WO2015068370A1 - シリコン単結晶製造方法 - Google Patents

シリコン単結晶製造方法 Download PDF

Info

Publication number
WO2015068370A1
WO2015068370A1 PCT/JP2014/005528 JP2014005528W WO2015068370A1 WO 2015068370 A1 WO2015068370 A1 WO 2015068370A1 JP 2014005528 W JP2014005528 W JP 2014005528W WO 2015068370 A1 WO2015068370 A1 WO 2015068370A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
single crystal
oxygen concentration
flow rate
diameter
Prior art date
Application number
PCT/JP2014/005528
Other languages
English (en)
French (fr)
Inventor
一美 田邉
横山 隆
大基 金
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201480059891.6A priority Critical patent/CN105683424B/zh
Priority to DE112014005069.5T priority patent/DE112014005069B4/de
Priority to US15/030,706 priority patent/US9903044B2/en
Priority to KR1020167014130A priority patent/KR101787504B1/ko
Publication of WO2015068370A1 publication Critical patent/WO2015068370A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for producing a silicon single crystal by the Czochralski method, and more particularly to a method for producing a silicon single crystal capable of appropriately controlling the oxygen concentration contained in the crystal.
  • the Czochralski method (CZ method) is widely adopted as a method for producing a silicon single crystal used as a semiconductor material.
  • the Czochralski method is a method of growing a single crystal on the lower end of a seed crystal by immersing the seed crystal in molten silicon in a quartz crucible and pulling it up.
  • oxygen contained in the quartz crucible is dissolved in the molten silicon, and a part thereof is taken into the single crystal.
  • Such oxygen generates precipitates, transition loops, and stacking faults in the heat treatment process when manufacturing a device using a wafer cut from a silicon single crystal. Since these defects have various effects on the quality of the single crystal, appropriately controlling the concentration of oxygen taken into the single crystal is indispensable for producing a high-quality silicon single crystal.
  • oxygen taken into the single crystal during the growth of the silicon single crystal has various effects on the quality of the single crystal, so it is necessary to appropriately control the oxygen concentration of the single crystal.
  • a particular problem with respect to the oxygen concentration in the silicon single crystal is variation in the oxygen concentration in the growth axis direction of the single crystal.
  • Various factors influence the oxygen concentration, and the influence of these factors changes as the crystal pulling progresses. Therefore, the uniformity of the oxygen concentration in the growth axis direction of the single crystal cannot be ensured, and when producing a silicon single crystal having a narrow range between the upper limit value and the lower limit value of the required oxygen concentration standard, the yield Will be reduced.
  • Patent Document 1 describes the position of the bottom surface of the quartz crucible corresponding to the heat generation distribution characteristics of the heater and the pulling length of the single crystal.
  • a single crystal pulling method is disclosed in which (melt surface position) is raised and lowered and the flow rate of an inert gas introduced into the apparatus is controlled. According to this single crystal pulling method, a silicon single crystal having a desired oxygen concentration and a uniform axial oxygen distribution can be obtained.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a silicon single crystal manufacturing method capable of appropriately controlling the concentration of oxygen contained in the single crystal in the growth axis direction.
  • the counter crystal which is a value obtained by dividing the area of the gap (portion through which the inert gas passes) between the outer surface of the single crystal and the lower opening edge of the heat shield by the area of the cross section perpendicular to the pulling axis of the single crystal It was found that the oxygen concentration in the crystal growth axis direction behaved differently when the radial porosity was changed. This is presumably because the relationship between the flow rate of the inert gas passing between the pulled single crystal and the lower opening edge of the heat shield and the oxygen concentration of the silicon single crystal has changed. Therefore, the influence of the inert gas flow rate on the oxygen concentration of the silicon single crystal was investigated. As a result, it was found that the influence of the flow rate of the inert gas on the oxygen concentration of the single crystal differs depending on the void ratio with respect to the crystal diameter.
  • the present invention has been made on the basis of such examination results and is summarized in the following method for producing a silicon single crystal.
  • the void area between the outer surface of the single crystal and the lower opening edge of the heat shield is divided by the area of the cross section perpendicular to the pulling axis of the single crystal, and the void ratio to the crystal diameter
  • the oxygen concentration in the crystal is controlled by adjusting the flow rate of the inert gas introduced into the gap in the void.
  • “Void ratio of crystal diameter” is obtained by dividing the area of the void between the outer surface of the single crystal and the lower opening edge of the heat shield by the area of the cross section perpendicular to the pulling axis of the single crystal as described above. Value.
  • the “lower edge opening edge portion of the heat shield” is a portion on the most central axis side in the opening portion of the heat shield, for example, in FIG. 2A described later, the lower end of the heat shield It refers to the tip of the portion 12b (the portion marked with the symbol A).
  • the inert gas flow rate in the void between the single crystal and the heat shield when the void ratio to the crystal diameter is 0.27 to 0.45, the inert gas flow rate in the void between the single crystal and the heat shield, When the void ratio to the crystal diameter is 0.72 to 0.92, the inert gas flow rate in the void and the oxygen concentration in the crystal are positive. Therefore, the oxygen concentration in the crystal can be controlled by adjusting the flow rate of the inert gas.
  • the flow rate of the inert gas in the gap between the single crystal and the heat shield is set such that the porosity relative to the crystal diameter is 0.27 to 0.45.
  • the oxygen concentration in the crystal can be appropriately controlled by increasing and decreasing when the void ratio to the crystal diameter is 0.72 to 0.92.
  • the oxygen concentration in the crystal can be appropriately controlled by changing the flow rate of the inert gas according to the change in the void ratio with respect to the crystal diameter accompanying the change in diameter. This is particularly effective when the void ratio to the crystal diameter is 0.27 to 0.45.
  • the silicon single crystal manufacturing method of the present invention when pulling up a single crystal, based on the relationship between the inert gas flow rate in the void and the oxygen concentration in the crystal determined in advance according to the void ratio to the crystal diameter. If the flow rate of the inert gas in the gap is adjusted at each stage of pulling, the oxygen concentration in the crystal is controlled appropriately regardless of the type of pulling device, etc., and the growth axis direction of the single crystal The uniformity of the oxygen concentration in can be ensured.
  • a single crystal having a uniform oxygen concentration in the crystal growth axis direction can be easily grown.
  • the silicon single crystal grown by the silicon single crystal manufacturing method of the present invention may have a diameter capable of cutting out a large-diameter silicon wafer having a diameter of 300 mm or more.
  • the oxygen concentration contained in the pulled silicon single crystal can be appropriately controlled, and the uniformity of the oxygen concentration in the growth axis direction of the single crystal can be ensured.
  • the present invention can be sufficiently applied to the production of a silicon single crystal that can cut out a silicon wafer having a large diameter of 300 mm or more.
  • FIG. 1 is a diagram schematically showing a schematic configuration example of a main part of a pulling apparatus suitable for carrying out the silicon single crystal manufacturing method of the present invention.
  • FIG. 2 is a diagram for explaining the examination results by numerical simulation of the inert gas flow velocity in each part in the single crystal pulling apparatus when the void ratio to the crystal is changed.
  • FIG. In the case of 0.86, (b) is a case where the void ratio to the crystal diameter is 0.37.
  • FIG. 3 is a diagram showing the relationship between the inert gas (Ar) flow rate between the crystal and the heat shield and the oxygen concentration of the pulled single crystal when the ratio of voids to the crystal diameter is small and large.
  • FIG. 4 is a graph showing the relationship between the void ratio of the crystal diameter and the oxygen concentration of the pulled single crystal.
  • the method for producing a silicon single crystal of the present invention is as described above, and is based on the premise that a single crystal pulling apparatus in which a heat shield is disposed around the silicon single crystal being pulled is used. Controlling the oxygen concentration in the crystal by adjusting the inert gas flow rate (the flow rate of the inert gas in the void between the outer surface of the single crystal and the lower opening edge of the heat shield) according to the porosity It is the method characterized by this.
  • FIG. 1 is a diagram schematically showing a schematic configuration example of a main part of a pulling apparatus suitable for carrying out the silicon single crystal manufacturing method of the present invention.
  • the lifting device includes a chamber 1, a vertically extending and rotating support shaft 2 penetrating through the center of the bottom of the chamber 1, and a susceptor 3 fixed to the upper end of the support shaft 2.
  • a quartz crucible 4 housed inside thereof, a heater 5 and a heat insulating material 6 provided around the susceptor 3, and a seed chuck for holding a seed crystal on the central axis of the quartz crucible 4 7 and a lifting wire 8 for suspending and lifting the seed chuck 7 are provided.
  • a forced cooling body 11 is disposed coaxially with the pulling shaft so as to surround the silicon single crystal 9 being grown, and is coaxial with the pulling shaft so as to face the outer peripheral surface and the lower end surface of the forced cooling body 11.
  • a heat shield 12 is arranged.
  • a magnetic field application device 13 is provided outside the heat insulating material 6.
  • a gas inlet 14 for introducing Ar gas as an inert gas into the chamber 1 is provided at the top of the chamber 1.
  • a mass flow meter (not shown) is provided in the vicinity of the gas inlet 14. With a mass flow meter, the flow rate (volume velocity) of Ar gas introduced into the chamber 1 of the pulling device can be measured as a volume in a standard state (0 ° C., 1 atm) per unit time.
  • a gas discharge port 15 for discharging Ar gas is provided at the bottom of the chamber 1.
  • a silicon raw material is put into the quartz crucible 4 and heated in an Ar gas atmosphere to heat the silicon melt 10.
  • the seed crystal held on the seed chuck 7 is immersed in the silicon melt 10, and the seed crystal is gradually pulled up while the seed crystal and the quartz crucible 4 are appropriately rotated to grow a single crystal.
  • FIG. 2 is a diagram for explaining the examination results by numerical simulation of the inert gas flow velocity in each part in the single crystal pulling apparatus when the void ratio to the crystal is changed.
  • FIG. 2 for the sake of convenience, the right half of the longitudinal section along the single crystal pulling axis is shown.
  • a forced cooling body 11 is disposed around the single crystal 9 pulled up from the silicon melt 10 in the quartz crucible 4, and a heat shield 12 is disposed so as to surround the forced cooling body 11. Has been.
  • the inert gas (Ar) introduced into the apparatus passes between the single crystal 9 and the forced cooling body 11 and then the outer surface of the single crystal 9 and the heat shield as shown by the white arrows in the figure. 12 passes through a gap between the lower end opening edge portion 12 (the tip of the lower end portion of the thermal shield 12 (the portion denoted by reference symbol A)) and between the lower end surface of the thermal shield 12 and the silicon melt 10. , Flows upward along the inner surface of the quartz crucible 4, passes out of the crucible 4, then descends along the outer surface of the crucible 4 to the inside (partially the outside) of the heater 5 and discharges gas 15 (see FIG. 1).
  • SiO added in the white arrow on the surface of the silicon melt 10 indicates that a part of oxygen dissolved in the silicon melt 10 from the quartz crucible 4 is volatilized as SiO, and the inert gas flow Represents being taken away by Moreover, the arrow shown in the silicon melt 10 represents the direction of the melt flow. A solid line represents a strong flow, and a broken line represents a weak flow.
  • FIG. 2 (a) and FIG. 2 (b) are compared, in FIG. 2 (a), between the outer surface of the single crystal 9 and the lower end opening edge of the heat shield 12 (the surface marked with reference A). Since the void portion is wider than that in FIG. 2B, the Ar gas flow rate in the void portion is relatively small, and most of the Ar gas that has passed through the void portion is a heat shield as indicated by the white arrow g1. 12 passes between the lower end surface of 12 and the surface of the silicon melt 10 (slightly closer to the melt surface). Ar gas does not reach the surface of the silicon melt 10 near the crystal growth meniscus. On the other hand, in FIG.
  • the convection of the silicon melt (convection with an arrow a in the silicon melt) is generated. It is weak. Since oxygen is carried away as SiO in the vicinity of the free surface of the silicon melt in which the entrained convection occurs, it is originally a portion having the lowest oxygen concentration in the silicon melt, and the melt that forms the entrained convection is a single crystal growth meniscus. Therefore, it is presumed that a difference occurs in the oxygen concentration in the silicon single crystal due to the strength of the entrained convection.
  • the ratio of the pore diameter to the crystal diameter is between the inert gas flow rate and the oxygen concentration of the silicon single crystal, as judged from the flow rate distribution state of the inert gas flow. Is in the range of 0.27 to 0.45, and there is a negative correlation, and in the range of the void ratio to the crystal diameter of 0.72 to 0.92, there is a difference between the inert gas flow rate and the oxygen concentration of the silicon single crystal. , Confirmed that there is a positive correlation. In the range where the voidage to crystal diameter is greater than 0.45 and less than 0.72, no clear correlation could be confirmed between the inert gas flow rate and the oxygen concentration of the silicon single crystal.
  • Model 1 The flow rate of inert gas is increased to increase the amount of oxygen carried away by volatilization of SiO, and the oxygen concentration near the free surface of the silicon melt is decreased. As a result, the amount of oxygen taken into the silicon single crystal is reduced.
  • Model 2 Originally, the melt near the free surface of the silicon melt having the lowest oxygen concentration in the silicon melt is taken into the single crystal. In this case, when the inert gas flow rate is increased, the entanglement convection immediately below the single crystal growth meniscus is inhibited and the oxygen concentration is increased. Conversely, when the inert gas flow rate is decreased, the entanglement convection is promoted and the oxygen concentration is decreased. Inferred.
  • the positive gas flow rate in the void between the outer surface of the single crystal and the lower opening edge of the heat shield and the oxygen concentration of the silicon single crystal are positive depending on the void ratio to the crystal. Or a negative correlation is observed.
  • the flow rate of the inert gas in the gap between the single crystal and the heat shield is adjusted according to the void ratio to the crystal diameter. Control oxygen concentration in the crystal.
  • the opening diameter of the heat shield necessary for growing defect-free crystals is determined in advance, and the void ratio to the crystal diameter corresponding to the opening diameter is obtained in advance.
  • a guideline for controlling the oxygen concentration by adjusting the flow rate of the inert gas can be obtained. That is, it is possible to appropriately and promptly determine whether to increase or decrease the flow rate of the inert gas when controlling the oxygen concentration based on the obtained value of the void ratio to the crystal diameter.
  • the void ratio to the crystal diameter is 0.27 to 0.45
  • a gap between the single crystal and the heat shield (crystal-heat shield gap)
  • the oxygen concentration in the crystal is decreased by increasing the inert gas flow rate in the crystal, and when the porosity relative to the crystal diameter is 0.72 to 0.92, the inert gas flow rate in the void is decreased to reduce the oxygen in the crystal.
  • An embodiment in which the concentration is reduced can be adopted.
  • the void ratio to the crystal diameter is 0.27 to 0.45, as described above, there is a negative correlation between the inert gas flow rate in the gap between the crystal and the heat shield and the oxygen concentration in the crystal. Therefore, the oxygen concentration in the crystal can be lowered by increasing the inert gas flow rate.
  • the void ratio to the crystal diameter is 0.72 to 0.92, there is a positive correlation between the inert gas flow rate and the oxygen concentration in the crystal. Thus, the oxygen concentration in the crystal can be reduced.
  • the oxygen concentration in the crystal can be appropriately controlled by changing the flow rate of the inert gas in accordance with the change in the porosity with the change in the diameter. This is particularly effective when the void ratio to the crystal diameter is 0.27 to 0.45.
  • the inert gas flow rate and the oxygen concentration in the crystal in the gap between the crystal and the heat shield determined in advance according to the void ratio to the crystal diameter are obtained.
  • the embodiment in which the flow rate of the inert gas in the gap is adjusted at each stage of pulling up can also be adopted.
  • the relationship between the inert gas flow rate and the oxygen concentration in the crystal in the gap between the crystal and the heat shield is obtained in advance according to the void ratio to the crystal diameter (that is, for each of various void diameters to the crystal diameter). Based on this relationship, the flow rate of the inert gas is adjusted at each stage of pulling (that is, at an arbitrary point during pulling), particularly at the initial stage (top side) and final stage (bottom side) of pulling the single crystal. . Thereby, the uniformity of the oxygen concentration in the growth axis direction of the single crystal can be eliminated and the uniformity can be ensured, and the yield can be improved.
  • the method for producing a silicon single crystal of the present invention it is possible to grow a silicon single crystal capable of cutting out a silicon wafer having a large diameter of 300 mm or more.
  • Example 1 Based on the result of the numerical simulation on the inert gas flow rate described above, the outer surface of the pulled single crystal and the lower end of the heat shield for the case where the void ratio to the crystal diameter is small (0.37) and large (0.86) A pulling test of a silicon single crystal (both crystal diameters are about 300 mm) was performed by changing the inert gas flow rate (Ar flow rate between the crystal and the heat shield) in the gap between the opening edge and The oxygen concentration taken into the crystal was measured. Table 1 shows the pulling test conditions and the oxygen concentration of the pulling single crystal.
  • the “Ar flow rate” is the flow rate (volume velocity) of Ar gas introduced into the apparatus, and the unit volume of Ar gas flowing per unit time in a standard state (0 ° C., 1 atm) by a mass flow meter ( slpm; standard liter per minute). From the “Ar flow rate” and the “internal pressure”, the Ar flow rate at the atmospheric pressure is obtained. Ignoring the influence of temperature on the volume of Ar, this “flow rate of Ar at the atmospheric pressure” can be the flow rate of Ar in the apparatus.
  • the “Ar flow rate between the crystal and the heat shield” (linear velocity) is calculated from the “flow rate of Ar in the apparatus” and the area between the crystal and the lower opening edge of the heat shield (Ar gas flow path). It is what I have sought.
  • Test Nos. 8 to 15 crystals were grown by increasing the porosity of the thermal shield against the crystal diameter as compared with Test Nos. 1 to 7, and as shown in Table 1, the crystal diameter was thus reduced.
  • the porosity is 0.31 to 0.37 in Test Nos. 1 to 7, whereas it is 0.86 in Test Nos. 8 to 15.
  • the Ar flow rate between the crystal and the heat shield was varied between Test Nos. 1 to 7 and Test Nos. 8 to 15 by changing the Ar flow rate introduced into the apparatus.
  • FIG. 3 is based on the test results shown in Table 1 and shows the relationship between the Ar flow rate and the oxygen concentration of the pulled single crystal in the space between the crystal and the heat shield (lower end opening edge).
  • the porosity of the crystal diameter is reduced (0.31 to 0.37), it is indicated as “low porosity of the crystal diameter”, and the porosity of the crystal diameter is increased (0.86). The case is described as “high porosity for crystal diameter”.
  • the crystal flow rate can be adjusted by adjusting the flow rate of the inert gas introduced into the apparatus, for example, by adjusting the flow rate of the inert gas between the crystal and the heat shield according to the void ratio with respect to the crystal. It was confirmed that the oxygen concentration in the inside could be controlled.
  • Example 2 For each of the cases where the porosity of the thermal shield is small and large, by varying the diameter of the silicon single crystal, the porosity of the crystal diameter is different from that of the single crystal. The relationship with the oxygen concentration was investigated. The flow rate of the inert gas (Ar gas) introduced into the apparatus and the pressure in the apparatus were constant.
  • Ar gas inert gas
  • FIG. 4 is a diagram showing the relationship between the crystal void ratio and the oxygen concentration of the pulled single crystal when the heat shield has a large void ratio versus a small crystal diameter.
  • the oxygen concentration of the pulled single crystal increases as the Ar flow rate between the crystal and the heat shield increases in the range of the porosity to crystal diameter of 0.27 to 0.45. It is considered that the oxygen concentration of the pulled single crystal increases as the Ar flow rate between the crystal and the heat shield increases, when the porosity of the crystal diameter is in the range of 0.72 to 0.92.
  • the oxygen concentration contained in the silicon single crystal can be appropriately controlled (easily and stably). Therefore, the present invention can be widely applied to the manufacture of a silicon single crystal from which a silicon wafer (for manufacturing a semiconductor device) is cut.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

熱遮蔽体を具備する引き上げ装置を使用してチョクラルスキー法によりシリコン単結晶を製造する際に、対結晶径空隙率(単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部の面積/単結晶の断面積)に応じて装置内に導入する不活性ガスの前記空隙部における流速を調整して、結晶の酸素濃度を制御する、シリコン単結晶製造方法。この製造方法により、引き上げ単結晶の酸素濃度を、適切に制御することが可能である。

Description

シリコン単結晶製造方法
 本発明は、チョクラルスキー法によりシリコン単結晶を製造する方法に関し、より詳しくは、結晶に含まれる酸素濃度の適切な制御が可能なシリコン単結晶製造方法に関する。
 半導体材料として使用されるシリコン単結晶を製造する方法として、チョクラルスキー法(CZ法)が広く採用されている。チョクラルスキー法は、石英るつぼ内の溶融したシリコンに種結晶を浸漬させて引き上げることにより、種結晶の下端に単結晶を成長させる方法である。
 この方法によりシリコン単結晶を育成する際、石英るつぼに含まれる酸素が溶融シリコン中に溶け込み、その一部が単結晶に取り込まれる。このような酸素は、シリコン単結晶から切り出したウェーハを用いてデバイスを製造するときの熱処理過程で、析出物、転移ループ、積層欠陥を発生させる。これらの欠陥は、単結晶の品質に様々な影響を及ぼすため、単結晶に取り込まれる酸素の濃度を適切に制御することが、高品質のシリコン単結晶を製造する上で不可欠とされている。
 シリコン単結晶の育成中に単結晶に取り込まれた酸素は、前述のように、単結晶の品質に様々な影響を及ぼすため、単結晶の酸素濃度を適正に制御することが必要である。このシリコン単結晶中の酸素濃度について特に問題となるのは、単結晶の成長軸方向における酸素濃度のバラツキである。酸素濃度には、様々な因子が影響しており、それらの因子による影響は、結晶の引上げが進むに従って変化する。そのため、単結晶の成長軸方向における酸素濃度の均一性を確保することができず、要求される酸素濃度規格の上限値と下限値との範囲が狭いシリコン単結晶を製造する場合には、歩留りが低下することとなる。
 このシリコン単結晶の成長軸方向における酸素濃度の均一性を確保するために、例えば、特許文献1には、ヒーターの発熱分布特性および単結晶の引き上げ長さに対応して、石英るつぼの底面位置(融液面位置)を昇降させるとともに、装置内に導入する不活性ガスの流速を制御する単結晶の引き上げ方法が開示されている。この単結晶引き上げ方法によれば、所望の酸素濃度を有し、かつ、軸方向酸素分布の均一なシリコン単結晶を得ることができるとしている。
特開平10-167881号公報
 特許文献1に記載されるシリコン単結晶の引き上げ方法では、引き上げた単結晶の周囲をとり囲むように逆円錐台形状の整流筒が取り付けられた装置が使用される。しかし、不活性ガス流速を制御するに際しては、装置内に導入する不活性ガスの流量に加えて、引き上げ単結晶の外面と整流筒の下端開口縁部との間の空隙部(つまり、不活性ガスが通過する部分)の断面積が重要な要因であるにもかかわらず、引用文献1には、この空隙部断面積、およびその酸素濃度に及ぼす影響については、何ら記載されていない。
 本発明は、このような状況に鑑みてなされたものであり、単結晶に含まれる酸素濃度の成長軸方向の適切な制御が可能なシリコン単結晶製造方法の提供を目的とする。
 単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部(不活性ガスが通過する部分)の面積を単結晶の引き上げ軸に垂直な断面の面積で除した値である対結晶径空隙率を変えると、結晶成長軸方向の酸素濃度がそれまでと異なった挙動を示すことが判明した。これは、引き上げた単結晶と熱遮蔽体の下端開口縁部との間を通過する不活性ガスの流速とシリコン単結晶の酸素濃度との関係が変化したことによるものと考えられる。そこで、シリコン単結晶の酸素濃度に対する不活性ガス流速の影響について調査した。その結果、対結晶径空隙率によって、単結晶の酸素濃度に及ぼす不活性ガス流速の影響が異なることを見いだした。
 すなわち、従来は、不活性ガス流速が増大すると、シリコン融液に溶け込んだ酸素のSiOとしての揮発が促進され、酸素の持ち去り量が増加するため融液自由表面近傍の酸素濃度が低下し、その結果シリコン単結晶の酸素濃度が低下する(つまり、不活性ガス流速と酸素濃度との間には負の相関がある)と考えられていた。しかしながら、調査の結果、前記の引き上げ単結晶と熱遮蔽体との間の空隙部の面積の単結晶断面積に対する比率によっては、不活性ガス流速の増大とともにシリコン単結晶の酸素濃度が高くなる(つまり、不活性ガス流速と酸素濃度との間に正の相関が認められる)場合があることを知見した。
 本発明は、このような検討結果に基づきなされたもので、下記のシリコン単結晶製造方法を要旨とする。
 すなわち、引き上げ中のシリコン単結晶の周囲に引き上げ軸と同軸に熱遮蔽体を配置した単結晶引き上げ装置を使用して、チョクラルスキー法によりシリコン単結晶を製造する方法において、
 単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部の面積を単結晶の引き上げ軸に垂直な断面の面積で除した対結晶径空隙率に応じて、単結晶引き上げ装置内に導入する不活性ガスの前記空隙部における流速を調整することにより結晶中の酸素濃度を制御することを特徴とするシリコン単結晶製造方法である。
 「対結晶径空隙率」とは、上記のように単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部の面積を単結晶の引き上げ軸に垂直な断面の面積で除した値である。ここで、「熱遮蔽体の下端開口縁部」とは、熱遮蔽体の開口部において最も中心軸側にある部分であり、例えば、後に説明する図2(a)において、熱遮蔽体の下端部12bの先端(符号Aを付した部分)をいう。対結晶径空隙率を具体的な数値で例示すると、引き上げ単結晶の直径が310mm、熱遮蔽体の開口径が355mmの場合、単結晶の断面積は754.8cm、熱遮蔽体の開口部の面積は989.8cmであるから、単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部の面積は(989.8-754.8)cmとなり、
   対結晶径空隙率=(989.8-754.8)/754.8=0.31
となる。
 本発明のシリコン単結晶製造方法において、前記対結晶径空隙率が0.27~0.45のときは、単結晶と熱遮蔽体との間の前記空隙部における不活性ガス流速と、結晶中の酸素濃度とが、負の相関を有し、前記対結晶径空隙率が0.72~0.92のときは、前記空隙部における不活性ガス流速と、結晶中の酸素濃度とが、正の相関を有するとして、前記不活性ガスの流速調整による結晶中の酸素濃度の制御を行うことができる。
 例えば、育成中の結晶中の酸素濃度を低減するために、単結晶と熱遮蔽体との間の空隙部における不活性ガス流速を、対結晶径空隙率が0.27~0.45のときは、増大させ、対結晶径空隙率が0.72~0.92のときは、減少させることにより、結晶中の酸素濃度を適切に制御することができる。
 また、直径の変動に伴う対結晶径空隙率の変化に応じて不活性ガス流速を変化させることで、結晶中の酸素濃度を適切に制御することができる。これは、対結晶径空隙率が0.27~0.45のときに特に有効である。
 本発明のシリコン単結晶製造方法において、単結晶の引き上げを行う際に、対結晶径空隙率に応じてあらかじめ求めた前記空隙部における不活性ガス流速と結晶中の酸素濃度との関係に基づいて、引き上げの各段階で不活性ガスの前記空隙部における流速を調整することとすれば、引き上げ装置の種類等に因らず結晶中の酸素濃度を適正に制御して、単結晶の成長軸方向における酸素濃度の均一性を確保することができる。
 本発明のシリコン単結晶製造方法によれば、結晶成長軸方向に酸素濃度が均一な単結晶を容易に育成することができる。
 本発明のシリコン単結晶製造方法により育成されるシリコン単結晶は、直径300mm以上の大口径のシリコンウェーハを切り出すことができる直径を有するものであってもよい。
 本発明のシリコン単結晶製造方法によれば、引き上げられたシリコン単結晶に含まれる酸素濃度の適切な制御が可能であり、単結晶の成長軸方向における酸素濃度の均一性を確保することができる。また、直径300mm以上の大口径のシリコンウェーハを切り出すことができるシリコン単結晶の製造にも十分適用できる。
図1は、本発明のシリコン単結晶製造方法の実施に適した引き上げ装置の要部の概略構成例を模式的に示す図である。 図2は、対結晶径空隙率を変更した場合の単結晶引き上げ装置内各部における不活性ガス流速についての数値シミュレーションによる検討結果を説明するための図で、(a)は対結晶径空隙率が0.86の場合、(b)は対結晶径空隙率が0.37の場合である。 図3は、対結晶径空隙率が小さい場合と大きい場合とにおける結晶-熱遮蔽体間における不活性ガス(Ar)流速と引き上げ単結晶の酸素濃度との関係を示す図である。 図4は、対結晶径空隙率と引き上げ単結晶の酸素濃度との関係を示す図である。
 本発明のシリコン単結晶製造方法は、前記のとおりで、引き上げ中のシリコン単結晶の周囲に熱遮蔽体を配置した単結晶引き上げ装置を使用することを前提とした方法であって、対結晶径空隙率に応じて不活性ガス流速(単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部における不活性ガスの流速)を調整することにより結晶中の酸素濃度を制御することを特徴とする方法である。
 対結晶径空隙率に応じて不活性ガス流速を調整することにより結晶中の酸素濃度を制御することについて、図面を参照して説明する。
 図1は、本発明のシリコン単結晶製造方法の実施に適した引き上げ装置の要部の概略構成例を模式的に示す図である。図示するように、引き上げ装置は、チャンバー1と、チャンバー1の底部中央を貫通して垂直上向きに設けられた昇降および回転可能な支持軸2と、支持軸2の上端部に固定されたサセプタ3およびその内側に収容された石英るつぼ4と、サセプタ3の周囲に設けられたヒーター5および断熱材6とを有しており、石英るつぼ4の中心軸上には、種結晶を保持するシードチャック7と、シードチャック7を吊り下げ、引き上げるための引き上げワイヤー8とが設けられている。
 さらに、育成中のシリコン単結晶9の周囲を囲繞するように引き上げ軸と同軸に強制冷却体11が配置され、この強制冷却体11の外周面および下端面と対向するように引き上げ軸と同軸に熱遮蔽体12が配置されている。また、この例では、断熱材6の外側に、磁場印加装置13が設けられている。
 チャンバー1の上部には、不活性ガスとしてのArガスをチャンバー1内に導入するためのガス導入口14が設けられている。ガス導入口14の近傍には、マスフローメーター(図示せず)が設けられている。マスフローメーターにより、この引き上げ装置のチャンバー1内に導入されるArガスの流量(体積速度)を、単位時間あたりの標準状態(0℃、1気圧)における体積として測定することができる。チャンバー1の底部にはArガスを排出するためのガス排出口15が設けられている。
 このように構成された引き上げ装置を用いて本発明のシリコン単結晶製造方法を実施するに際しては、まず、石英るつぼ4内にシリコン原料を投入し、Arガス雰囲気中で加熱してシリコン融液10を形成する。次にシードチャック7に保持された種結晶をシリコン融液10に浸漬させ、種結晶および石英るつぼ4を適宜回転させながら種結晶を徐々に引き上げて単結晶を成長させる。
 図2は、対結晶径空隙率を変更した場合の単結晶引き上げ装置内各部における不活性ガス流速についての数値シミュレーションによる検討結果を説明するための図で、(a)は対結晶径空隙率が0.86の場合、(b)は対結晶径空隙率が0.37の場合である。それ以外の諸条件については(a)、(b)間で差異はない。図2においては、便宜上、単結晶引き上げ軸に沿った縦断面の右側半分を示している。
 図2に示すように、石英るつぼ4内のシリコン融液10から引き上げられた単結晶9の周囲に強制冷却体11が配置され、その強制冷却体11を囲繞するように熱遮蔽体12が配置されている。
 装置内に導入された不活性ガス(Ar)は、図中に白抜き矢印で示すように、単結晶9と強制冷却体11との間を通過した後、単結晶9の外面と熱遮蔽体12の下端開口縁部(熱遮蔽体12の下端部の先端(符号Aを付した部分))との間の空隙部を通過し、熱遮蔽体12の下端面とシリコン融液10との間を通り、石英るつぼ4の内面に沿って上向きに流れ、るつぼ4外へ抜けた後、るつぼ4の外面に沿ってヒーター5の内側(一部は外側)を下降してガス排出口15(図1参照)から排出される。
 図2において、シリコン融液10表面の白抜き矢印内に付記している「SiO」は、石英るつぼ4からシリコン融液10中に溶け込んだ酸素の一部がSiOとして揮発し、不活性ガス流により持ち去られることを表す。また、シリコン融液10中に示した矢印は、融液の流れの方向を表している。実線は強い流れを、破線は弱い流れを表す。
 図2(a)と図2(b)とを対比すると、図2(a)では、単結晶9の外面と熱遮蔽体12の下端開口縁部(符合Aを付した面)との間の空隙部が図2(b)に比べて広いので、当該空隙部におけるArガス流速が比較的小さく、空隙部を通過したArガスの大部分は、白抜き矢印g1で示すように、熱遮蔽体12の下端面とシリコン融液10表面との間(やや融液表面寄り)を通過する。Arガスが結晶成長メニスカス近傍のシリコン融液10表面にまでは達することはない。これに対し、図2(b)では、前記空隙部が狭く、Arガス流速が比較的大きいので、空隙部を通過したArガスの大部分は、白抜き矢印g2で示すように、結晶成長メニスカス近傍のシリコン融液10表面の直近にまで達し、その後シリコン融液10表面の近傍を通過する。そのため、図2(b)では、SiOとして持ち去られる酸素量が図2(a)に比べて多いと考えられる。
 さらに、シリコン融液の流れにも差が見られ、図2(a)に比べて、図2(b)では、シリコン融液の巻き込み対流(シリコン融液中の矢印aを付した対流)が弱くなっている。この巻き込み対流が生じるシリコン融液の自由表面近傍はSiOとして酸素が持ち去られるため、本来シリコン融液中で最も酸素濃度の低い部分であり、しかも、巻き込み対流を形成する融液は単結晶成長メニスカスの直下にあって単結晶に取り込まれ易いので、巻き込み対流の強弱によってシリコン単結晶中の酸素濃度に差が生じると推測される。
 前述の不活性ガス流の流速分布の違いは、熱遮蔽体の開口径の違い(言い換えれば、不活性ガスの流路の広さの違い)によるものである。そこで、単結晶の外面と熱遮蔽体の下端開口縁部との間のガス流路に対して、前記の対結晶径空隙率を指標として導入し、図2の(a)の場合(対結晶径空隙率=0.86となる)と、図2の(b)の場合(対結晶径空隙率=0.37となる)とについて、引き上げ単結晶の外面と熱遮蔽体の下端開口縁部との間の空間部(ガス流路)および熱遮蔽体12の下端面とシリコン融液表面との間の空間部(ガス流路)における不活性ガス(Ar)流速を変化させて単結晶の引き上げを行い、単結晶に取り込まれた酸素濃度を測定した。
 その結果、後述する実施例に示すように、対結晶径空隙率=0.37の場合(図2(b))は、不活性ガス流速の増大に伴いシリコン単結晶の酸素濃度が減少するという負の相関があり、対結晶径空隙率=0.86の場合(図2(a))は、不活性ガス流速の増大に伴いシリコン単結晶の酸素濃度も増大する正の相関があることが判明した。
 さらに、条件を変えて行った数値シミュレーションによる検討の結果、不活性ガス流の流速分布状態から判断して、不活性ガス流速とシリコン単結晶の酸素濃度との間には、対結晶径空隙率が0.27~0.45の範囲では、負の相関があり、対結晶径空隙率が0.72~0.92の範囲では、不活性ガス流速とシリコン単結晶の酸素濃度との間に、正の相関があることを確認した。対結晶径空隙率が0.45より大きく0.72未満の範囲では、不活性ガス流速とシリコン単結晶の酸素濃度との間に、明りょうな相関関係は確認できなかった。
 ここで対結晶径空隙率が0.27未満の場合でも前記負の相関があるものと考えられるが、その場合は結晶との空隙が狭すぎて結晶と熱遮蔽体とが引き上げ中に接触する恐れがある上、制御計測の問題も発生する。また、対結晶径空隙率が0.92を超える場合でも前記正の相関があるものと考えられるが、その場合は、融液自由表面の温度勾配を大きくすることができず、欠陥のない(少ない)シリコン単結晶を育成するための引き上げ速度の制御性が悪くなると考えられる。しかしながら、適切な対結晶径空隙率の下限値や上限値は、引上装置全体のバランスによるところが大きく、装置によって変化する可能性がある。
 シリコン単結晶の酸素濃度低下のモデルとして、次の二つ(モデル1およびモデル2)が考えられる。
 モデル1:不活性ガス流速を高めてSiOの揮発により持ち去られる酸素量を増加させ、シリコン融液自由表面近傍の酸素濃度を低下させる。その結果、シリコン単結晶に取り込まれる酸素量が減少する。
 モデル2:本来シリコン融液中で最も酸素濃度の低いシリコン融液自由表面近傍の融液を単結晶内に取り込ませる。この場合、不活性ガス流速を高めると単結晶成長メニスカス直下の巻き込み対流が阻害されて酸素濃度が上昇し、逆に、不活性ガス流速が低下すると巻き込み対流が促進されて、酸素濃度が低下すると推察される。
 対結晶径空隙率が小さい(0.27~0.45)場合は、モデル1によりシリコン単結晶の酸素濃度を低下させることができる(対結晶径空隙率=0.37の図2(b)がこれに該当する)。すなわち、不活性ガス流速を高めると、揮発により持ち去られる酸素量が増加してシリコン融液自由表面近傍の酸素濃度が低下する。
 一方、対結晶径空隙率が大きい(0.72~0.92)場合は、モデル2によりシリコン単結晶の酸素濃度が低下すると考えられる(対結晶径空隙率=0.86の図2(a)がこれに該当する)。すなわち、不活性ガス流速を高めると、巻き込み対流aが阻害され、また、対結晶径空隙率が小さい場合に比べて不活性ガス流速が低いことによりモデル1による作用(不活性ガス流によるSiOの持ち去り)も働きにくいので、シリコン単結晶の酸素濃度は増大するが、不活性ガス流速を低下させると、巻き込み対流が促進されるため酸素濃度が低下する。
 上述したように、対結晶径空隙率の如何によって、単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部における不活性ガス流速とシリコン単結晶の酸素濃度との間に正または負の相関関係が認められる。本発明のシリコン単結晶製造方法では、対結晶径空隙率に応じて、単結晶と熱遮蔽体との間の空隙部(結晶-熱遮蔽体間空隙部)における不活性ガスの流速を調整し、結晶中の酸素濃度を制御する。
 具体的に説明すると、シリコン単結晶の引き上げを行うに際し、無欠陥結晶の育成に必要な熱遮蔽体の開口径があらかじめ決められるので、この開口径に対応する対結晶径空隙率を事前に求めておくことにより、不活性ガス流速を調整して酸素濃度を制御する際の指針が得られる。すなわち、求められた対結晶径空隙率の値により、酸素濃度を制御するに際して、不活性ガス流速を高めるか、低下させるかについての適正かつ迅速な判断が可能となる。
 本発明のシリコン単結晶製造方法においては、対結晶径空隙率が0.27~0.45のときは、単結晶と熱遮蔽体との間の空隙部(結晶-熱遮蔽体間空隙部)における不活性ガス流速を高めて結晶中の酸素濃度を低下させ、対結晶径空隙率が0.72~0.92のときは、前記空隙部における不活性ガス流速を低下させて結晶中の酸素濃度を低下させることとする実施の形態を採ることができる。
 対結晶径空隙率が0.27~0.45のときは、前述のように、結晶-熱遮蔽体間空隙部における不活性ガス流速と結晶中の酸素濃度との間には、負の相関があるので、不活性ガス流速を高めることにより、結晶中の酸素濃度を低下させることができる。一方、対結晶径空隙率が0.72~0.92のときは、不活性ガス流速と結晶中の酸素濃度との間には、正の相関があるので、不活性ガス流速を低下させることにより、結晶中の酸素濃度を低下させることができる。
 本発明のシリコン単結晶製造方法においては、直径の変動に伴う空隙率の変化に応じて不活性ガス流速を変化させることで、結晶中の酸素濃度を適切に制御することができる。これは、対結晶径空隙率が0.27~0.45のときに特に有効である。
 本発明のシリコン単結晶製造方法においては、単結晶の引き上げを行う際に、対結晶径空隙率に応じてあらかじめ求めた結晶-熱遮蔽体間空隙部における不活性ガス流速と結晶中の酸素濃度との関係に基づいて、引き上げの各段階で不活性ガスの前記空隙部における流速を調整することとする実施の形態を採ることもできる。
 単結晶の引き上げを行う際、酸素濃度は、一般に、トップ側およびボトム側で高くなる傾向がある。そこで、対結晶径空隙率に応じて(つまり、種々の対結晶径空隙率毎に)、あらかじめ結晶-熱遮蔽体間空隙部における不活性ガス流速と結晶中の酸素濃度との関係を求めておき、この関係に基づいて、引き上げの各段階(つまり、引き上げ中の任意の時点)で、特に単結晶引き上げの初期(トップ側)および終期(ボトム側)において、不活性ガスの流速を調整する。これにより、単結晶の成長軸方向における酸素濃度のバラツキをなくして均一性を確保することができ、歩留りを向上させることができる。
 また、本発明のシリコン単結晶製造方法によれば、直径300mm以上の大口径のシリコンウェーハを切り出すことができるシリコン単結晶を育成することも可能である。
 (実施例1)
 前述の不活性ガス流速についての数値シミュレーションによる検討結果を踏まえ、対結晶径空隙率が小さい場合(0.37)および大きい場合(0.86)について、引き上げ単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部における不活性ガス流速(結晶-熱遮蔽体間におけるAr流速)を変化させてシリコン単結晶(結晶径は、いずれも、約300mm)の引き上げ試験を行い、単結晶に取り込まれた酸素濃度を測定した。表1に、引き上げ試験条件と、引き上げ単結晶の酸素濃度とを、併せて示す。
 「Ar流量」は、装置内に導入されるArガスの流量(体積速度)であり、マスフローメーターにより、単位時間あたりに流れるArガスの標準状態(0℃、1気圧)での体積を単位(slpm; standard liter per minute)として測定したものである。「Ar流量」と、「装置内気圧」とから、当該気圧におけるArの流量が求められる。Arの体積に対する温度の影響を無視して、この「当該気圧におけるArの流量」を、装置内におけるArの流量とすることができる。「結晶-熱遮蔽体間におけるAr流速」(線速度)は、この「装置内のArの流量」と、結晶と熱遮蔽体の下端開口縁部との間(Arガス流路)の面積から求めたものである。
 試験中、それぞれ0.2~0.4T(2091~4000G)の範囲内で磁場を印加し、引き上げ単結晶を7.5~9.5rpmで、石英るつぼを0.1~2.3rpmで回転させた。
 試験No.8~15では、試験No.1~7に比して、熱遮蔽体の対結晶径空隙率を大きくして結晶成長させており、これにより、表1に示す通り、対結晶径空隙率は、試験No.1~7では0.31~0.37であるのに対して、試験No.8~15では0.86と、大きくなっている。結晶-熱遮蔽体間におけるAr流速は、装置内に導入するAr流量を変えることにより、試験No.1~7の間、および試験No.8~15の間で、異ならせた。
Figure JPOXMLDOC01-appb-T000001
 図3は、表1に示した試験結果に基づくもので、結晶-熱遮蔽体(下端開口縁部)間空間部におけるAr流速と引き上げ単結晶の酸素濃度との関係を示す図である。図3において、対結晶径空隙率を小さく(0.31~0.37)した場合を、「対結晶径空隙率小」と記しており、対結晶径空隙率を大きく(0.86)した場合を、「対結晶径空隙率大」と記している。
 図3から明らかなように、Ar流速と引き上げ単結晶の酸素濃度との間に、熱遮蔽体の対結晶径空隙率が小さい場合は負の相関があり、熱遮蔽体の対結晶径空隙率が大きい場合は正の相関があることが判明した。すなわち、引き上げ単結晶の酸素濃度を低くするためには、結晶-熱遮蔽体間におけるAr流速を、対結晶径空隙率が0.31~0.37の場合には小さくしなければならないが、対結晶径空隙率が0.86の場合には大きくしなければならない。
 上記の結果から、対結晶径空隙率に応じて、例えば、装置内に導入する不活性ガスの流量を調整して、結晶-熱遮蔽体間における不活性ガスの流速を調整することにより、結晶中の酸素濃度を制御できることが確認できた。
 (実施例2)
 熱遮蔽体の対結晶径空隙率が小さい場合と大きい場合とのそれぞれについて、シリコン単結晶の径を異ならせることにより、対結晶径空隙率を異ならせて、対結晶径空隙率と引き上げ単結晶の酸素濃度との関係を調べた。装置に導入する不活性ガス(Arガス)の流量、および装置内の圧力は、一定とした。
 結果を図4に示す。図4は、熱遮蔽体の対結晶径空隙率が大きい場合と小さい場合とについて、対結晶径空隙率と、引き上げ単結晶の酸素濃度との関係を示す図である。
 図4から明らかなように、熱遮蔽体の対結晶径空隙率が小さい場合(図4に、「対結晶径空隙率小」と記す。)は、結晶径が大きくなるに従い、引き上げ単結晶の酸素濃度が低くなったが、熱遮蔽体の対結晶径空隙率が大きい場合(図4に、「対結晶径空隙率大」と記す。)は、結晶径が大きくなるに従い、引き上げ単結晶の酸素濃度が高くなった。
 装置内に導入するArガスの流量は一定なので、同じ熱遮蔽体で比較すると、対結晶径空隙率が大きくなるほど、結晶-熱遮蔽体(下端開口縁部)間におけるAr流速は小さくなる。
 図4の結果から明らかなように、対結晶径空隙率が0.72~0.92の範囲では、対結晶径空隙率が0.27~0.45の範囲に比して、対結晶径空隙率の変動に対する引き上げ単結晶の酸素濃度の変動が少ない。換言すれば、対結晶径空隙率が0.72~0.92の範囲で単結晶の育成を行うと、対結晶径空隙率が0.27~0.45の範囲で単結晶の育成を行う場合に比して、結晶中の酸素濃度に関して、外乱、特に直径変動(対結晶径空隙率の変動)に強くなる。
 対結晶径空隙率が0.27~0.45の範囲で単結晶の育成を行う場合は、対結晶径空隙率が0.72~0.92の範囲で単結晶の育成を行う場合に比して、結晶中の酸素濃度を一定にすることに関して、外乱、特に直径変動(対結晶径空隙率の変動)に弱いが、直径変動に応じて装置内に導入するArガスの流量を制御することで、外乱の影響を少なくでき、均一な酸素濃度を有する単結晶を得ることができる。
 図3の結果と図4の結果とを併せると、対結晶径空隙率が0.27~0.45の範囲では、結晶-熱遮蔽体間におけるAr流速が大きくなるほど、引き上げ単結晶の酸素濃度が低くなり、対結晶径空隙率が0.72~0.92の範囲では、結晶-熱遮蔽体間におけるAr流速が大きくなるほど、引き上げ単結晶の酸素濃度が高くなるものと考えられる。
 本発明のシリコン単結晶製造方法によれば、シリコン単結晶に含まれる酸素濃度の制御を適切に(容易にかつ安定して)行うことができる。したがって、本発明は、シリコンウェーハ(半導体デバイスの製造用)を切り出すシリコン単結晶の製造に、広く適用することができる。
1:チャンバー、 2:支持軸、 3:サセプタ、 
4:石英るつぼ、 5:ヒーター、 6:断熱材、 7:シードチャック、
8:引き上げワイヤー、 9:シリコン単結晶、 10:シリコン融液、 
11:強制冷却体、 12:熱遮蔽部体、 12a:熱遮蔽部体の側部、 
12b:熱遮蔽部体の下端部、 13:磁場印加装置、
14:ガス導入口、 15:ガス排出口

Claims (5)

  1.  引き上げ中のシリコン単結晶の周囲に引き上げ軸と同軸に熱遮蔽体を配置した単結晶引き上げ装置を使用して、チョクラルスキー法によりシリコン単結晶を製造する方法において、
     単結晶の外面と熱遮蔽体の下端開口縁部との間の空隙部の面積を単結晶の引き上げ軸に垂直な断面の面積で除した対結晶径空隙率に応じて、単結晶引き上げ装置内に導入する不活性ガスの前記空隙部における流速を調整することにより結晶中の酸素濃度を制御することを特徴とするシリコン単結晶製造方法。
  2.  前記対結晶径空隙率が0.27~0.45のときは、単結晶と熱遮蔽体との間の前記空隙部における不活性ガス流速と、結晶中の酸素濃度とが、負の相関を有し、
     前記対結晶径空隙率が0.72~0.92のときは、前記空隙部における不活性ガス流速と、結晶中の酸素濃度とが、正の相関を有する
    として、前記不活性ガスの流速調整による結晶中の酸素濃度の制御を行うことを特徴とする請求項1に記載のシリコン単結晶製造方法。
  3.  前記単結晶の引き上げを行う際に、
     前記対結晶径空隙率に応じてあらかじめ求めた前記空隙部における不活性ガス流速と結晶中の酸素濃度との関係に基づいて、
     引き上げの各段階で不活性ガスの前記空隙部における流速を調整することにより結晶中の酸素濃度を制御することを特徴とする請求項1または2に記載のシリコン単結晶製造方法。
  4.  結晶の直径変動に応じて、単結晶引き上げ装置内に導入する不活性ガスの流速を調整することにより、結晶中の酸素濃度を制御することを特徴とする請求項2または3に記載のシリコン単結晶製造方法。
  5.  前記育成するシリコン単結晶が、直径300mm以上のシリコンウェーハを切り出すことができる直径を有することを特徴とする請求項1~4のいずれかに記載のシリコン単結晶製造方法。
PCT/JP2014/005528 2013-11-05 2014-10-31 シリコン単結晶製造方法 WO2015068370A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480059891.6A CN105683424B (zh) 2013-11-05 2014-10-31 单晶硅制造方法
DE112014005069.5T DE112014005069B4 (de) 2013-11-05 2014-10-31 Silicium-Einkristall-Erzeugungsverfahren
US15/030,706 US9903044B2 (en) 2013-11-05 2014-10-31 Silicon single crystal producing method
KR1020167014130A KR101787504B1 (ko) 2013-11-05 2014-10-31 실리콘 단결정 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-229088 2013-11-05
JP2013229088A JP6268936B2 (ja) 2013-11-05 2013-11-05 シリコン単結晶製造方法

Publications (1)

Publication Number Publication Date
WO2015068370A1 true WO2015068370A1 (ja) 2015-05-14

Family

ID=53041165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005528 WO2015068370A1 (ja) 2013-11-05 2014-10-31 シリコン単結晶製造方法

Country Status (7)

Country Link
US (1) US9903044B2 (ja)
JP (1) JP6268936B2 (ja)
KR (1) KR101787504B1 (ja)
CN (1) CN105683424B (ja)
DE (1) DE112014005069B4 (ja)
TW (1) TWI593835B (ja)
WO (1) WO2015068370A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871059B1 (ko) * 2016-11-17 2018-07-20 에스케이실트론 주식회사 단결정 잉곳 성장장치
CN108505111B (zh) * 2017-02-27 2020-11-13 胜高股份有限公司 单晶的制造方法
JP6304424B1 (ja) 2017-04-05 2018-04-04 株式会社Sumco 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
JP6881214B2 (ja) * 2017-10-16 2021-06-02 株式会社Sumco シリコン単結晶の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167881A (ja) * 1996-12-13 1998-06-23 Komatsu Electron Metals Co Ltd 半導体単結晶の引き上げ方法
JP2000203985A (ja) * 1999-01-14 2000-07-25 Toshiba Ceramics Co Ltd シリコン単結晶引上装置およびこれを用いたシリコン単結晶の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2821481C2 (de) * 1978-05-17 1985-12-05 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Vorrichtung zum Ziehen von hochreinen Halbleiterstäben aus der Schmelze
JP2807609B2 (ja) * 1993-01-28 1998-10-08 三菱マテリアルシリコン株式会社 単結晶の引上装置
JP2619611B2 (ja) 1993-05-31 1997-06-11 住友シチックス株式会社 単結晶の製造装置および製造方法
KR100735902B1 (ko) 2000-02-28 2007-07-04 신에쯔 한도타이 가부시키가이샤 실리콘 단결정의 제조방법 및 실리콘 단결정
KR100558156B1 (ko) * 2003-10-31 2006-03-10 가부시키가이샤 섬코 실리콘 단결정의 육성 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167881A (ja) * 1996-12-13 1998-06-23 Komatsu Electron Metals Co Ltd 半導体単結晶の引き上げ方法
JP2000203985A (ja) * 1999-01-14 2000-07-25 Toshiba Ceramics Co Ltd シリコン単結晶引上装置およびこれを用いたシリコン単結晶の製造方法

Also Published As

Publication number Publication date
TWI593835B (zh) 2017-08-01
DE112014005069T5 (de) 2016-08-25
JP2015089854A (ja) 2015-05-11
US20160251774A1 (en) 2016-09-01
KR20160075757A (ko) 2016-06-29
TW201534775A (zh) 2015-09-16
CN105683424A (zh) 2016-06-15
KR101787504B1 (ko) 2017-10-18
JP6268936B2 (ja) 2018-01-31
CN105683424B (zh) 2018-12-28
US9903044B2 (en) 2018-02-27
DE112014005069B4 (de) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2015068370A1 (ja) シリコン単結晶製造方法
JP5240191B2 (ja) シリコン単結晶引上装置
JP2008100904A (ja) チョクラルスキー法を用いた半導体単結晶製造方法、この方法により製造された半導体単結晶インゴット及びウエハー
TWI687558B (zh) 矽單結晶的製造方法及矽單結晶的拉引裝置
JP5052493B2 (ja) シリコン単結晶の製造方法
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
WO2012114375A1 (ja) N型シリコン単結晶の製造方法及びリンドープn型シリコン単結晶
JP6471683B2 (ja) シリコン単結晶の製造方法
CN108291327B (zh) 单晶硅的制造方法及单晶硅
JP2010155726A (ja) 単結晶の育成方法及びその方法で育成された単結晶
JP2005015296A (ja) 単結晶の製造方法及び単結晶
WO2014188666A1 (ja) シリコン単結晶の製造方法
JP2011219319A (ja) 単結晶の製造方法および半導体ウェーハの製造方法
JP7249913B2 (ja) シリコン単結晶の製造方法
KR101871059B1 (ko) 단결정 잉곳 성장장치
KR20100071507A (ko) 실리콘 단결정 제조 장치, 제조 방법 및 실리콘 단결정의 산소 농도 조절 방법
JP2009221060A (ja) シリコン単結晶の引上げ方法
JP2008019128A (ja) 単結晶製造装置、単結晶製造方法および単結晶
JP5136252B2 (ja) シリコン単結晶の育成方法
JP5077320B2 (ja) N型シリコン単結晶の製造方法及びリンドープn型シリコン単結晶
KR101818250B1 (ko) 잉곳 성장 장치
CN117089923A (zh) 改善半导体硅单晶棒微缺陷的拉晶方法及单晶晶棒
JP2014129236A (ja) シリコン単結晶の欠陥解析方法
KR20130029876A (ko) 단결정 잉곳 제조 방법 및 장치
JP2005276875A (ja) シリコン単結晶ウェーハの製造方法及びシリコン単結晶ウェーハ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859709

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030706

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140050695

Country of ref document: DE

Ref document number: 112014005069

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167014130

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14859709

Country of ref document: EP

Kind code of ref document: A1