WO2015068536A1 - 固定式等速自在継手 - Google Patents

固定式等速自在継手 Download PDF

Info

Publication number
WO2015068536A1
WO2015068536A1 PCT/JP2014/077321 JP2014077321W WO2015068536A1 WO 2015068536 A1 WO2015068536 A1 WO 2015068536A1 JP 2014077321 W JP2014077321 W JP 2014077321W WO 2015068536 A1 WO2015068536 A1 WO 2015068536A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
joint member
ball
track groove
track
Prior art date
Application number
PCT/JP2014/077321
Other languages
English (en)
French (fr)
Inventor
博康 蛭川
輝明 藤尾
Original Assignee
Ntn株式会社
博康 蛭川
輝明 藤尾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 博康 蛭川, 輝明 藤尾 filed Critical Ntn株式会社
Priority to CN201480057476.7A priority Critical patent/CN105658981B/zh
Priority to EP14860079.4A priority patent/EP3067582B1/en
Priority to US15/032,728 priority patent/US10208805B2/en
Publication of WO2015068536A1 publication Critical patent/WO2015068536A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22303Details of ball cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22309Details of grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S464/00Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
    • Y10S464/904Homokinetic coupling
    • Y10S464/906Torque transmitted via radially spaced balls

Definitions

  • the present invention relates to a fixed type constant velocity universal joint that is used in, for example, a power transmission system of an automobile and allows only an angular displacement between two shafts of a driving side and a driven side, and is mainly mounted on an FR vehicle or a 4WD vehicle.
  • the present invention relates to a fixed type constant velocity universal joint for a propeller shaft that transmits rotational power from a transmission to a differential.
  • a track groove intersecting type (see, for example, Patent Document 1) in which track grooves intersect is known, and is appropriately used depending on the application, required characteristics, and the like.
  • FIG. 14a is a longitudinal sectional view (cross-sectional view taken along line AOB in FIG. 14b) of the cross fixed CVJ for the propeller shaft at an operating angle of 0 °
  • FIG. 14b is the cross fixed fixed type. It is a front view of CVJ.
  • the constant velocity universal joint 100 includes an outer joint member 102, an inner joint member 103, a ball 104, and a cage 105.
  • Eight arc-shaped track grooves 107 are formed on the spherical inner peripheral surface 106 of the outer joint member 102, and each track groove 107 has a plane including the ball trajectory center line x with respect to the joint axis nn.
  • the track grooves 107 are inclined in opposite directions in the circumferential direction.
  • Eight arc-shaped track grooves 109 are formed on the spherical outer peripheral surface 108 of the inner joint member 103, and each track groove 109 is formed on the outer side with respect to the plane P including the joint center O at the operating angle of 0 °. It is formed in a mirror image symmetry with the track groove 107 that forms a pair of the joint member 102. That is, the inner joint member 103 is incorporated in the inner periphery of the outer joint member 102 so that the pair of track grooves 107 and 109 intersect.
  • the center of curvature of the track groove 107 of the outer joint member 102 and the track groove 109 of the inner joint member 103 are both located at the joint center O.
  • the ball 104 is interposed at the intersection of the paired track grooves 107 and 109, and is a pocket of the cage 105 disposed between the spherical inner peripheral surface 106 of the outer joint member 102 and the spherical outer peripheral surface 108 of the inner joint member 103. It is accommodated and held in the portion 105a.
  • the curvature centers of the spherical outer peripheral surface 111 and the spherical inner peripheral surface 112 of the cage 105 are both located at the joint center O.
  • the ball 104 is interposed at the intersection of the paired track grooves 107, 109. Therefore, when the joint takes an operating angle, the ball 104 has the outer joint member 102 and the inner joint member 103. Are always guided on a plane that bisects the angle formed by the two axes. Thereby, rotational torque is transmitted at a constant speed between the two shafts.
  • the track groove 107 of the outer joint member 102 and the track groove 109 of the inner joint member 103 are track grooves adjacent to each other in the circumferential direction, and the inclination directions are opposite to each other. Therefore, when the joint members 102 and 103 rotate relative to each other at an operating angle of 0 °, forces in opposite directions from the ball 104 act on the pockets 105 a adjacent to the circumferential direction of the cage 105. Thereby, the cage 105 is stabilized at the position of the joint center O.
  • the operability of the fixed type constant velocity universal joint in which the rotational torque is transmitted between the two joint members via the ball is the same as that of the ball track formed by the pair of track grooves. This is ensured by setting the wedge angle (by restraining the ball with a pair of track grooves).
  • the force that presses the cage 105 to one side in the axial direction acts from the ball 104 in a state where the operating angle is 0 °.
  • the wedge angle formed so as to be positive and the wedge angle formed so that the force that presses the cage 105 to the other side in the axial direction acts from the ball 104 is negative, the wedge on the positive side and the negative side
  • the desired joint performance is ensured by alternately arranging the ball tracks forming the corners in the circumferential direction.
  • the size of the wedge angle and the opening direction depend on the track grooves 107 and 109 (the ball tracks).
  • the plane (including the center line) is determined by the angle (tilt angle) formed with respect to the joint axis nn, the contact angle of the ball 104 with respect to the track grooves 107 and 109, and the operating angle.
  • the wedge angle of each ball track changes every moment as the joint takes an operating angle, and further changes every moment while both joint members relatively rotate.
  • the wedge angle may shift from the plus side to 0 or minus side, or from the minus side to 0 or plus side while both joint members rotate once. is there.
  • the wedge angle shifts from the plus side to the minus side, or when the wedge angle changes from the minus side to the plus side (that is, when the opening direction of the wedge angle is reversed)
  • the wedge angle temporarily becomes 0.
  • Become. “The wedge angle becomes 0” means that the positional restriction of the ball by the paired track grooves is released. Therefore, if the wedge angle temporarily becomes 0, the operability of the joint may be adversely affected. However, such a problem is considered to be avoided as much as possible by holding the ball in the pocket portion of the cage. It was.
  • FIG. 10a shows that during the rotation of both joint members in a state where the six-ball type cross-type fixed CVJ in which the inclination angle of each track groove is set to 6 ° with respect to the joint axis takes an operating angle of 12 °
  • FIG. 10 is a diagram showing a result of verifying how the wedge angle of each ball track T 1 to T 6 (see FIG. 10b) changes.
  • FIG. 10b schematically shows the state of the wedge angle of each of the ball tracks T 1 to T 6 (whether the wedge angle is plus, minus or 0) when the ball track T 1 is at a phase angle of 90 °.
  • FIG. 10b Note that “+”, “ ⁇ ”, and “0” shown in FIG. 10b indicate that the wedge angles are the plus side, the minus side, and zero, respectively. The same applies to FIGS. 11b to 11d and 15b to 15d described later.
  • the wedge angle of each of the ball tracks T 1 to T 6 is shown in FIG. It changes in the mode shown in.
  • the wedge angles of the ball tracks T 1 to T 6 at the phase angles of 0 °, 30 °, and 90 ° are in the states shown in FIGS. 11b to 11d, respectively, and the ball track T 1 has the phase angle of 0 °.
  • the rotational force R is the cage for the linear Z 2 shown in Figure 11b with the shaft, when the ball track T 1 is located at the phase angle 30 ° has a shaft linear Z 3 shown in FIG.
  • rotational force acts on the cage for, when the ball track T 1 is located at a phase angle 90 °, the rotational force acts on the cage for a linear Z 4 shown in FIG. 11d and shaft. More specifically, if the joint members rotate relative to each other with the crossed fixed CVJ having an operating angle of 24 °, the rotational force R always acts on the cage, so that it does not function as a joint.
  • FIG. 15a shows a state where an eight-ball type cross-type fixed CVJ in which the inclination angle of each track groove with respect to the joint axis is set to 6 ° makes one rotation while both joint members make a rotation angle of 12 °.
  • FIGS. 15b to 15d show the results of verifying how the wedge angles of the eight ball tracks t 1 to t 8 change, and FIGS.
  • FIG. 15b to 15d show that the ball track t 1 has a phase angle of 0 ° and 45 °, respectively.
  • FIG. 6 is a diagram schematically showing a state of a wedge angle of each ball track t 1 to t 8 when the angle is 90 °.
  • the ball tracks t 1 is the phase angle of 0 ° shown respectively, in any case when located at 45 ° and 90 ° also, the ball tracks t 1 rotational force to the cage with the state of the wedge angle formed ⁇ t 8 does not act.
  • illustration is omitted, even if both joint members rotate relative to each other in the state where the eight-ball type cross-type fixed CVJ has an operating angle of 24 °, no rotational force acts on the cage.
  • the 6-ball type fixed constant velocity universal joint can be reduced in cost by (1) the total number of members less than the 8-ball type fixed constant velocity universal joint. (2) Processing of each member Since the characteristics and the assemblability are good, individual differences in quality (performance) can be reduced, and (3) the load capacity can be increased as much as the ball size can be increased. Therefore, if a six-ball type cross-type fixed CVJ can be realized, a highly efficient propeller shaft with less torque loss and heat generation can be realized while effectively enjoying the above-described advantages.
  • the object of the present invention is to provide a six-ball which is highly efficient with little torque loss and heat generation within the range of operating angle of the propeller shaft, and can stably exhibit desired joint performance.
  • An object of the present invention is to provide a fixed type constant velocity universal joint with crossed track grooves.
  • the wedge angle depends on the operating angle of the joint, the inclination angle of the track groove with respect to the axis of the joint, and the contact angle of the ball with respect to the track groove. Change.
  • a six-ball type cross fixed CVJ (strictly speaking, a ball track with a positive wedge angle formed at a working angle of 0 ° and a ball track with a negative wedge angle formed around
  • the six-ball type cross-type fixed CVJ which is alternately arranged in the direction, if the wedge angle of each ball track does not become zero during one rotation of both joint members, a rotational force acts on the cage. Therefore, problems such as instability of cage behavior can be avoided.
  • the present inventors have both joints in the case where the contact angle is changed without changing the inclination angle, and the case where the inclination angle is changed without changing the contact angle. It was verified how the wedge angle changes during one rotation of the member. As a result, it has been found that even when the contact angle is changed without changing the tilt angle, the phase at which the wedge angle becomes 0 does not change. As shown in FIG. 12, for example, the wedge angle of a ball track T ⁇ formed by a track groove having a contact angle ⁇ , and the ball track T ⁇ formed by a track groove having a contact angle ⁇ ′ larger than ⁇ .
  • the present invention devised to achieve the above object includes an outer joint member in which six track grooves extending in the axial direction are formed on the spherical inner peripheral surface, and a track groove of the outer joint member on the spherical outer peripheral surface.
  • An inner joint member formed with six track grooves paired with each other, a ball for transmitting torque interposed between the track groove of the outer joint member paired with the track groove of the inner joint member, and holding the ball
  • a cage having a spherical outer peripheral surface fitted to the spherical inner peripheral surface of the outer joint member and a spherical inner peripheral surface fitted to the spherical outer peripheral surface of the inner joint member.
  • the track groove is formed in an arc shape having a center of curvature with no offset in the axial direction with respect to the joint center, and is inclined in the circumferential direction with respect to the axis of the joint, and the inclined direction is a track groove adjacent to the circumferential direction.
  • Each other A fixed constant velocity formed in the opposite direction and formed so that the track groove of the inner joint member is mirror-symmetrical with the track groove forming the pair of the outer joint member with respect to the joint center plane in a state where the operating angle is 0 °.
  • a universal joint that is used by being incorporated in a propeller shaft is characterized in that the inclination angle ⁇ of the track groove of the outer joint member with respect to the axis of the joint is set to 8 ° to 16 °.
  • joint axis in the present invention means a longitudinal axis serving as the center of rotation of the joint, and refers to the joint axis NN in an embodiment described later.
  • joint center plane at an operating angle of 0 ° is synonymous with a plane including the joint center at an operating angle of 0 ° and extending in a direction orthogonal to the axis of the joint.
  • the effective length of the track groove of the outer joint member when the pitch circle radius (PCR) of the ball is R, the diameter of the ball is d, and the operating angle of the fixed type constant velocity universal joint when the propeller shaft is incorporated in the automobile is ⁇ .
  • the center of curvature of the track groove may be arranged on the axis of the joint, or may be arranged at a position offset in the radial direction from the axis of the joint. If the former configuration is adopted, the track groove depth can be made uniform and the processing can be facilitated. If the latter configuration is adopted, the track groove depth can be adjusted in accordance with the offset amount, so that the optimum track groove depth can be ensured.
  • the ball can be brought into contact with the track groove of the outer joint member and the track groove of the inner joint member at a contact angle of 30 ° to 45 °. In this way, the contact state between the track groove and the ball can be stably maintained.
  • the track groove crossing type fixed constant velocity universal joint can be provided.
  • FIG. 6a It is a figure which shows the result of having investigated the influence which the magnitude
  • FIG. 10 is a diagram for explaining technical knowledge in the process leading to the present invention, and is a joint member in a state where a six-ball type track groove crossing fixed type constant velocity universal joint has a larger operating angle than FIG.
  • FIG. 14a It is a longitudinal cross-sectional view which shows an example of an eight ball type track groove crossing type fixed constant velocity universal joint. It is a front view of a track groove crossing type fixed constant velocity universal joint of 8 ball type. It is a figure which shows the change aspect of the wedge angle of each ball track when an outer joint member and an inner joint member rotate relatively in the state which the fixed type constant velocity universal joint shown in FIG. 14a took the predetermined operating angle.
  • Fig. 1a shows a partial longitudinal sectional view of a fixed type constant velocity universal joint 1 according to the first embodiment of the present invention
  • Fig. 1b shows a front view of the equivalent constant velocity universal joint 1.
  • This constant velocity universal joint 1 is mainly mounted on an FR vehicle or a 4WD vehicle and is used by being incorporated in a propeller shaft that transmits rotational power from a transmission to a differential, and includes an outer joint member 2 having a ring shape and An inner joint member 3, six balls 4 disposed between the both joint members 2 and 3, and a cage 5 that holds the balls 4 are provided.
  • the propeller shaft incorporating the constant velocity universal joint 1 will be described in detail later.
  • each track groove 9 has an axis N of the joint.
  • the angle ⁇ is inclined in the circumferential direction with respect to ⁇ N, and the inclined direction is formed in opposite directions by the track grooves 9A and 9B adjacent in the circumferential direction.
  • the inner joint member 3 is incorporated in the inner periphery of the outer joint member 2 so that each track groove 9 intersects with the track groove 7 which is a pair of the outer joint member 2.
  • One ball 4 is disposed at each intersection of the track grooves 7 and 9 that form a pair of the outer joint member 2 and the inner joint member 3.
  • the pitch circle radius (PCR) of the ball 4 is R
  • the diameter of the ball 4 is d
  • the operating angle of the constant velocity universal joint 1 when the propeller shaft is incorporated into the automobile is ⁇
  • ball trajectory centerline is used to accurately indicate the form of the track groove (inclined state, curved state, etc.).
  • the center line of the ball trajectory means a trajectory drawn by the center of the ball when the ball moves along the track groove. Therefore, the form of the track groove is the same as the form of the ball track center line.
  • the ball track center line X of the track groove 7 of the outer joint member 2 and the ball track center line Y of the track groove 9 of the inner joint member 3 are both circular with the joint center O as the center of curvature. It has an arc shape.
  • the center of curvature of the ball track center line X of the track groove 7 of the outer joint member 2 and the ball track center line Y of the track groove 9 of the inner joint member 3 are both the joint center O, that is, the joint axis N ⁇ .
  • the cross-sectional (axial orthogonal cross-sectional) shape of the track grooves 7 and 9 is an elliptical shape or a Gothic arch shape, and the track grooves 7 and 9 and the ball 4 are 30 ° to 45 °.
  • the contact is a so-called angular contact with a contact angle of a certain degree. Therefore, the ball 4 is in contact with the side surfaces of the track grooves 7 and 9 that are slightly separated from the groove bottoms of the track grooves 7 and 9.
  • Reference numeral 7 denotes the entire track groove of the outer joint member 2.
  • reference numeral 7A is given to the track groove inclined to one side in the circumferential direction with respect to the joint axis NN, and the other in the circumferential direction with respect to the joint axis NN.
  • Reference numeral 7B is given to the track groove inclined to the side.
  • the track grooves 9 of the inner joint member 3 are also given the same reference numerals.
  • FIGS. 2a and 2b A state where the track groove 7 of the outer joint member 2 is inclined in the circumferential direction with respect to the joint axis NN will be described with reference to FIGS. 2a and 2b.
  • the plane M including the ball track center line X and the joint center O of the track groove 7A is inclined at an angle ⁇ on one side in the circumferential direction with respect to the joint axis NN.
  • the plane M including the ball track center line X and the joint center O of the track groove 7B adjacent to the track groove 7A in the circumferential direction is inclined at an angle ⁇ to the other side in the circumferential direction with respect to the joint axis NN.
  • FIGS. 3a and 3b A state where the track groove 9 of the inner joint member 3 is inclined in the circumferential direction with respect to the joint axis NN will be described with reference to FIGS. 3a and 3b.
  • the plane Q including the ball track center line Y and the joint center O of the track groove 9A is inclined at an angle ⁇ on one side in the circumferential direction with respect to the joint axis NN.
  • the plane Q including the ball track center line Y and the joint center O of the track groove 9B adjacent to the track groove 9A in the circumferential direction is the other side in the circumferential direction with respect to the joint axis NN (inclination direction of the track groove 9A).
  • the angle ⁇ is inclined in the opposite direction).
  • the track groove 9 (9A, 9B) of the inner joint member 3 is mirror-image-symmetric with the track groove 7 (7A, 7B) that forms the pair of the outer joint member 2 with reference to the joint center plane P at the operating angle of 0 °. Is formed.
  • FIG. 4 is a cross-sectional view of the track groove 7A shown in FIG. 2a as viewed in a plane M including the ball track center line X and the joint center O, that is, an angle ⁇ in the circumferential direction with respect to the joint axis NN.
  • FIG. 6 is a cross-sectional view in a plane including an inclination axis N′-N ′ inclined by a distance of FIG. 4 shows only the track groove 7A among the track grooves 7A and 7B having different inclination directions.
  • a track groove 7A is formed in the spherical inner peripheral surface 6 of the outer joint member 2 along the axial direction.
  • the track groove 7A has an arc-shaped ball trajectory center line X having the joint center O as the center of curvature (no offset in the axial direction).
  • the perpendicular line at the joint center O of the inclined axis N′-N ′ projected onto the plane M (see FIG. 2A) including the ball trajectory center line X of the track groove 7A and the joint center O is K
  • this perpendicular K is activated.
  • the joint is on the joint center plane P at an angle of 0 °.
  • the track groove 9A has an arc-shaped ball trajectory center line Y with the joint center O as the center of curvature (no axial offset). If the perpendicular line at the joint center O of the inclined axis N′-N ′ projected on the plane Q (see FIG. 3A) including the ball track center line Y of the track groove 9A and the joint center O is K, this perpendicular K is activated.
  • the joint is on the joint center plane P at an angle of 0 °.
  • the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3 are track grooves adjacent to each other in the circumferential direction, and the inclined directions are opposite to each other. 7 and 9 intersect. Therefore, when the joint members 2 and 3 rotate relative to each other with the operating angle of 0 ° shown in FIG. 1 a, forces in opposite directions from the balls 4 act on the pocket portions 5 a adjacent to the circumferential direction of the cage 5.
  • the cage 5 is stabilized at the position of the joint center O by the forces in the opposite directions.
  • the inclination angle ⁇ of the track groove 7 (7A, 7B) of the outer joint member 2 with respect to the joint axis NN is set to 8 ° or more and 16 ° or less. That is, the plane M including the ball track center line X and the joint center O of the track groove 7 (7A, 7B) is inclined in the circumferential direction within a range of 8 ° to 16 ° with respect to the joint axis NN. Yes.
  • the axis of the joint The inclination angle ⁇ of the track groove 9 (9A, 9B) with respect to NN is also set to 8 ° to 16 °. That is, the plane Q including the ball track center line Y and the joint center O of the track groove 9 (9A, 9B) is inclined in the circumferential direction within a range of 8 ° to 16 ° with respect to the joint axis NN. Yes.
  • the plus wedge angle is zero or zero at the operating angle of 0 ° while the two joint members 2 and 3 rotate once. It does not shift to the minus side, or the wedge angle on the minus side does not shift to zero or to the plus side when the operating angle is 0 °. Therefore, it is possible to reliably prevent the rotational force from acting on the cage 5 when the constant velocity universal joint 1 is used, that is, to prevent the behavior of the cage 5 from becoming unstable. As a result, problems such as an increase in torque loss and heat generation due to instability of cage behavior can be avoided. In addition, if it supplements about "(triangle
  • FIG. 7 shows a schematic cross-sectional view of a propeller shaft including the six-ball type track groove intersecting fixed constant velocity universal joint 1 described above.
  • the propeller shaft 20 is attached to the constant velocity universal joint 1, the shaft 22 in which one end in the axial direction is splined to the hole of the inner joint member 3, the outer peripheral surface of the outer joint member 2, and the outer peripheral surface of the shaft 22.
  • a boot 21 for preventing external leakage of the lubricant enclosed in the joint.
  • the shaft 22 has a large-diameter pipe portion 22a, and a sliding type constant velocity universal joint or a fixed type constant velocity universal joint (not shown) is connected to the other end portion of the shaft 22 in the axial direction.
  • the boot 21 includes a seal ring 21 a fixed to the outer peripheral surface of the outer joint member 2, and an elastic boot portion 21 b having one end fixed to the seal ring 21 a and the other end attached to the shaft 22 by a boot band 23.
  • the seal ring 21a of the boot 21 is fixed to the outer peripheral surface of the outer joint member 2 by, for example, caulking, but detailed illustration is omitted here.
  • the constant velocity universal joint 1 according to the first embodiment of the present invention has been described above. However, the constant velocity universal joint 1 described above can be variously modified without departing from the gist of the present invention. is there.
  • a constant velocity universal joint according to another embodiment of the present invention will be described. In the following, a configuration different from the above-described first embodiment will be mainly described, and substantially the same as the first embodiment. The same reference numerals are given to members / parts having similar functions, and duplicate explanations are omitted.
  • the groove depth of the track groove 7 (7A, 7B) of the member 2 can be increased (refer to reference numerals R, R ′ in the figure). However, in this case, the groove depth of the track groove 9 of the inner joint member 3 incorporated in the inner periphery of the outer joint member 2 becomes shallow.
  • the center of curvature of the ball raceway center line Y of the track groove 9 (9A, 9B) of the inner joint member 3 is offset by f in the radial direction with respect to the joint axis NN in the manner shown in FIG.
  • the groove depth of the track grooves 9 (9A, 9B) of the inner joint member 3 can be increased (refer to reference numerals R, R ′ in the figure).
  • the groove depth of the track groove 7 of the outer joint member 2 in which the inner joint member 3 is incorporated in the inner periphery becomes shallow.
  • the track when the center of curvature of the ball track center line of the track groove is offset in the radial direction with respect to the joint axis NN, the track depends on the offset direction and offset amount.
  • the groove depth can be adjusted.
  • the present invention is applied to the fixed type constant velocity universal joint in which the ball 4 is in angular contact with the track grooves 7 and 9.
  • the present invention is not limited to this, and the present invention is not limited to the crossing of the track grooves 7 and 9.
  • the present invention can also be preferably applied to a fixed type constant velocity universal joint having a surface formed in an arc shape and configured so that the track grooves 7 and 9 and the ball 4 are in circular contact.

Abstract

 外側継手部材2の球状内周面6に形成された6本のトラック溝7は、継手中心Oを曲率中心とした円弧状に形成され、かつ継手の軸線N-Nに対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝7で互いに反対方向に形成されており、内側継手部材3の球状外周面8に形成された6本のトラック溝9は、作動角0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7と鏡像対称に形成されている。継手の軸線N-Nに対する外側継手部材2のトラック溝7の傾斜角γを8°以上16°以下に設定した。

Description

固定式等速自在継手
 本発明は、例えば自動車の動力伝達系において使用され、駆動側と従動側の二軸間で角度変位のみを許容する固定式等速自在継手に関し、その中でも、主にFR車や4WD車に搭載され、トランスミッションからディファレンシャルに回転動力を伝達するプロペラシャフト用の固定式等速自在継手に関する。
 固定式等速自在継手としては、6個ボールタイプのツェッパ型(BJ)やアンダーカットフリー型(UJ)、8個ボールタイプのツェッパ型(EBJ)やアンダーカットフリー型(EUJ)、対をなすトラック溝を交差させたトラック溝交差型(例えば特許文献1を参照)などが公知であり、用途や要求特性等に応じて適宜使い分けられている。
 図14a及び図14bに基づき、トラック溝交差型固定式等速自在継手(以下、交差型固定式CVJという)の一例を説明する。図14aは、プロペラシャフト用の交差型固定式CVJの作動角0°の状態における縦断面図(図14b中に示すA-O-B線断面図)であり、図14bは同交差型固定式CVJの正面図である。この等速自在継手100は、外側継手部材102、内側継手部材103、ボール104および保持器105を備える。外側継手部材102の球状内周面106には円弧状のトラック溝107が8本形成されており、各トラック溝107は、そのボール軌道中心線xを含む平面が継手の軸線n-nに対して傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝107で互いに反対方向となるように形成されている。内側継手部材103の球状外周面108には円弧状のトラック溝109が8本形成されており、各トラック溝109は、作動角0°の状態の継手中心Oを含む平面Pを基準として、外側継手部材102の対となるトラック溝107と鏡像対称に形成されている。つまり、内側継手部材103は、対をなすトラック溝107,109が交差するように、外側継手部材102の内周に組み込まれている。
 図14aに示すように、外側継手部材102のトラック溝107および内側継手部材103のトラック溝109の曲率中心は何れも継手中心Oに位置する。ボール104は、対をなすトラック溝107,109の交差部に介在し、外側継手部材102の球状内周面106と内側継手部材103の球状外周面108の間に配置された保持器105のポケット部105a内に収容・保持されている。保持器105の球状外周面111および球状内周面112の曲率中心は、何れも継手中心Oに位置している。この等速自在継手100では、対をなすトラック溝107,109の交差部にボール104が介在しているので、継手が作動角をとった場合、ボール104は外側継手部材102と内側継手部材103の両軸線がなす角度を二等分する平面上に常に案内される。これにより、二軸間で回転トルクが等速で伝達される。
 また、外側継手部材102のトラック溝107および内側継手部材103のトラック溝109は、それぞれが、周方向に隣り合うトラック溝で傾斜方向が互いに反対方向となっている。従って、作動角0°の状態で両継手部材102,103が相対回転すると、保持器105の周方向に隣り合うポケット部105aには、ボール104から相反する方向の力が作用する。これにより、保持器105は継手中心Oの位置で安定する。このため、保持器105の球状外周面111と外側継手部材102の球状内周面106との接触力、および保持器105の球状内周面112と内側継手部材103の球状外周面108との接触力が抑制される。その結果、トルク損失や発熱を抑制でき、耐久性に優れた等速自在継手100を実現できる。従って、この等速自在継手100を使用すれば、トルク損失や発熱が小さく高効率なプロペラシャフトを実現できる。
 以上で説明した等速自在継手100を含め、ボールを介して両継手部材間で回転トルクが伝達される固定式等速自在継手の作動性は、対をなすトラック溝で形成されるボールトラックにくさび角を設定することにより(対をなすトラック溝でボールを拘束することにより)確保される。上述したように、トラック溝交差タイプの等速自在継手100では、作動角0°の状態において、保持器105を軸方向一方側(例えば、図14aでは右側)に押圧する力がボール104から作用するように形成されるくさび角をプラス側、保持器105を軸方向他方側に押圧する力がボール104から作用するように形成されるくさび角をマイナス側とすると、プラス側およびマイナス側のくさび角を形成するボールトラックを周方向で交互に配置することにより、所望の継手性能が確保されるようになっている。なお、上述の等速自在継手100では、各トラック溝107,109の曲率中心が継手中心Oに位置している関係上、くさび角の大きさや開く向きは、トラック溝107,109(のボール軌道中心線を含む平面)が継手の軸線n-nに対してなす角度(傾斜角)、トラック溝107,109に対するボール104の接触角、および作動角によって決定付けられる。
特開2010-043667号公報
 ところで、各ボールトラックのくさび角は、継手が作動角をとるにつれて刻々と変化し、さらに、両継手部材が相対回転する間も刻々と変化する。そして、継手の作動角が大きくなると、両継手部材が一回転する間に、くさび角が、プラス側から0あるいはマイナス側へ移行したり、マイナス側から0あるいはプラス側へ移行したりする場合がある。くさび角がプラス側からマイナス側へ移行する際や、くさび角がマイナス側からプラス側へ移行する際(すなわち、くさび角の開く向きが反転する際)には、くさび角が一時的に0となる。「くさび角が0になる」とは対をなすトラック溝によるボールの位置拘束が解除されることを意味する。そのため、くさび角が一時的にでも0になると継手の作動性に悪影響が生じるおそれがあるが、かかる問題は、保持器のポケット部でボールを保持することにより可及的に回避できると考えられていた。
 しかしながら、本発明者らが検証したところ、6個ボールタイプの交差型固定式CVJが所定値以上の作動角をとった状態で両継手部材が相対回転すると、保持器を回転させるような力が保持器に作用し、保持器の挙動が不安定化する場合があることが判明した。保持器の挙動が不安定化すると、ボールを所定位置に保持することが難しくなって継手の作動性が悪化する他、トルク損失や発熱の抑制効果を有効に享受することができなくなる。
 ここで、図10a及び図10bに基づき、6個ボールタイプの交差型固定式CVJにおいて、保持器に回転力が作用する事例を説明する。図10aは、継手の軸線に対する各トラック溝の傾斜角を6°に設定した6個ボールタイプの交差型固定式CVJが作動角12°をとった状態で両継手部材が1回転する間に、各ボールトラックT~T(図10b参照)のくさび角がどのように変化するのかを検証した結果を示す図である。また、図10bは、ボールトラックTが位相角90°にあるときにおける各ボールトラックT~Tのくさび角の状態(くさび角がプラス、マイナス又は0の何れであるか)を模式的に示す図である。なお、図10b中に示す「+」、「-」および「0」は、それぞれ、くさび角が、プラス側、マイナス側およびゼロであることを示している。後述する図11b~図11dおよび図15b~図15dにおいても同様である。
 図10a及び図10bに示すように、ボールトラックTが位相角90°にあるときには、180°対向するボールトラックTもくさび角が0であること、周方向で隣り合うボールトラックT,Tのくさび角の開く向きが互いに反対方向であると共に両くさび角の絶対値が同一であること、および周方向で隣り合うボールトラックT,Tのくさび角の開く向きが互いに反対方向であると共に両くさび角の絶対値が同一であることから、継手中心O、ボールトラックT,Tの中間部およびボールトラックT,Tの中間部を通って径方向に延びる直線Zを軸とする回転力Rが保持器に作用する。詳細な図示および説明は省略するが、ボールトラックTが位相角210°および330°にあるときにも上記同様の理由で保持器に回転力が作用する。
 6個ボールタイプの交差型固定式CVJがさらに大きな作動角(ここでは24°)をとった場合、各ボールトラックT~Tのくさび角は、両継手部材が1回転する間に図11aに示す態様で変化する。この場合、例えば位相角0°、30°および90°における各ボールトラックT~Tのくさび角は図11b~図11dにそれぞれ示す状態となっており、ボールトラックTが位相角0°にあるときには、図11b中に示す直線Zを軸とする回転力Rが保持器に作用し、ボールトラックTが位相角30°にあるときには、図11c中に示す直線Zを軸とする回転力が保持器に作用し、ボールトラックTが位相角90°にあるときには、図11d中に示す直線Zを軸とする回転力が保持器に作用する。さらに言うと、この交差型固定式CVJが作動角24°をとった状態で両継手部材が相対回転すると、保持器に常に回転力Rが作用するため、継手として機能しなくなる。
 これに対し、図14に基づいて説明した8個ボールタイプの交差型固定式CVJが比較的大きな作動角をとった状態で両継手部材が相対回転しても、保持器に回転力が作用するような事態は生じ得ない。その詳細を図15a~図15dに基づいて説明する。図15aは、継手の軸線に対する各トラック溝の傾斜角を6°に設定した8個ボールタイプの交差型固定式CVJが作動角12°をとった状態で両継手部材が1回転する間に、8つのボールトラックt~tのくさび角がどのように変化するかを検証した結果を示す図であり、図15b~図15dは、それぞれ、ボールトラックtが位相角0°、45°および90°にあるときにおける各ボールトラックt~tのくさび角の状態を模式的に示す図である。以上で説明した理由から明らかなように、図15b~図15dにそれぞれ示すボールトラックtが位相角0°、45°および90°に位置するときの何れの場合においても、各ボールトラックt~tに形成されるくさび角の状態からして保持器に回転力は作用しない。図示は省略するが、仮に8個ボールタイプの交差型固定式CVJが作動角24°をとった状態で両継手部材が相対回転しても、保持器に回転力が作用することはない。
 以上の検証結果などから、交差型固定式CVJにおける保持器挙動の不安定化問題は、特に、ボール個数を6個とし、かつ10°を超える作動角をとった状態で両継手部材が相対回転したときに顕在化することが判明した。そのため、使用時の最大作動角が40°~50°程度とされ、かつ20°程度の作動角をとる頻度の多いドライブシャフト用の固定式等速自在継手として、6個ボールタイプの交差型固定式CVJを採用するのは難しいと言える。これに対し、プロペラシャフト用の固定式等速自在継手は、作動角10°以下で使用されるのが殆どであり、車両の挙動を加味しても作動角が14°を超えることは皆無に等しい。このため、プロペラシャフト用の固定式等速自在継手として、6個ボールタイプの交差型固定式CVJを採用する余地があると考えた。そして、6個ボールタイプの固定式等速自在継手は、8個ボールタイプの固定式等速自在継手に比べ、(1)部材総数が少ない分だけ低コスト化できる、(2)各部材の加工性や組立性が良好であるため、品質(性能)面での個体差を少なくすることができる、(3)ボールサイズを大きく出来る分だけ負荷容量を大きく出来る、などといった利点がある。従って、6個ボールタイプの交差型固定式CVJを実現できれば、上記の利点を有効に享受しつつ、トルク損失や発熱が小さく高効率なプロペラシャフトを実現できる。
 以上の実情に鑑み、本発明の目的は、プロペラシャフトの使用作動角の範囲内において、トルク損失や発熱が少なく高効率で、しかも所望の継手性能を安定的に発揮することのできる6個ボールタイプのトラック溝交差型固定式等速自在継手を提供することにある。
 上述したように、トラック溝交差型の固定式等速自在継手において、くさび角は、継手の作動角の他、継手の軸線に対するトラック溝の傾斜角や、トラック溝に対するボールの接触角に応じて変化する。そして、6個ボールタイプの交差型固定式CVJ(厳密には、作動角0°の状態でプラス側のくさび角が形成されるボールトラックとマイナス側のくさび角が形成されるボールトラックとを周方向で交互に配置した6個ボールタイプの交差型固定式CVJ)では、両継手部材が一回転する間に各ボールトラックのくさび角が0とならなければ、保持器に回転力が作用することがなく、従って、保持器挙動の不安定化等の問題発生を回避することができる。
 そこで、本発明者らは、上記の傾斜角を変更せずに上記の接触角を変更した場合、および上記の接触角を変更せずに上記の傾斜角を変更した場合のそれぞれにおいて、両継手部材が一回転する間にくさび角がどのように変化するかを検証した。その結果、傾斜角を変更せずに接触角を変更しても、くさび角が0となる位相は変化しないことが判明した。これは、図12に示すように、例えば接触角をαとしたトラック溝で形成されるボールトラックTαのくさび角、接触角をαよりも大きいα’としたトラック溝で形成されるボールトラックTα’のくさび角、および接触角をα’よりも大きいα”としたトラック溝で形成されるボールトラックTα”のくさび角が、同一位相で0になっていることから理解される。要するに、傾斜角を変更せずに接触角を変更しても、大きな作動角がとられた場合には、各ボールトラックのくさび角が0となるのを回避することはできない。
 これに対し、接触角を変更せずに傾斜角を変更した場合には、傾斜角の値に応じて各位相におけるくさび角の値が変わることが判明した。これは、図13に示すように、例えば継手の軸線に対する傾斜角をβとしたトラック溝で形成されるボールトラックTβのくさび角よりも、傾斜角β’(但しβ’>β)としたトラック溝で形成されるボールトラックTβ’のくさび角が各位相において大きくなっていること、また、ボールトラックTβ’のくさび角よりも、傾斜角をβ”(但しβ”>β’)としたトラック溝で形成されるボールトラックTβ”のくさび角が各位相において大きくなっていることから理解される。以上の検証結果から、継手の軸線に対するトラック溝の傾斜角の範囲を適切に設定すれば、プロペラシャフトの使用作動角の範囲内(作動角14°以下)において、トルク損失が少なく高効率で、しかも所望の継手性能を安定的に発揮することのできる6個ボールタイプの交差型固定式CVJを実現できることを本発明者らは見出し、本発明を完成するに至った。
 すなわち、上記の目的を達成するために創案された本発明は、球状内周面に軸方向に延びる6本のトラック溝が形成された外側継手部材と、球状外周面に外側継手部材のトラック溝と対をなす6本のトラック溝が形成された内側継手部材と、対をなす外側継手部材のトラック溝と内側継手部材のトラック溝の間に介在してトルクを伝達するボールと、ボールを保持するポケット部を有すると共に、外側継手部材の球状内周面に嵌合する球状外周面および内側継手部材の球状外周面に嵌合する球状内周面を有する保持器とを備え、外側継手部材のトラック溝が、継手中心に対して軸方向にオフセットのない曲率中心をもつ円弧状に形成され、かつ継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝で互いに反対方向に形成されており、内側継手部材のトラック溝が、作動角0°の状態の継手中心平面を基準として、外側継手部材の対となるトラック溝と鏡像対称に形成された固定式等速自在継手であって、プロペラシャフトに組み込んで使用されるものにおいて、継手の軸線に対する外側継手部材のトラック溝の傾斜角γを8°以上16°以下に設定したことを特徴とする。
 なお、本発明でいう「継手の軸線」とは、継手の回転中心となる長手方向の軸線を意味し、後述する実施形態における継手の軸線N-Nを指す。また、「作動角0°の状態の継手中心平面」とは、作動角0°の状態で継手中心を含んで継手の軸線と直交する方向に延びる平面、と同義である。
 上記のように、6個ボールタイプのトラック溝交差型固定式等速自在継手において、継手の軸線に対する外側継手部材のトラック溝の傾斜角γを8°以上16°以下に設定すれば、図6aに示す検証結果により、この等速自在継手がプロペラシャフトの使用作動角の範囲内(作動角14°以下)で如何なる作動角をとったとしても、両継手部材が一回転する間に、対をなすトラック溝で形成されるボールトラックのくさび角が0となるのを回避することができる。そのため、使用時に保持器に回転力が作用するのを、すなわち保持器の挙動が不安定化するのを効果的に防止することができる。これにより、保持器挙動の不安定化に起因したトルク損失の増大や発熱等の問題発生を回避することができる。
 ボールのピッチ円半径(PCR)をR、ボールの直径をd、プロペラシャフトを自動車に組み込む際の当該固定式等速自在継手の作動角をθとしたとき、外側継手部材のトラック溝の有効長さLは、L=2×(R+d/2)×sin(θ/2)の関係式を満たすものとするのが好ましい。これにより、プロペラシャフトを自動車に組み込む際に、ボールがトラック溝から脱落するのを確実に防止することができる。
 トラック溝の曲率中心は、継手の軸線上に配置しても良いし、継手の軸線より半径方向にオフセットさせた位置に配置しても良い。前者の構成を採用すれば、トラック溝深さを均一にすることができ、かつ加工を容易にすることができる。また、後者の構成を採用すれば、オフセット量に応じてトラック溝深さを調整することができるので、最適なトラック溝深さを確保することができる。
 外側継手部材のトラック溝および内側継手部材のトラック溝に対し、ボールを30°~45°の接触角で接触させることができる。このようにすれば、トラック溝とボールの接触状態を安定的に保つことができる。
 以上のことから、本発明によれば、プロペラシャフトの使用作動角の範囲内において、トルク損失や発熱が少なく高効率で、しかも所望の継手性能を安定的に発揮することのできる6個ボールタイプのトラック溝交差型固定式等速自在継手を提供することができる。
本発明の第1実施形態に係る固定式等速自在継手の部分縦断面図である。 固定式等速自在継手の正面図である。 外側継手部材の部分縦断面図である。 外側継手部材の正面図である。 内側継手部材の側面図である。 内側継手部材の正面図である。 外側継手部材のトラック溝の詳細を示す部分縦断面図である。 内側継手部材のトラック溝の詳細を示す縦断面図である。 作動角および傾斜角の大きさが図1に示す固定式等速自在継手のくさび角の状態に与える影響を調査した結果を示す図である。 図6a中に示す「○」の一例を模式的に示す図である。 図1に示す固定式等速自在継手を備えたプロペラシャフトの部分断面図である。 変形例に係る外側継手部材の部分縦断面図である。 変形例に係る内側継手部材の縦断面図である。 本発明に至る過程における技術的知見を説明するための図であって、6個ボールタイプのトラック溝交差型固定式等速自在継手が所定の作動角をとった状態で外側継手部材と内側継手部材が相対回転したときにおける各ボールトラックのくさび角の変化態様を示す図である。 ボールトラックTが位相角90°にあるときにおける各ボールトラックのくさび角の状態を模式的に示す図である。 本発明に至る過程における技術的知見を説明するための図であって、6個ボールタイプのトラック溝交差型固定式等速自在継手が図10aよりも大きな作動角をとった状態で両継手部材が相対回転したときにおける各ボールトラックのくさび角の変化態様を示す図である。 ボールトラックTが位相角0°にあるときにおける各ボールトラックのくさび角の状態を模式的に示す図である。 ボールトラックTが位相角45°にあるときにおける各ボールトラックのくさび角の状態を模式的に示す図である。 ボールトラックTが位相角90°にあるときにおける各ボールトラックのくさび角の状態を模式的に示す図である。 本発明に至る過程における技術的知見を説明するための図である。 本発明に至る過程における技術的知見を説明するための図である。 8個ボールタイプのトラック溝交差型固定式等速自在継手の一例を示す縦断面図である。 8個ボールタイプのトラック溝交差型固定式等速自在継手の正面図である。 図14aに示す固定式等速自在継手が所定の作動角をとった状態で外側継手部材と内側継手部材が相対回転したときにおける各ボールトラックのくさび角の変化態様を示す図である。 ボールトラックtが位相角0°にあるときにおける各ボールトラックのくさび角の状態を模式的に示す図である。 ボールトラックtが位相角45°にあるときにおける各ボールトラックのくさび角の状態を模式的に示す図である。 ボールトラックtが位相角90°にあるときにおける各ボールトラックのくさび角の状態を模式的に示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1aに、本発明の第1実施形態に係る固定式等速自在継手1の部分縦断面図を示し、図1bに、同等速自在継手1の正面図を示す。この等速自在継手1は、主にFR車や4WD車に搭載され、トランスミッションからディファレンシャルに回転動力を伝達するプロペラシャフトに組み込んで使用されるものであり、リング状をなした外側継手部材2および内側継手部材3と、両継手部材2,3間に配置された6個のボール4と、ボール4を保持する保持器5とを備える。なお、この等速自在継手1を組み込んだプロペラシャフトについては後段で詳述する。
 図2a及び図2bに示すように、リング状をなした外側継手部材2の球状内周面6には軸方向に延びる6本のトラック溝7が形成されており、各トラック溝7は、継手の軸線N-Nに対して周方向に角度γ傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝7A,7Bで互いに反対方向に形成されている。また、図3a及び図3bにも示すように、内側継手部材3の球状外周面8には軸方向に延びる6本のトラック溝9が形成されており、各トラック溝9は、継手の軸線N-Nに対して周方向に角度γ傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝9A,9Bで互いに反対方向に形成されている。内側継手部材3は、各トラック溝9が、外側継手部材2の対となるトラック溝7と交差するように外側継手部材2の内周に組み込まれている。そして、外側継手部材2と内側継手部材3の対となるトラック溝7,9の各交差部にボール4が1個ずつ配置されている。なお、図1aに示すトラック溝7,9は、それぞれ、図2aに示す平面Mおよび図3aに示す平面Qにおける断面を傾斜角γ=0°まで回転させた状態で示している。
 詳細な図示は省略するが、ボール4のピッチ円半径(PCR)をR、ボール4の直径をd、プロペラシャフトを自動車に組み込む際の等速自在継手1の作動角をθとしたとき、外側継手部材2のトラック溝7(7A,7B)の有効長さLは、L=2×(R+d/2)×sin(θ/2)の関係式を満たすように設定する。これにより、プロペラシャフトを自動車に組み込む際に、ボール4がトラック溝7(7A,7B)から脱落するのを確実に防止することができる。
 以下では、トラック溝の形態(傾斜状態や湾曲状態など)を的確に示すために、「ボール軌道中心線」なる用語を用いる。ボール軌道中心線とは、ボールがトラック溝に沿って移動するときに、ボールの中心が描く軌跡を意味する。したがって、トラック溝の形態は、ボール軌道中心線の形態と同じである。
 図1aに示すように、外側継手部材2のトラック溝7のボール軌道中心線Xおよび内側継手部材3のトラック溝9のボール軌道中心線Yは、何れも、継手中心Oを曲率中心とした円弧状を呈する。このように、外側継手部材2のトラック溝7のボール軌道中心線Xおよび内側継手部材3のトラック溝9のボール軌道中心線Yの曲率中心を、何れも継手中心O、すなわち継手の軸線N-N上に配置したことにより、トラック溝7,9の深さを均一にすることができ、かつ加工を容易にすることができる。
 詳細な図示は省略するが、トラック溝7,9の横断面(軸直交断面)形状は、楕円形状やゴシックアーチ状となっており、トラック溝7,9とボール4は、30°~45°程度の接触角をもって接触する、いわゆるアンギュラコンタクトとなっている。したがって、ボール4は、トラック溝7,9の溝底より少し離れたトラック溝7,9の側面部に接触している。
 ここで、トラック溝の符号について補足する。外側継手部材2のトラック溝全体を指す場合は符号7を付している。傾斜方向が異なるトラック溝を区別する場合には、継手の軸線N-Nに対して周方向一方側に傾斜したトラック溝に符号7Aを付し、継手の軸線N-Nに対して周方向他方側に傾斜したトラック溝に符号7Bを付している。内側継手部材3のトラック溝9についても同様の要領で符号を付している。
 図2a及び図2bに基づき、外側継手部材2のトラック溝7が継手の軸線N-Nに対して周方向に傾斜している状態を説明する。図2aに示すように、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面Mは、継手の軸線N-Nに対して周方向一方側に角度γ傾斜している。また、トラック溝7Aと周方向に隣り合うトラック溝7Bのボール軌道中心線Xと継手中心Oを含む平面Mは、継手の軸線N-Nに対して周方向他方側に角度γ傾斜している。
 図3a及び図3bに基づき、内側継手部材3のトラック溝9が継手の軸線N-Nに対して周方向に傾斜している状態を説明する。図3aに示すように、トラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Qは、継手の軸線N-Nに対して周方向一方側に角度γ傾斜している。また、トラック溝9Aと周方向に隣り合うトラック溝9Bのボール軌道中心線Yと継手中心Oを含む平面Qは、継手の軸線N-Nに対して周方向他方側(トラック溝9Aの傾斜方向とは反対方向)に角度γ傾斜している。内側継手部材3のトラック溝9(9A,9B)は、作動角0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7(7A,7B)と鏡像対称に形成されている。
 次に、図4に基づいて、外側継手部材2の縦断面より見たトラック溝の詳細を説明する。なお、図4は、図2a中に示すトラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面Mで見た断面図、すなわち、継手の軸線N-Nに対して周方向に角度γだけ傾斜した傾斜軸N’-N’を含む平面における断面図である。図4には、傾斜方向が互いに異なるトラック溝7A,7Bのうち、トラック溝7Aのみを示している。外側継手部材2の球状内周面6には、トラック溝7Aが軸方向に沿って形成されている。トラック溝7Aは、継手中心Oを曲率中心とする(軸方向のオフセットがない)円弧状のボール軌道中心線Xを有する。トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2a参照)上に投影された傾斜軸N’-N’の継手中心Oにおける垂線をKとすると、この垂線Kは作動角0°の状態の継手中心平面P上にある。
 同様に、図5に基づいて、内側継手部材3のトラック溝の詳細を説明する。図5は、図3a中に示すトラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Qで見た断面図、すなわち、継手の軸線N-Nに対して周方向に角度γ傾斜した傾斜軸N’-N’を含む平面における断面を示している。図5には、傾斜方向が互いに異なるトラック溝9A,9Bのうち、トラック溝9Aのみを示している。内側継手部材3の球状外周面8には、トラック溝9Aが軸方向に沿って形成されている。トラック溝9Aは、継手中心Oを曲率中心とする(軸方向のオフセットがない)円弧状のボール軌道中心線Yを有する。トラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Q(図3a参照)上に投影された傾斜軸N’-N’の継手中心Oにおける垂線をKとすると、この垂線Kは作動角0°の状態の継手中心平面P上にある。
 上述したように、外側継手部材2および内側継手部材3のトラック溝7,9は、それぞれが、周方向に隣り合うトラック溝で傾斜方向が互いに反対方向となっており、しかも対をなすトラック溝7,9は交差している。そのため、図1aに示す作動角0°の状態で両継手部材2,3が相対回転すると、保持器5の周方向に隣り合うポケット部5aにはボール4から相反する方向の力が作用する。この相反する方向の力により保持器5は継手中心Oの位置で安定する。これにより、保持器5の球状外周面12と外側継手部材2の球状内周面6との接触力、および保持器5の球状内周面13と内側継手部材3の球状外周面8との接触力が抑制される。従って、球状面同士の接触に起因したトルク損失や発熱が効果的に抑制され、トルク伝達効率および耐久性に優れた等速自在継手が実現できる。
 また、本発明に係る等速自在継手1では、継手の軸線N-Nに対する外側継手部材2のトラック溝7(7A,7B)の傾斜角γを8°以上16°以下に設定している。すなわち、トラック溝7(7A,7B)のボール軌道中心線Xと継手中心Oを含む平面Mは、継手の軸線N-Nに対して8°以上16°以下の範囲で周方向に傾斜している。内側継手部材3のトラック溝9は、作動角0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7と鏡像対称に形成されていることから、継手の軸線N-Nに対するトラック溝9(9A,9B)の傾斜角γも8°以上16°以下に設定されている。すなわち、トラック溝9(9A,9B)のボール軌道中心線Yと継手中心Oを含む平面Qは、継手の軸線N-Nに対して8°以上16°以下の範囲で周方向に傾斜している。
 上述のように、継手の軸線N-Nに対するトラック溝7,9の周方向の傾斜角γを8°以上16°以下の範囲内に設定すれば、図6aに示す検証結果から、以上で説明した6個ボールタイプのトラック溝交差型等速自在継手1が作動角をとった状態で外側継手部材2と内側継手部材3が相対回転した場合であっても、上記作動角がプロペラシャフトの使用作動角の範囲内(14°以下)である限り、対をなすトラック溝7,9で形成されるボールトラックのくさび角の開く向きが反転するような事態を確実に防止することができる。すなわち、図6a中に示す「○」の場合には、図6bに示すように、両継手部材2,3が一回転する間に、作動角0°の状態でプラス側のくさび角がゼロあるいはマイナス側に移行したり、作動角0°の状態でマイナス側のくさび角がゼロあるいはプラス側に移行したりすることがない。従って、等速自在継手1の使用時に保持器5に回転力が作用するのを、すなわち保持器5の挙動が不安定化するのを確実に防止することができる。これにより、保持器挙動の不安定化に起因したトルク損失の増大や発熱等の問題発生を回避することができる。なお、図6a中に示す「△」および「×」について補足すると、これらは、それぞれ、図10aおよび図11aに例示した態様でくさび角が変化することを意味している。
 図6aからも明らかなように、理論上、傾斜角γを大きくするほど、高作動角をとった状態で両継手部材2,3が相対回転したときでも、所望の継手性能を安定的に維持することができる。しかしながら、傾斜角γを大きくするほど、内側継手部材3のトラック溝9の最も接近した側の球面幅F(図3b参照)が小さくなるため、傾斜角γが大き過ぎると(ここでは傾斜角γが16°を超えると)、内側継手部材3に必要とされる強度を確保するのが難しくなる。このような理由から、継手の軸線N-Nに対するトラック溝7,9の傾斜角γは、8°以上16°以下の範囲に設定する。
 図7に、以上で説明した6個ボールタイプのトラック溝交差型固定式等速自在継手1を備えるプロペラシャフトの概略断面図を示す。このプロペラシャフト20は、等速自在継手1と、内側継手部材3の孔部に軸方向の一端部がスプライン結合されたシャフト22と、外側継手部材2の外周面とシャフト22の外周面に取り付けられ、継手内部に封入された潤滑剤の外部漏洩を防止するためのブーツ21とを備える。シャフト22は大径のパイプ部22aを有し、シャフト22の軸方向の他端部には、摺動式等速自在継手あるいは固定式等速自在継手(図示省略)が連結される。ブーツ21は、外側継手部材2の外周面に固定されたシール環21aと、一端がシール環21aに固定され、他端がブーツバンド23によりシャフト22に取り付けられた弾性ブーツ部21bとからなる。なお、ブーツ21のシール環21aは、例えば加締めによって外側継手部材2の外周面に固定されるが、ここでは詳細な図示を省略している。
 このプロペラシャフト20は、本発明に係る等速自在継手1を使用しているので、トルク損失や発熱が小さく高効率で、しかも軽量・コンパクトなものとなる。さらに、本発明に係る6個ボールタイプの等速自在継手1は、図14に示す8個ボールタイプの等速自在継手100に比べ、(1)部材総数が少ない分だけ低コスト化できる、(2)各部材の加工性や組立性が良好であるため、品質(性能)面での個体差を少なくすることができる、(3)ボールサイズを大きく出来る分だけ負荷容量を大きく出来る、などといった利点がある。従って、安価に製造可能でありながら、所望のトルク伝達性能を安定的に維持することのできる高品質のプロペラシャフト20を実現できる。
 以上、本発明の第1実施形態に係る等速自在継手1について説明を行ったが、上述した等速自在継手1には本発明の要旨を逸脱しない範囲で種々の変更を施すことが可能である。以下、本発明の他の実施形態に係る等速自在継手について説明を行うが、以下では、上述した第1実施形態と異なる構成について重点的に説明を行うこととし、第1実施形態と実質的に同様の機能を奏する部材・部位には同一の符号を付して重複説明を省略する。
 本発明の第2実施形態に係る固定式等速自在継手で使用される外側継手部材の部分断面図を図8に示し、本発明の第3実施形態に係る固定式等速自在継手で使用される内側継手部材の部分断面図を図9に示す。なお、図8は、図4と同様に、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2a参照)で見た外側継手部材の部分断面図であり、図9は、図5と同様に、トラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Q(図3a参照)で見た内側継手部材の部分断面図である。第2および第3実施形態の等速自在継手が、以上で説明した第1実施形態の等速自在継手1と異なる主な点は、トラック溝(ボール軌道中心線)の曲率中心を継手の軸線N-Nに対して半径方向にfだけオフセットした位置に配置した点にある(継手中心Oに対する軸方向のオフセットはない)。すなわち、第2および第3実施形態では、トラック溝のボール軌道中心線の曲率中心を、垂線Kを含む作動角0°の状態の継手中心平面P上で半径方向にfだけオフセットさせている。
 図8に示す態様で外側継手部材2のトラック溝7(7A,7B)のボール軌道中心線Xの曲率中心を継手の軸線N-Nに対して半径方向にfだけオフセットさせた場合、外側継手部材2のトラック溝7(7A,7B)の溝深さを深くすることができる(同図中の符号R,R’を参照)。但しこの場合、この外側継手部材2の内周に組み込まれる内側継手部材3のトラック溝9の溝深さは浅くなる。一方、図9に示す態様で内側継手部材3のトラック溝9(9A,9B)のボール軌道中心線Yの曲率中心を継手の軸線N-Nに対して半径方向にfだけオフセットさせた場合、内側継手部材3のトラック溝9(9A,9B)の溝深さを深くすることができる(同図中の符号R,R’を参照)。但し、この場合、この内側継手部材3を内周に組み込む外側継手部材2のトラック溝7の溝深さは浅くなる。
 要するに、図8や図9に示すように、トラック溝のボール軌道中心線の曲率中心を継手の軸線N-Nに対して半径方向にオフセットさせた場合、オフセットの向きやオフセット量に応じてトラック溝深さを調整することができる。
 以上では、トラック溝を周方向に等ピッチで配置した固定式等速自在継手に本発明を適用した場合を示したが、トラック溝を周方向に不等ピッチで配置した固定式等速自在継手にも本発明は好ましく適用し得る。また、以上で説明した固定式等速自継手においては、継手の軸線N-Nに対するトラック溝の傾斜角γをすべてのトラック溝において等しいものとしたが、これに限られず、対をなす外側継手部材と内側継手部材のトラック溝の継手の軸線N-Nに対する傾斜角γが8°以上16°以下の範囲で等しく形成されていれば、トラック溝の相互間で傾斜角γを異ならせても構わない。要は、保持器5のすべてのポケット部に作用するボール4の軸方向の力が、全体として釣り合うように各傾斜角度が設定されていればよい。また、以上では、ボール4をトラック溝7,9に対してアンギュラコンタクトさせた固定式等速自在継手に本発明を適用したが、これに限られず、本発明は、トラック溝7,9の横断面形状が円弧状に形成され、トラック溝7,9とボール4とがサーキュラコンタクトするように構成された固定式等速自在継手にも好ましく適用することができる。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことである。本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1  固定式等速自在継手
2  外側継手部材
3  内側継手部材
4  ボール
5  保持器
5a ポケット部
6  球状内周面
7  トラック溝
8  球状外周面
9  トラック溝
12 球状外周面
13 球状内周面
20 プロペラシャフト
K  垂線
M  平面(ボール軌道中心線を含む平面)
N  継手の軸線
O  継手中心
P  継手中心平面(作動角0°の状態の継手中心平面)
Q  平面(ボール軌道中心線を含む平面)
X  ボール軌道中心線
Y  ボール軌道中心線
γ  傾斜角

Claims (5)

  1.  球状内周面に軸方向に延びる6本のトラック溝が形成された外側継手部材と、球状外周面に外側継手部材のトラック溝と対をなす6本のトラック溝が形成された内側継手部材と、対をなす外側継手部材のトラック溝と内側継手部材のトラック溝の間に介在してトルクを伝達するボールと、ボールを保持するポケット部を有すると共に、外側継手部材の球状内周面に嵌合する球状外周面および内側継手部材の球状外周面に嵌合する球状内周面を有する保持器とを備え、外側継手部材のトラック溝が、継手中心に対して軸方向にオフセットのない曲率中心をもつ円弧状に形成され、かつ継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う前記トラック溝で互いに反対方向に形成されており、内側継手部材のトラック溝が、作動角0°の状態の継手中心平面を基準として、外側継手部材の対となるトラック溝と鏡像対称に形成された固定式等速自在継手であって、プロペラシャフトに組み込んで使用されるものにおいて、
     継手の軸線に対する外側継手部材のトラック溝の傾斜角γを8°以上16°以下に設定したことを特徴とする固定式等速自在継手。
  2.  ボールのピッチ円半径をR、ボールの直径をd、プロペラシャフトを自動車に組み込む際の当該固定式等速自在継手の作動角をθとしたとき、外側継手部材のトラック溝の有効長さLが、L=2×(R+d/2)×sin(θ/2)の関係式を満たすことを特徴とする請求項1に記載の固定式等速自在継手。
  3.  外側継手部材のトラック溝および内側継手部材のトラック溝の曲率中心を、継手の軸線上に配置した請求項1又は2に記載の固定式等速自在継手。
  4.  外側継手部材のトラック溝および内側継手部材のトラック溝の曲率中心を、継手の軸線より半径方向にオフセットした位置に配置した請求項1又は2に記載の固定式等速自在継手。
  5.  外側継手部材のトラック溝および内側継手部材のトラック溝に対し、ボールを30°~45°の接触角で接触させた請求項1~4の何れか一項に記載の固定式等速自在継手。
PCT/JP2014/077321 2013-11-05 2014-10-14 固定式等速自在継手 WO2015068536A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480057476.7A CN105658981B (zh) 2013-11-05 2014-10-14 固定式等速万向联轴器
EP14860079.4A EP3067582B1 (en) 2013-11-05 2014-10-14 Stationary constant velocity universal joint
US15/032,728 US10208805B2 (en) 2013-11-05 2014-10-14 Fixed type constant velocity universal joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-229390 2013-11-05
JP2013229390A JP6199159B2 (ja) 2013-11-05 2013-11-05 固定式等速自在継手

Publications (1)

Publication Number Publication Date
WO2015068536A1 true WO2015068536A1 (ja) 2015-05-14

Family

ID=53041319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077321 WO2015068536A1 (ja) 2013-11-05 2014-10-14 固定式等速自在継手

Country Status (5)

Country Link
US (1) US10208805B2 (ja)
EP (1) EP3067582B1 (ja)
JP (1) JP6199159B2 (ja)
CN (1) CN105658981B (ja)
WO (1) WO2015068536A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138855A (zh) * 2015-09-24 2018-06-08 Ntn株式会社 固定式等速万向联轴器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870582B (zh) * 2017-04-06 2023-08-08 秦皇岛老虎重工有限公司 一种倾角轴承万向联轴器
CN111664191B (zh) * 2019-11-08 2021-10-08 摩登汽车有限公司 固定式等速万向节

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507859A1 (de) * 1995-03-08 1996-09-12 Loehr & Bromkamp Gmbh Gleichlaufdrehgelenk in VL-Bauart mit gekrümmtem Bahnverlauf
JP2010043667A (ja) 2008-08-11 2010-02-25 Ntn Corp 固定式等速自在継手
JP2012193860A (ja) * 2012-07-11 2012-10-11 Ntn Corp 固定式等速自在継手
JP2013133919A (ja) * 2011-12-27 2013-07-08 Ntn Corp 固定式等速自在継手

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60138457D1 (de) * 2000-02-16 2009-06-04 Delphi Tech Inc Gleichlaufgelenk mit feststehendem zentrum und sich kreuzenden rillen
JP5128139B2 (ja) * 2007-02-02 2013-01-23 Ntn株式会社 固定式等速自在継手
JP5138449B2 (ja) * 2008-04-08 2013-02-06 Ntn株式会社 等速自在継手
US8382600B2 (en) * 2009-09-18 2013-02-26 Hyundai Wia Corporation Cross groove type constant velocity joint with composite groove patterns
JP5420369B2 (ja) * 2009-10-08 2014-02-19 Ntn株式会社 固定式等速自在継手
JP5602497B2 (ja) * 2010-05-27 2014-10-08 Ntn株式会社 固定式等速自在継手
EP2705266B1 (en) * 2011-08-29 2014-11-12 GKN Driveline International GmbH Counter track joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507859A1 (de) * 1995-03-08 1996-09-12 Loehr & Bromkamp Gmbh Gleichlaufdrehgelenk in VL-Bauart mit gekrümmtem Bahnverlauf
JP2010043667A (ja) 2008-08-11 2010-02-25 Ntn Corp 固定式等速自在継手
JP2013133919A (ja) * 2011-12-27 2013-07-08 Ntn Corp 固定式等速自在継手
JP2012193860A (ja) * 2012-07-11 2012-10-11 Ntn Corp 固定式等速自在継手

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138855A (zh) * 2015-09-24 2018-06-08 Ntn株式会社 固定式等速万向联轴器
US20180347636A1 (en) * 2015-09-24 2018-12-06 Ntn Corporation Fixed constant velocity universal joint
EP3354919A4 (en) * 2015-09-24 2019-04-24 NTN Corporation UNIVERSAL EQUIVALENT CHAIN
US10837498B2 (en) 2015-09-24 2020-11-17 Ntn Corporation Fixed constant velocity universal joint

Also Published As

Publication number Publication date
JP6199159B2 (ja) 2017-09-20
US10208805B2 (en) 2019-02-19
EP3067582A1 (en) 2016-09-14
US20160252137A1 (en) 2016-09-01
EP3067582B1 (en) 2021-04-21
CN105658981B (zh) 2019-10-25
CN105658981A (zh) 2016-06-08
EP3067582A4 (en) 2017-08-09
JP2015090171A (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6114644B2 (ja) 固定式等速自在継手
JP5101430B2 (ja) 固定式等速自在継手
JP5840463B2 (ja) 固定式等速自在継手
WO2015068536A1 (ja) 固定式等速自在継手
JP2001153149A (ja) 固定型等速自在継手
WO2014054366A1 (ja) 固定式等速自在継手
JP6113459B2 (ja) 固定式等速自在継手
JP5615873B2 (ja) 固定式等速自在継手
JP5882050B2 (ja) 固定式等速自在継手
JP6821295B2 (ja) 固定式等速自在継手
WO2006121024A1 (ja) 固定型等速自在継手
JP2007078081A (ja) 摺動型等速自在継手及びその製造方法
JP2008019961A (ja) 固定式等速自在継手
US20190024723A1 (en) Stationary constant-velocity universal joint
WO2014208241A1 (ja) 固定式等速自在継手
JP2008215557A (ja) 等速自在継手
JP2008215556A (ja) 等速自在継手
JP6899716B2 (ja) 固定式等速自在継手
JP7071854B2 (ja) 等速自在継手
JP2009103251A (ja) 固定型等速自在継手
JP2008196591A (ja) 固定式等速自在継手及びその製造方法
JP2007139064A (ja) 摺動型等速自在継手
JP2007107568A (ja) 固定式等速自在継手
JP2007064270A (ja) 摺動型等速自在継手
JP2008261390A (ja) 固定式等速自在継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15032728

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014860079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860079

Country of ref document: EP