US20150322821A1 - Thermal energy recovery device and start-up method of thermal energy recovery device - Google Patents

Thermal energy recovery device and start-up method of thermal energy recovery device Download PDF

Info

Publication number
US20150322821A1
US20150322821A1 US14/660,027 US201514660027A US2015322821A1 US 20150322821 A1 US20150322821 A1 US 20150322821A1 US 201514660027 A US201514660027 A US 201514660027A US 2015322821 A1 US2015322821 A1 US 2015322821A1
Authority
US
United States
Prior art keywords
pump
heater
working medium
flow passage
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/660,027
Inventor
Shigeto Adachi
Yutaka Narukawa
Takayuki Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Assigned to KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.) reassignment KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADACHI, SHIGETO, FUKUDA, TAKAYUKI, NARUKAWA, YUTAKA
Publication of US20150322821A1 publication Critical patent/US20150322821A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits

Definitions

  • the present invention relates to a thermal energy recovery device that recovers exhaust heat and a start-up method of a thermal energy recovery device.
  • JP 2012-202374 describes a power generation device including a circulation flow passage in which a heater that evaporates a working medium by a heat medium, an expander that expands steam of the working medium, a condenser that condenses the steam of the working medium, and a pump that circulates the working medium are connected in series.
  • the expander includes a screw rotor, and the screw rotor is rotated by the steam of the working medium expanded in the expander. This screw rotor is connected to a power generator, and the power generator converts rotation of the screw rotor into electric power.
  • the power generation device of the above related art further includes a pressure sensor that detects pressure of the working medium on the inlet side of the pump, and a derivation means that detects saturated steam pressure of the working medium from a temperature of the working medium on the inlet side of the pump.
  • This power generation device suppresses generation of cavitation in the pump by adjusting a circulation amount of the working medium in accordance with a pressure difference between the pressure detected in the pressure sensor and the saturated steam pressure derived in the derivation means.
  • the working medium in a liquid phase is accumulated in a pipe part between the heater and the pump at the time of stop of the pump, so that an amount of the working medium in a liquid phase existing on the upstream of the pump becomes short.
  • the cavitation is generated in the pump. In the method of the above related art, the generation of the cavitation at the time of start-up of the pump is not easily avoided.
  • the present invention is achieved from the above viewpoint and an object thereof is to ensure an amount of a working medium in a liquid phase in a reservoir unit positioned on the upstream of a pump in a thermal energy recovery device.
  • a thermal energy recovery device includes a heater that heats a working medium by heat of a heat medium, an expander into which the working medium flowing out from the heater flows, a power recovery machine connected to the expander, a condenser positioned on the upper side of the heater, the condenser condensing the working medium flowing out from the expander by a cooling medium, a reservoir unit positioned on the upper side of the heater, the reservoir unit reserving the working medium condensed in the condenser, a pump positioned on the upper side of the heater, the pump feeding the working medium flowing out from the reservoir unit to the heater, a circulation flow passage of the working medium that connects the heater, the expander, the condenser, the reservoir unit, and the pump in the above order, and a pump control unit that controls drive of the pump, wherein the pump control unit drives the pump after the heat medium is supplied to the heater, and the cooling medium is supplied to the condenser so that the working medium is reserved in the reservoir unit.
  • the heat medium is supplied to the heater and the cooling medium is supplied to the condenser, so that a sufficient amount of the working medium is reserved in the reservoir unit. Thereby, the cavitation at the time of driving the pump can be prevented.
  • the reservoir unit has a liquid level sensor that detects height of a liquid level of the working medium reserved in the reservoir unit, and the pump control unit drives the pump in a case where an amount of the working medium reserved in the reservoir unit becomes a predetermined amount or more based on a detected value of the liquid level sensor.
  • the pump can be driven in a state where the amount of the working medium in the reservoir unit is surely ensured.
  • the pump control unit may drive the pump when a predetermined time elapses after supply of the cooling medium to the condenser is started.
  • a shutoff valve provided in a first flow passage of the circulation flow passage connecting the heater and the expander, a bypass flow passage that connects a second flow passage of the circulation flow passage connecting the expander and the condenser, and a part of the first flow passage on the upstream side of the shutoff valve, a bypass valve provided in the bypass flow passage, and a valve control unit that controls opening/closing of the shutoff valve and the bypass valve are provided, and the valve control unit brings the shutoff valve into a closed state and brings the bypass valve into an opened state before the drive of the pump.
  • the bypass flow passage that connects the first flow passage and the second flow passage striding across the expander is provided, and before starting the drive of the pump, the working medium evaporated in the heater flows into the condenser through the first flow passage, the bypass flow passage, and the second flow passage. That is, in the above thermal energy recovery device, before starting the drive of the pump, the working medium evaporated in the heater flows into the condenser without passing through the expander. Therefore, the working medium evaporated in the heater can efficiently flow into the condenser.
  • a flow passage of the circulation flow passage connecting the pump and the heater includes a bent portion connected to the pump and bent to be convex upward.
  • the working medium is suppressed from flowing from the reservoir unit to the heater before the drive of the pump, so that the working medium in a liquid phase can be more promptly stored in the reservoir unit.
  • the condenser and the reservoir unit are different members from each other.
  • the working medium in a liquid phase is suppressed from being reserved in the condenser.
  • pressure on the inflow side of the working medium in the condenser can be reduced, and thereby energy can be efficiently recovered in the power recovery machine.
  • an on-off valve is provided in a flow passage of the circulation flow passage connecting the pump and the heater, and after the heat medium is supplied to the heater and the cooling medium is supplied to the condenser, so that the working medium is reserved in the reservoir unit, the on-off valve is opened and the pump is driven.
  • the working medium is prevented from flowing to the heater before the drive of the pump, so that the working medium in a liquid phase can be more promptly stored in the reservoir unit.
  • the heat medium includes at least one of supercharged air supplied to an engine, an exhaust gas discharged from the engine, and steam generated in an economizer that recovers heat from the exhaust gas.
  • the above thermal energy recovery device can be mounted for example on a moving body such as a vessel and a vehicle in which vibration is easily generated, and can recover thermal energy generated around an engine of the moving body.
  • the present invention is a start-up method of a thermal energy recovery device including a heater that heats a working medium by a heat medium, an expander into which the working medium flowing out from the heater flows, a power recovery machine connected to the expander, a condenser positioned on the upper side of the heater, the condenser condensing the working medium flowing out from the expander by a cooling medium, a reservoir unit positioned on the upper side of the heater, the reservoir unit reserving the working medium condensed in the condenser, and a pump positioned on the upper side of the heater, the pump feeding the working medium flowing out from the reservoir unit to the heater, wherein the heater, the expander, the condenser, the reservoir unit, and the pump are connected in the above order, the start-up method including a first step of supplying the heat medium to the heater, a second step of supplying the cooling medium to the condenser, so that the working medium is reserved in the reservoir unit, and a third step of driving the pump after the first
  • the pump is driven after the heat medium is supplied to the heater and the cooling medium is supplied to the condenser, so that a sufficient amount of the working medium is reserved in the reservoir unit before the drive of the pump.
  • the cavitation at the time of driving the pump can be prevented.
  • the thermal energy recovery device capable of ensuring the amount of the working medium in a liquid phase in the reservoir unit positioned on the upstream of the pump, and the start-up method of the thermal energy recovery device are provided.
  • FIG. 1 is a schematic configuration diagram of a thermal energy recovery device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a procedure of start-up control in the thermal energy recovery device according to the present embodiment.
  • FIG. 3 is a modified example 1 of the thermal energy recovery device according to the present embodiment.
  • FIG. 4 is a schematic configuration diagram as well as FIG. 1 regarding a modified example 2 of the thermal energy recovery device according to the present embodiment.
  • FIG. 5 is a flowchart showing a procedure of start-up control of the modified example 2 shown in FIG. 4 .
  • FIG. 6 is a flowchart showing a procedure of start-up control regarding a modified example 3 of the thermal energy recovery device according to the present embodiment.
  • FIG. 7 is a schematic configuration diagram as well as FIG. 1 regarding a modified example 4 of the thermal energy recovery device according to the present embodiment.
  • the thermal energy recovery device according to the present embodiment can include am arbitrary constituent member which is not shown in the figures to be cited in the present description.
  • a thermal energy recovery device X 1 includes a heater 2 , an expander 3 , a power recovery machine 4 , a condenser 5 , a reservoir unit 6 , a pump 7 , a circulation flow passage 8 , a bypass flow passage 11 , a shutoff valve 81 a , and a control unit 9 .
  • the circulation flow passage 8 connects the heater 2 , the expander 3 , the condenser 5 , the reservoir unit 6 , and the pump 7 in this order.
  • a part of the circulation flow passage 8 connecting the heater 2 and the expander 3 is called as the “first flow passage 81 ”.
  • a part connecting the expander 3 and the condenser 5 is called as the “second flow passage 82 ”.
  • a part connecting the condenser 5 and the pump 7 is called as the “third flow passage 83 ”.
  • a part connecting the pump 7 and the heater 2 is called as the “fourth flow passage 84 ”.
  • the thermal energy recovery device X 1 is mounted on a vessel and used for recovering exhaust heat of a supercharger engine 100 . It should be noted that the thermal energy recovery device X 1 may be mounted for example on a vehicle or may be applied to various facilities in a factory or the like.
  • the supercharger engine 100 has a supercharger, an engine 130 , scavenging lines 140 , 150 , and an exhaust line 160 .
  • the supercharger has a compressor 110 , and a turbine 120 connected to the compressor 110 .
  • the supercharged air compressed in the compressor 110 is supplied to the engine 130 through the scavenging lines 140 , 150 .
  • An exhaust gas from the engine 130 is fed to the turbine 120 through the exhaust line 160 .
  • the turbine 120 is driven by expansion energy of the exhaust gas, and the compressor 110 is driven by drive force of this turbine 120 .
  • the heater 2 is positioned between the scavenging line 140 and the scavenging line 150 , so that the exhaust heat of the supercharged air moved from the scavenging line 140 to the scavenging line 150 can be recovered.
  • the heater 2 has a heat medium flow passage 21 and a working medium flow passage 22 .
  • the heat medium flow passage 21 is a flow passage through which the supercharged air from the compressor 110 flows.
  • One end of the heat medium flow passage is connected to the scavenging line 140 and the other end is connected to the scavenging line 150 .
  • the working medium flow passage 22 is a flow passage through which a working medium flows. The heater 2 evaporates the working medium by heat exchange between the supercharged air flowing through the heat medium flow passage 21 and the working medium in a liquid phase flowing through the working medium flow passage 22 .
  • the expander 3 is positioned on the downstream side of the heater 2 in the circulation flow passage 8 .
  • the expander 3 and the working medium flow passage 22 of the heater 2 are connected to each other via the first flow passage 81 of the circulation flow passage 8 .
  • the working medium evaporated in the heater 2 flows into the expander 3 through the first flow passage 81 .
  • a volumetric screw expander having a rotor to be driven and rotated by expansion energy of a working medium in a gas phase is used as the expander 3 .
  • the expander 3 is not limited to the volumetric screw expander but a centrifugal expander, scrolling expander, or the like may be used.
  • the power recovery machine 4 is connected to the expander 3 .
  • a power generator is used as the power recovery machine 4 .
  • This power recovery machine 4 has a rotation shaft connected to one of a pair of screw rotors of the expander 3 .
  • the power recovery machine 4 generates electric power by rotating the rotation shaft in accordance with rotation of the screw rotor.
  • a compressor or the like may be used as the power recovery machine 4 .
  • the condenser 5 is positioned on the downstream side of the expander 3 in the circulation flow passage 8 .
  • the condenser 5 is arranged on the upper side of the heater 2 in the gravitational direction.
  • the condenser 5 has a cooling water flow passage 51 and a working medium flow passage 52 .
  • the cooling water flow passage 51 is a flow passage through which cooling water flows.
  • the working medium flow passage 52 is a flow passage through which the working medium flows.
  • the working medium flow passage 52 is connected to the expander 3 via the second flow passage 82 of the circulation flow passage 8 .
  • the working medium in a gas phase flowing out from the expander 3 flows into the working medium flow passage 52 of the condenser 5 through the second flow passage 82 .
  • the working medium By heat exchange between the working medium in a gas phase flowing through the working medium flow passage 52 and the cooling water flowing through the cooling water flow passage 51 , the working medium is condensed.
  • seawater is used as the cooling water flowing through the cooling water flow passage 51
  • the cooling water may be any cooling medium capable of condensing the working medium in a gas phase flowing through the working medium flow passage 52 .
  • the reservoir unit 6 is positioned on the downstream side of the condenser 5 on the third flow passage 83 of the circulation flow passage 8 .
  • the reservoir unit 6 is positioned on the lower side of the condenser 5 and arranged on the upper side of the heater 2 in the gravitational direction.
  • the working medium flow passage 52 of the condenser 5 and the pump 7 are connected to each other via the third flow passage 83 , and the reservoir unit 6 is provided in the middle of the third flow passage 83 .
  • the working medium condensed in the condenser 5 flows into the third flow passage 83 and is reserved in the reservoir unit 6 provided in the middle of the third flow passage 83 .
  • the pump 7 is positioned on the downstream side of the reservoir unit 6 in the circulation flow passage 8 .
  • the pump 7 is positioned on the lower side of the condenser 5 and the reservoir unit 6 and positioned on the upper side of the heater 2 in the gravitational direction.
  • the pump 7 and the working medium flow passage 22 of the heater 2 are connected to each other via the fourth flow passage 84 of the circulation flow passage 8 .
  • the working medium in a liquid phase reserved in the reservoir unit 6 flows into the pump 7 and is fed to the working medium flow passage 22 of the heater 2 at predetermined pressure by the pump 7 .
  • a centrifugal pump including an impeller as a rotor, a gear pump including a rotor of a pair of gears, or the like is used as the pump 7 .
  • the shutoff valve 81 a is provided in the first flow passage 81 of the circulation flow passage.
  • the bypass flow passage 11 is a flow passage that connects the first flow passage 81 and the second flow passage 82 while going around the expander 3 .
  • One end of the bypass flow passage 11 is connected to a part of the first flow passage 81 on the upstream side of the shutoff valve 81 a .
  • the other end of the bypass flow passage 11 is connected to a predetermined point of the second flow passage 82 .
  • the control unit 9 plays a role in controlling start-up in addition to control during drive of the thermal energy recovery device X 1 , and functionally has a pump control unit 91 , a valve control unit 92 , and a determination unit 93 .
  • the determination unit 93 receives a signal from a liquid level sensor 61 provided in the reservoir unit 6 and determines whether or not the working medium in a liquid phase is sufficiently reserved in the reservoir unit 6 .
  • the pump control unit 91 performs control of starting drive of the pump 7 in a case of receiving a determination signal from the determination unit 93 .
  • the valve control unit 92 performs control of opening/closing a bypass valve 11 a , control of opening/closing the shutoff valve 81 a , and control of opening/closing an on/off valve 51 a provided on the upstream of the cooling water flow passage 51 of the condenser 5 .
  • control unit 9 functions of the pump control unit 91 , the valve control unit 92 , and the determination unit 93 are realized for example by executing programs stored in a memory by a CPU.
  • the working medium in a liquid phase is accumulated in the fourth flow passage 84 , that is, in the part of the circulation flow passage 8 between the pump 7 and the heater 2 .
  • the working medium in a liquid phase accumulated in the fourth flow passage 84 includes a working medium leaking out from the reservoir unit 6 to the fourth flow passage 84 via a gap between members in the pump 7 .
  • the working medium in a liquid phase in the reservoir unit 6 becomes short. If the pump 7 is started up in a state where the working medium in a liquid phase is in short, the working medium in a gas phase intrudes into the pump 7 and there is a fear that cavitation is generated.
  • FIG. 2 is a flowchart showing a procedure of start-up control in the thermal energy recovery device.
  • the control unit 9 repeatedly confirms whether or not the heat medium is supplied to the heat medium flow passage 21 of the heater 2 (Step Op 1 ).
  • This supply/non-supply of the heat medium is determined based on the rotation number of the engine 130 , a temperature of the scavenging line 140 , pressure of the scavenging line 140 , or the like.
  • the supply/non-supply of the heat medium may be determined based on pressure or a temperature of the working medium on the downstream side of the heater 2 .
  • Step Op 2 When the heat medium is supplied to the heater 2 (Yes in Step Op 1 ), the valve control unit 92 performs the control of opening the bypass valve 11 a (Step Op 2 ) and closing the shutoff valve 81 a (Step Op 3 ). It should be noted that the shutoff valve 81 a may be closed in advance. Further, the valve control unit 92 opens the on-off valve 51 a , and the cooling water is supplied to the cooling water flow passage 51 (Step Op 4 ). The working medium in a liquid phase accumulated in the fourth flow passage 84 is heated in the heater 2 , and the evaporated working medium flows into the working medium flow passage 52 of the condenser 5 through the first flow passage 81 , the bypass flow passage 11 , and the second flow passage 82 .
  • the working medium flowing into the working medium flow passage 52 is cooled and condensed by the cooling water flowing through the cooling water flow passage 51 .
  • the working medium in a liquid phase is fed from the condenser 5 to the reservoir unit 6 positioned on the downstream of the condenser 5 before driving the pump 7 .
  • the liquid level sensor 61 detects height of a liquid level of the working medium in a liquid phase in the reservoir unit 6 (Step Op 5 ), and the determination unit 93 determines whether or not a sufficient amount of the working medium in a liquid phase is reserved in the reservoir unit 6 based on a detected value of the liquid level sensor 61 (Step Op 6 ). In a case where the amount of the working medium in a liquid phase in the reservoir unit 6 is less than a predetermined amount, the height of the liquid level of the working medium is continuously or intermittently detected until the amount becomes the predetermined amount or more.
  • the determination unit 93 determines that the predetermined amount or more of the working medium in a liquid phase is reserved in the reservoir unit 6 (Yes in Step Op 6 ), a determination signal indicating that the reserving is completed is sent to the pump control unit 91 and the valve control unit 92 .
  • the valve control unit 92 receiving the determination signal from the determination unit 93 performs the control of opening the shutoff valve 81 a (Step Op 7 ) and closing the bypass valve 11 a (Step Op 8 ), so that a flow passage running from the heater 2 to the condenser 5 through the expander 3 is opened.
  • the pump control unit 91 receiving the determination signal from the determination unit 93 performs the control of starting the drive of the pump 7 (Step Op 9 ).
  • the pump 7 suctions the working medium in a liquid phase from the reservoir unit 6 and feeds the working medium to the heater 2 .
  • the working medium evaporated in the heater 2 flows into the expander 3 , and the expander 3 is driven by the working medium.
  • the power generator 4 is driven by drive force of the expander 3 .
  • the working medium passing through the expander 3 is condensed in the condenser 5 and returned to the reservoir unit 6 .
  • the pump 7 is driven. Therefore, before the drive of the pump 7 , the working medium in a liquid phase accumulated in the fourth flow passage 84 can be returned to the reservoir unit 6 , so that the working medium in a liquid phase is ensured in the reservoir unit 6 . As a result, the working medium in a gas phase is prevented from intruding into the pump 7 , so that generation of the cavitation is prevented.
  • the thermal energy recovery device X 1 is mounted on a moving body such as a vessel, the liquid level in the reservoir unit 6 sometimes ruffles due to vibration of the moving body. However, since a sufficient amount of the working medium in a liquid phase is ensured in the reservoir unit 6 , the working medium in a gas phase is prevented from intruding into the pump 7 .
  • the liquid level sensor 61 provided in the reservoir unit 6 detects the height of the liquid level of the working medium in a liquid phase, so that the working medium in a liquid phase can be surely ensured in the reservoir unit 6 .
  • the shutoff valve 81 a is closed and the bypass valve 11 a is opened.
  • the working medium evaporated in the heater 2 flowing into the condenser 5 through the bypass valve 11 a the working medium can be efficiently condensed.
  • the condenser 5 and the reservoir unit 6 are difference members from each other, the liquefied working medium can be promptly discharged to an exterior of the condenser 5 . Thereby, pressure on the inflow side of the working medium flow passage 52 of the condenser 5 can be reduced, so that power generation efficiency can be improved.
  • the pump drive control (Step Op 9 ) of starting the drive of the pump 7 and the reserving control (Steps Op 1 to Op 8 ) for reserving the working medium in the reservoir unit 6 before the pump drive control are not necessarily continuously performed.
  • the pump drive control can be performed at a desired timing. The same is applied to the other control actions below.
  • the fourth flow passage 84 positioned on the downstream side of the pump 7 includes a bent portion 84 a having a part bent to be convex upward.
  • a right end of the bent portion 84 in FIG. 3 is connected to the pump 7 .
  • FIG. 4 is a diagram showing an action example at the time of the start-up of the thermal energy recovery device X 1 .
  • the actions of the thermal energy recovery device X 1 are the same as FIG. 2 excluding Step Op 10 . Firstly, when the heat medium is supplied to the heater 2 , the bypass valve 11 a is opened and the shutoff valve 81 a is closed, and the cooling water is supplied to the cooling water flow passage 51 of the condenser 5 (Steps Op 1 to Op 4 ).
  • Step Op 5 When the liquid level sensor 61 detects the height of the liquid level of the working medium in a liquid phase in the reservoir unit 6 (Step Op 5 ) and the determination unit 93 determines that a sufficient amount of the working medium in a liquid phase is reserved in the reservoir unit 6 (Yes in Step Op 6 ), the shutoff valve 81 a is opened and the bypass valve 11 a is closed (Steps Op 7 , Op 8 ).
  • the on/off valve 84 b is opened by the valve control unit 92 (Step Op 10 ) and the pump control unit 91 drives the pump 7 (Step Op 9 ).
  • the on/off valve 84 b since the on/off valve 84 b is provided, the working medium in a liquid phase can be prevented from leaking out to the fourth flow passage 84 on the downstream side of the pump 7 during the stop of the thermal energy recovery device X 1 . Since the amount of the working medium leaking out to the fourth flow passage 84 is suppressed, the start-up of the thermal energy recovery device X 1 can be promptly performed and the amount of the working medium used in the thermal energy recovery device X 1 can also be suppressed.
  • Step Op 11 is inserted.
  • the valve control unit 92 opens the shutoff valve 81 a (Step Op 7 ) and closes the bypass valve 11 a (Step Op 8 ) in a case where a predetermined time set in advance elapses after the supply of the cooling water to the cooling water flow passage 51 of the condenser 5 is started (Yes in Step Op 11 ). At this time, the valve control unit 92 sends an elapse signal of the predetermined time to the pump control unit 91 .
  • the pump control unit 91 receiving the elapse signal from the valve control unit 92 performs the control of starting the drive of the pump 7 (Step Op 9 ). With such a procedure, the liquid level sensor 61 can be omitted, so that cost of the thermal energy recovery device X 1 can be reduced.
  • Step Op 2 to Step Op 4 may be performed at the same time.
  • the same is applied to Step Op 7 to Step Op 9 .
  • the supply of the cooling water to the condenser 5 and the supply of the heat medium to the heater 2 may be performed at the same time, or the supply of the cooling water may be performed at first.
  • the shutoff valve 81 a may be closed and the bypass valve 11 a may be opened in advance.
  • the steps can also be performed in a different chronological order from FIG. 2 .
  • the same is applied to the actions of FIGS. 5 and 6 .
  • Step Op 4 supply control of the cooling water is not necessarily performed. In a case where the cooling water is always supplied to the cooling water flow passage 51 , Step Op 4 is not required.
  • the shutoff valve 81 a may be omitted and part of the working medium evaporated in the heater 2 may flow into the condenser 5 through the expander 3 . Thereby, more electric power can be generated. In a case where a time for the reserving control of the working medium is sufficiently ensured, the entire amount of the working medium may flow into the condenser 5 through the expander 3 in a state where the bypass valve 11 a is closed.
  • the condenser 5 and the reservoir unit 6 may be one continuous member.
  • the liquid level sensor 61 provided in the reservoir unit 6 is provided in a downstream part of the condenser 5 functioning as the reservoir unit. It should be noted that the liquid level sensor 61 is not necessarily provided in the condenser 5 but may be provided in a part of the third flow passage 83 on the upstream side of the pump 7 .
  • control unit 9 functionally has the determination unit 93 in the present embodiment, the present invention is not limited to this. Based on the detected value of the liquid level sensor 61 , an operator may instruct the pump control unit 91 and the valve control unit 92 so as to perform the control of Step Op 7 to Step Op 9 , Step Op 10 .
  • the heater may be formed by a plurality of heat exchangers.
  • a heat exchanger 2 a that recovers heat from the supercharged air compressed in the compressor 110 of the supercharger engine 100 is provided and a heat exchanger 2 b that recovers heat of steam from an economizer 200 is provided on the downstream side of the heat exchanger 2 a .
  • the heater 2 is formed by the heat exchangers 2 a , 2 b .
  • the economizer 200 has a role in recovering heat of the exhaust gas from the supercharger engine 100 , and the steam generated in accordance with the recovery flows into a heat medium flow passage 21 b of the heat exchanger 2 b .
  • Heat exchange is performed between the steam passing through the heat medium flow passage 21 b and the working medium passing through a working medium flow passage 22 b .
  • the entire amount of the working medium in a liquid phase is not necessarily evaporated in the heat exchanger 2 a.
  • the thermal energy recovery device X 1 a heat exchanger that directly recovers heat of the exhaust gas discharged from the engine 130 as a heat medium may be provided.
  • the thermal energy recovery device X 1 includes at least one of the supercharged air supplied to the engine 130 , the exhaust gas discharged from the engine 130 , and the steam generated in the economizer 200 that recovers the heat from the exhaust gas as the heat medium.

Abstract

A thermal energy recovery device includes a heater that evaporates a working medium by heat of a heat medium, an expander into which the working medium flowing out from the heater flows, a driving machine connected to the expander, a condenser that condenses the working medium flowing out from the expander by a cooling medium, a reservoir unit that reserves the working medium condensed in the condenser, a pump that feeds the working medium flowing out from the reservoir unit to the heater, a circulation flow passage of the working medium that connects the heater, the expander, the condenser, the reservoir unit, and the pump in this order, and a pump control unit that controls drive of the pump, and the pump control unit drives the pump after the heat medium is supplied to the heater and the cooling medium is supplied to the condenser.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a thermal energy recovery device that recovers exhaust heat and a start-up method of a thermal energy recovery device.
  • 2. Description of the Related Art
  • Conventionally, there is a known device that recovers thermal energy generated in various facilities. As one example of this device, JP 2012-202374 describes a power generation device including a circulation flow passage in which a heater that evaporates a working medium by a heat medium, an expander that expands steam of the working medium, a condenser that condenses the steam of the working medium, and a pump that circulates the working medium are connected in series. In this power generation device, the expander includes a screw rotor, and the screw rotor is rotated by the steam of the working medium expanded in the expander. This screw rotor is connected to a power generator, and the power generator converts rotation of the screw rotor into electric power.
  • The power generation device of the above related art further includes a pressure sensor that detects pressure of the working medium on the inlet side of the pump, and a derivation means that detects saturated steam pressure of the working medium from a temperature of the working medium on the inlet side of the pump. This power generation device suppresses generation of cavitation in the pump by adjusting a circulation amount of the working medium in accordance with a pressure difference between the pressure detected in the pressure sensor and the saturated steam pressure derived in the derivation means.
  • In a case where the condenser and the pump are positioned on the upper side of the heater, the working medium in a liquid phase is accumulated in a pipe part between the heater and the pump at the time of stop of the pump, so that an amount of the working medium in a liquid phase existing on the upstream of the pump becomes short. When the pump is started up in such a state, the cavitation is generated in the pump. In the method of the above related art, the generation of the cavitation at the time of start-up of the pump is not easily avoided.
  • SUMMARY OF THE INVENTION
  • The present invention is achieved from the above viewpoint and an object thereof is to ensure an amount of a working medium in a liquid phase in a reservoir unit positioned on the upstream of a pump in a thermal energy recovery device.
  • A thermal energy recovery device according to the present invention includes a heater that heats a working medium by heat of a heat medium, an expander into which the working medium flowing out from the heater flows, a power recovery machine connected to the expander, a condenser positioned on the upper side of the heater, the condenser condensing the working medium flowing out from the expander by a cooling medium, a reservoir unit positioned on the upper side of the heater, the reservoir unit reserving the working medium condensed in the condenser, a pump positioned on the upper side of the heater, the pump feeding the working medium flowing out from the reservoir unit to the heater, a circulation flow passage of the working medium that connects the heater, the expander, the condenser, the reservoir unit, and the pump in the above order, and a pump control unit that controls drive of the pump, wherein the pump control unit drives the pump after the heat medium is supplied to the heater, and the cooling medium is supplied to the condenser so that the working medium is reserved in the reservoir unit.
  • At the time of stop of the thermal energy recovery device, supply of the heat medium to the heater and supply of the cooling medium to the condenser are stopped in general. Therefore, in a structure where the heater is arranged on the lower side of the reservoir unit, the working medium flowing out from the reservoir unit passes through the pump and is retained on the upstream side of the heater. As a result, the working medium in a liquid phase in the reservoir unit becomes short and there is a fear that cavitation is generated at the time of driving the pump.
  • Meanwhile, in the thermal energy recovery device according to the present invention, before the drive of the pump, that is, before start of operation of the thermal energy recovery device, the heat medium is supplied to the heater and the cooling medium is supplied to the condenser, so that a sufficient amount of the working medium is reserved in the reservoir unit. Thereby, the cavitation at the time of driving the pump can be prevented.
  • Preferably, the reservoir unit has a liquid level sensor that detects height of a liquid level of the working medium reserved in the reservoir unit, and the pump control unit drives the pump in a case where an amount of the working medium reserved in the reservoir unit becomes a predetermined amount or more based on a detected value of the liquid level sensor.
  • In the above thermal energy recovery device, the pump can be driven in a state where the amount of the working medium in the reservoir unit is surely ensured.
  • The pump control unit may drive the pump when a predetermined time elapses after supply of the cooling medium to the condenser is started.
  • In the above thermal energy recovery device, since there is no need for providing a liquid level sensor, cost can be reduced.
  • Preferably, a shutoff valve provided in a first flow passage of the circulation flow passage connecting the heater and the expander, a bypass flow passage that connects a second flow passage of the circulation flow passage connecting the expander and the condenser, and a part of the first flow passage on the upstream side of the shutoff valve, a bypass valve provided in the bypass flow passage, and a valve control unit that controls opening/closing of the shutoff valve and the bypass valve are provided, and the valve control unit brings the shutoff valve into a closed state and brings the bypass valve into an opened state before the drive of the pump.
  • In the above thermal energy recovery device, the bypass flow passage that connects the first flow passage and the second flow passage striding across the expander is provided, and before starting the drive of the pump, the working medium evaporated in the heater flows into the condenser through the first flow passage, the bypass flow passage, and the second flow passage. That is, in the above thermal energy recovery device, before starting the drive of the pump, the working medium evaporated in the heater flows into the condenser without passing through the expander. Therefore, the working medium evaporated in the heater can efficiently flow into the condenser.
  • Preferably, a flow passage of the circulation flow passage connecting the pump and the heater includes a bent portion connected to the pump and bent to be convex upward.
  • In the above thermal energy recovery device, the working medium is suppressed from flowing from the reservoir unit to the heater before the drive of the pump, so that the working medium in a liquid phase can be more promptly stored in the reservoir unit.
  • Preferably, the condenser and the reservoir unit are different members from each other.
  • In the above thermal energy recovery device, the working medium in a liquid phase is suppressed from being reserved in the condenser. Thus, pressure on the inflow side of the working medium in the condenser can be reduced, and thereby energy can be efficiently recovered in the power recovery machine.
  • Preferably, an on-off valve is provided in a flow passage of the circulation flow passage connecting the pump and the heater, and after the heat medium is supplied to the heater and the cooling medium is supplied to the condenser, so that the working medium is reserved in the reservoir unit, the on-off valve is opened and the pump is driven.
  • In the above thermal energy recovery device, by closing the on-off valve at the time of stop of the drive of the pump, the working medium is prevented from flowing to the heater before the drive of the pump, so that the working medium in a liquid phase can be more promptly stored in the reservoir unit.
  • Preferably, the heat medium includes at least one of supercharged air supplied to an engine, an exhaust gas discharged from the engine, and steam generated in an economizer that recovers heat from the exhaust gas.
  • The above thermal energy recovery device can be mounted for example on a moving body such as a vessel and a vehicle in which vibration is easily generated, and can recover thermal energy generated around an engine of the moving body.
  • The present invention is a start-up method of a thermal energy recovery device including a heater that heats a working medium by a heat medium, an expander into which the working medium flowing out from the heater flows, a power recovery machine connected to the expander, a condenser positioned on the upper side of the heater, the condenser condensing the working medium flowing out from the expander by a cooling medium, a reservoir unit positioned on the upper side of the heater, the reservoir unit reserving the working medium condensed in the condenser, and a pump positioned on the upper side of the heater, the pump feeding the working medium flowing out from the reservoir unit to the heater, wherein the heater, the expander, the condenser, the reservoir unit, and the pump are connected in the above order, the start-up method including a first step of supplying the heat medium to the heater, a second step of supplying the cooling medium to the condenser, so that the working medium is reserved in the reservoir unit, and a third step of driving the pump after the first step and the second step.
  • In the above start-up method of the thermal energy recovery device, the pump is driven after the heat medium is supplied to the heater and the cooling medium is supplied to the condenser, so that a sufficient amount of the working medium is reserved in the reservoir unit before the drive of the pump. Thus, the cavitation at the time of driving the pump can be prevented.
  • According to the present invention, the thermal energy recovery device capable of ensuring the amount of the working medium in a liquid phase in the reservoir unit positioned on the upstream of the pump, and the start-up method of the thermal energy recovery device are provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic configuration diagram of a thermal energy recovery device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a procedure of start-up control in the thermal energy recovery device according to the present embodiment.
  • FIG. 3 is a modified example 1 of the thermal energy recovery device according to the present embodiment.
  • FIG. 4 is a schematic configuration diagram as well as FIG. 1 regarding a modified example 2 of the thermal energy recovery device according to the present embodiment.
  • FIG. 5 is a flowchart showing a procedure of start-up control of the modified example 2 shown in FIG. 4.
  • FIG. 6 is a flowchart showing a procedure of start-up control regarding a modified example 3 of the thermal energy recovery device according to the present embodiment.
  • FIG. 7 is a schematic configuration diagram as well as FIG. 1 regarding a modified example 4 of the thermal energy recovery device according to the present embodiment.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Note that, in the figures to be cited below, for convenience of the description, necessary major members are simplified for describing a thermal energy recovery device according to the present embodiment. Therefore, the thermal energy recovery device according to the present embodiment can include am arbitrary constituent member which is not shown in the figures to be cited in the present description.
  • As shown in FIG. 1, a thermal energy recovery device X1 includes a heater 2, an expander 3, a power recovery machine 4, a condenser 5, a reservoir unit 6, a pump 7, a circulation flow passage 8, a bypass flow passage 11, a shutoff valve 81 a, and a control unit 9. The circulation flow passage 8 connects the heater 2, the expander 3, the condenser 5, the reservoir unit 6, and the pump 7 in this order. In the following description, a part of the circulation flow passage 8 connecting the heater 2 and the expander 3 is called as the “first flow passage 81”. A part connecting the expander 3 and the condenser 5 is called as the “second flow passage 82”. A part connecting the condenser 5 and the pump 7 is called as the “third flow passage 83”. A part connecting the pump 7 and the heater 2 is called as the “fourth flow passage 84”.
  • In the present embodiment, the thermal energy recovery device X1 is mounted on a vessel and used for recovering exhaust heat of a supercharger engine 100. It should be noted that the thermal energy recovery device X1 may be mounted for example on a vehicle or may be applied to various facilities in a factory or the like.
  • The supercharger engine 100 has a supercharger, an engine 130, scavenging lines 140, 150, and an exhaust line 160. The supercharger has a compressor 110, and a turbine 120 connected to the compressor 110. The supercharged air compressed in the compressor 110 is supplied to the engine 130 through the scavenging lines 140, 150. An exhaust gas from the engine 130 is fed to the turbine 120 through the exhaust line 160. The turbine 120 is driven by expansion energy of the exhaust gas, and the compressor 110 is driven by drive force of this turbine 120. In the thermal energy recovery device X1 according to the present embodiment, the heater 2 is positioned between the scavenging line 140 and the scavenging line 150, so that the exhaust heat of the supercharged air moved from the scavenging line 140 to the scavenging line 150 can be recovered.
  • The heater 2 has a heat medium flow passage 21 and a working medium flow passage 22. The heat medium flow passage 21 is a flow passage through which the supercharged air from the compressor 110 flows. One end of the heat medium flow passage is connected to the scavenging line 140 and the other end is connected to the scavenging line 150. The working medium flow passage 22 is a flow passage through which a working medium flows. The heater 2 evaporates the working medium by heat exchange between the supercharged air flowing through the heat medium flow passage 21 and the working medium in a liquid phase flowing through the working medium flow passage 22.
  • The expander 3 is positioned on the downstream side of the heater 2 in the circulation flow passage 8. The expander 3 and the working medium flow passage 22 of the heater 2 are connected to each other via the first flow passage 81 of the circulation flow passage 8. The working medium evaporated in the heater 2 flows into the expander 3 through the first flow passage 81.
  • In the present embodiment, a volumetric screw expander having a rotor to be driven and rotated by expansion energy of a working medium in a gas phase is used as the expander 3. It should be noted that the expander 3 is not limited to the volumetric screw expander but a centrifugal expander, scrolling expander, or the like may be used.
  • The power recovery machine 4 is connected to the expander 3. In the present embodiment, a power generator is used as the power recovery machine 4. This power recovery machine 4 has a rotation shaft connected to one of a pair of screw rotors of the expander 3. The power recovery machine 4 generates electric power by rotating the rotation shaft in accordance with rotation of the screw rotor. It should be noted that in addition to the power generator, a compressor or the like may be used as the power recovery machine 4.
  • The condenser 5 is positioned on the downstream side of the expander 3 in the circulation flow passage 8. The condenser 5 is arranged on the upper side of the heater 2 in the gravitational direction. The condenser 5 has a cooling water flow passage 51 and a working medium flow passage 52. The cooling water flow passage 51 is a flow passage through which cooling water flows. The working medium flow passage 52 is a flow passage through which the working medium flows. The working medium flow passage 52 is connected to the expander 3 via the second flow passage 82 of the circulation flow passage 8. The working medium in a gas phase flowing out from the expander 3 flows into the working medium flow passage 52 of the condenser 5 through the second flow passage 82. By heat exchange between the working medium in a gas phase flowing through the working medium flow passage 52 and the cooling water flowing through the cooling water flow passage 51, the working medium is condensed. It should be noted that although for example seawater is used as the cooling water flowing through the cooling water flow passage 51, the present invention is not limited to this. The cooling water may be any cooling medium capable of condensing the working medium in a gas phase flowing through the working medium flow passage 52.
  • The reservoir unit 6 is positioned on the downstream side of the condenser 5 on the third flow passage 83 of the circulation flow passage 8. The reservoir unit 6 is positioned on the lower side of the condenser 5 and arranged on the upper side of the heater 2 in the gravitational direction. The working medium flow passage 52 of the condenser 5 and the pump 7 are connected to each other via the third flow passage 83, and the reservoir unit 6 is provided in the middle of the third flow passage 83. The working medium condensed in the condenser 5 flows into the third flow passage 83 and is reserved in the reservoir unit 6 provided in the middle of the third flow passage 83.
  • The pump 7 is positioned on the downstream side of the reservoir unit 6 in the circulation flow passage 8. The pump 7 is positioned on the lower side of the condenser 5 and the reservoir unit 6 and positioned on the upper side of the heater 2 in the gravitational direction. The pump 7 and the working medium flow passage 22 of the heater 2 are connected to each other via the fourth flow passage 84 of the circulation flow passage 8. The working medium in a liquid phase reserved in the reservoir unit 6 flows into the pump 7 and is fed to the working medium flow passage 22 of the heater 2 at predetermined pressure by the pump 7. A centrifugal pump including an impeller as a rotor, a gear pump including a rotor of a pair of gears, or the like is used as the pump 7.
  • The shutoff valve 81 a is provided in the first flow passage 81 of the circulation flow passage. The bypass flow passage 11 is a flow passage that connects the first flow passage 81 and the second flow passage 82 while going around the expander 3. One end of the bypass flow passage 11 is connected to a part of the first flow passage 81 on the upstream side of the shutoff valve 81 a. The other end of the bypass flow passage 11 is connected to a predetermined point of the second flow passage 82. Thereby, the working medium evaporated in the heater 2 can flow into the condenser 5 through the expander 3 and can also flow into the condenser 5 not through the expander 3 but through the bypass flow passage 11.
  • The control unit 9 plays a role in controlling start-up in addition to control during drive of the thermal energy recovery device X1, and functionally has a pump control unit 91, a valve control unit 92, and a determination unit 93.
  • The determination unit 93 receives a signal from a liquid level sensor 61 provided in the reservoir unit 6 and determines whether or not the working medium in a liquid phase is sufficiently reserved in the reservoir unit 6.
  • The pump control unit 91 performs control of starting drive of the pump 7 in a case of receiving a determination signal from the determination unit 93.
  • The valve control unit 92 performs control of opening/closing a bypass valve 11 a, control of opening/closing the shutoff valve 81 a, and control of opening/closing an on/off valve 51 a provided on the upstream of the cooling water flow passage 51 of the condenser 5.
  • In the control unit 9, functions of the pump control unit 91, the valve control unit 92, and the determination unit 93 are realized for example by executing programs stored in a memory by a CPU.
  • At the time of stop of the thermal energy recovery device X1, that is, at the time of stop of the pump 7, since the heater 2 is positioned on the lower side of the reservoir unit 6 in the gravitational direction, the working medium in a liquid phase is accumulated in the fourth flow passage 84, that is, in the part of the circulation flow passage 8 between the pump 7 and the heater 2. It should be noted that the working medium in a liquid phase accumulated in the fourth flow passage 84 includes a working medium leaking out from the reservoir unit 6 to the fourth flow passage 84 via a gap between members in the pump 7. As a result, the working medium in a liquid phase in the reservoir unit 6 becomes short. If the pump 7 is started up in a state where the working medium in a liquid phase is in short, the working medium in a gas phase intrudes into the pump 7 and there is a fear that cavitation is generated.
  • Thus, at the time of start-up of the thermal energy recovery device X1, the following control is performed. FIG. 2 is a flowchart showing a procedure of start-up control in the thermal energy recovery device.
  • Firstly, the control unit 9 repeatedly confirms whether or not the heat medium is supplied to the heat medium flow passage 21 of the heater 2 (Step Op1). This supply/non-supply of the heat medium is determined based on the rotation number of the engine 130, a temperature of the scavenging line 140, pressure of the scavenging line 140, or the like. The supply/non-supply of the heat medium may be determined based on pressure or a temperature of the working medium on the downstream side of the heater 2.
  • When the heat medium is supplied to the heater 2 (Yes in Step Op1), the valve control unit 92 performs the control of opening the bypass valve 11 a (Step Op2) and closing the shutoff valve 81 a (Step Op3). It should be noted that the shutoff valve 81 a may be closed in advance. Further, the valve control unit 92 opens the on-off valve 51 a, and the cooling water is supplied to the cooling water flow passage 51 (Step Op4). The working medium in a liquid phase accumulated in the fourth flow passage 84 is heated in the heater 2, and the evaporated working medium flows into the working medium flow passage 52 of the condenser 5 through the first flow passage 81, the bypass flow passage 11, and the second flow passage 82. The working medium flowing into the working medium flow passage 52 is cooled and condensed by the cooling water flowing through the cooling water flow passage 51. With such a procedure (Step Op1 to Step Op4), the working medium in a liquid phase is fed from the condenser 5 to the reservoir unit 6 positioned on the downstream of the condenser 5 before driving the pump 7.
  • The liquid level sensor 61 detects height of a liquid level of the working medium in a liquid phase in the reservoir unit 6 (Step Op5), and the determination unit 93 determines whether or not a sufficient amount of the working medium in a liquid phase is reserved in the reservoir unit 6 based on a detected value of the liquid level sensor 61 (Step Op6). In a case where the amount of the working medium in a liquid phase in the reservoir unit 6 is less than a predetermined amount, the height of the liquid level of the working medium is continuously or intermittently detected until the amount becomes the predetermined amount or more. The determination unit 93 determines that the predetermined amount or more of the working medium in a liquid phase is reserved in the reservoir unit 6 (Yes in Step Op6), a determination signal indicating that the reserving is completed is sent to the pump control unit 91 and the valve control unit 92.
  • The valve control unit 92 receiving the determination signal from the determination unit 93 performs the control of opening the shutoff valve 81 a (Step Op7) and closing the bypass valve 11 a (Step Op8), so that a flow passage running from the heater 2 to the condenser 5 through the expander 3 is opened. The pump control unit 91 receiving the determination signal from the determination unit 93 performs the control of starting the drive of the pump 7 (Step Op9).
  • When the start-up control described above is performed, the pump 7 suctions the working medium in a liquid phase from the reservoir unit 6 and feeds the working medium to the heater 2. The working medium evaporated in the heater 2 flows into the expander 3, and the expander 3 is driven by the working medium. The power generator 4 is driven by drive force of the expander 3. The working medium passing through the expander 3 is condensed in the condenser 5 and returned to the reservoir unit 6.
  • The structure and the actions at the time of the start-up of the thermal energy recovery device X1 according to the present embodiment are described above. At the time of the start-up of the thermal energy recovery device X1, after the heat medium is supplied to the heat medium flow passage 21 of the heater 2 and the cooling water is supplied to the cooling water flow passage 51 of the condenser 5, the pump 7 is driven. Therefore, before the drive of the pump 7, the working medium in a liquid phase accumulated in the fourth flow passage 84 can be returned to the reservoir unit 6, so that the working medium in a liquid phase is ensured in the reservoir unit 6. As a result, the working medium in a gas phase is prevented from intruding into the pump 7, so that generation of the cavitation is prevented.
  • In a case where the thermal energy recovery device X1 is mounted on a moving body such as a vessel, the liquid level in the reservoir unit 6 sometimes ruffles due to vibration of the moving body. However, since a sufficient amount of the working medium in a liquid phase is ensured in the reservoir unit 6, the working medium in a gas phase is prevented from intruding into the pump 7.
  • In the thermal energy recovery device X1 according to the present embodiment, the liquid level sensor 61 provided in the reservoir unit 6 detects the height of the liquid level of the working medium in a liquid phase, so that the working medium in a liquid phase can be surely ensured in the reservoir unit 6.
  • Further, before the drive of the pump 7, in accordance with the supply of the cooling water to the condenser 5, the shutoff valve 81 a is closed and the bypass valve 11 a is opened. By the working medium evaporated in the heater 2 flowing into the condenser 5 through the bypass valve 11 a, the working medium can be efficiently condensed.
  • Since the condenser 5 and the reservoir unit 6 are difference members from each other, the liquefied working medium can be promptly discharged to an exterior of the condenser 5. Thereby, pressure on the inflow side of the working medium flow passage 52 of the condenser 5 can be reduced, so that power generation efficiency can be improved.
  • In the start-up control of the thermal energy recovery device X1, the pump drive control (Step Op9) of starting the drive of the pump 7 and the reserving control (Steps Op1 to Op8) for reserving the working medium in the reservoir unit 6 before the pump drive control are not necessarily continuously performed. For example, in a case where the supply of the heat medium is maintained for a fixed time even after stop of the thermal energy recovery device X1, by performing the reserving control after the stop so as to reserve the working medium in advance, the pump drive control can be performed at a desired timing. The same is applied to the other control actions below.
  • Hereinafter, modified examples of the thermal energy recovery device X1 according to the present embodiment will be described with reference to FIGS. 3 to 7.
  • In a modified example shown in FIG. 3, the fourth flow passage 84 positioned on the downstream side of the pump 7 includes a bent portion 84 a having a part bent to be convex upward. A right end of the bent portion 84 in FIG. 3 is connected to the pump 7. Thereby, at the time of the stop of the thermal energy recovery device X1, the working medium in a liquid phase is accumulated in an upstream art of the bent portion 84 a, so that leakage from the pump 7 is suppressed. As a result, a sufficient amount of the working medium can be more promptly reserved in the reservoir unit 6.
  • In a modified example shown in FIG. 4, an on/off valve 84 b is provided in the fourth flow passage 84. The on/off valve 84 b is closed in accordance with stop of operation of the thermal energy recovery device X1. FIG. 5 is a diagram showing an action example at the time of the start-up of the thermal energy recovery device X1. The actions of the thermal energy recovery device X1 are the same as FIG. 2 excluding Step Op10. Firstly, when the heat medium is supplied to the heater 2, the bypass valve 11 a is opened and the shutoff valve 81 a is closed, and the cooling water is supplied to the cooling water flow passage 51 of the condenser 5 (Steps Op1 to Op4). When the liquid level sensor 61 detects the height of the liquid level of the working medium in a liquid phase in the reservoir unit 6 (Step Op5) and the determination unit 93 determines that a sufficient amount of the working medium in a liquid phase is reserved in the reservoir unit 6 (Yes in Step Op6), the shutoff valve 81 a is opened and the bypass valve 11 a is closed (Steps Op7, Op8). The on/off valve 84 b is opened by the valve control unit 92 (Step Op10) and the pump control unit 91 drives the pump 7 (Step Op9).
  • In the modified example shown in FIG. 4, since the on/off valve 84 b is provided, the working medium in a liquid phase can be prevented from leaking out to the fourth flow passage 84 on the downstream side of the pump 7 during the stop of the thermal energy recovery device X1. Since the amount of the working medium leaking out to the fourth flow passage 84 is suppressed, the start-up of the thermal energy recovery device X1 can be promptly performed and the amount of the working medium used in the thermal energy recovery device X1 can also be suppressed.
  • In a modified example shown in FIG. 6, the liquid level sensor 61 attached to the reservoir unit 6 is omitted, and in place of Step Op5 and Step Op6 shown in FIG. 2, Step Op11 is inserted. The valve control unit 92 opens the shutoff valve 81 a (Step Op7) and closes the bypass valve 11 a (Step Op8) in a case where a predetermined time set in advance elapses after the supply of the cooling water to the cooling water flow passage 51 of the condenser 5 is started (Yes in Step Op11). At this time, the valve control unit 92 sends an elapse signal of the predetermined time to the pump control unit 91. The pump control unit 91 receiving the elapse signal from the valve control unit 92 performs the control of starting the drive of the pump 7 (Step Op9). With such a procedure, the liquid level sensor 61 can be omitted, so that cost of the thermal energy recovery device X1 can be reduced.
  • The present embodiment described above is thought to be not restriction but only an example in all aspects. The scope of the present invention is indicated not by the above description of the embodiment but by the claims, and includes equivalent meanings to the claims and all modifications within the scope.
  • For example, in the actions at the time of the start-up shown in FIG. 2, Step Op2 to Step Op4 may be performed at the same time. The same is applied to Step Op7 to Step Op9. The supply of the cooling water to the condenser 5 and the supply of the heat medium to the heater 2 may be performed at the same time, or the supply of the cooling water may be performed at first. Before the heat medium flows into the heater 2 and the cooling water flows into the condenser 5, the shutoff valve 81 a may be closed and the bypass valve 11 a may be opened in advance. In such a way, in the thermal energy recovery device X1, the steps can also be performed in a different chronological order from FIG. 2. The same is applied to the actions of FIGS. 5 and 6.
  • Further, in the above embodiment, supply control of the cooling water is not necessarily performed. In a case where the cooling water is always supplied to the cooling water flow passage 51, Step Op4 is not required.
  • In the thermal energy recovery device X1, the shutoff valve 81 a may be omitted and part of the working medium evaporated in the heater 2 may flow into the condenser 5 through the expander 3. Thereby, more electric power can be generated. In a case where a time for the reserving control of the working medium is sufficiently ensured, the entire amount of the working medium may flow into the condenser 5 through the expander 3 in a state where the bypass valve 11 a is closed.
  • In the above embodiment, the condenser 5 and the reservoir unit 6 may be one continuous member. In this case, the liquid level sensor 61 provided in the reservoir unit 6 is provided in a downstream part of the condenser 5 functioning as the reservoir unit. It should be noted that the liquid level sensor 61 is not necessarily provided in the condenser 5 but may be provided in a part of the third flow passage 83 on the upstream side of the pump 7.
  • Although the control unit 9 functionally has the determination unit 93 in the present embodiment, the present invention is not limited to this. Based on the detected value of the liquid level sensor 61, an operator may instruct the pump control unit 91 and the valve control unit 92 so as to perform the control of Step Op7 to Step Op9, Step Op10.
  • In the thermal energy recovery device X1, the heater may be formed by a plurality of heat exchangers. In a modified example shown in FIG. 7, a heat exchanger 2 a that recovers heat from the supercharged air compressed in the compressor 110 of the supercharger engine 100 is provided and a heat exchanger 2 b that recovers heat of steam from an economizer 200 is provided on the downstream side of the heat exchanger 2 a. The heater 2 is formed by the heat exchangers 2 a, 2 b. The economizer 200 has a role in recovering heat of the exhaust gas from the supercharger engine 100, and the steam generated in accordance with the recovery flows into a heat medium flow passage 21 b of the heat exchanger 2 b. Heat exchange is performed between the steam passing through the heat medium flow passage 21 b and the working medium passing through a working medium flow passage 22 b. In a structure of FIG. 7, when all the working medium becomes steam in the heat exchanger 2 b, the entire amount of the working medium in a liquid phase is not necessarily evaporated in the heat exchanger 2 a.
  • In the thermal energy recovery device X1, a heat exchanger that directly recovers heat of the exhaust gas discharged from the engine 130 as a heat medium may be provided. In such a way, the thermal energy recovery device X1 includes at least one of the supercharged air supplied to the engine 130, the exhaust gas discharged from the engine 130, and the steam generated in the economizer 200 that recovers the heat from the exhaust gas as the heat medium.

Claims (9)

What is claimed is:
1. A thermal energy recovery device comprising:
a heater that heats a working medium by heat of a heat medium;
an expander into which the working medium flowing out from said heater flows;
a power recovery machine connected to said expander;
a condenser positioned on the upper side of said heater, said condenser condensing the working medium flowing out from said expander by a cooling medium;
a reservoir unit positioned on the upper side of said heater, said reservoir unit reserving the working medium condensed in said condenser;
a pump positioned on the upper side of said heater, said pump feeding the working medium flowing out from said reservoir unit to said heater;
a circulation flow passage of the working medium that connects said heater, said expander, said condenser, said reservoir unit, and said pump in the above order; and
a pump control unit that controls drive of said pump,
wherein said pump control unit drives said pump after the heat medium is supplied to said heater, and the cooling medium is supplied to said condenser so that the working medium is reserved in said reservoir unit.
2. The thermal energy recovery device according to claim 1,
wherein said reservoir unit has a liquid level sensor that detects height of a liquid level of the working medium reserved in said reservoir unit, and
wherein said pump control unit drives said pump in a case where an amount of the working medium reserved in said reservoir unit becomes a predetermined amount or more based on a detected value of said liquid level sensor.
3. The thermal energy recovery device according to claim 1,
wherein said pump control unit drives said pump when a predetermined time elapses after supply of the cooling medium to said condenser is started.
4. The thermal energy recovery device according to claim 1, further comprising:
a shutoff valve provided in a first flow passage of said circulation flow passage connecting said heater and said expander;
a bypass flow passage that connects a second flow passage of said circulation flow passage connecting said expander and said condenser, and a part of said first flow passage on the upstream side of said shutoff valve;
a bypass valve provided in said bypass flow passage; and
a valve control unit that controls opening/closing of said shutoff valve and said bypass valve,
wherein said valve control unit brings said shutoff valve into a closed state and brings said bypass valve into an opened state before the drive of said pump.
5. The thermal energy recovery device according to claim 1,
wherein a flow passage of said circulation flow passage connecting said pump and said heater includes a bent portion connected to said pump and bent to be convex upward.
6. The thermal energy recovery device according to claim 1,
wherein said condenser and said reservoir unit are different members from each other.
7. The thermal energy recovery device according to claim 1,
wherein an on-off valve is provided in a flow passage of said circulation flow passage connecting said pump and said heater, and
wherein said on-off valve is opened and said pump is driven, after the heat medium is supplied to said heater, and the cooling medium is supplied to said condenser so that the working medium is reserved in said reservoir unit.
8. The thermal energy recovery device according to claim 1,
wherein the heat medium includes at least one of supercharged air supplied to an engine, an exhaust gas discharged from the engine, and steam generated in an economizer that recovers heat from the exhaust gas.
9. A start-up method of a thermal energy recovery device including a heater that heats a working medium by a heat medium, an expander into which the working medium flowing out from said heater flows, a power recovery machine connected to said expander, a condenser positioned on the upper side of said heater, said condenser condensing the working medium flowing out from said expander by a cooling medium, a reservoir unit positioned on the upper side of said heater, said reservoir unit reserving the working medium condensed in the condenser, and a pump positioned on the upper side of said heater, said pump feeding the working medium flowing out from said reservoir unit to said heater, wherein said heater, said expander, said condenser, said reservoir unit, and said pump are connected in the above order,
the start-up method comprising:
a first step of supplying the heat medium to said heater;
a second step of supplying the cooling medium to said condenser, so that the working medium is reserved in said reservoir unit; and
a third step of driving said pump after said first step and said second step.
US14/660,027 2014-05-09 2015-03-17 Thermal energy recovery device and start-up method of thermal energy recovery device Abandoned US20150322821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014097892A JP2015214922A (en) 2014-05-09 2014-05-09 Thermal energy recovery device and start method of the same
JP2014-097892 2014-05-09

Publications (1)

Publication Number Publication Date
US20150322821A1 true US20150322821A1 (en) 2015-11-12

Family

ID=54367397

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/660,027 Abandoned US20150322821A1 (en) 2014-05-09 2015-03-17 Thermal energy recovery device and start-up method of thermal energy recovery device

Country Status (4)

Country Link
US (1) US20150322821A1 (en)
JP (1) JP2015214922A (en)
KR (1) KR20150128575A (en)
CN (1) CN105089716A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060283B2 (en) * 2015-10-16 2018-08-28 Panasonic Corporation Rankine-cycle power-generating apparatus
EP3375988A1 (en) * 2017-03-15 2018-09-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Supercharged air cooling unit
CN108868924A (en) * 2017-05-10 2018-11-23 株式会社神户制钢所 Heat reclaiming system and detection unit
JP2018189075A (en) * 2017-05-10 2018-11-29 株式会社神戸製鋼所 Thermal energy recovery system and detection unit
EP3418654A1 (en) * 2017-06-21 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Impurity recovery method and oil recovery method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6653236B2 (en) * 2016-09-30 2020-02-26 株式会社神戸製鋼所 Thermal energy recovery system
JP6751031B2 (en) * 2017-02-06 2020-09-02 株式会社神戸製鋼所 Thermal energy recovery device
JP6769888B2 (en) * 2017-02-09 2020-10-14 株式会社神戸製鋼所 Thermal energy recovery device
CN114251139B (en) * 2021-12-08 2023-09-12 西安热工研究院有限公司 Unit thermal power generation unit neighbor quick start system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333677A (en) * 1974-04-02 1994-08-02 Stephen Molivadas Evacuated two-phase head-transfer systems
US6176092B1 (en) * 1998-10-09 2001-01-23 American Standard Inc. Oil-free liquid chiller
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
US20120042650A1 (en) * 2010-08-13 2012-02-23 Cummins Intellectual Properties, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
US20120210713A1 (en) * 2011-01-06 2012-08-23 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US20120312021A1 (en) * 2011-06-09 2012-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generation apparatus
US20140060049A1 (en) * 2012-08-29 2014-03-06 Ronald David Conry Heat Engine Shuttle Pump System and Method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222906A (en) * 1992-02-12 1993-08-31 Toshiba Corp Controller for power plant utilizing exhaust heat
DE102011005722B3 (en) * 2011-03-17 2012-08-23 Robert Bosch Gmbh Method for operating a steam cycle process
JP5460663B2 (en) * 2011-09-07 2014-04-02 株式会社神戸製鋼所 Power generator
CN102644488B (en) * 2012-04-18 2014-12-03 华北电力大学 Boiler flue gas waste-heat utilization system based on organic Rankine cycle
JP6013987B2 (en) * 2012-08-29 2016-10-25 株式会社神戸製鋼所 Power generation device and method for controlling power generation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333677A (en) * 1974-04-02 1994-08-02 Stephen Molivadas Evacuated two-phase head-transfer systems
US6176092B1 (en) * 1998-10-09 2001-01-23 American Standard Inc. Oil-free liquid chiller
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
US20120042650A1 (en) * 2010-08-13 2012-02-23 Cummins Intellectual Properties, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
US20120210713A1 (en) * 2011-01-06 2012-08-23 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US20120312021A1 (en) * 2011-06-09 2012-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generation apparatus
US20140060049A1 (en) * 2012-08-29 2014-03-06 Ronald David Conry Heat Engine Shuttle Pump System and Method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060283B2 (en) * 2015-10-16 2018-08-28 Panasonic Corporation Rankine-cycle power-generating apparatus
EP3375988A1 (en) * 2017-03-15 2018-09-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Supercharged air cooling unit
CN108868924A (en) * 2017-05-10 2018-11-23 株式会社神户制钢所 Heat reclaiming system and detection unit
JP2018189075A (en) * 2017-05-10 2018-11-29 株式会社神戸製鋼所 Thermal energy recovery system and detection unit
EP3415730A1 (en) * 2017-05-10 2018-12-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery system and detection unit
EP3418654A1 (en) * 2017-06-21 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Impurity recovery method and oil recovery method

Also Published As

Publication number Publication date
KR20150128575A (en) 2015-11-18
JP2015214922A (en) 2015-12-03
CN105089716A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
US20150322821A1 (en) Thermal energy recovery device and start-up method of thermal energy recovery device
JP6194274B2 (en) Waste heat recovery system and waste heat recovery method
CN103670523B (en) The controlling method of electricity generating device and electricity generating device
KR101600687B1 (en) Heat recovery apparatus and operation control method of heat recovery apparatus
US9797272B2 (en) Thermal energy recovery device and control method
US9964001B2 (en) Thermal energy recovery device
EP2532844A1 (en) Power generation apparatus
JP6489856B2 (en) Waste heat recovery device, waste heat recovery type ship propulsion device, and waste heat recovery method
US9771835B2 (en) Flow rate control of heat energy recovery device including oil separator
JP6194273B2 (en) Waste heat recovery device and waste heat recovery method
US10550730B2 (en) Waste heat recovery system
WO2015068531A1 (en) Steam-generating heat pump and method for controlling operation of steam-generating heat pump
JP2014190326A (en) Waste heat recovery apparatus
JP2014231738A (en) Waste heat regeneration system
CN105386803A (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
JP6277148B2 (en) Power generator
JP5851959B2 (en) Power generation device and control method thereof
JP2013113192A (en) Waste heat regeneration system
JP2013231377A (en) Waste heat regeneration system
JP2008169760A (en) Waste heat recovery device
JP6595395B2 (en) Thermal energy recovery device and operation method thereof
JP5671442B2 (en) Thermal energy utilization apparatus and operation method thereof
CN112105801A (en) Rankine cycle apparatus and control method thereof
JP2014101781A (en) Rankine cycle system
JP2011196229A (en) Waste heat regeneration system

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADACHI, SHIGETO;NARUKAWA, YUTAKA;FUKUDA, TAKAYUKI;REEL/FRAME:035181/0578

Effective date: 20150115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION