WO2015064723A1 - 非破壊検査装置 - Google Patents

非破壊検査装置 Download PDF

Info

Publication number
WO2015064723A1
WO2015064723A1 PCT/JP2014/078994 JP2014078994W WO2015064723A1 WO 2015064723 A1 WO2015064723 A1 WO 2015064723A1 JP 2014078994 W JP2014078994 W JP 2014078994W WO 2015064723 A1 WO2015064723 A1 WO 2015064723A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
lattice
grating
group
subject
Prior art date
Application number
PCT/JP2014/078994
Other languages
English (en)
French (fr)
Inventor
敦 百生
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to EP14857299.3A priority Critical patent/EP3064930B1/en
Priority to KR1020167011094A priority patent/KR101668219B1/ko
Priority to JP2015545314A priority patent/JP6004411B2/ja
Priority to CN201480056220.4A priority patent/CN105637351B/zh
Priority to US15/033,440 priority patent/US9726622B2/en
Publication of WO2015064723A1 publication Critical patent/WO2015064723A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20075Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring interferences of X-rays, e.g. Borrmann effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a nondestructive inspection apparatus for observing the internal structure of a subject with high sensitivity by utilizing the property of radiation transmitted through the subject, for example, a wave in X-rays.
  • Radiation with high penetrating power such as X-rays
  • X-rays Radiation with high penetrating power
  • the contrast of an X-ray fluoroscopic image depends on the difference in X-ray attenuation rate, and an object that strongly absorbs X-rays is rendered as an X-ray shadow.
  • X-ray absorption ability becomes stronger as more elements with larger atomic numbers are included.
  • a substance composed of an element with a small atomic number is difficult to contrast, and this is also a principle defect of an X-ray fluoroscopic image. Therefore, sufficient sensitivity cannot be obtained with respect to biological soft tissue or organic materials.
  • an X-ray phase contrast method that functions with a cone beam with a wide bandwidth is realized, an apparatus using a compact X-ray source other than synchrotron radiation can be expected.
  • An X-ray phase contrast method using an X-ray Talbot interferometer is expected as a candidate for such an imaging method (see Patent Documents 1 and 2 below). In this method, since an X-ray lattice is used instead of a single crystal, imaging using multi-colored divergent beam X-rays is possible.
  • the size of the X-ray generation source must be small to some extent. Then, even if it is a compact X-ray source, an existing X-ray source that can be used in this method is substantially a microfocus X-ray source. This does not apply to normal focus X-ray sources.
  • X-rays are generated by irradiating a minute area on the target with an electron beam.
  • it is necessary to irradiate many electrons.
  • the upper limit of the actual X-ray power is limited.
  • X-ray imaging is performed on the premise of the X-ray power obtained by the microfocus X-ray source, there is a problem that the exposure time becomes long.
  • the X-ray Talbot-Lau interferometer is configured by adding a multi-slit between the X-ray source constituting the X-ray Talbot interferometer and the G1 grating (Patent Documents 3 to 4 and Non-Patent Document 1 below). reference). Note that the multi-slit is sometimes referred to as a G0 lattice, but this multi-slit is for configuring a virtual X-ray source.
  • an X-ray is generated by irradiating an electron beam to a relatively large area of the target, and the generated X-ray is partially transmitted through a multi slit.
  • a radiation source in which narrow and linear virtual X-ray sources are arranged at a predetermined pitch.
  • Such a radiation source having a plurality of micro lines may be referred to as a micro multi-line radiation source.
  • the X-ray Talbot-Lau interferometer can be said to be a technology in which the X-ray source in the X-ray Talbot interferometer is realized by a normal focus X-ray generator and a multi-slit. It should be said.
  • a fringe scanning method (the following non-patent document 2) and a Fourier transform method (the following non-patent documents 3 and 4) are performed.
  • the fringe scanning method one of the lattices is moved by a predetermined step amount, and the subject is sequentially imaged, and the change in the moire pattern is acquired in a plurality of image data. This is a method for obtaining an image and a scattered image.
  • the Fourier transform method a single grating is tilted to generate fine rotational moire fringes, and an absorption image, a refraction image, and a scattering image are similarly obtained from a single moire fringe image through a predetermined Fourier filtering process.
  • the Fourier transform method has a problem that the spatial resolution is inferior to that when the fringe scanning method is applied. For this reason, it is considered that the fringe scanning method is suitable for examining the subject.
  • the absorption image corresponds to a conventional image
  • the refraction image is an image obtained by mapping the angle at which the X-ray is bent due to refraction in the subject
  • the scattered image is a mapping of a decrease in the sharpness of the moire pattern caused by the subject. It is an image. This reduction in sharpness corresponds to the distribution of minute scatterers contained in the subject and is called a scattered image.
  • the imaging itself takes several tens to several hundreds of seconds in order to take an image of a subject that is stationary in the field of view while sequentially moving the grid by a predetermined amount.
  • specimens are sequentially sent by moving means such as a belt conveyor.
  • moving means such as a belt conveyor.
  • the mechanism for precisely shifting the lattice by a minute amount requires considerable mechanical accuracy, and there is a problem that it may be a burden in terms of cost and maintenance.
  • One object of the present invention is to provide a technique capable of performing high-sensitivity nondestructive inspection using radiation on a subject moving with respect to an apparatus.
  • the present invention can be expressed as an invention described in the following items.
  • a radiation source, a grating group and a radiation detector The radiation source is configured to radiate radiation having transparency to a subject toward the lattice group,
  • the lattice group is composed of a plurality of lattices through which the radiation irradiated toward the lattice group can pass.
  • each of the plurality of lattices includes a plurality of lattice members arranged with a predetermined period determined for each lattice
  • the radiation detector is configured to detect the radiation diffracted by the plurality of grating members
  • the radiation passing region through which the radiation emitted from the radiation source and reaching the radiation detector passes includes at least first to third partial regions,
  • the first to third partial regions are arranged at positions displaced from each other in a direction crossing the radiation direction of the radiation, Further, the positions of the first to third partial regions are positions where the subject moving with respect to the lattice group can pass in a direction intersecting the radiation direction of the radiation,
  • a portion of the lattice group in a space through which the radiation passing through any one of the first to third partial regions passes is referred to as a reference lattice portion group, and the first to third portions When the portions of the lattice group in the space through which the radiation passing through other partial regions of the partial regions pass are referred to as a first lattice
  • the first to third partial regions each include a portion that overlaps each other and a portion that does not overlap each other,
  • the lattice member having the first phase difference and the lattice member having the second phase difference are both arranged in the non-overlapping portion,
  • the radiation detector is configured to detect the radiation that has passed through the reference grating portion group, the radiation that has passed through the first grating portion group, and the radiation that has passed through the second grating portion group, respectively.
  • the nondestructive inspection device according to item 1 or 2.
  • the processing unit includes a detection value of the radiation that has passed through the reference grating subgroup, a detection value of the radiation that has passed through the first grating subgroup, and a detection value of the radiation that has passed through the second grating subgroup.
  • the nondestructive inspection apparatus according to Item 3 wherein one of an absorption image, a refraction image, and a scattering image of the subject is calculated using.
  • (Item 5) In addition, it has a transport section, The nondestructive inspection apparatus according to any one of items 1 to 4, wherein the transport unit is configured to move the subject in a direction intersecting the radiation direction of the radiation with respect to the lattice group.
  • the radiation source includes first to third radiation source units, The first radiation source unit is configured to emit the radiation that passes through the first partial region, The second radiation source unit is configured to emit the radiation that passes through the second partial region, The nondestructive inspection apparatus according to any one of items 1 to 7, wherein the third radiation source unit is configured to emit the radiation that passes through the third partial region.
  • the first phase difference and the second phase difference are the detection result of the radiation that has passed through the reference grating portion group, the detection result of the radiation that has passed through the first grating portion group, and the second grating portion.
  • the nondestructive inspection apparatus according to any one of items 1 to 8, wherein the non-destructive inspection apparatus is set to a value capable of performing phase imaging using the detection result of the radiation that has passed through the group.
  • the radiation source is configured to radiate radiation having transparency to a subject toward the lattice group,
  • the lattice group includes a plurality of lattices through which the radiation irradiated toward the lattice group can pass.
  • each of the plurality of lattices includes a plurality of lattice members arranged with a predetermined period determined for each lattice
  • the radiation detector is configured to detect the radiation diffracted by the plurality of grating members
  • the radiation passing region through which the radiation emitted from the radiation source and reaching the radiation detector passes includes at least first to third partial regions,
  • the first to third partial regions are arranged at positions displaced from each other in a direction crossing the radiation direction of the radiation, Further, the positions of the first to third partial regions are positions where the subject moving relative to the lattice group in a direction intersecting the radiation direction of the radiation can pass.
  • the plurality of grating members have a predetermined phase difference so that a moire pattern formed by the radiation that has passed through the first to third partial regions has a phase difference between the moire patterns.
  • the drive unit is configured to move the radiation source, the lattice group, and the radiation detector as a whole in a direction intersecting the radiation direction of the radiation with respect to the subject.
  • the nondestructive inspection apparatus according to any one of items 1 to 11.
  • (Item 14) Comprising the nondestructive inspection device according to item 13 and an image presentation unit;
  • the medical image diagnostic apparatus wherein the image presenting unit is configured to present an absorption image, a refraction image, or a scattered image obtained from information on the radiation detected by the radiation detector as a diagnostic image.
  • (Item 15) A nondestructive inspection method using the nondestructive inspection apparatus according to any one of items 1 to 13, Moving the subject relative to the lattice group in a direction intersecting the radiation direction of the radiation; Detecting the X-rays that have passed through the subject when the subject passes through the reference grid subgroup; Detecting the X-rays transmitted through the subject when the subject passes through the first lattice portion group; A non-destructive inspection method comprising: detecting the X-rays transmitted through the subject when the subject passes through the second lattice portion group.
  • FIG. 2 is a schematic explanatory diagram when the nondestructive inspection apparatus of FIG. 1 is cut along a plane along the moving direction of a subject. It is explanatory drawing for demonstrating the arrangement
  • FIG. 4B the horizontal axis represents the position in the width direction of the lattice, and the vertical axis represents the height from the lattice bottom surface.
  • FIG. (A) is a top view of a grating
  • (B) expands and shows the arrangement pattern of a grating
  • the nondestructive inspection apparatus of this embodiment includes a radiation source 1, a lattice group 2, and a radiation detector 3 (see FIG. 1). Furthermore, this nondestructive inspection apparatus additionally includes a transport unit 4, a processing unit 5, and a control unit 6.
  • the radiation source 1 is configured to radiate radiation having transparency to the subject 10 toward the lattice group 2.
  • an X-ray source that generates X-rays is used as the radiation source 1.
  • the radiation source 1 for example, an X-ray source that generates X-rays (that is, radiation) by irradiating an electron beam onto a target can be used. Since the specific configuration of the radiation source 1 can be the same as that of an existing X-ray source, further detailed description thereof will be omitted.
  • the grating group 2 includes a plurality of gratings through which radiation irradiated toward the grating group 2 can pass.
  • the grating group 2 satisfies the conditions regarding the mechanical structure and the geometrical arrangement necessary for constructing a Talbot interferometer (including a Talbot-Lau interferometer).
  • the conditions constituting the Talbot interferometer need only be satisfied to a sufficient extent to enable the necessary inspection, and it is necessary to satisfy the conditions in a mathematically strict sense. Absent.
  • the lattice group 2 of the present embodiment is configured by three lattices, a lattice G0, a lattice G1, and a lattice G2.
  • the grating G0 is a grating for constituting a Talbot-Lau interferometer, which is a kind of Talbot interferometer, and an absorption grating is used.
  • the grating G0 realizes a micro light source array that is a constituent element of the Talbot-Lau interferometer.
  • a phase type grating is usually used, but an absorption type grating can also be used.
  • An absorption type grating is used as the grating G2.
  • a configuration in which the arrangement of G2 is omitted is also possible (low interferometer; see Japanese Patent Laid-Open No. 2012-16370).
  • Each of the grids G0 to G2 includes a plurality of grid members 21 (see FIG. 3) arranged at a predetermined period determined for each grid.
  • This predetermined period is calculated geometrically to constitute a Talbot-Lau interferometer. In general, if the distance from the radiation source to the grating is different, the predetermined period is also different.
  • Such a predetermined period calculation method is conventionally known (see, for example, Patent Documents 3 and 4 described above), and detailed description thereof will be omitted.
  • the lattice member 21 constituting the lattice may be integrated with other members, and need not exist as an independent member. In short, as long as the grating member 21 has a structure that gives a necessary period modulation to the radiation to be used, there is no particular restriction on the configuration.
  • the radiation detector 3 is configured to detect, for each pixel, radiation that passes through the plurality of lattice members G0 to G2.
  • an X-ray line sensor that can detect X-rays for each pixel arranged in a one-dimensional direction is used.
  • the radiation detector 3 includes detectors 31 to 33 (see FIG. 2).
  • Each of the detection units 31 to 33 is extended in the thickness direction of the paper surface in FIG. 2, and each constitutes a line sensor. That is, the radiation detector 3 of this embodiment is a triple X-ray line sensor.
  • the detection unit 31 detects radiation that has passed through a reference lattice portion group 220 (described later), the detection unit 32 detects radiation that has passed through a first lattice portion group 221 (described later), and the detection unit 33 includes a second The configuration is such that the radiation that has passed through the lattice portion group 222 (described later) is detected.
  • the two-dimensional image data of the subject can be acquired by arranging the acquired one-dimensional data in time series.
  • a two-dimensional sensor such as a TDI (Time Domain Integration) detector, and pixels in a direction along the movement of the subject.
  • columns are read out by adding together pixel values at corresponding pixel positions in synchronization with the movement of the subject, or when TDI operation is simulated by computer computation after capturing a two-dimensional moving image at high speed. included.
  • the X-ray irradiation direction is approximately described as a plane wave.
  • a region through which the radiation emitted from the radiation source 1 and reaching the radiation detector 3 passes is referred to as a radiation passage region 7.
  • the radiation passage region 7 means a space from the radiation source 1 to the radiation detector 3.
  • the radiation passage region 7 includes first to third partial regions 71 to 73 (shown by broken lines in FIG. 2). These partial areas are only virtual areas for explanation. There are no particular restrictions on the shape of these partial regions.
  • the first to third partial regions 71 to 73 are arranged at positions displaced from each other in a direction crossing the radiation direction of radiation (in this example, the lateral direction in FIG. 2).
  • the positions of the first to third partial regions 71 to 73 pass through the subject 10 that moves relative to the lattice group 2 in the direction intersecting with the radiation direction of radiation (the horizontal direction in FIG. 2 in this example). It is a possible position. More specifically, the first to third partial regions 71 to 73 are located between the lattices G0 and G1. The first to third partial regions 71 to 73 are sequentially arranged from the left in FIG. 2, but the order is not limited. Similarly, in the present specification, the first, second,..., N-th notations are not for restricting the order but for distinguishing each other.
  • Each lattice subgroup is a set of at least a part of each of the lattices G0 to G2 constituting the lattice group 2.
  • the portion of the lattice group 2 in the space through which the radiation that should pass through any one of the first to third partial regions 71 to 73 (the first partial region in the illustrated example) passes is determined.
  • This is referred to as a reference lattice portion group 220 (a lattice portion surrounded by a broken line 220 in FIG. 2).
  • the arrangement order of the reference lattice portion group 220 and the first and second lattice portion groups 221 and 222 is not particularly limited.
  • the grating members 21 in each part of the gratings G0 to G2 included in each grating part group 220 to 222 are arranged with a predetermined period so as to satisfy the configuration of the Talbot interferometer. Therefore, the lattice members 21 in the lattices G0 to G2 in the portion included in the reference lattice portion group 220 are also arranged at a predetermined period in the lattice.
  • the period of the grating member 21 included in the reference grating subgroup 220 is a reference for the phase difference described below.
  • FIG. 3 an example in which a plurality of reference lattice members 21 and a plurality of lattice members whose phases are shifted (described later) are arranged on one of the lattices G0 to G2 (for example, the lattice G1).
  • Reference numeral 220 in FIG. 3 indicates the lattice member 21 included in the reference lattice subgroup 220.
  • reference numeral 221 in FIG. 3 indicates the lattice member 21 included in the first lattice portion group 221
  • reference numeral 222 indicates the lattice member 21 included in the second lattice portion group 222.
  • each lattice member 21 is extended in the length direction of the lattice G1.
  • a part of the gratings (a part of the grating G1 in the example of FIG. 3) included in the first grating part group 221 is first with respect to the arrangement of the grating members 21 to be arranged at a predetermined period in the some gratings.
  • the phase difference is set by a predetermined amount.
  • An example of the first phase shift unit 231 is shown in FIG.
  • d is a predetermined period.
  • the portion denoted by nd + d / 3 is the first phase shift portion. That is, the phase shift is performed by d / 3.
  • a method of determining the phase shift amount will be described later.
  • the phase shift part in this specification should just be a part which can form the above phase differences, and may be mere space.
  • the grating G1 is taken as an example, but in place of this, the grating G0 and G2 can include a phase-shifted grating member.
  • a part of the gratings included in the second grating subgroup 222 (a part of the grating G1 in the example of FIG. 3) is arranged in the arrangement of the grating members to be arranged at a predetermined period in this part of the gratings.
  • a second phase shift unit 232 that provides a second phase difference (described later) is provided (see FIG. 3B).
  • the second phase shift unit 232 gives a phase difference of only d / 3 to the grating member 21 in addition to the phase difference in the first phase shift unit 231. Therefore, the phase difference is 2d / 3 when compared with the grating members in the reference grating subgroup 220.
  • phase shift amounts in the first and second phase shift units are theoretically equivalent to the above phase difference.
  • a grating member that is phase-shifted so as to have a phase difference of 2d / 3 in the gratings G0 and G2 instead of the grating G1 can be provided.
  • the first phase difference and the second phase difference are the detection results of the radiation that has passed through the reference grating portion group 220, the detection results of the radiation that has passed through the first grating portion group 221, and the second grating portion group 222.
  • the value is set to a value at which the phase imaging method can be executed.
  • a plurality of images are acquired by translating the grating in steps of 1 / M (M is an integer of 3 or more) of the period of the grating.
  • M is an integer of 3 or more
  • a moire pattern formed by the self-image of the grating G1 and the grating G2 is acquired by the radiation detector 3 as a radiation intensity distribution.
  • the moire pattern changes periodically according to the amount of movement of the lattice, and when the lattice moves by one period, the moire pattern returns to its original shape. Therefore, a so-called phase imaging method (processing for obtaining an absorption image, a refraction image, or a scattered image) can be performed using M images corresponding to the number of steps M of the grating.
  • the conventional fringe scanning method can be applied to a substantially stationary subject.
  • a fringe scanning method including a very small step movement of the lattice at a very high speed, which is difficult to implement.
  • This embodiment can be said to be a method of performing the fringe scanning method by utilizing the movement of the subject. That is, the data acquisition necessary for the fringe scanning method is realized by forming regions corresponding to the minute step movement of the lattice in a spatial arrangement and passing the region through the subject.
  • the phase difference between the lattice members of each lattice is such that a predetermined phase shift can be generated between the moire pattern images formed by the radiation incident on the detection units 31 to 33 of the radiation detector 3. Is granted.
  • a phase difference is given to the grating member of the grating G0 in the radiation passage portion, and for the radiation incident on the detection unit 33, the phase difference is applied to the grating member of the grating G1 in the radiation passage portion.
  • Appropriate design is possible.
  • the plurality of lattice members are defined so that the moiré patterns formed by the radiation that has passed through the first to third partial regions 71 to 73 have a phase difference between the moiré patterns, respectively. What is necessary is just to arrange
  • the number of the gratings constituting the grating group 2 may be a two-sheet structure excluding the grating G0 or G2 (design conditions for the two-sheet structure are also known). In this case, it is only necessary that the phase shift for each region as described above is performed in the grating member constituting the two gratings.
  • phase shift amount The calculation of the phase shift amount will be described in more detail.
  • the number of the partial regions that is, the number of the first to nth partial regions
  • i is an integer satisfying 1 ⁇ i ⁇ (p ⁇ 1)
  • the arrangement of the lattice members in any one of the existing lattices is relative to the arrangement of the predetermined period of the lattice (that is, the predetermined period in the lattice belonging to the reference lattice subgroup). (D / p) ⁇ i It has the phase difference obtained by. This phase difference does not have to be mathematically exact, and some errors are allowed if this condition is satisfied to the extent that there is no practical problem.
  • d is a periodic configuration in the lattice, that is, an arrangement cycle of the lattice members, and p generally takes an integer value of 3 or more.
  • the number q of the lattice portion groups including the reference lattice portion group is equal to or greater than the division number p of the period, that is, q ⁇ p. That is, it is possible that there are more lattice subgroups that can form a phase difference between moire patterns than necessary (that is, there are redundant regions).
  • the grating members other than the grating member with the phase difference are arranged in a periodic structure without the phase difference.
  • phase difference can be said to be equivalent in principle even if an N-times period (N is an integer other than 0) is added, and therefore the phase difference includes an N-times period.
  • the transport unit 4 is configured to move the subject 10 with respect to the lattice group 2 in a direction intersecting the radiation direction of radiation (lateral direction in FIGS. 1 and 2).
  • the transport unit 4 of the present embodiment is configured by a belt conveyor that moves the subject 10 in the lateral direction.
  • the transport unit 4 transports the subject 10 so that the subject 10 can pass through the space between the lattice G0 and the lattice G1 through which the radiation passes. is there.
  • the transport unit 4 may pass the subject 10 between the lattices G1 and G2.
  • the subject 10 is passed between the grating G1 and the radiation detector 3.
  • a belt used for the belt conveyor as the transport unit 4 it is preferable to select a belt having a high transmittance of used radiation, but there is no particular limitation as long as it is a structure or material used for a normal conveyor.
  • the transport unit 4 is not limited to a belt conveyor, and any configuration can be used as long as it can transport the subject 10 in a desired direction. A configuration in which the subject 10 is fixed and the radiation source, the lattice group, and the radiation detector are moved relative to the subject 10 (including movement on polar coordinates) is theoretically possible.
  • the processing unit 5 detects the detection value of radiation that has passed through the reference lattice portion group 220 (that is, image data), the detection value of radiation that has passed through the first lattice portion group 221, and the radiation that has passed through the second lattice portion group 222.
  • the detection value is used to calculate any or all of the absorption image, refraction image, and scattered image of the subject. A specific calculation method will be described later as the operation of the nondestructive inspection apparatus of the present embodiment.
  • the control unit 6 is configured to send a drive signal to the transport unit 4 and send movement speed information (instruction value or detection value) of the subject 10 to the processing unit 5.
  • Step SA-1 in FIG. 4 As an initial state, a state in which radiation is irradiated from the radiation source 1 toward the radiation detector 3 will be considered. In this state, the subject 10 is transported in a predetermined direction by the transport unit 4 based on a control command from the control unit 6. The control unit 6 sends the moving speed of the subject 10 to the processing unit 5. The radiation detector 3 is in a state of continuously recording the detection signal in time series.
  • Steps SA-2 to 4 in FIG. 4 Next, the subject 10 is placed between the detection unit 31 of the radiation detector 3 and the radiation source 1, and the radiation detector 3 detects the radiation intensity for each pixel position by the detection unit 31 in time series.
  • One image data I 1 (x, t) is acquired and simultaneously output to the processing unit 5 (see FIG. 5).
  • Steps SA-2 to SA-4 are not necessarily performed after the completion of one step. For example, when the subject 10 is large, these steps are executed in parallel so that a part of the subject 10 is imaged by the detection unit 31 and the other part is imaged by the detection unit 32. In some cases.
  • Step SA-5 in FIG. 4 a calculation method in the processing unit 5 will be described with further reference to FIG.
  • the time difference at which the same part is recorded by the detection part 32 and the detection part 33 with respect to the time when a part of the subject 10 is recorded by the detection part 31 is denoted by ⁇ a and ⁇ b .
  • the time differences ⁇ a and ⁇ b can be calculated by the processing unit 5 from the speed information acquired from the transport unit 4 (information on the subject moving speed).
  • an absorption image, a refraction image, and a scattered image can be calculated by the left column (“No device correction” column) in FIG. 6 (so-called phase imaging method).
  • the definition of S (x, t) is as described in FIG.
  • arg [S (x, t)] is a function indicating the declination of S (x, t).
  • the number of image data I matches the denominator p of the above-described phase difference unless redundancy is considered.
  • the principle of the phase imaging process is the same as described above.
  • each image can be calculated by the formula described in the right column of FIG.
  • Step SA-6 in FIG. 4 the processing unit 5 outputs the obtained time-series image (absorption image, refraction image, or scattering image) to the output unit 8.
  • the processing unit 5 can record the obtained image in a recording unit (not shown) instead of or in addition to the output to the output unit 8.
  • the output destination of the image by the processing unit 5 can be appropriately selected according to the purpose of the apparatus.
  • the output unit 8 is, for example, a display or a printer, but is not limited thereto, and may be, for example, another system that uses a processing result.
  • the movement of the subject 10 is used without moving the lattice.
  • the subject images that sequentially pass through the first to third partial regions 71 to 73 can be obtained by the line-shaped detection units 31 to 33. Using these images, the necessary phase imaging process can be performed as described above.
  • the nondestructive inspection apparatus of the present embodiment there is an advantage that it is possible to perform a highly sensitive nondestructive inspection of the moving subject 10 by actively using the movement of the subject 10.
  • a driving mechanism for precisely driving the grid can be omitted, manufacturing, installation, and maintenance of the apparatus can be simplified, which can contribute to cost reduction including running cost. . Furthermore, it is considered that the installation space of the entire apparatus can be reduced.
  • each lattice member 21 included in each lattice G0 to G2 is the length direction of each lattice (the thickness direction of the paper surface in FIG. 2 and the vertical direction in FIG. 3).
  • the extending direction of each lattice member 21 is the width direction of each lattice (the left-right direction in FIG. 7).
  • reference numerals 220 to 222 are assigned to the lattice members included in the respective lattice portion groups 220 to 222, respectively.
  • the lattice members in the region included in the reference lattice subgroup 220 have a predetermined period d.
  • the lattice member in the region included in the first lattice portion group 221 has a predetermined period d, and has a phase difference of d / 3 with respect to the lattice member of the reference lattice portion group 220. Further, the lattice member in the region included in the second lattice portion group 222 has a predetermined period d and is d / 3 (to the lattice member of the reference lattice portion group 220 with respect to the lattice member of the first lattice portion group 221). On the other hand, it has a phase difference of 2d / 3).
  • the operation of the nondestructive inspection apparatus of the second embodiment is basically the same as that of the first embodiment. That is, as the subject 10 moves, the radiation image data I 1 to I 3 in each region can be acquired, and a desired subject image can be generated therefrom.
  • the nondestructive inspection apparatus of the second embodiment has an advantage that the effective thickness of the grating member can be increased by inclining the grating in the width direction of the grating (left and right direction in FIG. 7). .
  • the range of radiation that can pass through the grating is narrower than in a state where the grating is not tilted (see FIG. 8A).
  • This is not preferable in the case of using a conventional two-dimensional sensor (or tilting the lattice of FIG. 3 in the first embodiment in the vertical direction in the first embodiment) in order to narrow the field of view.
  • this embodiment using a line sensor as the radiation detector 3, even if the grid shown in FIG.
  • the pixels are only arranged in the horizontal width direction of the transport unit 4.
  • the field of view of the line sensor does not decrease.
  • this difficulty can be overcome by arranging the grids in an inclined manner as described above.
  • the subject 10 is configured to translate. At this time, the angles at which the radiation reaching the detection units 31 to 33 constituting the radiation detector 3 from the radiation source 1 intersects the subject 10 are slightly different. This causes an error in the calculation of the phase imaging method. In particular, this problem increases as the subject 10 becomes thicker.
  • the conveyance unit 4 having an arc trajectory centered on the radiation source 1 is provided. The subject 10 keeps a certain distance from the radiation source 1 and always moves in the same direction with respect to the radiation source 1. As a result, the path of the radiation passing through the subject 10 is always constant, the calculation error in the phase imaging method can be reduced, and as a result, adverse effects (for example, image blurring) caused by the calculation error can be avoided. Can do.
  • each of the lattices G0 to G2 constituting the lattice group 2 has a flat plate shape.
  • the transport unit 4 having an arc trajectory is adopted, errors due to this cannot be ignored in the phase imaging calculation. Therefore, in the nondestructive inspection apparatus of the third embodiment, the respective gratings G0 to G2 are arranged concentrically with the radiation source 1 as the center.
  • the nondestructive inspection apparatus of the third embodiment includes a G0 holder 240, a G1 holder 241, and a G2 holder 242.
  • each holder 240 to 242 has a concentric cylindrical surface centered on the radiation source 1 (an example of a concentric circle is virtually shown by a broken line in FIG. 9).
  • the gratings G0 to G2 are held concentrically around the radiation source 1.
  • Each of the lattices G0 to G2 can be constituted by a combination of three separated partial lattices, and the partial lattice can be replaced with a flat plate lattice.
  • the geometrical arrangement including the arrangement period of the grating member 21 included in each partial grating satisfies the conditions for configuring the Talbot interferometer, as in the above embodiment.
  • the detectors 31 to 33 constituting the radiation detector 3 of the present embodiment are arranged immediately after the G2 holder 242.
  • Each of the detection units 31 to 33 is arranged on a concentric circle with the radiation source 1 as the center, so that the distance between the grating G2 and each of the detection units 31 to 33 is constant.
  • the operation of the nondestructive inspection apparatus of the third embodiment is basically the same as the example of the first embodiment. That is, the radiographic image data I 1 to I 3 in each region can be acquired, and a desired subject image can be generated therefrom.
  • the radiation source 1 includes the first to third radiation source portions 11 to 13 (see FIG. 10). The radiation is emitted toward the corresponding radiation detectors 31-33. That is, the first radiation source unit 11 emits radiation that passes through the first partial region 71, the second radiation source unit 12 emits radiation that passes through the second partial region 72, and the third radiation source unit 13. Is configured to emit radiation that passes through the third partial region 73.
  • each of the lattices G0 to G2 is constituted by a combination of three separated partial lattices.
  • the geometric arrangement including the arrangement period of the grating member 21 included in the partial gratings satisfies the conditions for constituting the Talbot interferometer. That is, the lattice members 21 constituting the lattice group 2 of the fourth embodiment are arranged with a predetermined phase difference as in the above-described embodiment. For example, among the partial lattices constituting the lattice G0, the left partial lattice member in FIG.
  • the middle partial lattice member has a phase difference of d / 3
  • the right lattice member has a phase difference of 2d. / 3 phase.
  • all the gratings G0 can be arranged with a phase difference of 0, only the grating member of the middle partial grating in the grating G1 has a phase difference of d / 3, and only the grating member on the right side of the grating G2 has a phase difference of 2d / 3. .
  • the left partial lattice of the lattices G0 to G2 is the reference lattice subgroup 220
  • the central partial lattice of the lattices G0 to G2 is the first lattice subgroup 221 and the lattice G0 to G0.
  • the partial lattice on the right side of G2 can be grasped as the second lattice subgroup 222.
  • the operation of the nondestructive inspection apparatus of the fourth embodiment is basically the same as the example of the first embodiment. That is, as the subject 10 moves, the radiation image data I 1 to I 3 in each region can be acquired, and a desired subject image can be generated therefrom.
  • the radiation detector 3 is configured by arranging a plurality of detection elements 3a to 3e in a staggered manner.
  • the partial gratings constituting the gratings G0 to G2 are arranged above the detection elements 3a to 3e as shown in FIG. In FIG. 13, the gratings G0 to G2 above the detection elements 3b to 3e are not shown.
  • a plurality of gratings and radiation detectors are staggered and offset by a predetermined amount, and the basic configuration is the same as in the first embodiment.
  • the processing unit 5 cancels the difference and performs the phase imaging method. Just do it.
  • the width of the detector can be easily expanded, there is an advantage that it is easy to handle a large subject.
  • the lattice member is manufactured by periodically changing the thickness of the substrate.
  • etching can be used as a technique for changing the thickness of the substrate.
  • a grating in which irregularities are formed in the thickness direction of the substrate is used so that radiation is incident along the width direction (groove extension direction).
  • the incident direction of radiation is indicated by an arrow.
  • the width of the substrate can be used as the thickness of the lattice member, processing is easy and a high aspect ratio can be obtained.
  • the lattice members corresponding to the respective lattice portion groups 220 to 222 are extended in the length direction of the lattice (vertical direction in FIG. 3).
  • the length of the lattice member is shortened, and a set composed of three lattice portion groups 220 to 222 is arranged in the length direction of the lattice (vertical direction in FIG. 15).
  • the arrangement order can be appropriately set.
  • the relationship between the subject position and the imaging timing can be calculated from the moving speed of the subject 10, so in the processing unit 5, the pixel position for each pixel in the radiation detector 3. And the phase imaging method can be executed.
  • a redundant configuration is added to the configuration of the fourth embodiment.
  • the number q of the lattice portion groups including the reference lattice portion group is equal to or greater than the division number p of the period, that is, q ⁇ p. That is, there can be more lattice members having a phase difference than the necessary number p (that is, there are redundant regions).
  • the first to third partial regions 71 to 73 shown in FIG. 10 are repeatedly present along the conveyance direction of the subject 10. Accordingly, the lattice portion groups 220 to 222, the detection units 31 to 33, the lattices G0 to G2, and the first to third radiation source units 11 to 13 also exist correspondingly repeatedly.
  • the degree of redundancy can be determined in accordance with conditions such as accuracy required for the apparatus and installation area of the apparatus.
  • the configuration of the nondestructive inspection apparatus of the ninth embodiment is basically the same as that of the third embodiment shown in FIG.
  • the subject 10 is moved with respect to the radiation source 1, the grating group 2, and the radiation detector 3 using the transport unit 4.
  • the driving unit 9 is used instead of the transport unit 4.
  • the drive unit 9 is configured to move the radiation source 1, the grating group 2, and the radiation detector 3 as a whole with respect to the subject 10 in a direction intersecting the radiation direction of radiation.
  • the drive unit 9 in the ninth embodiment includes a support base 91 and a drive mechanism (not shown) that rotates the support base 91 within a predetermined angle range centered on the position of the radiation source 1. It is comprised by.
  • the radiation source 1, the grating group 2, and the radiation detector 3 are attached to the support base 91, and these are rotated around the position of the radiation source 1 as the support base 91 rotates. ing.
  • the drive unit 9 may return the support base 91 to the initial position by making one turn, or may return the support base 91 to the initial position by rotating in the reverse direction.
  • the subject 10 can be moved relative to the nondestructive inspection apparatus, and radiation image data similar to that of the third embodiment described above can be acquired.
  • the X-ray source 1 performs a rotational motion instead of a translational motion. This case is also included in the concept of “movement” relative to the subject 10.
  • the nondestructive inspection apparatus of the ninth embodiment since the movement of the subject 10 is not required, there is an advantage that the burden on the living body can be reduced when the subject 10 is a living body.
  • the configuration of the nondestructive inspection apparatus of the tenth embodiment is basically the same as that of the first embodiment shown in FIG.
  • the subject 10 is moved with respect to the radiation source 1, the grating group 2, and the radiation detector 3 using the transport unit 4.
  • the driving unit 109 is used instead of the transport unit 4.
  • the drive unit 109 is configured to move the radiation source 1, the grating group 2, and the radiation detector 3 as a whole with respect to the subject 10 in a direction intersecting the radiation direction of radiation.
  • the drive unit 109 includes a base portion 1091 and a rail portion 1092 that moves the base portion 1091 in a predetermined direction (the arrow direction in FIG. 18).
  • the radiation source 1, the grating group 2, and the radiation detector 3 are attached to the base portion 1091.
  • the base portion 1091 can be moved along a rail portion 1092 by a predetermined drive mechanism (not shown).
  • the radiation detector 3 is attached to the lower surface side of the grating G2 of the grating group 2.
  • the subject 10 of the tenth embodiment is supported by the support body 101.
  • the support body 101 has a shape that does not hinder the moving lattice group 2 and the like.
  • the position of the subject 10 is also set so as not to interfere with the moving lattice group 2 and the like.
  • the subject 10 can be moved relative to the nondestructive inspection apparatus, and radiation image data similar to that in the first embodiment described above can be acquired.
  • the nondestructive inspection apparatus of the tenth embodiment since the movement of the subject 10 is not required, there is an advantage that the burden on the living body can be reduced when the subject 10 is a living body.
  • the medical image diagnostic apparatus includes a nondestructive inspection apparatus 1000 and an image presentation unit 2000.
  • the nondestructive inspection apparatus 1000 can be constituted by, for example, the nondestructive inspection apparatus of the ninth or tenth embodiment described above.
  • the image presentation unit 2000 is configured to present an absorption image, a refraction image, or a scattered image obtained from information on radiation detected by the radiation detector 3 as a diagnostic image, if necessary. Since the method for obtaining the absorption image, the refraction image, and the scattering image from the detected radiation information may be the same as that described in the first embodiment, a detailed description thereof will be omitted.
  • the image presentation unit 2000 is, for example, a display for image display, but may be an output device such as a printer. In short, the image presentation unit 2000 only needs to have a function that can present an image to a diagnostician (for example, a medical worker such as a doctor or a laboratory technician).
  • a diagnostician for example, a medical worker such as a doctor or a laboratory technician.
  • an absorption image, a refraction image, or a scattered image can be presented to a diagnostician as necessary.
  • the first to third partial regions 71 to 73 are separated from each other (see FIG. 2).
  • the first to third partial regions 71 to 73 each include a portion that overlaps with each other and a portion that does not overlap (see FIG. 20). Then, a lattice member having a first phase difference (a lattice member constituting the first reference lattice portion group 221) and a lattice member having a second phase difference (a lattice member constituting the second reference lattice portion group 222) Is arranged in a partial region in a portion that does not overlap. That is, the first to third partial regions 71 to 73 in the twelfth embodiment are arranged at positions slightly displaced from each other in the direction intersecting the radiation direction of radiation (in this example, the lateral direction in FIG. 20). ing.
  • the radiation source 1 of the present embodiment is configured to emit radiation at different timings to the first to third partial regions 71 to 73.
  • the part of the grating G0 belonging to the reference grating part group 220, the part belonging to the first grating part group 221 and the part belonging to the second grating part group 222 are They are spaced apart (or adjacent) to each other in the direction crossing the radial direction.
  • a predetermined phase difference (for example, FIG. 3) between a part belonging to the reference grating part group 220, a part belonging to the first grating part group 221 and a part belonging to the second grating part group 222.
  • the first and second phase shift units 231 and 232) are set.
  • the entire apparatus is unidirectionally or forward / reversely driven by an appropriate drive mechanism, for example, like a CT inspection apparatus, centering on a predetermined rotating shaft 1001 (see FIG. 20). Can be rotated.
  • an appropriate drive mechanism for example, like a CT inspection apparatus, centering on a predetermined rotating shaft 1001 (see FIG. 20).
  • the nondestructive inspection apparatus In the operation of the nondestructive inspection apparatus according to the twelfth embodiment, radiation is emitted from the radiation source 1 to the first to third partial regions 71 to 73 at different timings. A configuration example of the radiation source 1 will be described later. As a result, even if the first to third partial areas 71 to 73 partially overlap, the radiographic image data I 1 to I 3 corresponding to each area are separately acquired, and a desired subject is obtained therefrom. An image can be generated. In the present embodiment, since a phase difference is formed in the grating in the non-overlapping portion of the first to third partial regions, image data corresponding to this phase difference can be acquired.
  • the radiation detection unit 3 since the timing of irradiating the first to third partial areas 71 to 73 is shifted, the radiation detection unit 3 corresponds to each area without being divided into a plurality of detection units. Radiation image data I 1 to I 3 can be acquired (specific examples are shown in supplements 1 and 2 described later).
  • the gratings G1 and G2 and the radiation detector 31 are flat.
  • these members are arranged on concentric circles centered on the radiation generation location. Thereby, the distance from the radiation source 1 to the grating
  • the entire apparatus rotates around the rotation shaft 1001.
  • the entire apparatus does not rotate, and the subject 10 is moved relative to the apparatus by a transport unit 4 as shown in FIG.
  • the subject 10 may be stationary and the apparatus may be configured to move in parallel.
  • the arrangement direction (the left-right direction in FIG. 22) of points (so-called focal points) at which radiation is emitted from the radiation source 1 and the extension direction (so-called lattice line) of the lattice members in each lattice are parallel.
  • the subject 10 moves in the left-right direction (direction parallel to the paper surface) in FIG.
  • Detailed operation in the fourteenth embodiment will be described later as supplement 3.
  • the electron gun 16 irradiates the portion 1a on the cylindrical surface of the rotatable target 15 with an electron beam.
  • radiation specifically, X-rays
  • the radiation traveling from the portion 1a through the grating G0 toward the radiation detector 3 passes through the first partial region 71.
  • the part of the grating G0 through which the radiation generated from the part 1a passes forms the reference grating part group 220 in this example.
  • the part of the grating G0 through which the radiation generated from the part 1b passes forms the reference grating part group 221 in this example, and the part of the grating G0 through which the radiation generated from the part 1c passes is shown in this example.
  • the reference lattice subgroup 222 is formed.
  • the portion 1b is the image data I 2
  • portions 1c are corresponding to the image data I 3.
  • the aforementioned portions 1a to 1c are also called focal points.
  • the gratings G0 to G2 are arranged in the normal direction to the surface of the target 15. Then, since the distance from the radiation source to each grating is constant, there is an advantage that correction of the obtained image data I 1 to I 3 is not necessary.
  • radiation is extracted in a direction inclined with respect to the cylindrical surface of the target 15 (for example, a direction of 6 ° with respect to the surface).
  • This has the advantage that the apparent X-ray intensity can be increased.
  • the distance from the radiation generation source to each grid differs depending on the generation location, it is necessary to correct that point on the obtained image data.
  • a projected image (absorption image T n , refraction image D n , scattered image V n ) when X-rays are emitted from the direction of ⁇ n around the rotation axis 1001 to the subject 10 (see FIGS. 20 and 21).
  • the calculation formula for is described below.
  • n 1, 2,... N, and a projection image obtained by equally dividing one round (2 ⁇ ) into N is acquired and used for CT image reconstruction.
  • hat ( ⁇ ) represents an image measured when there is no subject.
  • hat ( ⁇ ) represents an image measured when there is no subject.
  • an X-ray source is used as a radiation source, but other radiation that is transparent to the subject, for example, a neutron source can be used.
  • a radiation detector that can detect the radiation to be used is used.
  • the number of the lattices constituting the lattice group may be two without the lattice G0 or the lattice G2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Textile Engineering (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本発明は、移動する被検体に対して精密な非破壊検査を行うことができる技術を提供するものである。放射線源1は、格子G0~G2に向けて放射線を放射する。各格子G0~G2は、複数の格子部材を備える。放射線検出器3は、複数の格子部材で回折された放射線を検出する。複数の格子部材は、第1~第3の部分領域71~73を通過した放射線によってそれぞれ形成されるモアレ模様画像が、モアレ模様画像相互の間での位相差を持つように、既定の位相差を持って配置されている。

Description

非破壊検査装置
 本発明は、被検体を透過した放射線、例えばX線における波としての性質を利用して被検体の内部構造を高感度で観察するための非破壊検査装置に関するものである。
 透過力が高い放射線、例えばX線は、物体内部を透視するためのプローブとして、医用画像診断、非破壊検査、セキュリティチェックなどにおいて、広く利用されている。X線透視画像のコントラストは、X線減衰率の違いによっており、X線を強く吸収する物体はX線の影として描出される。X線吸収能は、原子番号が大きい元素を多く含むほど強くなる。逆に原子番号が小さい元素から成る物質についてはコントラストがつきにくいことも指摘でき、これがX線透視画像の原理的欠点でもある。したがって、生体軟部組織や有機材料などに対しては、十分な感度を得ることができない。
 一方、X線における波としての性質を利用すれば、一般的な従来のX線透視画像に比べて最高で約3桁の高感度化を実現できる。以降、これをX線位相コントラスト法と称する。この技術を、X線をあまり吸収しない軽元素からなる物質(生体軟部組織や有機材料など)の観察に適用すれば、従来法では難しかった検査が可能となるため、その実用化が期待される。
 X線位相コントラスト法を利用した高感度撮像法を実現するために、従来は、単色平面波のX線を使うX線光学系がその主流として研究されてきており、それゆえに極めて高い輝度のX線源の使用を前提としている。
 単色平面波を得るためには、もともと得られるX線から、特定の方向に進む特定のスペクトル成分のみを選別する必要がある。そのため、撮像に必要な強度を確保するためには、選別によるロスを補えるだけの十分な明るさが元のX線に求められる。そのような選別を行うための光学素子としてシリコンなどの単結晶が使われるが、同時に巨大なシンクロトロン放射光施設の利用を実質的に前提とせざるを得ず、実用を検討する場合には大きな障害になっている。
 広いバンド幅のコーンビームで機能するX線位相コントラスト法が実現すれば、シンクロトロン放射光以外のコンパクトX線源を用いた装置化が期待できる。そのような撮像法の候補として、X線タルボ干渉計によるX線位相コントラスト法が期待されている(下記特許文献1及び2参照)。この方法では、単結晶ではなくX線格子を使うため、多色の発散ビームX線を利用した撮像が可能である。
 ただし、位相コントラスト法では、ある程度の空間的可干渉性がX線に求められる。そのためには、X線発生源のサイズがある程度小さくなくてはならない。すると、コンパクトなX線源といっても、この方法で使用できる既存のX線源は、実質的にマイクロフォーカスX線源ということになってくる。通常フォーカスのX線源はこれに該当しない。
 マイクロフォーカスX線源では、ターゲットにおける微少領域に電子線を照射することによって、X線を発生させている。X線を多く発生させたいときは多くの電子を照射する必要があるが、ターゲットにおける熱負荷の問題のため、実際上のX線パワーの上限が制約されている。結果として、マイクロフォーカスX線源で得られるX線のパワーを前提としてX線撮像を行うと、露光時間が長くなるという問題がある。
 従来のX線タルボ・ロー干渉計では、通常フォーカスのX線源を用いて強度不足の問題を回避している。X線タルボ・ロー干渉計の構成は、X線タルボ干渉計を構成するX線源とG1格子との間にマルチスリットが加わったものとされる(下記特許文献3~4及び非特許文献1参照)。なお、マルチスリットをG0格子と呼ぶことがあるが、このマルチスリットは、仮想的なX線源を構成するためのものである。すなわち、この技術では、ターゲットにおける比較的広い面積に対して電子線を照射してX線を発生させ、発生したX線をマルチスリットで部分的に透過させる。これにより、細幅でかつ線状の仮想的X線源が所定ピッチで配置された線源を実現することができる。なお、このような、複数のマイクロラインを持つ線源を、マイクロマルチライン線源と称することがある。
 X線タルボ・ロー干渉計は、X線タルボ干渉計におけるX線源を、通常フォーカスのX線発生部とマルチスリットによって実現した技術ということができ、X線タルボ干渉計の具体的な一形態というべきものである。
 ところで、タルボ・ロー干渉計を含むX線タルボ干渉計による位相コントラスト法では、モアレ模様画像がX線検出器によって記録される。この画像では、X線が被検体によって屈折された効果が可視化される。しかし、従来画像に対応する吸収コントラストも重なっており、かつ、撮像光学系や装置の不完全性による、被検体とは関係ないコントラストも加わる。これらを分離し、より正確で高度な検査を行うため、「X線位相イメージング法」と呼ばれる定量的画像計測技術への展開が提案されている。X線タルボ干渉計で位相イメージング法を実現するために、縞走査法(下記非特許文献2)やフーリエ変換法(下記非特許文献3、4)と呼ばれる手順を実施している。縞走査法は、いずれかの格子を、既定ステップ量ずつ移動させ、順次被検体を撮影することで、モアレ模様の変化を複数枚の画像データに取得し、コンピュータ演算処理を通して、吸収画像、屈折画像、および、散乱画像を得る方法である。一方、フーリエ変換法は、1枚の格子を傾けて細かい回転モアレ縞を生じさせ、1枚のモアレ縞画像から所定のフーリエフィルタリング処理を通して、同様に吸収画像、屈折画像、および、散乱画像を得る方法である。フーリエ変換法は、空間分解能が縞走査法適用時より劣るという問題がある。このため、被検体の精査のためには、縞走査法が適すると考えられる。なお、吸収画像とは従来の画像に相当し、屈折画像は被検体における屈折によってX線が曲げられた角度をマッピングした画像であり、散乱画像は被検体によるモアレ模様の鮮明度の低下をマッピングした画像である。この鮮明度低下は被検体に含まれる微小な散乱体の分布に対応するので、散乱画像と呼ばれる。
 縞走査法では、格子を既定量ずつ順次移動させながら、視野内に静止している被検体を撮影するため、撮影自体に数十~数百秒かけるのが現状である。
 一方、例えば工場では、ベルトコンベアなどの移動手段などによって被検体が逐次送られてくる。これを全品検査する必要があるときは、被検体の撮影を短時間で完了し、欠陥を高速で検出しなければならない。空港の手荷物検査においても、同様の高速処理が必要とされる。
 しかしながら、従来の縞走査法では、既定位置に静止させた被検体に対して、二次元X線画像検出器を用いて、格子をその周期の整数分の一ずつずらして複数回の撮影を行うことが必要なので、ある程度の速さで移動する被検体に対する検査は難しいという問題があった。
 また、格子を微小量ずつ精密にずらすための機構には、かなりの機械的精度が必要であり、コスト面、メンテナンス面での負担になる可能性があるという問題もあった。
国際公開WO2004/058070号公報 米国特許第5812629号公報 特開2008-145111号公報 特開2009-240378号公報
F. Pfeiffer et al., Nat. Phys. 2, 258-261 (2006) A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai and Y. Suzuki, "Demonstration of X-ray Talbot interferometry," Jpn. J. Appl. Phys. 42, L866-L868 (2003). M. Takeda, H. Ina and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). Atsushi Momose, Wataru Yashiro, Hirohide Maikusa, Yoshihiro Takeda, "High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation" Opt. Express 17,12540-12545 (2009)
 本発明は、前記した事情に鑑みてなされたものである。本発明の一つの目的は、装置に対して移動する被検体に対して放射線を用いた高感度非破壊検査を行うことができる技術を提供することである。
 本発明は、以下の項目に記載の発明として表現することができる。
 (項目1)
 放射線源と、格子群と、放射線検出器とを備えており、
 前記放射線源は、被写体に対する透過性を有する放射線を、前記格子群に向けて放射する構成となっており、
 前記格子群は、前記格子群に向けて照射された前記放射線が透過可能な複数枚の格子から成っており、
 かつ、前記複数枚の格子は、格子ごとに決定される既定周期で配置された複数の格子部材をそれぞれ備えており、
 前記放射線検出器は、前記複数の格子部材により回折された前記放射線を検出する構成となっており、
 前記放射線源から放射されて前記放射線検出器に至る放射線が通過する放射線通過領域は、少なくとも第1~第3の部分領域を備えており、
 前記第1~第3の部分領域は、前記放射線の放射方向に交差する方向において、互いに変位した位置に配置されており、
 さらに、前記第1~第3の部分領域の位置は、前記放射線の放射方向に交差する方向において前記格子群に対して移動する前記被写体が通過可能な位置となっており、
 前記第1~第3の部分領域のうちいずれか一つの部分領域を通過する前記放射線がそれぞれ通過する空間中にある前記格子群の部分を基準格子部分群とよび、前記第1~第3の部分領域のうちの他の部分領域を通過する前記放射線がそれぞれ通過する空間中にある前記格子群の部分を、それぞれ第1格子部分群及び第2格子部分群とよぶとき、
 前記基準格子部分群に含まれる一部の前記格子における前記格子部材は、当該格子における前記既定周期で配置されており、
 前記第1格子部分群に含まれる一部の前記格子は、この一部の格子における前記既定周期での配置に対して第1の位相差を有する格子部材を備えており、
 前記第2格子部分群に含まれる一部の前記格子は、この一部の格子における前記既定周期での配置に対して第2の位相差を有する格子部材を備えている
 ことを特徴とする非破壊検査装置。
 (項目2)
 前記第1~第3の部分領域は、それぞれ、互いに重畳する部分と、重畳しない部分とを備えており、
 前記第1の位相差を有する格子部材と、前記第2の位相差を有する格子部材とは、いずれも、前記重畳しない部分に配置されており、
 前記放射線源は、前記第1~第3の部分領域に対して、異なるタイミングで前記放射線を放射する構成となっている
 項目1に記載の非破壊検査装置。
 (項目3)
 前記放射線検出器は、前記基準格子部分群を通過した前記放射線と、前記第1格子部分群を通過した前記放射線と、前記第2格子部分群を通過した前記放射線とを、それぞれ検出する構成となっている
 項目1又は2に記載の非破壊検査装置。
 (項目4)
 さらに処理部を備えており、
 前記処理部は、前記基準格子部分群を通過した前記放射線の検出値と、前記第1格子部分群を通過した前記放射線の検出値と、前記第2格子部分群を通過した前記放射線の検出値とを用いて、前記被写体の吸収画像、屈折画像及び散乱画像のうちのいずれかを算出する構成となっている
 項目3に記載の非破壊検査装置。
 (項目5)
 さらに搬送部を備えており、
 前記搬送部は、前記被写体を、前記格子群に対して、前記放射線の放射方向に交差する方向において移動させる構成となっている
 項目1~4のいずれか1項に記載の非破壊検査装置。
 (項目6)
 前記格子群は、2枚の格子により構成されている
 項目1~5のいずれか1項に記載の非破壊検査装置。
 (項目7)
 前記格子群は、3枚の格子により構成されている
 項目1~5のいずれか1項に記載の非破壊検査装置。
 (項目8)
 前記放射線源は、第1~第3の線源部を備えており、
 前記第1線源部は、前記第1部分領域を通過する前記放射線を放射する構成となっており、
 前記第2線源部は、前記第2部分領域を通過する前記放射線を放射する構成となっており、
 前記第3線源部は、前記第3部分領域を通過する前記放射線を放射する構成となっている
 項目1~7のいずれか1項に記載の非破壊検査装置。
 (項目9)
 前記第1の位相差及び第2の位相差は、前記基準格子部分群を通過した前記放射線の検出結果と、前記第1格子部分群を通過した前記放射線の検出結果と、前記第2格子部分群を通過した前記放射線の検出結果とを用いて、位相イメージングを実行できる値に設定されている
 項目1~8のいずれか1項に記載の非破壊検査装置。
 (項目10)
 前記放射線はX線である
 項目1~9のいずれか1項に記載の非破壊検査装置。
 (項目11)
 放射線源と、格子群と、放射線検出器とを備えており、
 前記放射線源は、被写体に対する透過性を有する放射線を、前記格子群に向けて放射する構成となっており、
 前記格子群は、前記格子群に向けて照射された前記放射線が透過可能な複数枚の格子を備えており、
 かつ、前記複数枚の格子は、格子ごとに決定される既定周期で配置された複数の格子部材をそれぞれ備えており、
 前記放射線検出器は、前記複数の格子部材により回折された前記放射線を検出する構成となっており、
 前記放射線源から放射されて前記放射線検出器に至る放射線が通過する放射線通過領域は、少なくとも第1~第3の部分領域を備えており、
 前記第1~第3の部分領域は、前記放射線の放射方向に交差する方向において、互いに変位した位置に配置されており、
 さらに、前記第1~第3の部分領域の位置は、前記放射線の放射方向に交差する方向において前記格子群に対して相対移動する前記被写体が通過可能な位置となっており、
 前記複数の格子部材は、前記第1~第3の部分領域を通過した前記放射線によってそれぞれ形成されるモアレ模様が、前記モアレ模様相互の間での位相差を持つように、既定の位相差を持って配置されている
 ことを特徴とする非破壊検査装置。
 (項目12)
 さらに駆動部を備えており、
 前記駆動部は、前記放射線源と、前記格子群と、前記放射線検出器とを、前記被写体に対して、前記放射線の放射方向に交差する方向において、全体として移動させる構成となっている
 項目1~11のいずれか1項に記載の非破壊検査装置。
 (項目13)
 前記被写体は生体である
 項目1~12のいずれか1項に記載の非破壊検査装置。
 (項目14)
 項目13に記載の非破壊検査装置と、画像呈示部とを備えており、
 前記画像呈示部は、前記放射線検出器により検出された前記放射線の情報から得られる吸収画像、屈折画像、又は散乱画像を、診断用画像として呈示する構成となっている
 医用画像診断装置。
 (項目15)
 項目1~13のいずれか1項に記載の非破壊検査装置を用いた非破壊検査方法であって、
 前記被写体を、前記格子群に対して、前記放射線の放射方向に交差する方向において移動させるステップと、
 前記被写体が前記基準格子部分群を通過する際に、前記被写体を透過した前記X線を検出するステップと、
 前記被写体が前記第1格子部分群を通過する際に、前記被写体を透過した前記X線を検出するステップと、
 前記被写体が前記第2格子部分群を通過する際に、前記被写体を透過した前記X線を検出するステップと
 を備える非破壊検査方法。
 本発明によれば、装置に対して移動する被検体に対して、放射線を用いた高感度非破壊検査を行うことが可能になる。
本発明の第1実施形態に係る非破壊検査装置の概略的な構成を示す説明図である。 図1の非破壊検査装置を、被検体の移動方向に沿う平面で切断した場合の、概略的な説明図である。 格子部材の配置パターンを説明するための説明図であって、図(a)は、格子の平面図、図(b)は、図(a)の格子の横断面における格子部材のプロファイルを示すグラフである。図(b)において横軸は、格子の幅方向における位置、縦軸は、格子底面からの高さである。 図1の非破壊検査装置を用いた検査方法の概略を示すフローチャートである。 画像データの演算処理方法を説明するための説明図である。 画像データから所定の画像を演算するための演算式を示す表である。 本発明の第2実施形態に係る非破壊検査装置に用いる格子の一例を示す図であって、図(a)は格子の平面図、図(b)は格子部材の配置パターンを拡大して示す説明図である。 本発明の第3実施形態に係る非破壊検査装置の変形例の動作を説明するための説明図である。 本発明の第3実施形態に係る非破壊検査装置を、被検体の移動方向に沿う平面で切断した状態での、概略的な説明図である。 本発明の第4実施形態に係る非破壊検査装置を、被検体の移動方向に沿う平面で切断した状態での、概略的な説明図である。 図10の非破壊検査装置におけるX線源の構成例を示す説明図である。 本発明の第5実施形態に係る非破壊検査装置における放射線検出器の構成例を示す平面図である。 図12の放射線検出器と格子との位置関係を説明するための説明図である。 本発明の第6実施形態に係る非破壊検査装置における格子の構成例を示す説明図である。 本発明の第7実施形態に係る非破壊検査装置における格子の構成例を示す説明図である。 本発明の第8実施形態に係る非破壊検査装置を、被検体の移動方向に沿う平面で切断した状態での、概略的な説明図である。 本発明の第9実施形態に係る非破壊検査装置における駆動部の概略的構成を示す説明図である。 本発明の第10実施形態に係る非破壊検査装置における駆動部の概略的構成を示す説明図である。 本発明の第11実施形態に係る医用画像診断装置の概略的構成を示すブロック図である。 本発明の第12実施形態に係る非破壊検査装置の構成を説明するための説明図である。 本発明の第13実施形態に係る非破壊検査装置の構成を説明するための説明図である。 本発明の第14実施形態に係る非破壊検査装置の構成を説明するための説明図である。 本発明の第15実施形態において用いる放射線源を説明するための説明図である。 本発明の第16実施形態において用いる放射線源を説明するための説明図である。 第12及び第13実施形態において得られる放射線投影像についての演算式の一例を説明するための説明図である。 第12及び第13実施形態において得られる放射線投影像についての演算式の一例を説明するための説明図である。 第12及び第13実施形態において得られる放射線投影像についての演算式の別例を説明するための説明図である。 第12及び第13実施形態において得られる放射線投影像についての演算式の別例を説明するための説明図である。
 (第1実施形態における非破壊検査装置の構成)
 以下、図面を参照しながら、本発明の第1実施形態に係る非破壊検査装置の構成を説明する。
 (非破壊検査装置の全体的構成)
 本実施形態の非破壊検査装置は、放射線源1と、格子群2と、放射線検出器3とを備えている(図1参照)。さらに、この非破壊検査装置は、搬送部4と、処理部5と、制御部6とを追加的に備えている。
 (放射線源)
 放射線源1は、被検体10に対する透過性を有する放射線を、格子群2に向けて放射する構成となっている。具体的には、本実施形態では、放射線源1として、X線を発生するX線源が用いられている。放射線源1としては、例えば、ターゲットに電子線を照射することによってX線(すなわち放射線)を発生するX線源を用いることができる。放射線源1の具体的構成は、既存のX線源と同様とすることができるので、これについてのこれ以上詳しい説明は省略する。
 (格子群)
 格子群2は、この格子群2に向けて照射された放射線が透過可能な複数枚の格子を備えている。格子群2は、タルボ干渉計(タルボ・ロー干渉計である場合を含む)を構成するために必要な機械的構造及び幾何学的配置についての条件を満たしている。ただし、本実施形態においては、タルボ干渉計を構成する条件は、必要な検査を可能にするために十分な程度に満たされていればよく、数学的に厳密な意味で条件を満足する必要はない。
 具体的には、本実施形態の格子群2は、格子G0と、格子G1と、格子G2という3枚の格子によって構成されている。格子G0は、タルボ干渉計の一種であるタルボ・ロー干渉計を構成するための格子であって、吸収型格子が用いられる。格子G0により、タルボ・ロー干渉計の構成要素である微小光源アレイが実現される。格子G1としては、通常は位相型格子が用いられるが、吸収型格子とすることも可能である。格子G2としては、吸収型格子が用いられる。なお、G2の配置を省略する構成も可能である(ロー干渉計。特開2012-16370号公報参照)。
 格子G0~G2は、格子ごとにそれぞれ決定される既定周期で配置された複数の格子部材21(図3参照)をそれぞれ備えている。この既定周期は、タルボ・ロー干渉計を構成するために幾何学的に算出されるものである。一般的には、線源から格子までの距離が異なれば、既定周期も異なる値となる。このような既定周期の算出方法は従来から知られている(例えば前記した特許文献3、4参照)ので、それについての詳しい説明は省略する。なお、格子を構成する格子部材21は、他の部材と一体であってもよく、独立した部材として存在する必要はない。要するに、格子部材21としては、使用する放射線に対して必要な周期変調を与える構造をなすものであれば、特段の構成上の制約はない。
 (放射線検出器)
 放射線検出器3は、複数の格子部材G0~G2を通過して到達する放射線を画素ごとに検出する構成となっている。具体的には、本実施形態の放射線検出器3としては、一次元方向に配列された画素ごとにX線を検出できるX線ラインセンサが用いられている。より具体的には、この放射線検出器3は、検出部31~33(図2参照)を備えている。各検出部31~33は、図2において紙面の厚さ方向に延長されており、それぞれがラインセンサを構成している。つまり、本実施形態の放射線検出器3は、3連のX線ラインセンサとなっている。検出部31は、基準格子部分群220(後述)を通過した放射線を検出し、検出部32は、第1格子部分群221(後述)を通過した放射線を検出し、検出部33は、第2格子部分群222(後述)を通過した放射線を検出する構成となっている。
 なお、ラインセンサにおいては、取得される一次元データを時系列に並べることにより、被検体の二次元画像データを取得できる。ここで述べるラインセンサには、画素を一次元的に並べたセンサのみならず、TDI(Time Domain Integration)検出器のように、二次元センサを用いて、被検体の動きに沿った方向の画素列について、被検体の動きと同期して対応した画素位置での画素値を足し合わせて読みだす方式のものや、高速で二次元動画像を取り込んだ後にコンピュータ演算によってTDI動作を模擬する場合も含まれる。
 また、図2では、X線の照射方向を、近似的に平面波として記載している。
 (格子部材間に位相差を与える構成)
 ここで、本実施形態の特徴である、格子部材間に位相差を与えるための構成について説明する。この説明のため、本実施形態では、放射線源1から放射されて放射線検出器3に至る放射線が通過する領域を、放射線通過領域7と称する。この放射線通過領域7は、この実施形態では、放射線源1から放射線検出器3までの空間を意味する。この放射線通過領域7は、第1~第3の部分領域71~73を備える(図2参照中破線で示す)。これらの部分領域は、あくまで説明のための仮想的な領域である。なお、これらの部分領域の形状には特に制約はない。
 第1~第3の部分領域71~73は、放射線の放射方向に交差する方向(本例では図2において横方向)において、互いに変位した位置に配置されている。
 さらに、第1~第3の部分領域71~73の位置は、放射線の放射方向に交差する方向(本例では図2中横方向)において格子群2に対して相対移動する被検体10が通過可能な位置となっている。より具体的には、第1~第3の部分領域71~73は、格子G0とG1との間に位置している。なお、第1~第3部分領域71~73を、図2において左から順次配置しているが、順序に制約はない。同様に、本明細書において第1、第2…第nという表記は、順序を制約するためではなく、相互間の区別をするためのものである。
 さらに、本実施形態では、説明のため、下記のように、基準及び第1・第2格子部分群という概念を導入する。各格子部分群は、格子群2を構成する各格子G0~G2の少なくとも一部の集合である。
 すなわち、第1~第3の部分領域71~73のうちいずれか一つの部分領域(図示の例では第1部分領域)を通過するべき放射線がそれぞれ通過する空間中にある格子群2の部分を基準格子部分群220とよぶ(図2中符号220の破線で囲った部分の格子)。第1~第3の部分領域71~73のうちの他の部分領域(図示の例では第2部分領域)を通過する放射線がそれぞれ通過するべき空間中にある格子群2の部分を、第1格子部分群221とよぶ(図2中符号221の破線で囲った部分の格子)。第1~第3の部分領域71~73のうちのさらに他の部分領域(図示の例では第3部分領域)を通過する放射線がそれぞれ通過するべき空間中にある格子群2の部分を、第2格子部分群222とよぶ(図2中符号222の破線で囲った部分の格子)。前記した基準格子部分群220と第1、第2格子部分群221、222との配置順序も、特に制約されない。
 前提として、各格子部分群220~222に含まれる格子G0~G2の各部分における格子部材21は、タルボ干渉計の構成を満たすべく、既定の周期で配置されている。したがって、基準格子部分群220に含まれる部分での格子G0~G2における格子部材21も、当該格子における既定周期で配置されている。基準格子部分群220に含まれる格子部材21の周期が、以降で説明する位相差の基準となる。
 図3においては、格子G0~G2のうちの一枚(例えば格子G1)に、基準となる複数の格子部材21と、位相がシフトされた複数の格子部材(後述)とが配置された例を示す。図3中符号220は、基準格子部分群220に含まれる格子部材21を示す。同様に、図3中符号221は、第1格子部分群221に含まれる格子部材21を示し、符号222は、第2格子部分群222に含まれる格子部材21を示す。なお、図示の例では、各格子部材21は、格子G1の長さ方向に延長されている。
 第1格子部分群221に含まれる一部の格子(図3の例では格子G1の一部)は、この一部の格子における既定周期で配置されるべき格子部材21の配置に対して第1の位相差(後述)を与える第1位相シフト部231を備えている。すなわち、第1格子部分群221に含まれる格子部材は、タルボ・ロー干渉計のために要求される既定周期は満たしているが、その位相には、基準格子部分群220に含まれる格子部材に対して、所定量だけ位相差が設定されている。第1位相シフト部231の一例を図3(b)に示す。この例では、dは既定周期である。図中nd+d/3とされている部分が第1位相シフト部である。つまり、d/3だけ位相シフトが行われている。位相シフト量の決定手法については後述する。なお、この明細書における位相シフト部とは、前記のような位相差を形成できる部分であればよく、単なる空間であってもよい。ここで前記の例では格子G1を例としているが、これに代えて格子G0やG2において、位相シフトされた格子部材を備えることができる。
 前記と同様に、第2格子部分群222に含まれる一部の格子(図3の例では格子G1の一部)は、この一部の格子における既定周期で配置されるべき格子部材の配置に対して第2の位相差(後述)を与える第2位相シフト部232を備えている(図3(b)参照)。第2位相シフト部232は、第1位相シフト部231での位相差に加えて、さらにd/3だけの位相差を格子部材21に与えるものである。したがって、基準格子部分群220中の格子部材と比較すると、2d/3の位相差となる。なお、第1・第2位相シフト部における位相シフト量をそれぞれ2d/3とすることは、前記の位相差と原理的に等価である。また、前記と同様に、格子G1に代えて格子G0やG2において、2d/3の位相差を持つように位相シフトされた格子部材を備えることができる。
 (位相シフト量の決定方法)
 第1の位相差及び第2の位相差は、基準格子部分群220を通過した放射線の検出結果と、第1格子部分群221を通過した放射線の検出結果と、第2格子部分群222を通過した前記放射線の検出結果とを用いて、位相イメージング法を実行できる値に設定される。
 従来の縞走査法では、格子の周期に対して、その周期の1/M(Mは3以上の整数)のステップずつ格子を平行移動して、複数の画像を取得する。このとき、格子G1の自己像と格子G2とによって形成されるモアレ模様が、放射線の強度分布として、放射線検出器3により取得される。さらに、このモアレ模様は、格子の移動量に対応して周期的に変化し、格子が1周期分移動すると、モアレ模様は元の形に戻る。そこで、格子のステップ数Mに応じたM個の画像を利用して、いわゆる位相イメージング法(吸収画像、屈折画像又は散乱画像を取得する処理)を行うことができる。
 従来の縞走査法は、実質的に静止している被検体に対して適用できる。本実施形態で対象としている移動している被検体に対して従来の測定を適用するためには、極めて高速で格子の微小ステップ移動を含む縞走査法を行わなければならず、その実施は難しい。本実施形態は、被検体が移動していることを活用し、縞走査法を行う方法と言える。すなわち、格子の微小ステップ移動に対応する領域を空間的に並べて形成し、被検体にそこを通過させることによって縞走査法に必要なデータ取得を実現する。そのため、放射線検出器3の検出部31~33に入射した放射線で形成されるモアレ模様画像の間に、所定の位相ずれを発生させることができるように、各格子の格子部材の間に位相差が付与されている。ここで、位相差を付与する格子部材の位置については、構造的な制約はほとんどない。例えば、検出部32に入射する放射線については、放射線通過部分における格子G0の格子部材に位相差を付与し、検出部33に入射する放射線については、放射線通過部分における格子G1の格子部材に位相差を付与するというように、適宜な設計が可能である。要するに、複数の格子部材は、「第1~第3の部分領域71~73を通過した放射線によってそれぞれ形成されるモアレ模様が、モアレ模様相互の間での位相差を持つように」、既定の位相差を持って配置されていればよい。
 また、格子群2を構成する格子の枚数としては、格子G0を除いた、あるいはG2を除いた2枚構成であってもよい(2枚構成の場合の設計条件も既知である)。この場合は、2枚の格子を構成する格子部材において、前記のような領域ごとの位相シフトが行われていればよい。
 位相シフト量の算出についてさらに詳しく説明する。前記した部分領域の数(つまり第1~第n部分領域の数)をpとし、iは1≦i≦(p-1)となるそれぞれの整数とするとき、第iの格子部分群内に存在するいずれか1枚の格子における格子部材の配置は、当該格子の既定周期(つまり基準格子部分群に属する格子における既定周期)の配置に対して、
(d/p)×i
で得られる位相差を有している。なお、この位相差は、数学的に厳密である必要はなく、実用上問題ない程度にこの条件を満たせば、多少の誤差は許容される。ここで、dは当該格子における周期的構成、つまり格子部材の配置周期であり、pは一般に3以上の整数値をとる。また、ここで、基準格子部分群を含めた格子部分群の数qは、周期の分割数p以上、つまりq≧pとなる。すなわち、モアレ模様間での位相差を形成可能な格子部分群が、必要数よりも多く存在する(つまり冗長な領域が存在する)ことは可能である。
 なお、第iの格子部分群に存在する格子においては、位相差がつけられた格子部材以外の格子部材は、位相差なしの周期構造で配置されている。
 また、位相差は、N倍の周期(Nは0以外の整数)を加えても、原理的に等価と言えるので、前記位相差は、N倍の周期を加えたものを含む。
 (搬送部)
 搬送部4は、被検体10を、格子群2に対して、放射線の放射方向に交差する方向(図1及び図2において横方向)において移動させる構成となっている。具体的には、本実施形態の搬送部4は、被検体10を横方向に移動させるベルトコンベアによって構成されている。また、搬送部4は、この実施形態では、格子G0と格子G1の間の空間であって、放射線が通過する部分を、被検体10が通過できるように、この被検体10を搬送するものである。なお、搬送部4は、格子G1とG2との間に被検体10を通過させるものであってもよい。なお、ロー干渉計の構成(特開2012-16370号公報参照)とする場合は、格子G1と放射線検出器3の間を被検体10を通過させる。
 搬送部4としてのベルトコンベアに使用されるベルトとしては、使用される放射線の透過率が高いものを選ぶことが好ましいが、通常のコンベアに使用される構造や材料であれば、特に制約されない。なお、搬送部4としては、ベルトコンベアに限らず、所望の方向に被検体10を搬送できるものであれば、適宜の構成とすることができる。また、被検体10を固定とし、放射線源、格子群、及び放射線検出器の全体を被検体10に対して相対移動(極座標上の移動を含む)させる構成も、理論的には可能である。
 (処理部)
 処理部5は、基準格子部分群220を通過した放射線の検出値(つまり画像データ)と、第1格子部分群221を通過した放射線の検出値と、第2格子部分群222を通過した放射線の検出値とを用いて、被検体の吸収画像、屈折画像及び散乱画像のうちのいずれか又は全てを算出する構成となっている。具体的な算出方法については、本実施形態の非破壊検査装置の動作として後述する。
 (制御部)
 制御部6は、搬送部4に駆動信号を送り、かつ、処理部5に被検体10の移動速度情報(指示値又は検出値)を送る構成となっている。
 (本実施形態の非破壊検査装置の動作)
 以下、図4をさらに参照しながら、本実施形態の非破壊検査装置の動作を説明する。
 (図4のステップSA-1)
 初期状態として、放射線源1から放射線検出器3に向けて放射線が照射されている状態を考える。この状態で、制御部6からの制御指令に基づいて、搬送部4により、被検体10を所定の方向に搬送する。制御部6は、被検体10の移動速度を処理部5に送る。放射線検出器3は、検出信号を時系列で記録し続ける状態となっている。
 (図4のステップSA-2~4)
 ついで、被検体10が、放射線検出器3の検出部31と放射線源1との間にさしかかり、放射線検出器3は、検出部31により、画素位置ごとの放射線強度を時系列で検出し、第1画像データI(x,t)を取得すると同時に処理部5に出力される(図5参照)。
 以降、同様に、被検体10の移動に伴って、検出部32及び検出部33において、被検体10がI(x,t)、及び、I(x,t)に記録され、処理部5に出力される(図5参照)。なお、ステップSA-2~SA-4は、必ずしも、一つのステップが終了した後に後続のステップが行われるものではない。例えば、被検体10が大きい場合は、被検体10の一部が検出部31で撮影されつつ、他の部分が検出部32で撮影されるというように、これらのステップが平行して実行される場合もある。
 (図4のステップSA-5)
 ついで、処理部5における演算方法を、図6をさらに参照して説明する。前提として、被検体10のある部位が検出部31によって記録される時刻に対して、同じ部位が検出部32及び検出部33で記録される時差をτ、およびτとする。時差τ、τは、搬送部4から取得した速度情報(被検体移動速度の情報)から、処理部5が算出可能である。
 すると、画像データI~Iを用いて、吸収画像、屈折画像及び散乱画像を、図6の左欄(「装置補正なし」の欄)によって算出できる(いわゆる位相イメージング法)。ここでS(x,t)の定義は図6に記載した通りである。また、arg[S(x,t)]はS(x,t)の偏角を示す関数である。なお、画像データIの数は、冗長性を考えなければ、前記した位相差の分母pと一致する。画像データIの数が4以上となった場合も、位相イメージング処理の原理は前記と同様である。
 また、被検体10がない状態で同様に測定した画像データIを得られるときは、図6の右欄に記載した式により各画像を算出できる。これにより、装置の機械的誤差などによるコントラスト成分を差し引くことができ、より高精度の画像を取得できるという利点がある。
 (図4のステップSA-6)
 ついで、処理部5は、出力部8に、得られた時系列画像(吸収画像、屈折画像、又は散乱画像)を出力する。もちろん、処理部5は、出力部8に出力することに代えて、あるいはそれに追加して、得られた画像を記録部(図示せず)に記録することができる。処理部5による画像の出力先は、装置の目的に応じて適宜に選択できる。出力部8としては、例えばディスプレイやプリンタであるが、それらには制約されず、例えば、処理結果を利用する他のシステムであってもよい。
 位相イメージング法(特に縞走査法を用いるもの)を用いる非破壊検査においては、格子のステップ状移動に伴う複数画像取得のために撮影時間を要するため、移動する被検体の検査に適していないという問題があった。
 これに対して、本実施形態においては、格子の移動を行わずに、被検体10の移動を利用している。これにより、第1~第3部分領域71~73を順次通過する被検体画像を、ライン状の各検出部31~33により得ることができる。これらの画像を用いて、前記のように、必要な位相イメージング処理を行うことができる。
 したがって、本実施形態の非破壊検査装置によれば、被検体10の移動を積極的に用いることで、移動する被検体10の高感度非破壊検査を行うことが可能となるという利点がある。
 また、本実施形態では、格子を精密に駆動するための駆動機構を省略できるので、装置の製造、設置及び保守を簡略化することができ、ランニングコストを含めたコスト低減に寄与することができる。さらには、装置全体の設置スペースも小型化できると考えられる。
 (第2実施形態)
 次に、本発明の第2実施形態に係る非破壊検査装置を、図7に基づいて説明する。なお、第2実施形態の説明においては、前記した第1実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第1実施形態においては、各格子G0~G2に含まれる各格子部材21の延長方向を、各格子の長さ方向(図2において紙面の厚さ方向、図3において上下方向)としていた。これに対して、第2実施形態の非破壊検査装置では、各格子部材21の延長方向を、各格子の幅方向(図7において左右方向)とした。ここで、図7において、各格子部分群220~222に含まれる格子部材に、それぞれ符号220~222を付した。これから分かるように、基準格子部分群220に含まれる領域での格子部材は、既定周期dを備えている。第1格子部分群221に含まれる領域での格子部材は、既定周期dを備えつつ、基準格子部分群220の格子部材に対してはd/3の位相差を有する。さらに、第2格子部分群222に含まれる領域での格子部材は、既定周期dを備えつつ、第1格子部分群221の格子部材に対してd/3(基準格子部分群220の格子部材に対して2d/3)の位相差を有する。
 第2実施形態の非破壊検査装置の動作は、第1実施形態の場合と基本的に同じである。すなわち、被検体10の移動に伴って、各領域での放射線画像データI~Iを取得し、それらから、所望の被検体画像を生成することができる。
 また、第2実施形態の非破壊検査装置では、格子の幅方向(図7の左右方向)に格子を傾斜させることで、格子部材の実効的な厚さを増加させることができるという利点もある。格子を傾斜させると(図8(b)参照)、傾斜させない状態(図8(a)参照)に比較して、格子を通過可能な放射線の範囲は狭まる。このことは、従来の二次元センサを用いる場合(あるいは、第1実施形態で図3の格子を図の上下方向に傾ける場合)には、撮影視野を狭めるために好ましくない。これに対し、放射線検出器3としてラインセンサを用いる本実施形態では、図7に示す格子を図の左右方向に傾斜しても、画素は搬送部4の横幅方向に配列されているだけなので、ラインセンサの撮影視野が減少することはない。高エネルギX線を用いる場合は、格子G0およびG2の格子部材のアスペクト比向上が必要となるが、製作技術上の困難が予想される。これに対し、第2実施形態では、上記の通り格子を傾斜配置することにより、この困難を克服できる。
 第2実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第3実施形態)
 次に、本発明の第3実施形態に係る非破壊検査装置を、図9に基づいて説明する。なお、第3実施形態の説明においては、前記した第1実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第1実施形態においては、被検体10が並進する構成となっていた。このとき、放射線源1から射線検出器3を構成する検出部31~33にそれぞれ到達する放射線が被検体10と交わる角度は微妙に異なることになる。これは位相イメージング法の演算においては、誤差の要因となる。特に被検体10が厚くなるに従い、この問題は大きくなる。本実施例では、この問題を避けるために、放射線源1を中心とする円弧軌道を持つ搬送部4を有している。被検体10は放射線源1から一定距離を保ち、且つ、常に放射線源1に対して同じ方向を向いて移動する。これにより、被検体10内を通過する放射線の経路は常に一定となり、位相イメージング法における演算誤差を小さくすることができ、その結果、演算誤差に起因する悪影響(例えば像のぼけなど)を避けることができる。
 さらに、前記した第1実施形態においては、格子群2を構成する各格子G0~G2を平板状とした。円弧軌道を持つ搬送部4を採用する場合は、これに起因する誤差も位相イメージングの演算において無視できない。そこで、第3実施形態の非破壊検査装置では、各格子G0~G2を、放射線源1を中心として同心円状に湾曲させて配置した。
 より詳しくは、第3実施形態の非破壊検査装置は、G0ホルダ240と、G1ホルダ241と、G2ホルダ242とを備えている。各ホルダ240~242は、図9に示されるように、放射線源1を中心として同心円状の円筒面を持つ(図9中の破線で仮想的に同心円の一例を示す)。この結果、各格子G0~G2が、放射線源1を中心とした同心円状に保持されるようになっている。なお、各格子G0~G2は、それぞれ分離された3枚の部分格子の組み合わせにより構成することも可能であり、かつ、その部分格子を平板格子で代用することも近似的に可能である。いずれにしても、各部分格子に含まれる格子部材21の配置周期を含む幾何学的配置は、前記実施形態と同様に、タルボ干渉計を構成するための条件を満たしている。
 また、本実施形態の放射線検出器3を構成する検出部31~33は、G2ホルダ242の直後に配置されている。各検出部31~33は、放射線源1を中心とした同心円上に配置されており、これによって、格子G2と各検出部31~33の距離が一定とされている。
 第3実施形態の非破壊検査装置の動作も、第1実施形態の例と、基本的に同じである。すなわち、各領域での放射線画像データI~Iを取得し、それらから、所望の被検体画像を生成することができる。
 第3実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第4実施形態)
 次に、本発明の第4実施形態に係る非破壊検査装置を、図10に基づいて説明する。なお、第4実施形態の説明においては、前記した実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 また、前記した第1実施形態においては、一つの放射線源1から放射線を放射していた。これに対して、第4実施形態の非破壊検査装置では、放射線源1が、第1~第3の線源部11~13を備えており(図10参照)、各線源部11~13から、放射線を、対応する放射線検出器31~33に向けて照射するようになっている。すなわち、第1線源部11は、第1部分領域71を通過する放射線を放射し、第2線源部12は、第2部分領域72を通過する放射線を放射し、第3線源部13は、前記第3部分領域73を通過する放射線を放射する構成となっている。
 さらに、本実施形態では、各格子G0~G2が、分離された3枚の部分格子の組み合わせによりそれぞれ構成されている。これらの部分格子においても、それらに含まれる格子部材21の配置周期を含む幾何学的配置は、タルボ干渉計を構成するための条件を満たしている。すなわち、この第4実施形態の格子群2を構成する格子部材21は、前記実施形態と同様に、所定の位相差を持って配置されている。例えば、格子G0を構成する部分格子のうち、図10中で左側の部分格子の格子部材を位相差0、真ん中の部分格子の格子部材を位相差d/3、右側の格子部材を位相差2d/3という位相で配置することができる。ただし、前記実施形態と同様に、異なる格子において位相差を付すことも可能である。例えば、格子G0をすべて位相差0、格子G1における真ん中の部分格子の格子部材のみを位相差d/3、格子G2における右側の格子部材のみを位相差2d/3という位相で配置することができる。第4実施形態では、格子G0~G2のうちの、左側にある部分格子を基準格子部分群220、格子G0~G2のうちの、真ん中にある部分格子を第1格子部分群221、格子G0~G2のうちの、右側にある部分格子を第2格子部分群222と把握することができる。
 第4実施形態の非破壊検査装置の動作も、第1実施形態の例と、基本的に同じである。すなわち、被検体10の移動に伴って各領域での放射線画像データI~Iを取得し、それらから、所望の被検体画像を生成することができる。
 第4実施形態では、被検体10に照射される放射線の角度が各部分領域で一定にできるので、位相イメージング法で生成される画像精度の向上を期待できる。
 なお、図10に示す放射線源1を構成するには、個別のターゲットを用いる必要はない。例えば、図11に示すような円筒状ターゲットを用い、その部分(符号1a~1cを付す)に電子線を照射することにより、三つの放射線発生部を構成することができる。このとき、ターゲットを自転させれば、ターゲットへの熱的影響が低減し、より明るい放射線を得ることができる。
 第4実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第5実施形態)
 次に、本発明の第5実施形態に係る非破壊検査装置を、図12に基づいて説明する。なお、第5実施形態の説明においては、前記した実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第1実施形態においては、放射線検出器3として、直線状のラインセンサを用いていた。これに対して、第5実施形態では、放射線検出器3を、複数個の検出要素3a~3eを千鳥状に配置することで構成している。ただし、検出要素の個数に制約はない。本実施形態では、各格子G0~G2を構成する部分格子を、図13に示すように、各検出要素3a~3eの上方に配置している。なお、図13においては、検出要素3b~3eの上方における格子G0~G2の記載を省略している。
 第5実施形態では、複数の格子及び放射線検出器が千鳥配置されて、既定量だけオフセットされているものであって、基本的な構成は、第1実施形態と同様である。ただし、放射線検出器の検出要素3a~3eのオフセット量(システム側において既知)に応じて、被検体の到着時間に差が生じるので、その差分を処理部5においてキャンセルして、位相イメージング法を行えばよい。
 第5実施形態の非破壊検査装置によれば、検出器の幅を容易に拡大することができるので、大きな被検体への対応が容易となるという利点がある。
 第5実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第6実施形態)
 次に、本発明の第6実施形態に係る非破壊検査装置を、図14に基づいて説明する。なお、第6実施形態の説明においては、前記した実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第1実施形態においては、基板の厚さを周期的に変化させることにより、格子部材を製作している。基板の厚さを変化させる手法としては、例えばエッチングを用いることができる。しかしながら、高いアスペクト比(幅と厚さの比)を持つ格子部材を高密度かつ高精度で作製することは、一般には難しい。
 そこで、第6実施形態では、基板の厚さ方向に凹凸が形成された格子を、その幅方向(溝の延長方向)に沿って放射線が入射するように使用する。図14において放射線の入射方向を矢印で示す。
 これにより、基板の横幅を、格子部材の厚さとして利用できるので、加工が容易でかつ高いアスペクト比を得ることができる。
 第6実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第7実施形態)
 次に、本発明の第7実施形態に係る非破壊検査装置を、図15に基づいて説明する。なお、第7実施形態の説明においては、前記した実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第1実施形態においては、各格子部分群220~222に対応する格子部材が、格子の長さ方向(図3の上下方向)に延長されている。これに対して、この第7実施形態では、格子部材の長さを短くし、三つの格子部分群220~222で構成される組を、格子の長さ方向(図15において上下方向)に配列した。このとき、三つの格子部分群の位置関係が既知であれば、配列順序は適宜に設定できる。前記した第1実施形態の場合と同様に、被検体位置と撮影タイミングとの関係は、被検体10の移動速度から算出できるので、処理部5においては、放射線検出器3における画素ごとに画素位置を補正して、位相イメージング法を実行できる。
 第7実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第8実施形態)
 次に、本発明の第8実施形態に係る非破壊検査装置を、図16に基づいて説明する。なお、第8実施形態の説明においては、前記した第4実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 この第8実施形態では、第4実施形態の構成に対して、冗長な構成を付加している。前記したように、基準格子部分群を含めた格子部分群の数qは、周期の分割数p以上、つまりq≧pとなる。すなわち、位相差を有する格子部材が、必要数pよりも多く存在する(つまり冗長な領域が存在する)ことができる。
 第8実施形態の例では、図10に示した第1~第3部分領域71~73が、被検体10の搬送方向に沿って繰り返して存在している。これに伴って、格子部分群220~222、検出部31~33、格子G0~G2、第1~第3線源部11~13も、対応して繰り返して存在している。
 このような冗長な構成を採用することにより、部材の製作誤差による検査精度への影響を緩和することが可能となる。
 なお、どの程度の冗長性を付与するかは、装置に要求される精度や装置の設置面積などの条件に対応して決定することができる。
 第8実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第9実施形態)
 次に、本発明の第9実施形態に係る非破壊検査装置を、図17に基づいて説明する。なお、第9実施形態の説明においては、前記した実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 この第9実施形態の非破壊検査装置の構成は、基本的には、図9に示す第3実施形態と同様である。
 図9に示す第3実施形態では、搬送部4を用いて、被写体10を、放射線源1、格子群2、及び放射線検出器3に対して移動させていた。
 これに対して、第9実施形態の非破壊検査装置では、搬送部4に代えて、駆動部9を用いる構成とした。駆動部9は、放射線源1と、格子群2と、放射線検出器3とを、被写体10に対して、放射線の放射方向に交差する方向において、全体として移動させる構成となっている。
 より具体的には、第9実施形態における駆動部9は、支持台91と、この支持台91を、放射線源1の位置を中心とする所定角度範囲内で回転させる駆動機構(図示せず)により構成されている。そして、支持台91に、放射線源1と格子群2と放射線検出器3とが取り付けられており、支持台91の回転に伴って、放射線源1の位置を中心としてこれらを回転させるようになっている。駆動部9は、支持台91を一周させることによってこれを初期位置に復帰させてもよいし、逆方向に回転させることによって初期位置に復帰させてもよい。
 これにより、被写体10を非破壊検査装置に対して相対的に移動させることができ、前記した第3実施形態と同様の放射線画像データを取得することができる。
 なお、第9実施形態では、X線源1は並進運動ではなく回転運動を行うが、この場合も、被写体10に対する相対的な「移動」という概念に含まれる。
 第9実施形態の非破壊検査装置によれば、被写体10の移動を必要としないので、被写体10が生体である場合に、生体に対する負担を軽減できるという利点がある。
 第9実施形態における他の構成及び利点は、前記した第3実施形態と同様なので、これ以上詳しい説明は省略する。
 (第10実施形態)
 次に、本発明の第10実施形態に係る非破壊検査装置を、図18に基づいて説明する。なお、第10実施形態の説明においては、前記した実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 この第10実施形態の非破壊検査装置の構成は、基本的には、図1に示す第1実施形態と同様である。
 図1に示す第1実施形態では、搬送部4を用いて、被写体10を、放射線源1、格子群2、及び放射線検出器3に対して移動させていた。
 これに対して、第10実施形態の非破壊検査装置では、搬送部4に代えて、駆動部109を用いる構成とした。駆動部109は、放射線源1と、格子群2と、放射線検出器3とを、被写体10に対して、放射線の放射方向に交差する方向において、全体として移動させる構成となっている。
 より具体的には、第10実施形態における駆動部109は、ベース部1091と、このベース部1091を、所定方向(図18中の矢印方向)に移動させるレール部1092とを備えている。そして、ベース部1091に、放射線源1と格子群2と放射線検出器3とが取り付けられている。ベース部1091は、レール部1092に沿って、所定の駆動機構(図示せず)により移動できるようになっている。
 なお、第10実施形態では、格子群2の格子G2の下面側に放射線検出器3が取り付けられている。
 また、第10実施形態の被写体10は、支持体101により支持されている。支持体101は、移動する格子群2等に対して支障とならない形状とされている。もちろん、被写体10の位置も、移動する格子群2等に対して支障にならないように設定されている。
 第10実施形態では、この構成により、被写体10を非破壊検査装置に対して相対的に移動させることができ、前記した第1実施形態と同様の放射線画像データを取得することができる。
 第10実施形態の非破壊検査装置によれば、被写体10の移動を必要としないので、被写体10が生体である場合に、生体に対する負担を軽減できるという利点がある。
 第10実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第11実施形態)
 次に、本発明の第11実施形態に係る医用画像診断装置を、図19に基づいて説明する。なお、第11実施形態の説明においては、前記した実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 この第11実施形態の医用画像診断装置は、非破壊検査装置1000と、画像提示部2000とを備えている。
 非破壊検査装置1000は、例えば、前記した第9又は第10実施形態の非破壊検査装置により構成することができる。
 画像呈示部2000は、放射線検出器3により検出された放射線の情報から得られる吸収画像、屈折画像、又は散乱画像を、必要に応じて、診断用画像として呈示する構成となっている。検出された放射線情報から吸収画像、屈折画像、及び散乱画像を得る手法は、第1実施形態において説明したものと同様でよいので、これについての詳しい説明は省略する。
 画像呈示部2000は、例えば画像表示用のディスプレイであるが、プリンタなどの出力装置であってもよい。要するに、画像呈示部2000としては、診断者(例えば医師や検査技師などの医療従事者)に画像を呈示できる機能を備えていればよい。
 第11実施形態の医用画像診断装置によれば、被写体10が生体である場合において、診断者に対して、吸収画像、屈折画像、又は散乱画像を必要に応じて呈示することができる。
 (第12実施形態)
 次に、本発明の第12実施形態に係る非破壊検査装置を、図20に基づいて説明する。なお、第12実施形態の説明においては、前記した第1実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第1実施形態においては、第1~第3の部分領域71~73が互いに分離した状態となっていた(図2参照)。
 これに対して、この第12実施形態では、第1~第3の部分領域71~73が、それぞれ、互いに重畳する部分と、重畳しない部分とを備えている(図20参照)。そして、第1の位相差を有する格子部材(第1基準格子部分群221を構成する格子部材)と、第2の位相差を有する格子部材(第2基準格子部分群222を構成する格子部材)とは、いずれも、重畳しない部分での部分領域内に配置されている。すなわち、第12実施形態での第1~第3の部分領域71~73は、放射線の放射方向に交差する方向(本例では図20において横方向)において、互いに少しずつ変位した位置に配置されている。
 さらに、本実施形態の放射線源1は、第1~第3の部分領域71~73に対して、異なるタイミングで放射線を放射する構成となっている。
 より詳しくは、第12実施形態では、格子G0のうち、基準格子部分群220に属する部分と、第1格子部分群221に属する部分と、第2格子部分群222に属する部分とが、放射線の放射方向に交差する方向において、離間して(あるいは隣接して)配置されている。そして、格子G0のうち、基準格子部分群220に属する部分と、第1格子部分群221に属する部分と、第2格子部分群222に属する部分との間に、所定の位相差(例えば図3における第1及び第2位相シフト部231・232)が設定されている。
 さらに、第12実施形態の非破壊検査装置では、所定の回転軸1001(図20参照)を中心として、装置全体が、例えばCT検査装置のように、適宜の駆動機構によって一方向又は正逆方向に回転することができるようになっている。これにより、本実施形態では、被写体10と非破壊検査装置とを相対移動させることができるようになっている。
 第12実施形態の非破壊検査装置の動作においては、放射線源1から、第1~第3の部分領域71~73に対して、異なるタイミングで放射線を放射させる。放射線源1の構成例については後述する。これにより、第1~第3の部分領域71~73が部分的に重なっているとしても、各領域に対応した放射線画像データI~Iを別々に取得し、それらから、所望の被検体画像を生成することができる。本実施形態では、第1~第3の部分領域のうちの重ならない部分において格子に位相差を形成したので、この位相差に対応した画像データを取得できる。
 また、この実施形態では、第1~第3の部分領域71~73に放射線を照射するタイミングをずらしているので、放射線検出部3を複数の検出部に分割しなくとも、各領域に対応した放射線画像データI~Iを取得することができる(具体例は後述の補足1及び2に示す)。
 第12実施形態における他の構成及び利点は、前記した第1実施形態と同様なので、これ以上詳しい説明は省略する。
 (第13実施形態)
 次に、本発明の第13実施形態に係る非破壊検査装置を、図21に基づいて説明する。なお、第13実施形態の説明においては、前記した第12実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第12実施形態においては、格子G1、G2及び放射線検出部31が平板状となっていた。これに対して、第13実施形態では、これらの部材が、放射線発生個所を中心とする同心円上に配置されたものとなっている。これにより、放射線源1から格子G1、G2及び放射線検出部31までの距離を一定に保つことができる。すると、各格子のピッチを一定とした場合でも、得られる検査結果の精度を高く保つことができるという利点がある。
 第13実施形態における他の構成及び利点は、前記した第12実施形態と同様なので、これ以上詳しい説明は省略する。
 (第14実施形態)
 次に、本発明の第14実施形態に係る非破壊検査装置を、図22に基づいて説明する。なお、第14実施形態の説明においては、前記した第12実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第12実施形態においては、回転軸1001を中心として、装置全体が回転する構成となっていた。これに対して、第14実施形態では、装置全体は回転せず、例えば図1に示すような搬送部4によって、被写体10が装置に対して移動する構成となっている。あるいは、被写体10が静止しており、装置が平行移動する構成となっていてもよい。
 第14実施形態では、放射線源1において放射線が発する点(いわゆる焦点)の配列方向(図22において左右方向)と、各格子における格子部材の延長方向(いわゆる格子ライン)とが平行となっている。そして、被写体10は、図22において左右方向(紙面と平行な方向)に移動するようになっている。なお、第14実施形態における詳しい動作については補足3として後述する。
 第14実施形態における他の構成及び利点は、前記した第12実施形態と同様なので、これ以上詳しい説明は省略する。
 (第15実施形態)
 次に、前記した第12~第14実施形態に係る非破壊検査装置において使用可能な放射線源1の構成例を、第15実施形態として、図23に基づいて説明する。なお、第15実施形態の説明においては、前記した第4実施形態(図11)と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 第15実施形態では、自転可能なターゲット15の円筒面上の部分1aに、電子銃16から電子線を照射する。これにより、部分1aから放射線(具体的にはX線)を発生させ、格子G0に向けて放射線を照射することができる。部分1aから格子G0を通って放射線検出器3に向かう放射線は、第1部分領域71を通過することになる。また、部分1aから発生した放射線が通過する、格子G0の部分が、この例では基準格子部分群220を構成することになる。以降同様に、部分1bから発生した放射線が通過する、格子G0の部分が、この例では基準格子部分群221を構成し、部分1cから発生した放射線が通過する、格子G0の部分が、この例では基準格子部分群222を構成することになる。そして、本例では、部分1aからの放射線で取得された画像データが画像データIに対応する。以降同様に、部分1bが画像データIに、部分1cが画像データIにそれぞれ対応する。前記した部分1a~1cは、焦点とも呼ばれる。
 第15実施形態の放射線源1では、ターゲット15の表面に対する法線方向に格子G0~G2を配置する。すると、放射線発生源から各格子までの距離が一定となるため、得られる画像データI~Iの補正が不要になるという利点がある。
 第15実施形態における他の構成及び利点は、前記した第1実施形態と基本的に同様なので、これ以上詳しい説明は省略する。
 (第16実施形態)
 次に、前記した第15実施形態に係る放射線源1の変形例を、第16実施形態として、図24に基づいて説明する。なお、第16実施形態の説明においては、前記した第15実施形態と基本的に共通する要素については、同一符号を付すことにより、説明の煩雑を避ける。
 第16実施形態では、ターゲット15の円筒面に対して傾斜する方向(例えば表面に対して6°の方向)に放射線を取り出す構成としている。このようにすると、見かけのX線強度を増加させることができるという利点がある。ただし、放射線発生源から各格子までの距離が、発生個所ごとに異なることになるので、その点の補正を、得られた画像データに対して行う必要がある。
 第16実施形態における他の構成及び利点は、前記した第15実施形態と基本的に同様なので、これ以上詳しい説明は省略する。
 (補足1)
 前記した第12及び第13実施形態において得られる放射線投影像についての演算式の一例を、図25及び図26をさらに参照しながら以下に説明する。
 被写体10(図20及び図21参照)に対して、回転軸1001のまわりのθnの方向からX線を放射したときの投影像(吸収画像Tn、屈折画像Dn、散乱画像Vn)についての演算式を以下に述べる。ここで、n = 1, 2, … Nであり、一周(2π)をN等分した投影像を取得してCTの画像再構成に使用するものとする。
 回転中心1001からみて各焦点の角度差が4π/(3N)であるとする(図25参照)。なお、ここでは3焦点あるとしているが、下記と同様な議論は焦点数が増えても成り立つ。各焦点の点滅(すなわち電子線照射によるX線発生の有無)の順序を、図26(a)~(e)のように設定することができる。ここでは、大きな黒丸が、その時点でX線を発生している焦点を示す。投影方向θnについて、各焦点の点滅による三つの画像In k(x,y)(k = 1, 2, 3)を取得できる。図26から分かるように、必ずしもこれらは時系列で連続して記録される画像ではないが、各投影方向は既知なので、投影方向に対応して、計測後にコンピュータ内で再配列することができる。In k(x,y) (k = 1, 2, 3)は異なる焦点からの画像であるので、検出器上における被写体の画像は、所定角度分、互いにずれている。回転中心1001から検出器までの距離をR2とするとき、そのずれ量は
Figure JPOXMLDOC01-appb-I000001
となる。従って、ずれの方向にx軸を選べば、吸収画像Tn、屈折画像Dn、散乱画像Vnの演算は、
Figure JPOXMLDOC01-appb-I000002
ただし
Figure JPOXMLDOC01-appb-I000003
および、
Figure JPOXMLDOC01-appb-I000004
で演算できる。なお、記号ハット(^)は被写体が無いときに計測される画像を表している。
 (補足2)
 前記した第12及び第13実施形態において得られる放射線投影像についての演算式の別の例を以下に示す。回転軸1001からみて各焦点の角度差が2π/(3N)であるとする(図27参照)。なお、ここでは3焦点あるとしているが、下記と同様な議論は焦点数が増えても成り立つ。各焦点の点滅の順序を図28のように設定することができ、投影方向θnについて、各焦点の点滅による三つの画像In k(k = 1, 2, 3)が取得できる。吸収画像Tn、屈折画像Dn、散乱画像Vnの演算方法は上記した補足1の場合と同じである。
 なお、上記した補足1及び2の記述は、湾曲検出器を用いる第13実施形態(図21)においてより正確に適合する。第12実施形態(図20)においては近似的に前記の説明を適用できる。
 (補足3)
 前記した第14実施形態において得られる放射線投影像についての演算式の一例を以下に説明する。各焦点間の距離をaとし、各焦点が順次点滅する時間間隔をΔtとする。また、被写体の速さをvとして、v = a/Δtを満たすようにすれば、焦点の点滅と被写体の動きが同期する。三つの焦点がひととおり点滅するサイクル数をnで数えるとすると、n番目のサイクルにおいて像検出器(すなわち放射線検出器3)上では各焦点の点滅に対応する三つの画像In k(x,y)(k = 1, 2, 3)が記録される。被写体の動く方向を+xにとると、サイクルnの吸収画像Tn、屈折画像Dn、散乱画像Vnは、
Figure JPOXMLDOC01-appb-I000005
ただし
Figure JPOXMLDOC01-appb-I000006
および
Figure JPOXMLDOC01-appb-I000007
で演算できる。なお、記号ハット(^)は被写体が無いときに計測される画像を表している。
 最終画像のS/Nを向上させるために、下記のように各サイクルの画像を加算することが可能である。
Figure JPOXMLDOC01-appb-I000008
 なお、前記実施形態および実施例の記載は単なる一例に過ぎず、本発明に必須の構成を示したものではない。各部の構成は、本発明の趣旨を達成できるものであれば、上記に限らない。
 例えば、前記各実施形態では、放射線源としてX線源を用いたが、被検体に対して透過性のある他の放射線、例えば中性子線源を用いることができる。もちろん、この場合、放射線検出器としては、用いる放射線を検出できるものが用いられる。
 また、既に述べたように、格子群を構成する格子の枚数は、格子G0あるいは格子G2を省略した2枚であってもよい。
 1 放射線源
 11~13 第1~第3線源部
 2 格子群
 G0~G2 格子
 21 格子部材
 220 基準格子部分群
 221~222 第1~第2格子部分群
 231~232 第1~第2位相シフト部
 240~242 G0~G2ホルダ
 3 放射線検出器
 31~33 検出部
 4 搬送部
 5 処理部
 6 制御部
 7 放射線通過領域
 71~73 第1~第3部分領域
 8 出力部
 9・109 駆動部
 91 支持台
 1091 ベース部
 1092 レール部
 10 被検体
 101 支持体
 1000 非破壊検査装置
 2000 画像呈示部

Claims (15)

  1.  放射線源と、格子群と、放射線検出器とを備えており、
     前記放射線源は、被写体に対する透過性を有する放射線を、前記格子群に向けて放射する構成となっており、
     前記格子群は、前記格子群に向けて照射された前記放射線が透過可能な複数枚の格子から成っており、
     かつ、前記複数枚の格子は、格子ごとに決定される既定周期で配置された複数の格子部材をそれぞれ備えており、
     前記放射線検出器は、前記複数の格子部材により回折された前記放射線を検出する構成となっており、
     前記放射線源から放射されて前記放射線検出器に至る放射線が通過する放射線通過領域は、少なくとも第1~第3の部分領域を備えており、
     前記第1~第3の部分領域は、前記放射線の放射方向に交差する方向において、互いに変位した位置に配置されており、
     さらに、前記第1~第3の部分領域の位置は、前記放射線の放射方向に交差する方向において前記格子群に対して移動する前記被写体が通過可能な位置となっており、
     前記第1~第3の部分領域のうちいずれか一つの部分領域を通過する前記放射線がそれぞれ通過する空間中にある前記格子群の部分を基準格子部分群とよび、前記第1~第3の部分領域のうちの他の部分領域を通過する前記放射線がそれぞれ通過する空間中にある前記格子群の部分を、それぞれ第1格子部分群及び第2格子部分群とよぶとき、
     前記基準格子部分群に含まれる一部の前記格子における前記格子部材は、当該格子における前記既定周期で配置されており、
     前記第1格子部分群に含まれる一部の前記格子は、この一部の格子における前記既定周期での配置に対して第1の位相差を有する格子部材を備えており、
     前記第2格子部分群に含まれる一部の前記格子は、この一部の格子における前記既定周期での配置に対して第2の位相差を有する格子部材を備えている
     ことを特徴とする非破壊検査装置。
  2.  前記第1~第3の部分領域は、それぞれ、互いに重畳する部分と、重畳しない部分とを備えており、
     前記第1の位相差を有する格子部材と、前記第2の位相差を有する格子部材とは、いずれも、前記重畳しない部分に配置されており、
     前記放射線源は、前記第1~第3の部分領域に対して、異なるタイミングで前記放射線を放射する構成となっている
     請求項1に記載の非破壊検査装置。
  3.  前記放射線検出器は、前記基準格子部分群を通過した前記放射線と、前記第1格子部分群を通過した前記放射線と、前記第2格子部分群を通過した前記放射線とを、それぞれ検出する構成となっている
     請求項1又は2に記載の非破壊検査装置。
  4.  さらに処理部を備えており、
     前記処理部は、前記基準格子部分群を通過した前記放射線の検出値と、前記第1格子部分群を通過した前記放射線の検出値と、前記第2格子部分群を通過した前記放射線の検出値とを用いて、前記被写体の吸収画像、屈折画像及び散乱画像のうちのいずれかを算出する構成となっている
     請求項3に記載の非破壊検査装置。
  5.  さらに搬送部を備えており、
     前記搬送部は、前記被写体を、前記格子群に対して、前記放射線の放射方向に交差する方向において移動させる構成となっている
     請求項1~4のいずれか1項に記載の非破壊検査装置。
  6.  前記格子群は、2枚の格子により構成されている
     請求項1~5のいずれか1項に記載の非破壊検査装置。
  7.  前記格子群は、3枚の格子により構成されている
     請求項1~5のいずれか1項に記載の非破壊検査装置。
  8.  前記放射線源は、第1~第3の線源部を備えており、
     前記第1線源部は、前記第1部分領域を通過する前記放射線を放射する構成となっており、
     前記第2線源部は、前記第2部分領域を通過する前記放射線を放射する構成となっており、
     前記第3線源部は、前記第3部分領域を通過する前記放射線を放射する構成となっている
     請求項1~7のいずれか1項に記載の非破壊検査装置。
  9.  前記第1の位相差及び第2の位相差は、前記基準格子部分群を通過した前記放射線の検出結果と、前記第1格子部分群を通過した前記放射線の検出結果と、前記第2格子部分群を通過した前記放射線の検出結果とを用いて、位相イメージングを実行できる値に設定されている
     請求項1~8のいずれか1項に記載の非破壊検査装置。
  10.  前記放射線はX線である
     請求項1~9のいずれか1項に記載の非破壊検査装置。
  11.  放射線源と、格子群と、放射線検出器とを備えており、
     前記放射線源は、被写体に対する透過性を有する放射線を、前記格子群に向けて放射する構成となっており、
     前記格子群は、前記格子群に向けて照射された前記放射線が透過可能な複数枚の格子を備えており、
     かつ、前記複数枚の格子は、格子ごとに決定される既定周期で配置された複数の格子部材をそれぞれ備えており、
     前記放射線検出器は、前記複数の格子部材により回折された前記放射線を検出する構成となっており、
     前記放射線源から放射されて前記放射線検出器に至る放射線が通過する放射線通過領域は、少なくとも第1~第3の部分領域を備えており、
     前記第1~第3の部分領域は、前記放射線の放射方向に交差する方向において、互いに変位した位置に配置されており、
     さらに、前記第1~第3の部分領域の位置は、前記放射線の放射方向に交差する方向において前記格子群に対して相対移動する前記被写体が通過可能な位置となっており、
     前記複数の格子部材は、前記第1~第3の部分領域を通過した前記放射線によってそれぞれ形成されるモアレ模様が、前記モアレ模様相互の間での位相差を持つように、既定の位相差を持って配置されている
     ことを特徴とする非破壊検査装置。
  12.  さらに駆動部を備えており、
     前記駆動部は、前記放射線源と、前記格子群と、前記放射線検出器とを、前記被写体に対して、前記放射線の放射方向に交差する方向において、全体として移動させる構成となっている
     請求項1~11のいずれか1項に記載の非破壊検査装置。
  13.  前記被写体は生体である
     請求項1~12のいずれか1項に記載の非破壊検査装置。
  14.  請求項13に記載の非破壊検査装置と、画像呈示部とを備えており、
     前記画像呈示部は、前記放射線検出器により検出された前記放射線の情報から得られる吸収画像、屈折画像、又は散乱画像を、診断用画像として呈示する構成となっている
     医用画像診断装置。
  15.  請求項1~13のいずれか1項に記載の非破壊検査装置を用いた非破壊検査方法であって、
     前記被写体を、前記格子群に対して、前記放射線の放射方向に交差する方向において移動させるステップと、
     前記被写体が前記基準格子部分群を通過する際に、前記被写体を透過した前記X線を検出するステップと、
     前記被写体が前記第1格子部分群を通過する際に、前記被写体を透過した前記X線を検出するステップと、
     前記被写体が前記第2格子部分群を通過する際に、前記被写体を透過した前記X線を検出するステップと
     を備える非破壊検査方法。
PCT/JP2014/078994 2013-10-31 2014-10-30 非破壊検査装置 WO2015064723A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14857299.3A EP3064930B1 (en) 2013-10-31 2014-10-30 Non-destructive inspection device
KR1020167011094A KR101668219B1 (ko) 2013-10-31 2014-10-30 비파괴 검사 장치
JP2015545314A JP6004411B2 (ja) 2013-10-31 2014-10-30 非破壊検査装置
CN201480056220.4A CN105637351B (zh) 2013-10-31 2014-10-30 非破坏检查装置
US15/033,440 US9726622B2 (en) 2013-10-31 2014-10-30 Non-destructive inspection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013226437 2013-10-31
JP2013-226437 2013-10-31
JP2014085843 2014-04-17
JP2014-085843 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015064723A1 true WO2015064723A1 (ja) 2015-05-07

Family

ID=53004320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078994 WO2015064723A1 (ja) 2013-10-31 2014-10-30 非破壊検査装置

Country Status (6)

Country Link
US (1) US9726622B2 (ja)
EP (1) EP3064930B1 (ja)
JP (1) JP6004411B2 (ja)
KR (1) KR101668219B1 (ja)
CN (1) CN105637351B (ja)
WO (1) WO2015064723A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033854A1 (ja) * 2015-08-27 2017-03-02 国立大学法人東北大学 放射線画像生成装置
WO2017032864A1 (en) * 2015-08-26 2017-03-02 Koninklijke Philips N.V. Dual energy differential phase contrast imaging
JP2017072399A (ja) * 2015-10-05 2017-04-13 株式会社日立ハイテクサイエンス X線検査装置及びx線検査方法
WO2017159229A1 (ja) * 2016-03-17 2017-09-21 国立大学法人東北大学 放射線画像生成装置
WO2018168621A1 (ja) * 2017-03-17 2018-09-20 国立大学法人東北大学 放射線画像生成装置
RU2708816C2 (ru) * 2014-11-24 2019-12-11 Конинклейке Филипс Н.В. Детектор и система визуализации для рентгеновской фазово-контрастной визуализации томосинтеза
WO2020039654A1 (ja) * 2018-08-22 2020-02-27 株式会社島津製作所 X線位相イメージング装置
WO2020095482A1 (ja) * 2018-11-06 2020-05-14 株式会社島津製作所 X線位相撮像システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104622492A (zh) * 2013-11-11 2015-05-20 中国科学技术大学 一种x射线光栅相位衬度成像装置和方法
JP6613988B2 (ja) * 2016-03-30 2019-12-04 コニカミノルタ株式会社 放射線撮影システム
CN109328035B (zh) * 2016-06-15 2022-05-10 株式会社岛津制作所 放射线摄影装置
CN110049727B (zh) * 2016-12-06 2023-12-12 皇家飞利浦有限公司 用于基于光栅的x射线成像的干涉仪光栅支撑物和/或用于其的支撑物托架
JP6753342B2 (ja) * 2017-03-15 2020-09-09 株式会社島津製作所 放射線格子検出器およびx線検査装置
EP3443904A1 (en) * 2017-08-14 2019-02-20 Koninklijke Philips N.V. Multi-spot x-ray imaging
TWI613804B (zh) * 2017-09-04 2018-02-01 友達光電股份有限公司 光感測裝置
CN111343921B (zh) * 2017-12-26 2023-03-14 株式会社岛津制作所 X射线摄影装置
JP7153525B2 (ja) * 2018-10-12 2022-10-14 アンリツ株式会社 X線検査装置
JP7188261B2 (ja) * 2019-04-24 2022-12-13 株式会社島津製作所 X線位相イメージング装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812629A (en) 1997-04-30 1998-09-22 Clauser; John F. Ultrahigh resolution interferometric x-ray imaging
WO2004058070A1 (ja) 2002-12-26 2004-07-15 Atsushi Momose X線撮像装置および撮像方法
JP2008145111A (ja) 2006-12-06 2008-06-26 Univ Of Tokyo X線撮像装置、これに用いるx線源、及び、x線撮像方法
JP2008545981A (ja) * 2005-06-06 2008-12-18 パウル・シェラー・インスティトゥート 非干渉性多色x線源を用いた定量的位相コントラスト画像法及び断層撮影法のための干渉計
JP2009240378A (ja) 2008-03-28 2009-10-22 Univ Of Tokyo X線撮像装置、及び、これに用いるスリット部材の製造方法
US20100074395A1 (en) * 2008-09-24 2010-03-25 Stefan Popescu Method to determine phase and/or amplitude between interfering, adjacent x-ray beams in a detector pixel in a talbot interferometer
JP2012016370A (ja) 2010-07-06 2012-01-26 Univ Of Tokyo X線撮像装置及びこれを用いるx線撮像方法
JP2012085995A (ja) * 2010-02-04 2012-05-10 Fujifilm Corp 放射線撮影システム
JP2013529984A (ja) * 2010-06-28 2013-07-25 パウル・シェラー・インスティトゥート 平面形状の回折格子構造を用いたx線位相コントラストおよび暗視野イメージングのための方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037256B4 (de) * 2006-02-01 2017-03-30 Paul Scherer Institut Fokus-Detektor-Anordnung einer Röntgenapparatur zur Erzeugung projektiver oder tomographischer Phasenkontrastaufnahmen sowie Röntgensystem, Röntgen-C-Bogen-System und Röntgen-CT-System
EP1879020A1 (en) * 2006-07-12 2008-01-16 Paul Scherrer Institut X-ray interferometer for phase contrast imaging
US8576983B2 (en) * 2008-02-14 2013-11-05 Koninklijke Philips N.V. X-ray detector for phase contrast imaging
JP2010063646A (ja) * 2008-09-11 2010-03-25 Fujifilm Corp 放射線位相画像撮影装置
CN101726503B (zh) * 2008-10-17 2012-08-29 清华大学 用于x射线相衬层析成像的系统和方法
CN103876761B (zh) * 2008-10-29 2016-04-27 佳能株式会社 X射线成像装置和x射线成像方法
US8559594B2 (en) * 2008-10-29 2013-10-15 Canon Kabushiki Kaisha Imaging apparatus and imaging method
US8855265B2 (en) * 2009-06-16 2014-10-07 Koninklijke Philips N.V. Correction method for differential phase contrast imaging
JP5378335B2 (ja) * 2010-03-26 2013-12-25 富士フイルム株式会社 放射線撮影システム
US9105369B2 (en) * 2010-09-03 2015-08-11 Koninklijke Philips N.V. Differential phase-contrast imaging with improved sampling
JP2012166010A (ja) 2011-01-26 2012-09-06 Fujifilm Corp 放射線画像撮影装置および放射線画像検出器
JP6265914B2 (ja) * 2012-01-24 2018-01-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 多方向位相コントラストx線撮像

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812629A (en) 1997-04-30 1998-09-22 Clauser; John F. Ultrahigh resolution interferometric x-ray imaging
WO2004058070A1 (ja) 2002-12-26 2004-07-15 Atsushi Momose X線撮像装置および撮像方法
JP2008545981A (ja) * 2005-06-06 2008-12-18 パウル・シェラー・インスティトゥート 非干渉性多色x線源を用いた定量的位相コントラスト画像法及び断層撮影法のための干渉計
JP2008145111A (ja) 2006-12-06 2008-06-26 Univ Of Tokyo X線撮像装置、これに用いるx線源、及び、x線撮像方法
JP2009240378A (ja) 2008-03-28 2009-10-22 Univ Of Tokyo X線撮像装置、及び、これに用いるスリット部材の製造方法
US20100074395A1 (en) * 2008-09-24 2010-03-25 Stefan Popescu Method to determine phase and/or amplitude between interfering, adjacent x-ray beams in a detector pixel in a talbot interferometer
JP2012085995A (ja) * 2010-02-04 2012-05-10 Fujifilm Corp 放射線撮影システム
JP2013529984A (ja) * 2010-06-28 2013-07-25 パウル・シェラー・インスティトゥート 平面形状の回折格子構造を用いたx線位相コントラストおよび暗視野イメージングのための方法
JP2012016370A (ja) 2010-07-06 2012-01-26 Univ Of Tokyo X線撮像装置及びこれを用いるx線撮像方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. MOMOSE; S. KAWAMOTO; I. KOYAMA; Y. HAMAISHI; K. TAKAI; Y. SUZUKI: "Demonstration of X-ray Talbot interferometry", JPN. J. APPL. PHYS., vol. 42, 2003, pages L866 - L868
ATSUSHI MOMOSE: "X-ray phase imaging based on Talbot effect", JOURNAL OF THE JAPANESE SOCIETY FOR SYNCHROTRON RADIATION RESEARCH, vol. 23, no. 6, 30 November 2010 (2010-11-30), pages 382 - 392, XP055295296 *
ATSUSHI MOMOSE; WATARU YASHIRO; HIROHIDE MAIKUSA; YOSHIHIRO TAKEDA: "High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation", OPT. EXPRESS, vol. 17, 2009, pages 12540 - 12545
F. PFEIFFER ET AL., NAT. PHYS., vol. 2, 2006, pages 258 - 261
M. TAKEDA; H. INA; S. KOBAYASHI: "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry", J. OPT. SOC. AM., vol. 72, 1982, pages 156 - 160, XP000570893, DOI: doi:10.1364/JOSA.72.000156

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708816C2 (ru) * 2014-11-24 2019-12-11 Конинклейке Филипс Н.В. Детектор и система визуализации для рентгеновской фазово-контрастной визуализации томосинтеза
US10506993B2 (en) 2015-08-26 2019-12-17 Koninklijke Philips N.V. Dual energy differential phase contrast imaging
WO2017032864A1 (en) * 2015-08-26 2017-03-02 Koninklijke Philips N.V. Dual energy differential phase contrast imaging
CN107072621A (zh) * 2015-08-26 2017-08-18 皇家飞利浦有限公司 双能量微分相衬成像
JP2017530827A (ja) * 2015-08-26 2017-10-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. デュアルエネルギー微分位相コントラスト撮像
RU2662074C1 (ru) * 2015-08-26 2018-07-23 Конинклейке Филипс Н.В. Двухэнергетическая дифференциальная фазово-контрастная визуализация
WO2017033854A1 (ja) * 2015-08-27 2017-03-02 国立大学法人東北大学 放射線画像生成装置
US10481110B2 (en) 2015-08-27 2019-11-19 Tohoku University Radiographic image generating device
JP2017044603A (ja) * 2015-08-27 2017-03-02 国立大学法人東北大学 放射線画像生成装置
JP2017072399A (ja) * 2015-10-05 2017-04-13 株式会社日立ハイテクサイエンス X線検査装置及びx線検査方法
WO2017159229A1 (ja) * 2016-03-17 2017-09-21 国立大学法人東北大学 放射線画像生成装置
KR20180121534A (ko) * 2016-03-17 2018-11-07 도호쿠 다이가쿠 방사선 화상 생성 장치
US10533957B2 (en) 2016-03-17 2020-01-14 Tohoku University Radiographic image generating device
KR102426991B1 (ko) 2016-03-17 2022-08-01 도호쿠 다이가쿠 방사선 화상 생성 장치
WO2018168621A1 (ja) * 2017-03-17 2018-09-20 国立大学法人東北大学 放射線画像生成装置
WO2020039654A1 (ja) * 2018-08-22 2020-02-27 株式会社島津製作所 X線位相イメージング装置
WO2020095482A1 (ja) * 2018-11-06 2020-05-14 株式会社島津製作所 X線位相撮像システム
JPWO2020095482A1 (ja) * 2018-11-06 2021-10-07 株式会社島津製作所 X線位相撮像システム

Also Published As

Publication number Publication date
EP3064930A1 (en) 2016-09-07
EP3064930B1 (en) 2018-04-18
CN105637351B (zh) 2018-11-13
CN105637351A (zh) 2016-06-01
JP6004411B2 (ja) 2016-10-05
JPWO2015064723A1 (ja) 2017-03-09
US9726622B2 (en) 2017-08-08
EP3064930A4 (en) 2016-12-07
US20160252470A1 (en) 2016-09-01
KR101668219B1 (ko) 2016-10-20
KR20160054609A (ko) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6004411B2 (ja) 非破壊検査装置
JP6422123B2 (ja) 放射線画像生成装置
JP6961077B2 (ja) X線撮像参照スキャン
CN101013613B (zh) X射线设备的焦点-检测器装置的x射线光学透射光栅
US8848863B2 (en) Non-parallel grating arrangement with on-the-fly phase stepping, X-ray system
JP5601909B2 (ja) X線撮像装置及びこれを用いるx線撮像方法
JP6430636B2 (ja) デュアルエネルギー微分位相コントラスト撮像
JP6820870B2 (ja) 全視野検出器を備える走査x線装置
EP2552318A1 (en) Radiation detection device, radiographic apparatus and radiographic system
JP2017536879A (ja) 線源−検出器装置
US20140286477A1 (en) Radiation photographing apparatus
JP6058860B2 (ja) X線撮像装置及びx線撮像方法
WO2012169426A1 (ja) 放射線撮影システム
WO2012147749A1 (ja) 放射線撮影システム及び放射線撮影方法
US11860319B2 (en) High-resolution detector having a reduced number of pixels
JP6789591B2 (ja) 放射線位相撮像装置
JP2012228369A (ja) 放射線撮影システム及び放射線撮影方法
JP6797762B2 (ja) 放射線画像生成装置及び放射線画像生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545314

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167011094

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014857299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15033440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE