WO2015064356A1 - コイルの製造方法 - Google Patents
コイルの製造方法 Download PDFInfo
- Publication number
- WO2015064356A1 WO2015064356A1 PCT/JP2014/077377 JP2014077377W WO2015064356A1 WO 2015064356 A1 WO2015064356 A1 WO 2015064356A1 JP 2014077377 W JP2014077377 W JP 2014077377W WO 2015064356 A1 WO2015064356 A1 WO 2015064356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- resin sheet
- coil
- conductor pattern
- manufacturing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 239000004020 conductor Substances 0.000 claims abstract description 103
- 239000011162 core material Substances 0.000 claims abstract description 89
- 238000004804 winding Methods 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 19
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 18
- 238000003825 pressing Methods 0.000 claims description 13
- 238000000465 moulding Methods 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 2
- 229920005989 resin Polymers 0.000 abstract description 138
- 239000011347 resin Substances 0.000 abstract description 138
- 229920000106 Liquid crystal polymer Polymers 0.000 abstract description 7
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 abstract description 7
- 238000007731 hot pressing Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 27
- 229910000859 α-Fe Inorganic materials 0.000 description 20
- 239000000758 substrate Substances 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/06—Coil winding
- H01F41/061—Winding flat conductive wires or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/06—Coil winding
- H01F41/071—Winding coils of special form
- H01F41/073—Winding onto elongate formers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/02—Coils wound on non-magnetic supports, e.g. formers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/045—Fixed inductances of the signal type with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
- H01F2017/046—Fixed inductances of the signal type with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core helical coil made of flat wire, e.g. with smaller extension of wire cross section in the direction of the longitudinal axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
- H01F27/306—Fastening or mounting coils or windings on core, casing or other support
Definitions
- the present invention relates to a method for manufacturing a coil around which a conductor pattern is wound.
- Patent Document 1 discloses a laminated coil component formed by providing a coil ceramic conductor pattern and a via hole on a magnetic ceramic green sheet. This multilayer coil component is formed by laminating and pressing a magnetic ceramic green sheet having a coil conductor pattern on the surface and a magnetic ceramic green sheet having a lead-out via hole, and then firing. Yes.
- Patent Document 1 in a manufacturing process, a via hole is provided in a green sheet, and after laminating them, a process of firing the stacked ones is required, which requires labor and time for manufacturing.
- Patent Document 2 discloses a method for easily forming an inductor of a transformer without requiring a firing step.
- a conductor line is arranged on a film-like dielectric substrate, and the dielectric substrate is wound around a rod-shaped core to form a rod-shaped coil.
- an object of the present invention is to provide a method for manufacturing a coil that can suppress variation in coil characteristics from desired characteristics with a simple manufacturing method.
- the present invention relates to a method of manufacturing a coil around which a conductor pattern is wound, the step of winding a sheet made of a thermoplastic resin on which the long conductor pattern is formed, and heating the wound sheet And a step of pressing and molding.
- a coil can be manufactured by winding a thermoplastic resin sheet and heat-pressing it, so that the manufacturing process becomes easy and the manufacturing time of the coil can be shortened.
- the sheets made of the thermoplastic resin are heat-welded and integrated with each other by the heating press, the shape of the coil after formation is unlikely to vary. As a result, it is possible to suppress the coil characteristics from varying from the desired characteristics.
- the sheet In the step of winding the sheet, it is preferable to wind the sheet around a core material.
- the core material is preferably made of the same kind of thermoplastic resin as the sheet.
- the sheet In the step of winding the sheet, it is preferable to wind the sheet while the longitudinal direction of the conductor pattern is inclined from the direction orthogonal to the winding axis direction of the coil.
- This configuration can easily increase the number of turns of the coil and increase the inductance value without increasing the coil diameter. Further, the width of the conductor pattern can be increased while suppressing the coil from increasing in the winding axis direction, and the conductor resistance can be reduced accordingly.
- the sheet In the step of winding the sheet, it is preferable to wind the sheet so that a part of the sheet overlaps with each other in the winding axis direction of the coil.
- This configuration can increase the number of turns of the coil and increase the inductance value while suppressing the coil from becoming larger in the winding axis direction.
- the sheet has an elongated shape, and the elongated conductor pattern is formed on the sheet with a longitudinal direction coinciding with the longitudinal direction of the elongated sheet, and the elongated sheet and the sheet One end or both ends of the conductor pattern are bent, and in the step of winding the sheet, it is preferable to wind the sheet and a portion excluding the bent one end or both ends of the conductor pattern.
- FIG. 1 is a perspective view showing an inductor element according to Embodiment 1.
- FIG. Sectional view taken along line II in FIG. 1A The perspective view which shows the mounting surface side of an inductor element
- the figure for demonstrating the manufacturing method of the inductor element shown to FIG. 1A The figure for demonstrating the manufacturing method of the inductor element shown to FIG. 1A
- the figure for demonstrating the manufacturing method of the inductor element shown to FIG. 1A The figure for demonstrating the manufacturing method of the inductor element shown to FIG. 1A
- FIG. The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 2.
- FIG. The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 2.
- FIG. The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 2.
- FIG. The perspective view of the inductor element concerning Embodiment 3. Sectional view taken along VI-VI in FIG. 6A
- the figure which shows the resin sheet used as the resin base material in which the conductor pattern was formed in the surface The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 3.
- FIG. The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 3.
- FIG. The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 3.
- FIG. The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 3.
- FIG. The figure for demonstrating the manufacturing method of the inductor element which concerns
- FIG. 3 The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 3.
- FIG. 3 The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 3.
- FIG. 3 The figure for demonstrating the mounting aspect of the inductor element which concerns on Embodiment 3.
- FIG. 3 The figure for demonstrating the mounting aspect of the inductor element which concerns on Embodiment 3.
- FIG. 3 The figure for demonstrating the mounting aspect of the inductor element which concerns on Embodiment 3.
- FIG. 3 The figure for demonstrating the mounting aspect of the inductor element which concerns on Embodiment 3.
- FIG. 13A is a plan view of the transformer mounting surface viewed from below.
- the figure which shows the resin sheet used as the resin base material in which the conductor pattern was formed in the surface The figure for demonstrating the manufacturing method of the inductor element which concerns on Embodiment 4.
- FIG. 1A is a perspective view showing an inductor element according to Embodiment 1
- FIG. 1B is a cross-sectional view taken along line II of FIG. 1A
- FIG. 1C is a perspective view showing a mounting surface side of the inductor element. is there.
- An arrow A in FIG. 1A indicates a coil winding axis of the inductor element 1.
- the inductor element 1 is formed by winding a conductor pattern 30 along the periphery of a substantially rectangular parallelepiped insulating resin base material 20.
- the resin base material 20 is formed by heat-pressing a thermoplastic resin such as an LCP resin (liquid crystal polymer resin).
- LCP resin liquid crystal polymer resin
- the line capacity of the conductor pattern 30 can be reduced, and molding can be performed at a relatively low temperature.
- the thermoplastic resin include PEEK (polyether ether ketone), PEI (polyether imide), PPS (poniphenylene sulfide), PI (polyimide), and these may be used instead of the liquid crystal polymer resin. .
- the conductor pattern 30 is wound around the coil winding axis A.
- the conductor pattern 30 is wound with its longitudinal direction inclined from a direction orthogonal to the coil winding axis A. As shown in FIG. 1B, one end portion of the conductor pattern 30 along the longitudinal direction is bent, and the bent end portion enters below the adjacent conductor pattern 30. With this structure, even when the line width of the conductor pattern 30 is increased, the distance between the conductor patterns 30 can be reduced without bringing adjacent conductor patterns 30 into contact with each other.
- the number of turns of the conductor pattern 30 can be increased without increasing the size of the inductor element 1, and the inductance value of the inductor element 1 can be improved. Further, since the width of the conductor pattern 30 can be increased while suppressing the inductor element 1 from increasing in the direction of the coil winding axis A, the conductor resistance of the conductor pattern 30 can be reduced accordingly. .
- this bent portion is formed at the time of heating press in the manufacturing process.
- both ends of the conductor pattern 30 wound around the resin base material 20 are the mounting electrodes (terminals) 30M of the inductor element 1, so that the conductor pattern 30 other than the portion that becomes the mounting electrode 30M is formed.
- a resist is applied to the surface portion.
- the SMD SurfaceurMount Device
- FIG. 2A, 2B, 2C, and 2D are views for explaining a method of manufacturing the inductor element shown in FIG. 1A.
- the manufacturing method of the inductor element 1 starts from a step of preparing a long resin sheet 21 having a long conductive pattern 30 formed on the surface, as shown in FIG. 2A.
- the resin sheet 21 is made of the same kind of thermoplastic resin as the resin base material 20.
- the conductor pattern 30 is formed by pasting, for example, a copper foil on the substantially entire surface of one main surface (one of the front surface or the back surface) of the resin sheet 21 and patterning the copper foil.
- a step of winding a resin sheet 21 around a substantially rectangular parallelepiped core material 22 is performed.
- the core material 22 is a thermoplastic resin such as a liquid crystal polymer resin.
- the resin sheet 21 is wound around the core member 22 in the direction indicated by the arrow in FIG. 2B, and an unnecessary end portion of the resin sheet 21 is cut. The state at that time is shown in FIG. 2C.
- the resin sheet 21 is wound four times around the core member 22, but the number of windings of the resin sheet 21 may be one or more. Moreover, in the figure, although the resin sheet 21 is wound so that the conductor pattern 30 may become the outer side (opposite side to the core material 22), it may be wound with the front and back reversed.
- FIG. 3 is a sectional view taken along line III-III in FIG. 2C.
- the resin sheet first wound around the core material 22 and the conductor pattern formed on the resin sheet are referred to as a resin sheet 21 ⁇ / b> A and a conductor pattern 30 ⁇ / b> A.
- the conductor pattern formed in resin sheet 21B, 21C, 21D be the conductor patterns 30B, 30C, 30D.
- the winding of the resin sheet 21 will be described with reference to FIG. First, the resin sheet 21 ⁇ / b> A is wound around the core material 22. Next, the resin sheet 21 ⁇ / b> B is wound so as to partially overlap the resin sheet 21 ⁇ / b> A already wound around the core material 22. In this example, the resin sheet 21B is wound so that a part of the conductor pattern 30A formed on the resin sheet 21A and a part of the conductor pattern 30B formed on the resin sheet 21B overlap. The resin sheet 21B may be wound so that only the resin portion (the portion where the conductor pattern is not formed) of the resin sheet 21A and the resin sheet 21B overlap.
- the resin sheet 21C is wound so that a part of the conductor pattern 30B and a part of the conductor pattern 30C overlap each other. Further, the resin sheet 21D is wound so that a part of the conductor pattern 30C and a part of the conductor pattern 30D overlap.
- the winding number can be increased without enlarging the size of the inductor element 1 by winding the resin sheet 21 so as to overlap a part of the already wound resin sheet 21. That is, the number of turns of the conductor pattern 30 of the inductor element 1 can be increased, thereby improving the inductance value. Further, even if the distance between the conductor patterns 30 is shortened, a short-circuit is hardly caused by interposing a low dielectric constant substrate (LCP resin substrate), and the capacitance between lines can be reduced.
- LCP resin substrate low dielectric constant substrate
- a step of hot pressing the core material 22 around which the resin sheet 21 is wound is performed by the hot press machine 100 shown in FIG. 2D.
- the hot press machine 100 pressurizes and heats each surface from each of the six surfaces of the core material 22.
- the substantially rectangular parallelepiped inductor element 1 shown in FIG. 1 is formed. That is, the resin base material 20 is formed by hot pressing the resin sheet 21 and the core material 22. Since the core material 22 and the resin sheet 21 are the same kind of thermoplastic resin, they can be integrated by a simple process using a heating press, and the state of the inductor element 1 after formation can be easily maintained.
- the resin sheet 21B (21C, 21D) is wound so as to partially overlap the resin sheet 21A (21B, 21C) that has already been wound around the core material 22, the resin sheets are also thermally welded to each other. Integrate. Further, even after the integration, the core material 22 and the resin sheet 21 are the same kind of thermoplastic resin, and therefore, peeling due to the difference in thermal expansion coefficient hardly occurs.
- the conductor pattern 30 has a portion where the resin sheet 21 and the conductor pattern 30 overlap and a portion where they do not overlap. For this reason, when the heat pressing is performed, the portion where the resin sheet 21 is not overlapped is parallel to the surface of the core material 22 by pressurization, and the portion where the resin sheet 21 is overlapped is between the overlapping resin sheets 21. Since it is interposed and pressurized, it bends inward as much as the resin sheet 21 exists. That is, as shown in FIG. 1B, the formed conductor pattern 30 has a configuration in which one end portion along the longitudinal direction is bent, and the bent end portion enters below another adjacent conductor pattern 30. In addition, since the resin sheet 21 does not overlap on the upper side, the conductor pattern 30D shown in FIG. 3 is in a state parallel to the surface of the core material 22 when pressed.
- the bent end portion enters the lower side of the other adjacent conductor pattern 30, so that the width of the conductor pattern 30 can be increased without changing the number of turns, and the conductor loss of the conductor pattern 30 can be reduced.
- the conductor pattern 30 can be wound more densely, the number of turns can be increased and the inductance value can be increased without increasing the space in the coil winding axis A direction.
- the heating press process After the heating press process, a process of covering the portions other than the parts to be the mounting terminals with a resist by a dip method or the like is performed. Thereby, the mounting type inductor element 1 is formed.
- FIG. 4 is a diagram for explaining a method of forming a plurality of inductor elements by cutting one inductor element into small pieces.
- an inductor element 1A formed by winding a conductor pattern 30 around a long resin base material 20A is formed.
- the inductor element 1A is cut into small pieces to generate a plurality of inductor elements 1B.
- a plurality of inductor elements having different numbers of turns of the coil conductor can be generated by changing the cutting position.
- the inductor element according to the present embodiment is different from the first embodiment in that the coil shaft is hollow.
- FIG. 5 is a diagram for explaining a method of manufacturing the inductor element 2 according to the second embodiment.
- the method for manufacturing the inductor element 2 starts from a step of preparing a long resin sheet 21 having a long conductive pattern 30 formed on the surface, as shown in FIG. 5A.
- a step of winding the resin sheet 21 around the core material 101 having a substantially rectangular parallelepiped shape is performed.
- the core material 101 is a metal member such as stainless steel.
- the resin sheet 21 is wound around the core material 101 in the direction indicated by the arrow in FIG. 5B.
- the resin sheet 21 is wound so that it may overlap with a part of the resin sheet 21 already wound similarly to Embodiment 1.
- FIG. 5C The state after the heat press is shown in FIG. 5C.
- the resin base material 23 is formed around the core material 101 of the metal member. And it becomes the structure by which the conductor pattern 30 was wound around the resin base material 23.
- a step of removing the core material 101 is performed. Thereby, as shown in FIG. 5D, the inductor element 2 having the hollow 101A on the coil shaft is formed.
- the inductor element 2 formed as described above may be mounted with the hollow 101A, or a ferrite core may be inserted into the hollow 101A.
- a ferrite core When manufacturing an inductor element having a ferrite core, when the resin sheet 21 is wound around the ferrite core from the start of manufacture and heated and pressed, the ferrite core is relatively fragile, and thus a core crack may occur. For this reason, the inductor element 2 without damage can be manufactured by forming the hollow 22A in the inductor element 2 and subsequently inserting the ferrite core as in the present embodiment.
- FIG. 6A is a perspective view of an inductor element according to Embodiment 3, and FIG. 6B is a cross-sectional view taken along line VI-VI in FIG. 6A.
- the inductor element 3 has a configuration in which a resin base material 24 is formed around a ferrite core 102 having a substantially rectangular parallelepiped shape, and a conductor pattern 32 is wound around the resin base material 24.
- the portion around which the conductor pattern 32 is wound is referred to as a wound portion 40.
- the conductor pattern 32 is formed on a resin sheet and wound. At this time, the resin sheet is wound so that both ends protrude from the winding portion 40.
- the protruding portions are referred to as mounting portions 41 and 42.
- the mounting portions 41 and 42 protrude from the winding portion 40 in opposite directions.
- a resin base material 24 is formed around the ferrite core 102, and a conductor pattern 32 excluding both ends is wound around the resin base material 24 with the ferrite core 102 as a winding axis.
- a resist (not shown) is formed on the exposed conductive pattern 32 wound around the resin base material 24.
- the mounting portion 41 protrudes from the boundary portion between the ferrite core 102 and the resin base material 24, and the mounting portion 42 protrudes from the outermost peripheral portion of the winding portion 40. That is, the mounting portions 41 and 42 are formed at different positions in the height direction (the direction orthogonal to the coil winding axis). End portions of the conductor pattern 32 are respectively formed on the lower surfaces of the mounting portions 41 and 42, and the conductor pattern 32 is covered with a resist. At this time, the mounting electrodes 32A and 32B are formed by not covering a part of the conductor pattern 32 with the resist.
- the mounting electrodes 32 ⁇ / b> A and 32 ⁇ / b> B serve as input / output electrodes of the inductor element 3.
- FIG. 7 is a view showing a resin sheet to be the resin base material 24 with the conductor pattern 32 formed on the surface.
- the resin sheet 25 has a long shape and has both ends bent at substantially right angles in opposite directions.
- the resin sheet 25 is made of a thermoplastic resin.
- the conductor pattern 32 has substantially the same shape as the resin sheet 25 and is formed on the surface of the resin sheet 25.
- the conductor pattern 32 is formed by pasting, for example, a copper foil on substantially the entire surface of one main surface (one of the front surface or the back surface) of the resin sheet 25 and patterning the copper foil.
- the bent both ends of the resin sheet 25 are referred to as end portions 25A and 25B, respectively, and the straight portions other than the end portions 25A and 25B are referred to as linear portions 25C.
- 8A, 8B, 9A, and 9B are views for explaining a method of manufacturing the inductor element 3 according to the third embodiment.
- the manufacturing method of the inductor element 3 starts from a step of preparing a resin sheet 25 having a conductor pattern 32 formed on the surface as shown in FIG.
- a step of winding a resin sheet 25 around a substantially rectangular parallelepiped core material 103 is performed.
- the core material 103 is a metal member such as stainless steel.
- a linear portion 25C other than the end portions 25A and 25B of the resin sheet 25 is wound around the core material 103.
- the end portion 25A is protruded from the core material 103, and the straight portion 25C is wound around the core material 103 in the arrow direction in the figure.
- the end portion 25B protrudes in the direction opposite to the end portion 25A. The state at that time is shown in FIG. 8B.
- the linear portion 25C is wound around the core material 103, and then the end portions 25A and 25B are in a positional relationship parallel to each other, and the conductor pattern 32 is on the same lower surface side (mounting surface side).
- the length is designed so that is located.
- the step of heat pressing the resin sheet 25 wound around the core material 103 shown in FIG. 8B is performed.
- the resin sheet 25 wound around the core material 103 becomes the resin base material 24 as shown in FIG. 9A.
- the end portions 25A and 25B are the mounting portions 41 and 42 described with reference to FIG.
- the method for manufacturing the inductor element 3 includes a step of covering the conductor pattern 32 with a resist.
- FIG. 9B is a view of FIG. 9A viewed from below (mounting surface side). As shown in FIG. 9B, the portions other than both ends of the conductor pattern 32 are covered with a resist. At this time, both ends of the conductor pattern 32 not covered with the resist become the mounting electrodes 32A and 32B.
- a step of removing the core material 103 and inserting the ferrite core 102 is performed.
- a hollow is formed in the coil shaft portion, and the ferrite core 102 is inserted therein.
- the inductor element 3 shown in FIG. 6A is formed.
- the resin sheet 25 is wound around the ferrite core 102 from the start of manufacture and heated and pressed, the ferrite core 102 may be relatively brittle, and thus core cracks may occur. For this reason, the inductor element 3 without damage can be manufactured by inserting the ferrite core 102 later.
- 10A, 10B, and 10C are diagrams for explaining a mounting mode of the inductor element 3 according to the third embodiment.
- the inductor element 3 Since the mounting part 41 in which the mounting electrode 32A is formed is formed at a position higher than the mounting part 42 in which the mounting electrode 32B is formed, the inductor element 3 has a stepped substrate 201 as shown in FIG. 10A. Can be implemented.
- the inductor element 3 When the inductor element 3 in which the length of the mounting portion 41 is increased is formed, the inductor element 3 straddles another element or component (for example, battery) 203 mounted on the substrate 202 as shown in FIG. It can be mounted on the substrate 202.
- another element or component for example, battery
- the inductor element 3 mounts the mounting portion 41 on the substrate 202 as shown in FIG. By mounting the part 42 on the substrate 204, it can be mounted on the two substrates 202 and 204.
- the linear portion 25C of the resin sheet 25 is wound around the core member 103, and then the end portion 25B is formed on the upper surface side (surface side opposite to the mounting surface) of the wound resin sheet 25 shown in FIG. 8B.
- the length may be designed to be located.
- FIG. 11 is a diagram for explaining a case where the resin sheet 25 in which the length of the linear portion 25C is changed is wound around the core material 103.
- the conductor patterns 32 formed on the end portions 25A and 25B are located on the opposite sides. Specifically, the conductor pattern 32 formed on the end portion 25A is positioned on the lower surface side of the resin sheet 25, and the conductor pattern 32 formed on the end portion 25B is positioned on the upper surface side of the resin sheet 25.
- the inductor element having the configuration can be easily mounted on the two substrates 202 and 204 as shown in FIG. 10C. It becomes.
- the mounting electrode when the inductor element 3 is mounted on each substrate, the mounting electrode may be connected to the substrate via a connector.
- the mounting portions 41 and 42 protrude from the winding portion 40, but only one of the mounting portions 41 and 42 protrudes from the winding portion 40 and the other is wound.
- the structure which does not protrude from the turn part 40, ie, the lower surface of the winding part 40 shown to FIG. 6A may become a mounting part.
- the core material 103 is a metal member, but the core material 103 may be the same kind of thermoplastic resin as the resin sheet 25 as in the first embodiment. Further, although the resin sheet 25 is wound around the core material 103, the resin sheet 25 may be wound without using the core material 103.
- FIG. 12A and FIG. 12B are diagrams for explaining a case where the resin sheet 25 is wound without using a core material.
- 12A shows a state in the middle of winding of the resin sheet 25, and
- FIG. 12B shows a state in which the resin sheet 25 that has been wound is heated and pressed.
- the linear portion 25C is wound with the end portion 25A protruding.
- the gap 105 is formed between the end portion 25A and the linear portion 25C at the time of starting the winding of the resin sheet 25, but is heated and pressed.
- the gap 105 is filled with resin, and the resin base material 26 without the gap 105 is formed.
- FIG. 13A is a perspective view of the transformer according to the present embodiment
- FIG. 13B is a plan view of the transformer mounting surface side as viewed from the mounting surface side of FIG. 13A.
- the transformer 4 includes a winding unit 80 and mounting units 81 and 82.
- conductor patterns 91 and 92 are wound around the resin base material 90 with the ferrite core 106 as a coil winding axis around a resin base material 90 formed around the ferrite core 106.
- the conductor patterns 91 and 92 are independent conductor patterns. Each of the conductor patterns 91 and 92 is wound except for one end portion, and one end portion thereof protrudes from the wound portion 80. These protruding portions become mounting portions 81 and 82.
- the conductor pattern 91 has one end located on the lower surface of the winding part 80 and the other end located on the mounting part 81.
- the conductor pattern 92 has one end located on the lower surface of the winding portion 80 and the other end located on the mounting portion 82.
- the portions excluding both ends of the conductor patterns 91 and 92 are covered with a resist.
- the portions not covered with the resist become mounting electrodes 91A, 91B, 92A, and 92B.
- one of the coil conductors 91 and 92 is a primary coil of the transformer 4 and the other is a secondary coil.
- FIG. 14 is a view showing a resin sheet to be a resin base material 90 having conductor patterns 91 and 92 formed on the surface.
- Resin sheet 95 has a T-shape in plan view.
- the resin sheet 95 is made of a thermoplastic resin.
- the conductor patterns 91 and 92 have a shape in which one end is bent at a substantially right angle, and are formed in line symmetry on the surface of the resin sheet 95.
- the conductor patterns 91 and 92 are formed by pasting, for example, a copper foil on one main surface (one of the front surface or the back surface) of the resin sheet 95 and patterning the copper foil.
- the bent end portions of the resin sheet 95 are referred to as end portions 99A and 99B, and the straight portion is referred to as a straight portion 99C.
- FIG. 15 is a diagram for explaining a method of manufacturing the inductor element according to the fourth embodiment.
- the inductor element manufacturing method starts with a step of preparing a resin sheet 95 having conductor patterns 91 and 92 formed on the surface, as shown in FIG.
- a step of winding a resin sheet 95 around a core material 107 having a substantially rectangular parallelepiped shape is performed.
- the core material 107 is a metal member such as stainless steel.
- the end portions 99A and 99B are projected from the core material 107, and the straight portion 99C is wound around the core material 107 in the direction of the arrow in the figure.
- a step of heating and pressing the resin sheet 95 wound around the core material 107 is performed.
- the resin sheet 95 wound around the core material 107 becomes the resin base material 90, and the end portions 99A and 99B are respectively mounted portions described in FIG. 13A. 81, 82.
- a step of covering the coil conductors 91 and 92 with a resist is performed.
- the mounting electrodes 91A and 91B and the mounting electrodes 92A and 92B shown in FIG. 13B are formed.
- a step of removing the core material 107 and inserting the ferrite core 106 is performed.
- removing the core material 107 a hollow is formed in the coil shaft portion, and the ferrite core 106 is inserted therein.
- the transformer 4 composed of the two inductor elements shown in FIG. 13A is formed.
- the inductor element of the above embodiment may be used as a common mote choke coil or an antenna.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
樹脂基材にコイル導体が巻回されたインダクタ素子の製造方法であって、コイル導体となる長尺状の導体パターン(30)が形成された熱可塑性樹脂からなる樹脂シート(21)を用意し、その樹脂シート(21)を、コイル巻回軸を中心に導体パターン(30)が巻回されるように、液晶ポリマ樹脂等の熱可塑性樹脂である略直方体形状の芯材(22)に巻回する。芯材(22)に巻回した樹脂シート(21)を、加熱プレス機(100)で加熱プレスして成型する。これにより、簡易な製造方法で、コイルの特性が所望の特性からばらつくのを抑制可能なコイルの製造方法を提供する。
Description
本発明は、導体パターンが巻回されたコイルの製造方法に関する。
特許文献1には、磁性体セラミックグリーンシートにコイル用導体パターンとビアホールとを設けて形成した積層コイル部品が開示されている。この積層コイル部品は、コイル用導体パターンを表面に設けた磁性体セラミックグリーンシートと、引出し用ビアホールを設けた磁性体セラミックグリーンシートとを積層して圧着し、その後、焼成することで形成されている。
特許文献1の場合、製造工程において、グリーンシートにビアホールを設け、それらを積層した後、積層したものを焼成する工程が必要となり、製造に手間と時間を要する。
特許文献2には、焼成する工程を要することなく簡易にトランスのインダクタを形成する方法が開示されている。特許文献2では、フィルム状誘電体基板に導体線路を配置し、その誘電体基板を棒状コアに巻き付けて、棒状コイルを形成している。
特許文献2の場合、導体線路を配置したフィルム状誘電体基板が棒状コアに対して位置ずれするおそれがあるなど、コイルの形状がばらつきやすく、所望の特性を得にくいと考えられる。
そこで、本発明の目的は、簡易な製造方法で、コイルの特性が所望の特性からばらつくのを抑制可能なコイルの製造方法を提供することにある。
本発明は、導体パターンが巻回されたコイルの製造方法であって、長尺状の前記導体パターンが形成された熱可塑性樹脂からなるシートを巻回する工程と、巻回した前記シートを加熱プレスして成型する工程とを備えることを特徴とする。
この構成では、熱可塑性樹脂のシートを巻回し、加熱プレスすることで、コイルを製造できるため、製造工程が容易となり、コイルの製造時間を短縮できる。また、加熱プレスにより、熱可塑性樹脂からなるシートが互いに熱溶着して一体化するため、形成後のコイルの形状がばらつきにくい。その結果、コイルの特性が所望の特性からばらつくのを抑制することができる。
前記シートを巻回する工程では、芯材に前記シートを巻回することが好ましい。
この構成では、芯材を用いることで、シートが巻回し易くなるため、導体パターンがずれて巻回されるなどのおそれを抑制できる。
前記芯材は、前記シートと同種の熱可塑性樹脂からなることが好ましい。
この構成では、シートと芯材とが熱溶着して一体化されるので、形成後のコイルの形状がよりばらつきにくい。
前記シートを巻回する工程では、前記導体パターンの長手方向を、コイルの巻回軸方向に直交する方向から傾斜させて前記シートを巻回することが好ましい。
この構成では、コイル径を大きくすることなく、容易に、コイルの巻き数を増やし、インダクタンス値を上げることができる。また、コイルが巻回軸方向に大きくなるのを抑制しながら、導体パターンの幅を大きくすることができ、その分、導体抵抗を小さくすることができる。
前記シートを巻回する工程では、前記コイルの巻回軸方向において、巻回ごとに一部が重なるように前記シートを巻回することが好ましい。
この構成では、コイルが巻回軸方向に大きくなるのを抑制しながら、コイルの巻き数を増やし、インダクタンス値を上げることができる。
前記シートは長尺状であり、長尺状の前記導体パターンは、長手方向を長尺状の前記シートの長手方向に一致させて前記シートに形成されており、長尺状の前記シート及び前記導体パターンの一端部又は両端部は屈曲していて、前記シートを巻回する工程では、前記シート及び前記導体パターンの屈曲した前記一端部又は両端部を除く部分を巻回することが好ましい。
この構成では、導体パターンの一端部又は両端部が、コイルの巻回部分から突出する構成となるため、その一端部又は両端部をコイルの端子として用いると、コイルの基板等への実装がしやすくなる。
本発明によれば、簡易な製造方法でありながら、コイルの特性が所望の特性からばらつくのを抑制することができる。
以下、本発明に係るコイルの製造方法の好適な実施の形態について図面を参照して説明する。
(実施形態1)
図1Aは、実施形態1に係るインダクタ素子を示す斜視図であり、図1Bは、図1AのI-I線における断面図であり、図1Cは、インダクタ素子の実装面側を示す斜視図である。図1Aの矢印Aは、インダクタ素子1のコイル巻回軸を示す。
図1Aは、実施形態1に係るインダクタ素子を示す斜視図であり、図1Bは、図1AのI-I線における断面図であり、図1Cは、インダクタ素子の実装面側を示す斜視図である。図1Aの矢印Aは、インダクタ素子1のコイル巻回軸を示す。
インダクタ素子1は、略直方体形状の絶縁性の樹脂基材20の周囲に沿って、導体パターン30が巻回されることで形成されている。樹脂基材20は、LCP樹脂(液晶ポリマ樹脂)等の熱可塑性樹脂が加熱プレスされることで形成されたものである。熱可塑性樹脂に、低誘電率のLCP樹脂を用いることで、導体パターン30の線間容量を小さくすることができ、また、比較的低温で成形が可能となる。熱可塑性樹脂としては、例えばPEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、PI(ポリイミド)等があり、液晶ポリマ樹脂に代えてこれらを用いてもよい。
導体パターン30は、コイル巻回軸Aを中心に巻回されている。また、導体パターン30は、その長手方向が、コイル巻回軸Aに直交する方向から傾斜して、巻回されている。導体パターン30は、図1Bに示すように、長手方向に沿った一端部が折れ曲がっていて、折れ曲がった端部が隣り合う他の導体パターン30の下方に入りこんでいる。この構造により、導体パターン30の線幅を広くした場合であっても、隣り合う導体パターン30同士を接触させることなく、導体パターン30間の距離を縮めることができる。
また、図1Bに示す構造とすることで、インダクタ素子1の大きさを大きくすることなく、導体パターン30の巻回数を増やすことができ、インダクタ素子1のインダクタンス値の向上を図ることができる。また、インダクタ素子1がコイル巻回軸Aの方向に大きくなるのを抑制しながら、導体パターン30の幅を大きくすることができるので、その分、導体パターン30の導体抵抗を小さくすることができる。
なお、後に詳述するが、この折れ曲がり部分は、製造工程の加熱プレス時において形成される。
また、図1Cに示すように、樹脂基材20に巻回した導体パターン30の両端を、インダクタ素子1の実装電極(端子)30Mとすべく、実装電極30Mとなる部分以外の導体パターン30の表面部分にはレジストが塗布されている。これにより、SMD(Surface Mount Device)型のインダクタ素子1が製造される。
図2A、図2B、図2C、図2Dは、図1Aに示すインダクタ素子の製造方法を説明するための図である。
インダクタ素子1の製造方法は、まず、図2Aに示すように、長尺状の導体パターン30を表面に形成した、長尺状の樹脂シート21を用意する工程から開始される。樹脂シート21は、樹脂基材20と同種の熱可塑性樹脂からなる。導体パターン30は、樹脂シート21の一方主面(表面又は裏面の一方)の略全面に予め例えば銅箔が貼り付けられ、その銅箔がパターニングされることで形成される。
次に、インダクタ素子1の製造方法は、図2Bに示すように、略直方体形状の芯材22に樹脂シート21を巻回する工程が行われる。芯材22は、液晶ポリマ樹脂等の熱可塑性樹脂である。この芯材22に、図2Bの矢印に示す方向に、樹脂シート21を巻回し、不要な樹脂シート21の端部をカットする。その時の状態を図2Cに示す。
図2Cでは、芯材22に樹脂シート21を4回巻回しているが、樹脂シート21の巻回数は、1回であってもよいし、複数回であってもよい。また、図では、導体パターン30が外側(芯材22とは反対側)となるように樹脂シート21を巻回しているが、表裏を逆にして巻回してもよい。
図3は、図2CのIII-III線における断面図を示す。図3では、説明の都合上、最初に芯材22に巻回した樹脂シート、及びそれに形成された導体パターンを、樹脂シート21A、導体パターン30Aとし、その後、巻回していく樹脂シートを、樹脂シート21B,21C,21Dとし。また、樹脂シート21B,21C,21Dに形成される導体パターンを、導体パターン30B,30C,30Dとする。
図3を参照して、樹脂シート21の巻回について説明する。まず、樹脂シート21Aを芯材22に巻回する。次に、樹脂シート21Bを、既に芯材22に巻回してある樹脂シート21Aと一部が重なるように巻回する。この例では、樹脂シート21Aに形成された導体パターン30Aの一部と、樹脂シート21Bに形成された導体パターン30Bの一部とが重なるように、樹脂シート21Bを巻回する。なお、樹脂シート21Aの樹脂部分と樹脂シート21Bとの樹脂部分(導体パターンが形成されていない部分)のみが重なるように、樹脂シート21Bを巻回してもよい。
以下、同様に、導体パターン30Bの一部と導体パターン30Cの一部とが重なるように、樹脂シート21Cを巻回する。さらに、導体パターン30Cの一部と導体パターン30Dの一部とが重なるように、樹脂シート21Dを巻回する。
樹脂シート21を、既に巻回された樹脂シート21の一部と重なるように巻回することで、インダクタ素子1の大きさを大きくすることなく、巻回数を増やすことができる。すなわち、インダクタ素子1の導体パターン30の巻き数を増やすことができ、それにより、インダクタンス値を向上できる。また、導体パターン30間の距離を縮めても低誘電率の基板(LCP樹脂基板)を介在させていることにより短絡しにくく、しかも線間容量は小さくできる。
次に、インダクタ素子の製造方法は、図2Dに示す加熱プレス機100により、樹脂シート21を巻回した芯材22を加熱プレスする工程が行われる。加熱プレス機100は、芯材22の六面それぞれの方向から、各面を加圧及び加熱する。樹脂シート21が巻回された芯材22を加熱プレスすることにより、図1に示す、略直方体形状のインダクタ素子1が形成される。すなわち、樹脂基材20は、樹脂シート21と芯材22とが加熱プレスされて形成される。芯材22と樹脂シート21とは、同種の熱可塑性樹脂であるため、加熱プレスを用いた簡単なプロセスで一体化でき、形成後のインダクタ素子1の状態を維持しやすい。また、樹脂シート21B(21C,21D)を、既に芯材22に巻回してある樹脂シート21A(21B,21C)と一部が重なるように巻回しているので、樹脂シート同士も熱溶着して一体化する。また、一体化した後においても、芯材22と樹脂シート21とが同種の熱可塑性樹脂であるため、熱膨張係数差に起因する剥離が起こりにくい。
また、導体パターン30は、図3で説明したように、樹脂シート21及び導体パターン30が重なっている部分と、重なっていない部分とがある。このため、加熱プレスをした際、樹脂シート21が重なっていない部分は、加圧により芯材22の面に平行となり、樹脂シート21が重なっている部分は、重なっている樹脂シート21が間に介在して加圧されるため、樹脂シート21が存在する分、内側に折れ曲がる。すなわち、図1Bに示すように、形成される導体パターン30は、長手方向に沿った一端部が折れ曲がっていて、折れ曲がった端部が隣り合う他の導体パターン30の下方に入りこんだ構成となる。なお、図3に示す導体パターン30Dは、上側に樹脂シート21が重なっていないため、加圧プレスされると、芯材22の面に平行な状態となる。
このように、折れ曲がった端部が隣り合う他の導体パターン30の下方に入りこむので、巻き数を変えることなく導体パターン30の幅を広げることができ、導体パターン30の導体損を減らすことができる。言い換えると、導体パターン30をより密に巻回することができるため、コイル巻回軸A方向におけるスペースを大きくすることなく、巻き数を増加させることができ、インダクタンス値を上げることができる。
加熱プレス工程が行われた後、実装端子となる部分以外をディップ工法などによりレジストで覆う工程が行われる。これにより、実装型のインダクタ素子1が形成される。
なお、本実施形態では、一つのインダクタ素子1の製造方法について説明したが、長尺状の一つのインダクタ素子を形成し、それを小片に切断し、複数のインダクタ素子を形成するようにしてもよい。図4は、一つのインダクタ素子を小片に切断して、複数のインダクタ素子を形成する方法を説明するための図である。図4に示すように、上述の製造方法と同様に、長尺状の樹脂基材20Aに導体パターン30を巻回してなるインダクタ素子1Aを形成する。このインダクタ素子1Aを小片に切断し、複数のインダクタ素子1Bを生成する。この場合、切断する位置を変更することで、コイル導体の巻き数が異なる複数のインダクタ素子を生成できる。
(実施形態2)
本実施形態に係るインダクタ素子は、コイル軸が中空となっている点で、実施形態1と相違する。
本実施形態に係るインダクタ素子は、コイル軸が中空となっている点で、実施形態1と相違する。
図5は、実施形態2に係るインダクタ素子2の製造方法を説明するための図である。
インダクタ素子2の製造方法は、実施形態1と同様、まず、図5Aに示すように、長尺状の導体パターン30を表面に形成した、長尺状の樹脂シート21を用意する工程から開始される。
次に、インダクタ素子2の製造方法は、図5Bに示すように、略直方体形状の芯材101に樹脂シート21を巻回する工程が行われる。芯材101は、例えばステンレス鋼等の金属部材である。この芯材101に、図5Bの矢印に示す方向に、樹脂シート21を巻回する。樹脂シート21の巻回については、実施形態1と同様に、既に巻回してある樹脂シート21の一部と重なるように、樹脂シート21を巻回する。
次に、インダクタ素子2の製造方法は、芯材101に巻回した樹脂シート21を加熱プレスする工程が行われる。加熱プレス後の状態を図5Cに示す。樹脂シート21を加熱プレスすることで、金属部材の芯材101の周囲に樹脂基材23が形成される。そして、その樹脂基材23に導体パターン30が巻回された構成となる。
さらに、インダクタ素子2の製造方法は、芯材101を除去する工程が行われる。これにより、図5Dに示すように、コイル軸に中空101Aを有するインダクタ素子2が形成される。
以上のように形成されたインダクタ素子2は、中空101Aを有する状態で実装されてもよいし、中空101Aにフェライトコアを挿入してもよい。フェライトコアを有するインダクタ素子を製造する場合、製造開始時からフェライトコアに樹脂シート21を巻回し、加熱プレスすると、フェライトコアは比較的脆いため、コア割れが生じる場合がある。このため、本実施形態のように、インダクタ素子2に中空22Aを形成し、後にフェライトコアを挿入することで、損傷のないインダクタ素子2を製造できる。
(実施形態3)
図6Aは、実施形態3に係るインダクタ素子の斜視図であり、図6Bは、図6AのVI-VIにおける断面図である。
図6Aは、実施形態3に係るインダクタ素子の斜視図であり、図6Bは、図6AのVI-VIにおける断面図である。
インダクタ素子3は、略直方体形状のフェライトコア102の周囲に樹脂基材24が形成されていて、その樹脂基材24に導体パターン32が巻回された構成を有している。以下、導体パターン32が巻回された部分を巻回部40と言う。後に詳述するが、実施形態1,2と同様、導体パターン32は樹脂シートに形成されて巻回されている。このとき、その樹脂シートは、両端が巻回部40から突出するよう巻回される。以下、その突出した部分を実装部41,42と言う。この実装部41,42は、巻回部40からそれぞれ反対方向へ突出している。
巻回部40は、フェライトコア102の周囲に樹脂基材24が形成され、その樹脂基材24に、フェライトコア102を巻回軸として、両端部を除く導体パターン32が巻回されている。樹脂基材24に巻回され、露出している導体パターン32には、不図示のレジストが形成されている。
実装部41は、フェライトコア102と樹脂基材24との境界部分から突出し、実装部42は、巻回部40の最外周部から突出している。すなわち、実装部41,42は、高さ方向(コイル巻回軸の直交方向)において異なる位置に形成されている。実装部41,42の下側表面には、導体パターン32の端部がそれぞれ形成されていて、その導体パターン32がレジストにより覆われている。このとき、導体パターン32の一部をレジストで覆わないようにすることで、実装電極32A,32Bが形成される。その実装電極32A,32Bは、インダクタ素子3の入出力電極となる。
以下に、図6に示すインダクタ素子3の製造方法を説明する。
図7は、導体パターン32が表面に形成された、樹脂基材24となる樹脂シートを示す図である。
樹脂シート25は、長尺状であって、両端部が互いに反対方向に略直角に折れ曲がった形状を有している。樹脂シート25は、熱可塑性樹脂からなる。導体パターン32は、樹脂シート25と略同形状であって、樹脂シート25の表面に形成されている。導体パターン32は、樹脂シート25の一方主面(表面又は裏面の一方)の略全面に予め例えば銅箔が貼り付けられ、その銅箔がパターニングされることで形成される。以下では、樹脂シート25の折れ曲がった両端部をそれぞれ、端部25A,25Bと言い、端部25A,25B以外の直線部分を直線部25Cと言う。
図8A、図8B、図9A及び図9Bは、実施形態3に係るインダクタ素子3の製造方法を説明するための図である。
インダクタ素子3の製造方法は、まず、図7に示す、表面に導体パターン32が形成された樹脂シート25を用意する工程から開始される。
次に、インダクタ素子の製造方法は、図8Aに示すように、略直方体形状の芯材103に樹脂シート25を巻回する工程が行われる。芯材103は、例えばステンレス鋼等の金属部材である。この芯材103に対し、樹脂シート25の端部25A,25B以外の直線部25Cを巻回する。詳しくは、芯材103から端部25Aを突出させ、直線部25Cを芯材103に、図中矢印方向に巻回する。直線部25Cを巻回し終えると、端部25Aとは反対方向に端部25Bが突出する。その時の状態を図8Bに示す。
なお、直線部25Cは、図8Bに示すように、芯材103に巻回した後、端部25A,25Bが互いに平行な位置関係となり、かつ、同じ下面側(実装面側)に導体パターン32が位置するように、長さが設計されている。
次に、インダクタ素子3の製造方法は、図8Bに示す、芯材103に巻回した樹脂シート25を加熱プレスする工程が行われる。樹脂シート25を加熱プレスすることで、図9Aに示すように、芯材103に巻回された樹脂シート25が樹脂基材24となる。端部25A,25Bはそれぞれ、図6で説明した実装部41,42となる。
インダクタ素子3の製造方法は、導体パターン32をレジストで覆う工程が行われる。図9Bは、図9Aを下方(実装面側)から視た図である。図9Bに示すように、導体パターン32の両端部以外をレジストで覆う。このとき、レジストで覆われていない導体パターン32の両端部は、実装電極32A,32Bとなる。
次に、インダクタ素子の製造方法は、芯材103を除去し、フェライトコア102を挿入する工程が行われる。芯材103を除去することで、コイル軸部分に中空が形成され、この中にフェライトコア102を挿入する。これにより、図6Aに示すインダクタ素子3が形成される。実施形態2で説明したように、製造開始時からフェライトコア102に樹脂シート25を巻回し、加熱プレスすると、フェライトコア102は比較的脆いため、コア割れが生じる場合がある。このため、後にフェライトコア102を挿入することで、損傷のないインダクタ素子3を製造できる。
図10A、図10B及び図10Cは、実施形態3に係るインダクタ素子3の実装態様を説明するための図である。
実装電極32Aが形成された実装部41は、実装電極32Bが形成された実装部42よりも高い位置に形成されているため、インダクタ素子3は、図10Aに示すように、段差のある基板201に実装できる。
実装部41の長さを長くしたインダクタ素子3を形成した場合、インダクタ素子3は、図10Bに示すように、基板202に実装された他の素子又は部品(例えば、バッテリ)203を跨いで、基板202に実装できる。
また、二つの基板202,204が、実装面同士が距離を置いて対向して設けられている場合、インダクタ素子3は、図10Cに示すように、実装部41を基板202に実装し、実装部42を基板204に実装することで、二つの基板202,204に実装できる。
なお、樹脂シート25の直線部25Cは、芯材103に巻回した後、図8Bに示す、巻回された樹脂シート25の上面側(実装面と反対の面側)に、端部25Bが位置するように、長さが設計されていてもよい。図11は、直線部25Cの長さを変更した樹脂シート25を芯材103に巻回した場合を説明するための図である。この場合、端部25A,25Bに形成される導体パターン32は、互いに反対側に位置するようになる。詳しくは、端部25Aに形成される導体パターン32は樹脂シート25の下面側、端部25Bに形成される導体パターン32は樹脂シート25の上面側に位置する。この場合、導体パターン32の一部を除いてレジストで覆い、実装電極32A,32Bを形成すると、その構成を有するインダクタ素子は、図10Cに示すような二つの基板202,204に容易に実装可能となる。
なお、図10A~図10Cにおいて、インダクタ素子3は、各基板に実装する際、コネクタを介して実装電極を基板に接続してもよい。また、本実施形態に係るインダクタ素子3は、実装部41,42が、巻回部40から突出する構成としているが、実装部41,42の一方のみが巻回部40から突出し、他方が巻回部40から突出しない、すなわち、図6Aに示す巻回部40の下面が実装部となる構成であってもよい。また、本実施形態に係る製造方法では、芯材103を金属部材としているが、芯材103は、実施形態1と同様に、樹脂シート25と同種の熱可塑性樹脂としてもよい。また、芯材103に樹脂シート25を巻回しているが、芯材103を用いずに、樹脂シート25を巻回してもよい。
図12A及び図12B、芯材を用いず樹脂シート25を巻回する場合について説明するための図である。図12Aは、樹脂シート25の巻回途中の状態、図12Bは、巻回し終えた樹脂シート25を加熱プレスした状態をそれぞれ示す。図12Aに示すように、端部25Aを突出させた状態で、直線部25Cを巻回していく。芯材を用いずに樹脂シート25を巻回する場合、樹脂シート25の巻回開始時点で、端部25Aと直線部25Cとの間に隙間105が形成されることになるが、加熱プレスすることにより、図12Bに示すように、隙間105は樹脂で充填され、隙間105がない樹脂基材26が形成される。
(実施形態4)
本実施形態では、2つのインダクタ素子を同時に形成し、トランスを形成する方法について説明する。
本実施形態では、2つのインダクタ素子を同時に形成し、トランスを形成する方法について説明する。
図13Aは、本実施形態に係るトランスの斜視図であり、図13Bは、図13Aの実装面側から視たトランスの実装面側の平面図である。
トランス4は、巻回部80と、実装部81,82とを備えている。巻回部80は、フェライトコア106の周囲に形成された樹脂基材90に、フェライトコア106をコイル巻回軸として導体パターン91,92が樹脂基材90に巻回されている。導体パターン91,92は、それぞれが独立した導体パターンである。導体パターン91,92は、それぞれ一端部を除いて巻回されていて、その一端部は、巻回部80から突出している。この突出部分が実装部81,82となる。
導体パターン91は、一端部が、巻回部80の下面に位置し、他端部が実装部81に位置する。また、導体パターン92は、一端部が、巻回部80の下面に位置し、他端部が実装部82に位置する。導体パターン91,92それぞれの両端部を除く部分をレジストで覆う。そして、レジストで覆われていない部分が、実装電極91A,91B,92A,92Bとなる。
このように形成されるトランス4において、コイル導体91,92は、一方がトランス4の1次側コイル、他方が2次側コイルとなる。
図14は、導体パターン91,92が表面に形成された、樹脂基材90となる樹脂シートを示す図である。
樹脂シート95は、平面視でT字型形状を有している。樹脂シート95は、熱可塑性樹脂からなる。導体パターン91,92は、一端部が略直角に折れ曲がった形状であり、樹脂シート95の表面に線対称に形成されている。導体パターン91,92は、樹脂シート95の一方主面(表面又は裏面の一方)に予め例えば銅箔が貼り付けられ、その銅箔がパターニングされることで形成される。以下では、樹脂シート95の折れ曲がった端部をそれぞれ、端部99A,99Bと言い、直線部分を直線部99Cと言う。
図15は、実施形態4に係るインダクタ素子の製造方法を説明するための図である。
インダクタ素子の製造方法は、まず、図14に示す、表面に導体パターン91,92が形成された樹脂シート95を用意する工程から開始される。
次に、インダクタ素子の製造方法は、図15に示すように、略直方体形状の芯材107に樹脂シート95を巻回する工程が行われる。芯材107は、例えばステンレス鋼等の金属部材である。この芯材107から端部99A,99Bを突出させ、直線部99Cを芯材107に、図中矢印方向に巻回する。
さらに、インダクタ素子の製造方法は、芯材107に巻回した樹脂シート95を加熱プレスする工程が行われる。樹脂シート95を加熱プレスすることで、図13Aに示すように、芯材107に巻回された樹脂シート95が樹脂基材90となり、端部99A,99Bはそれぞれ、図13Aで説明した実装部81,82となる。
インダクタ素子の製造方法は、コイル導体91,92をレジストで覆う工程が行われる。このレジストを覆う工程により、図13Bに示す、実装電極91A,91B及び実装電極92A,92Bが形成される。
次に、インダクタ素子の製造方法は、芯材107を除去し、フェライトコア106を挿入する工程が行われる。芯材107を除去することで、コイル軸部分に中空が形成され、この中にフェライトコア106を挿入する。これにより、図13Aに示す2つのインダクタ素子からなるトランス4が形成される。
上記実施形態のインダクタ素子は、コモンモートチョークコイルやアンテナとして用いてもよい。
1,1A,1B,2,3…インダクタ素子
4…トランス
20,20A…樹脂基材
21,21A,21B,21C,21D…樹脂シート
22…芯材
22A…中空
23,24…樹脂基材
25…樹脂シート
25A,25B…端部
25C…直線部
26…樹脂基材
30,30A,30B,30C,30D,32…導体パターン
32A,32B…実装電極
40…巻回部
41,42…実装部
80…巻回部
81,82…実装部
90…樹脂基材
91…導体パターン
91,92…導体パターン
91A,91B,92A,92B…実装電極
92…導体パターン
95…樹脂シート
99A,99B…端部
99C…直線部
100…加熱プレス機
101…芯材
101A…中空
102…フェライトコア
103…芯材
105…隙間
106…フェライトコア
107…芯材
201,202,204…基板
203…部品
4…トランス
20,20A…樹脂基材
21,21A,21B,21C,21D…樹脂シート
22…芯材
22A…中空
23,24…樹脂基材
25…樹脂シート
25A,25B…端部
25C…直線部
26…樹脂基材
30,30A,30B,30C,30D,32…導体パターン
32A,32B…実装電極
40…巻回部
41,42…実装部
80…巻回部
81,82…実装部
90…樹脂基材
91…導体パターン
91,92…導体パターン
91A,91B,92A,92B…実装電極
92…導体パターン
95…樹脂シート
99A,99B…端部
99C…直線部
100…加熱プレス機
101…芯材
101A…中空
102…フェライトコア
103…芯材
105…隙間
106…フェライトコア
107…芯材
201,202,204…基板
203…部品
Claims (6)
- 導体パターンが巻回されたコイルの製造方法であって、
長尺状の前記導体パターンが形成された熱可塑性樹脂からなるシートを巻回する工程と、
巻回した前記シートを加熱プレスして成型する工程と、
を備えるコイルの製造方法。 - 前記シートを巻回する工程では、芯材に前記シートを巻回する、
請求項1に記載のコイルの製造方法。 - 前記芯材は、前記シートと同種の熱可塑性樹脂からなる、
請求項2に記載のコイルの製造方法。 - 前記シートを巻回する工程では、
前記導体パターンの長手方向を、コイルの巻回軸方向に直交する方向から傾斜させて前記シートを巻回する、
請求項1から3の何れかに記載のコイルの製造方法。 - 前記シートを巻回する工程では、
前記コイルの巻回軸方向において、巻回ごとに一部が重なるように前記シートを巻回する、
請求項4に記載のコイルの製造方法。 - 前記シートは長尺状であり、
長尺状の前記導体パターンは、長手方向を長尺状の前記シートの長手方向に一致させて前記シートに形成されており、
長尺状の前記シート及び前記導体パターンの一端部又は両端部は屈曲していて、
前記シートを巻回する工程では、
前記シート及び前記導体パターンの屈曲した前記一端部又は両端部を除く部分を巻回する、
請求項1から5の何れかに記載のコイルの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201490000955.0U CN205487740U (zh) | 2013-10-29 | 2014-10-15 | 线圈及线圈安装基板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013224364 | 2013-10-29 | ||
JP2013-224364 | 2013-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064356A1 true WO2015064356A1 (ja) | 2015-05-07 |
Family
ID=53003966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077377 WO2015064356A1 (ja) | 2013-10-29 | 2014-10-15 | コイルの製造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN205487740U (ja) |
WO (1) | WO2015064356A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220239160A1 (en) * | 2021-01-26 | 2022-07-28 | Witricity Corporation | Wire-Wound Structures for Electromagnetic Sensing of Objects |
US11874423B2 (en) | 2019-10-25 | 2024-01-16 | Witricity Corporation | Circuit for object detection and vehicle position determination |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56119611U (ja) * | 1980-02-12 | 1981-09-11 | ||
JP2010123883A (ja) * | 2008-11-21 | 2010-06-03 | Denso Corp | 電子部品の製造方法、及び電子部品 |
WO2013084609A1 (ja) * | 2011-12-07 | 2013-06-13 | Necトーキン株式会社 | コイル、リアクトル及びコイルの形成方法 |
-
2014
- 2014-10-15 WO PCT/JP2014/077377 patent/WO2015064356A1/ja active Application Filing
- 2014-10-15 CN CN201490000955.0U patent/CN205487740U/zh not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56119611U (ja) * | 1980-02-12 | 1981-09-11 | ||
JP2010123883A (ja) * | 2008-11-21 | 2010-06-03 | Denso Corp | 電子部品の製造方法、及び電子部品 |
WO2013084609A1 (ja) * | 2011-12-07 | 2013-06-13 | Necトーキン株式会社 | コイル、リアクトル及びコイルの形成方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11874423B2 (en) | 2019-10-25 | 2024-01-16 | Witricity Corporation | Circuit for object detection and vehicle position determination |
US20220239160A1 (en) * | 2021-01-26 | 2022-07-28 | Witricity Corporation | Wire-Wound Structures for Electromagnetic Sensing of Objects |
US11750041B2 (en) * | 2021-01-26 | 2023-09-05 | Witricity Corporation | Wire-wound structures for electromagnetic sensing of objects |
Also Published As
Publication number | Publication date |
---|---|
CN205487740U (zh) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102035382B1 (ko) | 무선 충전 코일 | |
KR101555398B1 (ko) | 자기 전기적 장치 | |
US9485860B2 (en) | Multilayer board | |
US8159322B2 (en) | Laminated coil | |
TWI466146B (zh) | 共模濾波器及其製造方法 | |
JP2021508949A (ja) | 無線充電コイル | |
JP2012038941A (ja) | トランス | |
WO2015064356A1 (ja) | コイルの製造方法 | |
JP5218125B2 (ja) | 積層型電子部品 | |
TWI529758B (zh) | A stacked coil, and a method of manufacturing the stacked coil | |
JP6241287B2 (ja) | 可変コモンモードチョークコイルおよびその製造方法 | |
US11037726B2 (en) | Method for manufacturing common-mode choke coil | |
JP6132027B2 (ja) | 積層型インダクタ素子の製造方法、および積層型インダクタ素子 | |
JPWO2019230511A1 (ja) | アンテナ素子及びアンテナ素子の製造方法 | |
JP2003077728A (ja) | 積層インダクタ | |
JP5365420B2 (ja) | 積層型電子部品 | |
JP2016213437A (ja) | コイル内蔵素子、コイルアンテナ、電子機器およびコイル内蔵素子の製造方法 | |
JP2007188988A (ja) | エッジワイズ巻電磁コイル及び製造方法 | |
JP6447785B2 (ja) | 多層基板およびその製造方法 | |
JP2001230142A (ja) | 積層インダクタの製造方法 | |
JPWO2005043564A1 (ja) | 積層型磁性部品及びその製造方法並びに積層型磁性部品用積層体の製造方法 | |
JP2003037014A (ja) | 積層インダクタ搭載構造 | |
JP2019114744A (ja) | コモンモードチョークコイル | |
JPWO2005043565A1 (ja) | 積層型磁性部品及びその製造方法並びに積層型磁性部品用積層体の製造方法 | |
JP2003037012A (ja) | 積層インダクタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14857355 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14857355 Country of ref document: EP Kind code of ref document: A1 |