WO2015064607A1 - フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物 - Google Patents

フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物 Download PDF

Info

Publication number
WO2015064607A1
WO2015064607A1 PCT/JP2014/078705 JP2014078705W WO2015064607A1 WO 2015064607 A1 WO2015064607 A1 WO 2015064607A1 JP 2014078705 W JP2014078705 W JP 2014078705W WO 2015064607 A1 WO2015064607 A1 WO 2015064607A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
anhydride
carbon atoms
resin composition
Prior art date
Application number
PCT/JP2014/078705
Other languages
English (en)
French (fr)
Inventor
昌照 木村
政隆 中西
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2015545252A priority Critical patent/JP6358712B2/ja
Publication of WO2015064607A1 publication Critical patent/WO2015064607A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a phenol resin that gives a cured product excellent in heat resistance and flame retardancy, an epoxy resin composition containing the phenol resin, and a cured product thereof.
  • Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.
  • Non-Patent Document 1 an epoxy resin composition having high heat resistance tends to have low flame retardancy.
  • a high Tg (glass transition point) epoxy resin exhibiting high heat resistance a trisphenolmethane type epoxy resin has been developed so far (Patent Document 1), but a cured product of the epoxy resin has high heat resistance.
  • the flame retardancy is poor, it was insufficient to satisfy the required characteristics of the market.
  • heat resistance is one of the characteristics particularly required for the enhancement of functionality of epoxy resins.
  • heat resistance has been regarded as important, it has been generally known that if heat resistance is raised, problems such as poor water absorption and flame retardancy occur. This is due to an increase in crosslink density.
  • semiconductor peripheral materials and the like that require high heat resistance are also required to have flame retardancy, it has been urgent to develop a resin having high heat resistance without increasing the crosslinking density. Therefore, the present inventors have focused on phenol resins and epoxy resins having an imide structure as resins that can be expected to have such characteristics.
  • Patent Document 2 discloses a phenol compound having a phenolphthalein structure, there is no disclosure of a structure combined with an imide structure.
  • R 1 represents the structural formula a, and a plurality of R 1 s each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or an alkoxy group having 1 to 6 carbon atoms; Represents a methylene group or an oxygen atom.
  • An epoxy resin composition comprising an epoxy resin and at least one phenol resin according to any one of (1) to (3).
  • the cured product has excellent heat resistance and flame retardancy, so insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, build-up boards, etc.) and CFRP It is useful for various composite materials including adhesives, adhesives and paints.
  • the phenol resin (A) of the present invention is a polyhydric phenol resin represented by the following general formula (I).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a carbon number of 1 to 6
  • R 2 represents a tetracarboxylic anhydride residue
  • X represents a methylene group or an oxygen atom
  • n represents an average value and represents 1 to 5
  • X is preferably a methylene group.
  • the arrangement of substituents (orientation of the substituent represented by P as viewed from X) may be any of ortho-position, meta-position, and para-position. preferable.
  • the repeating unit is usually obtained by a reaction between a tetracarboxylic acid anhydride and the compound represented by the above formula (III), but may be extended by a diamine such as diaminodiphenylmethane or diaminodiphenyl ether and a tetracarboxylic acid anhydride. is there.
  • R 1 is a hydrogen atom.
  • alkyl group having 1 to 6 carbon atoms represented by R 1 include an alkyl group having a linear, branched or cyclic structure such as a methyl group, an ethyl group, a propyl group, a butyl group, a heptyl group, and a hexyl group. Is mentioned.
  • R 1 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
  • Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 1 include an alkoxy group having a linear, branched or cyclic structure such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • R 1 is preferably a methoxy group, an ethoxy group, or a propoxy group, and particularly preferably a methoxy group.
  • R 2 is a residue of a tetracarboxylic anhydride used in the reaction when the phenol resin (A) represented by the above formula (I) is obtained (that is, four carboxyl groups are removed from the tetracarboxylic anhydride). Residue).
  • the tetracarboxylic acid anhydride to be used is an aromatic or aliphatic acid anhydride and is not particularly limited with respect to the structure, but examples of preferred tetracarboxylic acid anhydrides include, for example, pyromellitic anhydride, biphenyl-3,4, 3 ′, 4′-tetracarboxylic dianhydride, benzophenone-3,4,3 ′, 4′-tetracarboxylic dianhydride, oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ′, 4 ′ -Tetracarboxylic dianhydride, 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, butane-1,2,3,4-tetracarboxylic dianhydride, pentane-1, 2,4,5-tetracarboxylic dianhydride, cyclobutanetetracarboxylic dianhydride,
  • tetracarboxylic dianhydrides may be used alone or in combination of two or more.
  • a specific group for R 2 is preferably a C2 to C40 organic group, more preferably a C2 to C30 hydrocarbon group.
  • a benzene skeleton or a biphenyl skeleton is introduced.
  • the phenol resin (B) of the present invention is a polyhydric phenol resin represented by the following general formula (II).
  • R 1 s represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or an alkoxy group having 1 to 6 carbon atoms.
  • R 3 represents a residue of a dicarboxylic anhydride
  • X represents a methylene group or an oxygen atom.
  • X is preferably a methylene group.
  • the arrangement of the substituent may be any of the ortho position, the meta position, and the para position, but the para form is particularly preferable from the balance of heat resistance and mechanical properties.
  • R 1 is a hydrogen atom.
  • alkyl group having 1 to 6 carbon atoms represented by R 1 include an alkyl group having a linear, branched or cyclic structure such as a methyl group, an ethyl group, a propyl group, a butyl group, a heptyl group, and a hexyl group. Is mentioned.
  • R 1 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
  • Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 1 include an alkoxy group having a linear, branched or cyclic structure such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • R 1 is preferably a methoxy group, an ethoxy group, or a propoxy group, and particularly preferably a methoxy group.
  • R 3 represents the residue of the dicarboxylic acid anhydride used in the reaction for obtaining the phenol resin (B) represented by the above formula (II) (that is, the residue obtained by removing two carboxyl groups from the dicarboxylic acid anhydride).
  • the dicarboxylic acid anhydride to be used is an aromatic or aliphatic acid anhydride and is not particularly limited with respect to the structure.
  • tetracarboxylic acid anhydrides include, for example, phthalic acid anhydride, glutaric acid anhydride, 4- Methyl phthalic anhydride, 4-chlorophthalic anhydride, succinic anhydride, 2-formamide succinic anhydride, methyl succinic anhydride, 2,2-dimethyl succinic anhydride, acetoxy succinic anhydride, acetyl mercapto succinic anhydride , Glutaric anhydride, 3-methylglutaric anhydride, 2,2-dimethylglutaric anhydride, 3,3-dimethylglutaric anhydride, 5-norbornene-2,3-dicarboxylic anhydride, methyl-5 -Norbornene-2,3-dicarboxylic acid anhydride, di-t-butyl dicarbonate, 1,2-cyclohexanedicarboxylic acid Anhydride, 4-methylcyclohexane-1,2-dicarboxylic anhydride,
  • dicarboxylic acid anhydrides may be used alone or in combination of two or more.
  • a specific group for R 3 is preferably a C2 to C40 organic group, and more preferably a C2 to C30 hydrocarbon group.
  • a benzene skeleton or a biphenyl skeleton is introduced.
  • the phenol resin of the present invention has a crystalline or resinous shape and is excellent in solubility in an organic solvent. Specifically, it can be dissolved in ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, anone, and cyclopentanone.
  • ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, anone, and cyclopentanone.
  • the preferred range of the weight average molecular weight is 100 to 5000, more preferably 300 to 3000 in terms of polystyrene. The weight average molecular weight was calculated by calculation after measurement under the following conditions using gel permeation chromatography (GPC).
  • the phenol resin of the present invention can be used as it is as a thermoplastic (or a raw material thereof), or can be used as a raw material for an epoxy resin or a curing agent thereof as described below.
  • the method for synthesizing the phenol resin of the present invention is not particularly limited.
  • it can be synthesized by reacting a polyhydric phenol compound represented by the general formula (III) with a carboxylic acid anhydride.
  • R 1 s each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or an alkoxy group having 1 to 6 carbon atoms; Represents a methylene group or an oxygen atom.
  • the reaction ratio of the polyhydric phenol compound used in the reaction to the carboxylic acid anhydride is preferably 1: 0.1 to 1: 5 in molar ratio, and preferably 1: 0.2 to 1: 3. Particularly preferred.
  • a solvent in this reaction.
  • aromatic compounds such as toluene, xylene, trimethylbenzene and ethylbenzene, alcohols such as water, methanol, ethanol, butanol and cyclohexanol, N-methylpyrrolidone, dioxane, pyridine, picoline, piperidine, N, N- And aprotic polar solvents such as dimethylaniline.
  • the reaction time is usually 1 to 100 hours, preferably 1 to 50 hours, more preferably 1 to 20 hours
  • the reaction temperature is usually 50 to 300 ° C., preferably 100 to 250 ° C., more preferably 150 to 200 ° C. is there.
  • the phenol resin thus obtained can be purified by removing the solvents by crystallization or solvent distillation, and can be used for various applications.
  • pyridine and N-methylmorpholine are preferable. These catalysts are not limited to the examples described above, and may be used alone or in combination of two or more.
  • the amount of the catalyst used is usually in the range of 0.001 to 2.0 mol, preferably 0.002 to 1.5 mol, more preferably 0.005 to 1.0 mol, relative to the carboxylic anhydride. When the amount of the catalyst is less than 0.001 mol, the progress of the reaction may be delayed, a reaction at a higher temperature may be required, or the reaction may not proceed to the end. On the other hand, if the amount of the catalyst is more than 2.0 mol, a great amount of labor may be required in the post-treatment such as neutralization and purification.
  • the epoxy resin composition of the present invention contains an epoxy resin and the phenol resin of the present invention as essential components. Moreover, you may contain the hardening
  • Examples of the epoxy resin that can be used in the epoxy resin composition of the present invention include novolac type epoxy resins, bisphenol type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetate Enone, o-hydroxyace
  • Examples of the compound having a cyclohexene structure include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol. 36 p. 2409 (1980), Tetrahedron Letter p. 4475 (1980). Or the Tyshenko reaction of cyclohexene aldehyde (the method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), or transesterification of cyclohexene carboxylic acid ester Examples thereof include compounds that can be produced by the method described in Japanese Patent Application Laid-Open No. 2006-052187.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • Diols diols such as 1,6-hexanediol and cyclohexanedimethanol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol, etc.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol is exemplified.
  • a reaction method it can be produced by applying a general acetalization reaction.
  • a method of carrying out a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium US Pat. No. 2,945,008
  • a method in which polyhydric alcohol is dissolved in hydrochloric acid and then the reaction is carried out while gradually adding aldehydes Japanese Patent Laid-Open No.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Eporide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85). These may be used alone or in combination of two or more.
  • curing accelerator curing catalyst
  • amine compounds such as triethylamine, tripropylamine, and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undeca 7-ene, imidazole, triazole, tetrazole 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1 -Benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2'-methylimidazole ( 1 ') Ethyl-s-triamino-6 (2'-methylimidazole
  • phosphonium salts, ammonium salts, and metal compounds are particularly preferable in terms of coloring at the time of curing and changes thereof. Further, when a quaternary salt is used, a salt with a halogen leaves the cured product with a halogen, which is not preferable from the viewpoint of electrical reliability and environmental problems.
  • the curing accelerator is used in an amount of 0.01 to 5.0 parts by weight based on the epoxy resin 100 as necessary.
  • curing agents may be used in combination.
  • examples thereof include amine compounds, acid anhydride compounds, amide compounds, phenol resins, carboxylic acid compounds, and the like.
  • Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and nitrogen-containing compounds such as polyamide resins synthesized from linolenic acid and ethylenediamine (amine, Amide compounds); phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride, butanetetrac
  • the amount of the curing agent used in the curable resin composition of the present invention is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • cyanate ester compounds may be used as other components.
  • the cyanate ester compound can be made into a heat-resistant cured product having a higher crosslinking density by a reaction with an epoxy resin in addition to a curing reaction alone.
  • the cyanate ester resin include 2,2-bis (4-cyanatephenyl) propane, bis (3,5-dimethyl-4-cyanatephenyl) methane, 2,2-bis (4-cyanatephenyl) ethane, These derivatives, aromatic cyanate ester compounds, etc. are mentioned. Further, for example, as described in the explanation of the curing agent, it can be synthesized by reacting various phenol resins with hydrocyanic acid or salts thereof.
  • those having a structure not having a methylene structure at the benzyl position in the molecule such as 2,2-bis (4-cyanatephenyl) propane and derivatives thereof (partially polymerized products) are particularly preferable. You may use independently and may use 2 or more types together.
  • the epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant imparting component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of the phosphorus-containing compound include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10
  • Phosphate esters, phosphanes, or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • the epoxy resin composition of the present invention can be blended with a binder resin as necessary.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 100 parts by weight in total of the epoxy resin and the curing agent. 0.05 to 20 parts by weight is used as necessary.
  • An inorganic filler can be added to the epoxy resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is usually used in an amount of 0 to 95% by weight in the epoxy resin composition of the present invention.
  • the epoxy resin composition of the present invention includes an antioxidant, a light stabilizer, a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate and calcium stearate, various compounding agents such as pigments, Various thermosetting resins can be added.
  • the coupling agent it is preferable to add a coupling agent having an epoxy group or a coupling agent having a thiol.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing each component.
  • the epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • an epoxy resin component, a curing agent component, and a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, a compounding agent, and the like if necessary, uniformly using an extruder, kneader, roll, planetary mixer, etc. Mix thoroughly until the epoxy resin composition is obtained. If the resulting epoxy resin composition is liquid, the substrate is impregnated with a potting or casting, or poured into a mold and cast. Or cured by heating.
  • the obtained epoxy resin composition is solid, it is molded using a cast after casting or a transfer molding machine, and further cured by heating.
  • the curing temperature and time are 80 to 200 ° C. and 2 to 10 hours.
  • a curing method it is possible to cure at a high temperature at a stretch, but it is preferable to increase the temperature stepwise to advance the curing reaction.
  • initial curing is performed between 80 and 150 ° C.
  • post-curing is performed between 100 and 200 ° C.
  • the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
  • the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, which contains glass fiber, -A prepreg obtained by impregnating a base material such as bon fiber, polyester fiber, polyamide fiber, alumina fiber or paper and drying by heating is subjected to hot press molding to obtain a cured product of the epoxy resin composition of the present invention.
  • the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
  • the epoxy resin composition of the present invention can be used as a film-type sealing composition.
  • the curable resin composition of the present invention is coated on the release film with the varnish, the solvent is removed under heating, and a B-stage adhesive is formed. Get.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like, and a batch film sealing of an optical semiconductor.
  • compositions include adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, sealing materials, Sealants, cyanate resin compositions for substrates) and resist curing agents include additives to other resins such as acrylic ester resins.
  • insulating material for electronic materials a sealing material including a printed circuit board, an electric wire coating
  • adhesives examples include civil engineering, architectural, automotive, general office, and medical adhesives, as well as electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • Sealing agents and substrates include potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings for flipping ICs, LSIs, COFs, COFs, TABs, etc.
  • Examples include underfill used for chips and the like, sealing (including reinforcing underfill) and package substrates when mounting IC packages such as QFP, BGA, and CSP.
  • substrate use as which a functionality, such as a network board
  • Example 1 A flask equipped with a Dean Stark, a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while 18 parts of the following compound (IV) (diaminodiphenylmethane content: 3.7% by weight), N-methylpyrrolidone 58. 9 parts were added, and it heated up to 70 degreeC and melt
  • Compound (IV) is a compound containing 52 area%, 14 area%, and 34 area% of the following (A), (I), and (U), respectively.
  • Example 2 To a flask equipped with a Dean Stark, a stirrer, a reflux condenser, and a stirrer, 12 parts of the compound (IV) and 38 parts of N-methylpyrrolidone were added while purging with nitrogen, and the mixture was heated to 70 ° C. and dissolved. Thereto were added 1.1 parts of phthalic anhydride, 14.5 parts of toluene and 0.05 part of pyridine, and the mixture was heated to 180 ° C. and refluxed for 3 hours. While removing pyridine and toluene, the mixture was further heated to reflux for 5 hours.
  • Examples 3 and 4 and Comparative Example 1 ⁇ Heat resistance test> The phenol resin or phenyl novolak obtained in Examples 1 and 2 and biphenyl aralkyl type epoxy resin (NC-3000H, manufactured by Nippon Kayaku Co., Ltd.) were dissolved in methyl ethyl ketone, respectively, and a varnish with a resin concentration of 70% was prepared, mixed, and catalyst The triphenylphosphine was blended and then applied onto an imide film using a 100 mm applicator and cured. The curing conditions are 160 ° C. ⁇ 2 hours + 180 ° C. ⁇ 6 hours. The physical properties of each cured product obtained were measured as follows. The results are shown in Table 1.
  • TMA Heat resistance
  • the phenol resins (P-1, P-2) of the present invention have a higher functional group equivalent (hydroxyl equivalent) than the comparative example (P-3). That is, the crosslinking density of the phenol resins (P-1, P-2) of the present invention is smaller than that of the comparative example (P-3). From this, it can be seen that the epoxy resin of the present invention is a resin to which high heat resistance is imparted regardless of the improvement of the crosslinking density. That is, since the epoxy resin of the present invention has high heat resistance without increasing the crosslink density, the flame retardancy that normally decreases when the Tg is increased by increasing the crosslink density does not decrease. Therefore, it turns out that the epoxy resin of this invention is excellent in both heat resistance and a flame retardance.
  • the cured product has excellent heat resistance and flame retardancy. Therefore, insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, build-up boards, etc.) It is useful for various composite materials such as CFRP, adhesives and paints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Indole Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 本発明は耐熱性、難燃性に優れた硬化物を与えるフェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物を提供することを目的とする。本発明のフェノール樹脂は、下記一般式(I)で示される。 (式中、複数存在するPはそれぞれ独立して構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Rはテトラカルボン酸無水物の残基を表し、Xはメチレン基または酸素原子を表し、nは平均値を示し、1~5を表す。)

Description

フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物
 本発明は耐熱性、難燃性に優れた硬化物を与えるフェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物に関する。
 エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
 しかし近年、電気・電子分野においてはその発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。又、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止分野、基板(基板自体、もしくはその周辺材料)においては、その半導体の変遷に従い、薄層化、スタック化、システム化、三次元化と複雑になっていき、非常に高いレベルの耐熱性や高流動性といった要求特性が求められる。なお、特にプラスチックパッケージの車載用途への拡大に伴い、耐熱性の向上要求がいっそう厳しくなっており、より高い耐熱性が求められている(非特許文献1)。一般的に高い耐熱性をもつエポキシ樹脂組成物は難燃性が低下する傾向にある。例えば、これまで、高い耐熱性を示す高Tg(ガラス転移点)のエポキシ樹脂として、トリスフェノールメタン型エポキシ樹脂が開発されてきたが(特許文献1)、該エポキシ樹脂の硬化物は高い耐熱性を有するものの、難燃性が悪いことから市場の要求特性を満たすためには不十分であった。
日本国特開平11-049846号公報 英国特許出願公開第1158606号明細書
"2008年 STRJ報告 半導体ロードマップ専門委員会 平成20年度報告"、第8章、p1-17、[online]、平成21年3月、JEITA(社)電子情報技術産業協会 半導体技術ロードマップ専門委員会、[平成24年5月30日検索]、インターネット<URL:http://strj-jeita.elisasp.net/strj/nenjihoukoku-2008.cfm>
 上記のように、エポキシ樹脂の高機能化で特に要求される特性のひとつとして耐熱性が挙げられる。従来より耐熱性は重要視されていたものの、一般に耐熱性を挙げると吸水特性や難燃性が悪くなる等の問題が生じることが知られていた。これは架橋密度が増加することによる影響である。しかし、高耐熱性が要求される半導体周辺材料等では難燃性も求められるため、架橋密度を上げずに高耐熱性を有する樹脂の開発が急務であった。
 そこで、本発明者らは、このような特性が期待できる樹脂として、イミド構造を有するフェノール樹脂、エポキシ樹脂に着目した。しかし、イミド構造を有するフェノール樹脂、エポキシ樹脂であっても、高い耐熱性と高い難燃性の両方を併せ持つ樹脂として知られているものはなかった。
 なお、特許文献2にはフェノールフタレイン構造を有するフェノール化合物が開示されているが、イミド構造と組み合わせた構造の開示はない。
 本発明者らは前述の実状に鑑み、鋭意検討した結果、フェノールフタレイン構造とイミド構造を有する新規のフェノール樹脂及びエポキシ樹脂が、高い耐熱性、難燃性を有することを見出し、本発明を完成させるに至った。
 すなわち本発明は、下記(1)~(6)を提供する。
(1)下記一般式(I)で示される多価フェノール樹脂。
Figure JPOXMLDOC01-appb-C000004
(式中、複数存在するPはそれぞれ独立して構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Rはテトラカルボン酸無水物の残基を表し、Xはメチレン基または酸素原子を表し、nは平均値を示し、1~5を表す。)
(2)下記一般式(II)で示される多価フェノール樹脂。
Figure JPOXMLDOC01-appb-C000005
(式中、Pは構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Rはジカルボン酸無水物の残基を表し、Xはメチレン基または酸素原子を表す。)
(3)下記一般式(III)で示される多価フェノール化合物と、カルボン酸無水物との反応により得られる(1)または(2)に記載のフェノール樹脂。
Figure JPOXMLDOC01-appb-C000006
(式中、Pは構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Xはメチレン基または酸素原子を表す。)
(4)エポキシ樹脂と、(1)~(3)のいずれか一項に記載のフェノール樹脂を少なくとも1種含有するエポキシ樹脂組成物。
(5)(4)に記載のエポキシ樹脂組成物を硬化させて得られる硬化物。
 本発明のフェノール樹脂を使用するエポキシ樹脂組成物は、その硬化物が優れた耐熱性、難燃性を有するため電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。
 本発明のフェノール樹脂(A)は下記一般式(I)で示される多価フェノール樹脂である。
Figure JPOXMLDOC01-appb-C000007
(式中、複数存在するPはそれぞれ独立して構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Rはテトラカルボン酸無水物の残基を表し、Xはメチレン基または酸素原子を表し、nは平均値を示し、1~5を表す。)
 Xはメチレン基が好ましい。
 なお、置換基の配置(上記Xからみた上記Pで表される置換基の配向)はオルソ位、メタ位、パラ位のいずれでもかまわないが、耐熱性、機械特性のバランスから特にパラ体が好ましい。
 繰り返し単位は、通常テトラカルボン酸無水物と前述の式(III)で表される化合物との反応で得られるが、ジアミノジフェニルメタン、ジアミノジフェニルエーテル等のジアミンとテトラカルボン酸無水物によって伸長されることもある。
 Rで最も好ましいのは水素原子である。Rが示す、上記炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、ヘキシル基等の直鎖、分岐鎖または環状構造を有するアルキル基が挙げられる。ここで、Rはメチル基、エチル基が好ましく、メチル基が特に好ましい。
 Rが示す、炭素数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の直鎖、分岐鎖または環状構造を有するアルコキシ基が挙げられる。ここで、Rはメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基が特に好ましい。
 Rは、上記式(I)で表されるフェノール樹脂(A)を得る際に反応に用いたテトラカルボン酸無水物の残基(即ち、テトラカルボン酸無水物から4個のカルボキシル基を除いた残基)を表す。用いるテトラカルボン酸無水物は、芳香族または脂肪族酸無水物であり、構造に関して特に限定されないが、好ましいテトラカルボン酸無水物の例としては、例えば、無水ピロメリット酸、ビフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,4,3’,4’-テトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、ブタン-1,2,3,4-テトラカルボン酸二無水物、ペンタン-1,2,4,5-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、シクロヘキサ-1-エン-2,3,5,6-テトラカルボン酸二無水物、3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロヘキサン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-エチルシクロヘキサン-1-(1,2),3,4-テトラカルボン酸二無水物、1-プロピルシクロヘキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロヘキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロヘキシル-3,4,3’,4’-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、1-プロピルシクロヘキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロヘキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロヘキシル-3,4,3’,4’-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物などが挙げられる。これらのテトラカルボン酸二無水物は単独で用いてもよいし、二種以上を併用してもよい。
 このようなRの具体的な基としては、好ましくはC2~C40の有機基であり、より好ましくはC2~C30の炭化水素基である。また、ベンゼン骨格、ビフェニル骨格が導入されていることが好ましい。
 本発明のフェノール樹脂(B)は下記一般式(II)で示される多価フェノール樹脂である。
Figure JPOXMLDOC01-appb-C000008
(式中、Pは構造式aを表し、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Rはジカルボン酸無水物の残基を表し、Xはメチレン基または酸素原子を表す。)
 Xはメチレン基が好ましい。
 なお、置換基の配置はオルソ位、メタ位、パラ位のいずれでもかまわないが、耐熱性、機械特性のバランスから特にパラ体が好ましい。
 Rで最も好ましいのは水素原子である。Rが示す、上記炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、ヘキシル基等の直鎖、分岐鎖または環状構造を有するアルキル基が挙げられる。ここで、Rはメチル基、エチル基が好ましく、メチル基が特に好ましい。
 Rが示す、炭素数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の直鎖、分岐鎖または環状構造を有するアルコキシ基が挙げられる。ここで、Rはメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基が特に好ましい。
 Rは、上記式(II)で表されるフェノール樹脂(B)を得る際に反応に用いたジカルボン酸無水物の残基(即ち、ジカルボン酸無水物から2個のカルボキシル基を除いた残基)を表す。用いるジカルボン酸無水物は、芳香族または脂肪族酸無水物であり、構造に関して特に限定されないが、好ましいテトラカルボン酸無水物の例としては、例えば、フタル酸無水物、グルタル酸無水物、4-メチルフタル酸無水物、4-クロロフタル酸無水物、無水コハク酸、2-ホルムアミドコハク酸無水物、メチルコハク酸無水物、2,2-ジメチルコハク酸無水物、アセトキシコハク酸無水物、アセチルメルカプトコハク酸無水物、無水グルタル酸、3-メチルグルタル酸無水物、2,2-ジメチルグルタル酸無水物、3,3-ジメチルグルタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、ジ-t-ブチルジカルボナート、1,2-シクロヘキサンジカルボン酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、3-メチルシクロヘキサン-1,2-ジカルボン酸無水物、1,2-シクロペンタンジカルボン酸無水物、1,2-シクロブタンジカルボン酸無水物、1,2-シクロプロパンジカルボン酸無水物、1,1-シクロペンタンジアセトン無水物、デカリン-1,10-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-1-メチル-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸無水物、オキサビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物などが挙げられる。これらのジカルボン酸無水物は単独で用いてもよいし、二種以上を併用してもよい。
 このようなRの具体的な基としては、好ましくはC2~C40の有機基であり、より好ましくはC2~C30の炭化水素基である。また、ベンゼン骨格、ビフェニル骨格が導入されていることが好ましい。
 本発明のフェノール樹脂の性状としては結晶もしくは樹脂状の形状を有し、有機溶剤への溶解性に優れる。具体的にはメチルエチルケトン、メチルイソブチルケトン、アノン、シクロペンタノン等のケトン系の溶剤に溶解可能である。
 本発明のフェノール樹脂を高純度で得る場合、通常晶析による結晶取り出しが好ましい。一方、高収率、ハンドリング性が高い本発明のフェノール樹脂を得る場合、通常樹脂取り出しが好ましい。
 また、本発明のフェノール樹脂においては、重量平均分子量の好ましい範囲はポリスチレン換算で100~5000であり、より好ましくは300~3000である。当該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定後、計算により算出した。
[GPC測定条件]
 カラム:Shodex(登録商標)KF-603、KF-602.5、KF-602、KF-601x2連結
 溶媒:テトラヒドロフラン
 流速:0.5ml/min.
 カラム温度:40℃
 検出器:RI(示差屈折検出器)
 排除限界V:13.000
 浸透限界V:25.000
 分析時間:35.00分
 本発明のフェノール樹脂は、そのままで熱可塑性プラスチック(もしくはその原料)として使用することもできるし、下記のようにエポキシ樹脂の原料やその硬化剤として使用することもできる。
 本発明のフェノール樹脂の合成法は特に限定されないが、例えば一般式(III)で示される多価フェノール化合物と、カルボン酸無水物との反応によって合成できる。
Figure JPOXMLDOC01-appb-C000009
(式中、Pは構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Xはメチレン基または酸素原子を表す。)で示される多価フェノール化合物とカルボン酸無水物との反応によって合成できる。
 ここで、反応に用いる多価フェノール化合物とカルボン酸無水物の反応比はモル比で1:0.1~1:5であることが好ましく、1:0.2~1:3であることが特に好ましい。
 具体的な製法としては、一般式(III)で示されるフェノール化合物とカルボン酸無水物を塩基触媒下で、加熱し、脱水・環化することで得ることができる。
 さらに、本反応においては溶剤の使用も可能である。具体的にはトルエン、キシレン、トリメチルベンゼン、エチルベンゼン等の芳香族化合物、水、メタノール、エタノール、ブタノール、シクロヘキサノール等のアルコール類、N-メチルピロリドン、ジオキサン、ピリジン、ピコリン、ピペリジン、N,N-ジメチルアニリン等の非プロトン性極性溶剤、などが挙げられる。反応時間は通常1~100時間、好ましくは1~50時間、より好ましくは1~20時間であり、反応温度は通常50~300℃、好ましくは100~250℃、より好ましくは150~200℃である。この時、トルエン、キシレン等の脱水剤を併用すると反応を進行させるためにより効果的である。このようにして得られたフェノール樹脂は晶析もしくは溶媒留去等によって溶媒類を除去する事で精製して各種用途に使用することができる。
 塩基触媒としては、ピリジン、N-メチルモルホリンが好ましい。これら触媒は、前述の例に限定されるものではなく、単独で用いてもよいし、2種以上を併用してもよい。触媒の使用量は、カルボン酸無水物に対し、通常0.001~2.0モル、好ましくは0.002~1.5モル、より好ましくは0.005~1.0モルの範囲である。触媒量が0.001モルより少ないと反応の進行が遅くなる、より高温での反応が必要になる、反応が最後まで進まない等の課題が生じる場合がある。また、触媒量が2.0モルより多いと、中和・精製等の後処理において多大な労力がかかる場合がある。
 生成物を反応混合物から単離するには、前述するような有機溶剤で抽出、もしくは晶析、再沈殿等の手法により析出させ、取り出すことができる。
 本発明のエポキシ樹脂組成物は、エポキシ樹脂と、本発明のフェノール樹脂を必須成分とする。また任意成分として他のエポキシ樹脂用硬化剤を含有しても構わない。
 本発明のエポキシ樹脂組成物に用いることのできるエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン又は1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類及びアルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、もしくは、これらの少なくとも2種の混合構造のシロキサン構造にグリシジル基および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。
 シクロヘキセン構造を有する化合物としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409(1980)、Tetrahedron Letter p.4475(1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物が挙げられる。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトールなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
 さらに上記以外のシクロヘキセン構造を有する化合物として、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。反応手法としては一般のアセタール化反応を応用すれば製造でき、例えば、反応媒体にトルエン、キシレンなどの溶媒を用いて共沸脱水しながら反応を行う方法(米国特許第2945008号明細書)、濃塩酸に多価アルコールを溶解した後アルデヒド類を徐々に添加しながら反応を行う方法(日本国特開昭48-96590号公報)、反応媒体に水を用いる方法(米国特許第3092640号明細書)、反応媒体に有機溶媒を用いる方法(日本国特開平7-215979号公報)、固体酸触媒を用いる方法(日本国特開2007-230992号公報)等が開示されている。構造の安定性から環状アセタール構造が好ましい。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)及びジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85)。
 これらは単独で用いてもよく、2種以上併用してもよい。
 本発明に使用できる硬化促進剤(硬化触媒)の具体例としてはトリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種等の複素環式化合物類、及び、それら複素環式化合物類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、カルボン酸金属塩(2-エチルヘキサン酸、ステアリン酸、ベヘン酸、ミスチリン酸などの亜鉛塩、スズ塩、ジルコニウム塩)やリン酸エステル金属(オクチルリン酸、ステアリルリン酸等の亜鉛塩)、アルコキシ金属塩(トリブチルアルミニウム、テトラプロピルジルコニウム等)、アセチルアセトン塩(アセチルアセトンジルコニウムキレート、アセチルアセトンチタンキレート等)等の金属化合物等、が挙げられる。本発明においては特にホスホニウム塩やアンモニウム塩、金属化合物類が硬化時の着色やその変化の面において好ましい。また4級塩を使用する場合、ハロゲンとの塩はその硬化物にハロゲンを残すことになり、電気信頼性および環境問題の視点から好ましくない。
 硬化促進剤は、エポキシ樹脂100に対して0.01~5.0重量部が必要に応じ用いられる。
 本発明のエポキシ樹脂組成物において他の硬化剤を併用しても構わない。例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール樹脂、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物(アミン、アミド化合物);無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン又は1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物、フェノールフタレインとアミン類との反応物などのフェノール樹脂;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明においては特に電子材料用途に使用するため、前述のフェノール樹脂が好ましい。
 本発明の硬化性樹脂組成物における硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.7~1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
 なお、他成分としてシアナートエステル化合物の使用をしても構わない。シアナートエステル化合物は単独での硬化反応に加え、エポキシ樹脂との反応により、より架橋密度の高い、耐熱性の硬化物とすることができる。シアナートエステル樹脂としては、例えば、2,2-ビス(4-シアネートフェニル)プロパン、ビス(3,5-ジメチル-4-シアネートフェニル)メタン、2,2-ビス(4-シアネートフェニル)エタン、これらの誘導体、芳香族シアネートエステル化合物等が挙げられる。また、例えば前述の硬化剤の説明で記載したような、各種フェノール樹脂と青酸もしくはその塩類との反応により合成も可能である。本発明においては特に2,2-ビス(4-シアネートフェニル)プロパンやその誘導体(部分重合物等)のように分子内にベンジル位のメチレン構造を有しない構造のものが好ましく、これらは1種単独で用いてもよく、2種以上を併用してもよい。
 本発明のエポキシ樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1以下では難燃性が不十分となる場合があり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
 さらに本発明のエポキシ樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、エポキシ樹脂と硬化剤の合計100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。
 本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明のエポキシ樹脂組成物中において通常0~95重量%を占める量が用いられる。更に本発明のエポキシ樹脂組成物には、酸化防止剤、光安定剤、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。特にカップリング剤についてはエポキシ基を有するカップリング剤、もしくはチオールを有するカップリング剤の添加が好ましい。
 本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばエポキシ樹脂成分と硬化剤成分並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材および配合剤等とを必要に応じて押出機、ニーダー、ロール、プラネタリーミキサー等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、得られたエポキシ樹脂組成物が液状である場合はポッティングやキャスティングにより、該組成物を基材に含浸したり、金型に流し込み注型したりして、加熱により硬化させる。また得られたエポキシ樹脂組成物が固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化させる。硬化温度、時間としては80~200℃で2~10時間である。硬化方法としては高温で一気に硬化させることもできるが、ステップワイズに昇温し、硬化反応を進めることが好ましい。具体例としては、80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行う。硬化の段階としては2~8段階に分けて昇温するのが好ましく、より好ましくは2~4段階である。
 また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。
 また本発明のエポキシ樹脂組成物をフィルム型封止用組成物として使用することもできる。このようなフィルム型樹脂組成物を得る場合は、本発明の硬化性樹脂組成物を剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得る。このシート状接着剤は、多層基板などにおける層間絶縁層、光半導体の一括フィルム封止として使用することが出来る。
 これら組成物の具体的な用途としては、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む、封止材の他、封止材、基板用のシアネート樹脂組成物)や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。本発明においては。電子材料用の絶縁材料(プリント基板、電線被覆等を含む、封止材の他、封止材、基板用のシアネート樹脂組成物)への使用が特に好ましい。
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 封止剤、基板としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TAB等に用いるポッティング封止、フリップチップ等に用いるアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)およびパッケージ基板などを挙げることができる。またネットワーク基板や、モジュール基板といった機能性が求められる基板用途へも好適である。
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。
 実施例で用いたゲルパーミエーションクロマトグラフィー(GPC)分析は、以下の条件で行った。また実施例に記載する「面積%」は、GPC分析で得られたクロマトグラム中に検出された全ピークの総面積に対する各ピークの面積の比率を、百分率で表したものである。
[GPC測定条件]
 カラム:Shodex(登録商標)KF-603、KF-602.5、KF-602、KF-601x2連結
 溶媒:テトラヒドロフラン
 流速:0.5ml/min.
 カラム温度:40℃
 検出器:RI(示差屈折検出器)
以下、実施例、比較例により本発明を具体的に説明する。
(実施例1)
 ディーンシュターク、撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら下記化合物(IV)18部(ジアミノジフェニルメタンの含有量:3.7重量%)、N-メチルピロリドン58.9部を加え、70℃に昇温して溶解した。そこに3,3’,4,4’-ビフェニルテトラカルボン酸二無水物1.6部、トルエン17部、ピリジン0.08部を加え、180℃まで昇温して3時間加熱還流を行った。ピリジンとトルエンを除去しながらさらに5時間加熱還流を行った。反応溶液を室温まで冷却した後、水に滴下して結晶を析出させ、これをろ過してフェノール樹脂を含む最終生成物を得た。なお、GPC分析結果より、下記構造式(I)の純度が44面積%であることがわかった。
 化合物(IV)は、以下の(ア)、(イ)、(ウ)をそれぞれ52面積%、14面積%、34面積%含有する化合物である。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(実施例2)
 ディーンシュターク、撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら前記化合物(IV)12部、N-メチルピロリドン38部を加え、70℃に昇温して溶解した。そこに無水フタル酸1.1部、トルエン14.5部、ピリジン0.05部を加え、180℃まで昇温して3時間加熱還流を行った。ピリジンとトルエンを除去しながらさらに5時間加熱還流を行った。反応溶液を室温まで冷却した後、水に滴下して結晶を析出させ、これをろ過してフェノール樹脂を含む最終生成物を得た。なお、GPC分析結果より、下記構造式(II)の純度が49面積%であることがわかった。
Figure JPOXMLDOC01-appb-C000012
(実施例3、4および比較例1)
<耐熱性試験>
 実施例1、2で得られたフェノール樹脂またはフェニールノボラックとビフェニルアラルキル型エポキシ樹脂(日本化薬製 NC-3000H)をそれぞれメチルエチルケトンに溶解し、樹脂濃度70%のワニスを作製し、混合し、触媒のトリフェニルホスフィンを配合した後、イミドフィルム上に100mmのアプリケーターを用いて塗布して硬化させた。硬化条件は160℃×2時間+180℃×6時間である。
 得られた各々の硬化物の物性を以下の要領で測定した。結果を表1に示す。
・耐熱性(DMA)
 動的粘弾性測定器:TA-instruments、DMA-2980
 測定温度範囲:-30~280℃
 温速度:2℃/分
 Tg:Tan-δのピーク点をTgとした
・耐熱性(TMA)
 真空理工(株)製 TM-7000
温速度:2℃/分
Figure JPOXMLDOC01-appb-T000013
 以上の結果から、本発明のフェノール樹脂は耐熱性に優れることが明らかである。
 また、本発明のフェノール樹脂(P-1、P-2)は比較例(P-3)と比較して官能基当量(水酸基当量)が大きい。つまり、架橋密度は本発明のフェノール樹脂(P-1、P-2)の方が比較例(P-3)よりも小さい。このことから本発明のエポキシ樹脂は、架橋密度の向上によらずに高耐熱性が付与された樹脂であることがわかる。
 すなわち、本発明のエポキシ樹脂は架橋密度を上げることなく高耐熱化しているため、架橋密度の増加によって高Tg化したときに通常低下する難燃性が低下しない。したがって、本発明のエポキシ樹脂は耐熱性、難燃性の両方に優れることがわかる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2013年10月31日付で出願された日本国特許出願(特願2013-226252)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明のフェノール樹脂を使用したエポキシ樹脂組成物は、その硬化物が優れた耐熱性と難燃性を有するので、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。

Claims (5)

  1.  下記一般式(I)で示される多価フェノール樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、複数存在するPはそれぞれ独立して構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Rはテトラカルボン酸無水物の残基を表し、Xはメチレン基または酸素原子を表し、nは平均値を示し、1~5を表す。)
  2.  下記一般式(II)で示される多価フェノール樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Pは構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Rはジカルボン酸無水物の残基を表し、Xはメチレン基または酸素原子を表す。)
  3.  下記一般式(III)で示される多価フェノール化合物と、カルボン酸無水物との反応により得られる請求項1または2に記載のフェノール樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Pは構造式aを表し、複数存在するRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、フェニル基または炭素数1~6のアルコキシ基を表し、Xはメチレン基または酸素原子を表す。)
  4.  エポキシ樹脂と、請求項1~3のいずれか一項に記載のフェノール樹脂を少なくとも1種含有するエポキシ樹脂組成物。
  5.  請求項4に記載のエポキシ樹脂組成物を硬化させて得られる硬化物。
PCT/JP2014/078705 2013-10-31 2014-10-29 フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物 WO2015064607A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015545252A JP6358712B2 (ja) 2013-10-31 2014-10-29 フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013226252 2013-10-31
JP2013-226252 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064607A1 true WO2015064607A1 (ja) 2015-05-07

Family

ID=53004208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078705 WO2015064607A1 (ja) 2013-10-31 2014-10-29 フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物

Country Status (3)

Country Link
JP (1) JP6358712B2 (ja)
TW (1) TWI616469B (ja)
WO (1) WO2015064607A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218140A (ja) * 2015-05-15 2016-12-22 Jsr株式会社 感光性樹脂組成物およびその用途
US10487077B1 (en) 2018-06-14 2019-11-26 Sabic Global Technologies B.V. Bis(benzoxazinyl)phthalimidine and associated curable composition and composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1158606A (en) * 1966-03-10 1969-07-16 Ciba Ltd New Polyglycidylethers, their preparation and their use
RU2474591C1 (ru) * 2012-01-27 2013-02-10 Учреждение Российской Академии Наук Институт Элементоорганических Соединений Им. А.Н. Несмеянова Ран (Инэос Ран) Соолигофенолформальдегидные фталимидинсодержащие новолаки для получения сшитых фталимидинсодержащих сополимеров, способ их получения и сшитые фталимидинсодержащие сополимеры в качестве конструкционных полимеров

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080274360A1 (en) * 2007-05-04 2008-11-06 General Electric Company Polyaryl ether ketone - polycarbonate copolymer blends
SG172874A1 (en) * 2009-01-06 2011-08-29 Dow Global Technologies Llc Metallic compounds in non-brominated flame retardant epoxy resins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1158606A (en) * 1966-03-10 1969-07-16 Ciba Ltd New Polyglycidylethers, their preparation and their use
RU2474591C1 (ru) * 2012-01-27 2013-02-10 Учреждение Российской Академии Наук Институт Элементоорганических Соединений Им. А.Н. Несмеянова Ран (Инэос Ран) Соолигофенолформальдегидные фталимидинсодержащие новолаки для получения сшитых фталимидинсодержащих сополимеров, способ их получения и сшитые фталимидинсодержащие сополимеры в качестве конструкционных полимеров

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218140A (ja) * 2015-05-15 2016-12-22 Jsr株式会社 感光性樹脂組成物およびその用途
US10487077B1 (en) 2018-06-14 2019-11-26 Sabic Global Technologies B.V. Bis(benzoxazinyl)phthalimidine and associated curable composition and composite

Also Published As

Publication number Publication date
JP6358712B2 (ja) 2018-07-18
JPWO2015064607A1 (ja) 2017-03-09
TWI616469B (zh) 2018-03-01
TW201527346A (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6366590B2 (ja) エポキシ樹脂混合物、エポキシ樹脂組成物、硬化物および半導体装置
JP6366504B2 (ja) エポキシ樹脂、エポキシ樹脂組成物および硬化物
JP6240069B2 (ja) エポキシ樹脂組成物、およびその硬化物、並びに、硬化性樹脂組成物
JP6735097B2 (ja) エポキシ樹脂混合物、エポキシ樹脂組成物、硬化物および半導体装置
JP6090765B2 (ja) フェノール樹脂、エポキシ樹脂、および硬化性樹脂組成物
JP2017071706A (ja) エポキシ樹脂組成物、硬化性樹脂組成物およびその硬化物
JP6358712B2 (ja) フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物
KR102226437B1 (ko) 에폭시 수지, 경화성 수지 조성물 및 그 경화물
KR102226438B1 (ko) 에폭시 수지, 에폭시 수지 조성물 및 그 경화물
JP6239599B2 (ja) フェノール樹脂、該フェノール樹脂を含有するエポキシ樹脂組成物、およびその硬化物
JP6544815B2 (ja) エポキシ樹脂、硬化性樹脂組成物および硬化物
JP2015067615A (ja) エポキシ樹脂混合物、硬化性樹脂組成物、およびその硬化物
WO2018117150A1 (ja) エポキシ樹脂混合物、エポキシ樹脂組成物およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857733

Country of ref document: EP

Kind code of ref document: A1