WO2015067133A1 - 一种负载型催化剂及其制备方法和应用及卤代甲烷制异丁烯的方法 - Google Patents

一种负载型催化剂及其制备方法和应用及卤代甲烷制异丁烯的方法 Download PDF

Info

Publication number
WO2015067133A1
WO2015067133A1 PCT/CN2014/089683 CN2014089683W WO2015067133A1 WO 2015067133 A1 WO2015067133 A1 WO 2015067133A1 CN 2014089683 W CN2014089683 W CN 2014089683W WO 2015067133 A1 WO2015067133 A1 WO 2015067133A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
content
zinc
gas
carrier
Prior art date
Application number
PCT/CN2014/089683
Other languages
English (en)
French (fr)
Other versions
WO2015067133A8 (zh
Inventor
方向晨
张舒冬
张信伟
张喜文
孙晓丹
李�杰
倪向前
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司抚顺石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to JP2016552658A priority Critical patent/JP6268305B2/ja
Priority to EP14859617.4A priority patent/EP3056269B1/en
Priority to DK14859617.4T priority patent/DK3056269T3/da
Priority to KR1020167014981A priority patent/KR101840772B1/ko
Priority to US15/034,913 priority patent/US10087122B2/en
Publication of WO2015067133A1 publication Critical patent/WO2015067133A1/zh
Publication of WO2015067133A8 publication Critical patent/WO2015067133A8/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • C07C1/30Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms by splitting-off the elements of hydrogen halide from a single molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/138Compounds comprising a halogen and an alkaline earth metal, magnesium, beryllium, zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11

Definitions

  • the present invention relates to a supported catalyst, a process for the preparation thereof and an application thereof, and a process for producing isobutylene from a halogenated methane using the supported catalyst.
  • Isobutylene is an important basic organic chemical raw material, with many derivative products, complex upstream and downstream industrial chains, and diversified consumption structure. Isobutylene can be used as a raw material to prepare a variety of high value-added products, such as butyl rubber, polyisobutylene, methyl tert-butyl ether, isoprene and organic glass, and other organic chemical raw materials and fine chemical products.
  • high value-added products such as butyl rubber, polyisobutylene, methyl tert-butyl ether, isoprene and organic glass, and other organic chemical raw materials and fine chemical products.
  • Methane is the main component of natural gas, so methane conversion and utilization has become an important research content in natural gas chemical technology. Especially in recent years, in the context of the development and utilization of shale gas, if the production of isobutylene from methane can be achieved, it will provide a new way to obtain isobutylene. However, methane is stable in nature and difficult to activate, which has become a bottleneck for methane chemical utilization. Many researchers at home and abroad have carried out methane activation and transformation research. Among them, the technology of methane undergoing halogen functionalization and then conversion is expected to become an important breakthrough to solve the problem of methane conversion technology.
  • CN101041609A and CN101284232A disclose a method for converting methane into methyl bromide under the action of oxygen and HBr/H 2 O, and then further reacting methyl bromide to form a C3-C13 mixed high-carbon hydrocarbon, and the hydrocarbon selectivity above C5. It is 70%.
  • HBr is used for bromination of methane in the first reactor, then released in the second reactor, and recovered and used in the previous step to realize the recycling of HBr.
  • a modified molecular sieve catalyst for producing methyl halide from propylene and preparation thereof method.
  • the molecular sieve is modified by using a fluorine-containing compound to obtain a catalyst having a suitable microporous structure and acidity, which is effective for catalyzing the conversion of methyl halide to propylene.
  • the single-pass methyl bromide conversion rate of the prepared catalyst in the conversion of methyl bromide to propylene is 35 to 99%, the selectivity of propylene is 27 to 70%; and the single-pass methyl chloride conversion rate in the reaction of converting methyl chloride to propylene is 30 to 99. %, the selectivity of propylene is 15 to 70%.
  • Ivan M discloses a modified molecular sieve catalyst for producing methyl halide from propylene and preparation thereof method.
  • the molecular sieve is modified by using a fluorine-containing compound to obtain a catalyst having a suitable microporous structure and acidity, which is effective for cataly
  • Lorkovic et al. (Ivan M. Lorkovic, Aysen Yilmaz, Gurkan A. Yilmaz, et al. Catalysis Today, 2004, 98, 317-322) also proposed the reaction of bromine with alkanes in natural gas to form bromohydrocarbons, and then The brominated hydrocarbon is converted to dimethyl ether, methanol and metal bromide on a metal oxide catalyst, and the metal bromide is regenerated with oxygen to obtain a metal oxide and release elemental bromine, thereby completing the bromine cycle.
  • the target products in the prior literature on the conversion of methyl halide are mainly methanol, dimethyl ether, acetic acid, high carbon hydrocarbons, ethylene and propylene, and the like.
  • the selectivity of a single product is not high, and there has been no report on the highly selective synthesis of isobutylene by methyl bromide.
  • the present invention provides a supported catalyst for highly selective formation of isobutylene by methyl halide, a preparation method and application thereof.
  • a supported catalyst characterized in that the catalyst comprises a carrier and a metal active component supported on a carrier, the metal active component comprising zinc oxide and zinc halide, And based on the total amount of the catalyst, the content of zinc oxide is 0.5%-20%, the content of zinc halide is 10%-50%, and the content of the carrier is 40%-88%.
  • a method for producing a supported catalyst characterized in that the method comprises the steps of: introducing zinc oxide into a carrier, and then subjecting the carrier after the introduction of zinc oxide to a halogenation treatment.
  • the invention provides the use of the above supported catalyst in the manufacture of isobutylene.
  • a process for producing isobutylene from a halogenated methane which comprises subjecting the supported catalyst to hydrogen reduction activation such that the halogen content of the catalyst is the total halogen content of the catalyst before reduction. 20% to 90%, and then the methyl halide is contacted with the above hydrogen-reduced activated catalyst to prepare isobutylene.
  • the catalyst of the present invention can convert a highly selective conversion of methyl halide to isobutylene as compared to the prior art.
  • the conversion of methyl bromide to isobutene is carried out, the conversion of methyl bromide is over 90%, and the selectivity of isobutylene is more than 80%.
  • the preparation method of the catalyst is simple and easy to industrialize.
  • the method for converting methyl bromide to isobutylene has the advantages of mild reaction conditions and high product selectivity, and is easy to realize industrialization, and has a broad application prospect.
  • a supported catalyst characterized in that the catalyst comprises a carrier and a metal active component supported on a carrier, the metal active component comprising zinc oxide and zinc halide, And based on the total amount of the catalyst, the content of zinc oxide is 0.5%-20%, the content of zinc halide is 10%-50%, and the content of the carrier is 40%-88%.
  • the content of zinc oxide is 1%-15%, the content of zinc halide is 15%-45%, and the content of carrier is 50%-84%, based on the total amount of the catalyst.
  • the content of zinc oxide is 1% to 9%, the content of zinc halide is 18% to 39%, and the content of the carrier is 55% to 80%.
  • the zinc halide may be selected from one or more of zinc fluoride, zinc chloride, zinc bromide, and zinc iodide.
  • the support may be one or more of alumina, silica, or ZSM-5 molecular sieves.
  • the zinc halide is zinc bromide and the support is alumina.
  • the alumina may be one or more of ⁇ -alumina and ⁇ -alumina.
  • the catalyst further contains an appropriate amount of an auxiliary agent selected from one or more of Ti, Zr, Ce, and La. Further preferably, the auxiliary agent is zirconium.
  • the auxiliary agent is contained in the catalyst in an amount of from 0.1% to 10% by weight, more preferably from 0.5% to 5%, still more preferably from 0.5% to 3%.
  • the supported catalyst according to the present invention wherein the NH 3 -TPD method measures a total acid amount of 0.5 mmol/g to 1.3 mmol/g at 450 ° C or less, and an acid content of 250 ° C to 350 ° C as a total acid of 450 ° C or less.
  • the total acid amount below 450 ° C in the catalyst is 0.6 mmol / g - 1.2 mmol / g
  • the acid content of 250 ° C - 350 ° C accounts for 30% - 80 of the total acid amount below 450 ° C
  • the total acid amount of the catalyst below 450 ° C is from 0.7 mmol to 1.1 mmol / g
  • the acid content of from 250 ° C to 350 ° C is from 40% to 80% of the total acid amount below 450 ° C.
  • the acid corresponding to 150 to 250 ° C measured by the NH 3 -TPD method is a weak acid
  • the acid corresponding to 250 to 400 ° C is a medium strong acid
  • the acid corresponding to 400 to 500 ° C is a strong acid
  • the amount of weak acid, medium strong acid and strong acid is a strong acid
  • the method comprises the steps of: introducing zinc oxide into a carrier, and then subjecting the carrier after the introduction of zinc oxide to a halogenation treatment.
  • the introduction amount of zinc oxide and the conditions of the halogenation treatment are such that the content of zinc oxide is 0.5% to 20% by weight, and the content of zinc halide is 10% to 50% by weight based on the total amount of the supported catalyst.
  • the content is 40%-88%.
  • the content of zinc oxide is 1%-15%
  • the content of zinc halide is 15%-40%
  • the content of the carrier is 50%-84%
  • the content of zinc oxide is 1%-9%
  • the content of the zinc halide is 18% to 39%
  • the content of the carrier is 55% to 80%.
  • the carrier after the introduction of zinc oxide can be subjected to a halogenation treatment in various ways as long as the zinc oxide therein is appropriately converted into a zinc halide.
  • the halogenation treatment comprises contacting the gas phase halogen-containing compound with a support after introducing the zinc oxide, and the contact conditions are such that the zinc oxide on the support is partially converted into a halogenation. Zinc.
  • the gas phase halogen-containing compound may be directly contacted with the carrier after the introduction of the zinc oxide, or the gas phase halogen-containing compound may be contacted with the carrier after the introduction of the zinc oxide in the form of a gas mixture of a halogen-containing compound and an inert gas, and the gas phase in the mixed gas is contained.
  • the concentration of the halogen compound is not less than 20% by volume, preferably not less than 30% by volume, more preferably 30 to 90% by volume, still more preferably 50 to 80% by volume.
  • the gas phase halogen-containing compound may be a halogen-containing compound which is a gas under contact conditions, preferably a halogenated methane, further preferably one or more of a monohalogenated methane, a dihalogenated methane, and a trihalomethane.
  • a halogenated methane preferably one or more of a monohalogenated methane, a dihalogenated methane, and a trihalomethane.
  • kind. Preferred is monohalomethane.
  • the halogen may be one or more of F, Cl, Br and I, preferably Cl and/or Br.
  • the gas phase halogen-containing compound is monobromomethane.
  • the manner of contacting preferably comprises placing the support after the introduction of zinc oxide in a continuous flow fixed bed reactor, raising the temperature to 150 ° C to 400 ° C under an inert atmosphere, introducing a halogen-containing compound in the gas phase or containing a halogen in the gas phase.
  • a mixed gas of the compound a gas space velocity of 50 h -1 -1000 h -1 ; a contact pressure of 0.1 MPa - 0.5 MPa, and a time of 0.5 h - 8 h; preferably, the temperature is raised to 180 ° C - 350 ° C in an inert atmosphere, more preferably To 200 ° C -300 ° C, the gas space velocity is 100h -1 -500h -1 ; the contact pressure is 0.1MPa-0.3MPa, and the time is 1h-4h.
  • the pressure is absolute.
  • the airspeed is a volume airspeed.
  • the manner of introducing zinc oxide into the carrier can be carried out by various methods in the prior art, for example, by impregnation, or by kneading during molding, and also by a carrier preparation process such as gelation. Introduced during precipitation. It is preferably introduced by means of impregnation, that is, a soluble compound of zinc is prepared as an immersion liquid, and then the carrier is immersed in the immersion liquid, followed by drying and baking.
  • the soluble compound of zinc may be a soluble inorganic salt and/or an organic salt of zinc, such as one or more of a chloride salt, a nitrate salt, a sulfate salt, a hydrochloride salt, an acetate salt, and a citrate salt.
  • concentration of the impregnation liquid is from 5 g/liter to 300 g/liter, preferably from 20 g/liter to 200 g/liter, further preferably from 40 g/liter to 160 g/liter, based on the zinc element. It can be impregnated with an equal volume or supersaturated.
  • the adjuvant can be introduced before, after or simultaneously with the zinc oxide. It may be introduced by impregnation, or may be introduced by kneading during molding, or may be introduced during preparation of a carrier such as gelation or coprecipitation.
  • the method is introduced by using a dipping method. The specific method is as follows: the carrier after being impregnated with a zinc salt or a metal salt solution is dried, calcined and then halogenated or the carrier after being impregnated with a zinc salt solution is dried and calcined. After halogenation treatment, finally, the auxiliary metal salt solution is impregnated, and after drying and calcination, a halogenated methane to isobutylene catalyst is obtained.
  • the drying temperature may be from 50 ° C to 200 ° C, preferably from 60 ° C to 150 ° C, more preferably from 80 ° C to 120 ° C; Drying time is 1h-24h, preferably 4h-8h; drying can be vacuum drying, drying under inert gas protection conditions, and drying under air atmosphere; baking temperature is 200°C-800°C, preferably 400 °C-600 ° C; calcination time is 1h-24h, preferably 4h-8h; roasting can be calcined under inert gas protection conditions, or can be calcined under air atmosphere.
  • the carrier may be an existing commercial product or may be prepared by methods well known to those skilled in the art.
  • the carrier may be formed or selected in a suitable particle form, such as in the form of a strip, a sheet, a cylinder, a sphere, or the like, depending on the needs of use. Forming can be carried out according to the general knowledge in the art.
  • the invention also provides the use of the above supported catalyst in the manufacture of isobutylene.
  • the present invention also provides a method for producing isobutylene from a halogenated methane, the method comprising: performing hydrogen reduction activation on the supported catalyst, wherein the halogen content in the catalyst is 20%-90% of the total halogen content in the catalyst before reduction, and then The methyl halide is contacted with the above hydrogen-reduced activated catalyst to prepare isobutylene.
  • the hydrogen reduction activation conditions are such that the halogen content in the catalyst is preferably from 30% to 80%, more preferably from 40% to 80%, based on the total halogen content of the catalyst before reduction.
  • the hydrogen reduction methods include activation of the catalyst was heated to 300 °C -600 °C under an inert atmosphere; then purged with hydrogen gas or hydrogen gas space velocity is 200h -1 -2000h -1 in an inert
  • the mixed gas of gas is maintained at 0.1 MPa-0.5 MPa for 2 h-16 h, and the volume percentage of hydrogen in the mixed gas is 10%-95%; preferably, the temperature is raised to 350 ° C - 550 ° C; then the space velocity is 500 h - 1 - 1000 h -1 of hydrogen or a mixed gas of hydrogen and an inert gas is maintained at 0.1 MPa - 0.3 MPa for 4 h - 8 h, and the volume percentage of hydrogen in the mixed gas is 30% - 90%.
  • the methyl halide may be one or more of monohalomethane, dihalomethane, and trihalomethane, preferably one or more of monobromomethane, dibromomethane, and tribromomethane. .
  • the conditions of the contacting include a reaction temperature of 150 ° C to 350 ° C; a reaction pressure of 0.1 MPa to 5 MPa; a space velocity of 50 h -1 to 1000 h -1 ; more preferably, the reaction temperature is 180 ° C to 300 ° C. Preferably, it is 200-270 ° C; the reaction pressure is 0.1 MPa - 3 MPa; and the space velocity is 200 h -1 - 500 h -1 .
  • the method for producing isobutylene from a halogenated methane comprises heating the catalyst to 300 ° C to 600 ° C, preferably 350 ° C to 550 ° C under an inert atmosphere; and then introducing a space velocity of 200 h - 1 -2000h -1 , preferably 500h -1 -1000h -1 of hydrogen or a mixed gas of hydrogen and an inert gas, treated at 0.1MPa-0.5MPa (absolute pressure), preferably 0.1MPa-0.3MPa (absolute pressure) for 2h After 16h, preferably 4h-8h, the reaction is carried out by introducing a methyl halide to the reaction temperature.
  • the volume percentage of hydrogen in the mixed gas is from 10% to 95%, preferably from 30% to 90%, more preferably from 50% to 90%.
  • the raw material may also be a mixed gas of a halogenated methane and an inert gas, and the volume concentration of the methyl halide in the mixed gas is from 10% to 90%, preferably from 30% to 80%.
  • the inert gas involved in the above application is a gas which does not undergo a chemical reaction under the conditions of the present invention, such as nitrogen gas, argon gas or helium gas, and is preferably nitrogen gas.
  • reaction of methyl halide to isobutylene can be carried out in any existing reactor, such as a fixed bed, a fluidized bed, a fixed fluidized bed, a moving bed, a slurry bed or a fluidized bed. It is a fixed bed, fluidized bed reactor.
  • the acid amount was measured by the NH 3 -TPD method, and the instrument model used was the American MICROMERITICS AutoChem 2920 chemical adsorption instrument.
  • the specific measurement process was as follows: the sample was cooled at 450 ° C with helium gas for 1 hour and then cooled. To 150 ° C, a mixture of ammonia and helium gas was introduced, the volume content of ammonia was 10%, and the pulse was adsorbed five times to reach equilibrium; the helium gas was purged for 2 hours, and then the temperature was ramped at 10 ° C / min to carry out ammonia desorption to 450. °C; The desorbed ammonia was detected by TCD detector to quantitatively calculate the acidity of the catalyst surface.
  • the contents of Br element and Zn element were measured by XRF (X-ray fluorescence spectrometry) method, and the instrument model was a ZSX X fluorescence spectrometer of Rigaku Corporation of Japan.
  • the ZnBr 2 content was calculated from the Br element content, and the ZnO content was calculated by subtracting the Zn content in the ZnBr 2 from the total Zn content.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 600 ° C for 4 h. 5g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with methyl bromide. The treatment conditions were 250 ° C, 0.2 MPa (absolute pressure), 100 h -1 , time 2 h to obtain isobutylene of methyl halide.
  • Catalyst denoted as C-1.
  • the weight composition of the catalyst is 27% by weight of ZnBr 2 , 6% by weight of ZnO, the total acid amount of the catalyst below 450 ° C is 0.92 mmol / g, and the acid content of 250 ° C - 350 ° C is 55.1 of the total acid amount below 450 ° C. %.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst loading is 5g
  • the raw material gas is a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane is 50%, the reaction temperature is 230 ° C, the reaction pressure is 1 MPa (absolute pressure), the space velocity is 500 h -1 , and the feed gas is introduced.
  • the procatalyst was activated under a hydrogen atmosphere with a reduction condition of 400 ° C, 0.2 MPa (absolute pressure), 1000 h -1 , and a reduction time of 4 h.
  • the halogen content in the catalyst after reduction was 67.51% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 500 ° C for 8 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h.
  • a halogenated methane to isobutylene catalyst denoted as C-2.
  • the weight composition of the catalyst is ZnBr 2
  • the weight content of the bromine is 30%
  • the weight content of ZnO is 4% by weight of the oxide
  • the total acid amount of the catalyst below 450 ° C is 0.93 mmol / g
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst is 53.47% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the volume concentration of monobromomethane was 30%, and the treatment conditions were 300 ° C, 0.1 MPa (absolute pressure), 500 h. -1 , 4h, to obtain a halogenated methane to isobutylene catalyst, denoted as C-3.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 33%, the weight content of ZnO is 2% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 0.95 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 75.5% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 80%, the reaction temperature was 200 ° C, the reaction pressure was 3 MPa (absolute pressure), and the space velocity was 350 h -1 .
  • the catalyst is activated in a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 50%, the reduction conditions are 500 ° C, 0.1 MPa (absolute pressure), 500 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst was 47.22% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 500 ° C for 8 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with methyl bromide at a treatment condition of 200 ° C, 0.3 MPa (absolute pressure), 300 h -1 , and 1 h to obtain an isobutylene of methyl halide.
  • Catalyst denoted as C-4.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 18% by weight, the weight content of ZnO is 2% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 0.72 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 66.8% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 30%, the reaction temperature was 270 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 350 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 70%, the reduction conditions are 350 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 6 h, catalyst after reduction.
  • the halogen content in the catalyst was 57.81% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 500 ° C for 6 h under nitrogen atmosphere. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 70%, and the treatment conditions were 200 ° C, 0.3 MPa (absolute pressure), 300 h.
  • a catalyst for the formation of isobutylene from methyl halide was recorded as C-5.
  • the weight composition of the catalyst is ZnBr 2
  • the weight content of the bromine is 39% by weight
  • the weight content of ZnO is 6% by weight of the oxide
  • the total acid amount of the catalyst below 450 ° C is 0.98 mmol / g
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was charged in 5 g, the raw material gas was monobromomethane, the reaction temperature was 270 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 350 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen, the volume content of hydrogen in the mixed gas is 60%, the reduction condition is 550 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 8 h, catalyst after reduction
  • the halogen content in the catalyst is 41.37% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by drying in an atmosphere for 4 h and calcination at 500 ° C for 4 h in a nitrogen atmosphere.
  • the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with methyl bromide at a treatment condition of 250 ° C, 0.2 MPa (absolute pressure), 100 h -1 , and 1 h, denoted as C-6.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 35%, the weight content of ZnO is 9% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 0.94 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 57.3% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was charged in 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 50%, the reaction temperature was 230 ° C, the reaction pressure was 0.1 MPa (absolute pressure), and the space velocity was 500 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction condition is 450 ° C, 0.2 MPa (absolute pressure), 1000 h -1 , reduction time 4 h, catalyst after reduction
  • the halogen content in the catalyst is 58.39% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 90%, and the treatment conditions were 300 ° C, 0.1 MPa (absolute pressure), 500 h.
  • a halogenated methane to isobutylene catalyst denoted as C-7.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 20% by weight, the weight content of ZnO is 1% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 0.79 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 74.9% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 80%, the reaction temperature was 200 ° C, the reaction pressure was 3 MPa (absolute pressure), and the space velocity was 350 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 90%, the reduction conditions are 500 ° C, 0.1 MPa (absolute pressure), 500 h -1 , reduction time 6 h, catalyst after reduction.
  • the halogen content in the catalyst was 51.94% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO-Zr/Al 2 O 3 was prepared by drying at 120 ° C for 4 h and calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen.
  • the volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h. -1 , time 2h, to obtain a halogenated methane to isobutylene catalyst, denoted as C-8.
  • the weight composition of the catalyst is ZnBr 2 in terms of bromide, the weight content is 30%, the ZnO is 4% by weight of the oxide, the Zr is 2% by weight of the element, and the total acid amount of the catalyst below 450 ° C is 0.97 mmol / g, the acid content of 250 ° C - 350 ° C accounted for 69.7% of the total acid amount below 450 ° C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst was 39.14% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO-Ce/Al 2 O 3 was prepared by drying at 120 ° C for 4 h and calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen.
  • the volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h. -1 , time 2h, to obtain a halogenated methane isobutene catalyst, denoted as C-9.
  • the weight composition of the catalyst is ZnBr 2 in terms of bromide, the weight content is 30%, the ZnO is 4% by weight based on the oxide, the Ce content is 1% by weight, and the total acid amount in the catalyst below 450 ° C is 0.91 mmol / g, the acid content of 250 ° C - 350 ° C accounted for 68.9% of the total acid amount below 450 ° C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst is 63.73% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed.
  • the reaction results are shown in Table 1.
  • the catalyst precursor ZnO-La/Al 2 O 3 was prepared by drying at 120 ° C for 4 h and calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen.
  • the volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h. -1 , time 2h, to obtain a halogenated methane to isobutylene catalyst, denoted as C-10.
  • the weight composition of the catalyst is ZnBr 2 in terms of bromide, the weight content is 30%, the ZnO is 4% by weight of the oxide, the La content is 0.5% by weight, and the total acid amount in the catalyst below 450 ° C is 0.87 mmol / g, the acid content of 250 ° C - 350 ° C accounted for 65.3% of the total acid amount below 450 ° C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst is 62.72% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO-Ti/Al 2 O 3 was prepared by drying at 120 ° C for 4 h and calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen.
  • the volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h. -1 , time 2h, to obtain a halogenated methane isobutene catalyst, denoted as C-11.
  • the weight composition of the catalyst is ZnBr 2 in terms of bromide, the weight content is 30%, the ZnO is 4% by weight of the oxide, the Ti content is 3% by weight, and the total acid amount of the catalyst below 450 ° C is 0.96 mmol / g, the acid content of 250 ° C - 350 ° C accounted for 63.4% of the total acid amount below 450 ° C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst was 53.62% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by drying for 4 h and calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h.
  • a halogenated methane to isobutylene catalyst denoted as C-12.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 30%, the weight content of ZnO is 4% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 0.87 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 65.7% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst is 47.89% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/SiO 2 was prepared by calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h.
  • a halogenated methane to isobutylene catalyst denoted as C-13.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 30%, the weight content of ZnO is 4% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 1.08 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 49.7% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction condition is 400 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction
  • the halogen content in the catalyst is 31.28% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h. -1 , time 2h, to obtain a halogenated methane to isobutylene catalyst, denoted as C-14.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 30%, the weight content of ZnO is 4% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 0.74 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 48.7% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction condition is 400 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction
  • the halogen content in the catalyst is 79.73% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h.
  • the weight composition of the catalyst is ZnBr 2 in terms of bromide, the weight content is 30%, the ZnO is 4% by weight of the oxide, the Zr is 1% by weight of the element, and the total acid amount of the catalyst below 450 ° C is 0.72 mmol / g, the acid content of 250 ° C - 350 ° C accounted for 71.4% of the total acid amount below 450 ° C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst is 42.57% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 500 ° C for 4 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h.
  • the weight composition of the catalyst is ZnBr 2 in terms of bromide, the weight content is 30%, the ZnO is 4% by weight based on the oxide, the Ce content is 0.5% by weight, and the total acid amount in the catalyst below 450 ° C is 0.81 mmol / g, the acid content of 250 ° C - 350 ° C accounted for 69.3% of the total acid amount below 450 ° C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 500 h -1 , reduction time 6 h, catalyst after reduction.
  • the halogen content in the catalyst is 65.49% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • a supported catalyst was prepared according to the method of Example 16 and a reaction of methyl bromide to isobutylene was carried out, except that alumina having a pore volume of 0.51 ml/g, a specific surface area of 162.4 m 2 /g, a strip shape and an equivalent diameter of 1 mm was used.
  • the carrier was used to prepare an isobutylene catalyst made of methyl halide, which was designated as C-17.
  • the total acid amount of the catalyst obtained at 450 ° C or lower was 0.72 mmol / g, and the acid content at 250 ° C - 350 ° C accounted for 70.5% of the total acid amount below 450 ° C.
  • the halogen content in the catalyst after reduction activation is 72.57% of the total halogen content in the catalyst before reduction.
  • the catalyst properties and reaction results are shown in Table 1.
  • the supported catalyst was prepared in the same manner as in Example 16 except that methyl bromide was replaced with methylene chloride in the same molar amount of dichloromethane.
  • the conversion of methylene chloride was 97.4%, and the selectivity of isobutylene. It is 67.9%.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 30%, the reaction temperature was 270 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 350 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of oxygen in the mixed gas is 70%, the reduction conditions are 350 ° C, 0.3 MPa (absolute pressure), 800 h -1 , and the reduction time is 6 h.
  • the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst precursor ZnO/Al 2 O 3 was prepared by calcination at 500 ° C for 8 h. 5 g of the catalyst precursor was placed in a continuous flow fixed bed reactor, and the catalyst precursor was treated with a mixed gas of monobromomethane and nitrogen. The volume concentration of monobromomethane was 80%, and the treatment conditions were 250 ° C, 0.3 MPa (absolute pressure), 300 h.
  • a halogenated methane to isobutylene catalyst denoted as D-2.
  • the weight composition of the catalyst is ZnBr 2 , the weight content of the bromine is 30%, the weight content of ZnO is 4% by weight of the oxide, the total acid amount of the catalyst below 450 ° C is 0.93 mmol / g, and the acid content of 250 ° C - 350 ° C. It accounts for 63.2% of the total acid amount below 450 °C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 . After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the weight composition of the catalyst was obtained as ZnBr 2 in an amount of 30% by weight based on the bromide, the total acid amount in the catalyst below 450 ° C was 1.01 mmol/g, and the acid content in the range of 250 ° C to 350 ° C was 74.3% of the total acid amount below 450 ° C.
  • the conversion of methyl bromide to isobutene is carried out in a continuous flow micro fixed bed reactor.
  • the catalyst was loaded in an amount of 5 g, and the raw material gas was a mixed gas of monobromomethane and nitrogen, wherein the volume of monobromomethane was 70%, the reaction temperature was 230 ° C, the reaction pressure was 2 MPa (absolute pressure), and the space velocity was 200 h -1 .
  • the catalyst is activated under a mixed atmosphere containing hydrogen.
  • the volume of hydrogen in the mixed gas is 80%, the reduction conditions are 450 ° C, 0.3 MPa (absolute pressure), 800 h -1 , reduction time 4 h, catalyst after reduction.
  • the halogen content in the catalyst is 91.27% of the total halogen content in the catalyst before reduction. After the reaction was stable for one hour, the sample was analyzed. The reaction results are shown in Table 1.
  • the catalyst of the present invention has significantly higher methyl bromide conversion and isobutane selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种负载型催化剂及其制备方法和应用以及卤代甲烷制异丁烯的方法,其特征在于:该催化剂含有载体和负载在载体上的金属活性组分,所述金属活性组分含有氧化锌和卤化锌,且以催化剂的总量为基准,按重量含量计,氧化锌的含量为0.5%-20%,卤化锌的含量为10%-50%,载体的含量为40%-88%。与现有技术相比,本发明的催化剂可以将卤代甲烷高选择性的转化为异丁烯。按本发明方法进行溴甲烷转化制异丁烯反应,溴甲烷转化率90%以上,异丁烯选择性80%以上。

Description

一种负载型催化剂及其制备方法和应用及卤代甲烷制异丁烯的方法 技术领域
本发明涉及一种负载型催化剂及其制备方法和应用以及使用该负载型催化剂由卤代甲烷制异丁烯的方法。
背景技术
异丁烯是一种重要的基本有机化工原料,其衍生产品众多,上下游产业链复杂,消费结构呈多元化趋势。以异丁烯为原料可以制备多种高附加值的产品,如:丁基橡胶、聚异丁烯、甲基叔丁基醚、异戊二烯和有机玻璃等多种有机化工原料和精细化学产品。由于异丁烯下游产品的市场规模不断扩大,其供需矛盾将逐渐突出,特别是在石油资源日益枯竭的背景下,异丁烯的产量已成为制约下游产业发展的关键瓶颈。因此,开发非石油路线的异丁烯制备路线,已经迫在眉睫。
甲烷是天然气的主要成分,因此甲烷转化利用就成为天然气化工技术中的重要研究内容。特别是近年来,在页岩气开发利用的大背景下,如果能够实现从甲烷出发制取异丁烯,就会为获取异丁烯提供一条新的途径。但是甲烷性质稳定,不易活化,成为甲烷化工利用的瓶颈。国内外许多研究者纷纷开展甲烷活化、转化研究,这其中,甲烷经卤素官能团化后再转化的技术,有望成为解决甲烷转化技术难题的一个重要突破口。
从卤代甲烷出发可以制备许多化工产品。CN101041609A、CN101284232A公开了一种将甲烷在氧气和HBr/H2O的作用下转化为溴代甲烷,然后溴代甲烷进一步反应生成C3~C13混合高碳烃的方法,C5以上的烃类选择性为70%。其中,HBr在第一个反应器内用于甲烷溴化,然后在第二个反应器内释放,经回收后再用于前一步反应中,实现HBr的循环使用。王野等(Jieli He,Ting Xu,Zhihui Wang,et.al.Angew.Chem.Int.Ed.2012,51,2438-2442)公开了一种卤代甲烷制丙烯的改性分子筛催化剂及其制备方法。通过使用含氟化合物修饰处理分子筛,得到一种含有合适微孔结构及酸性的催化剂,该催化剂可以有效催化卤代甲烷转化生成丙烯的反应。所制备的催化剂在溴甲烷转化制丙烯的反应中单程溴甲烷转化率为35~99%,丙烯的选择性为27~70%;在氯甲烷转化制丙烯的反应中单程氯甲烷转化率为30~99%,丙烯的选择性为15~70%。Ivan M.Lorkovic等人(Ivan M.Lorkovic,Aysen Yilmaz,Gurkan A.Yilmaz,et al.Catalysis Today,2004,98,317-322)也 提出用溴与天然气中的烷烃反应生成溴代烃,然后在金属氧化物催化剂上将溴代烃转化为二甲醚、甲醇和金属溴化物,金属溴化物用氧气再生后得到金属氧化物并释放出单质溴,完成了溴的循环。
目前,关于卤代甲烷转化的现有文献中目的产物主要为甲醇、二甲醚、醋酸、高碳烃类、乙烯与丙烯等等。在以较高附加值的低碳烯烃为目标产物的技术中,单一产物选择性不高,尚未发现溴甲烷高选择性合成异丁烯的相关报道。
发明内容
针对现有技术的不足,本发明提供了一种卤代甲烷高选择性生成异丁烯的负载型催化剂及其制备方法和应用。
根据本发明的第一方面,本发明提供了一种负载型催化剂,其特征在于:该催化剂含有载体和负载在载体上的金属活性组分,所述金属活性组分含有氧化锌和卤化锌,且以催化剂的总量为基准,按重量含量计,氧化锌的含量为0.5%-20%,卤化锌的含量为10%-50%,载体的含量为40%-88%。
根据本发明的第二方面,本发明提供了一种负载型催化剂的制备方法,其特征在于:该方法包括如下步骤:将氧化锌引入至载体,然后对引入氧化锌后的载体进行卤化处理。
根据本发明的第三方面,本发明提供了上述负载型催化剂在制异丁烯中的应用。
根据本发明的第四方面,本发明提供了一种卤代甲烷制异丁烯的方法,该方法包括对上述负载型催化剂进行氢气还原活化,使催化剂中的卤素含量为还原前催化剂中卤素总含量的20%-90%,然后使卤代甲烷与上述氢气还原活化后的催化剂接触,以制备异丁烯。
与现有技术相比,本发明的催化剂可以将卤代甲烷高选择性的转化为异丁烯。按本发明方法进行溴甲烷转化制异丁烯反应,溴甲烷转化率90%以上,异丁烯选择性80%以上。并且该催化剂的制备方法简单,易于工业化。本发明溴甲烷转化制异丁烯方法具有反应条件温和、产物选择性高等优点,容易实现工业化,应用前景非常广阔。
具体实施方式
根据本发明的第一方面,本发明提供了一种负载型催化剂,其特征在于:该催化剂含有载体和负载在载体上的金属活性组分,所述金属活性组分含有氧化锌和卤化锌, 且以催化剂的总量为基准,按重量含量计,氧化锌的含量为0.5%-20%,卤化锌的含量为10%-50%,载体的含量为40%-88%。
优选情况下,以催化剂的总量为基准,按重量含量计,氧化锌的含量为1%-15%,卤化锌的含量为15%-45%,载体的含量为50%-84%,优选地,氧化锌的含量为1%-9%,卤化锌的含量为18%-39%,载体的含量为55%-80%。
根据本发明,所述卤化锌可以选自氟化锌、氯化锌、溴化锌、碘化锌中的一种或几种。所述载体可以为氧化铝、氧化硅、ZSM-5分子筛中的一种或几种。
优选地,所述卤化锌为溴化锌,所述载体为氧化铝。所述氧化铝可以是γ-氧化铝、θ-氧化铝中的一种或多种。
根据本发明的负载型催化剂,优选情况下,该催化剂中还含有适量的助剂,所述助剂选自Ti、Zr、Ce、La中的一种或几种。进一步优选所述助剂为锆。
助剂以元素计在催化剂中的重量含量为0.1%-10%,更优选为0.5%-5%,更进一步优选为0.5%-3%。
根据本发明的负载型催化剂,其中,NH3-TPD方法测得催化剂中450℃以下总酸量为0.5mmol/g-1.3mmol/g,250℃-350℃的酸含量占450℃以下总酸量的20%-90%;优选地,催化剂中450℃以下总酸量为0.6mmol/g-1.2mmol/g,250℃-350℃的酸含量占450℃以下总酸量的30%-80%;进一步优选地,催化剂中450℃以下总酸量为0.7mmol-1.1mmol/g,250℃-350℃的酸含量占450℃以下总酸量的40%-80%。
本发明中,NH3-TPD方法测定的150~250℃对应的酸为弱酸,250~400℃对应的酸为中强酸,400~500℃对应的酸为强酸;弱酸、中强酸和强酸酸量的和为总酸量
根据本发明的负载型催化剂的制备方法,该方法包括如下步骤:将氧化锌引入至载体,然后对引入氧化锌后的载体进行卤化处理。
氧化锌的引入量以及卤化处理的条件使得以所得负载型催化剂的总量为基准,按重量含量计,氧化锌的含量为0.5%-20%,卤化锌的含量为10%-50%,载体的含量为40%-88%。优选地,氧化锌的含量为1%-15%,卤化锌的含量为15%-40%,载体的含量为50%-84%,更优选地,氧化锌的含量为1%-9%,卤化锌的含量为18%-39%,载体的含量为55%-80%。
根据本发明,可以通过各种方式对引入氧化锌后的载体进行卤化处理,只要使其中的氧化锌适量地转化为卤化锌即可。优选地,所述卤化处理的方式包括将气相含卤素化合物与引入氧化锌后的载体接触,接触的条件使得载体上的氧化锌部分地转化为卤化 锌。
可以直接将气相含卤素化合物与引入氧化锌后的载体接触,也可以以气相含卤素化合物与惰性气体的混合气体的形式使气相含卤素化合物与引入氧化锌后的载体接触,混合气体中气相含卤素化合物的浓度不小于20体积%,优选不小于30体积%,更优选30-90体积%,进一步更优选50-80体积%。
所述气相含卤素化合物可以是各种在接触条件下为气体的含卤素化合物,优选为卤代甲烷,进一步优选为一卤代甲烷、二卤代甲烷、三卤代甲烷中的一种或多种。优选为一卤代甲烷。
所述卤素可以为F、Cl、Br和I中的一种或多种,优选为Cl和/或Br。
更优选所述气相含卤素化合物为一溴甲烷。
根据本发明,所述接触的方式优选包括将引入氧化锌后的载体置于连续流动固定床反应器中,惰性气氛下升温至150℃-400℃,通入气相含卤素化合物或者含有气相含卤素化合物的混合气体,气体空速为50h-1-1000h-1;接触的压力为0.1MPa-0.5MPa,时间为0.5h-8h;优选地,惰性气氛下升温至180℃-350℃更优选升温至200℃-300℃,气体空速为100h-1-500h-1;接触的压力为0.1MPa-0.3MPa,时间为1h-4h。所述压力为绝压。所述空速为体积空速。
根据本发明,将氧化锌引入至载体的方式可以采用现有的各种方式,例如可以采用浸渍方式引入,也可以在成型时通过混捏的方式引入,还可以在载体制备过程如成胶、共沉淀时引入。优选采用浸渍方式引入,即将锌的可溶性化合物制备成浸渍液,然后将载体浸渍于该浸渍液中,之后干燥、焙烧。所述锌的可溶性化合物可以是锌的可溶性无机盐和/或有机盐,如氯化盐、硝酸盐、硫酸盐、盐酸盐、醋酸盐、柠檬酸盐中的一种或多种。以锌元素计,浸渍液的浓度为5克/升-300克/升,优选为20克/升-200克/升,进一步优选为40克/升-160克/升。可以采用等体积浸渍或过饱和浸渍。
当本发明的催化剂还含有助剂时,助剂可以在氧化锌之前、之后或同时引入。可以采用浸渍方式引入,也可以在成型时通过混捏的方式引入,还可以在载体制备过程如成胶、共沉淀时引入。优选采用浸渍方式引入,具体方法如下:采用锌盐、助剂金属盐溶液浸渍成型后的载体,经干燥、焙烧后进行卤化处理或者先采用锌盐溶液浸渍成型后的载体经干燥、焙烧后进行卤化处理,最后再浸渍助剂金属盐溶液,干燥、焙烧后制得卤代甲烷制异丁烯催化剂。
上述干燥的温度可以为50℃-200℃,优选为60℃-150℃,更优选为80℃-120℃; 干燥时间为1h-24h,优选为4h-8h;干燥时可以为真空干燥,也可以为惰性气体保护条件下干燥,还可以在空气气氛下干燥;焙烧温度为200℃-800℃,优选为400℃-600℃;焙烧时间为1h-24h,优选为4h-8h;焙烧时可以为惰性气体保护条件下焙烧,也可以在空气气氛下焙烧。
载体可以为现有的商用产品,也可以按本领域技术人员熟知方法制备。载体可以根据使用的需要制成或选取适宜的颗粒形态,如制成条形、片形、柱形、球形等。成形可以按本领域一般知识进行。
本发明还提供了上述负载型催化剂在制异丁烯中的应用。
本发明还提供了一种卤代甲烷制异丁烯的方法,该方法包括对上述负载型催化剂进行氢气还原活化,使催化剂中的卤素含量为还原前催化剂中卤素总含量的20%-90%,然后使卤代甲烷与上述氢气还原活化后的催化剂接触,以制备异丁烯。
根据本发明,所述氢气还原活化的条件使得催化剂中的卤素含量优选为还原前催化剂中卤素总含量的30%-80%,进一步优选40%-80%。
根据本发明的一种实施方式,所述氢气还原活化的方式包括在惰性气氛下将催化剂升温至300℃-600℃;然后通入空速为200h-1-2000h-1的氢气或氢气与惰性气体的混合气体,在0.1MPa-0.5MPa保持2h-16h,混合气体中氢气体积百分含量为10%-95%;优选地,升温至350℃-550℃;然后通入空速为500h-1-1000h-1的氢气或氢气与惰性气体的混合气体,在0.1MPa-0.3MPa保持4h-8h,所述混合气体中氢气体积百分含量为30%-90%。
根据本发明,所述卤代甲烷可以为一卤代甲烷、二卤代甲烷、三卤代甲烷中的一种或多种,优选为一溴甲烷、二溴甲烷、三溴甲烷中的一种或多种。
优选地,所述接触的条件包括反应温度为150℃-350℃;反应压力为0.1MPa-5MPa;空速为50h-1-1000h-1;更优选地,反应温度为180℃-300℃更优选为200-270℃;反应压力为0.1MPa-3MPa;空速为200h-1-500h-1
根据本发明的一种具体实施方式,所述由卤代甲烷制异丁烯的方法包括惰性气氛下将催化剂升温至300℃-600℃,优选为350℃-550℃;然后通入空速为200h-1-2000h-1,优选为500h-1-1000h-1的氢气或氢气与惰性气体的混合气体,在0.1MPa-0.5MPa(绝压),优选为0.1MPa-0.3MPa(绝压)处理2h-16h,优选为4h-8h后,降至反应温度通入卤代甲烷进行反应。所述混合气中氢气体积百分含量为10%-95%,优选为30%-90%,更优选为50%-90%。
上述应用中,原料也可以为卤代甲烷与惰性气体的混合气体,混合气体中卤代甲烷的体积浓度为10%-90%,优选为30%-80%。
上述应用中所涉及的惰性气体为氮气、氩气、氦气等在本发明所涉及条件下不发生化学反应的气体,优选为氮气。
上述应用中,卤代甲烷制异丁烯反应可以在现有任何形式反应器中进行,如固定床、流化床、固定流化床、移动床,浆态床或沸腾床等形式的反应器,优选为固定床、流化床反应器。
下面结合实施例对本发明进行进一步的说明,但不因此限制本发明。
以下实施例及比较例中酸量测定采用NH3-TPD法,采用的仪器型号为美国MICROMERITICS公司AutoChem 2920化学吸附仪,具体测定过程如下:将样品在450℃用氦气吹扫1小时后降温至150℃,引入氨与氦气的混合气体,氨体积含量10%,脉冲吸附五次达到平衡;氦气吹扫2小时,然后以10℃/分钟的升温速度程序升温进行氨脱附至450℃;脱附后的氨采用TCD检测器检测,定量计算催化剂表面酸量。
以下实施例及比较例中Br元素及Zn元素含量采用XRF(X射线荧光光谱分析)方法测定,采用仪器型号为日本Rigaku公司的ZSX X荧光光谱仪。以Br元素含量计算ZnBr2含量,以总Zn含量减掉ZnBr2中Zn含量计算ZnO含量。
实施例1
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,80℃干燥8h,600℃焙烧4h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷处理催化剂前体,处理条件为250℃,0.2MPa(绝压),100h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-1。催化剂重量组成为ZnBr2重量含量为27%,ZnO重量含量为6%,催化剂中450℃以下总酸量为0.92mmol/g,250℃-350℃的酸含量占450℃以下总酸量的55.1%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为50%,反应温度为230℃,反应压力为1MPa(绝压),空速为500h-1,通入原料气前催化剂在氢气气氛下活化,还原条件为400℃,0.2MPa(绝压),1000h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的67.51%。反应稳定一小时后,采样分析。反应结果见 表1。
实施例2
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧8h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-2。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,催化剂中450℃以下总酸量为0.93mmol/g,250℃-350℃的酸含量占450℃以下总酸量的63.2%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的53.47%。反应稳定一小时后,采样分析。反应结果见表1。
实施例3
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,100℃真空干燥8h,400℃焙烧8h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为30%,处理条件为300℃,0.1MPa(绝压),500h-1,时间4h,制得卤代甲烷制异丁烯催化剂,记为C-3。得到催化剂重量组成为ZnBr2以溴化物计重量含量为33%,ZnO以氧化物计重量含量为2%,催化剂中450℃以下总酸量为0.95mmol/g,250℃-350℃的酸含量占450℃以下总酸量的75.5%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为80%,反应温度为200℃,反应压力为3MPa(绝压),空速为350h-1。通入原料气前,催化剂在含氢气的混合气氛 下活化,混合气体中氢气体积含量为50%,还原条件为500℃,0.1MPa(绝压),500h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的47.22%。反应稳定一小时后,采样分析。反应结果见表1。
实施例4
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧8h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷处理催化剂前体,处理条件为200℃,0.3MPa(绝压),300h-1,时间1h,制得卤代甲烷制异丁烯催化剂,记为C-4。得到催化剂重量组成为ZnBr2以溴化物计重量含量为18%,ZnO以氧化物计重量含量为2%,催化剂中450℃以下总酸量为0.72mmol/g,250℃-350℃的酸含量占450℃以下总酸量的66.8%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为30%,反应温度为270℃,反应压力为2MPa(绝压),空速为350h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为70%,还原条件为350℃,0.3MPa(绝压),800h-1,还原时间6h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的57.81%。反应稳定一小时后,采样分析。反应结果见表1。
实施例5
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,100℃干燥6h,500℃氮气保护下焙烧6h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为70%,处理条件为200℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-5。得到催化剂重量组成为ZnBr2以溴化物计重量含量为39%,ZnO以氧化物计重量含量为6%,催化剂中450℃以下总酸量为0.98mmol/g,250℃-350℃的酸含量占450℃以下总酸量的64.1%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷,反应温度为270℃,反应压力为2MPa(绝压),空速为350h-1。通 入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为60%,还原条件为550℃,0.3MPa(绝压),800h-1,还原时间8h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的41.37%。反应稳定一小时后,采样分析。反应结果见表1。
实施例6
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃氮气气氛下干燥4h,500℃氮气气氛下焙烧4h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷处理催化剂前体,处理条件为250℃,0.2MPa(绝压),100h-1,时间1h,记为C-6。得到催化剂重量组成为ZnBr2以溴化物计重量含量为35%,ZnO以氧化物计重量含量为9%,催化剂中450℃以下总酸量为0.94mmol/g,250℃-350℃的酸含量占450℃以下总酸量的57.3%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为50%,反应温度为230℃,反应压力为0.1MPa(绝压),空速为500h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.2MPa(绝压),1000h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的58.39%。反应稳定一小时后,采样分析。反应结果见表1。
实施例7
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为90%,处理条件为300℃,0.1MPa(绝压),500h-1,时间4h,制得卤代甲烷制异丁烯催化剂,记为C-7。得到催化剂重量组成为ZnBr2以溴化物计重量含量为20%,ZnO以氧化物计重量含量为1%,催化剂中450℃以下总酸量为0.79mmol/g,250℃-350℃的酸含量占450℃以下总酸量的74.9%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为80%,反应温度为200℃, 反应压力为3MPa(绝压),空速为350h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为90%,还原条件为500℃,0.1MPa(绝压),500h-1,还原时间6h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的51.94%。反应稳定一小时后,采样分析。反应结果见表1。
实施例8
称取适量硝酸锌、硝酸锆溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO-Zr/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-8。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,Zr以元素计重量含量为2%,催化剂中450℃以下总酸量为0.97mmol/g,250℃-350℃的酸含量占450℃以下总酸量的69.7%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的39.14%。反应稳定一小时后,采样分析。反应结果见表1。
实施例9
称取适量硝酸锌、硝酸铈溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO-Ce/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-9。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,Ce以元素计重量含量为1%,催化剂中450℃以下总酸量为0.91mmol/g,250℃-350℃的酸含量占450℃以下总酸量的68.9%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的63.73%。反应稳定一小时后,采样分析。反应结果见表1。
实施例10
称取适量硝酸锌、硝酸镧溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO-La/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-10。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,La以元素计重量含量为0.5%,催化剂中450℃以下总酸量为0.87mmol/g,250℃-350℃的酸含量占450℃以下总酸量的65.3%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的62.72%。反应稳定一小时后,采样分析。反应结果见表1。
实施例11
称取适量硝酸锌、硝酸钛溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO-Ti/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-11。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量 含量为4%,Ti以元素计重量含量为3%,催化剂中450℃以下总酸量为0.96mmol/g,250℃-350℃的酸含量占450℃以下总酸量的63.4%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的53.62%。反应稳定一小时后,采样分析。反应结果见表1。
实施例12
称取适量氯化锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-12。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,催化剂中450℃以下总酸量为0.87mmol/g,250℃-350℃的酸含量占450℃以下总酸量的65.7%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的47.89%。反应稳定一小时后,采样分析。反应结果见表1。
实施例13
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于二氧化硅(孔容为1.06ml/g,比表面积为387m2/g,球形,当量直径0.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO/SiO2。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件 为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-13。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,催化剂中450℃以下总酸量为1.08mmol/g,250℃-350℃的酸含量占450℃以下总酸量的49.7%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为400℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的31.28%。反应稳定一小时后,采样分析。反应结果见表1。
实施例14
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氢型ZSM-5(硅铝比50,孔容为0.23ml/g,比表面积为426m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO/H-ZSM-5。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为C-14。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,催化剂中450℃以下总酸量为0.74mmol/g,250℃-350℃的酸含量占450℃以下总酸量的48.7%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为400℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的79.73%。反应稳定一小时后,采样分析。反应结果见表1。
实施例15
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃ 焙烧4h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h。称取适量硝酸锆溶于去离子水中,采用等体积浸渍法浸渍溴化后的样品,120℃氮气气氛下干燥4h,500℃氮气气氛下焙烧4h,制得卤代甲烷制异丁烯催化剂,记为C-15。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,Zr以元素计重量含量为1%,催化剂中450℃以下总酸量为0.72mmol/g,250℃-350℃的酸含量占450℃以下总酸量的71.4%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的42.57%。反应稳定一小时后,采样分析。反应结果见表1。
实施例16
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧4h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h。称取适量硝酸铈溶于去离子水中,采用等体积浸渍法浸渍溴化后的样品,80℃氮气气氛下干燥8h,500℃氮气气氛下焙烧4h,制得卤代甲烷制异丁烯催化剂,记为C-16。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,Ce以元素计重量含量为0.5%,催化剂中450℃以下总酸量为0.81mmol/g,250℃-350℃的酸含量占450℃以下总酸量的69.3%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),500h-1,还原时间6h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的65.49%。反应稳定一小时后,采样分析。反应结果见表1。
实施例17
按照实施例16的方法制备负载型催化剂和进行溴甲烷制异丁烯反应,不同的是,使用孔容为0.51ml/g,比表面积为162.4m2/g,条形,当量直径为1mm的氧化铝作为载体,制得卤代甲烷制异丁烯催化剂,记为C-17。制得的催化剂中450℃以下总酸量为0.72mmol/g,250℃-350℃的酸含量占450℃以下总酸量的70.5%。还原活化后催化剂中的卤素含量为还原前催化剂中卤素总含量的72.57%。催化剂性质和反应结果见表1。
实施例18
按照实施例16的方法制备负载型催化剂和进行卤代甲烷制异丁烯反应,不同的是,溴甲烷用相同摩尔量的二氯甲烷代替,结果显示二氯甲烷的转化率为97.4%,异丁烯的选择性为67.9%。
比较例1
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧8h,制得催化剂ZnO/Al2O3,记为D-1。得到催化剂重量组成为ZnO以氧化物计重量含量为20%,催化剂中450℃以下总酸量为0.49mmol/g,250℃-350℃的酸含量占450℃以下总酸量的44.5%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为30%,反应温度为270℃,反应压力为2MPa(绝压),空速为350h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氧气体积含量为70%,还原条件为350℃,0.3MPa(绝压),800h-1,还原时间6h。反应稳定一小时后,采样分析。反应结果见表1。
比较例2
称取适量硝酸锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,120℃干燥4h,500℃焙烧8h,制得催化剂前体ZnO/Al2O3。将5g催化剂前体置于连续流动固定床反应器中,使用一溴甲烷与氮气的混合气体处理催化剂前体,一溴甲烷体积浓度为80%,处理条件为250℃,0.3MPa(绝压),300h-1,时间2h,制得卤代甲烷制异丁烯催化剂,记为D-2。 得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,ZnO以氧化物计重量含量为4%,催化剂中450℃以下总酸量为0.93mmol/g,250℃-350℃的酸含量占450℃以下总酸量的63.2%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。反应稳定一小时后,采样分析。反应结果见表1。
比较例3
称取适量溴化锌溶于去离子水中,采用等体积浸渍法负载于氧化铝(孔容为0.71ml/g,比表面积为236m2/g,条形,当量直径1.5mm)载体,80℃氮气气氛干燥4h,500℃氮气气氛焙烧4h,制得催化剂ZnBr2/Al2O3,记为D-3。得到催化剂重量组成为ZnBr2以溴化物计重量含量为30%,催化剂中450℃以下总酸量为1.01mmol/g,250℃-350℃的酸含量占450℃以下总酸量的74.3%。
溴甲烷转化制异丁烯反应在连续流动微型固定床反应器中进行。催化剂装量5g,原料气为一溴甲烷与氮气混合气体,其中一溴甲烷体积含量为70%,反应温度为230℃,反应压力为2MPa(绝压),空速为200h-1。通入原料气前,催化剂在含氢气的混合气氛下活化,混合气体中氢气体积含量为80%,还原条件为450℃,0.3MPa(绝压),800h-1,还原时间4h,还原后催化剂中的卤素含量为还原前催化剂中卤素总含量的91.27%。反应稳定一小时后,采样分析。反应结果见表1。
表1催化剂反应性能
Figure PCTCN2014089683-appb-000001
Figure PCTCN2014089683-appb-000002
从表1的结果可以看出,本发明的催化剂具有明显更高的溴甲烷转化率和异丁烷选择性。

Claims (19)

  1. 一种负载型催化剂,其特征在于:该催化剂含有载体和负载在载体上的金属活性组分,所述金属活性组分含有氧化锌和卤化锌,且以催化剂的总量为基准,按重量含量计,氧化锌的含量为0.5%-20%,卤化锌的含量为10%-50%,载体的含量为40%-88%。
  2. 根据权利要求1所述的负载型催化剂,其中,以催化剂的总量为基准,按重量含量计,氧化锌的含量为1%-15%,卤化锌的含量为15%-40%,载体的含量为50%-84%,优选地,氧化锌的含量为1%-9%,卤化锌的含量为18%-39%,载体的含量为55%-80%。
  3. 根据权利要求1或2所述的负载型催化剂,其中,所述卤化锌选自氟化锌、氯化锌、溴化锌、碘化锌中的一种或几种,所述载体为氧化铝、氧化硅、ZSM-5分子筛中的一种或几种;优选地,所述卤化锌为溴化锌,所述载体为氧化铝。
  4. 根据权利要求1-3中任意一项所述的负载型催化剂,其中,该催化剂还含有助剂,所述助剂选自Ti、Zr、Ce、La中的一种或几种,助剂以元素计在催化剂中的重量含量为0.1%-10%。
  5. 根据权利要求4所述的负载型催化剂,其中,所述助剂为锆,助剂以元素计在催化剂中的重量含量为0.5%-5%。
  6. 根据权利要求1-5中任意一项所述的负载型催化剂,其中,NH3-TPD方法测得催化剂中450℃以下总酸量为0.5mmol/g-1.3mmol/g,250℃-350℃的酸含量占450℃以下总酸量的20%-90%;优选地,催化剂中450℃以下总酸量为0.6mmol/g-1.2mmol/g,250℃-350℃的酸含量占450℃以下总酸量的30%-80%;进一步优选地,催化剂中450℃以下总酸量为0.7mmol-1.1mmol/g,250℃-350℃的酸含量占450℃以下总酸量的40%-80%。
  7. 一种负载型催化剂的制备方法,其特征在于:该方法包括如下步骤:将氧化锌引入至载体,然后对引入氧化锌后的载体进行卤化处理。
  8. 根据权利要求7所述的方法,其中,所述卤化处理的方式包括将气相含卤素化合物与引入氧化锌后的载体接触,接触的条件使得载体上的氧化锌部分地转化为卤化锌。
  9. 根据权利要求7或8所述的方法,其中,氧化锌的用量使得以所得负载型催化剂的总量为基准,按重量含量计,载体的含量为40%-88%,接触的条件使得载体上的氧化锌的含量为0.5%-20%,卤化锌的含量为10%-50%。
  10. 根据权利要求9所述的方法,其中,以气相含卤素化合物与惰性气体的混合气 体的形式使气相含卤素化合物与引入氧化锌后的载体接触,混合气体中气相含卤素化合物浓度不小于20体积%。
  11. 根据权利要求10所述的方法,其中,所述气相含卤素化合物为一卤代甲烷、二卤代甲烷、三卤代甲烷中的一种或多种。
  12. 根据权利要求10或11所述的方法,其中,所述接触的方式包括将引入氧化锌后的载体置于连续流动固定床反应器中,惰性气氛下升温至150℃-400℃,通入气相含卤素化合物或者含有气相含卤素化合物的混合气体,气体空速为50h-1-1000h-1;接触的压力为0.1MPa-0.5MPa,时间为0.5h-8h;优选地,惰性气氛下升温至180℃-350℃,气体空速为100h-1-500h-1;接触的压力为0.1MPa-0.3MPa,时间为1h-4h。
  13. 权利要求1-6中任意一项所述的负载型催化剂在制异丁烯中的应用。
  14. 一种卤代甲烷制异丁烯的方法,该方法包括对权利要求1-6中任意一项所述的负载型催化剂进行氢气还原活化,使催化剂中的卤素含量为还原前催化剂中卤素总含量的20%-90%,然后使卤代甲烷与上述氢气还原活化后的催化剂接触,以制备异丁烯。
  15. 根据权利要求14所述的方法,其中,所述接触的条件包括反应温度为150℃-350℃;反应压力为0.1MPa-5MPa;空速为50h-1-1000h-1;优选地,反应温度为180℃-300℃;反应压力为0.1MPa-3MPa;空速为200h-1-500h-1
  16. 根据权利要求14所述的方法,其中,氢气还原活化的条件使得催化剂中的卤素含量为还原前催化剂中卤素总含量的30%-80%。
  17. 根据权利要求14-16中任意一项所述的方法,其中,所述氢气还原活化的方式包括在惰性气氛下将催化剂升温至300℃-600℃;然后通入空速为200h-1-2000h-1的氢气或氢气与惰性气体的混合气体,在0.1MPa-0.5MPa保持2h-16h,混合气体中氢气体积百分含量为10%-95%;优选地,升温至350℃-550℃;然后通入空速为500h-1-1000h-1的氢气或氢气与惰性气体的混合气体,在0.1MPa-0.3MPa保持4h-8h,所述混合气体中氢气体积百分含量为30%-90%。
  18. 根据权利要求14-17中任意一项所述的方法,其中,卤代甲烷为一卤代甲烷、二卤代甲烷、三卤代甲烷中的一种或多种,优选为一溴甲烷、二溴甲烷、三溴甲烷中的一种或多种。
  19. 根据权利要求14-18中任意一项所述的方法,其中,所述接触在固定床、流化床、固定流化床、移动床、浆态床或沸腾床反应器中进行。
PCT/CN2014/089683 2013-11-07 2014-10-28 一种负载型催化剂及其制备方法和应用及卤代甲烷制异丁烯的方法 WO2015067133A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016552658A JP6268305B2 (ja) 2013-11-07 2014-10-28 担持触媒、その製造方法およびその使用、ならびにハロメタンからイソブチレンの製造方法
EP14859617.4A EP3056269B1 (en) 2013-11-07 2014-10-28 Supported catalyst, preparation method therefor and use thereof, and method for preparation of isobutylene from halomethane
DK14859617.4T DK3056269T3 (da) 2013-11-07 2014-10-28 Båret katalysator, fremgangsmåde til fremstilling og anvendelse deraf, og fremgangsmåde til fremstilling af isobutylen fra halogeneret methan
KR1020167014981A KR101840772B1 (ko) 2013-11-07 2014-10-28 담지 촉매, 이의 제조 방법 및 용도, 및 할로메탄으로부터 이소부틸렌의 제조 방법
US15/034,913 US10087122B2 (en) 2013-11-07 2014-10-28 Supported catalyst, preparation method therefor and use thereof, and method for preparation of isobutylene from halomethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310546339 2013-11-07
CN201310546339.7 2013-11-07

Publications (2)

Publication Number Publication Date
WO2015067133A1 true WO2015067133A1 (zh) 2015-05-14
WO2015067133A8 WO2015067133A8 (zh) 2016-06-16

Family

ID=53040890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089683 WO2015067133A1 (zh) 2013-11-07 2014-10-28 一种负载型催化剂及其制备方法和应用及卤代甲烷制异丁烯的方法

Country Status (7)

Country Link
US (1) US10087122B2 (zh)
EP (1) EP3056269B1 (zh)
JP (1) JP6268305B2 (zh)
KR (1) KR101840772B1 (zh)
CN (1) CN104624210B (zh)
DK (1) DK3056269T3 (zh)
WO (1) WO2015067133A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067298B (zh) * 2016-11-11 2020-06-09 中国石油化工股份有限公司抚顺石油化工研究院 一种制备卤代甲烷催化剂及其制备方法和应用
CN108067262B (zh) * 2016-11-11 2020-09-11 中国石油化工股份有限公司抚顺石油化工研究院 一种高选择性甲烷卤氧化催化剂的制备方法
CN108067258B (zh) * 2016-11-11 2020-08-11 中国石油化工股份有限公司抚顺石油化工研究院 一种甲烷卤氧化催化剂的制备方法
CN108067260B (zh) * 2016-11-11 2020-08-11 中国石油化工股份有限公司抚顺石油化工研究院 一种用于甲烷卤氧化的核壳型催化剂的制备方法
CN108067286B (zh) * 2016-11-11 2020-09-11 中国石油化工股份有限公司抚顺石油化工研究院 一种甲烷卤氧化催化剂及其制备方法和应用
CN108067259B (zh) * 2016-11-11 2020-06-09 中国石油化工股份有限公司抚顺石油化工研究院 一种高活性甲烷卤氧化催化剂的制备方法
CN108067265B (zh) * 2016-11-11 2020-09-11 中国石油化工股份有限公司抚顺石油化工研究院 一种甲烷转化催化剂的制备方法
CN108067266B (zh) * 2016-11-11 2020-09-11 中国石油化工股份有限公司抚顺石油化工研究院 一种核壳型催化剂及其制备方法和应用
CN108067264B (zh) * 2016-11-11 2020-09-11 中国石油化工股份有限公司抚顺石油化工研究院 一种甲烷转化催化剂及其制备方法和应用
CN108067263B (zh) * 2016-11-11 2020-09-11 中国石油化工股份有限公司抚顺石油化工研究院 一种具有壳核结构的催化剂及其制备方法和应用
US11865515B2 (en) * 2021-12-06 2024-01-09 ExxonMobil Technology and Engineering Company Catalyst for olefins generation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154969A (en) * 1977-03-24 1979-05-15 Monsanto Company Production of dihydroxydiphenyl alkanes
CN86107833A (zh) * 1986-11-17 1988-07-20 吉林省化学纤维技术研究所 合成醋酸乙烯用氧化锌催化剂
CN1502411A (zh) * 2002-11-20 2004-06-09 ��Խ��ѧ��ҵ��ʽ���� 载氯化锌支持物及其生产方法
CN101041609A (zh) 2006-03-20 2007-09-26 微宏科技(湖州)有限公司 从甲烷经过非合成气方法合成碳三至碳十三高碳烃的流程
CN101284232A (zh) 2007-04-13 2008-10-15 微宏科技(湖州)有限公司 甲烷溴氧化制溴甲烷及其转化制碳氢化合物的催化剂
CN101342494A (zh) * 2008-08-28 2009-01-14 复旦大学 一种二氧化碳气氛下丙烷脱氢制丙烯催化剂的制备方法及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865845A (en) * 1953-06-15 1958-12-23 Exxon Research Engineering Co Hydroforming catalyst promoted by the addition of a zinc halide
US4091038A (en) * 1977-03-24 1978-05-23 Monsanto Company Production of dihydroxydiphenyl alkanes
JPS60115536A (ja) * 1983-11-29 1985-06-22 Showa Denko Kk フルオロメタンの製造方法
JPH0819012B2 (ja) * 1986-07-14 1996-02-28 旭化成工業株式会社 シクロオレフインの製造方法
JPH07106991B2 (ja) * 1986-07-14 1995-11-15 旭化成工業株式会社 部分水素化方法
JPH0816073B2 (ja) * 1986-10-02 1996-02-21 旭化成工業株式会社 シクロオレフインを製造する方法
GB9212410D0 (en) * 1992-06-11 1992-07-22 Ici Plc Production of difluoromethane
US5811365A (en) * 1992-12-04 1998-09-22 The British Petroleum Company, P.L.C. Zinc oxide composition for use in catalysts
EP1000002A1 (en) * 1997-07-31 2000-05-17 Imperial Chemical Industries Plc Vapour phase preparation of 1,1,1,2,3,3,3-heptafluoropropane
JPH11188703A (ja) * 1997-12-26 1999-07-13 Showa Denko Kk 多孔質物品処理物及びその製造方法
EP1240942A4 (en) * 1999-08-30 2003-08-06 Cosmo Oil Co Ltd CATALYST FOR GAS-OIL HYDROTREATMENT, AND GAS-OIL HYDROTREATMENT METHOD
CA2500553A1 (en) * 2002-10-16 2004-04-29 Conocophillips Company A stabilized transition alumina catalyst support from boehmite and catalysts made therefrom
US20090163749A1 (en) * 2006-03-20 2009-06-25 Microvast Technologies, Ltd. Conversion of methane into c3˜c13 hydrocarbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154969A (en) * 1977-03-24 1979-05-15 Monsanto Company Production of dihydroxydiphenyl alkanes
CN86107833A (zh) * 1986-11-17 1988-07-20 吉林省化学纤维技术研究所 合成醋酸乙烯用氧化锌催化剂
CN1502411A (zh) * 2002-11-20 2004-06-09 ��Խ��ѧ��ҵ��ʽ���� 载氯化锌支持物及其生产方法
CN101041609A (zh) 2006-03-20 2007-09-26 微宏科技(湖州)有限公司 从甲烷经过非合成气方法合成碳三至碳十三高碳烃的流程
CN101284232A (zh) 2007-04-13 2008-10-15 微宏科技(湖州)有限公司 甲烷溴氧化制溴甲烷及其转化制碳氢化合物的催化剂
CN101342494A (zh) * 2008-08-28 2009-01-14 复旦大学 一种二氧化碳气氛下丙烷脱氢制丙烯催化剂的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IVAN M. LORKOVIC; AYSEN YILMAZ; GURKAN A. YILMAZ ET AL., CATALYSIS TODAY, vol. 98, 2004, pages 317 - 322
JIELI HE; TING XU; ZHIHUI WANG, ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 2438 - 2442
See also references of EP3056269A4

Also Published As

Publication number Publication date
JP6268305B2 (ja) 2018-01-24
CN104624210B (zh) 2017-07-28
EP3056269A1 (en) 2016-08-17
EP3056269A4 (en) 2017-07-12
DK3056269T3 (da) 2019-07-22
JP2016538131A (ja) 2016-12-08
EP3056269B1 (en) 2019-04-24
KR20160083925A (ko) 2016-07-12
KR101840772B1 (ko) 2018-03-21
CN104624210A (zh) 2015-05-20
US20160272555A1 (en) 2016-09-22
WO2015067133A8 (zh) 2016-06-16
US10087122B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2015067133A1 (zh) 一种负载型催化剂及其制备方法和应用及卤代甲烷制异丁烯的方法
CN106140262A (zh) 一种负载型催化剂及其制备方法和应用
CN106140264A (zh) 一种以镧改性zsm-5分子筛为载体的催化剂及其制备方法和应用
CN106140218A (zh) 一种具有介孔结构的负载型催化剂及其制备方法和应用
CN106140263A (zh) 一种以改性zsm-5为载体的溴甲烷制异丁烯催化剂及其制备方法
CN106140260B (zh) 一种以二氧化硅改性zsm-5分子筛为载体的催化剂及其制备方法和应用
CN106140259A (zh) 一种以改性zsm-5分子筛为载体的负载型催化剂及其制备方法和应用
CN109908930B (zh) 一种费托合成催化剂及其制备方法
CN106140225A (zh) 一种以二氧化硅为载体的催化剂及其制备方法和应用
CN106140227A (zh) 一种以改性氧化铝为载体的催化剂及其制备方法和应用
CN106140292B (zh) 一种以复合分子筛为载体的催化剂及其制备方法和应用
CN106140274A (zh) 一种溴甲烷高选择性制异丁烯的催化剂及其制备方法
CN106140232A (zh) 一种以二氧化钛为载体铈为助剂的溴甲烷制异丁烯催化剂及其制备方法与应用
CN106140215B (zh) 一种卤代甲烷制异丁烯催化剂及其制备方法和应用
WO2024083048A1 (zh) 用于由二甲醚和/或甲醇羰基化制备乙酸甲酯的催化剂及其用途
CN106140265A (zh) 一种以磷改性zsm-5分子筛为载体的催化剂及其制备方法和应用
CN106140261A (zh) 一种以改性zsm-5分子筛为载体的催化剂及其制备方法和应用
CN106140231A (zh) 一种碱土金属改性的负载型催化剂及其制备方法和应用
CN106140233A (zh) 一种钛修饰二氧化硅为载体的溴甲烷制异丁烯催化剂及其制备方法与应用
CN106140220B (zh) 一种以镓改性二氧化硅为载体的溴甲烷制异丁烯催化剂及其制备方法和应用
CN106146240B (zh) 一种溴甲烷制异丁烯的方法
CN106140228A (zh) 一种共结晶制备的溴甲烷制异丁烯催化剂及其制备方法和应用
CN106140214B (zh) 一种制异丁烯的催化剂及其制备方法和应用
CN106140213B (zh) 一种助剂改性的卤代甲烷制异丁烯催化剂及其制备方法和应用
CN106140211A (zh) 一种稀土元素改性的卤代甲烷制异丁烯催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15034913

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014859617

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859617

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167014981

Country of ref document: KR

Kind code of ref document: A