WO2014054366A1 - 固定式等速自在継手 - Google Patents
固定式等速自在継手 Download PDFInfo
- Publication number
- WO2014054366A1 WO2014054366A1 PCT/JP2013/073622 JP2013073622W WO2014054366A1 WO 2014054366 A1 WO2014054366 A1 WO 2014054366A1 JP 2013073622 W JP2013073622 W JP 2013073622W WO 2014054366 A1 WO2014054366 A1 WO 2014054366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- joint
- track
- track groove
- ball
- center line
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/224—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
- F16D3/2245—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D2003/22309—Details of grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S464/00—Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
- Y10S464/904—Homokinetic coupling
- Y10S464/906—Torque transmitted via radially spaced balls
Definitions
- the present invention relates to a fixed type constant velocity universal joint, and more particularly to a fixed type that is used in a power transmission system of automobiles and various industrial machines, and that allows only angular displacement between two axes of a driving side and a driven side. It relates to a universal joint.
- a front drive shaft of an automobile usually incorporates a sliding constant velocity universal joint on the inboard side (differential side) that has a relatively small maximum operating angle but can be displaced in the axial direction while maintaining an operating angle.
- a sliding constant velocity universal joint on the inboard side (differential side) that has a relatively small maximum operating angle but can be displaced in the axial direction while maintaining an operating angle.
- On the outboard side (wheel side) since the wheel is steered, a fixed type constant velocity universal joint that can take a large operating angle but is not displaced in the axial direction is incorporated.
- the constant velocity universal joint 101 is an eight-ball type Zepper type constant velocity universal joint, and mainly includes an outer joint member 102, an inner joint member 103, a ball 104, and a cage 105. Eight track grooves 107 are formed on the spherical inner peripheral surface 106 of the outer joint member 102 at equal intervals in the circumferential direction and along the axial direction.
- Track grooves 109 facing the track grooves 107 of the outer joint member 102 are formed on the spherical outer peripheral surface 108 of the inner joint member 103 at equal intervals in the circumferential direction and along the axial direction.
- a ball 104 is disposed between the track grooves 107 and 109 that make a pair of the outer joint member 102 and the inner joint member 103 (facing each other in the radial direction).
- a cage 105 that holds the ball 104 is disposed between the spherical inner peripheral surface 106 of the outer joint member 102 and the spherical outer peripheral surface 108 of the inner joint member 103.
- the center of curvature of the peripheral surface 113 is formed at the joint center O.
- the curvature center Oo of the ball track center line x of the track groove 107 of the outer joint member 102 and the curvature center Oi of the ball track center line y of the track groove 109 of the inner joint member 103 are relative to the joint center O. Are offset equally on both sides in the axial direction.
- the maximum operating angle ⁇ max which is the main function of the fixed type constant velocity universal joint 101, causes interference between the inlet chamfer 110 provided at the opening end (inner peripheral edge) of the outer joint member 102 and the shaft 111.
- the shaft diameter d of the shaft 111 is determined for each joint size in order to ensure an allowable transmission torque. If the entrance chamfer 110 is made large, the length of the track groove 107 (hereinafter referred to as “effective track length”) of the outer joint member 102 with which the ball 104 comes into contact is insufficient, and the ball 104 falls off the track groove 107 and rotates. Torque cannot be transmitted.
- the 8-ball type constant velocity universal joint described above has a smaller track offset, a larger number of balls, and a smaller diameter than the conventional 6-ball type constant velocity universal joint.
- each wedge angle formed between the track grooves 107 and 109 forming a pair of the outer joint member 102 and the inner joint member 103 in an operating angle of 0 ° is open toward the opening side of the outer joint member 102.
- the spherical contact portions 106 and 112 of the outer joint member 102 and the cage 105 and the spherical contact portions 108 and 113 of the inner joint member 103 and the cage 105 are caused by the axial force acting on the ball 104 from the track grooves 107 and 109.
- the load that acts on the is generated in a certain direction. Therefore, there is a limit to further increasing efficiency and reducing heat generation.
- FIGS. 20A and 20B have been proposed (see, for example, Patent Document 1 below).
- 20A is a vertical cross-sectional view of the constant velocity universal joint 121 in a state where the operating angle is 0 °
- FIG. 20B is a schematic diagram showing a state where the constant velocity universal joint 121 has a high operating angle.
- the constant velocity universal joint 121 mainly includes an outer joint member 122, an inner joint member 123, a ball 124, and a cage 125.
- the constant velocity universal joint 121 has a plane including the ball track center line x of the eight track grooves 127 of the outer joint member 122 and the joint center O with respect to the joint axis nn.
- the track grooves 127 are inclined and formed in opposite directions with the track grooves 127 adjacent to each other in the circumferential direction.
- the ball track center line y of the track groove 129 of the inner joint member 123 is perpendicular to the joint axis nn including the joint center O at the operating angle of 0 ° (including the joint center O at the operating angle of 0 °).
- the plane is formed in a mirror image symmetry with the ball trajectory center line x of the track groove 127 to be a pair of the outer joint member 122 with respect to the plane (P) extending in the direction of
- the track groove 127 formed on the spherical inner peripheral surface 126 of the outer joint member 122 and the track groove 129 formed on the spherical outer peripheral surface 128 of the inner joint member 123 are each along the axial direction.
- the center of curvature is located at the joint center O.
- Balls 124 are interposed at the intersections of the track grooves 127 and 129 forming a pair of the outer joint member 122 and the inner joint member 123 (opposing in the radial direction).
- a cage 125 for holding the ball 124 is disposed between the spherical inner peripheral surface 126 of the outer joint member 122 and the spherical outer peripheral surface 128 of the inner joint member 123.
- the center of curvature of the spherical outer peripheral surface 132 of the cage 125 fitting with the spherical inner peripheral surface 126 of the outer joint member 122 and the spherical inner peripheral surface 133 of the cage 125 fitting with the spherical outer peripheral surface 128 of the inner joint member 123 are , Both are formed at the joint center O.
- the center of curvature of the ball raceway center lines x and y of the track grooves 127 and 129 of the outer joint member 122 and the inner joint member 123 is disposed at the joint center O.
- the track grooves 127 and 129 of the joint members 122 and 123 are adjacent to each other in the circumferential direction and are inclined in opposite directions.
- a force in the opposite direction from the ball 124 acts on the pocket portion 125 a adjacent to the circumferential direction of the cage 125.
- the cage 125 is stabilized at the joint center O position by the forces in the opposite directions.
- the force is suppressed and the joint operates smoothly at high loads and high speeds, so torque loss and heat generation are suppressed, and durability is improved.
- the above-described track groove intersection type fixed constant velocity universal joint 121 is excellent as a low heat generation joint, as shown in FIG. 20B, when the inlet chamfer 130 of the outer joint member 122 is enlarged, the curvature of the track groove 127 is increased. Due to the structure in which the center coincides with the joint center O, the effective track length of the track groove 127 of the outer joint member 122 is insufficient, and the ball 124 drops off from the track groove 127 when the high operating angle ⁇ is taken. There is a problem that the operating angle cannot be achieved.
- FIG. 16A in this constant velocity universal joint 141, the track groove 147 of the outer joint member 142 includes a joint center O in a state where the operating angle is 0 °, and is a plane (joint joint) perpendicular to the joint axis nn.
- the back side and the opening side with respect to the center plane are arc-shaped track grooves 147a and linear track grooves 147b with the joint center O as the center of curvature, respectively.
- the track groove 149 of the inner joint member 143 has an arcuate track groove 149a and a straight track groove 149b with the joint center O as the center of curvature at the opening side and the back side of the joint center plane, respectively. It is what.
- the track grooves 147 and 149 are inclined in the circumferential direction with respect to the axis of the joint, and the inclined directions are track grooves 147A, 147B and 149A and 149B adjacent to each other in the circumferential direction. They are formed in opposite directions.
- Balls 144 are disposed at the intersections of the track grooves 147A, 149A and 147B, 149B forming a pair of the outer joint member 142 and the inner joint member 143. Therefore, when the joint members 142 and 143 rotate relative to each other at an operating angle of 0 ° as shown in the figure, the wedge angle formed between the track grooves 147A and 149A and the direction between the opening 147B and 149B are formed.
- the direction in which the wedge angle opens is opposite to each other, and a force in the opposite direction from the ball 144 acts on the pocket portion 145a adjacent to the circumferential direction of the cage 145, so that the cage 145 is at the position of the joint center O. Stabilize. Therefore, the contact force between the spherical outer circumferential surface 152 of the cage 145 and the spherical inner circumferential surface 146 of the outer joint member 142 and the contact between the spherical inner circumferential surface 153 of the cage 145 and the spherical outer circumferential surface 148 of the inner joint member 143. As a result of the force being suppressed and the operability of the joint being improved, torque loss and heat generation are suppressed, and durability is improved.
- the track grooves 147 and 149 and the ball 144 are normally in contact with each other with a contact angle of about 30 ° to 45 °, the track grooves 147 and 149 and the ball 144 are in contact with each other as shown in FIG. In contact with each other at a position indicated by a broken line on the side surface side of the track grooves 147 and 149 slightly apart from the groove bottom.
- a wedge angle component due to the intersection of the track grooves 147 and 149 and a wedge angle component due to the joint radial expansion between the groove bottoms of the track grooves 147 and 149 act on each ball 144. To do.
- the wedge angle component due to the intersection of the track grooves 147 and 149 has the inclination directions of the track grooves 147 and 149 being opposite to each other. When forces in opposite directions act, they cancel each other out and balance the forces.
- the wedge angle components due to the joint radial expansion between the groove bottoms of the track grooves 147 and 149 are in the phase ranges of 0 ° to 90 ° and 270 ° to 360 ° in FIG. 16B.
- a certain ball 144 is positioned between the linear track grooves 147b and 149b, and a pushing force toward the opening acts on the ball 144 in this phase range due to the wedge angle component ⁇ 1 that opens toward the opening.
- the ball 144 in the phase range of 90 ° to 270 ° is positioned between the arc-shaped track grooves 147a and 149a, the ball in this phase range has a wedge angle component ⁇ 2 generated by the radial expansion of the joint.
- each of the outer joint member and the inner joint member has a track groove in order to improve efficiency by reducing torque loss and heat generation.
- the first track groove portion having an arc-shaped ball trajectory center line capable of forming an intersecting portion (intersecting track) in cooperation with the side is provided to cover a range of frequently used operating angles, and the tracks of both joint members.
- the second idea of providing a second track groove portion having a straight ball trajectory center line in each of the grooves to cover a range of a high operating angle that is less frequently used has been reached.
- the center of curvature of the ball track center line of the arc-shaped first track groove portion is set to the joint center. Inspired to offset in the axial direction.
- the present invention devised to achieve the above object includes an outer joint member having a plurality of track grooves extending in the axial direction on a spherical inner peripheral surface and having an opening side and a back side that are separated in the axial direction.
- the inner joint member having a plurality of track grooves that are paired with the track grooves of the outer joint member on the spherical outer peripheral surface, and the torque is interposed between the track groove of the outer joint member and the track groove of the inner joint member.
- the track groove of the outer joint member is composed of a first track groove portion located on the back side and a second track groove portion located on the opening side, and the first track groove portion opens to the center of the joint.
- An arc-shaped ball trajectory centerline having a center of curvature at the offset position, and at least a plane including the ball trajectory centerline and the joint center is inclined in the circumferential direction with respect to the axis of the joint, and the inclined direction is the circumferential direction.
- the first track groove portions adjacent to each other are formed in opposite directions, and the ball track center line of the second track groove portion has a linear portion to increase the effective track length with respect to the maximum operating angle, and the joint It is connected to the ball track center line of the first track groove portion on the opening side from the center, and the ball track center line of the track groove of the inner joint member is the outer joint with reference to the joint center plane at the operating angle of 0 °. It is characterized in that it is formed mirror-symmetrically with the ball trajectory center line of the track groove forming a pair of members.
- the “ball trajectory center line” means a locus drawn by the center of the ball when the ball moves along the track groove. Accordingly, the inclined state and the curved state of the track groove are the same as the inclined state and the curved state of the ball track center line.
- the “joint axis” means a longitudinal axis serving as the center of rotation of the joint, and indicates a joint axis NN in an embodiment described later.
- the “joint center plane at an operating angle of 0 °” is synonymous with a plane including the joint center at an operating angle of 0 ° and extending in a direction perpendicular to the axis of the joint.
- the ball track center line of the second track groove portion for increasing the effective track length provided on the opening side of the first track groove portion is closer to the opening side than the joint center.
- the ball track center line in the track groove of the inner joint member, the ball track center line of the second track groove portion provided on the inner side of the ball track center line is on the inner side of the joint track on the inner side of the joint track. Connected to). That is, in the fixed type constant velocity universal joint according to the present invention, compared to the constant velocity universal joint 141 described with reference to FIG. 16, the first cross track that is excellent in the effect of suppressing torque loss and the like is formed. This means that the formation range of the track groove is expanded.
- the first track groove portion provided in the outer joint member has an arc-shaped ball track center line having a center of curvature at a position offset to the opening side with respect to the joint center (the first joint member provided in the inner joint member). Since the track groove portion has an arc-shaped ball track center line having a center of curvature at a position offset to the back side with respect to the joint center), this offset amount can be obtained by adopting the above configuration, such as torque loss.
- the length of the second track groove portion By appropriately adjusting within a range that does not impair the suppression effect (the efficiency of the joint), the length of the second track groove portion (effective track length) can be effectively increased to increase the operating angle. . Therefore, according to the present invention, it is possible to realize a fixed type constant velocity universal joint that can take a high operating angle while having low torque loss and heat generation, high efficiency, and excellent durability.
- this angle ⁇ By appropriately setting according to the use state or the like, it is possible to appropriately realize high efficiency of the fixed type constant velocity universal joint.
- the angle ⁇ can be set to 3 to 10 ° to be widely used for various types of vehicles.
- the angle ⁇ is defined as the smallest angle formed by the straight line on the joint center plane when the operating angle is 0 °.
- the radial direction position can be set arbitrarily. That is, the center of curvature of the ball track center line of the first track groove may be disposed on the tilt axis N′-N ′ inclined in the circumferential direction with respect to the joint axis NN, or the tilt axis N ′. It may be arranged at a position offset in the radial direction with respect to ⁇ N ′.
- the groove depth of the first track groove is adjusted according to the offset amount. Therefore, the optimum track groove depth can be ensured.
- the center of curvature of the spherical outer peripheral surface and the spherical inner peripheral surface of the cage can be arranged at positions offset to the opening side and the back side with respect to the joint center, respectively. In this way, the thickness of the cage can be gradually increased toward the opening side, so that the strength of the cage can be secured particularly at a high operating angle, and the reliability of the joint can be improved.
- the second track groove (the center line of the ball trajectory) can be formed in various forms as long as it has a straight portion.
- the entire area of the ball track center line of the second track groove portion is configured by a straight portion
- the ball track center line of the second track groove portion is defined by the arc track center line of the first track groove portion having an arc shape.
- the ball track center line of the second track groove portion formed as a tangent line further including an arc-shaped portion having a curvature radius different from the curvature radius of the ball track center line of the first track groove portion having an arc shape
- the arc-shaped portion is connected to the ball track center line of the first track groove portion, and (3) the linear portion of the ball track center line of the second track groove portion is formed parallel to the axis of the joint.
- the ball track center line of the second track groove portion of the outer joint member may be inclined in the circumferential direction with respect to the joint axis line, and the inclination angle may be gradually decreased toward the opening side. .
- the contact area difference between the spherical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the cage on the opening side, and the spherical outer peripheral surface of the inner joint member and the spherical inner peripheral surface of the cage on the back side Each contact area difference can be reduced. Accordingly, the spherical contact portions of the cage and the outer joint member and the spherical contact portions of the cage and the inner joint member can be arranged in a well-balanced manner, and the operability can be further enhanced.
- the number of balls is 8, 10, or 12. In this way, it is possible to realize a fixed type constant velocity universal joint that is lightweight, compact, highly efficient, and capable of obtaining a high operating angle, and thus a drive shaft of an automobile.
- FIG. 6A It is a fragmentary sectional view in the state where the outer joint member of the constant velocity universal joint shown in FIG. 20 took the maximum operating angle. It is a principal part enlarged view of FIG. 6C. It is a perspective view of the outer joint member which comprises the fixed type constant velocity universal joint shown in FIG.
- FIG. 1 It is a perspective view of the inner side coupling member which comprises the fixed type constant velocity universal joint shown in FIG. It is a figure which shows an example of the drive shaft for motor vehicles in which the fixed type constant velocity universal joint shown in FIG. 1 was integrated. It is a longitudinal cross-sectional view of the outer joint member used with the fixed type constant velocity universal joint which concerns on 2nd Embodiment of this invention. It is a longitudinal cross-sectional view of the outer joint member used with the fixed type constant velocity universal joint which concerns on 3rd Embodiment of this invention. It is a longitudinal cross-sectional view of the outer joint member used with the fixed type constant velocity universal joint which concerns on 4th Embodiment of this invention.
- FIG. 19B is a schematic diagram illustrating a state where the fixed type constant velocity universal joint illustrated in FIG. 19A has a high operating angle. It is a longitudinal cross-sectional view in the state of the operating angle of 0 degrees of the conventional fixed type constant velocity universal joint.
- FIG. 20B is a schematic diagram illustrating a state where the fixed type constant velocity universal joint illustrated in FIG. 20A has a high operating angle.
- FIG. 1A shows a partial longitudinal sectional view of a fixed type constant velocity universal joint 1 (hereinafter also simply referred to as “constant velocity universal joint 1”) according to the first embodiment of the present invention, and FIG. A front view (right side view of Drawing 1A) is shown.
- the constant velocity universal joint 1 mainly includes an outer joint member 2, an inner joint member 3, a ball 4 and a cage 5.
- the spherical inner peripheral surface 6 of the outer joint member 2 is formed with eight track grooves 7 extending in the axial direction, and each track groove 7 has an axis NN of the joint.
- the track grooves 7 and 7 (7A and 7B) that are adjacent to each other in the circumferential direction are formed in directions opposite to each other.
- eight track grooves 9 extending in the axial direction are formed on the spherical outer peripheral surface 8 of the inner joint member 3, and each track groove 9 has an axis N of the joint.
- the angle ⁇ is inclined in the circumferential direction with respect to ⁇ N, and the inclined direction is formed in opposite directions in the track grooves 9 and 9 (9A, 9B) adjacent in the circumferential direction.
- One ball 4 is disposed at each intersection of the track grooves 7 and 9 forming a pair of the outer joint member 2 and the inner joint member 3.
- the cross-sectional shape of each of the track grooves 7 and 9 is, for example, elliptical or Gothic arch, and the track grooves 7 and 9 and the ball 4 have a contact angle of about 30 ° to 45 °.
- the contact is a so-called angular contact. Therefore, the ball 4 is in contact with the track grooves 7 and 9 on the side surface side of the track grooves 7 and 9 that are slightly apart from the groove bottoms of the track grooves 7 and 9.
- ball trajectory centerline is used to accurately indicate the inclined state or curved state of the track grooves 7 and 9.
- the center line of the ball trajectory means a locus drawn by the center of the ball 4 when the ball 4 moves along the track grooves 7 and 9. Accordingly, the inclined state and the curved state of the track grooves 7 and 9 are the same as the inclined state and the curved state of the ball track center line.
- the track groove 7 of the outer joint member 2 has a ball track center line X. More specifically, the track groove 7 includes a first track groove portion 7a provided on the back side and a second track groove portion 7b provided on the opening side.
- the first track groove portion 7a and the second track groove portion 7b are: Each has an arc-shaped ball trajectory center line Xa and a linear ball trajectory center line Xb.
- the ball track center line Xb of the second track groove portion 7b formed in a straight line is smoothly connected to the opening side end portion A of the ball track center line Xa of the first track groove portion 7a.
- the first track groove portion 7a (ball track center line Xa) is formed by a single arc, but the first track groove portion 7a has a plurality of arcs in consideration of the groove depth and the like. May be formed. The same applies to other embodiments described later.
- reference numeral 7 When referring to the entire track groove of the outer joint member 2, reference numeral 7 is attached, and reference numerals 7a and 7b are attached to the first and second track groove portions, respectively.
- reference numeral 7A is given to the track groove inclined to one side in the circumferential direction with respect to the joint axis NN, and the other side in the circumferential direction with respect to the joint axis NN.
- Reference numeral 7B is given to the track groove inclined in the direction.
- Reference numerals 7Aa and 7Ba are attached to the first track groove portions of the track grooves 7A and 7B, and reference numerals 7Ab and 7Bb are attached to the second track groove portions of the track grooves 7A and 7B, respectively.
- the track grooves 9 of the inner joint member 3 to be described later are also given the same reference numerals.
- the state in which the track grooves 7 (7A, 7B) of the outer joint member 2 are inclined in the circumferential direction with respect to the joint axis NN will be described in more detail.
- the plane M including the ball track center line X and the joint center O of the track groove 7A is inclined at an angle ⁇ on one side in the circumferential direction with respect to the joint axis NN.
- the track groove 7B adjacent to the track groove 7A in the circumferential direction is inclined by an angle ⁇ in the direction opposite to the inclination direction of the track groove 7A with respect to the joint axis NN.
- the entire area of the ball track center line X of the track groove 7 (7A, 7B), that is, both the ball track center line Xa of the first track groove portion 7a and the ball track center line Xb of the second track groove portion 7b are It is formed on the plane M.
- the present invention is not limited to this, and a mode in which only the ball trajectory center line Xa of the first track groove portion 7a among the both track groove portions 7a and 7b is included in the plane M can also be adopted.
- a plane M including at least the ball track center line Xa of the first track groove portion 7a and the joint center O is inclined by an angle ⁇ in the circumferential direction with respect to the joint axis NN, and the inclined direction is in the circumferential direction.
- the adjacent first track groove portions 7a may be formed in opposite directions.
- the track groove 9 of the inner joint member 3 has a ball track center line Y. More specifically, the track groove 9 includes a first track groove portion 9a provided on the opening side and a second track groove portion 9b provided on the back side.
- the first track groove portion 9a and the second track groove portion 9b are: Each has an arc-shaped ball trajectory center line Ya and a straight ball trajectory center line Yb.
- the ball track center line Yb of the second track groove portion 9b formed in a straight line is smoothly connected to the back end B of the ball track center line Ya of the first track groove portion 9a.
- the center of curvature of the first track groove portion 9a is located at a point Oi that is offset from the joint center O by a dimension f 1 on the back side, and this offset point Oi is the axis of the joint. It is arranged on an inclination axis N′-N ′ inclined by an angle ⁇ (see FIG. 3B) with respect to NN.
- the first track groove portion 9a (ball track center line Ya) is formed by a single arc, but the first track groove portion 9a is the same as the first track groove portion 7a of the outer joint member 2.
- a plurality of arcs may be formed in consideration of the track groove depth and the like. The same applies to other embodiments described later.
- the state where the track grooves 9 (9A, 9B) of the inner joint member 3 are inclined in the circumferential direction with respect to the joint axis NN will be described in more detail with reference to FIGS. 3A to 3C.
- the plane Q including the ball track center line Y and the joint center O of the track groove 9A is inclined at an angle ⁇ on one side in the circumferential direction with respect to the joint axis NN.
- the track groove 9B circumferentially adjacent to the track groove 9A is such that the plane Q including the ball track center line Y and the joint center O of the track groove 9B is inclined with respect to the joint axis NN.
- the inclination angle ⁇ with respect to the joint axis NN of the plane Q (and the plane M described above) takes into consideration the operability of the constant velocity universal joint 1 and the spherical width F of the inner joint member 3 on the closest side of the track groove 9.
- the angle is preferably 4 ° to 12 °.
- the entire area of the ball track center line Y of the track groove 9 (9A, 9B), that is, the ball track center line Ya of the first track groove portion 9a and the second track. Both the ball track center lines Yb of the groove portions 9b are formed on the plane Q.
- the present invention is not limited to this, and a mode in which only the ball trajectory center line Ya of the first track groove portion 9a among the both track groove portions 9a and 9b is included in the plane Q can also be implemented.
- the plane Q including at least the ball track center line Ya and the joint center O of the first track groove 9a is inclined in the circumferential direction with respect to the joint axis NN, and the inclined direction is adjacent to the circumferential direction in the first track. It suffices if the grooves 9a are formed in opposite directions.
- the ball trajectory center line Y of the track groove 9 of the inner joint member 3 is based on the joint center plane P in a state where the operating angle is 0 °, and the ball trajectory of the track groove 7 which is a pair of the outer joint member 2 It is formed mirror-symmetric with the center line X.
- FIG. 4 is a cross-sectional view of the track groove 7A shown in FIG. 2A as viewed in a plane M including the ball track center line X and the joint center O, that is, an angle ⁇ in the circumferential direction with respect to the joint axis NN.
- 3 is a longitudinal section in a plane including an inclined tilt axis N′-N ′.
- FIG. 4 shows only the track groove 7A among the track grooves 7A and 7B having different inclination directions.
- a track groove 7A having a ball track center line X is formed along the axial direction.
- the track groove 7A is a first track having an arc-shaped ball trajectory center line Xa having a center of curvature at a point Oo offset by a dimension f 1 on the opening side with respect to the joint center O on the inclined axis N′-N ′.
- the groove portion 7Aa and a second track groove portion 7Ab having a linear ball trajectory center line Xb.
- the ball track center line Xb of the second track groove portion 7Ab having a linear shape is smoothly connected as a tangent to the opening side end portion A of the ball track center line Xa of the first track groove portion 7Aa having an arc shape.
- the end A is a connection point between the first track groove portion 7Aa (the ball track center line Xa) and the second track groove portion 7Ab (the ball track center line Xb). Since the opening-side end A of the ball track center line Xa of the first track groove 7Aa is located on the opening side of the joint center O, the ball of the second track groove 7Ab connected as a tangent to the opening-side end A
- the track center line Xb approaches the joint axis NN (see FIG. 1A) toward the opening side. As a result, it is possible to secure the effective track length at the maximum operating angle and to suppress the wedge angle from becoming excessive.
- the straight line L, the ball track center line X of the track groove 7A and the joint center O are defined as follows.
- the plane containing the angle ⁇ ′ formed by the perpendicular K at the joint center O of the joint axis (inclined axis) N′-N ′ projected on the containing plane M (see FIG. 2A) is the axis of the joint NN. It is inclined with respect to the angle ⁇ .
- FIG. 5B is a longitudinal sectional view of the inner joint member 3 as viewed in a plane Q including the ball track center line Y and the joint center O of the track groove 9A shown in FIG. 3B, that is, with respect to the joint axis NN.
- 5 is a longitudinal section of the inner joint member 3 in a plane including an inclination axis N′-N ′ inclined by an angle ⁇ in the circumferential direction.
- FIG. 5 shows only the track groove 9A among the track grooves 9A and 9B having different inclination directions.
- a track groove 9 ⁇ / b> A having a ball track center line Y is formed in the spherical outer peripheral surface 8 of the inner joint member 3 along the axial direction.
- the track groove 9A is a first track having an arc-shaped ball trajectory center line Ya centered on a point Oi offset by a dimension f 1 on the back side with respect to the joint center O on the inclined axis N′-N ′. It consists of a groove 9Aa and a second track groove 9Ab having a linear ball trajectory center line Yb.
- the ball track center line Yb of the second track groove portion 9Ab having a linear shape is smoothly connected as a tangent to the inner end B of the ball track center line Ya of the first track groove portion 9Aa having an arc shape.
- the rear end B is a connection point between the first track groove portion 9Aa (the ball track center line Ya) and the second track groove portion 9Ab (the ball track center line Yb). Since the back end B of the ball track center line Ya of the first track groove 9Aa is located on the back side of the joint center O, the second track groove 9Ab connected to the back end B as a tangent line.
- the ball trajectory center line Yb approaches the joint axis NN (see FIG. 1A) toward the back side. As a result, it is possible to secure the effective track length at the maximum operating angle and to suppress the wedge angle from becoming excessive.
- the straight line R, the ball track center line Y of the track groove 9A and the joint center O are defined as R.
- the plane including the angle ⁇ ′ formed by the perpendicular K at the joint center O of the joint axis (inclined axis) N′-N ′ projected onto the plane Q including the plane Q (see FIG. 3B) is the axis of the joint NN. It is inclined with respect to the angle ⁇ .
- an angle ⁇ formed by the straight lines L and R with respect to the joint center plane P in a state where the operating angle is 0 ° will be described.
- the ball 4 moves by ⁇ / 2 with respect to the plane P of the outer joint member 2 and the inner joint member 3.
- the angle ⁇ is determined from 1 ⁇ 2 of the frequently used operating angle, and the range of the track groove with which the ball 4 contacts is determined within the frequently used operating angle range.
- the operating angle that is frequently used is defined.
- the common angle of the joint refers to an operating angle generated in a fixed type constant velocity universal joint of the front drive shaft when the steering is in a straight traveling state in an automobile when one person rides on a horizontal and flat road surface.
- the service angle is usually selected and determined between 2 ° and 15 ° according to the design conditions for each vehicle type.
- the frequently used operating angle is not the high operating angle that occurs when the above-mentioned automobile is turned right or left at an intersection, for example, but the operating angle that occurs in a fixed constant velocity universal joint on a curved road that runs continuously This is also determined according to the design conditions for each vehicle type.
- the operating angle that is frequently used is targeted at a maximum of 20 °.
- the angle ⁇ formed by the straight lines L and R with respect to the joint center plane P in the state where the operating angle is 0 ° is set to 3 ° to 10 °.
- the angle ⁇ is not limited to 3 ° to 10 °, and can be appropriately set according to the design conditions of the vehicle type. However, if the angle ⁇ is set to 3 ° to 10 °, the angle ⁇ is general purpose. can do.
- the opening side end A (FIG. 4) of the ball track center line Xa of the first track groove portion 7Aa is the most open side along the axial direction when the operating angle is frequently used. It becomes the center position of the ball 4 when moved to.
- the back end B (FIG. 5) of the ball track center line Ya of the first track groove 9 ⁇ / b> Aa has moved to the innermost side along the axial direction at the operating angle where the frequency of use is high. Becomes the center position of the ball 4 at the time.
- the ball 4 Since it is set in this way, in the range of operating angles that are frequently used, the ball 4 has the first track groove portions 7Aa and 9Aa of the outer joint member 2 and the inner joint member 3, and the inclination direction is opposite to these. It is located within the range of the first track grooves 7Ba and 9Ba (see FIGS. 2 and 3), that is, within the range of the intersecting track.
- the contact force between the spherical outer circumferential surface 12 of the cage 5 and the spherical inner circumferential surface 6 of the outer joint member 2, and the spherical inner circumferential surface 13 of the cage 5 and the inner side is suppressed to the maximum, and the smooth operability of the joint at the time of high load and high speed rotation is ensured. Therefore, torque loss and heat generation are effectively suppressed. High efficiency can be achieved.
- the second track groove portion 7b having the linear ball track center line Xb is provided in the opening side region of the track groove 7 of the outer joint member 2 in order to increase the effective track length and increase the operating angle. If the centers of curvature of the first track groove portions 7a and 9a of the joint members 2 and 3 are arranged at the joint center O, it is difficult to achieve both a high operating angle of the joint and ensuring the strength of the joint. The reason will be described in detail with reference to FIG.
- the outer joint member shown in FIG. 18 includes a first track groove portion 7Aa ′ having an arc-shaped ball trajectory center line Xa ′ having a joint center O as a center of curvature on a spherical inner peripheral surface, and balls of the first track groove portion 7Aa ′.
- the position (angle ⁇ ′) of the opening side end A ′ of the ball trajectory center line Xa ′ and the angle of the inlet chamfer 10 are the same as those of the constant velocity universal joint 1 according to the first embodiment of the present invention described above. This is the same as the outer joint member 2.
- the outer joint member 2 ' which forms a pair on the inner periphery of the outer joint member 2' shown in FIG. 18 on the spherical outer peripheral surface with reference to the joint center plane P at a working angle of 0 °.
- An inner joint member in which a track groove that is mirror-imaged with the 'track groove 7A' is provided.
- the tilt axis N′-N ′ and the second track groove portion 7Ab ′ (the ball track center line Xb ′ of the straight second track groove portion) It is effective to increase the angle between For this reason, the effective track length is longer than the straight second track groove portion 7Ab ′ (the ball trajectory center line Xb ′) extending in the direction indicated by the arrow Y 1 in FIG. Write extended in the direction indicated by Y 2 is long.
- the above-mentioned angle increases, when the joint takes a high operating angle, it is formed between the track groove 7A ′ of the outer joint member 2 ′ and the track groove of the inner joint member paired therewith. Since the wedge angle increases and the force for pushing the ball toward the opening increases, the load generated in the pocket portion of the cage increases, and the durability and strength of the joint decrease.
- the center of curvature of the first track groove portion 7a of the outer joint member 2 is positioned at the point Oo offset from the joint center O to the opening side.
- the outer joint member to which the present invention shown in FIG. 6A is applied is the outer joint member shown in FIG.
- the inclination of the second track groove portion (the center axis of the ball track) with respect to the inclined axis N′-N ′ can be reduced.
- the length can be increased.
- the length of the effective track length is compared with the size of “track margin z” shown in FIG.
- the track margin is the contact point between the ball 4 and the track groove 7 (7 ′) of the outer joint member 2 (2 ′) when the joint takes an operating angle (maximum operating angle in FIGS. 6A and 6C) ⁇ .
- the second track groove portion 7b (7Ab, 7Bb) having the straight ball track center line Xb is provided on the opening side of the track groove 7 (7A, 7B) of the outer joint member 2. If the center of curvature of the first track groove portion 7a (7Aa, 7Ba) is positioned at the point Oo offset from the joint center O to the opening side, a large track margin is ensured and the maximum operating angle of the joint is increased. can do.
- the effect of suppressing torque loss and heat generation decreases (the efficiency of the joint decreases). If the offset amount of the first track groove portions 7a, 9a is adjusted so that the suppression effect is not excessively reduced, the effect of suppressing torque loss and the like due to the use of the joint common angle range, which is frequently used, is covered with the cross track structure. In this case, the first track groove portions 7a and 9a exceed the negative portion obtained by offsetting the centers of curvature in the axial direction with respect to the joint center O.
- the balls 4 arranged in the circumferential direction are temporarily divided into the first track groove portion and the second track groove portion in the range of the high operating angle. . Accordingly, the force acting from the balls 4 on the pockets 5a of the cage 5 is not balanced, and the contact portion between the spherical outer circumferential surface 12 of the cage 5 and the spherical inner circumferential surface 6 of the outer joint member 2, and the cage Although a contact force is generated at the contact portion between the spherical inner peripheral surface 13 of the inner surface 5 and the spherical outer peripheral surface 8 of the inner joint member 3, the range of high operating angles is less frequently used.
- the constant velocity universal joint 1 according to the present invention can effectively suppress torque loss and heat generation as compared with the constant velocity universal joint 141 shown in FIG. From the above, according to the present invention, it is possible to realize a fixed type constant velocity universal joint capable of taking a high operating angle while having high efficiency and low durability with little torque loss and heat generation. .
- the fit between the pocket portion 5a of the cage 5 and the ball 4 may be set as a clearance.
- the clearance width of the clearance is preferably set to about 0 to 40 ⁇ m.
- FIG. 7 is a perspective view of the outer joint member 2 and the inner joint member 3 which are constituent members of the constant velocity universal joint 1 described above.
- This perspective view three-dimensionally shows the track grooves described so far.
- track grooves 7A and 7B inclined in the circumferential direction with respect to the joint axis NN (not shown) are alternately formed on the spherical inner peripheral surface 6 of the outer joint member 2, and the track The inclination directions of the grooves 7A and 7B are opposite to each other.
- the track grooves 7A and 7B are composed of first track groove portions 7Aa and 7Ba and second track groove portions 7Ab and 7Bb, respectively.
- An inlet chamfer 10 is provided at the open end of the outer joint member 2.
- track grooves 9A and 9B inclined in the circumferential direction with respect to the joint axial line NN (not shown) are alternately formed.
- the inclination directions of the track grooves 9A and 9B are opposite to each other.
- the track grooves 9A and 9B are composed of first track groove portions 9Aa and 9Ba and second track groove portions 9Ab and 9Bb, respectively.
- FIG. 8 shows a front drive shaft 20 of an automobile incorporating the fixed type constant velocity universal joint 1 according to the first embodiment of the present invention.
- the fixed type constant velocity universal joint 1 is connected to one end of an intermediate shaft 11, and a sliding type constant velocity universal joint (in the illustrated example, a tripod type constant velocity universal joint) 15 is connected to the other end.
- a sliding type constant velocity universal joint in the illustrated example, a tripod type constant velocity universal joint
- bellows-like boots 16 a and 16 b are provided between the outer peripheral surface of the fixed type constant velocity universal joint 1 and the outer peripheral surface of the shaft 11 and between the outer peripheral surface of the sliding type constant velocity universal joint 15 and the outer peripheral surface of the shaft 11.
- boot bands 18 (18a, 18b, 18c, 18d
- the constant velocity universal joint 1 according to the first embodiment of the present invention has been described above, but various modifications can be made to the constant velocity universal joint 1 without departing from the gist of the present invention. It is.
- a constant velocity universal joint according to another embodiment of the present invention will be described. However, in the following, a configuration different from the first embodiment will be mainly described, and substantially the same function as that of the first embodiment will be described. The same reference numerals are given to the members / parts that perform the above, and the duplicate description is omitted.
- FIG. 9 is a partial cross-sectional view of an outer joint member used in a fixed type constant velocity universal joint according to the second embodiment of the present invention. More specifically, similar to FIG. It is the fragmentary sectional view of the outside joint member seen in plane M (refer to Drawing 2A) containing X and joint center O.
- the second track groove portion (the center line of the ball track) constituting each track groove mainly includes an arc-shaped portion (consisting of a linear portion and an arc-shaped portion).
- the configuration is different from the constant velocity universal joint of the first embodiment described above.
- the ball track center line Xb of the second track groove portion 7b constituting the track groove 7 of the outer joint member 2 is an arc-shaped ball track center line Xb1 and a straight line.
- the arc-shaped ball track center line Xb1 is connected to the opening-side end A of the ball track center line Xa of the first track groove 7a. Has been.
- the radius of curvature of the arc-shaped ball track center line Xb1 of the second track groove portion 7b is smaller than the radius of curvature of the ball track center line Xa of the first track groove portion 7a, and the end C on the opening side of the arc-shaped ball track center line Xb1.
- the straight ball track center line Xb2 is connected as a tangent.
- the outer periphery of the outer joint member 2 has a mirror-symmetrical track and a track groove 7 which forms a pair with the outer joint member 2 on the basis of the joint center plane P at an operating angle of 0 °.
- the inner joint member 3 having the groove 9, the ball 4 and the cage 5 are incorporated, thereby completing the fixed type constant velocity universal joint.
- the tilt axis (in the circumferential direction with respect to the joint axis NN) is set.
- the inclination angle of the straight ball trajectory center line Xb2 of the second track groove portion 7b with respect to the inclined axis N'-N ' can be changed. Therefore, the wedge angle at the maximum operating angle can be adjusted as appropriate.
- 10 to 12 are sectional views of outer joint members used in fixed type constant velocity universal joints according to third to fifth embodiments of the present invention, respectively. More specifically, as in FIG. It is the fragmentary sectional view of the outside joint member seen in plane M (refer to Drawing 2A) containing ball track center line X and joint center O.
- the extending direction of the second track groove portion (the center line of the ball track) constituting each track groove is different from that of the constant velocity universal joint according to the first embodiment. It is
- the outer joint member 2 at the opening side end of the track groove 7. Is smaller than the outer joint member 2 of the first embodiment shown in FIG. 4, and the inclination angle of the second track groove portion 7b (the ball trajectory center line Xb) with respect to the inclination axis N′-N ′. (Slope) is changed.
- the inclination of the ball track center line Xb of the second track groove portion 7b is smaller than the outer joint member 2 of the first embodiment shown in FIG. 4 by an angle ⁇ .
- the reduction width per unit length of the radial separation distance between the second track groove portion 7b and the inclined axis N′-N ′ is smaller than that of the outer joint member 2 shown in FIG. Is also getting bigger.
- the opening size of the outer joint member 2 at the opening side end of the track groove 7 is larger than that of the outer joint member 2 of the first embodiment shown in FIG.
- the inclination angle (inclination) of the second track groove portion 7b (the ball trajectory center line Xb) with respect to the inclination axis N′-N ′ is changed. More specifically, in the outer joint member 2 shown in FIG. 11, the second track groove portion is formed such that the radial separation distance between the second track groove portion 7b and the inclined axis N′-N ′ gradually increases toward the opening side. The extending direction of 7b is adjusted.
- the inclination angle of the ball track center line Xb of the second track groove portion 7b is larger by the angle ⁇ than the outer joint member 2 of the first embodiment shown in FIG.
- the second track groove portion 7b is inclined so that the radial distance between the second track groove portion 7b and the inclined axis N′-N ′ is constant throughout the axial direction. It is formed parallel to the axis N′-N ′.
- the first track groove portion 7a (the ball track center line Xa) and the second track groove portion 7b (the ball track center line Xb) are appropriate.
- the inner periphery of the outer joint member 2 shown in FIGS. 10 to 12 is mirror-image-symmetric with the track groove 7 paired with respect to the joint center plane P at an operating angle of 0 °.
- the inner joint member 3 having the track groove 9, the ball 4 and the cage 5 (see FIG. 1A) are incorporated, whereby a fixed type constant velocity universal joint is completed.
- the wedge angle formed between the track grooves forming a pair of both joint members at a high operating angle is smaller than that of the constant velocity universal joint 1 according to the first embodiment.
- the load generated in the pocket portion of the vessel can be reduced, and the durability (strength) of the joint can be increased.
- the effective track length is shorter than that of the constant velocity universal joint 1 according to the first embodiment, which is disadvantageous in achieving a high operating angle.
- FIG. 11 or FIG. 12 when the configuration shown in FIG. 11 or FIG. 12 is adopted, a higher operating angle can be realized, but it is disadvantageous in terms of durability (strength).
- FIG. 13 is a partial sectional view of an outer joint member used in a fixed type constant velocity universal joint according to a sixth embodiment of the present invention. More specifically, similar to FIG. 4 and the like, the ball track of the track groove 7A is shown. It is the fragmentary sectional view of the outside joint member seen in plane M (refer to Drawing 2A) containing center line X and joint center O.
- the above-mentioned first adjustment is made.
- the configuration is different from that of the fixed type constant velocity universal joint according to the embodiment.
- the center of curvature Oo of the ball track center line Xa of the first track groove portion 7a constituting the track groove 7 of the outer joint member 2 is open to the joint center O. And is offset by fr in the radial direction with respect to the tilt axis N′-N ′. That is, it is offset by fr in the radial direction on a plane parallel to the joint center plane P including the perpendicular K and having an operating angle of 0 °. Accordingly, the ball track center line Xb of the second track groove portion 7b having a linear shape is smoothly connected as a tangent to the opening side end portion A of the ball track center line Xa of the first track groove portion 7a having an arc shape.
- the outer periphery of the outer joint member 2 has a track groove 7 and a mirror image symmetrical track groove on the inner periphery of the outer joint member 2 on the basis of the joint center plane P at an operating angle of 0 °. 9, the ball 4 and the cage 5 (see FIG. 1A) are incorporated, thereby completing a fixed type constant velocity universal joint.
- FIG. 14 is a sectional view of a cage used in a fixed type constant velocity universal joint according to a seventh embodiment of the present invention. That is, the fixed type constant velocity universal joint of this embodiment is the first embodiment in that a cage in which the spherical outer peripheral surface and the center of curvature of the spherical inner peripheral surface are offset in the axial direction with respect to the joint center O is used. The configuration is different from that of the fixed type constant velocity universal joint.
- the curvature center Oc1 spherical outer peripheral surface 12 of the retainer 5 is offset by the dimension f 3 on the opening side of the joint center O, also spherical inner peripheral surface 13 center of curvature of Oc2 is offset by a dimension f 3 on the rear side with respect to the joint center O.
- the thickness of the cage 5 gradually increases toward the opening side, and the strength of the cage 5 particularly at a high operating angle can be improved.
- the balls 4 arranged in the circumferential direction are divided into the first track groove portions 7Aa, 9Aa (7Ba, 9Ba) and the second track groove portions 7Ab, 9Ab (7Bb, 9Bb).
- FIG. 15 is a partial cross-sectional view of an outer joint member used in a fixed type constant velocity universal joint according to an eighth embodiment of the present invention.
- the constant velocity universal joint of this embodiment is different from the fixed constant velocity universal joint of the first embodiment described above in the form of the ball track center line of the second track groove portion constituting each track groove.
- the ball track center line Xb of the second track groove portion 7b that forms the track groove 7 of the outer joint member 2 is the same as that of the first track groove portion 7a. After being smoothly connected as a tangent to the opening side end A of the ball trajectory center line Xa, it is gently curved so that the inclination angle ⁇ gradually decreases toward the opening side, and the inclination angle ⁇ is near the opening end. It is formed to be 0 °.
- the outer periphery of the outer joint member 2 has a mirror-symmetrical track and a track groove 7 which forms a pair with the outer joint member 2 on the basis of the joint center plane P at an operating angle of 0 °.
- the inner joint member 3 having the groove 9, the ball 4 and the cage 5 are incorporated, thereby completing the fixed type constant velocity universal joint.
- the distance between the adjacent track grooves 7Ab and 7Bb of the track grooves 7A and 7B adjacent in the circumferential direction increases, and the distance between the separated track grooves 7A and 7Bb decreases.
- the distance between the adjacent track grooves 9 ⁇ / b> Ab and 9 ⁇ / b> B of the track grooves 9 ⁇ / b> A and 9 ⁇ / b> B adjacent in the circumferential direction is widened, and the distance between the separated track grooves 9 ⁇ / b> Ab and 9 ⁇ / b> Bb is narrowed.
- the difference in contact area with the spherical inner peripheral surface 13 can be reduced. Thereby, it becomes possible to arrange
- the number of the balls 4 is eight, but is not limited thereto. Although illustration is omitted, for example, the present invention can be preferably applied to a fixed type constant velocity universal joint in which the number of balls is 10 or 12.
- the present invention is applied to a fixed type constant velocity universal joint in which track grooves are arranged at a constant pitch in the circumferential direction.
- the present invention can be preferably applied.
- the inclination angle ⁇ of the track groove (first track groove portion) with respect to the joint axis NN is made equal in all the track grooves.
- the present invention is not limited to this. If the inclination angle ⁇ of the track groove (first track groove portion) of the outer joint member and the inner joint member that make a pair (opposite in the radial direction) is equal, the mutual distance between the track grooves (first track groove portions)
- the inclination angle ⁇ may be varied.
- each inclination angle should be set so that the axial force of the ball acting on all the pockets in the circumferential direction of the cage is balanced as a whole.
- the present invention is applied to the fixed type constant velocity universal joint configured such that the track groove and the ball are in contact with each other with an angle of contact (angular contact).
- the present invention is not limited to this, and the present invention is not limited to this.
- the present invention can also be preferably applied to a fixed type constant velocity universal joint in which the cross-sectional shape of the groove is formed in an arc shape and the track groove and the ball are in circular contact.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Forging (AREA)
- Bearings For Parts Moving Linearly (AREA)
Abstract
外側継手部材2のトラック溝7は第1トラック溝部7aと第2トラック溝部7bとからなる。第1トラック溝部7aは、継手中心に対して開口側にオフセットした位置に曲率中心を有する円弧状をなし、かつ継手の軸線N-Nに対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う第1トラック溝部7aで互いに反対方向に形成されており、第2トラック溝部7bは、最大作動角に対する有効トラック長さを増加させるために直線状部分を有し、かつ継手中心Oよりも開口側で第1トラック溝部7aと接続されている。内側継手部材3のトラック溝9は、作動角が0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7と鏡像対称に形成されている。
Description
本発明は、固定式等速自在継手に関し、詳しくは、自動車や各種産業機械の動力伝達系において使用されるもので、駆動側と従動側の二軸間で角度変位のみを許容する固定式等速自在継手に関する。
例えば、自動車のフロント用ドライブシャフトには、通常、インボード側(デファレンシャル側)に、最大作動角は比較的小さいが作動角を取りつつ軸方向変位が可能な摺動式等速自在継手が組み込まれ、アウトボード側(車輪側)は、車輪が操舵されるので、大きな作動角が取れるが軸方向に変位しない固定式等速自在継手が組み込まれる。
アウトボード側に使用されている固定式等速自在継手の一例を、図19Aに示す等速自在継手101の作動角0°の状態における縦断面図、および図19Bに示す同等速自在継手101が最大作動角を取った状態の概要図に基づいて説明する。等速自在継手101は、8個ボールタイプのツェッパ型等速自在継手であり、外側継手部材102、内側継手部材103、ボール104および保持器105を主な構成とする。外側継手部材102の球状内周面106には8本のトラック溝107が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材103の球状外周面108には、外側継手部材102のトラック溝107と対向するトラック溝109が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材102と内側継手部材103の対をなす(半径方向で対向する)トラック溝107,109間にボール104が配置されている。外側継手部材102の球状内周面106と内側継手部材103の球状外周面108の間に、ボール104を保持する保持器105が配置されている。
図19Aに示すように、外側継手部材102の球状内周面106と嵌合する保持器105の球状外周面112、および内側継手部材103の球状外周面108と嵌合する保持器105の球状内周面113の曲率中心は、いずれも継手中心Oに形成されている。これに対し、外側継手部材102のトラック溝107のボール軌道中心線xの曲率中心Ooと、内側継手部材103のトラック溝109のボール軌道中心線yの曲率中心Oiとは、継手中心Oに対して軸方向両側に等距離オフセットされている。これにより、継手が作動角をとった場合、外側継手部材102と内側継手部材103の両軸線がなす角度を二等分する平面上にボール104が常に案内され、二軸間で等速に回転トルクが伝達される。
図19Bに示すように、固定式等速自在継手101の主要機能である最大作動角θmaxは、外側継手部材102の開口端(内周縁部)に設けられる入口チャンファ110とシャフト111とが干渉する角度に依存する。シャフト111の軸径dは、許容伝達トルクを確保するためにジョイントサイズ毎に決められている。入口チャンファ110を大きくとると、ボール104が接触する外側継手部材102のトラック溝107の長さ(以下、「有効トラック長さ」という)が不足し、ボール104がトラック溝107から脱落して回転トルクが伝達できなくなる。このため、外側継手部材102の有効トラック長さを確保しつつ、入口チャンファ110を如何に設定するかが、作動角を確保する上で重要なファクターとなる。図19Aおよび図19Bに示す等速自在継手101では、トラック溝107のボール軌道中心線xの曲率中心Ooが開口側にオフセットされているので、最大作動角の面で有利であり、最大作動角θmaxは47°程度である。
また、上述した8個ボールタイプの等速自在継手は、従来の6個ボールタイプの等速自在継手に比べて、トラックオフセット量を小さくし、ボールの個数を増やし、かつ直径を小さくしたことにより、軽量・コンパクトでトルク損失の少ない高効率な等速自在継手を実現している。しかし、作動角0°の状態で外側継手部材102と内側継手部材103の対をなすトラック溝107,109間に形成される各くさび角が、外側継手部材102の開口側に向けて開いているので、トラック溝107,109からボール104に作用する軸方向の力により、外側継手部材102と保持器105の球面接触部106,112および内側継手部材103と保持器105の球面接触部108,113に作用する荷重が一定方向に向かって発生する。そのため、更なる高効率化や低発熱化に限度がある。
そこで、更なる高効率化や低発熱化を実現すべく、図20Aおよび図20Bに示すトラック溝交差タイプの固定式等速自在継手121が提案されている(例えば、下記の特許文献1を参照)。図20Aは、等速自在継手121の作動角0°の状態における縦断面図であり、図20Bは、等速自在継手121が高作動角を取った状態を示す概要図である。図20Aに示すように、この等速自在継手121は、外側継手部材122、内側継手部材123、ボール124および保持器125を主な構成とする。この等速自在継手121は、図示は省略するが、外側継手部材122の8本のトラック溝127のボール軌道中心線xと継手中心Oとを含む平面が、継手の軸線n-nに対して傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝127で互いに反対方向に形成されている。そして、内側継手部材123のトラック溝129のボール軌道中心線yは、作動角0°の状態の継手中心平面(作動角0°の状態で継手中心Oを含んで継手の軸線n-nと直交する方向に延びる平面)Pを基準として、外側継手部材122の対となるトラック溝127のボール軌道中心線xと鏡像対称に形成されている。
図20Aに示すように、外側継手部材122の球状内周面126に形成されたトラック溝127、および内側継手部材123の球状外周面128に形成されたトラック溝129は、それぞれ、軸方向に沿って円弧状に延び、その曲率中心は継手中心Oに位置する。外側継手部材122と内側継手部材123の対をなす(半径方向に対向する)トラック溝127,129の交差部にボール124が介在している。外側継手部材122の球状内周面126と内側継手部材123の球状外周面128の間に、ボール124を保持する保持器125が配置されている。外側継手部材122の球状内周面126と嵌合する保持器125の球状外周面132、および内側継手部材123の球状外周面128と嵌合する保持器125の球状内周面133の曲率中心は、いずれも継手中心Oに形成されている。この等速自在継手121では、外側継手部材122および内側継手部材123のトラック溝127,129のボール軌道中心線x,yの曲率中心は継手中心Oに配置されているが、対をなすトラック溝127,129が交差し、この交差部にボール124が介在することにより、継手が作動角をとった場合、外側継手部材122と内側継手部材123の両軸線がなす角度を二等分する平面上にボール124が常に案内され、二軸間で等速に回転トルクが伝達されることになる。
上述したトラック溝交差タイプの固定式等速自在継手121において、両継手部材122,123のトラック溝127,129は、周方向に隣り合うトラック溝で傾斜方向が互いに反対方向に形成されているので、保持器125の周方向に隣り合うポケット部125aにはボール124から相反する方向の力が作用する。この相反する方向の力により保持器125は継手中心O位置で安定する。このため、保持器125の球状外周面132と外側継手部材122の球状内周面126との接触力、および保持器125の球状内周面133と内側継手部材123の球状外周面128との接触力が抑制されて高負荷時や高速回転時に継手が円滑に作動するため、トルク損失や発熱が抑えられ、耐久性が向上する。
上述したトラック溝交差タイプの固定式等速自在継手121は、低発熱ジョイントとしては優れているものの、図20Bに示すように、外側継手部材122の入口チャンファ130を大きくすると、トラック溝127の曲率中心が継手中心Oに一致している構造上、外側継手部材122のトラック溝127の有効トラック長さが不足し、高作動角θを取ったときにボール124がトラック溝127から脱落し、高作動角化が図れないという問題がある。
そこで、本発明者らは、上述したトラック溝交差タイプの固定式等速自在継手の高作動角化を図るために、両継手部材のトラック溝に直線状の部分を設けることを検討した。この等速自在継手が図16に示すものであり、図16Aおよび図16Bに、同等速自在継手の縦断面図および正面図をそれぞれ示す。図16Aに示すように、この等速自在継手141において、外側継手部材142のトラック溝147は、作動角0°の状態で継手中心Oを含んで継手の軸線n-nと直交する平面(継手中心平面)を境にしてその奥側および開口側を、それぞれ、継手中心Oを曲率中心とする円弧状のトラック溝147aおよび直線状のトラック溝147bとしたものである。一方、内側継手部材143のトラック溝149は、継手中心平面を境にしてその開口側および奥側を、それぞれ、継手中心Oを曲率中心とする円弧状のトラック溝149aおよび直線状のトラック溝149bとしたものである。
そして、図16Bに示すように、トラック溝147,149は、それぞれ、継手の軸線に対して周方向に傾斜すると共に、その傾斜方向が周方向に隣り合うトラック溝147A,147Bおよび149A,149Bで互いに反対方向に形成されている。外側継手部材142および内側継手部材143の対をなすトラック溝147A,149Aおよび147B,149Bの各交差部にボール144が配置されている。したがって、図示のような作動角0°の状態で両継手部材142,143が相対回転すると、トラック溝147A,149Aの間に形成されるくさび角の開く方向と、147B,149Bの間に形成されるくさび角の開く方向とが互いに反対方向となり、保持器145の周方向に隣り合うポケット部145aにボール144から相反する方向の力が作用することから、保持器145は継手中心Oの位置で安定する。このため、保持器145の球状外周面152と外側継手部材142の球状内周面146との接触力、および保持器145の球状内周面153と内側継手部材143の球状外周面148との接触力が抑制され、継手の作動性が向上する結果、トルク損失や発熱が抑えられ、耐久性が向上する。
上記したように、外側継手部材142のトラック溝147のうち、継手中心平面から開口側の領域に直線状のトラック溝147bを形成すれば、有効トラック長さを増加させて高作動角化を図ることができる。ところが、上述した構成では、使用頻度の多い作動角を取ったときに、継手のトルク損失や発熱の抑制という面で問題があることが判明した。この理由を図17に基づいて説明する。
トラック溝147,149とボール144は、通常、30°~45°程度の接触角をもって接触しているので、トラック溝147,149とボール144とは、図17に示すようにトラック溝147、149の溝底より少し離れたトラック溝147,149の側面側の破線で示す位置で接触している。継手が作動角を取ったとき、各ボール144には、トラック溝147,149の交差によるくさび角成分と、トラック溝147,149の溝底間の継手半径方向の拡がりによるくさび角成分とが作用する。両くさび角成分のうち、トラック溝147,149の交差によるくさび角成分については、トラック溝147,149の傾斜方向が互いに反対方向になっているため、ボール144から保持器145のポケット部145aに相反する方向の力が作用することにより、打消し合い、力がバランスすることとなる。
ところが、図17に示すように、トラック溝147,149の溝底間の継手半径方向の拡がりによるくさび角成分については、図16Bにおいて、0°~90°および270°~360°の位相範囲にあるボール144は直線状のトラック溝147b,149b間に位置し、この位相範囲のボール144には開口側に向けて開いたくさび角成分α1により開口側への押出力が作用する。一方、90°~270°の位相範囲にあるボール144は円弧状のトラック溝147a,149a間に位置するので、この位相範囲のボールには継手の半径方向の拡がりにより発生するくさび角成分α2が0であり、ボール144の押出力は発生しない。したがって、各ボール144に対して、トラック溝147,149の交差によるくさび角成分と、トラック溝147,149の溝底間の半径方向の拡がりによるくさび角成分αとを合わせると、保持器145の各ポケット部145aにボール144から作用する力が釣り合わず、保持器145の球状外周面152と外側継手部材142の球状内周面146との接触部、および保持器145の球状内周面153と内側継手部材143の球状外周面148との接触部における接触力を低減させることができないという問題が生じる。特に、常用角を含む使用頻度の多い作動角の範囲では、トルク損失や発熱の抑制という面で大きな問題があることが判明した。
以上の実情に鑑み、本発明は、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができる固定式等速自在継手を提供することを目的とする。
本願発明者らは、上記の目的を達成するために種々検討した結果、トルク損失および発熱を少なくして高効率化を図るために、外側継手部材および内側継手部材のトラック溝のそれぞれに、相手側と協働して交差部(交差トラック)を形成し得る円弧状のボール軌道中心線を有する第1トラック溝部を設けて使用頻度の多い作動角の範囲をカバーすると共に、両継手部材のトラック溝のそれぞれに、直線状のボール軌道中心線を有する第2トラック溝部を設けて使用頻度の少ない高作動角の範囲をカバーするという新規な着想に至った。これに加えて、最大作動角に対する有効トラック長さを増加させて高作動角化を図るために、円弧状をなした第1トラック溝部のボール軌道中心線の曲率中心を、継手中心に対して軸方向にオフセットさせることを着想した。
すなわち、上記の目的を達成するために創案された本発明は、球状内周面に軸方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、このボールを保持し、外側継手部材の球状内周面および内側継手部材の球状外周面にそれぞれ嵌合する球状外周面および球状内周面を有する保持器とを備えた固定式等速自在継手において、外側継手部材のトラック溝は奥側に位置する第1トラック溝部と開口側に位置する第2トラック溝部とからなり、第1トラック溝部は、継手中心に対して開口側にオフセットした位置に曲率中心をもつ円弧状のボール軌道中心線を有し、少なくともこのボール軌道中心線と継手中心を含む平面が継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う第1トラック溝部で互いに反対方向に形成されており、第2トラック溝部のボール軌道中心線は、最大作動角に対する有効トラック長さを増加させるために直線状部分を有し、かつ継手中心よりも開口側で第1トラック溝部のボール軌道中心線と接続されており、内側継手部材のトラック溝のボール軌道中心線は、作動角0°の状態の継手中心平面を基準として、外側継手部材の対となるトラック溝のボール軌道中心線と鏡像対称に形成されていることを特徴とする。
なお、本発明でいう「ボール軌道中心線」とは、ボールがトラック溝に沿って移動するときに、ボールの中心が描く軌跡を意味する。従って、トラック溝の傾斜状態や湾曲状態はそのボール軌道中心線の傾斜状態や湾曲状態と同じである。また、本発明でいう「継手の軸線」とは、継手の回転中心となる長手方向の軸線を意味し、後述する実施形態における継手の軸線N-Nを指す。さらに「作動角0°の状態の継手中心平面」とは、作動角0°の状態で継手中心を含んで継手の軸線と直交する方向に延びる平面、と同義である。
本発明では、外側継手部材のトラック溝において、その開口側に設けられる有効トラック長さを増加させるための第2トラック溝部のボール軌道中心線が、継手中心よりも開口側で第1トラック溝部のボール軌道中心線に接続される(内側継手部材のトラック溝においては、その奥側に設けられる第2トラック溝部のボール軌道中心線が継手中心よりも奥側で第1トラック溝部のボール軌道中心線に接続される)。これはすなわち、本発明に係る固定式等速自在継手では、図16を参照して説明した等速自在継手141と比較して、トルク損失等の抑制効果に優れた交差トラックを形成する第1トラック溝部の形成範囲が拡大されることを意味する。そのため、常用作動角の範囲におけるトルク損失や発熱を抑制して高効率化を図ることができる。その一方で、外側継手部材に設けられる第1トラック溝部は、継手中心に対して開口側にオフセットした位置に曲率中心をもつ円弧状のボール軌道中心線を有する(内側継手部材に設けられる第1トラック溝部は、継手中心に対して奥側にオフセットした位置に曲率中心をもつ円弧状のボール軌道中心線を有する)ことから、このオフセット量を、上記構成を採用したことにより得られるトルク損失等の抑制効果(継手の効率性)が損なわれない範囲で適宜調整することにより、第2トラック溝部の長さ(有効トラック長さ)を効果的に増加させて高作動角化を図ることができる。従って、本発明によれば、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができる固定式等速自在継手を実現することができる。
第1トラック溝部と第2トラック溝部のボール軌道中心線同士の接続点と継手中心とを結ぶ直線が作動角0°の状態の継手中心平面に対してなす角度をβとしたとき、この角度βを使用状態等に応じて適宜設定することにより、固定式等速自在継手の高効率化を適切に実現することができる。特に自動車用等速自在継手の常用作動角度範囲を考慮すると、角度βを3~10°に設定にすることで種々の車種に汎用することができる。なお、ここでいう角度βは、上記の直線が作動角0°の状態の継手中心平面上の直線となす角の中で最小のものと定義する。
第1トラック溝部のボール軌道中心線の曲率中心は、外側継手部材においては継手中心に対して開口側に、また内側継手部材においては継手中心に対して奥側にそれぞれオフセットされている限りにおいて、その半径方向位置を任意に設定することができる。すなわち、第1トラック溝部のボール軌道中心線の曲率中心は、継手の軸線N-Nに対して周方向に傾斜した傾斜軸N’-N’上に配置しても良いし、傾斜軸N’-N’に対して半径方向にオフセットした位置に配置しても良い。第1トラック溝部のボール軌道中心線の曲率中心を傾斜軸N’-N’に対して半径方向にオフセットさせた場合には、そのオフセット量に応じて第1トラック溝部の溝深さを調整することができるので、最適なトラック溝深さを確保することが可能となる。
保持器の球状外周面および球状内周面の曲率中心は、それぞれ、継手中心に対して開口側および奥側にオフセットした位置に配置することができる。このようにすれば、保持器の肉厚を開口側に向かって徐々に厚くすることができるので、特に高作動角時の保持器の強度を確保して継手の信頼性を高めることができる。
第2トラック溝部(のボール軌道中心線)は、直線状部分を有する限りにおいて種々の形態に形成することができる。例えば、(1)第2トラック溝部のボール軌道中心線の全域を直線状部分で構成し、第2トラック溝部のボール軌道中心線を、円弧状をなした第1トラック溝部のボール軌道中心線の接線として形成する、(2)第2トラック溝部のボール軌道中心線を、円弧状をなした第1トラック溝部のボール軌道中心線の曲率半径とは異なる曲率半径の円弧状部分をさらに含んだものとし、この円弧状部分を第1トラック溝部のボール軌道中心線に接続する、(3)第2トラック溝部のボール軌道中心線の直線状部分を継手の軸線に平行に形成する、などといった形態を採用することができる。なお、上記(1)の構成を採用すれば、第1トラック溝部と第2トラック溝部をシンプルな形態に形成することができるので、加工が容易となり製造コストを低減することができる。また、上記(2)の構成を採用すれば、両継手部材の第2トラック溝部間に形成されるくさび角の大きさを調整することができる。
以上の構成においては、外側継手部材の第2トラック溝部のボール軌道中心線を継手の軸線に対して周方向に傾斜させ、かつその傾斜角を、開口側に向けて徐々に減少させても良い。これにより、周方向で隣り合う第2トラック溝部のうち、接近した側の間隔を広げることができる一方で、離間した側の間隔を狭めることができるので、周方向で各間隔の差を小さくすることができる。その結果、開口側における外側継手部材の各球状内周面と保持器の球状外周面との接触面積差、および奥側における内側継手部材の各球状外周面と保持器の球状内周面との接触面積差をそれぞれ小さくすることができる。従って、保持器と外側継手部材の球面接触部および保持器と内側継手部材の球面接触部をバランス良く配置することが可能となり、作動性を一層高めることができる。
上記構成において、ボールの個数は、8個、10個又は12個の何れかとするのが望ましい。このようにすれば、軽量コンパクトで、高効率で、高作動角が取れる固定式等速自在継手、ひいては自動車のドライブシャフトを実現することができる。
以上のことから、本発明によれば、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができるコンパクトな固定式等速自在継手を実現することができる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1Aに本発明の第1実施形態に係る固定式等速自在継手1(以下、単に「等速自在継手1」ともいう)の部分縦断面図を示し、図1Bに同等速自在継手1の正面図(図1Aの右側面図)を示す。この等速自在継手1は、外側継手部材2、内側継手部材3、ボール4および保持器5を主な構成とする。
図2A,Bにも示すように、外側継手部材2の球状内周面6には軸方向に延びる8本のトラック溝7が形成されており、各トラック溝7は、継手の軸線N-Nに対して周方向に角度γ傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝7,7(7A,7B)で互いに反対方向に形成されている。また、図3A~図3Cにも示すように、内側継手部材3の球状外周面8には軸方向に延びる8本のトラック溝9が形成されており、各トラック溝9は、継手の軸線N-Nに対して周方向に角度γ傾斜すると共にその傾斜方向が周方向に隣り合うトラック溝9,9(9A,9B)で互いに反対方向に形成されている。そして、外側継手部材2と内側継手部材3の対をなすトラック溝7,9の各交差部にボール4が1個ずつ配置されている。詳細な図示は省略するが、各トラック溝7,9の横断面形状は、例えば楕円状あるいはゴシックアーチ状とされ、トラック溝7,9とボール4とは30°~45°程度の接触角をもって接触する、いわゆるアンギュラコンタクトとなっている。従って、ボール4は、トラック溝7,9の溝底より少し離れたトラック溝7,9の側面側でトラック溝7,9と接触している。
以下では、トラック溝7,9の傾斜状態や湾曲状態などを的確に示すために「ボール軌道中心線」なる用語を用いる。ボール軌道中心線とは、ボール4がトラック溝7,9に沿って移動するときに、ボール4の中心が描く軌跡を意味する。したがって、トラック溝7,9の傾斜状態や湾曲状態はそのボール軌道中心線の傾斜状態や湾曲状態と同じである。
図1Aおよび図2Aに示すように、外側継手部材2のトラック溝7はボール軌道中心線Xを有する。より詳しくは、トラック溝7は、奥側に設けられた第1トラック溝部7aと、開口側に設けられた第2トラック溝部7bとからなり、第1トラック溝部7aおよび第2トラック溝部7bは、それそれ、円弧状のボール軌道中心線Xaおよび直線状のボール軌道中心線Xbを有する。直線状をなした第2トラック溝部7bのボール軌道中心線Xbは、第1トラック溝部7aのボール軌道中心線Xaの開口側端部Aに滑らかに接続されている。第1トラック溝部7aのボール軌道中心線Xaの曲率中心は、図4に示すように、継手中心Oに対して開口側に寸法f1だけオフセットした点Ooに位置しており、かつこのオフセット点Ooは、継手の軸線N-Nに対して角度γ(図2Aを参照)だけ傾斜した傾斜軸N’-N’上に配置されている。なお、本実施形態では、第1トラック溝部7a(ボール軌道中心線Xa)を単一の円弧で形成しているが、第1トラック溝部7aは、その溝深さなどを考慮して複数の円弧で形成してもよい。後述するその他の実施形態でも同様である。
ここで、トラック溝の符号について補足する。外側継手部材2のトラック溝全体を指す場合は符号7を付し、その第1および第2トラック溝部に符号7a,7bをそれぞれ付している。傾斜方向が異なるトラック溝を区別する場合には、継手の軸線N-Nに対して周方向一方側に傾斜したトラック溝に符号7Aを、また継手の軸線N-Nに対して周方向他方側に傾斜したトラック溝に符号7Bを付している。そして、トラック溝7A,7Bの第1トラック溝部に符号7Aa,7Baを、また、トラック溝7A,7Bの第2トラック溝部に符号7Ab,7Bbをそれぞれ付している。後述する内側継手部材3のトラック溝9についても同様の要領で符号を付している。
図2A,Bを参照しながら、外側継手部材2のトラック溝7(7A,7B)が継手の軸線N-Nに対して周方向に傾斜している状態をより詳細に説明する。図2Aに示すように、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面Mは、継手の軸線N-Nに対して周方向一方側に角度γだけ傾斜している。トラック溝7Aと周方向に隣り合うトラック溝7Bは、継手の軸線N-Nに対してトラック溝7Aの傾斜方向とは反対方向に角度γだけ傾斜している。本実施形態では、トラック溝7(7A,7B)のボール軌道中心線Xの全域、すなわち、第1トラック溝部7aのボール軌道中心線Xaおよび第2トラック溝部7bのボール軌道中心線Xbの双方が平面M上に形成されている。しかし、これに限られるものではなく、両トラック溝部7a,7bのうち、第1トラック溝部7aのボール軌道中心線Xaのみが平面Mに含まれている形態を採用することもできる。要するに、少なくとも第1トラック溝部7aのボール軌道中心線Xaと継手中心Oを含む平面Mが、継手の軸線N-Nに対して周方向に角度γだけ傾斜すると共に、その傾斜方向が周方向に隣り合う第1トラック溝部7aで互いに反対方向に形成されていればよい。
図1Aおよび図3Bに示すように、内側継手部材3のトラック溝9はボール軌道中心線Yを有する。より詳しくは、トラック溝9は、開口側に設けられた第1トラック溝部9aと、奥側に設けられた第2トラック溝部9bとからなり、第1トラック溝部9aおよび第2トラック溝部9bは、それぞれ、円弧状のボール軌道中心線Yaおよび直線状のボール軌道中心線Ybを有する。直線状をなした第2トラック溝部9bのボール軌道中心線Ybは、第1トラック溝部9aのボール軌道中心線Yaの奥側端部Bに滑らかに接続されている。第1トラック溝部9aの曲率中心は、図5に示すように、継手中心Oに対して奥側に寸法f1だけオフセットした点Oiに位置しており、かつこのオフセット点Oiは、継手の軸線N-Nに対して角度γ(図3Bを参照)だけ傾斜した傾斜軸N’-N’上に配置されている。なお、本実施形態では、第1トラック溝部9a(ボール軌道中心線Ya)を単一の円弧で形成しているが、第1トラック溝部9aは、外側継手部材2の第1トラック溝部7aと同様に、トラック溝深さなどを考慮して複数の円弧で形成してもよい。後述するその他の実施形態でも同様である。
図3A~図3Cを参照しながら、内側継手部材3のトラック溝9(9A,9B)が継手の軸線N-Nに対して周方向に傾斜している状態をより詳細に説明する。図3Bに示すように、トラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Qは、継手の軸線N-Nに対して周方向一方側に角度γだけ傾斜している。また、トラック溝9Aと周方向に隣り合うトラック溝9Bは、トラック溝9Bのボール軌道中心線Yと継手中心Oを含む平面Qが、継手の軸線N-Nに対して、トラック溝9Aの傾斜方向とは反対方向(周方向他方側)に角度γだけ傾斜している。平面Q(および上述した平面M)の継手の軸線N-Nに対する傾斜角γは、等速自在継手1の作動性および内側継手部材3のトラック溝9の最も接近した側の球面幅Fを考慮し、4°~12°にすることが好ましい。また、上述した外側継手部材2と同様、本実施形態では、トラック溝9(9A,9B)のボール軌道中心線Yの全域、すなわち、第1トラック溝部9aのボール軌道中心線Yaおよび第2トラック溝部9bのボール軌道中心線Ybの双方が平面Q上に形成されている。しかし、これに限られるものではなく、両トラック溝部9a,9bのうち、第1トラック溝部9aのボール軌道中心線Yaのみが平面Qに含まれている形態も実施することができる。要するに、少なくとも第1トラック溝部9aのボール軌道中心線Yaと継手中心Oを含む平面Qが継手の軸線N-Nに対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う第1トラック溝部9aで互いに反対方向に形成されていればよい。
以上の構成から、内側継手部材3のトラック溝9のボール軌道中心線Yは、作動角0°の状態の継手中心平面Pを基準として、外側継手部材2の対となるトラック溝7のボール軌道中心線Xと鏡像対称に形成されている。
次に、図4に基づいて、外側継手部材2のトラック溝の詳細を説明する。なお、図4は、図2A中に示すトラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面Mで見た断面図、すなわち、継手の軸線N-Nに対して周方向に角度γ傾斜した傾斜軸N’-N’を含む平面における縦断面である。図4には、傾斜方向が互いに異なるトラック溝7A,7Bのうち、トラック溝7Aのみを示している。
外側継手部材2の球状内周面6には、ボール軌道中心線Xを有するトラック溝7Aが軸方向に沿って形成されている。このトラック溝7Aは、傾斜軸N’-N’上において継手中心Oに対して開口側に寸法f1だけオフセットした点Ooを曲率中心とした円弧状のボール軌道中心線Xaを有する第1トラック溝部7Aaと、直線状のボール軌道中心線Xbを有する第2トラック溝部7Abとからなる。そして、円弧状をなした第1トラック溝部7Aaのボール軌道中心線Xaの開口側端部Aに、直線状をなした第2トラック溝部7Abのボール軌道中心線Xbが接線として滑らかに接続されている。すなわち、上記の端部Aが第1トラック溝部7Aa(のボール軌道中心線Xa)と第2トラック溝部7Ab(のボール軌道中心線Xb)との接続点である。第1トラック溝部7Aaのボール軌道中心線Xaの開口側端部Aは継手中心Oよりも開口側に位置しているので、開口側端部Aに接線として接続される第2トラック溝部7Abのボール軌道中心線Xbは、開口側に向かうにつれて継手の軸線N-N(図1A参照)に接近する。これにより、最大作動角時の有効トラック長さを確保すると共に、くさび角が過大になるのを抑制することができる。
第1トラック溝部7Aaのボール軌道中心線Xaの開口側端部Aと継手中心Oとを結ぶ直線をLとしたとき、この直線Lと、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2A参照)上に投影された継手の軸線(傾斜軸)N’-N’の継手中心Oにおける垂線Kとがなす角度β’を含む平面は、継手の軸線N-Nに対して角度γだけ傾斜している。上記の垂線Kは作動角0°の状態の継手中心平面P上にある。したがって、直線Lが作動角0°の状態の継手中心平面Pに対してなす角度βは、sinβ=sinβ’×cosγの関係になる。
同様に、図5に基づいて、内側継手部材3のトラック溝の詳細を説明する。なお、図5は、図3B中に示すトラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Qで見た内側継手部材3の縦断面図、すなわち、継手の軸線N-Nに対して周方向に角度γだけ傾斜した傾斜軸N’-N’を含む平面における内側継手部材3の縦断面である。図5には、傾斜方向が互いに異なるトラック溝9A,9Bのうち、トラック溝9Aのみを示している。
内側継手部材3の球状外周面8には、ボール軌道中心線Yを有するトラック溝9Aが軸方向に沿って形成されている。このトラック溝9Aは、傾斜軸N’-N’上において継手中心Oに対して奥側に寸法f1だけオフセットした点Oiを曲率中心とした円弧状のボール軌道中心線Yaを有する第1トラック溝部9Aaと、直線状のボール軌道中心線Ybを有する第2のトラック溝部9Abとからなる。そして、円弧状をなした第1トラック溝部9Aaのボール軌道中心線Yaの奥側端部Bに、直線状をなした第2トラック溝部9Abのボール軌道中心線Ybが接線として滑らかに接続されている。すなわち、奥側端部Bが、第1トラック溝部9Aa(のボール軌道中心線Ya)と第2トラック溝部9Ab(のボール軌道中心線Yb)との接続点である。第1トラック溝部9Aaのボール軌道中心線Yaの奥側端部Bは、継手中心Oよりも奥側に位置しているので、奥側端部Bに接線として接続される第2トラック溝部9Abのボール軌道中心線Ybは、奥側に向かうにつれて継手の軸線N-N(図1A参照)に接近する。これにより、最大作動角時の有効トラック長さを確保すると共に、くさび角が過大になるのを抑制することができる。
第1トラック溝部9Aaのボール軌道中心線Yaの奥側端部Bと継手中心Oとを結ぶ直線をRとしたとき、この直線Rと、トラック溝9Aのボール軌道中心線Yと継手中心Oを含む平面Q(図3B参照)上に投影された継手の軸線(傾斜軸)N’-N’の継手中心Oにおける垂線Kとがなす角度β’を含む平面は、継手の軸線N-Nに対して角度γだけ傾斜している。上記の垂線Kは作動角0°の状態の継手中心平面P上にある。したがって、直線Rが作動角0°の状態の継手中心平面Pに対してなす角度βは、sinβ=sinβ’×cosγの関係になる。
次に、直線L、Rが作動角0°の状態の継手中心平面Pに対してなす角度βについて説明する。作動角θを取ったとき、外側継手部材2および内側継手部材3の上記平面Pに対して、ボール4がθ/2だけ移動する。使用頻度が多い作動角の1/2より角度βを決め、使用頻度が多い作動角の範囲においてボール4が接触するトラック溝の範囲を決める。ここで、使用頻度が多い作動角について定義する。まず、継手の常用角とは、水平で平坦な路面上で1名乗車時の自動車において、ステアリングを直進状態にした時にフロント用ドライブシャフトの固定式等速自在継手で生じる作動角をいう。常用角は、通常、2°~15°の間で車種ごとの設計条件に応じて選択・決定される。そして、使用頻度の多い作動角とは、上記の自動車が、例えば、交差点の右折・左折時などに生じる高作動角ではなく、連続走行する曲線道路などで固定式等速自在継手に生じる作動角をいい、これも車種ごとの設計条件に応じて決定される。使用頻度の多い作動角は最大20°を目処とする。これにより、直線L、Rが作動角0°の状態の継手中心平面Pに対してなす角度βを3°~10°と設定する。ただし、角度βは3°~10°に限定されるものではなく、車種の設計条件に応じて適宜設定することができるが、角度βを3°~10°に設定すれば種々の車種に汎用することができる。
上記の角度βにより、外側継手部材2では、第1トラック溝部7Aaのボール軌道中心線Xaの開口側端部A(図4)が、使用頻度が多い作動角時に軸方向に沿って最も開口側に移動したときのボール4の中心位置となる。同様に、内側継手部材3では、第1トラック溝部9Aaのボール軌道中心線Yaの奥側端部B(図5)が、使用頻度が多い作動角時に軸方向に沿って最も奥側に移動したときのボール4の中心位置となる。このように設定されているので、使用頻度が多い作動角の範囲において、ボール4は、外側継手部材2および内側継手部材3の第1トラック溝部7Aa,9Aa、およびこれらとは傾斜方向が反対の第1トラック溝部7Ba,9Ba(図2,図3参照)の範囲内、すなわち交差トラックの範囲内に位置する。
この場合、保持器5の周方向に隣り合うポケット部5aにボール4から相反する方向の力が作用するため、両継手部材2,3の第1トラック溝部7a,9aの曲率中心が継手中心Oに位置するのであれば、保持器5は継手中心Oの位置で安定することとなる。保持器5が継手中心Oの位置で安定すれば、保持器5の球状外周面12と外側継手部材2の球状内周面6との接触力、および保持器5の球状内周面13と内側継手部材3の球状外周面8との接触力が最大限に抑制され、高負荷時や高速回転時における継手の円滑な作動性が確保されるため、トルク損失や発熱を効果的に抑制して高効率化を達成することができる。
しかしながら、有効トラック長さを増加させて高作動角化を図るべく、外側継手部材2のトラック溝7の開口側領域に直線状のボール軌道中心線Xbを有する第2トラック溝部7bを設けた場合、両継手部材2,3の第1トラック溝部7a,9aの曲率中心を継手中心Oに配置すると、継手の高作動角化と、継手の強度確保とを両立させることが難しくなる。その理由を、図18を参照しながら詳述する。
図18に示す外側継手部材は、球状内周面に、継手中心Oを曲率中心とした円弧状のボール軌道中心線Xa’を有する第1トラック溝部7Aa’と、第1トラック溝部7Aa’のボール軌道中心線Xa’の開口側端部A’に接線として滑らかに接続された直線状のボール軌道中心線Xb’を有する第2トラック溝部7Ab’とからなるトラック溝7A’が形成された外側継手部材である。図18において、ボール軌道中心線Xa’の開口側端部A’の位置(角度β’)、および入口チャンファ10の角度は、上述した本発明の第1実施形態に係る等速自在継手1の外側継手部材2と同じである。また、図示は省略するが、図18に示す外側継手部材2’の内周には、球状外周面に、作動角0°の状態の継手中心平面Pを基準として、対をなす外側継手部材2’のトラック溝7A’と鏡像対称のトラック溝が形成された内側継手部材が配設される。
この場合、有効トラック長さを増加させて継手の高作動角化を図るには、傾斜軸N’-N’と、直線状をなした第2トラック溝部7Ab’(のボール軌道中心線Xb’)とがなす角度を出来るだけ大きくすることが有効となる。そのため、有効トラック長さは、直線状をなした第2トラック溝部7Ab’(のボール軌道中心線Xb’)を、同図中に矢印Y1で示す方向に延ばすよりも、同図中に矢印Y2で示す方向に延ばした方が長くなる。しかしながら、上記の角度が大きくなるほど、継手が高作動角をとったときに、この外側継手部材2’のトラック溝7A’と、これと対をなす内側継手部材のトラック溝との間に形成されるくさび角が大きくなってボールを開口側に押し出す力が高まることから、保持器のポケット部に発生する荷重が高くなり、継手の耐久性及び強度が低下する。
そこで本発明では、上述したように、外側継手部材2の第1トラック溝部7aの曲率中心を継手中心Oから開口側にオフセットした点Ooに位置させることとした。このようにすれば、第1トラック溝部の曲率中心位置以外の設計条件を同じくする限りにおいては、図6Aに示す本発明を適用した外側継手部材の方が、図6Cに示す外側継手部材(図18に示す外側継手部材2’と同一構造)と比較して、傾斜軸N’-N’に対する第2トラック溝部(のボール軌道中心線)の傾きを小さくすることが可能となるので、有効トラック長さを増加させることができる。有効トラック長さの長短は、図6Aの要部拡大図である図6B、および図6Cの要部拡大図である図6Dにそれぞれ示している「トラック余裕量z」の大小に置き換えて比較することができる。トラック余裕量とは、継手が作動角(図6A,図6Cでは最大作動角)θをとったときにおけるボール4と外側継手部材2(2’)のトラック溝7(7’)との接触点Cpから、外側継手部材2(2’)の入口チャンファ10の縁部に至るまでの寸法、すなわち、接触点Cpから、接触点の軌跡と入口チャンファ10の縁部の交点までの距離である。従って、トラック余裕量zが大きいほど、有効トラック長さが長く、ボールがトラック溝から脱落し難い構造であると言え、継手の最大作動角を大きくする上で有利となる。
トラック余裕量についてより詳しく説明しておく。継手が最大作動角θをとったとき、図6Bおよび図6Dに示すように、ボール4の中心点Obと継手中心Oとを結ぶ直線は、継手中心平面Pに対してθ/2だけ傾斜する。このとき、ボールとトラック溝との接触点Cpから入口チャンファ10の縁部に至るまでの寸法がトラック余裕量zであり、図6Bに示す本発明の実施形態の方が、図6Dに示す比較対象に比べてトラック余裕量zが増加している。
従って、図4に示すように、外側継手部材2のトラック溝7(7A,7B)の開口側に、直線状のボール軌道中心線Xbを有する第2トラック溝部7b(7Ab,7Bb)を設けると共に、第1トラック溝部7a(7Aa,7Ba)の曲率中心を継手中心Oから開口側にオフセットした点Ooに位置させるようにすれば、トラック余裕量を大きく確保して、継手の最大作動角を大きくすることができる。
なお、第1トラック溝部7a,9aの曲率中心の継手中心Oに対するオフセット量が大きくなるほど、トルク損失や発熱の抑制効果が薄れる(継手の効率性が低下する)こととなるが、トルク損失等の抑制効果が過度に薄れない程度に、第1トラック溝部7a,9aのオフセット量を調整すれば、使用頻度の多い継手常用角の範囲を交差トラック構造でカバーしたことによるトルク損失等の抑制効果が、第1トラック溝部7a,9aの曲率中心を継手中心Oに対して軸方向にオフセットさせたことによるマイナス分を上回る。また、本発明に係る等速自在継手1の構造上、高作動角の範囲では、周方向に配置されたボール4が、第1トラック溝部と第2トラック溝部とに一時的に分かれて位置する。これに伴い、保持器5の各ポケット部5aにボール4から作用する力が釣り合わず、保持器5の球状外周面12と外側継手部材2の球状内周面6との接触部、および保持器5の球状内周面13と内側継手部材3の球状外周面8との接触部で接触力が発生するが、高作動角の範囲は使用頻度が少ない。従って、本発明に係る等速自在継手1は、総合的にみると、図16に示した等速自在継手141と比較して、トルク損失や発熱を効果的に抑制することができる。以上のことから、本発明によれば、トルク損失および発熱が少なく高効率で、耐久性に優れるものでありながら、高作動角を取ることができる固定式等速自在継手を実現することができる。
以上で説明した本実施形態の等速自在継手1においては、保持器5のポケット部5aとボール4との嵌め合いをすきま設定にしてもよい。この場合、前記すきまのすきま幅は0~40μm程度に設定するのが好ましい。すきま設定にすることにより、保持器5のポケット部5aに保持されたボール4をスムーズに作動させることができ、更なるトルク損失の低減を図ることができる。
図7に、以上で説明した等速自在継手1の構成部材である外側継手部材2と内側継手部材3の斜視図を示す。この斜視図は、これまでに説明したトラック溝を立体的に示している。図7Aに示すように、外側継手部材2の球状内周面6に、継手の軸線N-N(図示省略)に対して周方向に傾斜したトラック溝7A,7Bが交互に形成され、かつトラック溝7A,7Bの傾斜方向は互いに反対方向となっている。トラック溝7A,7Bは、それぞれ、第1トラック溝部7Aa,7Baと第2トラック溝部7Ab,7Bbとからなる。外側継手部材2の開口端に入口チャンファ10が設けられている。また、図7Bに示すように、内側継手部材3の球状外周面8には、継手の軸線N-N(図示省略)に対して周方向に傾斜したトラック溝9A,9Bが交互に形成され、かつトラック溝9A,9Bの傾斜方向は互いに反対方向となっている。トラック溝9A,9Bは、それぞれ、第1トラック溝部9Aa,9Baと第2トラック溝部9Ab,9Bbとからなる。
図8は、本発明の第1の実施形態に係る固定式等速自在継手1を組み込んだ自動車のフロント用ドライブシャフト20を示す。固定式等速自在継手1は中間シャフト11の一端に連結され、他端には摺動式等速自在継手(図示例はトリポード型等速自在継手)15が連結されている。固定式等速自在継手1の外周面とシャフト11の外周面との間、および摺動式等速自在継手15の外周面とシャフト11の外周面との間には、蛇腹状ブーツ16a,16bがブーツバンド18(18a,18b,18c,18d)によりそれぞれ取り付け固定されている。継手内部には、潤滑剤としてのグリースが封入されている。本発明に係る固定式等速自在継手1を使用したので、トルク損失や発熱が小さく高効率で、かつ高作動角が取れ、軽量・コンパクトな自動車用ドライブシャフト20が実現される。
以上、本発明の第1実施形態に係る等速自在継手1について説明を行ったが、上述した等速自在継手1には、本発明の要旨を逸脱しない範囲で種々の変更を施すことが可能である。以下、本発明の他の実施形態に係る等速自在継手について説明を行うが、以下では、第1実施形態と異なる構成について重点的に説明を行い、第1実施形態と実質的に同様の機能を奏する部材・部位には同一の符号を付して重複説明を省略する。
図9は、本発明の第2実施形態に係る固定式等速自在継手で使用される外側継手部材の部分断面図であり、より詳しくは、図4と同様、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2A参照)で見た外側継手部材の部分断面図である。この実施形態の等速自在継手は、主に、各トラック溝を構成する第2トラック溝部(のボール軌道中心線)が円弧状部分を含んでいる(直線状部分と円弧状部分とからなる)点において、上述した第1実施形態の等速自在継手と構成を異にしている。
図9を参照しながら上記の相違点について詳述すると、外側継手部材2のトラック溝7を構成する第2トラック溝部7bのボール軌道中心線Xbは、円弧状のボール軌道中心線Xb1と、直線状のボール軌道中心線Xb2とからなり、両ボール軌道中心線Xb1,Xb2のうち円弧状のボール軌道中心線Xb1が、第1トラック溝部7aのボール軌道中心線Xaの開口側端部Aに接続されている。第2トラック溝部7bの円弧状ボール軌道中心線Xb1の曲率半径は、第1トラック溝部7aのボール軌道中心線Xaの曲率半径よりも小さく、円弧状ボール軌道中心線Xb1の開口側の端部Cにおいて、直線状ボール軌道中心線Xb2が接線として接続されている。そして、図示は省略するが、この外側継手部材2の内周には、作動角0°の状態の継手中心平面Pを基準としてこの外側継手部材2の対となるトラック溝7と鏡像対称のトラック溝9を有する内側継手部材3と、ボール4および保持器5(図1A参照)とが組み込まれ、これにより固定式等速自在継手が完成する。
このような構成によれば、第2トラック溝部7bの円弧状ボール軌道中心線Xb1の曲率半径や角度範囲Eを適宜設定することにより、傾斜軸(継手の軸線N-Nに対して周方向に傾斜した軸)N’-N’に対する第2トラック溝部7bの直線状ボール軌道中心線Xb2の傾斜角を変更することができる。そのため、最大作動角時におけるくさび角を適宜調整することができる。
図10~12は、それぞれ、本発明の第3~5実施形態に係る固定式等速自在継手で使用される外側継手部材の断面図であり、より詳しくは、図4と同様、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2A参照)で見た外側継手部材の部分断面図である。第3~第5実施形態の等速自在継手は、各トラック溝を構成する第2トラック溝部(のボール軌道中心線)の延びる方向を、第1実施形態に係る等速自在継手のそれとは異ならせたものである。
図10~図12にそれぞれ示す外側継手部材2を参照しながら上記の相違点について詳述すると、まず、図10に示す外側継手部材2では、トラック溝7の開口側端部における外側継手部材2の開口寸法が、図4に示す第1実施形態の外側継手部材2に比べて小さくなるように、傾斜軸N’-N’に対する第2トラック溝部7b(のボール軌道中心線Xb)の傾斜角(傾き)を変更している。詳細には、第2トラック溝部7bのボール軌道中心線Xbの傾きは、図4に示す第1実施形態の外側継手部材2に比べ、角度δだけ小さくなっている。これにより、図10に示す外側継手部材2では、第2トラック溝部7bと傾斜軸N’-N’との径方向離間距離の単位長さ当りの縮小幅が図4に示す外側継手部材2よりも大きくなっている。
一方、図11,12に示す外側継手部材2では、トラック溝7の開口側端部における外側継手部材2の開口寸法が、図4に示す第1実施形態の外側継手部材2に比べて大きくなるように、傾斜軸N’-N’に対する第2トラック溝部7b(のボール軌道中心線Xb)の傾斜角(傾き)を変更している。より詳しくは、図11に示す外側継手部材2においては、第2トラック溝部7bと傾斜軸N’-N’との径方向離間距離が開口側に向けて徐々に拡大するように第2トラック溝部7bの延在方向が調整されている。詳細には、第2トラック溝部7bのボール軌道中心線Xbの傾斜角は、図4に示す第1実施形態の外側継手部材2に比べ、角度δだけ大きくなっている。また、図12に示す外側継手部材2においては、第2トラック溝部7bと傾斜軸N’-N’との径方向離間距離が軸方向全域で一定となるように、第2トラック溝部7bが傾斜軸N’-N’と平行に形成されている。なお、上述した図10~図12に示す構成を採用する場合においても、第1トラック溝部7a(のボール軌道中心線Xa)と第2トラック溝部7b(のボール軌道中心線Xb)とは、適当な曲率の円弧を介して接続することができる(図示省略)。そして、図示は省略するが、図10~図12に示す外側継手部材2の内周には、それぞれ、作動角0°の状態の継手中心平面Pを基準として対となるトラック溝7と鏡像対称のトラック溝9を有する内側継手部材3と、ボール4および保持器5(図1A参照)とが組み込まれ、これにより固定式等速自在継手が完成する。
図10に示す構成を採用した場合、高作動角時に両継手部材の対をなすトラック溝間に形成されるくさび角が、第1実施形態に係る等速自在継手1よりも小さくなるので、保持器のポケット部に発生する荷重を小さくし、継手の耐久性(強度)を高めることができる。その反面、有効トラック長さが第1実施形態に係る等速自在継手1よりも短くなるので、高作動角化を図る上では不利となる。一方、図11又は図12に示す構成を採用した場合、一層の高作動角化を実現し得る反面、耐久性(強度)の面では不利となる。
図13は、本発明の第6実施形態に係る固定式等速自在継手で使用される外側継手部材の部分断面図であり、より詳しくは、図4等と同様に、トラック溝7Aのボール軌道中心線Xと継手中心Oを含む平面M(図2A参照)で見た外側継手部材の部分断面図である。この実施形態の等速自在継手は、主に、各トラック溝を構成する第1トラック溝部のボール軌道中心線の曲率中心が、継手中心Oに対して開口側にオフセットしていることに加え、傾斜軸N’-N’に対して半径方向にオフセットしている点、およびこれに対応して直線状をなした第2トラック溝部のボール軌道中心線の構成を調整した点において、上述した第1実施形態に係る固定式等速自在継手と構成を異にしている。
図13を参照しながら上記の相違点について詳述すると、外側継手部材2のトラック溝7を構成する第1トラック溝部7aのボール軌道中心線Xaの曲率中心Ooは、継手中心Oに対して開口側にオフセットすると共に、傾斜軸N’-N’に対して半径方向にfrだけオフセットしている。すなわち、垂線Kを含む作動角0°の状態の継手中心平面Pに平行な平面上で半径方向にfrだけオフセットしている。これに伴い、直線状をなした第2トラック溝部7bのボール軌道中心線Xbは、円弧状をなした第1トラック溝部7aのボール軌道中心線Xaの開口側端部Aに接線として滑らかに接続するよう位置が調整されている。この構成により、継手の奥側のトラック溝深さを調整することができる。そして、図示は省略するが、この外側継手部材2の内周には、作動角0°の状態の継手中心平面Pを基準として外側継手部材2の対となるトラック溝7と鏡像対称のトラック溝9を有する内側継手部材3と、ボール4および保持器5(図1A参照)とが組み込まれ、これにより固定式等速自在継手が完成する。
図14に、本発明の第7実施形態に係る固定式等速自在継手で使用される保持器の断面図を示す。すなわち、この実施形態の固定式等速自在継手は、球状外周面および球状内周面の曲率中心を継手中心Oに対して軸方向にオフセットさせた保持器を用いる点において、第1の実施形態に係る固定式等速自在継手と構成を異にしている。
詳述すると、図14に示すように、この保持器5の球状外周面12の曲率中心Oc1は継手中心Oに対して開口側に寸法f3だけオフセットしており、また、球状内周面13の曲率中心Oc2は継手中心Oに対して奥側に寸法f3だけオフセットしている。かかる構成により、開口側に向かって保持器5の肉厚が徐々に厚くなり、特に高作動角時の保持器5の強度を向上することができる。前述したように、高作動角の範囲では、周方向に配置されたボール4が、第1トラック溝部7Aa,9Aa(7Ba,9Ba)と、第2トラック溝部7Ab,9Ab(7Bb,9Bb)とに一時的に分かれて位置する。この場合、第2トラック溝部7Ab,9Ab(7Bb,9Bb)に位置するボール4から保持器5のポケット部5aに開口側に押圧する力が作用するが、開口側に向かって保持器5の肉厚が徐々に厚くなっているので、保持器5の強度を向上することができる。また、奥側のトラック溝7(第1トラック溝部7a)のトラック溝深さを増加させることができる。なお、この実施形態の保持器5は、以上で説明した各実施形態の固定式等速自在継手に組み込んで使用可能である。
図15は、本発明の第8実施形態に係る固定式等速自在継手で使用される外側継手部材の部分断面図である。この実施形態の等速自在継手は、各トラック溝を構成する第2トラック溝部のボール軌道中心線の形態が、上述した第1実施形態の固定式等速自在継手と異なっている。
図15を参照しながら上記の相違点について詳述すると、外側継手部材2のトラック溝7を構成する直線状をなした第2トラック溝部7bのボール軌道中心線Xbは、第1トラック溝部7aのボール軌道中心線Xaの開口側端部Aに接線として滑らかに接続された後、開口側に向かって傾斜角γが徐々に小さくなるようになだらかに湾曲し、開口端部付近では傾斜角γが0°となるように形成されている。そして、図示は省略するが、この外側継手部材2の内周には、作動角0°の状態の継手中心平面Pを基準としてこの外側継手部材2の対となるトラック溝7と鏡像対称のトラック溝9を有する内側継手部材3と、ボール4および保持器5(図1A参照)とが組み込まれ、これにより固定式等速自在継手が完成する。
このような構成によれば、外側継手部材2においては、周方向に隣り合うトラック溝7A,7Bの第2トラック溝部7Ab,7Bbの接近した側の間隔は拡がり、離反した側の間隔は狭まる。また、内側継手部材3においても同様に、周方向に隣り合うトラック溝9A,9Bの第2トラック溝部9Ab,9Bbの接近した側の間隔は拡がり、離反した側の間隔は狭まる。そのため、開口側における外側継手部材2の各球状内周面6と保持器5の球状外周面12との接触面積の差、および奥側における内側継手部材3の各球状外周面8と保持器5の球状内周面13との接触面積の差を小さくすることができる。これにより、外側継手部材2と保持器5の球面接触部、および内側継手部材3と保持器5の球面接触部をバランス良く配置することが可能となり、さらなる作動の円滑化を図ることができる。
以上で説明した本発明に係る固定式等速自在継手では、ボール4の個数を8個としたが、これに限られるものではない。図示は省略するが、例えば、ボールの個数を10個又は12個とした固定式等速自在継手にも本発明は好ましく適用することができる。
また、以上では、トラック溝を周方向に等ピッチで配置した固定式等速自在継手に本発明を適用した場合を示したが、トラック溝を不等ピッチで配置した固定式等速自在継手にも本発明は好ましく適用し得る。また、以上で説明した固定式等速自継手においては、継手の軸線N-Nに対するトラック溝(第1トラック溝部)の傾斜角γをすべてのトラック溝において等しいものとしたが、これに限られず、対をなす(半径方向で対向する)外側継手部材と内側継手部材のトラック溝(第1トラック溝部)の傾斜角γが等しく形成されていれば、トラック溝(第1トラック溝部)の相互間で傾斜角γを異ならせても構わない。要は、保持器の周方向すべてのポケット部に作用するボールの軸方向の力が、全体として釣り合うように各傾斜角度が設定されていればよい。また、以上では、トラック溝とボールとが接触角をもって接触する(アンギュラコンタクトする)ように構成された固定式等速自在継手に本発明を適用したが、これに限られず、本発明は、トラック溝の横断面形状が円弧状に形成され、トラック溝とボールとがサーキュラコンタクトするように構成された固定式等速自在継手にも好ましく適用することができる。
本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1 固定式等速自在継手(等速自在継手)
2 外側継手部材
3 内側継手部材
4 ボール
5 保持器
6 球状内周面
7 トラック溝
7a 第1トラック溝部
7b 第2トラック溝部
8 球状外周面
9 トラック溝
9a 第1トラック溝部
9b 第2トラック溝部
12 球状外周面
13 球状内周面
20 ドライブシャフト
A 開口側端部
B 奥側端部
K 垂線
L 直線
M ボール軌道中心線を含む平面
N 継手の軸線
N’ 傾斜軸
O 継手中心
P 継手中心平面
Q ボール軌道中心線を含む平面
R 直線
X ボール軌道中心線
Y ボール軌道中心線
γ 傾斜角
β 角度
θ 作動角
2 外側継手部材
3 内側継手部材
4 ボール
5 保持器
6 球状内周面
7 トラック溝
7a 第1トラック溝部
7b 第2トラック溝部
8 球状外周面
9 トラック溝
9a 第1トラック溝部
9b 第2トラック溝部
12 球状外周面
13 球状内周面
20 ドライブシャフト
A 開口側端部
B 奥側端部
K 垂線
L 直線
M ボール軌道中心線を含む平面
N 継手の軸線
N’ 傾斜軸
O 継手中心
P 継手中心平面
Q ボール軌道中心線を含む平面
R 直線
X ボール軌道中心線
Y ボール軌道中心線
γ 傾斜角
β 角度
θ 作動角
Claims (10)
- 球状内周面に軸方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に前記外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、ボールを保持し、前記外側継手部材の球状内周面および前記内側継手部材の球状外周面にそれぞれ嵌合する球状外周面および球状内周面を有する保持器とを備えた固定式等速自在継手において、
前記外側継手部材のトラック溝は、奥側に位置する第1トラック溝部と開口側に位置する第2トラック溝部とからなり、前記第1トラック溝部は、継手中心に対して開口側にオフセットした位置に曲率中心をもつ円弧状のボール軌道中心線を有し、少なくともこのボール軌道中心線と継手中心を含む平面が継手の軸線に対して周方向に傾斜すると共にその傾斜方向が周方向に隣り合う前記第1トラック溝部で互いに反対方向に形成されており、前記第2トラック溝部のボール軌道中心線は、最大作動角に対する有効トラック長さを増加させるために直線状部分を有し、かつ継手中心よりも開口側で前記第1トラック溝部のボール軌道中心線と接続されており、
前記内側継手部材のトラック溝のボール軌道中心線は、作動角0°の状態の継手中心平面を基準として、前記外側継手部材の対となるトラック溝のボール軌道中心線と鏡像対称に形成されていることを特徴とする固定式等速自在継手。 - 前記第1トラック溝部と前記第2トラック溝部のボール軌道中心線の接続点と継手中心とを結ぶ直線が、作動角0°の状態の継手中心平面に対してなす角度βを3°~10°に設定した請求項1に記載の固定式等速自在継手。
- 前記第1トラック溝部のボール軌道中心線の曲率中心を、継手の軸線に対して周方向に傾斜した傾斜軸上に配置した請求項1又は2に記載の固定式等速自在継手。
- 前記第1トラック溝部のボール軌道中心線の曲率中心を、継手の軸線に対して周方向に傾斜した傾斜軸に対し、半径方向にオフセットした位置に配置した請求項1又は2に記載の固定式等速自在継手。
- 前記保持器の球状外周面および球状内周面の曲率中心を、継手中心に対して奥側および開口側にそれぞれオフセットした位置に配置した請求項1~4の何れか一項に記載の固定式等速自在継手。
- 前記第2トラック溝部のボール軌道中心線は、その全域が直線状部分で構成され、前記第1トラック溝部のボール軌道中心線の接線として形成されている請求項1~5の何れか一項に記載の固定式等速自在継手。
- 前記第2トラック溝部のボール軌道中心線は、前記第1トラック溝部のボール軌道中心線の曲率半径とは異なる曲率半径の円弧状部分を含んでおり、この円弧状部分が、前記第1トラック溝部のボール軌道中心線に接続されている請求項1~5の何れか一項に記載の固定式等速自在継手。
- 前記第2トラック溝部のボール軌道中心線の直線状部分が、継手の軸線と平行に形成されている請求項1~5の何れか一項に記載の固定式等速自在継手。
- 前記第2トラック溝部のボール軌道中心線を継手の軸線に対して周方向に傾斜させ、かつその傾斜角を、開口側に向けて徐々に減少させた請求項1~8の何れか一項に記載の固定式等速自在継手。
- 前記ボールの個数を8個、10個又は12個の何れかとした請求項1~9の何れか一項に記載の固定式等速自在継手。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/431,560 US9556915B2 (en) | 2012-10-03 | 2013-09-03 | Fixed type constant-velocity universal joint |
EP13843819.7A EP2905491B1 (en) | 2012-10-03 | 2013-09-03 | Fixed type constant-velocity universal joint |
CN201380051871.XA CN104704252B (zh) | 2012-10-03 | 2013-09-03 | 固定式等速万向联轴器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-221214 | 2012-10-03 | ||
JP2012221214A JP5955732B2 (ja) | 2012-10-03 | 2012-10-03 | 固定式等速自在継手 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014054366A1 true WO2014054366A1 (ja) | 2014-04-10 |
Family
ID=50434698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073622 WO2014054366A1 (ja) | 2012-10-03 | 2013-09-03 | 固定式等速自在継手 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9556915B2 (ja) |
EP (1) | EP2905491B1 (ja) |
JP (1) | JP5955732B2 (ja) |
CN (1) | CN104704252B (ja) |
WO (1) | WO2014054366A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6796931B2 (ja) * | 2016-02-15 | 2020-12-09 | Ntn株式会社 | 固定式等速自在継手 |
USD823735S1 (en) | 2016-07-14 | 2018-07-24 | Aircraft Gear Corporation | Constant velocity joint |
JP6711747B2 (ja) * | 2016-12-28 | 2020-06-17 | Ntn株式会社 | 固定式等速自在継手 |
CN106870582B (zh) * | 2017-04-06 | 2023-08-08 | 秦皇岛老虎重工有限公司 | 一种倾角轴承万向联轴器 |
CN110821978B (zh) * | 2019-12-18 | 2024-06-14 | 耐世特凌云驱动系统(涿州)有限公司 | 一种大角度高效率八钢球球笼式等速万向节 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11236927A (ja) * | 1998-02-20 | 1999-08-31 | Toyota Motor Corp | バーフィールド型等速自在継手 |
JP2009250365A (ja) | 2008-04-08 | 2009-10-29 | Ntn Corp | 等速自在継手 |
JP2010133442A (ja) * | 2008-12-02 | 2010-06-17 | Ntn Corp | 固定型等速自在継手 |
JP2012017809A (ja) * | 2010-07-08 | 2012-01-26 | Ntn Corp | 固定式等速自在継手 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6227979B1 (en) * | 1998-02-20 | 2001-05-08 | Toyota Jidosha Kabushiki Kaisha | Constant velocity universal joint |
US6468164B2 (en) | 2000-02-16 | 2002-10-22 | Delphi Technologies, Inc. | Constant velocity joint having fixed center and crossed grooves |
JP2008151182A (ja) | 2006-12-14 | 2008-07-03 | Ntn Corp | 等速自在継手 |
US8292749B2 (en) | 2007-09-26 | 2012-10-23 | Ntn Corporation | Fixed type constant velocity universal joint |
JP5507061B2 (ja) * | 2008-06-13 | 2014-05-28 | Ntn株式会社 | 固定型等速自在継手 |
EP2372180A4 (en) | 2008-12-02 | 2013-04-10 | Ntn Toyo Bearing Co Ltd | UNIVERSAL EQUIVALENT CHAIN |
JP5420369B2 (ja) | 2009-10-08 | 2014-02-19 | Ntn株式会社 | 固定式等速自在継手 |
JP5823127B2 (ja) * | 2011-01-06 | 2015-11-25 | Ntn株式会社 | 固定式等速自在継手 |
JP5912419B2 (ja) * | 2011-06-07 | 2016-04-27 | Ntn株式会社 | 固定式等速自在継手 |
JP5964030B2 (ja) * | 2011-11-11 | 2016-08-03 | Ntn株式会社 | 固定式等速自在継手 |
-
2012
- 2012-10-03 JP JP2012221214A patent/JP5955732B2/ja active Active
-
2013
- 2013-09-03 WO PCT/JP2013/073622 patent/WO2014054366A1/ja active Application Filing
- 2013-09-03 CN CN201380051871.XA patent/CN104704252B/zh active Active
- 2013-09-03 US US14/431,560 patent/US9556915B2/en active Active
- 2013-09-03 EP EP13843819.7A patent/EP2905491B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11236927A (ja) * | 1998-02-20 | 1999-08-31 | Toyota Motor Corp | バーフィールド型等速自在継手 |
JP2009250365A (ja) | 2008-04-08 | 2009-10-29 | Ntn Corp | 等速自在継手 |
JP2010133442A (ja) * | 2008-12-02 | 2010-06-17 | Ntn Corp | 固定型等速自在継手 |
JP2012017809A (ja) * | 2010-07-08 | 2012-01-26 | Ntn Corp | 固定式等速自在継手 |
Also Published As
Publication number | Publication date |
---|---|
JP5955732B2 (ja) | 2016-07-20 |
JP2014074434A (ja) | 2014-04-24 |
US9556915B2 (en) | 2017-01-31 |
US20150275980A1 (en) | 2015-10-01 |
EP2905491A1 (en) | 2015-08-12 |
EP2905491A4 (en) | 2016-08-31 |
CN104704252A (zh) | 2015-06-10 |
CN104704252B (zh) | 2017-03-29 |
EP2905491B1 (en) | 2019-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5964030B2 (ja) | 固定式等速自在継手 | |
JP5912419B2 (ja) | 固定式等速自在継手 | |
WO2014208242A1 (ja) | 固定式等速自在継手 | |
WO2012165096A1 (ja) | 固定式等速自在継手 | |
WO2014054366A1 (ja) | 固定式等速自在継手 | |
JP5840463B2 (ja) | 固定式等速自在継手 | |
WO2014057781A1 (ja) | 固定式等速自在継手 | |
WO2014069210A1 (ja) | 固定式等速自在継手 | |
JP6113459B2 (ja) | 固定式等速自在継手 | |
JP5882050B2 (ja) | 固定式等速自在継手 | |
JP5885997B2 (ja) | 固定式等速自在継手 | |
JP6173675B2 (ja) | 固定式等速自在継手 | |
JP5885998B2 (ja) | 固定式等速自在継手 | |
WO2014208241A1 (ja) | 固定式等速自在継手 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13843819 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14431560 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013843819 Country of ref document: EP |