WO2015070529A1 - 干式真空泵抽气工艺模拟测试方法及测试系统 - Google Patents

干式真空泵抽气工艺模拟测试方法及测试系统 Download PDF

Info

Publication number
WO2015070529A1
WO2015070529A1 PCT/CN2014/070372 CN2014070372W WO2015070529A1 WO 2015070529 A1 WO2015070529 A1 WO 2015070529A1 CN 2014070372 W CN2014070372 W CN 2014070372W WO 2015070529 A1 WO2015070529 A1 WO 2015070529A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
pumping process
dry
simulation test
vacuum
Prior art date
Application number
PCT/CN2014/070372
Other languages
English (en)
French (fr)
Inventor
张振厚
王光玉
刘坤
孔祥玲
张晓玉
Original Assignee
中国科学院沈阳科学仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳科学仪器股份有限公司 filed Critical 中国科学院沈阳科学仪器股份有限公司
Publication of WO2015070529A1 publication Critical patent/WO2015070529A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/30Use in a chemical vapor deposition [CVD] process or in a similar process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics

Definitions

  • the invention belongs to the technical field of vacuum pumps, and particularly relates to a simulation test method and a simulation test system for a dry vacuum pump pumping process. Background technique
  • a vacuum pump located in the middle layer (also directly equipped with a vacuum pump inside the processing equipment) is a key link to ensure efficient and safe production of the entire production line.
  • the vacuum pump extracts potentially hazardous process gases and process by-products from the process equipment, containing various particulate, concentrated, and corrosive by-products that are sent to a post-treatment system for processing.
  • Vacuum pumps are used for load lock and transfer, measurement, lithography, ion implantation sources, PVD and pre-cleaning, RTA, strip/ashing, oxide, silicon and metal etching, CVD, MOCVD and ALD, etc. .
  • the gas to be treated by the dry vacuum pump is relatively more complicated, the pumping process is more and more complicated, and the requirements for the vacuum pump are getting higher and higher.
  • Some gases contain very fine powders (micron or sub-micron), are corrosive, or may form deposits on the inner walls of the pump.
  • vacuum pumps used in semiconductors must be able to operate at a specific temperature range.
  • Vacuum technology needs to be well integrated with various applications to meet the stringent requirements of the semiconductor manufacturing industry for process equipment in terms of reliable operation, extended equipment mean time between failures, reduced maintenance and reduced costs. This also places strict requirements on the design, manufacture, assembly and testing of dry vacuum pumps.
  • Gases and by-products of CVD and epitaxy processes include pyrophoric, flammable, corrosive, condensable, and toxic materials such as SiH4, PH3, F2, NF3, SF6, NH3, HF, HC1, and the like.
  • Dry pumps operating under this process must have high reliability and corrosion resistance. It is usually required to be absolutely safe in the pumping process, and these gases usually have a higher temperature and do not allow excessive cooling before entering the vacuum pump. This requires that the suction pump chamber of the dry pump needs to be kept Between 80 ° C and 260 ° C, and 7 X 24 hours of continuous operation for 2 to 5 years.
  • LEDs Due to the growing demand for new light-emitting diodes (LEDs), the manufacture of compound semiconductors is experiencing rapid growth. Many highly toxic substances are required in the CS process, so the process is indispensable and requires low cost. This requires excellent vacuum seal and dynamic sealing performance, otherwise the reaction of gas with lubricating oil or grease, or leakage, will have catastrophic consequences.
  • the metal etching process uses corrosive gases, including C12, BC13 and global greenhouse gas PFC.
  • the dielectric etch process also requires the use of PFCs and corrosive gases such as HBr. This process usually produces some by-products, such as gaseous A1C13.
  • the temperature is lower than 70 °C, it usually causes dehydration in the pump body, which causes the vacuum pump to become stuck.
  • the vacuum pump is required to process some small particles and dust.
  • the nitrogen dust can be used to prevent the dust and the reaction product from being deposited in the pump cavity, but at the same time, the reliability of the vacuum pump is higher.
  • Ion implantation is very sensitive to particle contamination. A particle on the surface of the wafer can block the ion beam and produce an incorrect implant. Large current injectors produce more particles due to erosion of the ion beam.
  • Commonly used ion implantation doping gases are highly toxic, such as AsH3, PH3, BF3, etc. These gases have a concentration in the air of more than 50 to 300 ppbv (1 ppbv means a billionth of a volume), which can pose a threat to human health and safety.
  • the use of dry vacuum pumps instead of water jet pumps has gradually become a trend due to the obvious energy saving.
  • the gas extracted from the vacuum furnace usually contains water, carbon dioxide, carbon monoxide, nitrogen dioxide, dust, and metal particles. Although it is subjected to multi-stage filtration and powder collection, it is still extremely strong on the vacuum pump rotor, the inner wall of the pump chamber, and the pump oil. Destructive.
  • the change in the demand situation of the dry vacuum pump has caused great changes in the design, manufacture and assembly of the dry pump; at the same time, the pumping process test of the dry pump also needs to be expanded.
  • the most ideal method for testing the pumping process of a vacuum pump is to duplicate the application equipment using the exact same process, which is extremely costly and repeatable.
  • Some capable dry vacuum pump manufacturers establish product application laboratories in the factory, establish the same production line as the user to conduct internal testing of the products, or the manufacturer has the department of production related vacuum application equipment for inter-departmental internal testing. This inevitably limits the quality and depth of the internal testing, while the time and economic costs increase significantly, which brings management difficulties, thereby increasing the cost of dry pump production management.
  • the present invention provides a dry vacuum pump pumping process simulation test method and test system.
  • the technical solution adopted by the present invention to achieve the above object is: a dry vacuum pump pumping process simulation test method, connecting a dry vacuum pump to be tested, by combining and setting various input elements in the integrated simulation test system Simulate the pumping process of various vacuumed environments, test the dry vacuum pump to be tested, and continuously test the test signals on the line to investigate the operation of the various indicators of the vacuum pump during actual operation and the pumping environment. Adaptation, improvement and optimization of the design and manufacture of the vacuum pump and the setting of the pumping process; At the same time, the quality of the vacuum pump is tested to meet the requirements of the vacuum pump for various vacuum environments to test and improve the product. purpose.
  • the various input elements in the integrated analog test system include gas, liquid, electricity, magnetism, heat, dust particles, and corrosive materials.
  • test signals include temperature, humidity, gas composition, real-time image, pressure, flow, and noise signals.
  • a dry vacuum pump pumping process simulation test system including a vacuum chamber simulating the pumping environment, each analog element input unit, each signal monitoring unit, an auxiliary pumping line, a safety protection system, an exhaust gas collecting system, and a control system a control system for each of the above units;
  • the analog element input unit is used for combination and setting of various input elements
  • the signal monitoring unit is used for on-line monitoring of a plurality of test signals to obtain various performance indexes of the vacuum pump to be tested in the simulated test system under the set pumping process.
  • the analog element input unit includes one or more of a gas input unit, a liquid input unit, an electric field input unit, a magnetic field input unit, a heat input unit, a dust input unit, and a corrosive substance input unit.
  • the gas input unit and the liquid input unit control gas/liquid input through a valve.
  • the electric field input unit excites an input electric field signal through a power source.
  • the magnetic field input unit excites an input magnetic field signal through an electromagnetic source.
  • the signal monitoring unit comprises a temperature monitoring unit, a real-time image monitoring unit, a pressure monitoring unit, a noise monitoring unit, a humidity monitoring unit in the vacuum chamber, a gas component monitoring unit, a gas inlet connected to the simulated vacuum chamber, and a vacuum pump inlet to be tested.
  • One or more of the flow monitoring units at the location are included in the signal monitoring unit.
  • the temperature monitoring unit includes a temperature sensor connected to an intake port, an exhaust port, a bearing housing or a gear box of the dry vacuum pump.
  • the real-time image monitoring unit is a high-speed imaging system for aligning the pump inlet and the pump outlet for feeding back visible droplets in the vacuum chamber, the pumping of dust particles, and the affected condition of the vacuum pump.
  • the pressure monitoring unit includes a pressure sensor/vacuum degree sensor in the vacuum chamber and a pressure sensor/vacuum degree sensor connected to the suction port, the exhaust port or the interstage transition baffle of the vacuum pump to be tested.
  • the noise monitoring unit includes a sonar probe in a vacuum chamber and a decibel meter outside the vacuum chamber.
  • the auxiliary suction line is another auxiliary vacuum system connected to the simulated vacuum chamber, including a vacuum pump, a vacuum gauge, a vacuum valve, and a vacuum system connecting the pipelines.
  • the safety protection system is used for monitoring the pumping process according to the critical threshold of various processes, and adopting an alarm, timely closing the element input causing the dangerous condition, and filling the inert gas protection measure to protect the entire simulation test system.
  • the exhaust gas collection system includes a collection system of exhaust, waste, and solid emissions and is coupled to the pollutant treatment system.
  • the invention patent breaks from the bottleneck of large-scale application of dry vacuum pump, and discloses a dry vacuum pump pumping process test system with high integration and good practicability, which has the following advantages -
  • the vacuum chamber simulates a variety of different extraction process environments and can be customized to the composition of the vacuum chamber depending on the desired pumping environment.
  • the result of the test can not only feedback the reliability of the vacuum pump, but also optimize the pumping process of the vacuum pump, thus providing a reliable basis for the factory test of the vacuum pump to the utmost.
  • the pumping process test system of the invention adopts an environmental protection system for emission collection and connection treatment, which ensures zero discharge of pollutants, and has a dangerous automatic intelligent alarm function, and has the characteristics of safety, intelligence and green environmental protection. , with good repeatability, can simulate clean, light pollution, moderate pollution and heavy pollution vacuum environment including transportation, physical vapor deposition, chemical vapor deposition, etching, lithography, chemical, pharmaceutical, etc. Has a good application prospects.
  • Figure 1 is a schematic diagram of a dry pump pumping process simulation test system
  • Figure 2 is a schematic diagram of the composition and working flow of a PECVD tube furnace
  • FIG. 3 is a flow chart of the PECVD pumping process. detailed description
  • the adaptability of the dry vacuum pumping process is one of the bottlenecks that restrict the development and scale development of dry pumps.
  • the patented technical solution of the present invention discloses a dry pump pumping process simulation test system with high integration, multiple signal input and multiple signal output, which can not only the existing pumping process. Simulations can be used to simulate the pumping process of potential, untapped vacuum pump applications, while meeting high efficiency and low cost requirements. All work can be done within the R&D department of dry vacuum pump manufacturers. It is highly efficient and versatile.
  • the technical scheme of the present invention gives a schematic diagram of an integrated dry vacuum pump pumping process simulation test system, as shown in FIG.
  • the vacuum chamber of the simulated pumping environment is connected to the dry vacuum pump to be tested, and the constituent elements of the vacuumed environment, such as gas, liquid, electricity, magnetism, heat, dust, corrosiveness, etc., are combined and passed through the temperature.
  • On-line monitoring of various test signals such as humidity, gas composition, real-time image, pressure, flow and noise, obtaining composition and physical properties similar to those of the vacuumed environment, after being removed by the dry vacuum pump to be obtained
  • the operation characteristics and damage of the dry vacuum pump improve and optimize the structural design of the dry vacuum pump and the setting of the extraction process.
  • the technical solution disclosed by the present invention is: For a specific application and a pumping process, firstly, after fully investigating the application, the main processes, gas components, dust particles, condensable gas components, oil vapor, Learn more about flammable and explosive gases and corrosive gases, master the main damage factors affecting the performance and reliability of dry vacuum pumps, and determine the simulation test plan and process. Then, prepare all the necessary input elements and connect them to the simulated environment vacuum chamber or vacuum pump, check each sensor and its protective measures (the sensor can be removed for feedback signals unrelated to this simulation test), and check the danger warning And safety protection measures. Furthermore, according to the established simulation test program flow, the dry pump performance is tested in chronological order, and the online test data is recorded, and the simulation test process is ended.
  • the dry pump to be tested is analyzed, disassembled, surface analyzed, etc. as needed, and the test results are comprehensively analyzed, thereby obtaining the respective dry pump occurrences under the pumping process of the simulation test.
  • Problems analysis of the structure at the same time, optimization of structural design, gap design, unbalanced design, rotor deformation, bearing preload setting, material selection, purge flow, temperature field design, coolant flow, sealing effect, anti-corrosion measures , pump oil life and other technical solutions closely related to the dry pump operation stability, improve the operational reliability of dry pumps.
  • the performance of the dry pump is checked and verified to improve the development and technical upgrade of the dry pump.
  • the input gas element may be one or more of air, nitrogen, inert gas, oxygen, water vapor, hydrogen, alkane, etc.; input gas element may contain condensable gas, flammable, explosive, corrosive gas Or one or more of gases such as corrosive gases after hydration; input liquid elements, including water, ethanol, glycerin, organic solvents, oils, sulfuric acid, hydrochloric acid, soda and other common liquids, other volatile liquids, other corrosion One or more of liquids such as liquids; input electric field signals, including various electric fields such as direct current, intermediate frequency and radio frequency; input temperature signals, including heating and cooling of the vacuum chamber, operating temperature range of -20 ⁇ 400 ° C; input dust particles, the diameter can be millimeter (1-10 mm), sub-millimeter (0.1 ⁇ 1 mm), micron (1 ⁇ 100 microns), sub-micron (0.1 ⁇ 1 micron), etc.; Input dust particles, according to the size, can be glass beads, metal beads, fiber powder, latex particles
  • the temperature monitoring signal mainly includes the temperature signal fed back by the temperature sensor (such as thermocouple) connected to the suction port, exhaust port, bearing housing, gear box (if any) of the dry vacuum pump; humidity monitoring signal, mainly including The humidity signal fed back by the humidity sensor in the simulated vacuum chamber; the gas component signal refers to the gas component signal of the residual gas component analyzer connected to the vacuum chamber through a plurality of gas sensors distributed in the simulated vacuum chamber; real-time image monitoring The signal refers to the shooting by installing a high-speed imaging system that is aligned with the pump inlet and the pump outlet. The feedback simulates the pumping of droplets, dust particles, etc. and the affected condition of the vacuum pump.
  • the pressure monitoring signal mainly includes the distribution in the simulation.
  • flow monitoring signal It mainly includes the flow test signals fed back to the gas inlets of the simulated vacuum chamber and the gas flow meter at the inlet of the vacuum pump to be tested;
  • the noise monitoring signal mainly includes the sonar probe installed in the vacuum chamber, the decibel meter outside the vacuum chamber, etc. Feedback noise test signal, test results as reference and comparison data;
  • the auxiliary suction line refers to another auxiliary vacuum system connected to the simulated vacuum chamber, including a vacuum pump, a vacuum gauge, a vacuum valve, and a vacuum system connecting the pipelines.
  • the safety protection system consists of sensors, actuators, actuators, software expert systems, hardware control systems, etc., which are installed throughout the test system.
  • the pumping process is monitored according to the critical thresholds of various processes, and alarms are issued.
  • the entire analog test system is protected by shutting down the element input and the inert gas protection that cause the dangerous situation.
  • the exhaust gas collection system includes a collection system for emissions such as exhaust gas, waste liquid, and solids, and is connected to the pollutant treatment system to avoid environmental pollution.
  • Multiple control systems include software systems and hardware systems that include dry vacuum pump monitoring systems, analog vacuum chamber monitoring systems, input element control systems, hazard warning and safety protection control systems, and pollutant emission monitoring systems.
  • Embodiment 1 shows a dry vacuum pump pumping process simulation test method equipped with a tubular PECVD apparatus, which is tested by the dry vacuum pump pumping process simulation test system disclosed in the present invention.
  • PECVD is one of the typical production processes in the IC industry. Its dry pump usage is large and the pumping environment is harsh. The need for dry pumps to adapt to its poor pumping process is urgent.
  • the PECVD tube furnace has a complicated gas extraction process. The gas and by-products of the process include pyrophoric, flammable, corrosive, condensable and toxic substances.
  • the dry pump operating under this process must have a high Reliability and corrosion resistance. It is usually required to be absolutely safe in the pumping process, and these gases usually have a higher temperature and do not allow excessive cooling before entering the vacuum pump.
  • the PECVD process contains a large amount of dust. Due to the presence of silane, silicon oxide particles are rapidly formed upon contact with oxygen, which is easily adsorbed in the pump chamber and on the rotor surface, and may enter Into the fuel tank and bearings, causing serious damage.
  • the technical solution disclosed in the present invention is implemented in this way.
  • the tubular PECVD pumping process is studied, and the vacuum system diagram and the working beat are listed, as shown in FIG.
  • the gases to be introduced in the simulated vacuum chamber are NH3, SiH4, N2.
  • silica particles generated by silica particles instead of silane are added to the silica particles, and a certain amount of water is added to simulate by-products in the PECVD exhaust gas.
  • the actual pumping process is summarized as shown on the left side of Figure 3. Combined with the function of the simulation system, the pumping process of the simulation system is planned, as shown in the right part of Figure 3.
  • the obtained performance parameters are analyzed and compared to obtain the influence of the dry pump performance under the pumping process; at the same time, the dry pump is disassembled to observe the sealing structure, the rotor surface, and the pump chamber.
  • MOCVD is an extreme chemical vapor deposition process. Since MOCVD operates under relatively high pressure vacuum, it contains metal debris and soot, and is explosive due to hydrogen. The simulation of the MOCVD pumping process is roughly equivalent to that of PECVD, but on the input elements, certain metal beads and ceramic beads are added to fill the H2 gas.
  • RH/VOD is a typical vacuum metallurgy process for vacuum degassing of molten steel.
  • steam jet pump is used as the pumping system, but the steam jet pump has low pumping efficiency, large floor space and space.
  • the power consumption is huge, the maintenance and maintenance time and labor, there have been examples of the use of dry vacuum pumps (units).
  • the RH/VOD pumping process is also relatively harsh, and usually contains various gases, high-temperature steam, metal scrap, slag, dust and other by-products.
  • the basic method is similar to that of PECVD, but the ratio of moisture and metal microbeads in the input element is increased, and a certain amount of dust should be added.
  • fine sand particles can be used instead.
  • Typical pharmaceutical processes such as VC synthesis, require the transfer, mixing, and synthesis of drugs in a vacuum environment due to the extremely oxidizable nature of the feedstock. Due to the sensitivity of drug synthesis to pump oil vapor, a dry vacuum pump is required to provide a vacuum environment. During the reaction, the extremely fine granular drug is easily pumped into the vacuum pump, and the moisture contained in the raw material is removed, which easily forms a slurry-like accumulation on the surface of the vacuum pump rotor, resulting in increased motor power, bearing load and sealed load. Intensified, thus affecting the stability of the dry pump. For the simulation of the pumping process of the pharmaceutical process, it is mainly necessary to add dust and moisture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

公开了一种真空泵抽气工艺模拟测试方法和测试系统,通过组建的模拟真空室,集成了气、液、电、磁、热、粉尘、腐蚀性等多种干式真空泵应用环境中常见的元素,使用多种传感器对同时具有温度、湿度、气体成分、实时图像、压力、流量和噪声等信号进行反馈,并通过多个控制系统进行监控,对干式真空泵抽气工艺适应情况进行检验和完善。该测试系统采用严格的污染物收集和接驳处理,并具有危险示警和自动保护功能系统,具有安全性、智能性、绿色环保的特点和良好的可重复性,可以模拟包括输送、物理气相沉积、化学气相沉积、刻蚀、光刻、化工、制药等在内的清洁、轻度污染、中度污染和重度污染真空环境的真空泵抽气工艺环境。

Description

干式真空泵抽气工艺模拟测试方法及测试系统 技术领域
本发明属于真空泵技术领域,具体涉及一种干式真空泵抽气工艺的模拟测试方法以及模 拟测试系统。 背景技术
近年来, 随着半导体电子、 光伏、 平板显示、 半导体照明、 太阳能光伏等新兴战略行业 的大规模兴起, 化工、 制药和食品包装行业的产业升级, 各行业对干式真空泵的需求进一步 提升, 全球干泵制造业发展很迅速。 随着国内外对于干式真空泵的需求越来越旺盛, 对干式 真空泵的要求也越来越苛刻, 真空泵制造行业面临着巨大的挑战和机遇。干式真空泵的应用 场合越来越广泛, 其型号的划分也越来越细。 原有的简单干泵型号的划分, 已经不能够满足 对抽气工艺类型的定义。 简单地说, 同一个干泵产品, 应用与多个工业场合, 其抽气工艺具 有很大差异。
典型的半导体工厂中, 位于中间层的真空泵(也有的处理设备内部直接安装真空泵)是 保障整个生产线高效安全生产的关键环节。真空泵可以从工艺设备中抽出具有潜在危险的工 艺气体和流程副产物, 其中含有各种微粒状、 浓缩的和腐蚀性的副产物, 并将其输送到后处 理系统进行处理。 真空泵的用途主要包括负载锁定和传运、 量测、 光刻、 离子注入源、 PVD 及预清洁、 RTA、 剥除 /灰化、 氧化物、 硅和金属的刻蚀、 CVD、 MOCVD和 ALD等。
干式真空泵需要处理的气体相对来说更为复杂,抽气工艺也越来越复杂,对真空泵的要 求也越来越高。 有些气体会含有非常细小的粉末 (微米或亚微米级)、 带有腐蚀性、 或者可 能在泵的内壁形成沉积。 半导体所用的真空泵除了耐用外, 还必须能在特定的温度范围内运 作自如。 此外非常重要的一点就是由于干式真空泵一直处于长时间不间断的连续运转状态 下, 如何在无法进行正常的定期保养的情况下延长设备的使用寿命是必需考虑的问题。 需要 将真空技术与各种应用很好的融合在一起, 使其真空设备在可靠运行、 延长设备的平均故障 间隔时间、减少维护工作并降低成本等方面满足半导体制造业对工艺设备的严格要求, 这同 样对干式真空泵的设计、 制造、 装配和测试等各个环节提出了严格的要求。
以半导体生产线的几种典型工艺为例,通常真空泵抽出的气体直接进入到废气处理系统 进行安全处理:
( 1 ) CVD和外延工艺
CVD和外延工艺的气体和副产物包括具有自燃性、 易燃性、 腐蚀性、 可凝性和有毒的 物质, 如 SiH4, PH3, F2, NF3, SF6, NH3 , HF, HC1等。 工作在这种工艺下的干泵, 必 须具备很高的可靠性和耐腐蚀性。通常在抽气工艺中要求绝对安全不外泄, 而且这些气体通 常具有较高的温度, 且进入真空泵前不允许过度冷却。这就要求干泵的吸气泵腔需要保持在 80°C〜260°C之间, 而且 7 X 24小时不间断的连续运转 2〜5年。
(2) 化合物半导体 CVD工艺
由于对新型发光二极管(LEDs)需求的增长, 化合物半导体的制造正在经历飞速增长。 CS 工艺中需要用到很多毒性很强的物质, 因而处理过程是不可或缺的且又要求成本低廉。 这要求真空泵静密封和动密封性能优异, 否则气体与润滑油或脂等反应, 或者外泄, 都将带 来灾难性的后果。
(3 ) 刻蚀工艺
金属刻蚀工艺使用的都是腐蚀性气体, 包括 C12、 BC13和全球温室气体 PFC。 电介质 刻蚀工艺也需要使用到 PFCs和腐蚀性气体, 比如 HBr。 这种工艺通常会产生一些副产物, 如气态 A1C13, 当温度低于 70°C时, 通常会在泵体内产生凝华现象, 从而使真空泵发生卡死 现象。 而且要求真空泵可以处理一些小颗粒和粉尘, 通常可以用氮气吹洗得方法防止微尘及 反应生成物淀积在泵腔流道内, 但同时也对真空泵的可靠性提出更高的要求。
(4) 离子注入
离子注入对颗粒玷污非常敏感。硅片表面上的一个颗粒能够阻碍离子束,产生不正确的 注入。 大电流注入机由于离子束的侵蚀会产生更多颗粒。 常用的离子注入掺杂气体都是有剧 毒的, 如 AsH3, PH3, BF3等。 这些气体在空气中的浓度超过 50〜300 ppbv ( 1 ppbv指体 积含量十亿分之一), 便能对人体健康安全造成威胁。
与之抽气工艺不同的应用场合,如应用于石化和制药行业的干泵,应用领域包括真空蒸 馏溶剂萃取高效回收溶剂、 医药工业、 回收药液及药物中间体、 为人造器官生产提供清洁无 菌条件、 回收气体消毒剂、 核反应堆及核工业真空获得、 脂肪酸生产、 消除水污染、 清除喷 射器中的阻塞物、 香料、 香精浓缩等。 这些工艺要求运行中不会产生废水废油, 但会产生大 量抽除可凝蒸汽, 要求真空泵在气液混合两相流工况下泵也不会阻塞。 同时, 既可冷却转子 又可回收凝液再用, 减少浪费有利环保, 同时要求真空泵具有极强的耐腐蚀型, 甚至全封闭 型, 以抽除腐蚀性气体或有毒气体。
同时, 在真空冶金行业中, 尤其是特殊钢的冶炼, 由于节水节能明显, 采用干式真空泵 替代水喷射泵逐渐成为一种趋势。 但从真空炉中抽出的气体中通常含有水分、 二氧化碳、 一 氧化碳、 二氧化氮、 粉尘、 金属颗粒, 尽管经过多级过滤和粉液收集, 仍然对真空泵转子、 泵腔内壁、 泵油具有极强的破坏性。
干式真空泵需求场合的变化引发在干泵设计、制造、装配等各个环节引发了巨大的变化; 与此同时, 干泵的抽气工艺测试亦需要进行扩充。 对待真空泵抽气工艺的测试, 最理想的方 法是使用完全相同的工艺复制应用设备, 不仅成本极其昂贵、 而且可重复性差。
目前,干式真空泵的市场推广多采用了"厂家内测——用户外测——多机备份——返厂 维修——产品改进"的产品推广周期。但目前的厂家内测绝大多数只是按照相关技术标准进 行抽气性能指标, 如抽速、 极限真空度、 电机功率、 噪声等指标的测试。 由于干泵生产厂家 对用户抽气工艺的不熟悉, 因此真空泵的产品适应性和抽气工艺测试只能在厂家外测进行, 往往不利于抽气工艺的准确性, 问题的发现得不到及时的解决。真空泵的应用拓展和适用往 往需要相当长的时间去磨合, 其时间成本和风险成本都很高, 无法适应真空泵应用领域的快 速发展。 这就导致这一市场推广过程通常具有成本昂贵、 周期长、 用户满意度差的局面, 不 利于干式真空泵的产品研发、 技术升级和市场推广。
部分具有能力的干式真空泵厂商在工厂内部建立产品应用实验室,建立与用户相同的生 产线来对产品进行内测,或者生产厂商同时具有生产相关真空应用设备的部门而进行跨部门 的内测, 这必然会局限了内测的质量和深度, 同时时间和经济成本大幅增加, 带来了管理的 难度, 从而增加了干泵生产管理的成本。
在设计水平、 精加工设备、 材料、 热处理、 配件等多个环节快速发展的今天, 设计、 加 工和制造一台性能精良的干式真空泵绝非难事。但如何能够快速开发出适应各种抽气环境并 长期安全运转于多个领域的干式真空泵, 确是摆在干泵生产厂家面前的头疼问题, 成为限制 干泵大规模应用的瓶颈之一。
针对现有技术中存在的上述不足之处, 本发明提供一种干式真空泵抽气工艺模拟测试方 法及测试系统。
本发明为实现上述目的所采用的技术方案是: 一种干式真空泵抽气工艺模拟测试方法, 连接待测试的干式真空泵, 通过组合和设定集成化的模拟测试系统中的各种输入元素, 模拟 各种实际被抽真空环境的抽气工艺, 同时对待测试的干式真空泵进行测试运转, 在线连续测 试各路测试信号, 考察真空泵在实际工作时的各项指标运转情况和对抽气环境的适应情况, 对真空泵的设计制造和抽气工艺的设定进行改善和优化; 同时, 对真空泵的出厂质量进行检 验, 以达到对应用于各种真空环境下真空泵适应情况进行测试和改善产品的目的。
所述集成化的模拟测试系统中的各种输入元素包括气、 液、 电、 磁、 热、 粉尘颗粒、 腐 蚀性物质。
所述各路测试信号包括有温度、 湿度、 气体成分、 实时图像、 压力、 流量和噪声信号。 一种干式真空泵抽气工艺模拟测试系统, 包括模拟抽气环境的真空室、 各路模拟元素输 入单元、 各路信号监测单元、 辅助抽气管路、 安全保护系统、 尾气收集系统及用于控制上述 各单元的控制系统;
所述模拟元素输入单元用于各种输入元素的组合和设定;
所述信号监测单元用于对多种测试信号的在线监测, 获得在设定抽气工艺下, 被测真空 泵在模拟测试系统中的各种性能指标。
所述模拟元素输入单元包括气体输入单元、 液体输入单元、 电场输入单元、 磁场输入单 元、 热输入单元、 粉尘输入单元和腐蚀性物质输入单元中的一种或几种。
所述气体输入单元和液体输入单元通过阀控制气体 /液体的输入。
所述电场输入单元通过电源激发输入电场信号。 所述磁场输入单元通过电磁源激发输入磁场信号。
所述信号监测单元包括温度监测单元、 实时图像监测单元、 压力监测单元、 噪声监测单 元、 真空室内的湿度监测单元、 气体成分监测单元、 连接模拟真空室的各路气体入口处、 被 测真空泵入口处的流量监测单元中的一种或多种。
所述温度监测单元包括连接在干式真空泵的吸气口、 排气口、 轴承座或齿轮箱处的温度 传感器。
所述实时图像监测单元为安装对准泵入口和泵出口的高速成像系统, 用于反馈真空室内 可见液滴、 粉尘颗粒的被抽情况和真空泵的受影响情况。
所述压力监测单元包括真空室内的压力传感器 /真空度传感器和连接在被测真空泵的吸 气口、 排气口或级间过渡隔板的压力传感器 /真空度传感器。
所述噪声监测单元包括真空室内的声纳探头、 真空室外的分贝计。
所述辅助抽气管路为连接在模拟真空室的另一套辅助真空系统, 包括真空泵、 真空计、 真空阀门以及连接管路的真空系统。
所述安全保护系用于根据各种工艺的临界阈值对抽气过程进行监控, 并采取报警、 及时 的关闭造成危险状况的元素输入、充惰性气体保护措施,对整个模拟测试系统进行安全保护。
所述尾气收集系统包括废气、废液和固体排放物的收集系统,并连接到污染物处理系统。 本发明专利从突破干式真空泵大规模应用的瓶颈出发, 公开了一种具有高集成度和良好 实用性的干式真空泵抽气工艺测试系统, 具有以下优点-
1. 通过对被抽真空室中, 集成了气、 液、 电、 热、 粉尘、 腐蚀性等多种真空泵应用中常 见的元素, 通过多种传感器的探测, 对干式真空泵的多项指标进行检测。
2. 被抽真空室模拟多种不同的抽气工艺环境, 并可以根据目标抽气环境的需求, 对被抽 真空室内的组成进行定制。
3. 检测的结果, 既可以对真空泵的可靠性进行反馈, 又可以对真空泵的抽气工艺进行优 化, 从而最大限度的为真空泵的出厂测试提供了可靠的依据。
4. 本发明的抽气工艺测试系统, 采用排放物收集和接驳处理的环保系统, 保证了污染物 的零排放, 同时具有危险自动智能报警功能, 具有安全性、 智能性和绿色环保的特点, 具有 良好的可重复性, 可以模拟包括输送、 物理气相沉积、 化学气相沉积、 刻蚀、 光刻、 化工、 制药等在内的清洁、 轻度污染、 中度污染和重度污染真空环境等, 具有良好的应用前景。 附图说明
图 1是干泵抽气工艺模拟测试系统原理图;
图 2是 PECVD管式炉组成与工作流程示意图;
图 3是 PECVD抽气工艺流程图。 具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
干式真空泵抽气工艺的适应性是制约干泵研发和规模化发展的瓶颈问题之一。 为了推进 干式真空泵应用工艺的研究, 本发明专利技术方案公开了一种具有高集成化、 多信号输入和 多信号输出的干泵抽气工艺模拟测试系统, 既可以对现有的抽气工艺进行模拟, 又可以对潜 在的、 尚未开发的真空泵应用场合的抽气工艺进行模拟测试, 同时还满足了高效率、 低成本 的要求, 所有工作可以在干式真空泵生产厂家的研发部门内部进行, 具有高效、 多功能的特 点。
本发明的技术方案给出了集成化的干式真空泵抽气工艺模拟测试系统原理图, 如附图 1 所示。 通过模拟抽气环境的真空室与待测干式真空泵进行连接, 并将气、 液、 电、 磁、 热、 粉尘、腐蚀性等多个被抽真空环境的组成输入元素进行组合,通过对温度、湿度、气体成分、 实时图像、 压力、 流量和噪声等多种测试信号的在线监测, 获得与被抽真空环境类似的组成 成分和物理属性, 经被测的干式真空泵抽除后, 以获得干式真空泵的运转特性和破坏情况, 从而对干式真空泵的结构设计和抽气工艺设定等进行改善和优化。
本发明所公开的技术方案是: 对于具体的应用场合和抽气工艺, 首先对应用场合进行充 分调研后, 对主要流程、 气体成分、 粉尘颗粒情况、 可凝性气体成分情况、 油蒸汽情况、 易 燃易爆气体情况、腐蚀性气体情况等详细了解, 掌握影响干式真空泵性能和可靠性的主要破 坏因素, 确定模拟测试的方案和流程。 然后, 准备好各种必要的输入元素并连接到模拟环境 真空室或真空泵上, 检查好各传感器及其保护措施(对于本次模拟测试无关的反馈信号, 可 以拆除其传感器), 并检查危险示警及安全保护措施。 再者, 根据制定的模拟测试方案流程, 依照时间顺序, 对干泵性能进行测试, 并记录下在线测试的数据, 结束模拟测试过程。
在获得测试结果后, 根据需要, 对被测试的干泵进行分析、 拆解、 表面分析等, 并对测 试结果进行综合分析, 由此获得在模拟测试的抽气工艺下, 干泵出现的各种问题, 同时对结 构进行分析, 优化结构设计、 间隙设计、 不平衡量设计、 转子变形量、 轴承预紧力设置、 材 料选用、 吹扫流量、 温度场设计、 冷却剂流量、 密封效果、 防腐措施、 泵油寿命等各种与干 泵运行稳定性紧密相关的技术方案, 提高干泵的运行可靠性。 同时, 对干泵的性能进行检验 和校验, 提高干泵的研发和技术升级。
输入气体元素, 可以是空气、 氮气、 惰性气体、 氧气、 水蒸气、 氢气、 烷烃类等气体中 的一种或几种; 输入气体元素, 可以包含易凝结气体、 易燃易爆、 腐蚀性气体或水合后腐蚀 性气体等气体中的一种或几种; 输入液体元素, 包含水、 乙醇、甘油、有机溶剂、 油、硫酸、 盐酸、苏打水以及其他普通液体、其他挥发性液体、其他腐蚀性液体等液体中的一种或多种; 输入电场信号, 包含直流、 中频和射频等多种电场; 输入温度信号, 包括被抽真空室的加热 和冷却, 其工作温度范围为 -20~400° C; 输入粉尘颗粒, 其直径可为毫米级 (1-10毫米)、 亚毫米级(0.1~1毫米)、 微米级(1~100微米)、 亚微米级(0.1~1微米)等; 输入粉尘颗粒, 按照尺寸的不同, 可以为玻璃微珠、 金属微珠、 纤维粉、 乳胶粒、 硅胶粒、 塑料粒、 陶瓷微 珠、 陶瓷粉、 钛白粉等。
温度监测信号, 主要包括连接在干式真空泵的吸气口、 排气口、 轴承座、 齿轮箱 (如果 有)等处的温度传感器(如热电偶) 反馈的温度信号; 湿度监测信号, 主要包括分布在模拟 真空室内的湿度传感器反馈的湿度信号; 气体成分信号, 是指通过分布在模拟真空室内的多 个气体传感器反馈、连接在真空室的残余气体成分分析仪的气体成分信号; 实时图像监测信 号, 是指通过安装对准泵入口和泵出口的高速成像系统进行拍摄, 反馈模拟真空室内可见液 滴、 粉尘颗粒等被抽情况和真空泵的受影响情况; 压力监测信号, 主要包括分布在模拟真空 室内的压力 (真空度)传感器反馈的压力 (真空度)信号和连接在被测真空泵的吸气口、 排 气口、 级间过渡隔板 (如果有) 的压力 (真空度) 传感器反馈的压力 (真空度) 信号; 流量 监测信号, 主要包括连接模拟真空室的各路气体入口处、被测真空泵入口处的气体流量计反 馈的流量测试信号; 噪声监测信号, 主要包括设置在真空室内的声纳探头、 真空室外的分贝 计等反馈的噪声测试信号, 测试结果作为参考和对比数据;
辅助抽气管路, 是指连接在模拟真空室的另一套辅助真空系统, 包括真空泵、 真空计、 真空阀门以及连接管路的真空系统。
安全保护系统包括设置在整个测试系统各处传感器、 执行机构、 执行元件以及软件专家 系统、硬件控制系统等组成,根据对各种工艺的临界阈值对抽气过程进行监控,并采取报警、 及时的关闭造成危险状况的元素输入、 充惰性气体保护等措施, 对整个模拟测试系统进行安 全保护。
尾气收集系统包括废气、废液和固体物等排放物的收集系统,并接驳到污染物处理系统, 避免对环境的污染。
多个控制系统包括软件系统和硬件系统, 其组成包括干式真空泵监控系统、 模拟真空室 监控系统、输入元素控制系统、危险预警与安全保护控制系统和污染物排放监控系统等多部 分。
具体实施例 1〜4是本发明技术方案所涵盖的技术方案的例子,本部分内容对本发明的技 术方案做进一步的描述, 但本发明并不仅限于以下所列出的技术方案, 所有根据本发明所公 开的技术要点都为本专利所保护。
实施例 1 管式 PECVD抽气工艺模拟测试
实施例 1给出了管式 PECVD设备配备的干式真空泵抽气工艺模拟测试方法, 采用本发 明公开的干式真空泵抽气工艺模拟测试系统进行测试。
PECVD是 IC产业中典型的生产工艺之一, 其干泵用量大、 抽气环境恶劣, 对干泵适应 其恶劣抽气工艺的需求迫切。 PECVD 管式炉抽气工艺复杂, 工艺的气体和副产物包括具有 自燃性、 易燃性、 腐蚀性、 可凝性和有毒的物质, 工作在这种工艺下的干泵, 必须具备很高 的可靠性和耐腐蚀性。通常在抽气工艺中要求绝对安全不外泄, 而且这些气体通常具有较高 的温度, 且进入真空泵前不允许过度冷却。 同时, PECVD 工艺中含有大量粉尘, 由于含有 硅烷, 接触氧气后会迅速生成氧化硅颗粒, 容易吸附在泵腔内和转子表面上, 而且可能会进 入到油箱和轴承里, 造成严重的破坏后果。
本发明公开的技术方案是这样实施的, 首先对管式 PECVD抽气工艺进行研究, 列出其 真空系统图及工作节拍, 如图 2所示。 模拟真空室中需要引入的气体有 NH3, SiH4, N2, 此外, 以硅胶微粒代替硅烷遇氧气后产生的氧化硅颗粒,并补充一定的水分, 以模拟 PECVD 排放气体中的副产物。 实际的抽气工艺总结如图 3左侧所示, 结合模拟系统的功能, 将模拟 系统的抽气工艺规划出来, 如图 3右侧部分所示。
待模拟测试实验完成后, 对获得的各项性能参数进行分析和对比, 获得在该抽气工艺下 干泵性能所受的影响; 同时, 拆解干泵, 观察密封结构、转子表面、 泵腔内表面、 间隙情况、 转子变形、 轴承磨损等位置的变化情况, 结合分析结果, 对干泵抽气工艺性能进行完善。
实施例 2 MOCVD抽气工艺模拟测试
另一种典型的恶劣工艺是 MOCVD抽气工艺。由于 MOCVD工作在相对较高压力的真空 下, 由于含有金属碎屑和烟尘, 而且由于含有氢气易爆。 对 MOCVD 抽气工艺的模拟与 PECVD大致相当, 但在输入元素上, 要加入一定的金属微珠和陶瓷微珠, 充入 H2气体。
实施例 3 RH/VOD抽气工艺模拟测试
RH/VOD是一种典型的钢液真空脱气处理的真空冶金工艺, 传统设计上采用水蒸气喷射 泵作为抽气系统,但由于水蒸气喷射泵抽气效率低、占地面积和占用空间多、耗电耗水巨大、 维修保养费时费工, 目前已经有采用干式真空泵(机组)取代的实例。 RH/VOD的抽气工艺 也比较恶劣, 通常含有多种气体、 高温水蒸气、 金属碎屑、 矿渣、 粉尘等多种副产物。
对 RH/VOD的抽气工艺模拟测试, 基本方法与 PECVD相似, 但输入元素中水分和金属 微珠的比例增大, 同时应加入一定的粉尘, 模拟时, 可以采用微细沙粒代替。
实施例 4 制药的抽气工艺模拟测试
典型的制药工艺, 如 VC合成, 由于原料极易氧化, 需要在真空环境下对药物进行传递、 混合、 合成反应等。 由于药物合成对泵油蒸汽的敏感性, 需要干式真空泵来提供真空环境。 反应过程中, 极细的颗粒状药物易被抽到真空泵中, 加上原料中所含的水分被抽走, 容易在 真空泵转子表面形成泥膏状聚集, 造成电机功率加剧, 轴承负载和密封负载加剧, 从而影响 干泵的稳定性。 对制药过程的抽气工艺模拟, 主要需要加入微尘和水分。

Claims

权 利 要 求 书
1 . 一种干式真空泵抽气工艺模拟测试方法, 其特征在于, 连接待测试的干式真空泵, 通 过组合和设定集成化的模拟测试系统中的各种输入元素,模拟各种实际被抽真空环境的抽气 工艺, 同时对待测试的干式真空泵进行测试运转, 在线连续测试各路测试信号, 考察真空泵 在实际工作时的各项指标运转情况和对抽气环境的适应情况,对真空泵的设计制造和抽气工 艺的设定进行改善和优化; 同时, 对真空泵的出厂质量进行检验, 以达到对应用于各种真空 环境下真空泵适应情况进行测试和改善产品的目的。
2. 根据权利要求 1所述的干式真空泵抽气工艺模拟测试方法, 其特征在于, 所述集成化 的模拟测试系统中的各种输入元素包括气、 液、 电、 磁、 热、 粉尘颗粒、 腐蚀性物质。
3. 根据权利要求 1所述的干式真空泵抽气工艺模拟测试方法, 其特征在于, 所述各路测 试信号包括有温度、 湿度、 气体成分、 实时图像、 压力、 流量和噪声信号。
4. 一种干式真空泵抽气工艺模拟测试系统, 其特征在于, 包括模拟抽气环境的真空室、 各路模拟元素输入单元、 各路信号监测单元、 辅助抽气管路、 安全保护系统、 尾气收集系统 及用于控制上述各单元的控制系统;
所述模拟元素输入单元用于各种输入元素的组合和设定;
所述信号监测单元用于对多种测试信号的在线监测, 获得在设定抽气工艺下, 被测真空 泵在模拟测试系统中的各种性能指标。
5. 根据权利要求 4所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述模拟元 素输入单元包括气体输入单元、液体输入单元、 电场输入单元、磁场输入单元、热输入单元、 粉尘输入单元和腐蚀性物质输入单元中的一种或几种。
6. 根据权利要求 5所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述气体输 入单元和液体输入单元通过阀控制气体 /液体的输入。
7. 根据权利要求 5所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述电场输 入单元通过电源激发输入电场信号。
8. 根据权利要求 5所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述磁场输 入单元通过电磁源激发输入磁场信号。
9. 根据权利要求 4所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述信号监 测单元包括温度监测单元、 实时图像监测单元、 压力监测单元、 噪声监测单元、 真空室内的 湿度监测单元、 气体成分监测单元、 连接模拟真空室的各路气体入口处、 被测真空泵入口处 的流量监测单元中的一种或多种。
10. 根据权利要求 9所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述温度 监测单元包括连接在干式真空泵的吸气口、 排气口、 轴承座或齿轮箱处的温度传感器。
11 . 根据权利要求 9所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述实时 图像监测单元为安装对准泵入口和泵出口的高速成像系统, 用于反馈真空室内可见液滴、粉 尘颗粒的被抽情况和真空泵的受影响情况。
12. 根据权利要求 9所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述压力 监测单元包括真空室内的压力传感器 /真空度传感器和连接在被测真空泵的吸气口、 排气口 或级间过渡隔板的压力传感器 /真空度传感器。
13. 根据权利要求 9所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所噪声监 测单元包括真空室内的声纳探头、 真空室外的分贝计。
14. 根据权利要求 5所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述辅助 抽气管路为连接在模拟真空室的另一套辅助真空系统, 包括真空泵、 真空计、 真空阀门以及 连接管路的真空系统。
15. 根据权利要求 5所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述安全 保护系用于根据各种工艺的临界阈值对抽气过程进行监控, 并采取报警、及时的关闭造成危 险状况的元素输入、 充惰性气体保护措施, 对整个模拟测试系统进行安全保护。
16. 根据权利要求 5所述的干式真空泵抽气工艺模拟测试系统, 其特征在于, 所述尾气 收集系统包括废气、 废液和固体排放物的收集系统, 并连接到污染物处理系统。
PCT/CN2014/070372 2013-11-15 2014-01-09 干式真空泵抽气工艺模拟测试方法及测试系统 WO2015070529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310572691.8A CN104632604B (zh) 2013-11-15 2013-11-15 干式真空泵抽气工艺模拟测试方法及测试系统
CN201310572691.8 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015070529A1 true WO2015070529A1 (zh) 2015-05-21

Family

ID=53056683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070372 WO2015070529A1 (zh) 2013-11-15 2014-01-09 干式真空泵抽气工艺模拟测试方法及测试系统

Country Status (2)

Country Link
CN (1) CN104632604B (zh)
WO (1) WO2015070529A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105946842A (zh) * 2016-06-13 2016-09-21 上汽通用汽车有限公司 用于监测电子真空泵的抽气性能的监测方法及监测系统
CN107796678A (zh) * 2017-12-04 2018-03-13 浙江省安全生产科学研究院 一种用于恶劣环境的气体监测装置
CN112855515A (zh) * 2021-03-12 2021-05-28 深圳市鑫路远电子设备有限公司 一种真空泵安全监测方法和装置
CN113155227A (zh) * 2021-04-08 2021-07-23 国网宁夏电力有限公司电力科学研究院 一种sf6废气连续回收方法及回收装置
CN113757094A (zh) * 2021-11-09 2021-12-07 杭州谦泰五金机械制造有限公司 一种新能源汽车电子真空泵性能检测装置
CN114200237A (zh) * 2021-12-10 2022-03-18 泰州赛宝工业技术研究院有限公司 一种高精度高低压测试箱及其稳压方法
CN115143090A (zh) * 2022-07-13 2022-10-04 西安热工研究院有限公司 一种确定火电机组抽真空系统水环真空泵性能的方法
CN115145201A (zh) * 2022-07-19 2022-10-04 长沙昌佳自动化设备有限公司 一种干式真空泵专用控制器
CN116106052A (zh) * 2023-02-28 2023-05-12 山东华东风机有限公司 一种悬浮离心风机现场模拟测试系统及测试方法
CN117167261A (zh) * 2023-11-03 2023-12-05 海门市海真真空设备有限公司 基于往复式运动的真空泵内部性能检测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884784B (zh) * 2017-03-17 2018-09-28 北京新能源汽车股份有限公司 一种真空泵的性能评估方法、装置及电动汽车
CN107942918B (zh) * 2017-12-22 2023-04-18 大连华锐重工集团股份有限公司 自适应式干式真空机械泵电控系统及控制方法
CN111365221B (zh) * 2018-12-26 2021-06-01 东北大学 集成干泵测试台控制方法
CN112524012B (zh) * 2019-09-18 2022-05-20 青岛海尔电冰箱有限公司 真空泵的性能测试方法与装置
CN111123793A (zh) * 2019-12-29 2020-05-08 中国科学院西安光学精密机械研究所 一种真空试验控制系统及方法
CN113885310B (zh) * 2020-07-01 2023-03-28 东北大学 一种用于真空干泵测试的智能控制系统
CN112345873B (zh) * 2020-12-04 2023-08-01 苏州长光华芯光电技术股份有限公司 半导体激光器低温老化测试装置及低温老化测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162438A1 (en) * 2002-07-29 2006-07-27 Schofield Nigel P Condition monitoring of pumps and pump system
WO2009029961A2 (en) * 2007-09-01 2009-03-05 John Wrathmall Device for measuring the real-time performance of a pump
CN102141034A (zh) * 2011-04-22 2011-08-03 宁波拓普制动系统有限公司 一种电子真空泵示功平台
CN201925151U (zh) * 2011-03-08 2011-08-10 黑龙江省农业机械工程科学研究院 真空泵性能检测装置
CN102606465A (zh) * 2012-03-06 2012-07-25 昆山佳铭自动化科技有限公司 电子真空泵综合性能检测装置
CN102734147A (zh) * 2012-06-26 2012-10-17 成都嘉陵华西光学精密机械有限公司 真空泵性能综合测试系统及方法
CN202545213U (zh) * 2012-03-06 2012-11-21 昆山佳铭自动化科技有限公司 电子真空泵综合性能检测装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162846A (ja) * 1987-12-18 1989-06-27 Takahashi Seimitsu Kogyo Kk 織機の鋏式緯糸切断装置
CN102828952B (zh) * 2012-07-24 2015-04-08 中国科学院沈阳科学仪器股份有限公司 干式真空泵单元及具有该干式真空泵单元的干式真空泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162438A1 (en) * 2002-07-29 2006-07-27 Schofield Nigel P Condition monitoring of pumps and pump system
WO2009029961A2 (en) * 2007-09-01 2009-03-05 John Wrathmall Device for measuring the real-time performance of a pump
CN201925151U (zh) * 2011-03-08 2011-08-10 黑龙江省农业机械工程科学研究院 真空泵性能检测装置
CN102141034A (zh) * 2011-04-22 2011-08-03 宁波拓普制动系统有限公司 一种电子真空泵示功平台
CN102606465A (zh) * 2012-03-06 2012-07-25 昆山佳铭自动化科技有限公司 电子真空泵综合性能检测装置
CN202545213U (zh) * 2012-03-06 2012-11-21 昆山佳铭自动化科技有限公司 电子真空泵综合性能检测装置
CN102734147A (zh) * 2012-06-26 2012-10-17 成都嘉陵华西光学精密机械有限公司 真空泵性能综合测试系统及方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105946842A (zh) * 2016-06-13 2016-09-21 上汽通用汽车有限公司 用于监测电子真空泵的抽气性能的监测方法及监测系统
CN107796678A (zh) * 2017-12-04 2018-03-13 浙江省安全生产科学研究院 一种用于恶劣环境的气体监测装置
CN112855515A (zh) * 2021-03-12 2021-05-28 深圳市鑫路远电子设备有限公司 一种真空泵安全监测方法和装置
CN112855515B (zh) * 2021-03-12 2022-01-28 深圳市鑫路远电子设备有限公司 一种真空泵安全监测方法和装置
CN113155227A (zh) * 2021-04-08 2021-07-23 国网宁夏电力有限公司电力科学研究院 一种sf6废气连续回收方法及回收装置
CN113757094A (zh) * 2021-11-09 2021-12-07 杭州谦泰五金机械制造有限公司 一种新能源汽车电子真空泵性能检测装置
CN114200237A (zh) * 2021-12-10 2022-03-18 泰州赛宝工业技术研究院有限公司 一种高精度高低压测试箱及其稳压方法
CN114200237B (zh) * 2021-12-10 2022-12-06 泰州赛宝工业技术研究院有限公司 一种高精度高低压测试箱及其稳压方法
CN115143090A (zh) * 2022-07-13 2022-10-04 西安热工研究院有限公司 一种确定火电机组抽真空系统水环真空泵性能的方法
CN115145201A (zh) * 2022-07-19 2022-10-04 长沙昌佳自动化设备有限公司 一种干式真空泵专用控制器
CN116106052A (zh) * 2023-02-28 2023-05-12 山东华东风机有限公司 一种悬浮离心风机现场模拟测试系统及测试方法
CN117167261A (zh) * 2023-11-03 2023-12-05 海门市海真真空设备有限公司 基于往复式运动的真空泵内部性能检测装置
CN117167261B (zh) * 2023-11-03 2023-12-26 海门市海真真空设备有限公司 基于往复式运动的真空泵内部性能检测装置

Also Published As

Publication number Publication date
CN104632604B (zh) 2017-03-15
CN104632604A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2015070529A1 (zh) 干式真空泵抽气工艺模拟测试方法及测试系统
US10670496B2 (en) Methods and apparatus for estimating useful life of a seal
US7711500B1 (en) Pressure relief valve monitoring
CN108983052B (zh) 一种基于sf6气体绝缘设备分解组分的三类故障三角形诊断方法
CN106499893A (zh) 一种具有泄漏监测功能的多道密封法兰
CN206419591U (zh) 一种具有泄漏监测功能的多道密封法兰
CN203939580U (zh) 涡轮机润滑油分析仪设备
JP2017089462A (ja) 真空ポンプの判断システム、および真空ポンプ
Yanzina et al. Improving efficiency of agricultural machinery exploitation as factor of optimization use of agricultural land
CN113112024B (zh) 一种随机多裂纹随机扩展的预测与控制方法及系统
Pinna et al. Collection and analysis of data related to fusion machines (JET and TLK) operating experience on component failure
CN211526097U (zh) 一种用于具有报警的密封装置的免于泄漏检测系统
CN100504340C (zh) 易挥发性排放物的收集装置
CN206103660U (zh) 一种洗涤塔预降温装置
CN211574241U (zh) 具有收集装置的用于密封装置的免于泄漏检测系统
CN107044586A (zh) 防泄漏智能煤气排水器
CN204705568U (zh) 基于烟尘监测仪的吹扫装置
CN202893080U (zh) 用于分离合金板带酸洗雾滴的在线分离装置
CN208902221U (zh) 一种废塑料热解行业含渣重油测量装置
Zhang et al. A review of valve health diagnosis and assessment: Insights for intelligence maintenance of natural gas pipeline valves in China
CN111536430A (zh) 基于温湿度对管道泄漏监测立体定位的方法
CN205280245U (zh) 温度传感器在线泄露的检查装置
CN116596323B (zh) 一种基于大数据的磁性材料生产安全监测系统及方法
KR100669856B1 (ko) 배관 연결 부재 및 이를 포함하는 반도체 기판 가공 장치
CN202170251U (zh) 一种待室检测腔体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862001

Country of ref document: EP

Kind code of ref document: A1