WO2015066832A1 - 与玉米粗缩病抗性相关的主效数量性状位点及其应用 - Google Patents

与玉米粗缩病抗性相关的主效数量性状位点及其应用 Download PDF

Info

Publication number
WO2015066832A1
WO2015066832A1 PCT/CN2013/001359 CN2013001359W WO2015066832A1 WO 2015066832 A1 WO2015066832 A1 WO 2015066832A1 CN 2013001359 W CN2013001359 W CN 2013001359W WO 2015066832 A1 WO2015066832 A1 WO 2015066832A1
Authority
WO
WIPO (PCT)
Prior art keywords
corn
rough
resistance
maize
disease
Prior art date
Application number
PCT/CN2013/001359
Other languages
English (en)
French (fr)
Inventor
徐明良
刘保申
陶永富
刘庆彩
张彦军
王红红
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学 filed Critical 中国农业大学
Priority to PCT/CN2013/001359 priority Critical patent/WO2015066832A1/zh
Publication of WO2015066832A1 publication Critical patent/WO2015066832A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Definitions

  • the present invention relates to major quantitative trait loci associated with resistance to maize rough disease and uses thereof.
  • Maize Uea Mays L. is China's largest food crop and plays an extremely important role in China's food and energy security system.
  • Maize rough disease is a widely distributed viral disease. In recent years, it has spread in various corn producing areas in China (especially in the Huanghuaihai area), posing a serious threat to China's corn production.
  • the crude corn shrinkage disease broke out in Jiangsu province, causing a substantial reduction in production.
  • the incidence area of Shandong province reached 733,000 hectares, and the replanting was 59.91 million hectares, with an output of 167,000 hectares.
  • the annual incidence of corn shrinkage disease in China was over 3 million hectares, and the economic losses were huge.
  • Late sowing not only wastes light and temperature resources, but also is susceptible to buds, low temperature in the later stage, affecting yield, and the effect of drug control is not ideal, and it is easy to cause environmental pollution. Therefore, breeding resistant varieties is the fundamental way to solve the problem of corn rough disease. In view of this, mining the genetic locus of maize resistance to rough disease, with the help of precise molecular breeding techniques, can effectively guide breeding practice and accelerate the cultivation of resistant varieties.
  • Tao Yongfu et al. used the heterogeneous inbred families of 50 source hybrids CL1165 to find six candidate loci associated with resistance to maize rough disease by genotypic and phenotypic correlation analysis. . Then, the major QTL, qMrddl against maize roughing disease was verified in the isolates of susceptible materials NT409, NT401 and resistant materials NT411, NT399 and mapped to maize chromosome 8. The main anti-roughness disease QTL-i/frri/i ⁇ of corn was located in the area of 1. 2 Mb between M103-4 and M105-3 by means of recombinant progeny verification.
  • the present invention provides a major quantitative trait locus associated with resistance to maize rough disease.
  • the major quantitative trait locus qMrddl related to the resistance of maize rough disease provided by the present invention is located on chromosome 8, and is located between the upstream primer of the molecular marker M103-4 and the downstream primer of the molecular marker M10427;
  • the nucleotide sequence of the upstream primer of the molecular marker M103-4 is shown in SEQ ID No. 1
  • the downstream primer of M10427 is shown in SEQ ID No. 2.
  • the present invention cloned the major quantitative trait locus associated with resistance to maize rough disease, qMrddl, from the maize inbred line 1145, the nucleotide sequence of which is shown in SEQ ID No. 5.
  • the major quantitative trait locus qMrddl of the present invention associated with resistance to maize rough disease can be used to design primers (DNA) that aid in the identification or identification of resistance to maize rough disease.
  • the molecular size marker trait locus qMrddl of maize rough disease resistance can be used as a target sequence to design molecular markers (such as primers) to assist in the identification or identification of resistance to maize rough disease.
  • a primer for identifying or identifying resistance to maize rough disease which is a molecular marker MD01, is designed by using a major quantitative trait locus qMrddl of maize rough disease resistance as a target sequence.
  • the molecular marker MD01 consists of the single-stranded DNA shown in SEQ ID No. 3 and the single-stranded DNA shown in SEQ ID No. 4.
  • the molecular marker MD01 is a marker designed for the target sequence of the major quantitative trait locus i/UW of maize rough disease resistance.
  • Major quantitative trait loci associated with resistance to maize rough disease qMrddl is also within the scope of the present invention in the design of molecular markers (e.g., primers) that aid in the identification or identification of resistance to maize rough disease.
  • molecular markers e.g., primers
  • An agent or kit comprising the helper identification of the molecular marker MD01 or the identification of resistance to maize rough disease is also within the scope of the invention.
  • the present invention also provides a method for assisting in the identification or identification of resistance to maize rough disease, which is designed to assist in the identification or identification of resistance to maize rough disease by targeting the major quantitative trait locus qMrddl of maize rough disease resistance. Primer.
  • the method for assisting identification or identification of resistance to maize rough disease comprises the following steps: using the genomic DNA of the corn to be identified as a template, and performing PCR amplification using the molecular marker MD01, according to the obtained PCR amplification product according to the following
  • the method determines whether the corn to be identified is a rough disease resistant corn: if the PCR product of the corn to be identified does not have a DNA fragment of 100 bp to 2000 bp, the corn to be identified is a candidate for rough disease resistant corn or coarse a disease-resistant maize; if the PCR product of the corn to be identified has a DNA of 100 bp to 2000 bp
  • the rough disease resistant corn is a maize variety or strain having a disease index of 50% or less; and the non-rough disease resistant corn is a corn variety or strain having a disease index greater than 50%.
  • Molecular markers designed to aid in the identification or identification of maize rough disease resistance with the major quantitative trait locus qMrddl targeting maize rough disease resistance can be used for maize breeding.
  • rough-resistance-resistant maize identified by molecular markers designed to assist in the identification or identification of resistance to maize rough disease can be used for breeding with the major quantitative trait locus qMrddl for maize rough disease resistance. .
  • the corn may be a progeny of maize inbred line yellow (:, maize inbred line X178 or a cross between maize inbred line yellow C and corn inbred line X178).
  • the progeny derived from the hybridization of maize inbred line yellow C and maize inbred line X178 may specifically be a hybrid of maize inbred line yellow C and maize inbred line X178 and multiplied to generations above F 2 generation.
  • the progeny derived from the cross of maize inbred line yellow C and maize inbred line X178 is a hybrid of maize inbred line yellow C and maize inbred line X178 (the sixth generation of hybrids) ).
  • Figure 1 is a plot of the L0D value of the linkage positioning of qMrddl.
  • the abscissa in the figure is the L0D value and the ordinate is the genetic distance.
  • Figures 2a–2h show the resistance map of 159 maize lines to maize rough disease using molecular marker M10427. The best way to implement the invention
  • Maize hybrids CL1165, NT411 and NT409 (Zhang Yanjun et al., Using near-isogenic lines to locate QTLs and molecular marker-assisted selection of maize rough-reducing diseases. Corn Science 2012, 20 (6): 36 ⁇ 41), the public can Obtained by China Agricultural University, the biological material is only used for repeating the relevant experiments of the present invention, and cannot be used for other purposes;
  • Maize Inbred Line X178 (Li Xinhai et al. Using the SSR marker to classify 70 heterotic groups of maize inbred lines in China. Chinese Agricultural Sciences 2003, 36 (6): 622 - 627) The public is available from China Agricultural University, the biomaterial It is only used for repeating the relevant experiments of the present invention and cannot be used for other purposes;
  • Maize Inbred Line 1145 (Xu Xiaoqi. Observation on the Variability of High Oil and Normal Maize Inbred Lines in Satellites. Journal of Nuclear Agriculture 2011, 25 ( 2 ) 220-225 ) The public can obtain from the Agricultural University of China, the biological material is only repeated It is used in related experiments of the present invention and cannot be used for other purposes.
  • Level 3 slight shortening between sections, plant height is 4/5 for healthy plants, short male axis, poor loose powder, small ear; grade 5: plant height 2/3 to less than 4/5, dark green leaves The waxy protrusion along the veins of the leaf back, the male spike axis is obviously shortened, the male flower is poorly developed, and the fruiting is poor; 7th grade: the internode is severely shortened, the plant height is 1/2 to less than 2/3 of the healthy plant, and the top leaf is obviously Cluster, leaves short and rushed, tassels small, not much pollen, small ears, multiple deformities, very poorly sturdy; Grade 9: severely dwarfed, plant height 1/3 to less than 1/2 of healthy plants, stalk Conical, the parietal leaves are small and rushed and clumped, without tassels and ears.
  • a maize variety or line with a disease index of 50% or less is recorded as rough disease resistant corn; a corn variety or line with a disease index greater than 50% is recorded as non-rough disease resistant corn.
  • the genotype determination methods in the following examples are as follows: DNA was extracted from the leaves of maize seedlings, and PCR amplification was performed using primers. If the banding pattern of the PCR amplification product is polymorphic between the parents of the population, the primer can be used for population detection. When detecting each family of the population, if the band pattern of the plant is the same as one of the parents, the plant is recorded as a homozygous plant; if the band type is the same as that of the parental band, the plant is classified as heterozygous. Plant; The band type is the result of the band size indicated by silver staining after the amplification product is subjected to 6% polyacrylamide gel electrophoresis.
  • NT409 sense in these 24 materials was crossed with NT411 (resistant) and backcrossed with NT409 (infected) and self-bred to obtain the BdF 2 population (composed of 211 individuals).
  • the 105 SNPs were aligned to the maize reference genome (APGv 2 ), and 103 SNPs were clustered into 6 different chromosome segments (one of which was a segment of maize chromosome 8 between 114594605 and 168285077 bp). Named as Section X), the other two separate SNPs are not considered in future analyses. These 6 different chromosome segment candidates are the main QTL segments against maize rough disease.
  • Bin in Table 1 represents the region of the chromosome; homozygous plants refer to the PCR amplification of the same labeled primer.
  • the susceptible plant NT409 has the same type of plant; the heterozygous plant refers to the same type of plant that is amplified by PCR amplification of the same labeled primer and the two parents.
  • the QTL was The L0D values in Jining and Taian data were 23.39 and 27.36, respectively, explaining that the phenotypic variation rates were 33.72% and 41.28%, respectively.
  • * indicates the molecular marker applied in the segment validation; the position in the table is the location of the maize reference genome (APGv 2 ).
  • i7UW was mapped into a region of approximately 15 Mb between a molecular marker M103-1 and Umcl l72, using the molecular markers Umcl l72 and M103-1 on both sides of the segment, and 211 BdF 2 in 2011.
  • 15 individuals with single exchange between the molecular markers Umcl l72 and M103-1 were screened in the population; the 15 individuals were selfed, and the self-crossing progeny BdF 3 was planted in Hainan and planted in Hainan.
  • the progeny of the 101 phenotypic-expressing exchanged plants were divided into three types according to their genotypes in which the single-crossing segment was generated, and the homozygous genotype such as NT409 (sense) (denoted as S), heterozygous The genotype (denoted as H) and the genotype (called R) homozygous as NT411 (resistance) were calculated, and the disease indices of the three genotypes were calculated.
  • the results are shown in Tables 3 and 4. Of the repetitions of the three locations, all 23 exchange types exhibited relatively consistent phenotypes and did not conflict with each other.
  • NS 2 81 51.51 55.42 52.05 0.38 2 122 33.56 33.64 38.56 0.34 NS 2 113 46.24 47.07 43.21 0.32 3 181 34.50 31.87 37.04 0.32
  • NS 1 74 63.64 61.42 56.61 0.18
  • DP represents the separation of family resistance
  • No. R represents the number of planted families within the same type of recombination
  • No. P represents the number of plants planted within the same type
  • S represents The offspring of the family are resistant to isolation
  • the NS represents the offspring of the family.
  • the disease index was calculated according to the genotypes of R, H and S, respectively. The results were as follows: The results of the disease index were calculated according to the genotypes of R, H and S in 2203 BdF 4 plants in Taian. 49.93%, 77.05% and 79.82%;
  • This embodiment provides a PCR reagent for assisting in the identification or identification of resistance to maize rough disease, which consists of a PCR primer pair, molecular marker MD01, 10 X Taq buffer, dNTP mix, Tag A polymerase and dd3 ⁇ 40.
  • the molecular marker MD01 is composed of two single-stranded DNAs, MD01F and MD01R, and its sequence is as follows:
  • MD01F 5, - CCTGCTACAATACCTCTGTTGA- 3, ( SEQ ID No. 3 ) , MD01 :
  • F 6 generation recombinant inbred lines of maize inbred line yellow C and maize inbred line X178 were Obtained as follows: Maize inbred line yellow C (as female parent) and maize inbred line X178 (as male parent) hybridized to obtain F 1 generation, self-crossing to obtain generation, F 2 generation self-crossing to obtain F 3 generation, and so on , F 6 generation.
  • F t generation means hybrid first generation, refers to the maize inbred line yellow C (as the female parent) and the corn inbred line X178 (as the male parent) hybrid seed and the longevity of it Plants;
  • F 2 generations represent the second generation of hybrids, refers to the seeds produced by self-crossing of F 1 generation and the plants grown from it;
  • F 3 represents the third generation of hybrids, refers to the seeds produced by self-crossing and by it director into plants; and so on, represented by F. 6G 6th generation hybrid seed refers to F 5 generations of selfing and by its Grow into plants.
  • the field trials were designed with random blocks. Each location was a block. Each district had 159 plots. One F 6 generation recombinant inbred line planted a plot. The remaining two plots were planted with maize inbred yellow C. And corn inbred line X178, 26 plants per plot. Each cell has a length of 5 meters and a width of 0.6 meters. After the corn loosening period, the corn rough disease investigation was carried out, and the disease index was calculated according to the aforementioned corn rough disease classification standard and according to the foregoing disease index calculation method.
  • the disease index (DSI) of C in Tai'an City, Jining City and Feicheng City of Shandong City in China was 100%, 100% and 97.78%, respectively.
  • the 66 recombinant inbred lines in Tai'an City, Jining City, and Feicheng City, Shandong province, China have a disease index of more than 50%, CX92-CX157
  • the average disease index (DSI) of the 66 recombinant inbred lines in Tai'an City, Jining City and Feicheng City of Shandong province, China were 74.63%, 89.03% and 63.59%, respectively.
  • the maize cultivars or strains with a disease index of 50% or less are non-rough disease-resistant maize, and the field disease index is used to identify the corn rough disease.
  • the disease index of the 157 generations of recombinant inbred lines of maize inbred lines Huang C and X178 in Tai'an City, Jining City, and Feicheng City, Shandong province, China are shown in Table 5.
  • the above-mentioned 159 maize lines were identified by using the molecular marker MD01 designed to aid the identification or identification of maize rough disease resistance with the molecular marker trait locus qMrddl as the target sequence designed for the resistance of maize rough disease resistance.
  • Sex In the three locations of Tai'an City, Jining City and Feicheng City, Shandong province, China, each of the maize inbred lines Yellow C, Maize Inbred Line X178 and CX1-157 157 Maize Inbred Lines Yellow C And the inbred lines of the maize inbred line 178 (a total of 159 corn lines), the maize inbred line yellow C.
  • the leaves of three plants at each location mixed all the leaves taken from the three locations.
  • Genomic DNA was extracted, and the leaves of three plants at each location of maize inbred line X178 were mixed with all the leaves taken from these three locations to extract genomic DNA, numbered CX1-157 of 157 F 6 generation recombinant inbred lines. each F 6 generation of inbred lines from each location for each blade 3 plants, genomic DNA was extracted after all mixing blades of each inbred F 6 generations of these three sites taken.
  • the genomic DNA of each of the above 159 strains was used as a template, and the molecular marker MD01 was used (upstream primer: 5, - CCTGCTACAATACCTCTGTTGA-3, downstream primer).
  • PCR reaction temperature program pre-denaturation at 94 °C for 5 min; denaturation at 94 °C for 30 s, annealing at 60 °C for 30 s, extension at 72 °C for 30 s, 30 cycles; extension at 72 °C for 7 min, storage at 12 °C.
  • the PCR amplification products of each strain were subjected to agarose gel electrophoresis at a gel concentration of 1%, and the results of the band size indicated by the gel imager showed that the parental maize inbred line X178 and the numbered CX1-
  • the 91 PCR products of 91 F 6 recombinant inbred lines have no specific bands, ie there is no fragment in the range of 100bp-2000bp; parental maize inbred line C and 66 generations recombined with CX92-157
  • the PCR product of the inbred line has a specific band ranging from 100 bp to 2000 bp.
  • the maize rough disease resistance of the above 159 maize lines was determined according to the following method according to the PCR amplification product: if the PCR product of the corn to be identified does not have a DNA fragment of 100 bp to 2000 bp, the corn to be identified is thickened. Disease-resistant corn; if the PCR product of the corn to be identified has a DNA fragment of 100 bp to 2000 bp, the corn to be identified is non-rough disease-resistant corn.
  • maize inbred line yellow C and 66 F 6 generation recombinant inbred lines numbered CX92-157 are non-rough disease resistant maize, maize inbred line X178 and 91 numbered CX1-91. Recombinant inbred lines are rough disease-resistant maize. Identification result of the method The consistency of the detection results of the above-mentioned field disease index for identifying the resistance of maize rough disease was 100%.
  • Example 2 in Example 2 and Step 3 in Example 1 indicate that i/UW is associated with maize rough disease resistance under different genetic backgrounds and can be widely used in molecular marker-assisted breeding.
  • BAC library covers approximately 9 times the size of the maize genome.
  • the BAC library was screened using the molecular markers M103-4 and M10427 developed in the locus, and two BACs were screened to cover the entire locus.
  • the two BACs were sent to the Huada Gene for sequencing, and the splicing results were obtained.
  • the results indicate that the major quantitative trait locus qMrddl associated with resistance to maize rough disease is located on chromosome 8, between the upstream primer of molecular marker M103-4 and the downstream primer of molecular marker M10427;
  • the nucleotide sequence of the upstream primer of M103-4 is shown in SEQ ID No. 1
  • the downstream primer of the molecular marker M10427 is shown in SEQ ID No. 2.
  • the nucleotide sequence of the major quantitative trait locus associated with maize rough disease resistance qMrddl is shown in SEQ ID No. 5.
  • the present invention first finds a locus that may be associated with resistance to rough disease by genome-wide excavation in an autonomous heterogeneous line; and then determines the location of a major disease-resistant locus of the maize rough-reducing disease by separating the progeny within the population; Recombinant progeny test was used to reduce the disease resistance segment to a physical distance of 353 kb, and a series of reliable molecular markers were developed in the qMrddl segment, providing accurate reference information for molecular breeding.
  • the i/UW site derived from the disease-resistant material (NT411) can increase the resistance of maize rough disease in the background of susceptible material (NT409) 24.15% - 39. 25 %.
  • NT409 the i/n/W locus has broad application value in molecular breeding.
  • the DNA sequence in the segment of the disease-resistant material was obtained by BAC sequencing, and the molecular markers closely linked to the disease-resistant QTL were developed, and the molecular marker-assisted improvement of maize inbred line resistance and molecular marker design breeding was guided. It is of great significance.
  • the invention can accurately guide the improvement of resistance to rough disease of maize inbred lines and the cultivation of new varieties of maize resistance to rough disease, and significantly improve the resistance of maize to rough disease, thereby reducing the yield loss caused by rough disease, directly Increase the income of the agricultural economy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了与玉米粗缩病抗性相关的主效数量性状位点及其应用。与玉米粗缩病抗性相关的主效数量性状位点qMrdd1定位于第8号染色体上,位于分子标记M103-4的上游引物和分子标记M10427的下游引物之间;所述分子标记M103-4的上游引物的核苷酸序列如SEQ ID No.1所示,所述分子标记M10427的下游引物如SEQ ID No.2所示。本发明的与玉米粗缩病抗性相关的主效数量性状位点qMrdd1可用于设计辅助鉴定或鉴定玉米粗缩病抗性的引物(DNA),进而用于玉米的分子标记辅助育种。

Description

与玉米粗缩病抗性相关的主效数量性状位点及其应用 技术领域
本发明涉及与玉米粗縮病抗性相关的主效数量性状位点及其应用。
背景技术
玉米 Uea Mays L. ) 是我国第一大粮食作物, 在我国粮食和能源安全保障体 系中占有极其重要的位置。 玉米粗縮病是一种分布广泛的病毒性病害, 近年来在我 国各玉米产区(尤其是黄淮海地区)蔓延流行,对我国玉米生产构成严重威胁。 2004 年玉米粗縮病在江苏省爆发, 造成大幅度减产。 2008年山东省发病面积达 73. 3万 公顷, 改种 5. 91万公顷, 绝产 1. 67万公顷。 2008到 2011年间, 我国玉米粗縮病 年发病面积均在 300万公顷以上, 经济损失巨大。 目前, 生产上主要通过晚播和药 剂来控制粗縮病。 晚播既浪费光温资源、 又易遭芽涝, 后期低温, 影响产量, 而药 剂防治的效果也不理想, 且极易造成环境污染。 因此, 培育抗病品种是解决玉米粗 縮病的根本途径。 鉴于此, 挖掘玉米抗粗縮病的遗传位点, 借助于精确的分子育种 技术能有效地指导育种实践, 加速抗病品种的培育进程。
陶永富等利用 50个来源杂交种 CL1165的自交异质系 (heterogeneous inbred fami l ies ) 材料, 通过基因型和表型的相关性分析找到 6个与玉米粗縮病抗性相关 的候选位点。 然后在感病材料 NT409、 NT401和抗病材料 NT411、 NT399组配的分离群 体中验证了玉米抗粗縮病主效 QTL, qMrddl, 并将其定位到玉米 8号染色体上。 借助 于重组后代验证法将玉米抗粗縮病主效 QTL-i/ frri/i^定位在 M103-4和 M105-3之间 1. 2 Mb的区域内。 该位点的效应在黄 C和 X178的 代重组自交系中得到有效验证 ( Tao 等, Ident ificat ion and fine-mapping of a QTL, qMrddl, that confers recess ive res i stance to maize rough dwarf di sease , BMC Plan t Biology 2013, 13 : 145 ) 。
发明公开
本发明提供了一个与玉米粗縮病抗性相关的主效数量性状位点。
本发明所提供的与玉米粗縮病抗性相关的主效数量性状位点 qMrddl, 定位于 第 8号染色体上, 位于分子标记 M103-4的上游引物和分子标记 M10427的下游引 物之间; 所述分子标记 M103-4的上游引物的核苷酸序列如 SEQ ID No. 1所示, M10427的下游引物如 SEQ ID No. 2所示。
本发明从玉米自交系 1145 中克隆了玉米粗縮病抗性相关的主效数量性状位 、 qMrddl, 它的核苷酸序列如 SEQ ID No. 5所示。
本发明的与玉米粗縮病抗性相关的主效数量性状位点 qMrddl可用于设计辅助 鉴定或鉴定玉米粗縮病抗性的引物 (DNA) 。 在实际应用中, 可以玉米粗縮病抗性 主效数量性状位点 qMrddl为靶序列设计辅助鉴定或鉴定玉米粗縮病抗性的分子标 记 (如引物) 。 在本发明的一个实施方式中, 以玉米粗縮病抗性主效数量性状位点 qMrddl为靶序列设计辅助鉴定或鉴定玉米粗縮病抗性的引物, 即分子标记 MD01 , 所述分子标记 MD01由 SEQ ID No. 3所示的单链 DNA和 SEQ ID No. 4所示的单链 DNA 组成。所述分子标记 MD01是以玉米粗縮病抗性主效数量性状位点 i/UW为靶序列 设计的标记。
与玉米粗縮病抗性相关的主效数量性状位点 qMrddl在设计辅助鉴定或鉴定玉 米粗縮病抗性的分子标记 (如引物) 中的应用也属于本发明的保护范围。
包括所述分子标记 MD01 的辅助鉴定或鉴定玉米粗縮病抗性的试剂或试剂盒也 属于本发明的保护范围。
本发明还提供了辅助鉴定或鉴定玉米粗縮病抗性的方法, 该方法采用以玉米粗 縮病抗性主效数量性状位点 qMrddl为靶序列设计的辅助鉴定或鉴定玉米粗縮病抗 性的引物。
本发明所提供的辅助鉴定或鉴定玉米粗縮病抗性的方法, 包括以待鉴定玉米的 基因组 DNA为模板, 用所述分子标记 MD01进行 PCR扩增, 根据得到的 PCR扩增产 物按照下述方法确定所述待鉴定玉米是否为粗縮病抗性玉米: 如果所述待鉴定玉米 的 PCR产物中没有 100bp-2000bp的 DNA片段, 所述待鉴定玉米为候选的粗縮病抗 性玉米或粗縮病抗性玉米; 如果所述待鉴定玉米的 PCR产物中有 100bp-2000bp的
DNA片段, 所述待鉴定玉米为候选的非粗縮病抗性玉米或非粗縮病抗性玉米。
上述方法中,所述粗縮病抗性玉米是病情指数小于等于 50%的玉米品种或株系; 所述非粗縮病抗性玉米是病情指数大于 50%的玉米品种或株系。
以与玉米粗縮病抗性主效数量性状位点 qMrddl为靶序列设计辅助鉴定或鉴定 玉米粗縮病抗性的分子标记可用于玉米育种。 在玉米育种中, 可采用以与玉米粗縮 病抗性主效数量性状位点 qMrddl为靶序列设计辅助鉴定或鉴定玉米粗縮病抗性的 分子标记鉴定出的粗縮病抗性玉米进行育种。
与玉米粗縮病抗性相关的主效数量性状位点 qMrddl 在分子标记辅助育种中 的应用也属于本发明的保护范围。 所述育种为培育玉米粗縮病抗性玉米。
上文中, 所述玉米可为玉米自交系黄 (:、 玉米自交系 X178或由玉米自交系黄 C 和玉米自交系 X178杂交衍生的后代。
所述由玉米自交系黄 C和玉米自交系 X178杂交衍生的后代具体可为玉米自交 系黄 C和玉米自交系 X178杂交并繁衍至 F2代以上的世代。 在本发明的一个实施例 中, 所述由玉米自交系黄 C和玉米自交系 X178杂交衍生的后代为玉米自交系黄 C 和玉米自交系 X178杂交得到的 代 (杂种第 6代) 。
附图说明
图 1为 qMrddl的连锁定位 L0D值图。 图中的横坐标为 L0D值, 纵坐标为遗 传距离。
图 2a-图 2h为利用分子标记 M10427鉴定 159个玉米株系玉米粗縮病抗性图谱。 实施发明的最佳方式
以下的实施例便于更好地理解本发明, 但并不限定本发明。 下述实施例中的实 验方法, 如无特殊说明, 均为常规方法。 下述实施例中所用的试验材料, 如无特殊 说明, 均购自常规生化试剂公司。
下述实施例中所用到的玉米信息如下:
玉米杂交种 CL1165、 NT411和 NT409 (张彦军等, 利用近等基因系定位玉米粗縮 病抗性 QTL及分子标记辅助选择的研究.玉米科学 2012, 20 (6): 36〜41 ) , 公众可 从中国农业大学获得, 该生物材料只为重复本发明的相关实验所用, 不可作为其它 用途使用;
玉米自交系黄 C (魏秀俭. 22 个玉米自交系的耐旱性综合分析. 干旱地区农业 研究第 23 卷第 1 期) 公众可从中国农业大学获得, 该生物材料只为重复本发明的 相关实验所用, 不可作为其它用途使用;
玉米自交系 X178 (李新海等. 利用 SSR 标记划分 70 份我国玉米自交系的杂种 优势群.中国农业科学 2003, 36 ( 6 ) : 622 - 627 ) 公众可从中国农业大学获得, 该生物材料只为重复本发明的相关实验所用, 不可作为其它用途使用;
玉米自交系 1145 (徐小炜.卫星搭载高油与普通玉米自交系变异性观察. 核农 学报 2011, , 25 ( 2 ) 220-225 ) 公众可从中国农业大学获得, 该生物材料只为重复 本发明的相关实验所用, 不可作为其它用途使用。
下述实施例中的玉米粗縮病抗性表型的鉴定方法如下:
1、 实验地点: 玉米粗縮病抗性鉴定工作在中国山东省泰安市、 肥城市和济宁 市展开。这些地区由于玉米粗縮病常年发生,带水稻黑条矮縮病毒的灰飞虱较多(虫 口密度高, 具体为济宁 80-160万头 /亩, 泰安 60-100万头 /亩, 肥城 40-80万头 / 亩。 虫口密度的检测时期为 2011年 6月 10号) , 利于粗縮病的爆发。 所有表型鉴 定材料必须在 5月 24日 -26日之间种植以保证植株与灰飞虱迁徙高峰相遇。 同时, 每个材料都进行多个地点的重复试验确保粗縮病抗病鉴定的表型数据可靠有效。
2、 玉米粗縮病调查: 所有的实验材料, 包括抗病亲本和感病亲本都进行多点 种植。 抗性调查在玉米散粉期过后进行, 根据植株田间表现分为 1、 3、 5、 7、 9共 5个级别, 玉米粗縮病分级标准如下: 1级: 无任何症状, 与健康株无异; 3级: 节 间轻微縮短, 株高为健康植株 4/5, 雄穗轴短、 散粉不良、 果穗较小; 5 级: 株高 为健康植株 2/3至小于 4/5, 叶片深绿, 叶背出现沿叶脉的蜡状突起, 雄穗轴明显 短縮, 雄花发育不良, 结实性差; 7级: 节间严重縮短, 株高为健康植株的 1/2至 小于 2/3, 顶部叶片明显丛生, 叶短小而上冲, 雄穗小, 没有多少花粉, 果穗小, 多畸形, 结实性极差; 9级: 严重矮縮, 株高为健康植株 1/3至小于 1/2, 茎秆呈 锥形,顶叶小而上冲且丛生,无雄穗和雌穗。区组总体粗縮病抗性用病情指数衡量, 病情指数 (%) (简称 DSI ) = 〔∑ (植株各级病株数 X相应级别) I (总株数 X最 高级别) 〕 X 100%。
定义: 将病情指数小于等于 50%的玉米品种或株系记为粗縮病抗性玉米; 将病 情指数大于 50%的玉米品种或株系记为非粗縮病抗性玉米。
下述实施例中的基因型测定方法如下: 取玉米苗期叶片提取 DNA, 用引物进行 PCR扩增, 若 PCR扩增产物的带型在群 体的双亲间存在多态性, 该引物可以用于群体检测。 在检测群体各家系时, 若植株 中的带型与亲本之一相同, 则将该植株记为纯合植株; 若带型与两亲本带型叠加后 相同, 则将该植株记为杂合植株; 所述带型为将扩增产物进行 6%聚丙烯酰胺凝胶电 泳后经银染显色所显示的条带大小结果。
下述实施例中所用到的已知的 SSR 标记名称及其引物的序列信息来自数据库 Maize GDB ( http : //www. maizegdb. org ) 。
实施例 1、 与玉米粗縮病抗性相关的数量性状位点 qMrddl ^y^
一、 初步定位
1、 定位群体
将玉米杂交种 CL1165进行连续三代的自交之后得到两个 代材料, 从这两个 F4代材料中分别选育出一系列的对玉米粗縮病抗感不同 (体现为病情指数不同; 对 玉米粗縮病抗性越高, 病情指数越低; 对玉米粗縮病抗性越低即越敏感, 病情指数 越高) 的 50个 代自交异质系材料, 2009和 2010年分别对这 50个自交异质系材 料进行三地 (中国山东省泰安市、 肥城市和济宁市) 的玉米粗縮病抗性鉴定, 结果 显示有 24份材料在不同环境下表现出稳定的表型, 这其中包括 15份感病材料和 9 份抗病材料。
将这 24份材料中的 NT409 (感病) 与 NT411 (抗病) 杂交后与 NT409 (感病) 回交再自交获得 BdF2群体 (由 211个单株组成) 。
2、 自交异质系材料中共分离区段分析
利用 I l lumina 的 Maize SNP 50 Kits对在不同环境下表现出稳定表型的 24 个自交异质系材料的全基因组 SNP分析显示, 56110个 SNP中有 92% (48384个 SNP) 获得准确的分型数据。 这 48384个 SNP中, 有 8668个 SNP在上述 24个不同等基 因系材料间存在多态性。 经分析, 这 8668个多态性的 SNP中, 有 105个 SNP与玉 米粗縮病抗性共分离。把这 105个 SNP比对到玉米参照基因组 (APGv2)上发现, 其中 103个 SNP聚集到 6个不同的染色体区段 (其中一个区段为玉米 8号染色体位置 114594605— 168285077bp之间的区段,命名为区段 X)上, 另外两个单独存在的 SNP 在以后的分析中不做考虑。 将这 6个不同的染色体区段候选为主效抗玉米粗縮病的 QTL区段。
3、 分离群体中候选区段验证
根据上述 6个不同的染色体区段内的参照序列, 分别寻找和设计 SSR标记共 99个, 其中 18个在 BdF2两个群体的亲本间有多态性。 选取其中的 14个 SSR标记 分别对 BdF2群体及其亲本进行基因型测定。 根据 2011年玉米粗縮病的田间鉴定结 果计算病情指数 DSI。利用 SAS9. 0中的单因素方差分析对基因型和玉米粗縮病抗性 表型进行相关性分析。 结果表明, 8 号染色体区段 X 上的三个已知的 SSR 标记 Bnlgl62 ,Umc l670和 Bnlg1812在 BdF2群体内与玉米粗縮病抗性极显著相关(表 1 ), 而且不同基因型 (纯合植株和杂合植株) 之间的 DSI差异很大。 所以 8号染色体上 的区段 X为抗玉米粗縮病主效 QTL的所在区段。
表 1.候选区段验证结果 ^BC^ ΐ^^ Ο^.
™™™™™™,, D3I
标记 纯合植株 ¾和植株 F- value 纯合植昧 杂和植株 F-yalue
Cl-3 1.03 81 .19+1 .03 8215+2.01 0.67 90.88+1.37 91 .l9-m.72 0.78
Cl-25 1.03 81 .39+1 .29 8106+1.29 0.66 91.09+0.91 91 .ie-m.se 0.95
C3-5 3.08 81 .35+1 .08 8187+126 0.81 91.26+0.71 90 .07+1.33 0.69
C3-i 3.09 SI .20+1 .04 n +i .90 0.67 91.21+0.70 90 .Π+1.41 0.Π
UmclPPP 4.0P 81 .91+1 .30 8111+1.30 0.66 91.45+0.29 90 .PO-m.89 0.67
UmclP40 4.0P SI ■Pl+l .30 SI 11+1.30 Q.66 91.4J+0.S9 90 0.67
UmclPSP 4.0P SO .32 S212+1.25 0.J0 91.27+0.91 91 ■osw.ss O.SS
5.03 S3 .51+1 .ig 7PS1+1.23 0.04 P2.i4+0.S7 P0 .11^] .P4 0.22
C5-24 5.03 83 .42+1 .30 7989+126 0.0ΰ 92 0+0.93 90 0.29
Bnlgie2 8.05 6 .60+1 .16 7703+1.25 8.00E-08 94.90+0.77 87 .90-^ 6 8.43E-09
Umclo70 8.05 5 .37+1 .21 7778+1.21 1.55E-05 93.71+0.84 88 9.04E-05
BnlgU12 8.04 5 .32+1 .43 7726+1.73 1皿 -0:5 94.07+0.43 88 .45 -K] .8; 4.9 E-06
C9-2 9.07 83 .05+1 ■67 8008+1.05 0.11 92.53+0.88 90.02^31.16 0.06
C9-19 9.07 83 .05+1 .67 8008+1.05 0.11 92.53+0.88 90.02-mi.ie o.oe 注: 表 1中 Bin代表所在染色体区域; 纯合植株指同一标记引物 PCR扩增得到 的与感病亲本 NT409的带型相同的植株; 杂和植株指同一标记引物 PCR扩增得到的 与两亲本叠加后的带型相同的植株。
4、 初步定位
在 8号染色体上的区段 X内继续寻找多态性公共标记, 获得 5个多态性 SSR标 记 (Umcl562, Umcll76, Umcll72, Umcl858和 Bnlgl460) , 同时开发的 43个 SSR 标记中有 5个 SSR (M103-1, M103-4, M105- 3, M-23和 M118-3) 标记在 BdF2群体 的亲本间有多态性, 用这些 SSR标记分别检测 BdF2群体的基因型,将获得的基因型 数据利用 QTL分析软件 winQTLcartographer 2.0 (北卡罗来纳大学, 生物信息研究 中心)进行连锁作图。 结果显示, 济宁和泰安的表型鉴定数据均将与玉米粗縮病抗 性相关的主效 QTL (命名为 QMrdd 定位到分子标记 M103-1和 Umcll72之间大约 15Mb的区段内。该 QTL在济宁和泰安的数据中 L0D值分别为 23.39 和 27.36, 解释 表型变异率分别为 33.72%和 41.28%
二、 精细定位
1、 主效 QTL i/UW的置信区间内高密度分子标记的开发 根据步骤一中 4定位的主效 Q L -qMrddl (即分子标记 M103-1和 Umcl l72之间 大约 15Mb区段) 的参照序列, 一共搜索到 1365个 SSR片段; 经序列比对之后, 其 中有 433个为单拷贝片段, 这些单拷贝序列片段有 269个开发成 SSR标记, 其中 34 个在 BdF2群体的亲本间有多态性, 选择 14个 SSR标记用于精细定位。 这些分子标 记的相关信息如表 2。
表 2、 定位和验证过程中运用分子标记信息 标记 染 位 正向引物 (5 ' 3' ) 反向引物 (5 ' 3' ) 类型
色 (Mb)
M103-1 8 103. 18 AGAGGAGGCTTAGATGCGGT TTGAAAAAAAGGCATAGGCT SSR
M103-4 8 103. 93 CACTCTCATCCTCTCGCACC ATCTAATCACAGCGCGCAAG STS
MD01 8 104. 01 CCTGCTACAATACCTCTGTTGA GTTCGGACTGTGGATTATCG STS
M10427 8 104. 28 ACTTACGGTGAACACGCTCC CGAACTCATGCTTGATCAGG STS
M104-3 8 104. 82 TAGAGGATCCGACGGCGT TGCTAGCACTCGATGAGGAA STS
M105-3 8 105. 32 GTCGTCGAGTTGGTCTGGAC TGGTCAGAGGAGAGCTAGCA SSR
M106-15 8 106. 63 AACAAGACGGAAGCGACCA CATGTTGTACGCCAGCTTGA SSR
M108-1 8 108. 18 CAATGCTGTCCGTCAATGTC GACATCTCGTCGATAGGCCA SSR
M109-12 8 109. 95 GTACGTTCGTGCACACCACA GAACGGCACCGCATGATT SSR
M112-5 8 112. 05 ATGATGTGCCTGGACCAGAG CCTAAGATTGCCTTGCTCG SSR
Ml 13-2 8 113. 28 AACACAAGCGAGGAGACGAA ACGATGACGACAATGGCAAG SSR
Ml 13-6 8 113. 90 ACGTCTGTCTGTGGAGTTGG AGCAGCCTGGCAATGTTAGT SSR
Ml 14- 2 8 114. 19 CGTCGAGTTCGCCTTCATC GGTCACTACAAGGTCCTCGG SSR
Ml 14- 3 8 114. 43 GGCATTATCGTCCTGACTGA TAGCACACATAGCGACATGG SSR
M115-5 8 115. 68 CTAATTCGTGATGGTCTCGG AATGACGGAATGGCAGCCTA SSR
Ml 17-2 8 117. 15 ACCTGTTCATGTTCCACACG AATGACGAGGACGGATTACC SSR
Ml 17-5 8 117. 76 GTTCCTTGTGCTTCTGGTTG AATCTCTCTAGCTCGTCCTCTG SSR
Ml 18 - 3 8 118. 17 GGTCAACGCCATCCATAACT CTTGCTCGTGTCGTCCTTGT SSR
CI- 3* 1 33. 80 CTATCTCTCTCCCTGCGTGC GTGACGCCTATAACCTTCCG SSR
CI- 25* 1 34. 89 GTAGGCTCGTTCGCAAAAAA AGAGTTAAGCCGGCTATCCA SSR
C3-1* 3 213. 80 CCAAGGACGCAATCTAATCG GTCATGGACATCGTGCTGTT SSR
C3-5* 3 214. 37 GGACAGAGCAGGTGATGTTG GGATTCGCGGACAGTTGAAG SSR
C5-5* 5 17. 38 GAGGTTCCACCAGTGTGCAG ACTTCGTCCGTCCTTCCTCT SSR
C5-24* 5 GGATCGGAGGAGCCTGTTAA TCTGTCTCTTGCGTGTGTGA SSR
C9-2* 9 153. 51 TGGAGGACTTGATGTTGAGG CTCGATGCAGTTGCTTCTGT SSR
C9-19* 9 153. 62 CGCAGGACATGAGGTACACC GCTACTCCAGTTACCAGGCA SSR
注: *表示区段验证中应用的分子标记; 表中位置为玉米参照基因组 (APGv2)的 位置。
2、 i/UW的精细定位
在初步定位中, i7UW被定位到一个分子标记 M103-1和 Umcl l72之间大约 15Mb区段内, 利用该区段两侧的分子标记 Umcl l72和 M103-1 , 在 2011年的 211个 BdF2群体内筛选到 15个在分子标记 Umcl l72和 M103-1之间发生单交换的单株;将 这 15个单株自交, 并将其自交后代 BdF3在海南种植加代, 在海南种植的 2685个 BdF3中,使用分子标记 M103-1和 Umcl l72继续筛选,获得 237个在分子标记 Umcl l72 和 M103-1之间发生单交换的单株。 利用表 2所示的分子标记 M103-1和 Umcl l72之 间的分子标记分别检测这 237单株, 根据检测结果将这 237个单株分为 23种发生 单交换区段不同的类型(图 2 ) 。将这 137个单株自交产生 BdF4, 从这些 BdF4中选 取部分材料以家系(指来自于一个 BdF3单株的 BdF4)为单位于 2012年在山东的泰 安、 肥城和济宁分别进行粗縮病抗性表型鉴定。 在泰安一共有来源 33个 BdF3家系 的 2203个 BdF4种植,这些材料覆盖了全部 23种发生单交换区段不同的类型。在济 宁一共有来源 37个 BdF3家系的 2700个 BdF4种植,这些材料覆盖了全部 22种发生 单交换区段不同的类型。 在肥城一共有来源 31个 BdF3家系的 1805个 BdF4种植, 这些材料覆盖了全部 22种发生单交换区段不同的类型。
将所述 101个进行表型鉴定的交换单株的后代根据其发生单交换区段的基因 型分为三种类型, 纯合如 NT409 (感病)的基因型(记为 S ), 杂合基因型(记为 H) 和纯合如 NT411 (抗病) 的基因型 (记为 R) , 分别计算出三种基因型的病情指数。 结果如表 3和表 4所示。 在三个地点的重复中, 全部 23种交换类型都表现出相对 一致的表型, 没有相互冲突。 其中, 图 2所示 2-7和 16-23共 14种基因型后代不 同基因型个体之间的玉米粗縮病抗没有显著差异, 说明抗粗縮病的 QTL位点不在这 些材料的杂合区段 (基因型为杂合类型的区域) 。 所以 i/UW应该在分子标记 M106-15的上游; 图 2所示的 1、 8-15共 9种基因型的后代不同基因型个体的玉米 粗縮病抗性差异显著, 说明抗粗縮病主效 QTL位点位于这些材料的杂合区段内。 整 合全部 23种基因型单株的定位结果,将 QMrddl定位到 M103-4和 M10427之间 353kb 的范围内。
表 3、 在泰安市和肥城市按 23种发生单交换区段不同的类型及基因型统计 BdF4 单株病情指数的结果
肥城
DP DSI (%) DSI (%)
N. R N. P P-value N. R N. P P-value
R H S R H S
S 2 183 46.67 69.64 70.37 1.43E-07 3 236 32.22 83.49 84.00 3.54E-15
NS 4 254 85.32 83.67 82.42 0.54 4 305 74.30 73.74 65.71 0.20
NS 1 92 74.07 80.43 84.65 0.20 1 68 66.67 73.48 77.78 0.22
NS 1 86 77.78 78.47 80.95 0.68 NA NA NA NA NA NA
NS 1 73 74.75 82.24 86.93 0.49 1 62 88.15 82.37 82.22 0.31
NS 154 89.81 85.38 86.87 0.13 2 121 75.85 76.13 82.05 0.17
NS 1 60 94.07 90.97 91.11 0.32 2 148 66.67 65.97 66.01 0.87
S 1 65 49.21 89.50 69.70 2.19E-03 1 74 45.78 68.15 82.71 2.30E-07 s 1 64 45.45 80.16 73.73 7.92E-05 1 72 36.23 64.05 77.78 5.03E-06 s 1 74 50.00 83.84 88.24 5.05E-04 1 86 58.33 81.37 80.95 9.16E-04 s 1 93 31.11 63.74 86.87 6.26E-07 1 56 25.49 71.85 72.22 1.59E-08 s 147 56.73 74.60 81.48 1.02E-04 2 141 41.18 75.13 74.88 1.70E-08 s 1 55 52.38 76.61 90.12 6.35E-04 1 43 33.33 57.94 63.64 0.06 s 1 37 49.21 82.22 77.78 0.02 1 63 30.37 69.60 75.00 2.77E-05 s 1 58 49.21 82.05 69.70 6.2 IE- 03 1 79 45.78 68.15 82.72 6.3 IE- 04
NS 197 42.42 43.02 43.79 0.90 4 328 27.25 26.18 25.77 0.59
NS 1 37 41.67 42.63 40.74 0.87 1 65 40.17 40.05 54.17 0.05
NS 1 85 37.20 37.35 38.01 0.78 1 91 16.96 17.42 18.95 0.91
NS 1 66 52.05 42.73 43.06 0.11 1 74 33.33 34.51 39.26 0.36
NS 1 66 48.15 52.08 50.33 0.35 2 215 41.27 36.74 32.03 0.12
NS 2 81 51.51 55.42 52.05 0.38 2 122 33.56 33.64 38.56 0.34 NS 2 113 46.24 47.07 43.21 0.32 3 181 34.50 31.87 37.04 0.32
NS i 63 37.37 45.18 47.47 0.15 1 70 20.26 28.37 25.93 0.29 表 4、 在济宁市按 23种发生单交换区段不同的类型及基因型统计 单株病情指 数的结果
DSI (%)
DP N. R N. P P-value
R H S
S 1 48 71.85 93.78 94.44 1.12E-04
NS 4 212 98.67 97.82 97.66 0.47
NS 1 68 98.52 96.76 96.30 0.41
NS NA NA NA NA NA NA
NS 1 64 100.00 100.00 100.00 NA
NS 2 113 96.14 96.07 99.03 0.08
NS 1 54 94.44 93.42 93.33 0.84
S 1 49 71.85 96.43 93.33 2.27E-03 s 1 64 86.67 100.00 98.99 1.19E-04 s 1 66 77.78 97.85 98.41 1.04E-04 s 1 54 53.70 98.41 95.37 2.96E-08 s 2 117 62.96 96.58 94.77 2.54E-12 s 1 86 82.22 100.00 97.98 2.67E-05 s 1 66 72.84 96.33 95.56 4.83E-06 s 1 48 55.56 92.87 93.06 4.65E-06
NS 3 191 63.94 63.97 65.48 0.33
NS 1 47 64.81 63.21 63.89 0.76
NS 1 60 61.90 57.08 56.94 0.48
NS 1 63 61.27 69.43 83.85 0.06
NS 1 56 86.67 79.00 79.63 0.19
NS 2 97 84.44 82.03 81.70 0.32
NS 2 108 69.59 72.86 76.00 0.14
NS 1 74 63.64 61.42 56.61 0.18 表 3和表 4中, DP代表家系抗性分离情况, No. R代表同一重组类型内种植家系个 数, No. P代表同一类型内种植单株个数, S代表家系后代抗性分离, NS代表家系后 代抗性不分离。
3、 qMrddl 的效应分析
将步骤 2得到的各单株按照基因型为 R、 H和 S分别计算病情指数, 结果如下: 在泰安的 2203个 BdF4单株按照基因型为 R、 H和 S分别计算病情指数的结果 分别为 49. 93%、 77. 05%和 79. 82%;
在肥城的 1805个 BdF4单株按照基因型为 R、 H和 S分别计算病情指数的结果 分别为 33. 21%、 67. 08%、 72. 47%;
在济宁的 2700个 BdF4单株按照基因型为 R、 H和 S分别计算病情指数的结果 分别为 71. 69%、 96. 43 %、 95. 84%;
结果表明: 基因型为 R的 在不同的环境下具有稳定的抗病效应, 能将 病情指数降低 24. 15—39. 26% o 实施例 2、 重组自交系群体验证 qMrddl与玉米粗縮病抗性相关
本实施例提供了一种辅助鉴定或鉴定玉米粗縮病抗性的 PCR试剂, 它由 PCR 引物对即分子标记 MD01、 10 X Taq 缓冲液, dNTP mix , Tag A 聚合酶和 dd¾0 组成。
其中, 分子标记 MD01由 MD01F和 MD01R这两条单链 DNA组成, 其序列如下:
MD01F: 5, - CCTGCTACAATACCTCTGTTGA- 3, ( SEQ ID No. 3 ) , MD01 :
5, -GTTCGGACTGTGGATTATCG-3 ' ) ( SEQ ID No. 4 ) 。
10 X Tag缓冲液, dNTP mix和 Taq DNA聚合酶均购自北京全式金公司。 2012年, 对如下 159个玉米株系进行中国山东省泰安市、 济宁市、肥城市三个 地点的玉米粗縮病抗性鉴定: 玉米自交系黄 (:、 玉米自交系 X178、 以及玉米自交系 黄 C和玉米自交系 X178的 157个 代重组自交系(编号为 CX1-157 ) 。其中, 玉米 自交系黄 C和玉米自交系 X178的 F6代重组自交系按照如下方法获得: 玉米自交系 黄 C (作为母本) 和玉米自交系 X178 (作为父本) 杂交得到F1代, 自交得 到 代, F2代自交得到 F3代, 依此类推, 得到 F6代。 Ft代表示杂种第 1代, 是 指玉米自交系黄 C (作为母本) 和玉米自交系 X178 (作为父本) 杂交当代所结 的种子及由它所长成的植株; F2代表示杂种第 2代, 指F1代自交产生的种子及 由它所长成的植株; F3代表示杂种第 3代, 指 代自交产生的种子及由它所长 成的植株; 依此类推, F6代表示杂种第 6代, 指 F5代自交产生的种子及由它所 长成的植株。
田间试验采用随机区组设计,每个地点为一个区组,每个区组设 159个小区, 1 个 F6代重组自交系种植个小区,剩余两个小区分别种植玉米自交系黄 C和玉米自交 系 X178,每个小区种植 26株。 每个小区行长 5米,宽 0. 6米。 在玉米散粉期过后进 行玉米粗縮病调查, 按照前述玉米粗縮病分级标准进行分级并按照前述病情指数计 算方法计算病情指数。 结果显示, 亲本自交系 X178在中国山东省泰安市、 济宁市、 肥城市三地的病情指数 (DSI ) 分别为 11. 11%、 11. 11%和 11. 11%; 亲本自交系黄 C 在中国山东省泰安市、 济宁市、 肥城市三地的病情指数 (DSI ) 分别为 100%、 100% 和 97. 78%。 玉米自交系黄 C和玉米自交系 X178的 F6代重组自交系 CX1-CX91这 91 份重组自交系中国山东省泰安市、 济宁市、 肥城市三地的病情指数均小于 50%, CX1-CX91这 91份重组自交系中国山东省泰安市、 济宁市、 肥城市三地的平均病情 指数 ( DSI )分别为 22. 91%, 24. 70%和 21. 28%; 玉米自交系黄 C和玉米自交系 X178 的 代重组自交系 CX92-CX157这 66份重组自交系中国山东省泰安市、济宁市、 肥 城市三地的病情指数均大于 50%, CX92-CX157这 66份重组自交系中国山东省泰安 市、济宁市、肥城市三地的平均病情指数(DSI )分别为 74. 63%, 89. 03%和 63. 59%。 按照病情指数小于等于 50%的玉米品种或株系为粗縮病抗性玉米,病情指数大于 50% 的玉米品种或株系为非粗縮病抗性玉米, 利用田间病情指数鉴定玉米粗縮病抗性的 结果为玉米自交系黄 C和编号为 CX92-157的 66个 F6代重组自交系均为非粗縮病抗 性玉米, 玉米自交系 X178和编号为 CX1-91的 91个 代重组自交系均为粗縮病抗 性玉米。
玉米自交系黄 C和 X178的 157个 代重组自交系在中国山东省泰安市、 济宁 市、 肥城市三地的病情指数具体如表 5所示。
表 5、 玉米自交系黄 C和玉米自交系 X178的 157个 代重组自交系在中国山 东省泰安市、 济宁市、 肥城市三地的病情指数
中国山东省泰安市 中国山东省济宁市 中国山东省肥城市
CXI 0. 4222 0. 1111 0. 4321
CX2 0. 3500 0. 1111 0. 4722
CX3 0. 1111 0. 1111
CX4 0. 1111 0. 1111
CX5 0. 1111 0. 4667 0. 4603
CX6 0. 1111 0. 3651
CX7 0. 1111 0. 3889 0. 2063
CX8 0. 1111 0. 1111
CX9 0. 1919 0. 1111 0. 1624
CX10 0. 3333 0. 2593
CX11 0. 2778 0. 2778 0. 3704
CX12 0. 3333 0. 1111 0. 1111
o o o o o o o o o
CX13 0. 1111 0. 1111 0. 1111
CX14 0. 1667 0. 3778
CX15 0. 1111 0. 1111 0. 1111
CX16 0. 1111 0. 1111
CX17 0. 1111 0. 1852 0. 1111
CX18 0. 1111 0. 1111
CX19 0. 4167 0. 3778
CX20 0. 1944 0. 3651
CX21 0. 1944 0. 2121
CX22 0. 3827 0. 1515
CX23 0. 1111 0. 1481 0. 1111
CX24 0. 1111 0. 1407 0. 1111
CX25 0. 3333 0. 1111 0. 1111
CX26 0. 1111 0. 2000 0. 1111 , ,i3/: O 6s20il£ S8990iAV
Figure imgf000013_0001
J,i3/: 6s20il£ s899oA
Figure imgf000014_0001
Figure imgf000015_0001
ti3/: 6s20il£ s899oA
Figure imgf000016_0001
结果表明: 亲本玉米自交系 X178的 i/UW在不同的环境下具有稳定的抗玉米 粗縮病的效应, 能将病情指数降低 42. 31—64. 27%。
按照如下方法利用以与玉米粗縮病抗性主效数量性状位点 qMrddl为靶序列 设计的辅助鉴定或鉴定玉米粗縮病抗性的分子标记 MD01鉴定上述 159个玉米株系 玉米粗縮病抗性: 在中国山东省泰安市、 济宁市、 肥城市这三个地点每个地点各取 玉米自交系黄 C、玉米自交系 X178和编号为 CX1-157的 157个玉米自交系黄 C和玉 米自交系 178的 代重组自交系 (共 159个玉米株系) 的叶片, 玉米自交系黄 C 每个地点取 3个植株的叶片将这三个地点所取的所有叶片混合后提取基因组 DNA, 玉米自交系 X178每个地点取 3个植株的叶片将这三个地点所取的所有叶片混合后 提取基因组 DNA, 编号为 CX1-157的 157个 F6代重组自交系的每个 F6代自交系每个 地点各取 3个植株的叶片,将每个 F6代自交系的这三个地点所取的所有叶片混合后 提取基因组 DNA。 分别以上述 159个株系的各个株系的基因组 DNA为模板, 利用分 子标记 MD01 (上游引物: 5, - CCTGCTACAATACCTCTGTTGA- 3, , 下游引物
5 ' -GTTCGGACTGTGGATTATCG-3 ' )作为引物进行 PCR扩增。 PCR反应体系如表 6所 示:
表 6、 2( L的 PCR反应体系
Figure imgf000017_0001
PCR反应温度程序: 94°C预变性 5min; 94°C变性 30s, 60°C退火 30s, 72 °C 延伸 30s, 30个循环; 72 °C延伸 7min, 12 °C保存。
将每个株系的 PCR扩增产物进行凝胶浓度为 1%的琼脂糖凝胶电泳后经凝胶 成像仪所显示的条带大小结果,结果表明亲本玉米自交系 X178和编号为 CX1-91的 91个 F6代重组自交系的 PCR产物均无特异条带, 即在 100bp-2000bp的范围内没 有靈片段; 亲本玉米自交系黄 C和编号为 CX92-157的 66个 代重组自交系的 PCR产物有一个特异条带, 大小在 100bp-2000bp的范围内。
根据 PCR扩增产物按照下述方法确定上述 159个玉米株系的玉米粗縮病抗 性: 如果所述待鉴定玉米的 PCR产物中没有 100bp-2000bp的 DNA片段, 所述待鉴 定玉米为粗縮病抗性玉米; 如果所述待鉴定玉米的 PCR产物中有 100bp-2000bp的 DNA片段, 所述待鉴定玉米为非粗縮病抗性玉米。 按照该方法, 玉米自交系黄 C和 编号为 CX92-157的 66个 F6代重组自交系均为非粗縮病抗性玉米,玉米自交系 X178 和编号为 CX1-91的 91个 代重组自交系均为粗縮病抗性玉米。该方法的鉴定结果 和上述利用田间病情指数鉴定玉米粗縮病抗性的检测结果一致性为 100%。
本实施例实施例 2和实施 1中步骤 3的结果表明, i/UW在不同的遗传背景 下与玉米粗縮病抗性均相关, 可在分子标记辅助育种中广泛应用。
实施例 3、 与玉米粗縮病抗性相关的 qMrddl
用两种限制性内切酶 (Α'ΛίΛ Ι Ι 和 / ¾ΗΙ)分别部分酶切玉米自交 1145的基因组
DNA,回收 100 kb 以上的酶切片段,分别于 pIndigoBAC-5载体进行连接。 连接产物 通过点击转化导入到大肠杆菌 DH10B菌株的感受态细胞中, 每次转化获得的 BAC克 隆数为 1000-3000个。 共获得 221184个克隆, 单克隆鉴定显示平均插入片段大于 100 kb, 空载率低于 3%。 该 BAC 文库约覆盖玉米基因组 9倍大小。 利用定位中发 展的分子标记 M103-4 和 M10427筛选 BAC 文库, 筛选到两个 BAC, 可以覆盖整个 定位区段。 将这两个 BAC送到华大基因进行建库测序, 得到拼接结果。 结果表明与 玉米粗縮病抗性相关的主效数量性状位点 qMrddl, 定位于第 8号染色体上, 位于 分子标记 M103-4的上游引物和分子标记 M10427的下游引物之间; 所述分子标记 M103-4的上游引物的核苷酸序列如 SEQ ID No. 1所示, 所述分子标记 M10427的 下游引物如 SEQ ID No. 2所示。 玉米粗縮病抗性相关的主效数量性状位点 qMrddl 的核苷酸序列如 SEQ ID No. 5所示。
工业应用
本发明首先通过自交异质系内的全基因组发掘, 找到可能与粗縮病抗性相 关的位点; 然后通过分离后代群体内验证确定玉米粗縮病主效抗病位点的位置; 最后采用重组后代测验法将抗病区段縮小到 353kb的物理距离,并在 qMrddl 区 段内开发了一系列可靠的分子标记, 为分子育种提供了精确的参考信息。 同时, 通过对 qMrddl 的效应分析发现来源于抗病材料(NT411 ) 的 i/UW位点在感病 材料 (NT409 ) 的背景下可以将玉米粗縮病抗性提高 24. 15%— 39. 25%。 这表明 i/ n/W位点在分子育种中具有广泛的应用价值。 通过 BAC测序获得抗病材料该 区段内的 DNA序列, 对开发该区段内和抗病 QTL紧密连锁的分子标记, 指导分 子标记辅助改良玉米自交系粗縮病抗性和分子标记设计育种具有重要意义。 应 用本发明可精确指导玉米自交系粗縮病抗性改良和玉米抗粗縮病新品种的培 育, 显著提高玉米对粗縮病的抗性, 从而减少因粗縮病造成的产量损失, 直接 提高农业经济收入。

Claims

权利要求
1、 辅助鉴定或鉴定玉米粗縮病抗性的引物对, 其特征在于: 所述引物对为分 子标记 MD01 , 所述分子标记 MD01由 SEQ ID No. 3所示的单链 DNA和 SEQ ID No. 4 所示的单链 DNA组成。
2、 根据权利要求 1所述的引物对, 其特征在于: 所述玉米为玉米自交系黄 C、 玉米自交系 X178或由玉米自交系黄 C和玉米自交系 X178杂交衍生的后代。
3、包括权利要求 1所述引物对的辅助鉴定或鉴定玉米粗縮病抗性的试剂或试剂盒。
4、 根据权利要求 3所述的试剂或试剂盒, 其特征在于: 所述玉米为玉米自交 系黄 (:、玉米自交系 X178或由玉米自交系黄 C和玉米自交系 X178杂交衍生的后代。
5、 辅助鉴定或鉴定玉米粗縮病抗性的方法, 包括以待鉴定玉米的基因组 DNA 为模板, 用权利要求 1所述分子标记 MD01进行 PCR扩增, 根据得到的 PCR扩增产 物按照下述方法确定所述待鉴定玉米是否为粗縮病抗性玉米: 如果所述待鉴定玉米 的 PCR产物中没有 100bp-2000bp的 DNA片段, 所述待鉴定玉米为候选的粗縮病抗 性玉米或粗縮病抗性玉米; 如果所述待鉴定玉米的 PCR产物中有 100bp-2000bp的 DNA片段, 所述待鉴定玉米为候选的非粗縮病抗性玉米或非粗縮病抗性玉米。
6、 权利要求 1所述的引物对在玉米育种中的应用。
7、 根据权利要求 6所述的应用, 其特征在于: 所述玉米育种采用权利要求 5 所述方法鉴定出的候选的粗縮病抗性玉米或粗縮病抗性玉米进行育种。
8、与玉米粗縮病抗性相关的主效数量性状位点 qMrddl在设计辅助鉴定或鉴定 玉米粗縮病抗性的分子标记中的应用;所述与玉米粗縮病抗性相关的主效数量性状 位点 qMrddl定位于第 8号染色体上, 位于分子标记 M103-4的上游引物和分子标 记 M10427的下游引物之间;所述分子标记 M103-4的上游引物的核苷酸序列如 SEQ ID No. 1所示, 所述分子标记 M10427的下游引物如 SEQ ID No. 2所示。
9、 根据权利要求 8所述的应用, 其特征在于: 所述玉米粗縮病抗性主效数量 性状位点 qMrddl的核苷酸序列如 SEQ ID No. 5所示。
10、 与玉米粗縮病抗性相关的主效数量性状位点 定位于第 8号染色 体上, 位于分子标记 M103-4的上游引物和分子标记 M10427的下游引物之间; 所 述分子标记 M103-4的上游引物的核苷酸序列如 SEQ ID No. 1所示, 所述分子标 记 M10427的下游引物如 SEQ ID No. 2所示。
11、 根据权利要求 10所述的与玉米粗縮病抗性相关的主效数量性状位点 qMrddl, 其特征在于: 所述与玉米粗縮病抗性主效数量性状位点 qMrddl的核苷酸 序列如 SEQ ID No. 5所示。
12、权利要求 10或 11所述的与玉米粗縮病抗性相关的主效数量性状位点 qMrddl 在玉米分子标记辅助育种中的应用; 所述育种为培育玉米粗縮病抗性玉米。
PCT/CN2013/001359 2013-11-08 2013-11-08 与玉米粗缩病抗性相关的主效数量性状位点及其应用 WO2015066832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001359 WO2015066832A1 (zh) 2013-11-08 2013-11-08 与玉米粗缩病抗性相关的主效数量性状位点及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001359 WO2015066832A1 (zh) 2013-11-08 2013-11-08 与玉米粗缩病抗性相关的主效数量性状位点及其应用

Publications (1)

Publication Number Publication Date
WO2015066832A1 true WO2015066832A1 (zh) 2015-05-14

Family

ID=53040754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001359 WO2015066832A1 (zh) 2013-11-08 2013-11-08 与玉米粗缩病抗性相关的主效数量性状位点及其应用

Country Status (1)

Country Link
WO (1) WO2015066832A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107338293A (zh) * 2017-07-12 2017-11-10 袁隆平农业高科技股份有限公司 与玉米粗缩病抗性相关的kasp分子标记及其应用
CN108441571A (zh) * 2017-02-14 2018-08-24 中国农业大学 玉米分子标记在鉴定和调控玉米粗缩病抗性性状中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138313A (zh) * 2007-07-20 2008-03-12 山东大学 利用分子标记选育抗粗缩病的玉米自交系

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138313A (zh) * 2007-07-20 2008-03-12 山东大学 利用分子标记选育抗粗缩病的玉米自交系

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAO, YONGFU ET AL.: "Identification and Fine-mapping of A QTL, qMrddl, That Confers Recessive Resistance to Maize Rough Dwarf Disease", BMC PLANT BIOLOGY, vol. 13, no. 145, 30 September 2013 (2013-09-30), pages 1 - 13 *
ZHANG, YANJUN ET AL.: "Mapping of QTL for Resistance to Maize Rough Dwarf Disease Using Near-isogenic Lines and Their Application in Molecular Marker-assisted Selection", JOURNAL OF MAIZE SCIENCES, vol. 20, 31 December 2012 (2012-12-31), pages 36 - 41 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441571A (zh) * 2017-02-14 2018-08-24 中国农业大学 玉米分子标记在鉴定和调控玉米粗缩病抗性性状中的应用
CN108441571B (zh) * 2017-02-14 2021-04-16 中国农业大学 玉米分子标记在鉴定和调控玉米粗缩病抗性性状中的应用
CN107338293A (zh) * 2017-07-12 2017-11-10 袁隆平农业高科技股份有限公司 与玉米粗缩病抗性相关的kasp分子标记及其应用
CN107338293B (zh) * 2017-07-12 2020-12-01 袁隆平农业高科技股份有限公司 与玉米粗缩病抗性相关的kasp分子标记及其应用

Similar Documents

Publication Publication Date Title
Dawson et al. Isolation and fine mapping of Rps6: an intermediate host resistance gene in barley to wheat stripe rust
WO2019128461A1 (zh) 与南瓜光周期不敏感性状紧密连锁的Indel分子标记及其应用
ES2749964T3 (es) Planta resistente a un patógeno
WO2011072478A1 (zh) 玉米抗茎腐病主效qtl、与主效qtl连锁的分子标记和应用
CN107674922B (zh) 黄瓜抗黄瓜花叶病毒病基因cmv的InDel标记及其应用
Zhang et al. Fine mapping of the male fertility restoration gene CaRf032 in Capsicum annuum L.
CN110499389B (zh) 与烟草抗斑萎病位点rtsw紧密连锁的共显性标记引物、鉴别方法及其应用
Ando et al. Introgression of a novel ug99-effective stem rust resistance gene into wheat and development of Dasypyrum villosum chromosome-specific markers via genotyping-by-sequencing (GBS)
US9161501B2 (en) Genetic markers for Orobanche resistance in sunflower
WO2015066832A1 (zh) 与玉米粗缩病抗性相关的主效数量性状位点及其应用
CN110551843A (zh) 可区分烟草抗斑萎病位点rtsw纯合杂合基因型的共显性标记引物、区分方法及其应用
Kyaligonza et al. Identification of F1 cassava (Manihot esculenta Crantz) progeny using microsatellite markers and capillary electrophoresis
WO2022056767A1 (zh) 水稻早穗不减产材料中显性早穗相关基因的分子标记及其应用
CN106148499B (zh) 玉米穗部性状杂种优势主效qtl的分子标记及其应用
CN111334597B (zh) 用于检测西瓜白粉病抗性的snp位点、kasp标记及其应用
Mzena et al. Discovery of novel single nucleotide polymorphic (SNP) markers for genetic mapping of cashew (Anacardium occidentale L.)
CA2804853C (en) Soybean gene cluster regions associated with aphid resistance and methods of use
CN107164547B (zh) 一种与水稻稻瘟病抗性基因紧密连锁的分子标记、引物及其应用
KR100998133B1 (ko) 고추의 유전자적 웅성불임성 유전자 ms3과 연관된 분자표지개발과 이를 이용한 선발 및 새로운 계통 육성 방법
JP4437895B2 (ja) 小穂非脱落性遺伝子等についての新規遺伝マーカーおよびその利用法
CN102807981B (zh) 与谷子育性基因紧密连锁的分子标记SIsv0503
Singh Genetic diversity of wheat wild relative, Aegilops tauschii, for wheat improvement
Razar et al. Analysis of Segregation Ratio Distortion and Linkage Mapping in Two Switchgrass F1 Populations: Lowland-lowland and Lowland-upland Using Genotyping by Sequencing Data
Borbély et al. EWAC18–Oral
CN102807983B (zh) 与谷子育性基因紧密连锁的分子标记SIsv1083

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897065

Country of ref document: EP

Kind code of ref document: A1