽培装置は、請求項14において、前記改質空気温度調整手段は、内部の温度が一定の温度に維持された改質空気貯留室を含み、改質空気は、前記改質空気貯留室内において前記一定の温度と同じ温度になるまで保持された後に、前記改質空気供給手段によって供給されることを特徴とし、
 また、本発明の請求項20にかかる植物栽培装置は、請求項14において、単質養液の養分溶解度を表す電気伝導度は2.5mS/cm~3.5mS/cmであることを特徴とする。
 また、本発明の請求項21にかかる植物栽培装置は、請求項14において、栽培槽内を流れる単質養液の前記所定速度は、栽培される植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液の流速であり、前記所定濃度は、植物の根及び好気性バクテリアの活動を活性化させるのに適した溶存酸素の濃度であり、前記所定温度は、植物の根に悪影響を及ぼさない改質空気の温度であることを特徴とし、
 また、本発明の請求項22にかかる植物栽培装置は、請求項14または請求項21において、前記所定速度は3cm/秒~5cm/秒であることを特徴とし、
 また、本発明の請求項23にかかる植物栽培装置は、請求項14または請求項21において、前記所定濃度は8ppm~12ppmであることを特徴とし、
 また、本発明の請求項24にかかる植物栽培装置は、請求項14または請求項21において、前記所定温度は18℃~22℃であることを特徴とし、
 また、本発明の請求項25にかかる植物栽培装置は、請求項14において、改質空気の1時間当たりの前記流量は、栽培槽とタンクを循環する単質養液全体の体積に対して3倍~5倍であることを特徴し、
 また、本発明の請求項26にかかる植物栽培装置は、請求項14において、前記単質養液循環手段は、単質養液を循環させるポンプと、栽培槽から排出された単質養液を混合する第1のタンクと、栽培槽に供給されることになる単質養液を混合する第2のタンクと、前記第1のタンクと前記第2のタンクとの間を接続する交差配管とを備えることを特徴とする。
 またさらに、本発明の請求項27にかかる植物栽培方法は、単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培する植物栽培方法であって、
 植物を保持する栽培槽の内部に、所定速度で単質養液を流し、
 前記栽培槽の単質養液の溶存酸素濃度を所定濃度にするのに適した状態になるように空気を改質して改質空気とし、
 改質空気の温度を所定温度とし、
 単質養液を前記所定濃度にするのに必要な流量の改質空気を、バクテリア定着部の近傍から前記栽培槽の内部の単質養液に供給する、
工程を含むことを特徴とする。
 また、本発明の請求項28にかかる植物栽培方法は、請求項27において、改質空気を単質養液に供給する工程は、改質空気を、多孔質体を介して気泡状態で単質養液に供給する工程を含むことを特徴とし、
 また、本発明の請求項29にかかる植物栽培方法は、請求項28において、改質空気を単質養液に供給する工程は、改質空気を、バクテリア定着部である多孔質体を介して供給することを特徴とし、
 また、本発明の請求項30にかかる植物栽培方法は、請求項27乃至29のいずれかにおいて、改質空気を単質養液に供給する工程は、改質空気を、前記栽培槽の内部において複数の箇所から単質養液に供給することを特徴とし、
 また、本発明の請求項31にかかる植物栽培方法は、請求項27において、空気を改質する工程は、空気から窒素を除去する工程を含むことを特徴とし、
 また、本発明の請求項32にかかる植物栽培方法は、請求項27において、改質空気の温度を所定温度にする工程は、内部の温度が一定の温度に維持された改質空気貯留室内において、改質空気が前記一定の温度になるまで改質空気を保持する工程を含むことを特徴とし、
 また、本発明の請求項33にかかる植物栽培方法は、請求項27において、単質養液の養分溶解度を表す電気伝導度は2.5mS/cm~3.5mS/cmであることを特徴とする。
 また、本発明の請求項34にかかる植物栽培方法は、請求項27において、栽培槽内を流れる単質養液の前記所定速度は、栽培される植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液の流速であり、前記所定濃度は、植物の根及び好気性バクテリアの活動を活性化させるのに適した溶存酸素の濃度であり、前記所定温度は、植物の根に悪影響を及ぼさない改質空気の温度であることを特徴とする。
 また、本発明の請求項35にかかる植物栽培方法は、請求項27または請求項34において、前記所定速度は3cm/秒~5cm/秒であることを特徴とし、
 また、本発明の請求項36にかかる植物栽培方法は、請求項27または請求項34において、前記所定濃度は8ppm~12ppmであることを特徴とし、
 また、本発明の請求項37にかかる植物栽培方法は、請求項27または請求項34において、前記所定温度は18℃~22℃であることを特徴とし、
 また、本発明の請求項38にかかる植物栽培方法は、請求項27において、改質空気の1時間当たりの前記流量は、栽培槽とタンクを循環する単質養液全体の体積に対して3倍~5倍であることを特徴とし、
 さらに、本発明の請求項39にかかる植物栽培方法は、請求項27において、単質養液を、栽培槽とタンクとを結ぶ循環路内において滞留させることなく混合して循環させる工程さらに含むことを特徴とする。
 本発明の上記構成は、次のような点に基づくものである。
 本発明の発明者らは、数年にわたる様々な研究及び実験の結果、単質養液を用いて、連作障害を発生させることなく、あらゆる品目の植物を同時に栽培することを可能にするためには、複数の条件を満たす植物栽培環境を構築することが必要であることを見出した。その条件及び条件を満足するための手段は、以下のとおりである。
(1)多品目の植物を同時に栽培すること
 本発明者らは、連作障害の克服を目的とする研究の過程において、雑木林や野原では、同じ土壌成分であるにもかかわらず連作障害を起こすことなく多品目の植物が共生していることに注目した。このための条件として、それらの多品目の植物が必要とする栄養が量的及び質的に十分に土壌内に存在していることと、多品目の植物が共生していることによって植物が生長過程で分泌する有機物である根酸の種類が偏っていないこととが主に考えられる。そこで、本発明者らは、養液栽培においてもこうした環境に相当する環境を再現すれば、連作障害を生じることなく植物を栽培することができると考え、本発明においても、養分溶解度が高い単質養液を用い、かつ、多品目の植物を同時に栽培している。その結果、根酸が偏らずに養液の均質化が促進され、連作障害を起こすことなく(すなわち単質養液を高頻度で廃棄することなく)植物の栽培が可能となった。
 ここで、単質養液とは、多品目の植物を栽培するすべての栽培槽間で、同一の養分が全体的に均質になるように混合され、一定の状態で常に循環している養液をいう。多品目の植物は、複数品目の植物であり、好ましくは10品目以上の植物であり、かつそのうち少なくとも3割程度は果菜類と結球野菜である。本発明においては、単質養液の養分溶解度を表す電気伝導度(EC)を、通常の養液栽培では約0.4~1mS/cm程度であるところ、約2.5mS/cm~約3.5mS/cmという高い値に維持することができる。
(2)単質養液に酸素を高濃度で安定的に溶存させること
 酸素は、植物が生長する際の根の活動と、養液内の養分を植物が吸収可能な状態に分解する好気性バクテリアの活動とにおいて不可欠であり、従って、養液栽培においては、酸素が植物の根及び好気性バクテリアの十分な活動を活性化させるのに適した濃度(本明細書においては、この濃度を所定濃度という)で養液に安定的に溶存している必要がある。本発明において用いられる養分溶解度の高い単質養液を用いるためには、溶存酸素濃度(DO)を従来より高い値に維持することが必須であり、その濃度は、約8ppm~約12ppmであることが好ましい。こうした高い溶存酸素濃度を達成するために、本発明においては、大量の空気を単質養液に供給しており、例えば、循環している単質養液の全体積に対して、1時間あたり約3倍~5倍の体積の空気を供給することが好ましい。また、栽培槽内には空気の供給部を複数設けて、空気をこれらの供給部から分散させることが好ましく、これによって、栽培槽内の単質養液全体に対して、大量の空気を均一かつ安定的に供給することができる。
 本発明においては、空気は、単質養液の溶存酸素濃度を上記の濃度にするのに適した状態に改質されて、栽培槽内に供給される。空気は、酸素を約21%、窒素を約78%含んでおり、単なる空気を単質養液内に供給しただけでは、分圧の高い窒素が分圧の低い酸素より優先的に単質養液中に溶け込み、必要な溶存酸素濃度を達成できない。そこで、本発明においては、酸素濃度を高めた改質空気を単質養液内に供給するようにしており、例えば、空気から窒素を除去した改質空気を単質養液内に供給することが好ましい。循環している単質養液全体積に対して1時間あたり約3倍~約5倍の体積で供給される上述の「空気」は、こうした改質空気である。栽培槽内に供給される改質空気は、さらに、アンモニア、塩、塵などの不純物が除去された状態であることが好ましい。
 さらに、改質空気は、適切なサイズの気泡状態で単質養液内に供給されることが好ましい。そのために、本発明においては、例えばセラミックスからなる多孔質体を通して改質空気を単質養液内に供給することができる。多孔質体の孔のサイズは、改質空気の気泡が適切なサイズになるように選択されることが好ましい。
(3)大量に供給される改質空気の温度を根に悪影響を及ぼさない温度に維持すること
 本発明においては、上述のように、大量の改質空気が栽培槽内の単質養液全体に均一に供給される。この大量の改質空気は、適切に温度管理をしなければ、その温度変化が植物の根に悪影響を与えることになる。そこで、本発明においては、改質空気を、植物の根に対して悪影響を及ぼさない温度(本明細書においては、この温度を所定温度という)に維持して単質養液内に供給する。改質空気の所定温度は、約18℃~約22℃であることが好ましく、約20℃であることが最も好ましい。
 ところで、養液栽培においては、養液の温度が適切な温度になるように維持しなければならない。従来の養液栽培においては、温水又は冷水との熱交換を利用して養液を一定の温度に維持することが一般的である。一方で、本発明においては、大量の改質空気を、その温度を管理しながら単質養液内に供給するため、結果として、単質養液の温度も改質空気の温度の影響を受けることになる。そこで、本発明の一実施形態においては、単質養液の温度を、単質養液に供給する改質空気の温度のみで制御することができるようにしている。熱伝導率が低く比熱が小さい空気によって養液の温度管理を行うのは非効率であると考えるのが一般的であるが、本発明の発明者らは、単質養液が管理温度に達するまでに要する時間については重要視しておらず、むしろ、改質空気の温度管理と単質養液の温度管理とを別個に行うより、改質空気の温度管理のみで単質養液の温度管理を行うことができれば、管理の容易性及びコストの面から従来の方法より有利であると考えている。
(4)流れのある単質養液内で好気性バクテリアを活性化させること
 養液栽培においては、養液中の養分を植物が利用可能な状態に分解する好気性バクテリアが、根の近くで活性化することが必要であることは周知の技術的事項である。従って、本発明においても、植物の生長に不可欠な好気性バクテリアを、後述するように固相を形成する所定速度で流れる単質養液内において、いかにして流出しないように適切に必要な箇所に定着させつつ、その機能を発揮できるようにするかが重要である。特に、本発明において用いられる養分溶解度の高い単質養液を十分に分解するためには、好気性バクテリアの機能を十分に発揮させることが必要である。本発明においては、好気性バクテリアが栽培槽内における単質養液中にとどまって棲息又は繁殖するように複数のバクテリア定着部を設け、さらにそこでバクテリアが十分に酸素を利用して機能を発揮することができるように、所定温度に管理された改質空気の単質養液内への供給部とバクテリア定着部とが近接するようにしている。その結果、本発明においては、単質養液全体における好気性バクテリアの活性化と、好気性バクテリア量のコントロールとが可能となった。本発明においては、単質養液の電気伝導度を約3mS/cmという高い値に維持することができるが、このことは、好気性バクテリアが十分に機能しており、その結果として高い養分分解能力が達成されていることを表している。
 本発明においては、バクテリア定着部と改質空気の供給部とを共通化することによって、バクテリア定着部を介して改質空気が供給されるようにすることもできる。例えば、上述の多孔質体をバクテリア定着部としても利用することによって、多孔質体の細かな凹凸や孔が好気性バクテリアの棲息又は繁殖の場所として機能するとともに、好気性バクテリアが十分に酸素を利用できるようになる。
(5)単質養液内に土壌と同様の固相に相当する環境を作り出すこと
 土耕栽培においては、理想的な土壌形態は、土(固相)と空気(気相)と水分(液相)との比率が4:3:3であると考えられている。これに対して、従来の養液栽培、特に湛液型養液栽培においては、固相が存在せず、固相を形成するという考え方も考慮されていない。植物の根は、水と養分の吸収器官であり、根の生長の程度が植物全体の生長を左右する。根が適切に生長するためには、生長の際に根に対して適度な抵抗が与えられるように、周囲から根に圧力が与えられることが必要である。土耕栽培では、この圧力は固相すなわち土によって与えられる。本発明者らは、養液栽培技術においても、単質養液中に土耕栽培における土壌と同様の固相に相当する環境を作り出すことが必要であると考え、本発明においては、単質養液が栽培槽内を、栽培される植物の根に単質養液中で与えられる圧力が土壌内において根に与えられる圧力と概ね同程度となるような速度(本明細書においては、この速度を所定速度という)で流れるようにしている。一実施形態においては、栽培槽内における単質養液の流速は、約3cm/s~約5cm/sに調整されることが好ましい。本発明においては、このように養液栽培において固相を作り出すことによって、結球するために根の健全な生長が不可欠な結球野菜を栽培することも可能である。
(6)単質養液を適切な状態に維持すること
 上述のような各種条件を整えたとしても、養液が腐敗するなどにより劣化した場合には、養液を廃棄せざるを得ない。各々の植物は、生長の過程において吸収する養分の種類及び量並びに根からの分泌物の種類及び量が異なるため、単質養液を用いて、多品目の植物を長期間にわたって栽培する方法を構築するためには、養液全体をできるだけ均一な状態に維持して、どの植物も必要な養分をどの位置においても吸収できるようにすることが必要である。そこで、本発明の発明者らは、単質養液を劣化させることなく完全に混合して循環させることができるように、養液タンクの形状、養液配管の方法、栽培槽と給排水経路との接続方法などを検討し、単質養液の滞留防止・完全混合構造を構築した。この結果、単質養液を高頻度で廃棄することなく、単質養液の状態、例えば、pH、養分溶解度、酸素溶存濃度、酸化還元電位といった値を所望の状態に維持することができる。
 以上の諸条件を備えた養液栽培環境は、いわば最適化された疑似土壌環境といえるものである。最適化された疑似土壌環境とは、養液と植物の根との関係に関して理想的な土壌内の状態を擬似的に再現した環境であって、土壌栽培で植物に好影響を与える特徴を選択的に機能させるようにするとともに、悪影響を与えるおそれのある事項を可能なかぎり排除した栽培環境である。従来の養液栽培技術においては、養液中にこのような最適化された疑似土壌環境を再現するという考え方と、そのための方法については、全く考慮されていない。
 本発明の第1の態様は、単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培することができる植物栽培システムを提供する。本植物栽培システムは、植物を保持する栽培槽の内部を所定速度で流れる単質養液に、栽培槽の単質養液の溶存酸素濃度を所定濃度にするのに適した状態になるように空気を改質した改質空気を、所定温度にして、単質養液を前記所定濃度にするのに必要な流量で、バクテリア定着部の近傍から供給するようにしたことを特徴とするものであり、これらの条件を満たすことによって、最適化された疑似土壌環境を再現することができる。
 本発明において、好ましくは、多品目の植物は、複数品目の植物であり、好ましくは10品目以上の植物であり、かつそのうち少なくとも3割程度は果菜類と結球野菜である。また、好ましくは、改質空気は、多孔質体を介して気泡状態で単質養液内に供給され、さらに好ましくは、バクテリア定着部として用いられる多孔質体を通して栽培槽内に供給される。好ましくは、改質空気は、栽培槽の内部において複数の箇所から単質養液に供給される。好ましくは、改質空気は、空気から窒素を除去したものである。好ましくは、改質空気は、内部の温度が一定の温度に維持された改質空気貯留室において、その一定の温度と同じ温度になるまで保持された後に、単質養液内に供給される。好ましくは、単質養液の養分溶解度を表す電気伝導度は2.5mS/cm~3.5mS/cmである。
 本発明において、好ましくは、所定速度は、栽培される植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液の流速であり、所定濃度は、植物の根及び好気性バクテリアの活動を活性化させるのに適した溶存酸素の濃度であり、所定温度は、植物の根に悪影響を及ぼさない改質空気の温度である。
 さらに好ましくは、所定速度は3cm/秒~5cm/秒であり、所定濃度は8ppm~12ppmであり、所定温度は18℃~22℃である。好ましくは、改質空気の1時間当たりの流量は、栽培槽とタンクを循環する単質養液全体の体積に対して3倍~5倍である。
 本発明において、好ましくは、本植物栽培システムは、単質養液が、循環路内において滞留することなく混合されて循環するように構成される。
 本発明の第2の態様は、単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培することができる植物栽培装置を提供する。本植物栽培装置は、植物と、所定速度で流れる単質養液とを保持する、栽培槽と、栽培槽の単質養液の溶存酸素濃度を所定濃度とするのに適した状態になるように空気を改質した改質空気にする、空気改質手段と、改質空気の温度が所定温度になるように調整する改質空気温度調整手段と、単質養液を所定濃度にするために必要な流量の改質空気を複数の栽培槽の内部の単質養液に供給する改質空気供給手段と、改質空気供給手段の改質空気供給部の近傍に配置されたバクテリア定着部と、単質養液を栽培槽とタンクとの間で循環させる、単質養液循環手段とを備える。
 本発明において、好ましくは、改質空気供給部は多孔質体であり、さらに好ましくは、多孔質体はバクテリア定着部として用いられる。好ましくは、改質空気供給部は、栽培槽の内部において複数設けられる。好ましくは、空気改質手段は、空気から窒素を除去するためのフィルタを含む。好ましくは、改質空気温度調整手段は、内部の温度が一定の温度に維持された改質空気貯留室を含み、改質空気は、改質空気貯留室内において一定の温度と同じ温度になるまで保持された後に、改質空気供給手段によって供給される。
 本発明において、好ましくは、単質養液循環手段は、単質養液を循環させるポンプと、栽培槽から排出された単質養液を収容する第1のタンクと、栽培槽に供給されることになる単質養液を収容する第2のタンクと、第1のタンクと第2のタンクとの間を接続する交差配管とを備える。
 本発明の第3の態様は、単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培する植物栽培方法を提供する。本植物栽培方法は、各々が植物を保持する栽培槽の内部に、所定速度で単質養液を流す工程と、栽培槽の単質養液の溶存酸素濃度を所定濃度にするのに適した状態になるように空気を改質して改質空気とする工程と、改質空気の温度を所定温度とする工程と、単質養液を所定濃度にするのに必要な流量の改質空気を、バクテリア定着部の近傍から栽培槽の内部の単質養液に供給する工程とを含む。
 本発明において、改質空気を単質養液に供給する工程は、改質空気を、多孔質体を介して気泡状態で単質養液に供給する工程を含むことが好ましく、バクテリア定着部として用いられる多孔質体を通して栽培槽内に供給する工程を含むことがさらに好ましい。好ましくは、改質空気を単質養液に供給する工程は、改質空気を、栽培槽の内部において複数の箇所から単質養液に供給する工程を含む。好ましくは、空気を改質する工程は、空気から窒素を除去する工程を含む。好ましくは、改質空気の温度を所定温度にする工程は、内部の温度が一定の温度に維持された改質空気貯留室内において、改質空気が一定の温度になるまで改質空気を保持する工程を含む。好ましくは、本植物栽培方法は、単質養液を、循環路内において滞留させることなく混合して循環させる工程をさらに含む。
 本発明によれば、次のような効果を奏する。
(1)連作障害を生じさせることなく同一の単質養液で多品目の植物を同一施設内で同時に栽培することができる。
(2)本発明によれば、栄養価が高く、農薬を使用しないため安全な植物の生産が可能である。
(3)また、一施設で多品目の植物を高効率かつ計画的に生産できるため、天候に影響されず、市場の動向に柔軟に対応可能な植物生産事業を確立することが可能となる。
(4)さらに、本発明によれば、養液を高頻度で廃棄することがないため環境負荷が低く、環境配慮型の持続可能な植物生産工場を実現することが可能となる。
本発明の実施の形態を示す概略的な全体図である。 本発明の実施の形態を示す要部と、単質養液及び改質空気の流れとを示す平面模式図である。 本発明の実施の形態に係る栽培槽を示す一部切欠きの斜視図である。 本発明の実施の形態を示す要部の断面図である。 本発明の実施の形態に係る栽培槽に配置される幾つかの支持基材(a)(b)(c)(d)(e)を示す斜視図である。 本発明の実施の形態に係る栽培槽に配置される小型栽培ポットを示す斜視図(a)(b)である。 本発明の他の実施の形態に係る栽培槽に配置される大型栽培ポットを示す斜視図(a)(b)である。 小型栽培ポットの取付状態を説明する要部の斜視図である。 支持体としての栽培ポット収納体を示す斜視図である。 栽培ポット収納体に小型栽培ポットを取り付けた状態を示す斜視図である。 栽培ポット収納体に大型栽培ポットを取り付けた状態を示す斜視図である。 本発明の他の実施の形態に係る栽培シートを用いた支持基材を示す斜視図である。 栽培シートの他の取付構造を示す一部切欠の斜視図である。 図13の分解斜視図である。 図13のA-A線断面図である。 本発明の実施の形態に係る排出側養液タンクを示す正面図である。 本発明の実施の形態に係る供給側養液タンクの正面図である。 本発明の実施の形態に係る栽培槽と排出側養液タンクとの間の単質養液の流れを示す説明図である。 本発明の実施の形態に係る栽培槽と供給側養液タンクとの間の単質養液の流れを示す説明図である。 本発明の実施の形態に係るバクテリア定着部を示す斜視図である。 本発明の他の実施の形態に係るバクテリア定着部を示す斜視図である。
 以下、本発明の実施の形態について、添付図面を参照しながら詳細に説明する。
[本システムの概要]
 図1は、本発明の一実施形態に係る植物栽培システム1の概略図を示す。植物栽培システム1は、ハウス60と、ハウス60内に収容され、植物を栽培する複数の栽培槽10と、外気Aを改質空気RAに改質するとともに、改質空気RAの温度を調整する改質空気温度調整手段を含む改質空気製造手段20とを含む。複数の栽培槽10の各々は、図1の紙面に対して垂直な方向に延びており、多品目の植物が支持されるとともに、植物を生長させるための養分が含まれる単質養液Sが内部を流れるようになっている。栽培槽10は、支持フレーム19によって支持されており、栽培される植物の種類や収穫までの期間に容易に対応可能となるように、複数の栽培槽10を多段式に構成することができる。単質養液S内には、栽培される多品目の植物の根が浸漬する。栽培槽10内を流れる単質養液S内には、改質空気RAが供給される。本明細書においては、ハウス60は、例えば後述される排出側養液タンク41を含む必要な装置が埋設された地下部分まで含むものとする。図1においては、改質空気製造手段20は、ハウス60の外部に設けられているが、ハウス60の内部に設けてもよい。
 図2は、植物栽培システム1の各種手段の構成と、単質養液S及び改質空気RAの流れとを示す概略的な平面模式図である。植物栽培システム1は、多品目の植物を生長させる複数の栽培槽10と、外気を改質して、複数の栽培槽10内を流れる単質養液Sに供給される改質空気RAを作るとともに、改質空気RAの温度を調整する改質空気温度調整手段を含む、改質空気製造手段20と、製造された改質空気RAを単質養液Sに供給する改質空気供給手段30と、単質養液Sを複数の栽培槽10間で循環させる養液循環手段40とを含む。植物栽培システム1は、さらに、ハウス60内の雰囲気の温度を下げるのに用いられるハウス内冷却手段50を含んでもよい。以下において、図2に示される栽培槽10及び各々の手段20、30、40、50の詳細を説明する。
[栽培可能な植物]
 植物栽培システム1においては、ホウレンソウ、リーフレタスなどの葉菜類、トマト、ナス、キュウリなどの果菜類、白菜、キャベツ、レタスなどの結球野菜類、エンドウ、ソラマメ、落花生などの豆類、いちご、メロンなどの果物類、花卉などといった多数の品目の植物を、年間を通して同時に栽培することができる。また、植物栽培システム1においては、発芽直後から収穫までにわたって、生長段階の異なる植物を混在させながら、同時に栽培することができる。同時に栽培される植物の品目は、複数品目の植物であり、好ましくは10品目以上の植物であり、かつそのうち少なくとも3割程度は果菜類と結球野菜である。
[単質養液]
 植物栽培システム1においては、多品目の植物を栽培するすべての栽培槽10間で、同一の養分が全体的に均質になるように混合された養液が一定の状態で常に循環しており、本明細書においては、この養液を単質養液Sという。本発明においては、単質養液Sは、植物の品目、生長段階及び栽培時期に関わらず、同一成分の養液が連続的に用いられ、蒸発及び植物による吸収によって減少した分だけ、水及び/又は養分を適宜補充するだけでよい。植物の発芽から収穫までを1サイクルとすると、従来の養液栽培では、サイクル毎に養液を廃棄して新たな養液を用いるため、連作障害への対応という概念自体がなかった。これに対して、植物栽培システム1においては、本発明者らによるこれまでの実験で、単質養液Sを高頻度で廃棄せずに、連作障害を発生させることなく、少なくとも葉菜類について30連作以上の栽培が行われ、果菜類について5連作以上の栽培が行われている。
 単質養液Sに含まれる成分は、特に限定されるものではなく、一般的な養液栽培において使用される成分を用いることができる。
 単質養液Sは、その状態が一定に維持されるように、すなわち、少なくとも溶存酸素濃度(DO)、電気伝導度(EC)、温度Ts、水素イオン濃度指数(pH)及び酸化還元電位(ORP)といったパラメータの値が概ね一定に維持されるように、管理される。中でも、本発明において用いられる単質養液Sは、溶存酸素濃度(DO)の値及び維持の方法、電気伝導度(EC)の値、並びに温度Tsの維持の方法が、従来の養液栽培とは大きく異なる。
 溶存酸素濃度(以下、「DO」ともいう)は、単質養液S中に溶解している酸素の濃度である。単質養液Sに溶解している酸素は、植物が生長する際の根の活動と、養液内の成分を植物が吸収可能な状態に分解するバクテリアの活動とにおいて不可欠である。従って、これらの活動が適切に行われるように、単質養液Sに十分な量の酸素が安定的に溶存している必要がある。本発明においては、単質養液SのDOは、従来の養液栽培における濃度より高い所定濃度(すなわち、酸素が植物の根及び好気性バクテリアの活動を活性化させるのに適した濃度)に維持され、一実施形態においては約8ppm~約12ppmに維持されることが好ましい。DOをこのような高濃度に維持するために、単質養液Sには、所定の流量の改質空気を、好ましくは気泡状態で供給する。改質空気の製造及び供給については、後述される。
 電気伝導度(以下、「EC」ともいう)は、電気の流れやすさを表す値であり、養液栽培においては、養液中の養分溶解度を示す指標として一般的に用いられる。本発明においては、単質養液SのECは、従来の養液栽培における値より著しく高い値に維持することができ、一実施形態においては約2.5mS/cm~約3.5mS/cmに維持されることが好ましい。単質養液のECが2.5mS/cm未満でも1.0mS/cm以上であれば栽培可能であり、また、3.5mS/cmを越えても4.0mS/cmまでなら栽培可能であるが、多品目の植物を高品質に栽培するには、約2.5mS/cm~約3.5mS/cmの範囲が好ましい。従来の養液栽培においては、養液のECは、0.4mS/cm~1.0mS/cm程度であり、これ以上のECの養液を用いると、植物が肥料焼け(多量の養分が根の機能を害し、植物を萎れさせたり枯れさせたりする事)を起こして生長できなくなる。しかしながら、本発明のシステムにおいては、高いDOが確保されていることによって、植物の根及び好気性バクテリアの活動が適切に活性化され、ECが高くても養分が分解されて根が養分を十分に吸収することができるため、高ECの単質養液Sを用いることが可能となった。ECの高い単質養液Sを用いることによって、栄養価の高い植物を短期間で生長させることができる。
 また、従来の養液栽培においては、植物は、発芽直後から収穫までの生長過程で複数の段階に分けて栽培され、その栽培段階に応じて養液に養分を追加することによって養液のECを変化させるのが一般的である。例えば、発芽直後はECが低い養液を用いて植物を栽培し、その後、植物の生長と共に養液のECを上げて行くことが行われる。これは、生長段階に応じてECを管理しなければ、植物が肥料焼けを起こす恐れがあるからである。しかしながら、生長段階に応じて適切なECを選択することは、単品目又は少品目の養液栽培であれば可能であるが、品目が多くなるほど著しく困難になる。本発明においては、ECが高い単質養液Sを用いても、高DOによる植物の根及び好気性バクテリアの活動の活性化によって、養分が適切に分解されて根が養分を十分に吸収することができ、発芽直後の植物であっても肥料焼けが発生しないため、発芽直後から収穫まで一貫して同じ高ECの単質養液Sを用いることが可能となる。
 単質養液Sの温度Tsは、植物の代謝が最大限に行われ、植物の根が生長するのに最も適した温度に維持される。この温度Tsは、植物の種類によって多少の違いはあるものの、約18℃~約22℃である。本発明においては、Tsが約18℃~約22℃に維持され、好ましくは約20℃に維持される。本発明においては、単質養液Sの温度Tsは、単質養液Sに供給される改質空気RAの温度を所定温度に維持することによって、上述の温度に維持される。改質空気の温度維持の詳細については、後述される。
 単質養液Sは、さらに、水素イオン濃度指数(以下、「pH」という)が概ね一定に維持される。単質養液SのpHの値は、高くなりすぎると植物の根が褐変して枯れ、低くなりすぎると養液中の養分の吸収効率が低下することになり、いずれの場合も、植物の生長に悪影響を及ぼすことが知られている。したがって、単質養液SのpHは、一実施形態においては、約5.5~約7.5に維持されることが好ましく、約6.2~約7.2に維持されることがより好ましい。
 単質養液Sは、さらに、酸化還元電位(以下、「ORP」ともいう)が概ね一定に維持される。単質養液SのORPの値は、高くなりすぎても低くなりすぎても、単質養液S内の好気性バクテリアの活性化に悪影響を与えることが知られている。したがって、単質養液SのORPは、一実施形態においては、約200mv~約350mvに維持されることが好ましく、約230mv~約320mvに維持されることがより好ましい。
 本発明においては、上述の溶存酸素濃度(DO)、電気伝導度(EC)、養液温度(Ts)、水素イオン濃度指数(pH)及び酸化還元電位(ORP)の値はいずれも、適切なセンサを用いて常時監視及び記録されており、これらの値は、所定の範囲から逸脱した場合又は逸脱する可能性がある場合に必要な対応をとることによって、概ね一定の値に維持することができる。これらの指標の値の維持は、EC、pH及びORPについては、単質養液Sに必要に応じて適量の水及び/又は養分を混合することによって行うことができる。DOについては、供給される改質空気の供給量を制御することによって行うことができる。Tsについては、供給される改質空気の温度を制御することによって行うことができる。
[栽培槽]
 図3は、一実施形態に係る複数の栽培槽10の1つを示す斜視図であり、内部が見えるように、栽培槽10内の上部開口に配置される支持体としての支持基材11を一部切り欠いた状態で示されている。図3においては、平面視において略正方形状の開口部12が設けられた支持基材11と、平面視において略長方形状の開口部12が設けられた支持基材11とを含む、複数の種類の支持基材11が用いられている。支持基材11の種類は、栽培される植物の種類に応じて適宜選択することができる。図4は、小型栽培ポット13を用いた場合の栽培槽10の側断面図を示す。栽培槽10は、底面及び側面が壁面で囲まれ(すなわち上部が開放され)、内部において単質養液Sが一方向に所定速度で流れるように構成された槽である。図3及び図4においては、栽培槽10は1段のみが描かれているが、必要に応じてさらにこの上に別の栽培槽10を設置して、多段構成とすることもできる。例えば、下段では葉菜類を栽培し、上段では果菜類や結球野菜類を栽培するように、複数の栽培槽10を多段構成とすることができる。多段構成とした場合には、上下段の栽培槽10間の距離は、栽培槽10の各々において栽培される植物の成長時の大きさ及び太陽光の照射の状態に応じて決めることができる。栽培槽10は、支持フレーム19によって支持される。また、栽培槽10は、太陽光が十分に植物に照射されるように、配置されることが好ましい。
 栽培槽10の各々の長さ、幅及び深さは、それぞれの栽培槽10で栽培される植物の種類や量又は栽培施設の規模などに応じて決められ、特に幅及び深さは、栽培される植物の根や茎がその本来の生長形状を維持できるように決定される。本発明の一実施形態においては、栽培される植物の種類に応じて、例えば、幅が約200mm~約1,000mm、深さが約200mm~約1,000mmの栽培槽10を用いることができる。
 栽培槽10は、内部を流れる単質養液Sの温度が一定の温度に維持されるように、側壁及び底壁を断熱構造とすることが好ましい。栽培槽10の断熱構造は、例えば、側壁及び底壁の外面に断熱材を積層したり、側壁及び底壁を二重構造として隙間に断熱材を配設したりすることによって、実現することができる。栽培槽10の材料は、内部に単質養液Sが保持された状態で槽10自体が変形、破損しないように適切な強度が維持できるものであれば特に限定されず、例えば、金属製の栽培槽、樹脂製の栽培槽、FRP製の栽培槽などを用いることができる。
 栽培槽10には、後述される供給側養液タンク44から養液供給経路45を介して単質養液Sが供給される。養液供給経路45の養液供給口45aは、図4に示されるように、栽培槽10内の単質養液Sの液面近くに位置するように設けられる。供給された単質養液Sは、栽培槽10内を、図2及び図4の矢印Sの方向に所定速度で流れる。単質養液Sの所定速度は、上述のとおり、約3cm/秒~約5cm/秒であることが好ましい。
 栽培槽10には、養液の排出口16(16a、16b)が設けられており、栽培槽10内を流れる単質養液Sは、この排出口16(16a、16b)から養液排出経路46を介して、後述される排出側養液タンク41に排出される。一実施形態においては、2つの排出口16a、16bを設けることが好ましく、第1の排出口16aは、栽培槽10の底面と同一の面に位置するように設けられており、第2の排出口16bは、単一養液Sの水面に近い場所に位置するように設けられている。第2の排出口16bを流入口とする養液排出経路46は、オーバーフロー管とすることが好ましい。単質養液Sの供給口45aと排出口16a、16bとをこのような位置関係にすることによって、栽培槽10内の単質養液Sは、液面近くから栽培槽10の底面近くまで概ね一様な流速を維持することができるとともに、栽培槽10内における滞留を効果的に防止することができる。
 栽培槽10内部には、改質空気RAを単質養液Sに供給するための複数の供給部36が配置される。改質空気供給部36の詳細は、後述される。複数の改質空気供給部36は、上流から下流に向かって所定の間隔で、一実施形態においては、約50cmの間隔で、栽培槽10の底部に配置することができる。
[支持体]
 栽培槽10の上部開口には、植物を支持するための支持体が配置される。支持体は、一実施形態においては、支持基材11と、栽培ポット13と、培地14とによって構成することができる。支持基材11として、栽培槽10の上部開口を塞ぐように配置されるフロート又は蓋を用いることができる。支持基材11がフロートの場合には、栽培される植物の成長による重量で単質養液Sに沈まず、かつ断熱性の高い材料で作ることが好ましい。
 支持基材11には、図3及び図5に示すように厚み方向に貫通する複数の開口部12が設けられ、この開口部12には、植物を支持する栽培ポット13、13Aが配置される。本実施形態においては、栽培ポット13、13Aは、支持される植物の種類に応じて、図6に示される小型栽培ポット13か、図7に示される大型栽培ポット13Aのいずれかを用いることができる。図6に示される小型栽培ポット13は、生長したときの重量が比較的大きい植物、例えば果菜類、結球野菜類などに用いられることが好ましく、図7に示される大型栽培ポット13Aは、生長したときの重量が比較的小さい植物、例えば葉菜類などに用いられることが好ましい。開口部12の形状及び数は、使用される栽培ポット13、13Aの形状及び数に応じて、適宜決めることができる。例えば、図5(a)(b)(d)に示される支持基材11は、図6に示される小型栽培ポット13を配置することができる複数の開口部12が長手方向に沿って設けられたものであり、図5(c)(e)に示される支持基材11は、図7に示される大型栽培ポット13Aを、長手方向に沿って配置することができる開口部12が設けられたものである。
 支持基材11の下面は、水槽内の単質養液Sの流れが阻害されない形状とすることが好ましい。特に、支持基材11がフロートの場合には、植物の成長に伴って徐々に液面下への沈下量が大きくなり、その結果、開口部12内部の単質養液Sが滞留する可能性があるため、開口部12内における滞留が防止される形状とすることが好ましい。これらを目的として、一実施形態においては、支持基材11は、図4及び図5に示されるように、下面が単質養液Sの流れ方向に対して波状に形成されることが好ましい。本発明の一実施形態においては、栽培槽10内における単質養液Sの流速は、上述のとおり約3cm/秒~約5cm/秒であることが好ましいが、この流速の時には、支持基材11の下面の波形の凸部間の距離は、約100mm~約105mmであることが好ましい。また、支持基材11がフロートの場合には、フロートが沈下した場合でも開口部12内に単質養液Sが滞留しないように、下面の波形の凹部の頂点を含むある程度の範囲は、フロートの長手方向における位置が開口部12と同じ位置に存在するとともに、フロートが最大に沈下したときでも液面上に存在するようになっていることが好ましい。なお、支持基材11が蓋であって、その下面が単質養液Sの液面と接しない場合には、蓋の下面は必ずしも波形に形成される必要はない。
 また、支持基材11がフロートの場合でも。図5(d)(e)に示すように端縁に係止片11aを設け、この係止片11aを栽培槽10の開口上端縁に係止して支持基材11としてのフロートを栽培槽10の開口の蓋体3のようにして使用してもよい。こうすることで植物の成長に伴ってフロートが液面下に沈下することが防止できる。
 図6は、小型栽培ポットの実施の形態を示す斜視図(a)(b)である。この実施の形態に係る小型栽培ポット13は、果菜類、結球野菜類などといった、比較的重量の大きい植物の栽培に用いることが好ましい栽培ポットである。小型栽培ポット13は、略正方形の底面13bの各辺より立上がる周側壁13aで囲繞され、上部が開口する立方体形状(平面視において略正方形の箱状)に形成され、各周側壁3aおよび底面3bには、複数の開口または窓17(以下、これらを総称して窓という)が格子状に形成されており、また、図6(a)に示すように上端開口の周縁には鍔体13cが突設されている。この小型栽培ポット13は、例えば、合成樹脂などによって一体成形されることが好ましいが、これに限定されるものではない。この小型栽培ポット13の外径は、支持基材11の開口部12の形状に対応して形成され、図8に示すように支持基材11の開口部12に合致して嵌入可能となっている。小型栽培ポット13を支持基材11の開口部12に嵌入すると、鍔体13cが支持基材11の上面に係止されて支持基材11に支持される。
 小型栽培ポット13内の底面13b上には培地14が保持され、植物の根は、生育に伴って、複数の窓17を通って単質養液S内に伸びることになる。従って、小型栽培ポット13は、支持基材11の開口部12に嵌入して取り付けると、その下方部分は支持基材11の下方に突出し、その下方部と培地14の全部又は一部が単質養液Sに浸漬するように、その深さ(大きさ)と鍔体13cの位置を決定して形成する。
 図6(d)は、鍔体13cの位置を、小型栽培ポット13の上端開口の周縁ではなく、周側壁13aの途中に突設した場合である。このように鍔体13cの設ける位置を調節することで、支持基材11より下方への突出量が調節でき。単質養液Sへの浸漬量も調節できる。
 小型栽培ポット13の周側壁13aおよび底面13bに形成された複数の窓17は、所定速度で流れる単質養液Sの流路として機能するものである。従って、該窓17の形状は植物の根が進出でき、単質養液Sの通過を許容し、空気の流通が可能な形状であればよく、本例のように格子状だけに限定されるものではなく、他の種々の形状が採用可能である。例えば、円形および三角形や台形等の多角形の形状を例示することが出来る。
 また、小型栽培ポット13内の底面13b上には培地14が保持され、植物が栽培される。従って、支持基材11に取り付けた小型栽培ポット13の周囲には、育成した植物に空気が流通し、日光が当たることが好ましい。従って、小型栽培ポット13の周側壁13aは、上方より下方に向かって外径が小さくなるテーパ状に形成することが望ましい。このテーパ状は、周側壁13aの全面ではなく、少なくとも取り付けた際の支持基材11の開口部12の近傍に位置する周側壁13aに存在すればよい。これにより、テーパ状に形成された周側壁13aと支持基材11の開口部12の内側面との間に隙間が生じ、この隙間と窓17とによって通風路が形成され、植物の根元部分における通風の確保、酸素の供給、雑菌の防止を図ることができるし、日光の当たりも向上する。
 この空気の流通や日光の当たりを向上させるためには、支持基材11の開口部12の内側面に切欠(図示省略)を設けてもよい。周側壁13aをテーパ状にし、開口部12の内側面に切欠を設ければ相乗効果で効果は一層向上できる。
 なお、小型栽培ポット13は、その内部の底面13b上に培地14を保持し、植物を栽培するものであるので、その形状は本実施の形態に示す形状に制限されるものではなく、上部が開口する種々の立方体形状が採用可能である。例えば、円筒体、角錐状体等を挙げることができる。この場合には、支持基材11の開口部12の形状も対応させることになる。
 図7は、大型栽培ポットの実施の形態を示す斜視図(a)(b)である。この実施の形態に係る大型栽培ポット13Aは、葉菜類などの比較的重量の小さい植物の栽培に用いることが好ましい栽培ポットであるが、他の植物に採用できることは言うまでもない。この実施の形態の大型栽培ポット13Aは、長尺な上部開口の直方体(平面視において長方形の箱体)である点が、前記図6に示す小型栽培ポット13と異なる点であって、他は図6に示す小型栽培ポット13と同様であるので、同様な構成要素には同一符号を付して、他の詳細な説明は省略する。従って、大型栽培ポット13Aは、平面視において長方形なので、支持基材11の開口部も図5(c)(e)に示すようにそれに対応した形状となる。
 図9は、本発明の別の実施の形態に係る支持体を示す斜視図である。この支持体は、栽培槽10内に取り付けて栽培ポット13、13Aを収納する栽培ポット収納体11Aである。この支持体としての栽培ポット収納体11Aは、フレーム部材で形成され、略水平で十字状の底片7の各端部から垂直片8a、8b、8c、8dが立設され、該垂直片8aと8bの上端および垂直片8cと8dの上端が連結部材9、9で連結され、垂直片8a、8b、8c、8dで囲まれた範囲を栽培ポット13、13Aが収納できるようにしたものである。この栽培ポット収納体11Aは、垂直片8a、8b、8c、8dの上方に鍔体8eが突設され、図9に示すように栽培槽10内に挿入し、その開口の端縁部に係止して取り付けることができるようになっている。これは支持基材11の開口部12に挿入し取り付けてもよい。
 この取り付けた栽培ポット収納体11Aには、小型栽培ポット13は、図10に示すように垂直片8a、8b、8c、8dで囲まれた範囲内に挿入し底片7に載置して使用し、大型栽培ポット13Aは、図11に示すように栽培ポット収納体11Aを複数取付、その間に大型栽培ポット13Aを取付ける。小型栽培ポット13の場合は、栽培ポット収納体11Aを複数列設して取り付けて使用するようにするが、これは1個の使用でもよい。
 この栽培ポット収納体11Aは、フレーム部材で形成され、立設した垂直片8a、8b、8c、8dで囲まれているだけなので、栽培ポット13、13Aを収納して取り付けても、単質養液Sより上方は空間となり空気の流通および日光の当たりが良好となるので好ましい。
 図4に示されるように、栽培ポット13の内部には、培地14が配置される。培地14は、発芽直後の植物を、単質養液S内に落下しないように支持するためのものである。培地14の材料は、従来の養液栽培で用いられる材料、例えば、ウレタン発泡樹脂、ロックウール、椰子繊維、不燃紙などを用いることができるが、これらに限定されるものではない。本発明においては、すべての植物で同一の材料の培地14を用いることもできるし、植物毎に異なる材料の培地14を用いることもできる。葉菜類などの生長が早い(播種から収穫までの時間が短い)植物の培地14はより安価なものを用いることが好ましく、果菜類や結球野菜類などの生長が遅い(播種から収穫までの時間が長い)植物の培地14はより安価な培地を用いる必要がない。
 培地14の厚み及び目の粗さは、限定されるものではないが、植物の生長過程において根が培地14をようやく貫通することができる程度であればよい。培地14の厚みは、栽培される植物の種類に応じて、約1cm~約5cmであることが好ましい。
 図12は、本発明の別の実施形態における支持体の構成を示す。この実施形態においては、図7に示される大型栽培ポット13Aの内部に、栽培シート15が配置されている。栽培シート15は、一枚のシートが大型栽培ポット13Aの幅方向に蛇腹状に折り畳まれることによって、長手方向に沿って延びる複数の山部15a及び谷部15bを有するように形成されており、山部15aと谷部15bとの間に培地14を配置することができる。培地14は、長手方向に沿って連続的に配置することもできるし、複数の培地14を間隔を空けて配置することもできる。山部15aには、長手方向に沿って適当な間隔で切欠部15cが設けられている。この切欠部15cによって、植物の背丈が谷部15bから山部15aまでの高さより小さい生長初期段階においても太陽光が遮られずに適切に植物に当たるため、効率的に生長させることができるとともに、栽培中においても、植物の根に対する適切な太陽光の照射を実現することができる。栽培シート15の材料は、単質養液Sとの化学反応がなく、単質養液Sを吸収せず、繰り返し使用に耐える耐久性があるものであればよく、例えばポリプロピレンなどといった樹脂材料を用いることが好ましい。
 図13乃至図15は、栽培シートの他の取付構造を示し、図13はその一部切欠の斜視図、図14は、その分解斜視図、図15は、図13のA-A線断面図である。
 この実施の形態の栽培シート15の取付構造は、シート受板2を備える。このシート受板2は、方形の受板本体3の周縁に短壁3aが立設する方形の短筒状で、受板本体3の内面には、シートハンガー部材4a、4bが突設されている。図14、図15に示すようにこのシートハンガー部材4aは、栽培シート15の山部15aの頂部に対応する位置に、栽培シート15の山部に対応する山形の形状で突設され、シートハンガー部材4bは、栽培シート15の山部15aから谷部15bに向かう途中に位置し、栽培シート15の傾斜面に対応する傾斜で八字状に突設されている。従って、栽培シート15の山部15aをシートハンガー部材4aに嵌合すると、栽培シート15の山部15aから谷部15bに向かう傾斜面の内側にシートハンガー部材4bが当接して支持することとなり、栽培シート15は、シートハンガー部材6a、6bにハンガーと同様のように掛けるだけで取り付けることができる。このシート受板2は、2つが互いに対向して設けられ、栽培シート15は、対向するシート受板2、2間に架設して取り付けられる。この栽培シート15の直下には、網板5と不織布6がシート受板2の短壁3aに載置されて、対向するシート受板2、2間に架設されている。このシート受板2の外周側の上部には、鍔体3cが設けられ、栽培槽10の開口から挿入すると、図13、図15に示すように鍔体3cが栽培槽10の開口縁部に係止して取り付けられることができる。これは支持体としての支持基材11であっても長尺な長方形の開口部12に挿入して取付使用することができる。シート受板2を栽培槽10に使用するときは、シート受板2の幅は栽培槽10の開口の幅に合わせ、支持基材11に使用するときは、支持基材11の開口部12の幅に合わせて形成する。
 このシート受板2の受板本体3には、複数の開口3bが設けられ、単質養液Sの流れを阻害しないようになっている。この開口3bは、単質養液Sの流れを阻害しないようにその大きさや数および設ける位置が設定される。この点から受板本体3は、開口3bを格子状に設けたものや網板を採用することもできる。
[単質養液循環手段]
 図2に戻ると、この図には、植物栽培システム1の養液循環手段40とともに、単質養液Sの流路が示されている。養液循環手段40は、排出側養液タンク41と、養液循環ポンプ42と、養液配管43と、供給側養液タンク44と、養液供給経路45と、養液排出経路46とを含む。
 単質養液Sは、図2に示されるように、矢印Sに示される方向に所定速度で複数の栽培槽10の各々の内部を流れ、栽培槽10の各々に設けられた養液排出経路46から排出される。養液排出経路46には、単質養液Sの排出量をより精密に制御することができるように、必要に応じて、経路を開閉するバルブ(図示せず)を設けてもよい。
 栽培槽10から排出された単質養液Sは、好ましくは地中に埋設された排出側養液タンク41内に入る。排出側養液タンク41内の単質養液Sは、養液循環ポンプ42によって養液配管43に送られ、好ましくは地中に埋設された供給側養液タンク42に入る。供給側養液タンク42内の単質養液Sは、養液供給経路45を通って、複数の栽培槽10の各々に供給される。養液供給経路45には、単質養液Sの供給量をより精密に制御することができるように、必要に応じて、経路を開閉するバルブ(図示せず)を設けてもよい。
 本発明は、上述のように、単質養液S内に土耕栽培における土壌内の状態と同様の「固相」を作り出すことを特徴の一つとしており、本発明者らは、この特徴を達成するためには、栽培槽10内における単質養液Sの所定速度を約3cm/秒~約5cm/秒とすることが好ましいことを見出した。この速度は、植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液Sの速度である。この所定速度は、例えば、使用される栽培槽10の数及び大きさに応じて決められる必要な単質養液Sの量に対して、最上段の栽培槽10の高さ、養液配管43の径及び長さ、排出側養液タンク42及び供給側養液タンク44の容量などが設計され、こうした設計条件において栽培槽10内における単質養液Sの流速が上述の範囲となるように、養液循環ポンプ42の能力が決定されることによって、調整することができる。また、養液供給経路45及び養液排出経路46にバルブが設けられる場合には、これらのバルブの開度を調整することによって、所定速度を調整することもできる。
 単質養液Sの栽培槽10内における流速が、約3cm/秒より遅い場合には、栽培槽10内において単質養液Sが滞留している状態と実質的に変わらなくなるため、根に対して土壌内における場合と同程度の圧力を与えることにならないだけでなく、滞留による養液劣化の原因にもなる。流速が、約5cm/秒より早い場合には、根に与えられる圧力が高すぎるため、根に対して過大なストレスを与えることになる。
 本発明においては、単質養液Sは、劣化しないため高頻度で廃棄する必要がなく、通常は、植物による吸収や自然蒸発によって失われた水及び/又は養分を必要に応じて補充するだけでよい。このような単質養液Sの劣化防止は、単質養液Sを流路内で完全に混合して循環させるとともに、流路内における滞留を防止することによって達成されている。流路内における単質養液Sの完全混合・滞留防止は、主として以下の構成を採用することによって達成されている。
(1)栽培槽内における滞留を防止するための構成
(2)養液タンクにおいて養液を均一に混合するとともに、タンク内における滞留を防止するための構成
(3)養液配管において養液をさらに均一に混合するための構成
 これらのうち(1)については、栽培槽及び支持体の説明において記載したとおりである。(2)及び(3)については、以下における養液タンク及び養液配管の記載の中で説明される。
[養液タンク]
 図16は、本発明の一実施形態において用いられる排出側養液タンク41及び図17は供給側養液タンク44を示す。図16、図17に示されるタンク41、44において、右端の二重波線は、長尺のタンク41、44の途中が省略して描かれていることを示しており、省略された部分の構造は、図16、図17において明示されている構造と同様の構造を有する。図2、図3及び図4に示されるように、複数の栽培槽10から排出された単質養液Sは、養液排出経路46を経由して、排出側養液タンク41に入る。また、単質養液Sは、供給側養液タンク44から養液供給経路45を経由して複数の栽培槽10に供給される。
 本実施形態においては、排出側養液タンク41は、栽培槽10からの単質養液Sの排出側の下方において、タンク41の長手方向が栽培槽10の長手方向と交わる向きに延びるように水平に配置される。また、供給側養液タンク44は、栽培槽10への単質養液Sの供給側の下方において、タンク44の長手方向が栽培槽10の長手方向と交わる向きに延びるように水平に配置される。養液タンク41及び44をこのように配置することによって、別々の栽培槽10から排出された単質養液Sが同じ排出側養液タンク41内で混合され、養液配管43から入った単質養液Sが同じ供給側養液タンク44内でさらに混合されるため、均一に混合された単質養液Sが養液循環路内を循環することになる。排出側養液タンク41及び供給側養液タンク44の材料は、いずれも、単質養液Sに含まれる養分との化学反応が生じず、かつ、耐圧性を有するものであれば、特に限定されない。一実施形態においては、排出側養液タンク41及び供給側養液タンク44は、ポリ塩化ビニル製のタンクの外側を繊維強化プラスチックで補強したものが作られていることが好ましい。
 排出側養液タンク41及び供給側養液タンク44は、内部において単質養液Sがより均一に混合されるように、円筒形状とすることが好ましい。養液排出側タンク41及び供給側養液タンク44の長さは、図2に示されるように、並列に設けられた複数の栽培槽10における両端の栽培槽10から排出された単質養液Sがタンク41、44の両端部に近い部分に入るように、両端の栽培槽10間の距離と概ね同じ長さであることが好ましい。供給側養液タンク44は、タンク44内の単質養液Sの圧力を高めて栽培槽10に送出する加圧タンクとして機能するように、排出側養液タンク41より小径とすることが好ましい。一実施形態においては、排出側養液タンク41は、内径が約400mmであり、5kg/cmの内圧に耐えられるものであり、供給側養液タンク44は、内径が約200mmであり、10kg/cmの内圧に耐えられるものである。排出側養液タンク41及び供給側養液タンク44は、単質養液Sの温度をより安定的に管理することができるように、いずれも地下に埋設されることが好ましい。
 本発明において用いられる排出側養液タンク41には、図16に示されるように、複数の栽培槽10から排出された単質養液Sを受け入れるための複数の受液口41a、41bと、タンク41内の単質養液Sを養液配管43に送り出すための複数の送液口41cとが設けられる。複数の受液口41a、41bは、栽培槽10の下方において水平に配置されたタンク41の上部に設けられ、複数の送液口41cはタンクの下部に設けられることが好ましい。受液口41a、41bと送液口41cとの位置関係をこのようにすることによって、排出側養液タンク41内の単質養液Sを均一に混合するとともに、排出側養液タンク41内で滞留させることなく養液配管43に送出することができる。
 受液口41a、41bの数及び口径は、並列に設けられる栽培槽10の数及び段数に応じて適宜設計することができる。一実施形態においては、受液口41a、41bは、並列に設けられた複数列の栽培槽10の各列に対応する1つ又は複数の受液口41a及び41bを1組として、タンク41の上部に設けることができる。すなわち、栽培槽10の列ごとに1組の受液口41a、41bがタンク41に設けられる。受液口41a、41bの各組においては、栽培槽10の対応する列における段数に応じて、口径の大きい受液口41aの数と、口径の小さい受液口41bの数とが決定される。例えば、図18に示されるように5つの栽培槽10a~10eが3段に構成された列の場合には、上段の2つの栽培槽10a及び10bから排出された単質養液Sは、図18の最も左側に位置する受液口41aに流入し、上段の2つの栽培槽10c及び10dから排出された単質養液Sは、図の最も右側に位置する受液口41aに流入し、最下段の栽培槽10eから排出された単質養液Sは、受液口41aより小口径の受液口41bに流入する。本実施形態においては、栽培槽10には、上述のように2つの排出口16a、16bが設けられているため、上段の栽培槽10の排出口16a、16bから排出された養液Sは、1つの流れにまとめられて対応する受液口41aに流入する。また、栽培槽10eの2つの排出口16a、16bから排出された養液Sは、それぞれ別の受液口41bに流入する。このように、栽培槽10の構成並びに栽培槽10から排出される単質養液Sの量及び落下距離に応じて、各組における受液口41a、41bの数及び口径を決定することによって、排出時の流体抵抗を低減して、より容易に栽培槽10内の単質養液Sの流速を所定の速度に維持することができるとともに、流入する単質養液Sによって排出側養液タンク41内において単質養液Sが均一に混合されるようになる。
 並列の複数の栽培槽10の両端における栽培槽10から排出された単質養液Sの受液口41a、41bは、排出側養液タンク44の両端部にできるだけ近い位置に設けられることが好ましい。受液口41a、41bをこの位置に配置することによって、受液口41a,41bから排出側養液タンク41内に流入した単質養液Sの流れが、排出側養液タンク41両端部の隅部分の養液を押し流し、その結果、隅部分における単質養液Sの滞留を防止することができる。
 本発明において用いられる供給側養液タンク44には、図17に示されるように、養液配管43から送られてきた単質養液Sを受け入れるための複数の受液口44aと、タンク44内の単質養液Sを栽培槽10に送出するための複数の送液口44bとが設けられる。複数の受液口44a及び複数の送液口44bは、栽培槽10の下方において水平に配置されたタンク44の上部に設けられることが好ましい。受液口44aと送液口44bとの位置関係をこのようにすることによって、供給側養液タンク44内の単質養液Sを均一に混合して栽培槽10に送出することができる。
 受液口44a及び送液口44bの数及び口径は、栽培槽10の数及び段数に応じて適宜設計することができる。一実施形態においては、並列に設けられた複数列の栽培槽10の各列に対応して、1つの送液口44bをタンク44の上部に設けることができる。また、受液口44aは、後述される養液配管43の配管形態に対応するように、排出側養液タンク41の送液口41cの数と同じ数を、供給側養液タンク44に設けることが好ましい。送液口44bから送出された単質養液Sは、例えば図19に示されるように、複数の栽培槽10に供給される。
[養液配管]
 排出側養液タンク41内で均一に混合され、その送液口41cから排出された単質養液Sは、図2に示されるように、養液循環ポンプ42によって養液配管43に送出される。養液循環ポンプ42は、排出側養液タンク41の複数の送液口41cの各々に対して1つずつ設けられることが好ましい。単質養液Sは、養液配管43を通って供給側養液タンク41に搬送される。養液配管43は、単質養液Sの温度管理の観点から、地中に埋設されることが好ましい。養液配管43の材料は、単質養液Sに含まれる養分との化学反応が生じず、かつ、ある程度の耐圧性を有するものであれば、特に限定されない。一実施形態においては、養液配管43は、ポリ塩化ビニル製の管の外側を繊維強化プラスチックで補強したものを例示することができる。
 上述のとおり、排出側養液タンク41は、内部において単質養液Sが均一に混合されるように工夫がされている。しかしながら、複数の栽培槽10の各々では様々な植物が栽培されており、栽培槽10ごとに単質養液Sの養分及び酸素の消費量、植物の根から分泌される根酸の種類及び量などが異なるため、並列の栽培槽10の各列から排出される単質養液Sは、その状態、例えば含まれる養分の量、溶存酸素濃度及び根酸の量などが大きく異なっていることがある。特に、果菜類が栽培される栽培槽10から排出された単質養液Sと、葉菜類が栽培される栽培槽10から排出された単質養液Sとは、その状態が大きく異なる場合がある。したがって、栽培槽10から排出側養液タンク41内に排出された単質養液Sは、タンク41の説明において記載した上述の工夫のみでは、均一な混合状態を維持するには不十分となる場合があることも考えられる。そのため、本発明においては、単質養液Sが流れる養液配管43を、排出側養液タンク41から供給側養液タンク44までの間で交差させている。
 図2を用いてこの交差の方法を具体的に説明すると、例えば図2における最も上の栽培槽10から排出され、排出側養液タンク41に入り、その位置から最も近い送液口41cから排出された単質養液Sは、養液配管43を通って、図2における最も下の栽培槽10の近くに位置する受液口44aから供給側養液タンク44に入る。一方、例えば図2における最も下の栽培槽10から排出され、排出側養液タンク41に入り、その位置から最も近い送液口41cから排出された単質養液Sは、養液配管43を通って、図2における最も上の栽培槽10の近くに位置する受液口44aから供給側養液タンク44に入る。このように、本発明においては、栽培槽10から排出された単質養液Sが、できるだけ全体的に均一に混合されるように、排出側養液タンク41から供給側養液タンク41までの養液配管43の経路を、交差させて配設している。
[空気改質手段、改質空気温度調整手段及び改質空気供給手段]
 図1及び図2において、植物栽培システム1において用いられる改質空気製造手段20が示されている。改質空気製造手段20は、外気を、栽培槽10内の単質養液Sに供給するのに適した改質空気RAに改質するとともに、改質空気RAの温度を調整するための機構である。改質空気RAは、空気Aを酸素含有量が高い状態に改質したものである。改質空気製造手段20は、ハウス60の内部に設けても外部に設けてもよいが、ハウス60内において温度管理の必要な空間をより小さくするという観点から、外部に設けられることが好ましい。改質空気製造手段20は、外部に設けられる場合には、外気の影響をできるだけ低減するように、例えば閉鎖空間内に必要な設備が配置されることが好ましい。改質空気製造手段20によって改質され、温度調整された改質空気RAは、改質空気供給手段30によって、栽培槽10内の単質養液Sに供給される。
 改質空気製造手段20は、空気取り入れ部21と、空気改質手段22と、吸引ファン23と、改質空気貯留室24と、地中熱利用ヒートポンプ25と、放熱部26と、配管冷却部27と、温度センサ28とを含む。空気Aは、空気取り入れ部21を介して、吸引ファン23によって、改質空気貯留室24内に取り入れられる。空気Aは、改質空気貯留室24内に取り入れられる前に、空気改質手段22によって改質される。空気改質手段22は、一実施形態においては、少なくとも脱窒フィルタを有するフィルタ部22とすることができる。脱窒フィルタを通して空気Aを取り入れることによって、窒素が除去されて単位体積あたりの酸素含有量が高い状態に改質された改質空気RAを得ることができる。空気改質手段22は、さらに、脱アンモニアフィルタ、脱塩フィルタ、防塵フィルタといった種々のフィルタを含むものとすることもできる。別の実施形態においては、改質空気RAの酸素含有量は、例えば取り入れた空気に純酸素を混合することによって高めることもでき、この場合には、空気改質手段22は、外気と純酸素とを混合する装置とすることができる。
 改質空気貯留室24に取り入れられた改質空気RAは、供給量の安定化及び温度の調整の目的で、一定時間、改質空気貯留室24の内部に貯留されることが好ましい。温度の調整の詳細については、後述される。改質空気貯留室24の容積は、供給量の安定性と温度管理の容易性とを勘案して決められるが、少なくとも、栽培槽10に供給される単位時間あたりの改質空気RAの量の10倍以上の容積であることが好ましい。内部の改質空気RAの温度調整をより容易にするために、改質空気貯留室24は、壁面、屋根、扉などが断熱機能を備えることが好ましい。
 改質空気RAは、改質空気供給手段30によって複数の栽培槽10に供給される。改質空気供給手段30は、改質空気供給ポンプ32と、改質空気配管34と、改質空気供給部36とを含む。改質空気RAは、改質空気貯留室24に貯留された後、改質空気供給ポンプ32によって、改質空気配管34に送出される。改質空気供給ポンプ32によって改質空気RAに加えられる圧力は、改質空気RAの1時間当たりの流量が、循環している単質養液Sの全体積に対して約3倍~約5倍となるように設定されることが好ましい。改質空気配管34は、図2に示されるように栽培槽10の外側に設けることができるが、栽培槽10の内部を通るように設けてもよい。改質空気配管34を栽培槽10内、すなわち単質養液S内に配置することによって、改質空気配管34が蓄熱体の役目を果たし、単質養液Sの温度をより安定的に維持することができるという利点がある。改質空気配管34の材料は、特に限定されないが、改質空気配管34が栽培槽10の内部に配置される場合には、単質養液Sと化学反応を生じない材料、例えばポリ塩化ビニルなどとすることが好ましい。改質空気供給配管34と改質空気供給部36との間には、配管を開閉するためのバルブ(図示せず)を設けてもよい。バルブを設けることによって、改質空気供給部36への改質空気RAの供給量をより精密に制御することができる。
 栽培槽10の各々の内部には、改質空気供給部36が設けられる。改質空気供給部36は、改質空気RAを単質養液Sに供給することができるものであれば特に限定されないが、一実施形態においては、図20に示されるように、セラミックスを高温で焼成した中空筒状の多孔質体とすることが好ましい。改質空気配管34は、筒状の多孔質体36a内部において長手方向の中心軸線上に沿って設けられた中空部36bに接続されており、中空部36bに入った改質空気RAは、多孔質体36aの孔から、孔の大きさに対応したサイズの気泡となって、単質養液S内に放出される。多孔質体36aの孔は、できるだけ均一であることが好ましく、孔のサイズは、単質養液S内に放出される気泡のサイズが、概ね数百ミクロンのオーダーより大きく、数ミリのオーダーより小さくなるようなサイズに形成されることが好ましい。この程度のサイズの気泡を用いて改質空気RAを単質養液Sに供給することによって、必要な溶存酸素濃度、すなわち約8ppm~約12ppmをより容易に達成することができる。数百ミクロンのオーダーより小さい気泡は、単質養液Sに含まれる窒素を取り込む量が多くなるため、必要な溶存酸素濃度が達成できない場合がある。また、こうした小さいサイズの気泡は、根に当たって破裂する際に根に対して衝撃を与える可能性があるため、好ましくない。数ミリのオーダーより大きい気泡は、比表面積が小さくなるとともに、単質養液S内での滞留時間が短くなるため、単質養液Sに対して十分な酸素を供給することができない場合がある。こうした多孔質体36aは、市場においてセミラックス製品の製造者から入手することができる。改質空気供給部36をセラミックスの多孔質体36aとすることによって、多孔質体36aが蓄熱体として機能し、単質養液Sを一定の温度に維持するのにより役立つという利点もある。
 改質空気供給部36の配置方法は限定されるものではないが、栽培槽10の底に所定の間隔で配置されることが好ましい。改質空気供給部36が多孔質体36aの場合には、多孔質体36aの長手方向が栽培槽10の幅方向に延びる向きに配置されることが好ましい。このように配置することによって、流れる単質養液Sが多孔質体36aの側面に当たって内部に入り、多孔質体36aから改質空気RAと一緒に放出されることになるため、単質養液Sへの酸素供給効率がより高まるという利点がある。
 改質空気供給部36の長さ及び径並びに配置間隔は、栽培槽10の幅及び深さ、単質養液Sの流速などに応じて、単質養液Sに対する溶存酸素濃度が必要な値となるように適宜選択される。一実施形態においては、改質空気供給部36すなわち多孔質体は、場所に応じて長さが約10cm~約50cm、径が約2cm~約5cm、各々の配置間隔は約50cmとすることができる。改質空気供給部36は、その長さが栽培槽10の幅に対して短いものを用いることもできるが、その場合には、栽培槽10の長手方向に向かって左右交互に配置されることが好ましい。
[改質空気温度調整手段]
 改質空気貯留室24に取り入れられた改質空気RAは、栽培槽10に供給されることになるが、栽培槽10に供給される改質空気RAの温度を、取り入れられる外気の温度にかかわらず所定温度、すなわち約18℃~約22℃に維持するために、一実施形態においては、以下のような方法を採用している。なお、本発明において用いることが可能な、栽培槽10に供給される改質空気RAの温度を所定温度に維持するための方法は、以下の方法に限定されるものではなく、他の公知のいずれかの方法、例えば市販のボイラーや空調機等を用いて改質空気RAの温度を所定温度に維持するようにしてもよい。しかしながら、本発明者らは、以下の方法を用いることによって、エネルギー使用量を削減しながら効率的かつ確実に改質空気RAを所定温度に維持することが可能であると考えている。
 この実施形態においては、外気を取り入れ、改質空気供給ポンプ32及び改質空気配管35などの中間設備を経由させた上で、最終的に栽培槽10に供給されるときに、改質空気RAの温度が所定温度に維持されるようにするため、中間設備における改質空気RAの温度変化を考慮に入れた上で、これらの温度変化を補償するように改質空気RAの温度を調整する。この実施形態においては、改質空気RAを所定温度にするための改質空気温度調整手段は、地中配管21と、改質空気貯留室24と、地中熱利用ヒートポンプ25と、改質空気貯留室24内に設けられた放熱部26と、地中熱利用ヒートポンプ25の設定温度を制御する制御装置(図示せず)と、配管冷却部27とによって構成することができる。地中熱利用ヒートポンプ25からの熱は放熱部26によって改質空気貯留室24内に放熱され、この熱によって貯留室24内部の温度が一定の温度に維持される。地中熱利用ヒートポンプ25は、年間を通して比較的安定した地中熱を改質空気貯留室24内の温度調整のための熱源として利用するものであり、市場で入手可能な地中熱ヒートポンプユニットを適宜用いることができる。 
 本実施形態においては、まず、空気取り入れ部21を地中配管(アースチューブ)とし、外気を地中配管21に通した後に改質空気貯留室24に導入する。温度の安定した地中に埋設された地中配管21を通して外気を導入することによって、夏期は高温の外気の温度を下げ、冬期は低温の外気の温度を上げることができる。例えば、地中配管21を通して改質空気貯留室24に導入される空気の温度は、年間を通して約7℃~約10℃に安定させることができる。
 例えば脱窒フィルタを備える空気改質手段22を経由して改質空気貯留室24に取り入れられた改質空気RAは、内部が一定の温度に維持された改質空気貯留室24内で適切な時間貯留されることによって、一定の温度にされる。改質空気貯留室24内の温度の調整は、後述される改質空気供給ポンプ32における温度上昇及び改質空気配管34における温度変化を考慮した上で、栽培槽10に供給されるときの改質空気RAの温度が所定温度になるように地中熱利用ヒートポンプ25の温度を設定することによって、行われる。すなわち、改質空気供給ポンプ32における温度上昇及び改質空気配管34における温度変化によって、栽培槽10に供給される改質空気RAの温度が所定温度より高くなる場合には、地中熱利用ヒートポンプ25の設定温度は、温度上昇分だけ改質空気貯留室24内の温度が下がるように変更される。逆に、改質空気供給ポンプ32における温度上昇及び改質空気配管34における温度変化によって、栽培槽10に供給される改質空気RAの温度が所定温度より低くなる場合には、地中熱利用ヒートポンプ25の設定温度は、温度低下分だけ改質空気貯留室24内の温度が上がるように変更される。地中熱利用ヒートポンプ25の設定温度の変更は、栽培槽10に送り込まれる直前の改質空気配管34に設けられた温度センサ28からの温度データに基づいて、自動的に行われるように構成されることが好ましい。
 改質空気貯留室24において温度が調整された改質空気RAは、改質空気供給ポンプ32によって改質空気配管34に送られる。本発明において必要な溶存酸素濃度を達成するには大量の改質空気RAを供給する必要があり、そのためには、ポンプ32の吐出圧力を高い圧力にしなければならない。この圧力は、空気の供給量に応じて決めることができる。このように圧力をかけられた改質空気RAは、圧縮されて、温度が、例えば約10℃~約15℃上昇する。ポンプ32の吐出圧力を通年を通して一定に維持することによって、改質空気RAの圧縮による上昇温度幅を一定とすることができる。ポンプ32の下流側には配管冷却部27を設けることができ、ポンプ32によって改質空気RAの温度が上昇しすぎる場合には、配管冷却部27によって温度を下げることもできる。
 改質空気供給ポンプ32から送出された改質空気RAは、改質空気配管34を通して、改質空気供給部36に供給される。改質空気RAの温度は、改質空気配管34内を流れる間に配管外の温度の影響を受けて変化する場合がある。改質空気配管34は、内部の改質空気RAが配管外の温度の影響をできるだけ受けないように、地下埋設したり、断熱材を用いる、及び/又は、栽培槽10内に配置することが好ましい。一部の地上配管部分における外気による温度上昇は、配管冷却部29によって相殺することもできる。
 以上の方法を用いれば、季節によって温度の差が大きい外気から、改質空気温度調整手段を用いた温度の調整により、通年で所定温度に維持された改質空気RAを得ることができる。
[バクテリア定着部]
 上述のとおり、養液栽培においては、所定速度で流れる単質養液S内において、好気性バクテリアをいかにして適切に必要な箇所に定着させつつ、その機能を発揮させることができるようにするかが重要である。本発明においては、好気性バクテリアが栽培槽10内における単質養液S中にとどまって棲息又は繁殖できるようにするためのバクテリア定着部38を設ける。さらに、バクテリア定着部38に棲息する好気性バクテリアが、所定温度に維持された改質空気RAを利用してその機能を十分に発揮することができるように、改質空気供給部36とバクテリア定着部38とを近接させて配置する。改質空気供給部36は、上述のように栽培槽10内において所定の間隔で配置されるため、改質空気供給部36と近接するバクテリア定着部38もまた、栽培槽10内の単質養液S中において均等に配置されることになり、その結果、栽培槽10全体で一様な好気性バクテリア量の確保が可能になる。バクテリア定着部38の材料は、好気性バクテリアが定着することができ、かつ単質養液Sと化学反応を生じないものであれば特に限定されるものではなく、例えば、上述の支持体内の培地14と同じ培地、又は多孔質セラミックスなどを用いることができる。
 一実施形態においては、図20に示されるように、改質空気供給部36の多孔質セラミックス36aをバクテリア定着部38として利用することができる。この実施形態においては、多孔質セラミックス36aの微細な孔が好気性バクテリアの棲息又は繁殖場所として機能するため、流れのある単質養液S中でも好気性バクテリアが容易に流出することはない。また、改質空気配管34から改質空気供給部36に供給された、酸素濃度の高い改質空気RAが、多孔質セラミックス36aの孔を介して単質養液S内に送り込まれる際に、多孔質セラミックス36aの孔の中に棲息又は繁殖する好気性バクテリアに十分な酸素を供給することができる。
 別の実施形態においては、図21に示されるように、バクテリア定着部38を、改質空気供給部36の長さに対応する長辺を有する長方形の板状に形成し、改質空気供給部36から供給された改質空気RAが、定着している好気性バクテリアに十分に当たるように、例えば改質空気供給部36の真上に配置することができる。ただし、この形態の場合には、改質空気供給部36とバクテリア定着部38との間に空間が設けられることになり、その空間で単質養液Sの滞留が生じる可能性がある。
[システム全体の管理]
 植物栽培システム1においては、多品目の植物を通年で同時に生産するために、システム全体の状態を監視し、必要に応じて適切に制御する必要がある。植物栽培システム1において監視すべき状態としては、まず、ハウス60内部の温度、湿度及び光の管理が挙げられ、これらの状態を植物の栽培に適した雰囲気に管理することが必要である。植物栽培システム1においては、太陽光を利用して植物を栽培するため、特に夏期にはハウス60内の温度が上がりすぎないようにしなければならない。本システム1においては、ハウス60内部及び外部の温度及び湿度は、常時監視されていることが好ましい。ハウス60には、側壁及び天井に複数の窓や換気扇が設けられており、温度及び湿度の監視データに基づいて、温度及び/又は湿度が適切な温度及び湿度の範囲から逸脱した場合、例えば温度が20℃以上、湿度が60%以上になった場合には、これらの窓の開閉及び換気扇の稼働によるハウス60内の換気が行われることになる。また、ハウス60内の温度及び湿度の制御は、本実施形態においては、フィルタ52、地中配管54及びファン56を含むハウス内冷却手段50を用いて行うこともできる。この場合には、外気は、フィルタ52及び地中配管54を通過させることによって適切な温度に調整された後、ファン56によってハウス60内に取り込まれる。或いは、例えば、市販の空調機を用いてハウス60内の温度及び湿度を制御することもできる。或いは、ハウス60の素材を断熱効果の高い素材としたり、ハウス60内への日光の照射を制御する目的で遮光カーテンを用いたり、ハウス60内の温度変化を低減させる目的でハウス60の壁面に断熱機能を付与したりといった構成を採用することもできる。
 次いで、植物栽培システム1において監視すべき状態として、単質養液Sの状態が挙げられる。植物栽培システム1においては、少なくとも、単質養液Sの溶存酸素濃度(DO)、電気伝導度(EC)、温度Ts、水素イオン濃度指数(pH)及び酸化還元電位(ORP)の値が、概ね一定に維持されるように管理される。これらの値を監視するための各種センサは、例えば栽培槽10の内部に設けられることが好ましく、センサからの監視データは、常時記録されることが好ましい。また、監視データは、記録されると同時に、システムの管理者が適宜確認可能な表示装置にグラフとして表示される、及び/又は、記録紙にプリントアウトされることが好ましい。これらの値が適切な範囲を逸脱したときには、管理者に警報が発せられることが好ましい。
 異常値が発見された場合には、管理者が手動で、又はシステム1が自動で、パラメータの値が正常範囲内に復帰するように、適切な操作が行われる。溶存酸素濃度(DO)が異常値を示したときには、例えば改質空気供給ポンプ32の動作、及び/又は、改質空気供給部36前のバルブ(図示せず)の開閉を制御することによって、値を正常範囲に復帰させることができる。温度Tsが異常値を示したときには、例えば改質空気製造手段20の温度調整手段による温度調整を行うことによって、値を正常範囲に復帰させることができる。電気伝導度(EC)、水素イオン濃度(pH)及び酸化還元電位(ORP)が異常値を示したときには、例えば単質養液Sに必要量の水及び/又は養分を追加することによって、値を正常範囲に復帰させることができる。
 さらに、植物栽培システム1において監視すべき状態として、改質空気RAの状態が挙げられる。植物栽培システム1においては、少なくとも、改質空気RAの温度及び流量が所定の温度及び流量に維持されるように管理される。これらの値を監視するための各種センサは、例えば改質空気配管34の適切な位置に設けられることが好ましく、センサからの監視データは、常時記録されることが好ましい。また、監視データは、記録されると同時に、システムの管理者が適宜確認可能な表示装置にグラフとして表示される、及び/又は、記録紙にプリントアウトされることが好ましい。これらの値が適切な範囲を逸脱したときには、管理者に警報が発せられることが好ましい。
 異常値が発見された場合には、管理者が手動で、又はシステム1が自動で、パラメータの値が正常範囲内に復帰するように、適切な操作が行われる。改質空気RAの温度が異常値を示したときには、改質空気温度調整手段による温度調整を行うことによって、値を正常範囲に復帰させることができる。改質空気RAの流量が異常値を示したときには、例えば改質空気供給ポンプ32の動作、及び/又は、改質空気供給部36前のバルブ(図示せず)の開閉を制御することによって、値を正常範囲に復帰させることができる。
 さらに、外気Aを改質空気貯留室24に取り入れる際に、外気Aを通過させる脱窒フィルタ、脱アンモニアフィルタ、脱塩フィルタ、防塵フィルタといった種々のフィルタについて、その汚れなどの状態を定期的に点検するとともに、一定の期間ごとに、又は必要に応じて、交換することが好ましい。フィルタが目詰まりを生じた場合又は一定の期間毎に、交換を促すための警報が、管理者に発せられることが好ましい。
 1 植物栽培システム
 2 シート受板
 3 受板本体
 3a 短壁
 3b 開口
 3c 鍔体
 4a、4b シートハンガー部材
 5 網板
 6 不織布
 7 底片
 8a、8b、8c、8d 垂直片
 9 連結部材
10 栽培槽
11 支持基材(支持体)
11A 栽培ポット収納体(支持体)
12 開口部
13、13A 栽培ポット
14 培地
15 培地支持シート
15a 山部
15b 谷部
15c 切欠部
16a、16b 排出口
19 支柱
20 改質空気製造手段
21 空気取り入れ部
22 空気改質手段
23 吸引ファン
24 改質空気貯留室
25 地中熱利用ヒートポンプ
26 放熱部
27 配管冷却部
28 温度センサ
30 改質空気供給手段
32 改質空気供給ポンプ
34 改質空気配管
36 改質空気供給部
36a 多孔質体
36b 中空部
38 バクテリア定着部
40 養液循環手段
41 排出側養液タンク
41a、41b 受液口
41c 送液口
42 養液循環ポンプ
43 養液配管
44 供給側養液タンク
44a 受液口
44b 送液口
45 養液供給経路
45a 単質養液の供給口
46 養液排出経路
50 ハウス内冷却手段
52 フィルタ
54 地中配管
56 ファン
60 ハウス
S 単質養液
A 空気
RA 改質空気

Claims (39)

  1.  単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培する植物栽培システムであって、
     植物を保持する栽培槽の内部を所定速度で流れる単質養液に、前記栽培槽の単質養液の溶存酸素濃度を所定濃度にするのに適した状態になるように空気を改質した改質空気を、所定温度にして、単質養液を前記所定濃度にするのに必要な流量で、バクテリア定着部の近傍から供給するようにしたことを特徴とする、植物栽培システム。
  2.  改質空気は、多孔質体を介して気泡状態で単質養液内に供給されることを特徴とする、請求項1に記載の植物栽培システム。
  3.  前記多孔質体を前記バクテリア定着部として用い、改質空気が前記バクテリア定着部を通って栽培槽内に供給されるようにしたことを特徴とする、請求項2に記載の植物栽培システム。
  4.  改質空気は、前記栽培槽の内部において複数の箇所から単質養液に供給されることを特徴とする、請求項1乃至3のいずれか1項に記載の植物栽培システム。
  5.  改質空気は、空気から窒素を除去したものであることを特徴とする、請求項1乃至4のいずれか1項に記載の植物栽培システム。
  6.  改質空気は、内部の温度が一定の温度に維持された改質空気貯留室において、前記一定の温度と同じ温度になるまで保持された後に、単質養液内に供給されることを特徴とする、請求項1乃至5のいずれか1項に記載の植物栽培システム。
  7.  単質養液の養分溶解度を表す電気伝導度は2.5mS/cm~3.5mS/cmであることを特徴とする、請求項1に記載の植物栽培システム。
  8.  栽培槽内を流れる単質養液の前記所定速度は、栽培される植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液の流速であり、前記所定濃度は、植物の根及び好気性バクテリアの活動を活性化させるのに適した溶存酸素の濃度であり、前記所定温度は、植物の根に悪影響を及ぼさない改質空気の温度であることを特徴とする、請求項1に記載の植物栽培システム。
  9.  前記所定速度は3cm/秒~5cm/秒であることを特徴とする、請求項1または請求項8に記載の植物栽培システム。
  10.  前記所定濃度は8ppm~12ppmであることを特徴とする、請求項1または請求項8に記載の植物栽培システム。
  11.  前記所定温度は18℃~22℃であることを特徴とする、請求項1または請求項8に記載の植物栽培システム。
  12.  改質空気の1時間当たりの前記流量は、栽培槽とタンクを循環する単質養液全体の体積に対して3倍~5倍であることを特徴とする、請求項1に記載の植物栽培システム。
  13.  単質養液が、栽培槽とタンクとを結ぶ循環路内において滞留することなく混合されて循環するように構成されたことを特徴とする、請求項1に記載の植物栽培システム。
  14.  単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培する植物栽培装置であって、
     植物と、所定速度で流れる単質養液とを保持する、栽培槽と、
     前記栽培槽の単質養液の溶存酸素濃度を所定濃度とするのに適した状態になるように空気を改質した改質空気にする、空気改質手段と、
     改質空気の温度が所定温度になるように調整する改質空気温度調整手段と、
     単質養液を前記所定濃度にするために必要な流量の改質空気を前記栽培槽の内部の単質養液に供給する改質空気供給手段と、
     前記改質空気供給手段の改質空気供給部の近傍に配置されたバクテリア定着部と、
     単質養液を前記栽培槽とタンクとの間で循環させる、単質養液循環手段と、
    を備えることを特徴とする植物栽培装置。
  15.  前記改質空気供給部は多孔質体であることを特徴とする、請求項14に記載の植物栽培装置。
  16.  前記多孔質体は前記バクテリア定着部であることを特徴とする、請求項15に記載の植物栽培装置。
  17.  前記改質空気供給部は、前記栽培槽の内部において複数設けられたことを特徴とする、請求項14乃至16のいずれか1項に記載の植物栽培装置。
  18.  前記空気改質手段は、空気から窒素を除去するためのフィルタを含むことを特徴とする、請求項14に記載の植物栽培装置。
  19.  前記改質空気温度調整手段は、内部の温度が一定の温度に維持された改質空気貯留室を含み、改質空気は、前記改質空気貯留室内において前記一定の温度と同じ温度になるまで保持された後に、前記改質空気供給手段によって供給されることを特徴とする、請求項14に記載の植物栽培装置。
  20.  単質養液の養分溶解度を表す電気伝導度は2.5mS/cm~3.5mS/cmであることを特徴とする、請求項14に記載の植物栽培装置。
  21.  栽培槽内を流れる単質養液の前記所定速度は、栽培される植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液の流速であり、前記所定濃度は、植物の根及び好気性バクテリアの活動を活性化させるのに適した溶存酸素の濃度であり、前記所定温度は、植物の根に悪影響を及ぼさない改質空気の温度であることを特徴とする、請求項14に記載の植物栽培装置。
  22.  前記所定速度は3cm/秒~5cm/秒であることを特徴とする、請求項14または請求項21に記載の植物栽培装置。
  23.  前記所定濃度は8ppm~12ppmであることを特徴とする、請求項14または請求項21に記載の植物栽培装置。
  24.  前記所定温度は18℃~22℃であることを特徴とする、請求項14または請求項21に記載の植物栽培装置。
  25.  改質空気の1時間当たりの前記流量は、栽培槽とタンクを循環する単質養液全体の体積に対して3倍~5倍であることを特徴とする、請求項14に記載の植物栽培装置。
  26.  前記単質養液循環手段は、単質養液を循環させるポンプと、栽培槽から排出された単質養液を混合する第1のタンクと、栽培槽に供給されることになる単質養液を混合する第2のタンクと、前記第1のタンクと前記第2のタンクとの間を接続する交差配管とを備えることを特徴とする、請求項14に記載の植物栽培装置。
  27.  単質養液を用いて、連作障害を生じさせることなく多品目の植物を同時に栽培する植物栽培方法であって、
     植物を保持する栽培槽の内部に、所定速度で単質養液を流し、
     前記栽培槽の単質養液の溶存酸素濃度を所定濃度にするのに適した状態になるように空気を改質して改質空気とし、
     改質空気の温度を所定温度とし、
     単質養液を前記所定濃度にするのに必要な流量の改質空気を、バクテリア定着部の近傍から前記栽培槽の内部の単質養液に供給する、
    工程を含むことを特徴とする植物栽培方法。
  28.  改質空気を単質養液に供給する工程は、改質空気を、多孔質体を介して気泡状態で単質養液に供給する工程を含むことを特徴とする、請求項27に記載の植物栽培方法。
  29.  改質空気を単質養液に供給する工程は、改質空気を、バクテリア定着部である多孔質体を介して供給することを特徴とする、請求項28に記載の植物栽培方法。
  30.  改質空気を単質養液に供給する工程は、改質空気を、前記栽培槽の内部において複数の箇所から単質養液に供給することを特徴とする、請求項27乃至29のいずれか1項に記載の植物栽培方法。
  31.  空気を改質する工程は、空気から窒素を除去する工程を含むことを特徴とする、請求項27に記載の植物栽培方法。
  32.  改質空気の温度を所定温度にする工程は、内部の温度が一定の温度に維持された改質空気貯留室内において、改質空気が前記一定の温度になるまで改質空気を保持する工程を含むことを特徴とする、請求項27に記載の植物栽培方法。
  33.  単質養液の養分溶解度を表す電気伝導度は2.5mS/cm~3.5mS/cmであることを特徴とする、請求項27に記載の植物栽培方法。
  34.  栽培槽内を流れる単質養液の前記所定速度は、栽培される植物の根に与えられる圧力が土壌内における圧力と概ね同程度となるように調整された単質養液の流速であり、前記所定濃度は、植物の根及び好気性バクテリアの活動を活性化させるのに適した溶存酸素の濃度であり、前記所定温度は、植物の根に悪影響を及ぼさない改質空気の温度であることを特徴とする、請求項27に記載の植物栽培方法。
  35.  前記所定速度は3cm/秒~5cm/秒であることを特徴とする、請求項27または請求項34に記載の植物栽培方法。
  36.  前記所定濃度は8ppm~12ppmであることを特徴とする、請求項27または請求項34に記載の植物栽培方法。
  37.  前記所定温度は18℃~22℃であることを特徴とする、請求項27または請求項34に記載の植物栽培方法。
  38.  改質空気の1時間当たりの前記流量は、栽培槽とタンクを循環する単質養液全体の体積に対して3倍~5倍であることを特徴とする、請求項27に記載の植物栽培方法。
  39.  単質養液を、栽培槽とタンクとを結ぶ循環路内において滞留させることなく混合して循環させる工程さらに含むことを特徴とする、請求項27に記載の植物栽培方法。
PCT/JP2014/005172 2013-11-01 2014-10-20 植物栽培システム、植物栽培装置及び植物栽培方法 WO2015072076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/033,329 US20160262324A1 (en) 2013-11-01 2014-10-20 Plant cultivation system, plant cultivation device, and plant cultivation method
CN201480060041.8A CN105764329A (zh) 2013-11-01 2014-10-20 植物栽培系统、植物栽培装置及植物栽培方法
EP14862124.6A EP3064057A4 (en) 2013-11-01 2014-10-20 Plant cultivation system, plant cultivation device, and plant cultivation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013228022A JP2015084750A (ja) 2013-11-01 2013-11-01 植物栽培システム、植物栽培装置及び植物栽培方法
JP2013-228022 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015072076A1 true WO2015072076A1 (ja) 2015-05-21

Family

ID=53048257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005172 WO2015072076A1 (ja) 2013-11-01 2014-10-20 植物栽培システム、植物栽培装置及び植物栽培方法

Country Status (5)

Country Link
US (1) US20160262324A1 (ja)
EP (1) EP3064057A4 (ja)
JP (1) JP2015084750A (ja)
CN (1) CN105764329A (ja)
WO (1) WO2015072076A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173464A1 (en) * 2015-03-04 2017-10-05 Metropolis Farms High density farming apparatus, system and method
US11122748B2 (en) 2017-05-08 2021-09-21 Daniel S. Spiro Automated outdoor modular vertical plant cultivation system
US11129339B2 (en) 2017-05-08 2021-09-28 Daniel S. Spiro Automated vertical plant cultivation system
US11147215B2 (en) * 2017-05-08 2021-10-19 Daniel S. Spiro Automated outdoor modular vertical plant cultivation system
US11617309B2 (en) 2017-05-08 2023-04-04 Urban Planter, Llc Automated vertical plant cultivation system
US11622510B2 (en) 2017-05-08 2023-04-11 Urban Planter, Llc Automated vertical plant cultivation system
US11730097B2 (en) 2017-05-08 2023-08-22 Urban Planter, Llc Automated vertical plant cultivation system
US11778955B2 (en) 2017-11-29 2023-10-10 Urban Planter, Llc Automated vertical plant cultivation system
US12082539B2 (en) 2020-10-19 2024-09-10 Kynd, Llc Personal growing system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10278343B2 (en) * 2014-05-26 2019-05-07 Bras Avancer LLC Hydroponics processes with high growth rates
US10485193B2 (en) * 2015-05-28 2019-11-26 Robert V. Neuhoff, JR. Automated hydroponics system and method
US20170099789A1 (en) * 2015-10-08 2017-04-13 Chaz Shelton Systems, Methods, and Devices for Growing and Harvesting Produce
US10390494B2 (en) * 2016-01-20 2019-08-27 Nano Evaporative Technologies, Inc. Hydroponic electroculture system and methods of use
CN105940919A (zh) * 2016-05-20 2016-09-21 孙建英 一种奶香味白兰瓜的种植方法
CN106489707B (zh) * 2017-01-06 2022-04-19 中国农业大学 一种室内微纳米气泡水培装置
GB2561876B (en) * 2017-04-26 2022-03-02 Haygrove Ltd End support
CN107396777A (zh) * 2017-08-21 2017-11-28 中国农业大学 一种用于立体栽培的集蓄热系统
KR102054478B1 (ko) * 2017-12-04 2019-12-10 박용대 동종 순환 분무 재배 시스템
US20190216028A1 (en) * 2018-01-15 2019-07-18 Ray Chuan Enterprise Co., Ltd. Plant cultivating apparatus
TWI664899B (zh) * 2018-01-24 2019-07-11 四季洋圃生物機電股份有限公司 Organic biological fertilizer automatic control system
CN109006232A (zh) * 2018-05-04 2018-12-18 铜仁市万山区恒利达种养殖有限公司 一种瓠子栽培方法
WO2019237200A1 (en) * 2018-06-12 2019-12-19 Paige Growth Technologies Inc. Precision agriculture system and related methods
RU2685127C1 (ru) * 2018-06-21 2019-04-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Гидропонная установка
WO2020041762A1 (en) 2018-08-24 2020-02-27 Cuello Joel L Mobile and modular cultivation systems for vertical farming
JPWO2020054053A1 (ja) * 2018-09-14 2021-08-30 農事組合法人サンウォーター 人工知能を搭載したキク科植物の水耕栽培システム
WO2020060796A1 (en) * 2018-09-20 2020-03-26 Waveseer, Llc Systems and methods for plant growing environment
US10990875B2 (en) * 2018-11-28 2021-04-27 International Business Machines Corporation Neural network forecasting for tiered hydroponic natural farming configurations
WO2021022169A1 (en) * 2019-07-31 2021-02-04 Arizona Board Of Regents On Behalf Of The University Of Arizona Phyto-mediated wastewater treatment bioreactor (pwbr)
JP7082831B2 (ja) * 2019-08-26 2022-06-09 果樹あるオフィス株式会社 栽培方法
CN111820086B (zh) * 2020-07-01 2022-04-29 北京市林业果树科学研究院 一种高原多花芽草莓苗的培育方法
CN112005872A (zh) * 2020-07-30 2020-12-01 北京农业智能装备技术研究中心 一种作物无土栽培系统及方法
EP4360450A1 (en) * 2021-06-24 2024-05-01 FUJIFILM Corporation Method of cultivating fruit vegetable plant
JP7171104B1 (ja) 2022-04-20 2022-11-15 株式会社Gac 植物栽培システムに用いられる栽培用ポット
CN115777518A (zh) * 2022-12-06 2023-03-14 河北农业大学 一种新型的蔬菜水培系统
TWI839281B (zh) * 2023-07-31 2024-04-11 香草山農業生技股份有限公司 溫度控制裝置、溫室系統以及溫室系統的建置方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265057A (ja) 2002-03-19 2003-09-24 Yamane Nobokujo:Kk 養液栽培装置、養液栽培方法、及び養液栽培プラント
JP2010088425A (ja) 2008-09-11 2010-04-22 Japan Greenfarm Co Ltd 植物栽培システムおよび植物栽培プラント
JP2010233481A (ja) 2009-03-30 2010-10-21 Kajima Corp 湛液型水耕栽培装置、温度調節システム、植物栽培施設、並びに方法
JP2010279269A (ja) 2009-06-03 2010-12-16 Kansei Devices:Kk 野菜工場
JP2011177130A (ja) 2010-03-02 2011-09-15 Iai:Kk 水耕栽培システム及び水耕栽培方法
JP2012095630A (ja) 2010-10-29 2012-05-24 Hiroki Hachiuma マイクロ・ナノバルブにより活性化された微生物を使った、水生動物と植物の並行栽培システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7400588A (en) * 1974-01-16 1975-07-18 Kyowa Kagaku Kogyo Kk Air and water cultivation system for plants - raises and lowers liquid level to expose roots for set periods
US5046451A (en) * 1988-05-19 1991-09-10 Inslee Glenn E Fish farm and hydroponic greenhouse
US6863816B2 (en) * 2002-06-17 2005-03-08 Dharma Living Systems, Inc. Tidal vertical flow wastewater treatment system and method
CN201015341Y (zh) * 2007-05-11 2008-02-06 中国科学院沈阳应用生态研究所 一种间歇浸没式植物培养箱
WO2010073901A1 (ja) * 2008-12-24 2010-07-01 有限会社葉っぱや 葉菜の水耕栽培方法及び水耕栽培ユニット
CN103039348A (zh) * 2013-01-24 2013-04-17 重庆大学 自动化植物水培系统
CN103229702B (zh) * 2013-05-08 2015-02-04 天津百若克医药生物技术有限责任公司 一种大麦苗的水培方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265057A (ja) 2002-03-19 2003-09-24 Yamane Nobokujo:Kk 養液栽培装置、養液栽培方法、及び養液栽培プラント
JP2010088425A (ja) 2008-09-11 2010-04-22 Japan Greenfarm Co Ltd 植物栽培システムおよび植物栽培プラント
JP2010233481A (ja) 2009-03-30 2010-10-21 Kajima Corp 湛液型水耕栽培装置、温度調節システム、植物栽培施設、並びに方法
JP2010279269A (ja) 2009-06-03 2010-12-16 Kansei Devices:Kk 野菜工場
JP2011177130A (ja) 2010-03-02 2011-09-15 Iai:Kk 水耕栽培システム及び水耕栽培方法
JP2012095630A (ja) 2010-10-29 2012-05-24 Hiroki Hachiuma マイクロ・ナノバルブにより活性化された微生物を使った、水生動物と植物の並行栽培システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Sessui Haieki Zero de, Kankyomen demo Cost-men demo Anshin |", YAMANE SHIKI JUNKAN YOEKI SAIBAI TTE NANI? | MUNOYAKU SHIZENKO YAMANE SHIKI JUNKAN YOEKI SAIBAI -HYAKUNEN YASAI, 3 May 2013 (2013-05-03), XP055356746, Retrieved from the Internet <URL:http://web.archive.org/web/20130503101608/http://100nen-yasai.jp/yamaneshiki/page8.html> [retrieved on 20150119] *
"Tahinmoku, Rensaku mo OK | Yamane Shiki Junkan Yoeki Saibai tte Nani? |", MUNOYAKU SHIZENKO YAMANE SHIKI JUNKAN YOEKI SAIBAI -HYAKUNEN YASAI, 3 May 2013 (2013-05-03), XP055356749, Retrieved from the Internet <URL:http://web.archive.org/web/20130503084156/http://100nen-yasai.jp/yamaneshiki/page5.html> [retrieved on 20150119] *
"Yamane Shiki Junkan Yoeki Sainal tte Nani?", MUNOYAKU SHIZENKO YAMANE SHIKI JUNKAN YOEKI SAIBAI -HYAKUNEN YASAI, 22 April 2012 (2012-04-22), XP055356740, Retrieved from the Internet <URL:http://web.archive.org/web/20120422225714/http://100nen-yasai.jp/yamaneshiki/index.html> [retrieved on 20150119] *
"Yoeki Junkan de Noyaku o Tsukawazu Byoki o Shut Out | Yamane Shiki Junkan Yoeki Saibai tte Nani?", | MUNOYAKU SHIZENKO YAMANE SHIKI JUNKAN YOEKI SAIBAI -HYAKUNEN YASAI, 24 March 2012 (2012-03-24), XP055356737, Retrieved from the Internet <URL:http://web.archive.org/web/20120324193022/http://100nen-yasai.jp/yamaneshiki/page4.html> [retrieved on 20150119] *
See also references of EP3064057A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173464A1 (en) * 2015-03-04 2017-10-05 Metropolis Farms High density farming apparatus, system and method
US11122748B2 (en) 2017-05-08 2021-09-21 Daniel S. Spiro Automated outdoor modular vertical plant cultivation system
US11129339B2 (en) 2017-05-08 2021-09-28 Daniel S. Spiro Automated vertical plant cultivation system
US11147215B2 (en) * 2017-05-08 2021-10-19 Daniel S. Spiro Automated outdoor modular vertical plant cultivation system
US11617309B2 (en) 2017-05-08 2023-04-04 Urban Planter, Llc Automated vertical plant cultivation system
US11622510B2 (en) 2017-05-08 2023-04-11 Urban Planter, Llc Automated vertical plant cultivation system
US11730097B2 (en) 2017-05-08 2023-08-22 Urban Planter, Llc Automated vertical plant cultivation system
US11778955B2 (en) 2017-11-29 2023-10-10 Urban Planter, Llc Automated vertical plant cultivation system
US12082539B2 (en) 2020-10-19 2024-09-10 Kynd, Llc Personal growing system

Also Published As

Publication number Publication date
EP3064057A4 (en) 2017-06-21
US20160262324A1 (en) 2016-09-15
CN105764329A (zh) 2016-07-13
EP3064057A1 (en) 2016-09-07
JP2015084750A (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
WO2015072076A1 (ja) 植物栽培システム、植物栽培装置及び植物栽培方法
JP6760436B2 (ja) 植物栽培方法及び施設
JP6047749B1 (ja) アクアポニックスシステムとそれを使用した魚介類飼育方法及び植物栽培方法
JP6285927B2 (ja) あらゆる環境において可能な高収量植物生産用に改造された断熱輸送コンテナ
US20170105368A1 (en) Hybrid Hydroponic Plant Growing Systems
JPH10215713A (ja) 限定された居住又は建物空間を緑化する 方法及び装置
JP2011177130A (ja) 水耕栽培システム及び水耕栽培方法
JP2008154512A (ja) 苺の水耕栽培方法及びその栽培装置
KR101873374B1 (ko) 수경 재배기
KR101941891B1 (ko) 아쿠아포닉스 인삼 재배 시스템
US20170020095A1 (en) Plant growing apparatus, systems and methods
JP2008131909A (ja) 完全制御型植物工場
JP2008278824A (ja) 水耕栽培装置
JP2007082414A (ja) 水耕栽培方法及び水耕栽培装置
KR20120117113A (ko) 수경재배기
KR102205570B1 (ko) 뿌리식물 수경재배용 시트
JP2018038422A (ja) 植物栽培システム、植物栽培装置及び植物栽培方法
JP2003265057A (ja) 養液栽培装置、養液栽培方法、及び養液栽培プラント
CN210157803U (zh) 一种垂直水耕栽培设备
JP2018068142A (ja) 養液栽培装置および養液栽培方法
CN102197782A (zh) 采用气雾诱导方式的无土栽培系统
KR101773848B1 (ko) 병충해의 확산을 방지하고 기후를 극복할 수 있도록 하는 수경 재배 시스템
KR102492425B1 (ko) 식물 재배 시스템
US20240114860A1 (en) Aquaponic system and method of plant cultivation
KR101260155B1 (ko) 건축물 외벽용 식물 재배장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862124

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15033329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014862124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014862124

Country of ref document: EP