WO2015068531A1 - 蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法 - Google Patents

蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法 Download PDF

Info

Publication number
WO2015068531A1
WO2015068531A1 PCT/JP2014/077263 JP2014077263W WO2015068531A1 WO 2015068531 A1 WO2015068531 A1 WO 2015068531A1 JP 2014077263 W JP2014077263 W JP 2014077263W WO 2015068531 A1 WO2015068531 A1 WO 2015068531A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
heat pump
compressor
liquid separator
gas
Prior art date
Application number
PCT/JP2014/077263
Other languages
English (en)
French (fr)
Inventor
康幹 久保田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015546571A priority Critical patent/JPWO2015068531A1/ja
Publication of WO2015068531A1 publication Critical patent/WO2015068531A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/02Other methods of steam generation; Steam boilers not provided for in other groups of this subclass involving the use of working media other than water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a steam generation heat pump that generates steam by circulating water through a condenser of a refrigerant cycle device, and an operation control method for the steam generation heat pump.
  • steam generation heat pumps that recover waste heat from hot wastewater such as factory wastewater and sewage wastewater to generate water vapor have been used.
  • the steam generation heat pump not only a configuration in which the generated water vapor is sent to the outside at the same pressure, but also a configuration in which the generated water vapor is boosted by a steam compressor and sent to the outside as high-pressure water vapor is adopted.
  • Patent Documents 1 and 2 water heated by a condenser of a heat pump device (refrigerant cycle device) enters a gas-liquid separator as a two-phase flow of steam and hot water, where steam and hot water
  • a steam generating heat pump having a configuration in which only steam is taken out and pressurized with a steam compressor and then supplied to an external steam utilization facility is disclosed.
  • the present invention has been made in consideration of the above-described problems of the prior art, and an object of the present invention is to provide a steam generation heat pump and a steam generation heat pump operation control method capable of avoiding problems occurring after operation stop or at startup.
  • the steam generation heat pump includes a compressor, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed by the condenser, and a refrigerant that exits the expansion valve.
  • a refrigerant cycle device having an evaporator for evaporating water and generating water vapor by circulating water through the condenser and exchanging heat with the refrigerant, and separating the water by passing the generated water vapor through a gas-liquid separator
  • a steam generation heat pump including a steam generation device that pressurizes and delivers the steam by a steam compressor, wherein the steam generation device is connected to a steam outlet side of the gas-liquid separator, and the steam compressor is provided.
  • the operation control method of the steam generation heat pump according to the present invention includes a compressor, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed by the condenser, A refrigerant cycle device having an evaporator for evaporating the refrigerant that has exited the expansion valve, and water is generated by causing water to flow through the condenser and exchanging heat with the refrigerant, and the generated water vapor is a gas-liquid separator.
  • a steam generating heat pump comprising: a steam generating device that separates water through a pressure and then pumps and pumps the water using a steam compressor, wherein the steam generating device is on the steam outlet side of the gas-liquid separator Connected to the steam delivery path provided with the steam compressor, a bypass path connecting the upstream side and the downstream side of the steam compressor in the steam delivery path, one end is connected to the steam delivery path, The other end is large Through the open valve and a air release path opened to the atmosphere, after shutdown of the steam generator heat pump, wherein the air release valve opening control, the gas-liquid separator, characterized in that atmosphere.
  • the atmosphere release path in the steam delivery path, the atmosphere release path can be opened after the operation is stopped, and the interior of the steam delivery path and the gas-liquid separator can be opened to the atmosphere. .
  • the steam delivery path and the inside of the gas-liquid separator can become negative pressure after the operation is stopped, the water on the water supply side being sucked into the gas-liquid separator, and causing problems in subsequent restarts.
  • a bypass path that bypasses the steam compressor is connected to the steam delivery path, the steam compressor that is stopped and in a low temperature state can be warmed up using the bypass path at the time of startup. Thereby, the water vapor
  • a control device may be provided that, after the operation of the steam generating heat pump is stopped, controls the opening of the atmosphere release valve so that the inside of the gas-liquid separator is opened to the atmosphere.
  • the steam delivery path is provided with a steam inflow control valve that controls inflow of water vapor from the gas-liquid separator, and the control device is configured to control the steam inflow control valve when the steam generating heat pump is started. And by closing the bypass path after the outlet side temperature of the steam compressor has exceeded a predetermined temperature by performing bypass circulation operation for opening the bypass path and operating the steam compressor.
  • the steam inflow control valve may be controlled to open.
  • the control device causes the outlet side temperature of the steam compressor to be equal to or higher than a predetermined temperature by the bypass circulation operation, closes the bypass path and opens the steam inflow control valve, and then opens the atmosphere release valve for a predetermined time. You may make it control.
  • the present invention it is possible to prevent the inside of the path from becoming a negative pressure after the operation is stopped by providing the atmosphere release path in the steam delivery path. Furthermore, since a bypass path that bypasses the steam compressor is connected to the steam delivery path, steam generated immediately after startup is introduced to the steam compressor in the steam compressor that is stopped and in a low temperature state. The liquid compression can be prevented from occurring.
  • FIG. 1 is an overall configuration diagram of a steam generation heat pump according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a control state during normal operation of the steam generating heat pump shown in FIG.
  • FIG. 3 is an explanatory diagram showing a control state after a predetermined time has elapsed since the operation of the steam generating heat pump was stopped from the state shown in FIG.
  • FIG. 4 is an explanatory diagram showing a control state immediately after the operation of the steam generating heat pump is started from the state shown in FIG.
  • FIG. 5 is an explanatory diagram showing a control state after a predetermined time has elapsed from the state shown in FIG.
  • FIG. 1 is an overall configuration diagram of a steam generation heat pump 10 according to an embodiment of the present invention.
  • the steam generation heat pump 10 is a system that recovers exhaust heat from hot waste water such as factory waste water and generates steam using the recovered exhaust heat.
  • the generated steam is used for steam utilization equipment such as a drying device and a sterilization device. Sent.
  • the steam generation heat pump 10 generates water vapor by evaporating water, collects exhaust heat from the steam generation apparatus 12 that sends the steam to the outside, and discharges the exhaust heat to the steam generation apparatus 12.
  • the refrigerant cycle device 14 that is supplied as a heat source for generating steam in the system, and a controller 15 that controls the system.
  • the refrigerant cycle device 14 includes a compressor 16, a condenser 18 connected to the discharge side of the compressor 16, an expansion valve 20 connected to the outlet side of the condenser 18, and an outlet side of the expansion valve 20.
  • This is a refrigeration circuit (heat pump) that has a connected evaporator 22 and circulates refrigerant.
  • the refrigerant that has been compressed by the compressor 16 to become high temperature and pressure is cooled and condensed by exchanging heat with water (feed water) circulating through the steam generator 12 in the condenser 18.
  • the refrigerant exiting the condenser 18 is preheated with water flowing through the water supply pipe 26 by the heater 24 and further cooled, then adiabatically expanded by the expansion valve 20, and absorbs heat from the warm waste water flowing through the drain pipe 28 by the evaporator 22. Then, it evaporates and returns to the compressor 16 through the accumulator 30 again.
  • a well-known refrigeration circuit can be used.
  • the compressor 16 is controlled in driving speed via an inverter (INV) 34 based on a detected value (discharge pressure) of a pressure sensor (PC) 32 provided on the discharge side. .
  • the opening degree of the expansion valve 20 is controlled based on a detected value (discharge temperature) of a temperature sensor (TC) 36 provided on the discharge side of the compressor 16 under the control of the controller 15.
  • the steam generator 12 includes a gas-liquid separator 38 that stores water inside the container, the condenser 18 that functions as an evaporator that evaporates water using the refrigerant circulating in the refrigerant cycle device 14 as a heat source, A vapor compressor 40 that compresses and raises the pressure of water vapor sent out from the gas-liquid separator 38.
  • the gas-liquid separator 38 and the condenser 18 are communicated with each other by a circulation pipe 42 that connects the lower end wall of the gas-liquid separator 38 to the upper side wall of the gas-liquid separator 38 via the condenser 18.
  • the gas-liquid separator 38 is configured by a cylindrical container along the vertical direction, and stores water inside the container by supplying water from a water supply pipe 26 connected to a circulation pipe 42 connected to a lower end wall. To do.
  • the water supply pipe 26 introduces water (water supply) from a water pipe or a water tank (not shown) through the heater 24 to the circulation pipe 42 (gas-liquid separator 38) through the heater 24.
  • the water supply pump 44 is connected via an inverter (INV) 48 based on a detection value (water level) of a water level sensor (LC) 46 that measures the water level of water stored in the gas-liquid separator 38.
  • the driving rotational speed is controlled.
  • a pressure relief valve 49 Connected to the gas-liquid separator 38 is a pressure relief valve 49 that is opened when the internal vapor pressure exceeds a predetermined pressure.
  • the circulation pipe 42 includes a liquid pipe 42 a that communicates from the lower end wall of the gas-liquid separator 38 to the condenser 18, and a steam pipe 42 b that communicates from the condenser 18 to the upper side wall of the gas-liquid separator 38. Yes. Water flows through the liquid pipe 42a, and a two-phase flow containing water vapor and water flows through the steam pipe 42b.
  • a circulation pump 50 is provided in the liquid pipe 42a. The circulating pump 50 is controlled in driving speed via an inverter (INV) 52 under the control of the controller 15.
  • a steam delivery pipe 54 is connected to the upper end wall of the gas-liquid separator 38.
  • the steam delivery pipe 54 is supplied into the gas-liquid separator 38 from the steam pipe 42b, and the steam after the water is separated is sent out there.
  • the steam delivery pipe 54 is a path (steam delivery path) for delivering the steam generated by the steam generation heat pump 10 to the external steam utilization facility side.
  • the condenser 18 is, for example, a plate heat exchanger, and a heat medium passage through which the refrigerant on the refrigerant cycle device 14 side circulates and a water passage through which water (and steam) on the steam generation device 12 side alternately flows. Laminated. In the condenser 18, the refrigerant and water exchange heat with an opposing flow, thereby evaporating the water and generating water vapor. The water that has flowed into the condenser 18 from the liquid pipe 42a is heated by the condenser 18 and flows into the vapor pipe 42b as a two-phase flow of water vapor and water, and is separated into water vapor and water by the gas-liquid separator 38. Then, the steam is sent out to the steam delivery pipe 54 and the water is stored in the gas-liquid separator 38.
  • an automatic opening / closing valve 56 In the steam delivery pipe 54, an automatic opening / closing valve 56, a steam compressor 40, an automatic opening / closing valve 58, and a control valve 60 are installed in order from the upstream side to the downstream side. Between the automatic opening / closing valve 56 and the automatic opening / closing valve 58 in the steam delivery pipe 54, a bypass pipe 62 for bypassing the steam compressor 40 and an atmosphere release pipe 64 for opening the inside of the steam delivery pipe 54 to the atmosphere. And are connected.
  • the automatic open / close valves 56 and 58 are electromagnetic valves that are controlled to open / close under the control of the controller 15.
  • the automatic opening / closing valve 56 installed immediately after the steam outlet from the gas-liquid separator 38 functions as a steam inflow control valve that controls the inflow of steam into the steam delivery pipe 54.
  • the control valve 60 is an opening control valve whose opening degree can be controlled by the controller 15. By appropriately controlling the opening degree of the control valve 60, it is possible to control the flow rate and pressure of water vapor sent from the steam generation heat pump 10 to the outside.
  • the steam compressor 40 is controlled by the controller 15 under the control of the pressure sensor (PC) 66 and the downstream side of the regulating valve 60 measured by the pressure sensor (PC) 68.
  • the rotational speed of the drive is controlled via an inverter (INV) 70 based on the steam pressure at, and the sucked steam is compressed and boosted and sent out.
  • a temperature sensor (T) 72 that measures the temperature of water vapor discharged from the steam compressor 40 is provided on the downstream side of the steam compressor 40.
  • the bypass pipe (bypass path) 62 connects the upstream side and the downstream side of the steam compressor 40 in the steam delivery pipe 54, and a bypass opening / closing valve 74 is provided on the way.
  • the bypass on-off valve 74 is an electromagnetic valve that is controlled to open and close under the control of the controller 15. Although details will be described later, the bypass pipe 62 is opened when the steam generating heat pump 10 is activated, and is closed during normal operation.
  • the atmosphere release pipe (atmosphere release path) 64 is used when the steam delivery pipe 54 and the gas-liquid separator 38 are opened to the atmosphere, and an atmosphere release valve 76 is provided on the way.
  • the air release valve 76 is an electromagnetic valve that is controlled to open and close under the control of the controller 15.
  • One end of the atmosphere release pipe 64 is connected to a position downstream of the steam compressor 40 of the steam delivery pipe 54 and upstream of the downstream connection portion of the bypass pipe 62, and the other end is connected via the atmosphere release valve 76. Open to the atmosphere.
  • the air release pipe 64 is opened after the steam generation heat pump 10 is stopped or started, and is closed during normal operation.
  • the atmosphere release pipe 64 may not be directly connected to the steam delivery path 54 but may be indirectly connected to the steam delivery path 54 by being connected to the bypass pipe 62.
  • the controller 15 is a control device that performs overall control of the steam generation heat pump 10, and performs drive control of the compressor 16, the steam compressor 40, and the like, and also performs opening / closing control of the automatic opening / closing valve 56 and the like.
  • FIG. 2 is an explanatory diagram showing a control state during normal operation of the steam generation heat pump 10 shown in FIG. 1, and FIG. 3 shows that a predetermined time has elapsed since the operation of the steam generation heat pump 10 was stopped from the state shown in FIG.
  • FIG. 4 is an explanatory diagram showing a later control state.
  • FIG. 4 is an explanatory diagram showing a control state immediately after starting the operation of the steam generating heat pump 10 from the state shown in FIG. 4 is an explanatory diagram showing a control state after a predetermined time has elapsed from the state shown in FIG. 2 to 5, in order to clearly indicate the control state of each element, the operating state of the compressor 16, the steam compressor 40, the feed water pump 44 and the circulation pump 50 is “ON”, and the operation is stopped.
  • the compressor 16, the steam compressor 40, the feed water pump 44, and the circulation pump 50 are operated under the control of the controller 15 as shown in FIG. While the on-off valves 56 and 58 and the control valve 60 are opened, the bypass on-off valve 74 and the air release valve 76 are closed, and the bypass pipe 62 and the air release pipe 64 are closed.
  • water (feed water) circulated through the circulation pipe 42 by the circulation pump 50 evaporates in the condenser 18 to become water vapor, is introduced from the gas-liquid separator 38 to the steam delivery pipe 54, and is pressurized by the steam compressor 40. Then, it is sent out from the control valve 60 to an external steam utilization facility.
  • the vapor pressure in the gas-liquid separator 38 is controlled at a gauge pressure of about 100 kPa, but decreases to below atmospheric pressure (negative pressure) after the operation is stopped. If it does so, water will be drawn in from the water supply piping 26 through the clearance gap between the water supply pumps 44, the water level in the gas-liquid separator 38 will rise rapidly, the inside will be filled with water, and it will become difficult to start after that. There is sex.
  • the controller 15 monitors the pressure in the path by the pressure sensor 66. Then, when the detected value of the pressure sensor 66 becomes equal to or lower than a predetermined pressure (for example, atmospheric pressure or a pressure slightly lower than atmospheric pressure), the atmosphere release valve 76 is opened under the control of the controller 15 as shown in FIG.
  • the air opening pipe 64 is opened, and the bypass opening / closing valve 74 is opened to open the bypass pipe 62. That is, the inside of the circulation pipe 42, the gas-liquid separator 38 and the steam delivery pipe 54 is opened to the atmosphere.
  • the inside of the passage becomes atmospheric pressure and stabilizes, so that the inside of the passage becomes negative pressure (vacuum state), and it is prevented that excessive water is sucked from the water supply pipe 26 to cause a malfunction (prevention of negative pressure). Operation).
  • the atmosphere release valve 76 is closed by the controller 15. Since the steam pressure in the path is high immediately after the operation is stopped, high pressure steam may be ejected from the atmosphere opening pipe 64 if it is immediately opened to the atmosphere. For this reason, in the present embodiment, after the operation is stopped, the negative pressure prevention operation (atmospheric release) is performed after the inside of the route becomes about atmospheric pressure.
  • the air release pipe 64 since the air release pipe 64 is installed on the downstream side of the steam compressor 40, it is necessary to open the bypass pipe 62 during such negative pressure prevention operation.
  • the air release pipe 64 may be installed on the upstream side of the steam compressor 40. In this case, the inside of the path can be opened to the atmosphere without opening the bypass pipe 62.
  • an idling operation for warming up the steam compressor 40 is performed when the steam generating heat pump 10 is started. That is, when the discharge temperature from the steam compressor 40 detected by the temperature sensor 72 after activation of the steam generation heat pump 10 is lower than a predetermined temperature (for example, the discharge temperature during normal operation), the controller 15 performs FIG. As shown in FIG. 4, the bypass opening / closing valve 74 is opened to open the bypass pipe 62, while the automatic opening / closing valves 56, 58 are closed. Thereby, a loop path by the bypass pipe 62 is formed between the automatic opening / closing valves 56 and 58.
  • a predetermined temperature for example, the discharge temperature during normal operation
  • the air in the loop path is repeatedly circulated to the steam compressor 40 by the bypass pipe 62 and the temperature rises (idling operation, bypass circulation operation).
  • the air release valve 76 is appropriately controlled to be opened and closed, whereby the air release pipe 64 is opened and closed, and external air is appropriately introduced into the loop path.
  • the controller 15 When it is confirmed that the temperature detected by the temperature sensor 72 is equal to or higher than the predetermined temperature and the steam compressor 40 is sufficiently warmed by the idling operation, the controller 15 now automatically opens and closes as shown in FIG. While the valve 56 is opened, the bypass opening / closing valve 74 is closed and the bypass pipe 62 is closed. As a result, the air circulating around the steam compressor 40 is discharged from the steam compressor 40 into the atmosphere via the atmosphere open pipe 64 by the steam supplied from the gas-liquid separator 38, and the steam compressor 40. The air mixed in the pipes before and after is replaced with water vapor (air discharge operation).
  • the air mixed in the path is discharged out of the system by the negative pressure prevention operation and the idling operation, and the air is mixed into the steam sent from the steam generation heat pump 10 to the steam utilization facility. It is for preventing.
  • the open time of the air release valve 76 during the air discharge operation is such that the internal volumes of the gas-liquid separator 38, the steam delivery pipe 54 and the bypass pipe 62 are known, and the air release valve 76 is exhausted according to the driving rotational speed of the steam compressor 40. Since the volume of the air to be calculated can be calculated, it may be set to a time during which the air in the path can be surely discharged.
  • the steam generating heat pump 10 includes the refrigerant cycle device 14 and the steam generating device 12, and the steam generating device 12 is connected to the steam outlet side of the gas-liquid separator 38, A steam delivery pipe 54 provided with the steam compressor 40, a bypass pipe 62 connecting the upstream and downstream sides of the steam compressor 40 in the steam delivery pipe 54, one end connected to the steam delivery pipe 54, and the other end Is provided with an air release pipe 64 that is open to the atmosphere via an air release valve 76.
  • the atmosphere release pipe 64 in the steam delivery pipe 54, the atmosphere release pipe 64 can be opened after the operation is stopped, and the inside of the path can be opened to the atmosphere.
  • the inside of the steam delivery pipe 54 and the gas-liquid separator 38 becomes negative pressure, and water on the water supply pipe 26 side is sucked into the gas-liquid separator 38, and it is possible to prevent the subsequent restart from causing problems.
  • the steam generation heat pump 10 includes the bypass pipe 62 that bypasses the steam compressor 40, the steam compressor 40 that is stopped and in a low temperature state can be warmed up using the bypass pipe 62 at the time of startup. Thereby, the water vapor
  • the steam generation heat pump 10 includes a controller 15 that controls the air release valve 76 to be opened after the operation is stopped to open the gas-liquid separator 38 to the atmosphere. For this reason, the controller 15 can control the negative pressure prevention operation in the path after the operation is stopped.
  • the steam delivery pipe 54 is provided with an automatic opening / closing valve 56 serving as a steam inflow control valve for controlling the inflow of water vapor from the gas-liquid separator 38.
  • the controller 15 controls the automatic opening / closing valve 56 to close, opens the bypass pipe 62, and performs the bypass circulation operation (idling operation) for operating the steam compressor 40, thereby exiting the steam compressor 40.
  • the bypass pipe 62 is closed and the automatic opening / closing valve 56 is controlled to open. Accordingly, the controller 15 can control the idling operation for warming up the steam compressor 40 at the time of startup.
  • the controller 15 opens the automatic opening / closing valve 56 serving as a steam inflow control valve to the steam delivery pipe 54 and starts the introduction of water vapor, and then controls the atmosphere opening valve 76 to open for a predetermined time. Then, the route is opened to the atmosphere. Thereby, the air mixed in the path by the negative pressure prevention operation and the idling operation is discharged out of the system, and the air can be prevented from being mixed into the steam sent from the steam generation heat pump 10 to the steam utilization facility. .

Abstract

 本発明は蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法に関し、蒸気生成ヒートポンプ(10)は、圧縮機(16)や凝縮器(18)を有する冷媒サイクル装置(14)と、気液分離器(38)や蒸気圧縮機(40)を有する蒸気生成装置(12)とを備え、蒸気生成装置(12)には、気液分離器(38)の蒸気出口に接続され、蒸気圧縮機(40)が設けられた蒸気送出配管(54)と、蒸気送出配管(54)における蒸気圧縮機(40)の上流側と下流側とを接続するバイパス配管(62)と、一端が蒸気送出配管(54)に接続され、他端が大気開放弁(76)を介して大気開放された大気開放配管64とが備えられている。

Description

蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法
 本発明は、冷媒サイクル装置の凝縮器に水を流通させることで蒸気を生成する蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法に関する。
 従来より、工場排水や下水排水等の温排水から排熱を回収し、水蒸気を生成する蒸気生成ヒートポンプが利用されている。蒸気生成ヒートポンプでは、生成した水蒸気をそのままの圧力で外部に送り出す構成だけでなく、生成した水蒸気を蒸気圧縮機で昇圧し、高圧の水蒸気として外部に送り出す構成も採用されている。
 例えば、特許文献1,2には、ヒートポンプ装置(冷媒サイクル装置)の凝縮器で加熱された水が水蒸気と熱水の2相流となって気液分離器に入り、ここで水蒸気と熱水が分離されることにより、水蒸気だけが取り出されて蒸気圧縮機で昇圧された後、外部の蒸気利用設備へと供給される構成の蒸気生成ヒートポンプが開示されている。
特開2012-247146号公報 特開2010-164223号公報
 ところで、上記のような蒸気生成ヒートポンプでは、その運転停止後、経路内の温度が低下すると、気液分離器及び該気液分離器から水蒸気を送り出す配管等の内部の水蒸気の圧力が大気圧以下まで低下した負圧状態となる。そうすると、給水側の水が気液分離器内へと吸い込まれて気液分離器内の水位が急上昇し、その後の再起動に不具合を生じる可能性がある。
 一方、蒸気生成ヒートポンプの起動時には、蒸気圧縮機やこれに接続された配管内の温度が凝縮器で生成される水蒸気の温度よりも低くなっている。このため、装置の起動直後に生成された水蒸気が温度の低い蒸気圧縮機に導入されてしまうと、ここで凝縮し、蒸気圧縮機が液圧縮となって破損等を生じる原因となる。
 本発明は、上記従来技術の課題を考慮してなされたものであり、運転停止後や起動時に生じる不具合を回避することができる蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法を提供することを目的とする。
 本発明に係る蒸気生成ヒートポンプは、圧縮機と、該圧縮機で圧縮された冷媒を凝縮させる凝縮器と、該凝縮器で凝縮された冷媒を膨張させる膨張弁と、該膨張弁を出た冷媒を蒸発させる蒸発器とを有する冷媒サイクル装置と、前記凝縮器に水を流通させて前記冷媒と熱交換させることで水蒸気を生成し、該生成した水蒸気を気液分離器に通して水を分離した後、蒸気圧縮機で昇圧して送り出す蒸気生成装置とを備えた蒸気生成ヒートポンプであって、前記蒸気生成装置は、前記気液分離器の蒸気出口側に接続され、前記蒸気圧縮機が設けられた蒸気送出経路と、前記蒸気送出経路における前記蒸気圧縮機の上流側と下流側とを接続するバイパス経路と、一端が前記蒸気送出経路に接続され、他端が大気開放弁を介して大気開放された大気開放経路とを備える。
 また、本発明に係る蒸気生成ヒートポンプの運転制御方法は、圧縮機と、該圧縮機で圧縮された冷媒を凝縮させる凝縮器と、該凝縮器で凝縮された冷媒を膨張させる膨張弁と、該膨張弁を出た冷媒を蒸発させる蒸発器とを有する冷媒サイクル装置と、前記凝縮器に水を流通させて前記冷媒と熱交換させることで水蒸気を生成し、該生成した水蒸気を気液分離器に通して水を分離した後、蒸気圧縮機で昇圧して送り出す蒸気生成装置とを備えた蒸気生成ヒートポンプの運転制御方法であって、前記蒸気生成装置は、前記気液分離器の蒸気出口側に接続され、前記蒸気圧縮機が設けられた蒸気送出経路と、前記蒸気送出経路における前記蒸気圧縮機の上流側と下流側とを接続するバイパス経路と、一端が前記蒸気送出経路に接続され、他端が大気開放弁を介して大気開放された大気開放経路とを備え、前記蒸気生成ヒートポンプの運転停止後に、前記大気開放弁を開制御し、前記気液分離器内を大気開放することを特徴とする。
 このような構成及び方法によれば、蒸気送出経路に大気開放経路を設けたことにより、運転停止後に大気開放経路を開放して蒸気送出経路や気液分離器の内部を大気開放することができる。これにより、運転停止後に蒸気送出経路や気液分離器の内部が負圧となり、給水側の水が気液分離器内に吸い込まれ、その後の再起動に不具合を生じることを防止できる。さらに、蒸気送出経路には、蒸気圧縮機をバイパスするバイパス経路が接続されているため、運転が停止され低温状態にある蒸気圧縮機を起動時にバイパス経路を用いて暖機することができる。これにより、低温状態にある蒸気圧縮機に生成された水蒸気が導入され、液圧縮を生じることを防止できる。
 当該蒸気生成ヒートポンプの運転停止後に、前記大気開放弁を開制御し、前記気液分離器内を大気開放するように制御する制御装置を備えてもよい。
 また、前記蒸気送出経路には、前記気液分離器からの水蒸気の流入を制御する蒸気流入制御弁が設けられており、前記制御装置は、当該蒸気生成ヒートポンプの起動時に、前記蒸気流入制御弁を閉制御し、前記バイパス経路を開放して前記蒸気圧縮機を運転するバイパス循環運転を行うことで前記蒸気圧縮機の出口側温度が所定温度以上となった後、前記バイパス経路を閉止すると共に前記蒸気流入制御弁を開制御するようにしてもよい。
 前記制御装置は、前記バイパス循環運転によって前記蒸気圧縮機の出口側温度が所定温度以上となり、前記バイパス経路を閉止すると共に前記蒸気流入制御弁を開制御した後、前記大気開放弁を所定時間開制御するようにしてもよい。
 本発明によれば、蒸気送出経路に大気開放経路を設けたことにより、運転停止後に経路内が負圧となることを防止できる。さらに、蒸気送出経路には、蒸気圧縮機をバイパスするバイパス経路が接続されているため、運転が停止され低温状態にある蒸気圧縮機にある蒸気圧縮機に起動直後に生成された水蒸気が導入され、液圧縮を生じることを防止できる。
図1は、本発明の一実施形態に係る蒸気生成ヒートポンプの全体構成図である。 図2は、図1に示す蒸気生成ヒートポンプの通常運転時の制御状態を示す説明図である。 図3は、図2に示す状態から蒸気生成ヒートポンプの運転を停止して所定時間経過した後の制御状態を示す説明図である。 図4は、図3に示す状態から蒸気生成ヒートポンプの運転を開始した直後の制御状態を示す説明図である。 図5は、図4に示す状態から所定時間経過した後の制御状態を示す説明図である。
 以下、本発明に係る蒸気生成ヒートポンプについて、その運転制御方法を例示して好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。
 図1は、本発明の一実施形態に係る蒸気生成ヒートポンプ10の全体構成図である。蒸気生成ヒートポンプ10は、工場排水等の温排水から排熱を回収し、回収した排熱を利用して水蒸気を生成するシステムであり、生成した水蒸気は乾燥装置や殺菌装置等の蒸気利用設備に送られる。
 図1に示すように、蒸気生成ヒートポンプ10は、水を蒸発させて水蒸気を生成し、外部へと送り出す蒸気生成装置12と、温排水から排熱を回収し、この排熱を蒸気生成装置12での蒸気生成のための熱源として供給する冷媒サイクル装置14と、システムの制御を行うコントローラ15とを備える。
 先ず、冷媒サイクル装置14は、圧縮機16と、圧縮機16の吐出側に接続される凝縮器18と、凝縮器18の出口側に接続される膨張弁20と、膨張弁20の出口側に接続される蒸発器22とを有し、冷媒を循環させる冷凍回路(ヒートポンプ)である。
 圧縮機16で圧縮されて高温高圧となった冷媒は、凝縮器18で蒸気生成装置12を循環する水(給水)と熱交換して冷却され凝縮する。凝縮器18を出た冷媒は、加熱器24で給水配管26を流れる水を予熱してさらに冷却された後、膨張弁20で断熱膨張され、蒸発器22で排水配管28を流れる温排水から吸熱して蒸発し、アキュムレータ30を経て再び圧縮機16へと戻る。このような冷媒サイクル装置14としては、公知の冷凍回路を用いることができる。
 圧縮機16は、コントローラ15の制御下に、その吐出側に設けられた圧力センサ(PC)32の検出値(吐出圧)に基づき、インバータ(INV)34を介して駆動回転数が制御される。膨張弁20は、コントローラ15の制御下に、圧縮機16の吐出側に設けられた温度センサ(TC)36の検出値(吐出温度)に基づき、開度が制御される。
 次に、蒸気生成装置12は、容器内部に水を貯留する気液分離器38と、前記冷媒サイクル装置14を循環する冷媒を熱源として水を蒸発させる蒸発器として機能する前記凝縮器18と、気液分離器38から送り出される水蒸気を圧縮して昇圧する蒸気圧縮機40とを備える。気液分離器38と凝縮器18との間は、気液分離器38の下端壁から凝縮器18を介して気液分離器38の上部側壁までを接続する循環配管42によって連通されている。
 気液分離器38は、鉛直方向に沿った円筒状容器で構成され、下端壁に接続された循環配管42に接続された給水配管26から水が給水補給されることで容器内部に水を貯留する。給水配管26は、図示しない水道管や水タンクからの水(給水)を給水ポンプ44によって加熱器24を経て循環配管42(気液分離器38)まで導入する。給水ポンプ44は、コントローラ15の制御下に、気液分離器38内に貯留された水の水位を測定する水位センサ(LC)46の検出値(水位)に基づき、インバータ(INV)48を介して駆動回転数が制御される。気液分離器38には、内部の蒸気圧が所定圧力以上になった際に開放される圧力逃がし弁49が接続されている。
 循環配管42は、気液分離器38の下端壁から凝縮器18までを連通する液管42aと、凝縮器18から気液分離器38の上部側壁までを連通する蒸気管42bとから構成されている。液管42aには水が流通し、蒸気管42bには水蒸気及び水を含む2相流が流通する。液管42aには循環ポンプ50が設けられている。循環ポンプ50は、コントローラ15の制御下に、インバータ(INV)52を介して駆動回転数が制御される。
 気液分離器38の上端壁には、蒸気管42bから当該気液分離器38内に供給され、ここで水が分離された後の水蒸気が送り出される蒸気送出配管54が接続されている。蒸気送出配管54は、当該蒸気生成ヒートポンプ10で生成した水蒸気を外部の蒸気利用設備側へと送り出すための経路(蒸気送出経路)である。
 凝縮器18は、例えば、プレート型熱交換器であり、冷媒サイクル装置14側の冷媒が流通する熱媒体通路と、蒸気生成装置12側の水(及び蒸気)が流通する水通路とが交互に積層配置されている。凝縮器18では、冷媒と水とが対向流となって熱交換することにより、水が蒸発して水蒸気が生成される。液管42aから凝縮器18に流入した水は、凝縮器18で加熱されて水蒸気と水の2相流となって蒸気管42bへと流通し、気液分離器38で水蒸気と水とに分離され、水蒸気は蒸気送出配管54へと送り出され、水は気液分離器38内に貯留される。
 蒸気送出配管54には、上流側から下流側に向かって順に、自動開閉弁56と、蒸気圧縮機40と、自動開閉弁58と、調節弁60とが設置されている。蒸気送出配管54における自動開閉弁56と自動開閉弁58との間には、蒸気圧縮機40をバイパスするためのバイパス配管62と、当該蒸気送出配管54内を大気開放するための大気開放配管64とが接続されている。
 自動開閉弁56,58は、コントローラ15の制御下に開閉制御される電磁弁である。気液分離器38からの水蒸気の出口すぐに設置された自動開閉弁56は、蒸気送出配管54内への水蒸気の流入を制御する蒸気流入制御弁として機能する。調節弁60は、コントローラ15によってその開度が制御可能な開度制御弁である。調節弁60の開度を適宜制御することにより、当該蒸気生成ヒートポンプ10から外部に送り出される水蒸気の流量や圧力を制御できる。
 蒸気圧縮機40は、コントローラ15の制御下に、圧力センサ(PC)66で測定される気液分離器38内の蒸気圧力と、圧力センサ(PC)68で測定される調節弁60の下流側での蒸気圧力とに基づき、インバータ(INV)70を介して駆動回転数が制御され、吸引した水蒸気を圧縮・昇圧して送り出す。蒸気圧縮機40の下流側には、当該蒸気圧縮機40から吐出される水蒸気の温度を測定する温度センサ(T)72が設けられている。
 バイパス配管(バイパス経路)62は、蒸気送出配管54における蒸気圧縮機40の上流側と下流側とを接続するものであり、途中にバイパス開閉弁74が設けられている。バイパス開閉弁74は、コントローラ15の制御下に開閉制御される電磁弁である。詳細は後述するが、バイパス配管62は、当該蒸気生成ヒートポンプ10の起動時に開放され、通常運転時には閉止されている。
 大気開放配管(大気開放経路)64は、蒸気送出配管54及び気液分離器38内を大気開放する際に用いられるものであり、途中に大気開放弁76が設けられている。大気開放弁76は、コントローラ15の制御下に開閉制御される電磁弁である。大気開放配管64は、一端が蒸気送出配管54の蒸気圧縮機40の下流側であってバイパス配管62の下流側接続部の上流側となる位置に接続され、他端が大気開放弁76を介して大気開放されている。詳細は後述するが、大気開放配管64は、当該蒸気生成ヒートポンプ10の運転停止後や起動時に開放され、通常運転時には閉止されている。大気開放配管64は、蒸気送出経路54と直接的に接続されず、バイパス配管62に接続されることで間接的に蒸気送出経路54と接続されてもよい。
 コントローラ15は、当該蒸気生成ヒートポンプ10の全体的な制御を行う制御装置であり、圧縮機16及び蒸気圧縮機40等の駆動制御を行うと共に自動開閉弁56等の開閉制御も行う。
 従って、このような蒸気生成ヒートポンプ10では、排水配管28を流れる温排水の熱を回収し、回収した熱を凝縮器18によって水に移動させて水蒸気を生成することで排熱を効率的に回収して利用することができ、高い省エネ性能を有する。
 次に、以上のように構成される蒸気生成ヒートポンプ10の運転制御方法及びその作用効果について、図2~図5を参照して説明する。
 図2は、図1に示す蒸気生成ヒートポンプ10の通常運転時の制御状態を示す説明図であり、図3は、図2に示す状態から蒸気生成ヒートポンプ10の運転を停止して所定時間経過した後の制御状態を示す説明図であり、図4は、図3に示す状態から蒸気生成ヒートポンプ10の運転を開始した直後(起動時)の制御状態を示す説明図であり、図5は、図4に示す状態から所定時間経過した後の制御状態を示す説明図である。図2~図5では、各要素の制御状態を明示するために、圧縮機16、蒸気圧縮機40、給水ポンプ44及び循環ポンプ50については運転中の状態を「ON」、運転停止中の状態を「OFF」と図示し、自動開閉弁56,58、バイパス開閉弁74、大気開放弁76及び調節弁60については開いている状態を「丸印(○)」、閉じている状態を「バツ印(×)」、適宜開閉される状態を「三角印(△)」(図4参照)で図示している。
 先ず、蒸気生成ヒートポンプ10が通常運転されている状態では、コントローラ15の制御下に、図2に示すように、圧縮機16、蒸気圧縮機40、給水ポンプ44及び循環ポンプ50が運転され、自動開閉弁56,58及び調節弁60が開かれる一方、バイパス開閉弁74及び大気開放弁76が閉じられてバイパス配管62及び大気開放配管64が閉止されている。これにより、循環ポンプ50によって循環配管42を循環する水(給水)は凝縮器18で蒸発して水蒸気となり、気液分離器38から蒸気送出配管54へと導入され、蒸気圧縮機40によって昇圧された後、調節弁60から外部の蒸気利用設備へと送り出される。
 次に、通常運転状態にある蒸気生成ヒートポンプ10の運転を停止した場合には、コントローラ15の制御下に、図2に示す制御状態から圧縮機16、蒸気圧縮機40、給水ポンプ44及び循環ポンプ50の運転が停止され、調節弁60が閉じられる。そうすると、凝縮器18への熱入力がなくなることから、循環配管42、気液分離器38及び蒸気送出配管54内に残留している水蒸気の温度が次第に低下する。このため、この残留している水蒸気が凝縮し始め、循環配管42、気液分離器38及び蒸気送出配管54内の圧力が次第に低下する。例えば、通常運転時には気液分離器38内の蒸気圧力はゲージ圧100kPa程度で制御されるが、運転停止後には大気圧以下(負圧)まで低下する。そうすると、給水ポンプ44の隙間を通して給水配管26から水が吸い込まれ、気液分離器38内の水位が急上昇して内部が水で満たされてしまい、その後の起動が難しくなる等の不具合を生じる可能性がある。
 そこで、本実施形態では、運転停止後、コントローラ15が圧力センサ66によって経路内の圧力を監視する。そして、圧力センサ66の検出値が所定圧力(例えば、大気圧又は大気圧より多少低い圧力)以下となった際、図3に示すように、コントローラ15の制御下に大気開放弁76を開いて大気開放配管64を開放し、さらにバイパス開閉弁74を開いてバイパス配管62を開放する。すなわち、循環配管42、気液分離器38及び蒸気送出配管54内を大気開放する。これにより、経路内が大気圧になって安定するため、経路内が負圧(真空状態)になり、給水配管26から過剰な水が吸い込まれて不具合を生じることが防止される(負圧防止動作)。大気開放後、コントローラ15によって大気開放弁76が閉じられる。なお、運転停止直後は経路内の蒸気圧力が高いため、すぐに大気開放すると高圧の蒸気が大気開放配管64から噴出する恐れがある。このため、本実施形態では、運転停止後、経路内が大気圧程度になってから負圧防止動作(大気開放)を行うものとしている。
 ところで、本実施形態では、大気開放配管64を蒸気圧縮機40の下流側に設置しているため、このような負圧防止動作時にバイパス配管62も開放する必要がある。一方、大気開放配管64を蒸気圧縮機40の上流側に設置してもよく、この場合にはバイパス配管62を開放せずに経路内を大気開放することができる。
 続いて、運転停止後に各部が冷えて常温となった状態から蒸気生成ヒートポンプ10を起動した場合、コントローラ15の制御下に、圧縮機16、蒸気圧縮機40、給水ポンプ44及び循環ポンプ50が運転される。ところが、この起動直後の状態では、凝縮器18において次第に水が加熱されて水蒸気が生成されるが、蒸気圧縮機40及びその前後の蒸気送出配管54内の温度は低いままとなっている。そのため、仮に、この起動直後の状態から蒸気圧縮機40に水蒸気が導入されてしまうと、導入された水蒸気が冷やされて凝縮し、蒸気圧縮機40が液圧縮となって破損する可能性がある。
 そこで、本実施形態では、蒸気生成ヒートポンプ10の起動時に、蒸気圧縮機40を暖機するアイドリング運転を実施する。すなわち、蒸気生成ヒートポンプ10の起動後、温度センサ72で検出される蒸気圧縮機40からの吐出温度が所定温度(例えば、通常の運転時の吐出温度)未満である場合、コントローラ15は、図4に示すように、バイパス開閉弁74を開いてバイパス配管62を開放する一方、自動開閉弁56,58を閉じる。これにより、自動開閉弁56,58の間にバイパス配管62によるループ経路が形成される。蒸気圧縮機40が運転されると、このループ経路内の空気がバイパス配管62によって蒸気圧縮機40に繰り返し循環されて温度上昇する(アイドリング動作、バイパス循環運転)。この際、大気開放弁76が適宜開閉制御されることにより大気開放配管64が開閉され、ループ経路内に適宜外気が導入される。
 このアイドリング動作により、温度センサ72によって検出される温度が所定温度以上となり、蒸気圧縮機40が十分に暖まったことが確認されると、コントローラ15は、図5に示すように、今度は自動開閉弁56を開く一方、バイパス開閉弁74を閉じてバイパス配管62を閉止する。これにより、蒸気圧縮機40の前後を循環していた空気は、気液分離器38から供給される水蒸気によって蒸気圧縮機40から大気開放配管64を介して大気中に排出され、蒸気圧縮機40の前後の配管内に混入していた空気が水蒸気に置換される(空気排出動作)。この空気排出動作は、上記した負圧防止動作及びアイドリング動作によって経路内に混入した空気を系外に排出し、当該蒸気生成ヒートポンプ10から蒸気利用設備へと送り出される蒸気に空気が混入することを防止するためのものである。この際、空気排出動作時の大気開放弁76の開時間は、気液分離器38、蒸気送出配管54及びバイパス配管62の内部容積が既知であり、蒸気圧縮機40の駆動回転数によって排出される空気の体積が計算可能であるため、経路内の空気を確実に排出可能な時間に設定されればよい。
 空気排出動作が完了した後は、図2に示すように、再び自動開閉弁58及び調節弁60を開き、大気開放弁76を閉じて大気開放配管64を閉止することにより、当該蒸気生成ヒートポンプ10の通常運転が行われる。
 以上のように、本実施形態に係る蒸気生成ヒートポンプ10は、冷媒サイクル装置14と、蒸気生成装置12とを備え、蒸気生成装置12には、気液分離器38の蒸気出口側に接続され、蒸気圧縮機40が設けられた蒸気送出配管54と、蒸気送出配管54における蒸気圧縮機40の上流側と下流側とを接続するバイパス配管62と、一端が蒸気送出配管54に接続され、他端が大気開放弁76を介して大気開放された大気開放配管64とが備えられている。
 このように、蒸気生成ヒートポンプ10では、蒸気送出配管54に大気開放配管64を設けたことにより、運転停止後に大気開放配管64を開放して経路内を大気開放することができる。これにより、蒸気送出配管54や気液分離器38の内部が負圧となり、給水配管26側の水が気液分離器38内に吸い込まれ、その後の再起動に不具合を生じることを防止できる。さらに、蒸気生成ヒートポンプ10では、蒸気圧縮機40をバイパスするバイパス配管62を備えるため、運転が停止され低温状態にある蒸気圧縮機40を起動時にバイパス配管62を用いて暖機することができる。これにより、低温状態にある蒸気圧縮機40に凝縮器18で生成された水蒸気が導入され、液圧縮を生じることを防止できる。
 当該蒸気生成ヒートポンプ10には、運転停止後に大気開放弁76を開制御し、気液分離器38内を大気開放するように制御するコントローラ15を備える。このため、運転停止後の経路内の負圧防止動作をコントローラ15によって運転制御できる。
 当該蒸気生成ヒートポンプ10において、蒸気送出配管54には、気液分離器38からの水蒸気の流入を制御する蒸気流入制御弁となる自動開閉弁56が設けられている。そして、コントローラ15は、運転開始時に、自動開閉弁56を閉制御し、バイパス配管62を開放して蒸気圧縮機40を運転するバイパス循環運転(アイドリング動作)を行うことで蒸気圧縮機40の出口側温度が所定温度以上となった後、バイパス配管62を閉止すると共に自動開閉弁56を開制御する。従って、起動時に蒸気圧縮機40を暖機するアイドリング動作をコントローラ15によって運転制御できる。
 また、コントローラ15は、アイドリング動作の終了後、蒸気送出配管54への蒸気流入制御弁となる自動開閉弁56を開制御して水蒸気の導入を開始した後、大気開放弁76を所定時間開制御して経路内を大気開放する。これにより、負圧防止動作やアイドリング動作によって経路内に混入した空気を系外に排出し、当該蒸気生成ヒートポンプ10から蒸気利用設備へと送り出される蒸気に空気が混入することを防止することができる。
 なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
 10 蒸気生成ヒートポンプ
 12 蒸気生成装置
 14 冷媒サイクル装置
 15 コントローラ
 16 圧縮機
 18 凝縮器
 20 膨張弁
 22 蒸発器
 24 加熱器
 26 給水配管
 28 排水配管
 38 気液分離器
 40 蒸気圧縮機
 42 循環配管
 42a 液管
 42b 蒸気管
 44 給水ポンプ
 50 循環ポンプ
 54 蒸気送出配管
 56,58 自動開閉弁
 60 調節弁
 62 バイパス配管
 64 大気開放配管
 74 バイパス開閉弁
 76 大気開放弁

Claims (7)

  1.  圧縮機と、該圧縮機で圧縮された冷媒を凝縮させる凝縮器と、該凝縮器で凝縮された冷媒を膨張させる膨張弁と、該膨張弁を出た冷媒を蒸発させる蒸発器とを有する冷媒サイクル装置と、
     前記凝縮器に水を流通させて前記冷媒と熱交換させることで水蒸気を生成し、該生成した水蒸気を気液分離器に通して水を分離した後、蒸気圧縮機で昇圧して送り出す蒸気生成装置と、
     を備えた蒸気生成ヒートポンプであって、
     前記蒸気生成装置は、前記気液分離器の蒸気出口側に接続され、前記蒸気圧縮機が設けられた蒸気送出経路と、
     前記蒸気送出経路における前記蒸気圧縮機の上流側と下流側とを接続するバイパス経路と、
     一端が前記蒸気送出経路に接続され、他端が大気開放弁を介して大気開放された大気開放経路と、
     を備えることを特徴とする蒸気生成ヒートポンプ。
  2.  請求項1記載の蒸気生成ヒートポンプにおいて、
     当該蒸気生成ヒートポンプの運転停止後に、前記大気開放弁を開制御し、前記気液分離器内を大気開放するように制御する制御装置を備えることを特徴とする蒸気生成ヒートポンプ。
  3.  請求項2記載の蒸気生成ヒートポンプにおいて、
     前記蒸気送出経路には、前記気液分離器からの水蒸気の流入を制御する蒸気流入制御弁が設けられており、
     前記制御装置は、当該蒸気生成ヒートポンプの起動時に、前記蒸気流入制御弁を閉制御し、前記バイパス経路を開放して前記蒸気圧縮機を運転するバイパス循環運転を行うことで前記蒸気圧縮機の出口側温度が所定温度以上となった後、前記バイパス経路を閉止すると共に前記蒸気流入制御弁を開制御することを特徴とする蒸気生成ヒートポンプ。
  4.  請求項3記載の蒸気生成ヒートポンプにおいて、
     前記制御装置は、前記バイパス循環運転によって前記蒸気圧縮機の出口側温度が所定温度以上となり、前記バイパス経路を閉止すると共に前記蒸気流入制御弁を開制御した後、前記大気開放弁を所定時間開制御することを特徴とする蒸気生成ヒートポンプ。
  5.  圧縮機と、該圧縮機で圧縮された冷媒を凝縮させる凝縮器と、該凝縮器で凝縮された冷媒を膨張させる膨張弁と、該膨張弁を出た冷媒を蒸発させる蒸発器とを有する冷媒サイクル装置と、
     前記凝縮器に水を流通させて前記冷媒と熱交換させることで水蒸気を生成し、該生成した水蒸気を気液分離器に通して水を分離した後、蒸気圧縮機で昇圧して送り出す蒸気生成装置と、
     を備えた蒸気生成ヒートポンプの運転制御方法であって、
     前記蒸気生成装置は、前記気液分離器の蒸気出口側に接続され、前記蒸気圧縮機が設けられた蒸気送出経路と、
     前記蒸気送出経路における前記蒸気圧縮機の上流側と下流側とを接続するバイパス経路と、
     一端が前記蒸気送出経路に接続され、他端が大気開放弁を介して大気開放された大気開放経路とを備え、
     前記蒸気生成ヒートポンプの運転停止後に、前記大気開放弁を開制御し、前記気液分離器内を大気開放することを特徴とする蒸気生成ヒートポンプの運転制御方法。
  6.  請求項5記載の蒸気生成ヒートポンプの運転制御方法において、
     前記蒸気送出経路には、前記気液分離器からの水蒸気の流入を制御する蒸気流入制御弁が設けられており、
     前記蒸気生成ヒートポンプの起動時に、前記蒸気流入制御弁を閉制御し、前記バイパス経路を開放して前記蒸気圧縮機を運転するバイパス循環運転を行うことで前記蒸気圧縮機の出口側温度が所定温度以上となった後、前記バイパス経路を閉止すると共に前記蒸気流入制御弁を開制御することを特徴とする蒸気生成ヒートポンプの運転制御方法。
  7.  請求項6記載の蒸気生成ヒートポンプの運転制御方法において、
     前記バイパス循環運転によって前記蒸気圧縮機の出口側温度が所定温度以上となり、前記バイパス経路を閉止すると共に前記蒸気流入制御弁を開制御した後、前記大気開放弁を所定時間開制御することを特徴とする蒸気生成ヒートポンプの運転制御方法。
PCT/JP2014/077263 2013-11-08 2014-10-10 蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法 WO2015068531A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015546571A JPWO2015068531A1 (ja) 2013-11-08 2014-10-10 蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013232130 2013-11-08
JP2013-232130 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015068531A1 true WO2015068531A1 (ja) 2015-05-14

Family

ID=53041314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077263 WO2015068531A1 (ja) 2013-11-08 2014-10-10 蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法

Country Status (2)

Country Link
JP (1) JPWO2015068531A1 (ja)
WO (1) WO2015068531A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015117492A1 (de) * 2015-10-14 2016-05-19 Mitsubishi Hitachi Power Systems Europe Gmbh Erzeugung von Prozessdampf mittels Hochtemperaturwärmepumpe
JP5943126B1 (ja) * 2015-06-25 2016-06-29 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP5950064B1 (ja) * 2016-01-14 2016-07-13 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP5950010B1 (ja) * 2015-08-25 2016-07-13 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2017020733A (ja) * 2015-07-13 2017-01-26 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2017044348A (ja) * 2015-08-10 2017-03-02 富士電機株式会社 筐体の防水構造及びヒートポンプ式蒸気生成装置
JP2017116080A (ja) * 2015-12-26 2017-06-29 日立建機株式会社 作動油タンク装置
JP2018069609A (ja) * 2016-10-31 2018-05-10 横浜ゴム株式会社 タイヤの加硫システムおよび加硫方法
CN110005492A (zh) * 2019-03-20 2019-07-12 江苏科技大学 综合利用工厂余热进行分馏干燥和发电的装置及工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525102U (ja) * 1991-05-09 1993-04-02 神鋼造機株式会社 蒸気発生装置用循環水損失防止装置
JP2007333278A (ja) * 2006-06-14 2007-12-27 Kajima Corp 蒸発装置
JP2008057876A (ja) * 2006-08-31 2008-03-13 Hitachi Ltd ヒートポンプシステム
JP2011064417A (ja) * 2009-09-18 2011-03-31 Kobe Steel Ltd 蒸気発生装置
JP2012017925A (ja) * 2010-07-08 2012-01-26 Miura Co Ltd 蒸気システム
JP2012247146A (ja) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd ヒートポンプ式蒸気生成装置
JP2013002708A (ja) * 2011-06-15 2013-01-07 Kobe Steel Ltd 蒸気発生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525102U (ja) * 1991-05-09 1993-04-02 神鋼造機株式会社 蒸気発生装置用循環水損失防止装置
JP2007333278A (ja) * 2006-06-14 2007-12-27 Kajima Corp 蒸発装置
JP2008057876A (ja) * 2006-08-31 2008-03-13 Hitachi Ltd ヒートポンプシステム
JP2011064417A (ja) * 2009-09-18 2011-03-31 Kobe Steel Ltd 蒸気発生装置
JP2012017925A (ja) * 2010-07-08 2012-01-26 Miura Co Ltd 蒸気システム
JP2012247146A (ja) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd ヒートポンプ式蒸気生成装置
JP2013002708A (ja) * 2011-06-15 2013-01-07 Kobe Steel Ltd 蒸気発生装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009236A (ja) * 2015-06-25 2017-01-12 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP5943126B1 (ja) * 2015-06-25 2016-06-29 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2017020733A (ja) * 2015-07-13 2017-01-26 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2017044348A (ja) * 2015-08-10 2017-03-02 富士電機株式会社 筐体の防水構造及びヒートポンプ式蒸気生成装置
JP5950010B1 (ja) * 2015-08-25 2016-07-13 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2017044377A (ja) * 2015-08-25 2017-03-02 富士電機株式会社 ヒートポンプ式蒸気生成装置
DE102015117492A1 (de) * 2015-10-14 2016-05-19 Mitsubishi Hitachi Power Systems Europe Gmbh Erzeugung von Prozessdampf mittels Hochtemperaturwärmepumpe
WO2017064163A1 (de) * 2015-10-14 2017-04-20 Mitsubishi Hitachi Power Systems Europe Gmbh Erzeugung von prozessdampf mittels hochtemperaturwärmepumpe
JP2017116080A (ja) * 2015-12-26 2017-06-29 日立建機株式会社 作動油タンク装置
JP5950064B1 (ja) * 2016-01-14 2016-07-13 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2017125650A (ja) * 2016-01-14 2017-07-20 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2018069609A (ja) * 2016-10-31 2018-05-10 横浜ゴム株式会社 タイヤの加硫システムおよび加硫方法
CN110005492A (zh) * 2019-03-20 2019-07-12 江苏科技大学 综合利用工厂余热进行分馏干燥和发电的装置及工作方法
CN110005492B (zh) * 2019-03-20 2021-05-04 江苏科技大学 综合利用工厂余热进行分馏干燥和发电的装置及工作方法

Also Published As

Publication number Publication date
JPWO2015068531A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015068531A1 (ja) 蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法
JP5597597B2 (ja) 発電装置
EP2312136A1 (en) Waste heat regeneration system
KR101325350B1 (ko) 동력 발생 장치
US20150322821A1 (en) Thermal energy recovery device and start-up method of thermal energy recovery device
KR101442425B1 (ko) 발전 장치와 담수화 장치를 조합한 시스템
TWI558962B (zh) Constant temperature liquid circulation device and its operation method
WO2006030779A1 (ja) 熱ポンプ、熱ポンプシステム及びランキンサイクル
JP2011106693A (ja) ボイラ給水システム
US10794160B2 (en) Geothermal heat recovery device and geothermal heat recovery device operating method
JP2009300055A (ja) ヒートポンプ給湯機
JP2013113192A (ja) 廃熱回生システム
JP2009300018A (ja) 温水生成装置
KR102212854B1 (ko) 조수기 열원 공급용 열매체 순환 시스템 및 그것의 운전 방법
JP6497111B2 (ja) ヒートポンプ式蒸気生成装置
JP5560515B2 (ja) 蒸気製造システム、および蒸気製造システムの立ち上げ制御方法
JP6844256B2 (ja) 蒸気生成システム
JP5821411B2 (ja) 蒸気発生装置
JP2009180099A (ja) 水潤滑圧縮機
JP6595395B2 (ja) 熱エネルギー回収装置及びその運転方法
JP5929464B2 (ja) ヒートポンプ及びヒートポンプの起動方法
JP7056246B2 (ja) ヒートポンプ式蒸気生成システム
JP6809081B2 (ja) セパレータタンクの高水位防止方法
JP6394525B2 (ja) ヒートポンプ式蒸気生成装置
JP6677063B2 (ja) 熱回収システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860909

Country of ref document: EP

Kind code of ref document: A1