WO2015064234A1 - 映像信号のノイズ除去回路及び映像信号のノイズ除去方法 - Google Patents

映像信号のノイズ除去回路及び映像信号のノイズ除去方法 Download PDF

Info

Publication number
WO2015064234A1
WO2015064234A1 PCT/JP2014/074521 JP2014074521W WO2015064234A1 WO 2015064234 A1 WO2015064234 A1 WO 2015064234A1 JP 2014074521 W JP2014074521 W JP 2014074521W WO 2015064234 A1 WO2015064234 A1 WO 2015064234A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
video signal
contour
pixels
signal
Prior art date
Application number
PCT/JP2014/074521
Other languages
English (en)
French (fr)
Inventor
博一 河野
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to US14/917,671 priority Critical patent/US9826177B2/en
Priority to JP2015544861A priority patent/JP6235604B2/ja
Priority to KR1020167006694A priority patent/KR101781766B1/ko
Publication of WO2015064234A1 publication Critical patent/WO2015064234A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/142Edging; Contouring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/148Video amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals

Definitions

  • the present invention relates to a method for reducing noise generated in a video signal of a television camera.
  • the subject image passes through the lens 2 of the television camera 1, is decomposed into three colors R, G, and B by the prism 3, and is converted into electric signals R, G, and B by the image sensors 4R, 4G, and 4B, respectively.
  • CDS Correlated Double Sampling
  • VGA Very Gain Amplifier
  • a / D Analog to Digital
  • a TG Timing Generator
  • a CPU Central Processing Unit
  • a CPU Central Processing Unit 11 controls a circuit of each unit as a system controller.
  • FIG. 2 shows a conventional noise removal circuit.
  • the input video signal is input to the LPF 12 and the subtracter 13.
  • a high frequency component (random noise) is suppressed by the LPF 12 and input to the subtractor 13.
  • the subtracter 13 subtracts the output of the LPF 12 from the input video signal.
  • the output of the LPF 12 is input to the level determination circuit 14, and the coefficient A is calculated.
  • a multiplier 15 multiplies the output of the subtractor 13 and the output A of the level determination circuit 14.
  • the output of the multiplier 15 and the output of the LPF 12 are added by the adder 16 and become an output signal.
  • output signal input video signal ⁇ A + LPF ⁇ (1 ⁇ A) where 0 ⁇ A ⁇ 1.0.
  • the output signal is a mixture of the input video signal and the LPF output at a ratio determined by the coefficient A.
  • FIG. 3 shows the characteristics of the mixing coefficient A.
  • the conventional noise removal function gradually increases the noise removal effect when the brightness level is lowered from a certain point. If an attempt is made to obtain a noise removal effect even in a portion where the luminance level is high, the contour information is lost, resulting in a blurred image. Therefore, conventionally, it can be applied only to a portion where the outline information is originally low and the luminance level is low.
  • JP 2010-200366 A (Kono) Horizontal noise correction method
  • An object of the present invention is to reduce noise without blurring a contour portion of a video signal even in a video signal having a high luminance level.
  • the present invention provides: A low-pass filter for a video signal, a contour extraction circuit for extracting a contour signal of the video signal, and a mixing circuit for mixing the video signal at a predetermined ratio; A mixed video signal obtained by mixing the input video signal and the low-pass video signal passed through the low-pass filter at a predetermined ratio corresponding to a contour signal is used as an output video signal.
  • the contour extraction circuit has means for subtracting an offset that increases as the low-pass video signal (the video signal level detected by the low-pass filter) increases from the extracted contour signal, and the low-pass video from the extracted contour signal Subtract the offset that increases as the signal (video signal level detected by the low-pass filter) increases, In the portion where the contour signal is small (the portion where the image is flat), the ratio of the low-pass video signal included in the mixed video signal is high, and in the portion where the contour signal is large (contour portion), the low-pass included in the mixed video signal.
  • the contour extraction circuit includes a 3 ⁇ 3 pixel at the center, a 3 ⁇ 3 pixel shifted by one pixel upward from the center, and a downward from the center from a 5 ⁇ 5 pixel array. From a total of 5 locations: 3 ⁇ 3 pixels shifted by 1 pixel, 3 ⁇ 3 pixels shifted by 1 pixel in the left direction relative to the central portion, and 3 ⁇ 3 pixels shifted by 1 pixel in the right direction relative to the central portion, A circuit for calculating a contour and selecting a maximum value of the contour components as a contour signal;
  • the contour extraction circuit includes a 3 ⁇ 3 pixel at the center, a 3 ⁇ 3 pixel shifted by one pixel upward from the center, and a downward from the center from a 5 ⁇ 5 pixel array.
  • Each of the image signal noise removing circuits calculates a contour and selects a maximum value of the contour components as a contour signal.
  • the contour extraction circuit includes a 3 ⁇ 3 pixel at the center, a 3 ⁇ 3 pixel shifted by one pixel upward from the center, and a downward from the center from a 5 ⁇ 5 pixel array.
  • the contour extraction circuit includes a 3 ⁇ 3 pixel at the center, a 3 ⁇ 3 pixel shifted by one pixel upward from the center, and a downward from the center from a 5 ⁇ 5 pixel array.
  • a mixed video signal obtained by mixing the input video signal and the low-pass video signal at a predetermined ratio corresponding to the contour signal is used as an output video signal. Subtract the offset that increases as the low-pass video signal (video signal level) increases from the contour signal, In the portion where the contour signal is small (the portion where the image is flat), the ratio of the low-pass video signal included in the mixed video signal is high, and in the portion where the contour signal is large (contour portion), the low-pass included in the mixed video signal.
  • a noise removal method for a video signal characterized in that the mixing ratio is controlled so that the ratio of the video signal is lowered.
  • a video signal noise removing method is characterized in that a contour is calculated from each location and the maximum value of the contour components is selected.
  • the contour signal from the 5 ⁇ 5 pixel array of the video signal, 3 ⁇ 3 pixels in the center, 3 ⁇ 3 pixels shifted by one pixel upward from the center, and the center 5 ⁇ 3 ⁇ 3 pixels shifted by 1 pixel downward, 3 ⁇ 3 pixels shifted by 1 pixel leftward with respect to the central portion, and 3 ⁇ 3 pixels shifted by 1 pixel rightward with respect to the central portion.
  • the average value of the 8 pixels excluding the central pixel and the absolute value of the difference of each of the 8 pixels excluding the central pixel are calculated, and all the absolute values of the differences of the 8 pixels are all added.
  • Block diagram showing the configuration of a television camera Schematic diagram explaining conventional operation Schematic diagram showing the characteristics of coefficient A of the conventional method Schematic diagram showing the operation of one embodiment of the present invention.
  • the schematic diagram which shows the characteristic of the coefficient B of one Example of this invention The block diagram which shows the outline extraction circuit of one Example of this invention Schematic diagram (5 ⁇ 5) showing the pixel configuration of the video signal of one embodiment of the present invention
  • the block diagram which shows the outline extraction circuit of other one Example of this invention Schematic diagram showing the pixel configuration of a video signal according to another embodiment of the present invention (5 ⁇ 5 to 3 ⁇ 3 extraction)
  • the block diagram which shows the outline extraction circuit of other one Example of this invention
  • the subject image passes through the lens 2 of the television camera 1, is decomposed into three colors R, G, and B by the prism 3, and is converted into electric signals R, G, and B by the image sensors 4R, 4G, and 4B, respectively.
  • CDS Correlated Double Sampling
  • VGA Very Gain Amplifier
  • a / D Analog to Digital
  • a TG Timing Generator
  • a CPU Central Processing Unit
  • a CPU Central Processing Unit 11 controls a circuit of each unit as a system controller.
  • FIG. 4 is a schematic diagram showing the operation of the embodiment of the present invention.
  • the input video signal is input to the LPF 17, the subtracter 19, and the contour extraction circuit 18.
  • the high frequency component (random noise) is suppressed by the LPF 17 and input to the subtractor 19.
  • the subtracter 19 subtracts the output of the LPF 17 from the input video signal.
  • the contour extraction circuit 18 extracts the contour component of the input video signal.
  • the contour component is a mixing coefficient B for mixing the input video signal and the LPF output.
  • the multiplier 20 multiplies the output of the subtracter 19 and the output B of the contour extraction circuit 18.
  • the output of the multiplier 20 and the output of the LPF 17 are added by the adder 21 and become an output signal.
  • output signal input video signal ⁇ B + LPF ⁇ (1 ⁇ B) where 0 ⁇ B ⁇ 1.0.
  • the output signal is a mixture of the input video signal and the LPF output at a ratio determined by the coefficient B.
  • FIG. 5 is a schematic diagram showing the characteristic of the coefficient B of one embodiment of the present invention.
  • FIG. 6 is a block diagram showing a contour extraction circuit according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram (5 ⁇ 5) showing a pixel configuration of a video signal according to an embodiment of the present invention
  • FIG. 8 is a block diagram showing a contour extracting circuit according to another embodiment of the present invention
  • FIG. 8 is a schematic diagram (5 ⁇ 5 to 3 ⁇ 3 extraction) showing a pixel configuration of a video signal according to another embodiment of the present invention
  • FIG. 9 is a block diagram showing a contour extracting circuit according to another embodiment of the present invention.
  • 5 ⁇ 5 pixel two-dimensional data is constructed from the input video signal by the line memory and flip-flop.
  • FIG. 7 of the schematic diagram (5 ⁇ 5) showing the pixel configuration of the video signal according to one embodiment of the present invention reference numerals d11 to d55 are assigned to the 25 pixels, respectively, and description will be made using the reference numerals.
  • 3 ⁇ 3 pixel data of d22, d32, d42, d23, d33, d43, d24, d34, d44 is input to the LPF 22.
  • the center d33 is input to the subtracter 23.
  • the LPF 22 calculates an average value of 3 ⁇ 3 pixels.
  • a filter in which the weight of each pixel is changed such as a Gaussian filter, may be used.
  • the subtracter 23 subtracts the LPF 22 output from d33.
  • the offset circuit 24 calculates an offset signal for reducing noise included in the contour signal from the output (video signal level) of the LPF 22. Since the input video signal has light-dependent noise, the portion where the input video signal is large also increases when the contour signal is extracted. The offset signal reduces this noise.
  • gain is a parameter that determines the gain for the input video signal, and may be given as a fixed value or as a variable parameter from the outside.
  • the contour extraction circuit 25 receives 5 ⁇ 5 pixel data of d11 to d55 and an average value (output of the LPF 22).
  • this average value uses the output signal of the LPF 22, and this is an average value calculated from the data of 9 pixels.
  • an average value calculated from the data of more pixels can be used. good.
  • FIG. 8 shows a block diagram of the contour extraction circuit 25.
  • the contour extraction circuit is composed of contour calculation circuits 30 to 34 and a maximum value selection circuit 35.
  • the contour calculation circuit includes 5 ⁇ 3 pixel data (excluding the center pixel) in the corresponding center, upper, lower, left, and right of the 5 ⁇ 5 pixels input to the contour extraction circuit. ) And the average value of the surrounding pixels.
  • FIG. 9 shows the configuration of 5 ⁇ 5 pixels and the arrangement of 3 ⁇ 3 pixels at five locations in the center, upper part, lower part, left part, and right part.
  • FIG. 10 shows a block diagram of the contour calculation circuit.
  • the contour calculation circuit includes subtractors 36 to 43, absolute value circuits 44 to 51, and an adder 52. Out of the 3 ⁇ 3 pixel data, 8 pixel data excluding the center pixel is input to the contour calculation circuit, the subtractor 36 calculates the difference between x1 and the average value, and the absolute value circuit 44 calculates the absolute value.
  • the subtractor 37 calculates the difference between x2 and the average value
  • the absolute value circuit 45 calculates the absolute value
  • the subtractor 38 calculates the difference between x3 and the average value
  • the absolute value circuit 46 calculates the absolute value.
  • the value is calculated
  • the subtractor 39 calculates the difference between x4 and the average value
  • the absolute value circuit 47 calculates the absolute value
  • the subtractor 40 calculates the difference between x6 and the average value
  • the absolute value circuit 48 The subtractor 41 calculates the difference between x7 and the average value
  • the absolute value circuit 49 calculates the absolute value
  • the subtractor 42 calculates the difference between x8 and the average value
  • the absolute value is calculated by the circuit 50
  • the difference between x9 and the average value is calculated by the subtractor 43
  • the absolute value is calculated by the absolute value circuit 51. It calculates and outputs the obtained by adding all of these by the adder 52 as an edge component.
  • the contour calculation circuit 30 From the contour calculation circuit 30 to the central contour, from the contour calculation circuit 31 to the upper contour, from the contour calculation circuit 32 to the lower contour, from the contour calculation circuit 33 to the left contour, from the contour calculation circuit 34 to the right contour, a total of 5 The contour component of the location is output.
  • the maximum value selection circuit 35 selects the maximum contour component among these five locations and outputs it as a contour signal.
  • the adder 26 adds the outputs of the contour extraction circuit 25 and the offset circuit 24.
  • the multiplier 27 multiplies a predetermined gain to obtain a mixing coefficient B.
  • the gain may be given as a fixed value or may be given as a variable parameter from the outside.
  • the multiplier 28 multiplies the output of the subtracter 23 and the mixing coefficient B.
  • the output of the multiplier 28 and the output of the LPF 22 are added by an adder 29 to become an output signal.
  • the input video signal is output as it is in the contour portion, and the signal from which noise is removed is output in the flat portion without the contour.
  • 1 Television camera, 2: Lens, 3: Prism, 4R, 4G, 4B: Image sensor, 5R, 5G, 5B: CDS section, 6R, 6G, 6B: VGA circuit, 7R, 7G, 7B: A / D Converter: 8: Video signal processing unit, 9: Video signal output unit, 10: TG, 11: CPU, 12: LPF, 13: Subtractor, 14: Level determination circuit, 15: Multiplier, 16: Adder,

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Image Processing (AREA)

Abstract

デジタル処理によりノイズ補正を行うために、入力映像信号とローパス映像信号とを輪郭信号に対応した所定の比率で混合した混合映像信号を出力映像信号とし、輪郭信号からローパス映像信号(映像信号レベル)が大きくなるほど大きくなるオフセットを減算し、輪郭信号が小さい部分(画像が平坦な部分)では前記混合映像信号に含まれる前記ローパス映像信号の比率を高く、輪郭信号が大きい部分(輪郭部分)では前記混合映像信号に含まれる前記ローパス映像信号の比率を低くなるように、混合比率を制御する。

Description

映像信号のノイズ除去回路及び映像信号のノイズ除去方法
 本発明は、テレビジョンカメラの映像信号に発生するノイズの低減方法に関するものである。
 はじめにテレビジョンカメラの信号処理について、図1を用いて説明する。
 まず被写体像はテレビジョンカメラ1のレンズ2を通り、プリズム3でR,G,Bの3色に分解され、撮像素子4R,4G,4BでR,G,Bそれぞれ電気信号に変換される。その後CDS(Correlated Double Sampling、相関2重サンプリング)回路5R,5G,5Bを通り、VGA(Variable Gain Amplifier)回路6R,6G,6Bで信号増幅後、A/D( Analog to Digital )変換器7R,7G,7Bでデジタル信号に変換され、映像信号処理部8で様々な処理を施した後、映像信号出力部9からテレビジョン信号を出力する。TG(Timing Generator)10は、撮像素子4およびCDS回路5を駆動するためのタイミング信号生成部である。CPU( Central Processing Unit )11は、システムコントローラとして、各部の回路を制御している。
 ノイズ除去回路は映像信号処理部に含まれている。図2に従来のノイズ除去回路を示す。入力映像信号は、LPF12と減算器13に入力される。LPF12で高周波成分(ランダムノイズ)が抑圧され、減算器13に入力される。減算器13では、入力映像信号からLPF12の出力が減算される。LPF12の出力はレベル判定回路14に入力され、係数Aが算出される。乗算器15で減算器13の出力とレベル判定回路14の出力Aが乗算される。乗算器15の出力とLPF12の出力が加算器16で加算され、出力信号となる。
 以上の動作を式で表すと出力信号=入力映像信号・A+LPF・(1-A) 但し0≦A≦1.0となる。出力信号は、入力映像信号とLPF出力が係数Aにより決定する比率で混合したものである。図3に混合係数Aの特性を示す。A=0のとき出力信号=LPFとなりノイズ除去効果が最大、A=1のとき出力信号=入力映像信号となりノイズ除去機能がOFFになる。傾きとポイントを適宜設定することにより、ノイズ除去機能が動作する輝度レベルとノイズ除去効果を制御できる。
 従来のノイズ除去機能は、図3に示すように、輝度レベルが、あるポイントから低くなると、徐々にノイズ除去効果が高くなるものであるが、通常カメラで撮像する映像は輝度レベルが高い部分も含んでおり、輝度レベルが高い部分でもノイズ除去効果を得ようとすると、輪郭情報が失われ、ぼやけた映像になってしまう。よって、従来は輪郭情報が元々少ない、輝度レベルが低い部分でしか適用できなかった。
特開2010-200236号公報 (河野)横引きノイズ補正方法
 本発明の目的は、輝度レベルが高い映像信号でも、映像信号の輪郭部分をぼかすことなく、ノイズを低減することである。
 上記課題を解決するために、本発明は、
 映像信号のローパスフィルタと、映像信号の輪郭信号を抽出する輪郭抽出回路と、映像信号を所定の比率で混合する混合回路とを有し、
 前記入力映像信号と前記ローパスフィルタを通したローパス映像信号とを輪郭信号に対応した所定の比率で混合した混合映像信号を出力映像信号とし、
 前記輪郭抽出回路は、前記抽出した輪郭信号から前記ローパス映像信号(前記ローパスフィルタで検出した映像信号レベル)が大きくなるほど大きくなるオフセットを減算する手段を有し、前記抽出した輪郭信号から前記ローパス映像信号(前記ローパスフィルタで検出した映像信号レベル)が大きくなるほど大きくなるオフセットを減算し、
 前記輪郭信号が小さい部分(画像が平坦な部分)では前記混合映像信号に含まれる前記ローパス映像信号の比率を高く、前記輪郭信号が大きい部分(輪郭部分)では前記混合映像信号に含まれる前記ローパス映像信号の比率を低くなるように、混合比率を制御することを特徴とする映像信号のノイズ除去回路である。
 上記の映像信号のノイズ除去回路において、
 前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所から、それぞれ輪郭を算出し、その輪郭成分のうちの最大値を輪郭信号として選択する回路を備え、
 前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所から、それぞれ輪郭を算出し、その輪郭成分のうちの最大値を輪郭信号として選択することを特徴とする映像信号のノイズ除去回路である。
 また、上記の映像信号のノイズ除去回路において、
 前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所の3×3画素にそれぞれにおいて、中心画素を除く8画素の平均値と、中心画素を除く8画素それぞれの差分の絶対値を算出し、8画素それぞれの差分の絶対値を全て加算して前記輪郭信号とする回路を備え、
 前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所の3×3画素にそれぞれにおいて、中心画素を除く8画素の平均値と、中心画素を除く8画素それぞれの差分の絶対値を算出し、8画素それぞれの差分の絶対値を全て加算して前記輪郭信号とすることを特徴とする映像信号のノイズ除去回路である。
 入力映像信号とローパス映像信号とを輪郭信号に対応した所定の比率で混合した混合映像信号を出力映像信号とし、
 輪郭信号から前記ローパス映像信号(映像信号レベル)が大きくなるほど大きくなるオフセットを減算し、
 前記輪郭信号が小さい部分(画像が平坦な部分)では前記混合映像信号に含まれる前記ローパス映像信号の比率を高く、前記輪郭信号が大きい部分(輪郭部分)では前記混合映像信号に含まれる前記ローパス映像信号の比率を低くなるように、混合比率を制御することを特徴とする映像信号のノイズ除去方法である。
 上記の映像信号のノイズ除去方法において、
 前記輪郭信号として、前記映像信号の5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所から、それぞれ輪郭を算出し、その輪郭成分のうちの最大値を選択することを特徴とする映像信号のノイズ除去方法である。
 また、上記の映像信号のノイズ除去方法において、
 前記輪郭信号として、前記映像信号の5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所の3×3画素にそれぞれにおいて、中心画素を除く8画素の平均値と、中心画素を除く8画素それぞれの差分の絶対値を算出し、8画素それぞれの差分の絶対値を全て加算して前記輪郭信号とすることを特徴とする映像信号のノイズ除去方法である。
 本発明によれば、輝度レベルが高い映像信号でも、映像信号の輪郭部分をぼかすことなく、高いノイズ除去効果が得られる。
テレビジョンカメラの構成を示すブロック図 従来の動作を説明する模式図 従来方式の係数Aの特性を示す模式図 本発明の1実施例の動作を示す模式図 本発明の1実施例の係数Bの特性を示す模式図 本発明の1実施例の輪郭抽出回路を示すブロック図 本発明の1実施例の映像信号の画素構成を示す模式図(5×5) 本発明の他の1実施例の輪郭抽出回路を示すブロック図 本発明の他の1実施例の映像信号の画素構成を示す模式図(5×5から3×3抽出) 本発明の他の1実施例の輪郭抽出回路を示すブロック図
 はじめにテレビジョンカメラの信号処理について、図1を用いて説明する。
 まず被写体像はテレビジョンカメラ1のレンズ2を通り、プリズム3でR,G,Bの3色に分解され、撮像素子4R,4G,4BでR,G,Bそれぞれ電気信号に変換される。その後CDS(Correlated Double Sampling、相関2重サンプリング)回路5R,5G,5Bを通り、VGA(Variable Gain Amplifier)回路6R,6G,6Bで信号増幅後、A/D( Analog to Digital )変換器7R,7G,7Bでデジタル信号に変換され、映像信号処理部8で様々な処理を施した後、映像信号出力部9からテレビジョン信号を出力する。TG(Timing Generator)10は、撮像素子4およびCDS回路5を駆動するためのタイミング信号生成部である。CPU( Central Processing Unit )11は、システムコントローラとして、各部の回路を制御している。
 本発明の1実施例を本発明の1実施例の動作を示す模式図の図4を用いて説明する。
 入力映像信号は、LPF17と減算器19と輪郭抽出回路18に入力される。LPF17で高周波成分(ランダムノイズ)が抑圧され、減算器19に入力される。減算器19では、入力映像信号からLPF17の出力が減算される。輪郭抽出回路18では、入力映像信号の輪郭成分が抽出される。輪郭成分は入力映像信号とLPF出力を混合する混合係数Bとなる。乗算器20で減算器19の出力と輪郭抽出回路18の出力Bが乗算される。乗算器20の出力とLPF17の出力が加算器21で加算され、出力信号となる。
 以上の動作を式で表すと出力信号=入力映像信号・B+LPF・(1-B) 但し0≦B≦1.0となる。出力信号は、入力映像信号とLPF出力が係数Bにより決定する比率で混合したものである。
 本発明の1実施例の係数Bの特性を示す模式図の図5を用いて混合係数Bの特性を説明する。B=0のとき出力信号=LPFとなりノイズ除去効果が最大、B=1のとき出力信号=入力映像信号となりノイズ除去機能がOFFになる。この混合係数Bの特性によって、入力映像信号の輪郭成分が大きいときはBが1.0に近づき、LPF成分が小さくなるのでノイズ除去効果が低く、輪郭が無い平坦な部分では、輪郭成分が小さいときはBが0に近づき、LPF成分が大きくなるのでノイズ除去効果が高くなる。
 以下、本発明の実施例を本発明の1実施例の輪郭抽出回路を示すブロック図の図6、本発明の1実施例の映像信号の画素構成を示す模式図(5×5)の図7、本発明の他の1実施例の輪郭抽出回路を示すブロック図の図8、本発明の他の1実施例の映像信号の画素構成を示す模式図(5×5から3×3抽出)の図9、本発明の他の1実施例の輪郭抽出回路を示すブロック図の図10を用いて説明する。
 本発明の1実施例の輪郭抽出回路を示すブロック図の図6において、入力映像信号からラインメモリとフリップフロップにより5×5画素の2次元データを構成する。
 本発明の1実施例の映像信号の画素構成を示す模式図(5×5)の図7において、この25画素にそれぞれd11~d55の符号を付け、以下この符号を用いて説明する。まず、d22、d32、d42、d23、d33、d43、d24、d34、d44の、3×3画素のデータがLPF22入力される。減算器23には中央のd33が入力される。LPF22では3×3画素の平均値を算出する。ここでは平均値としたが、ガウシアンフィルタ等、各画素の重みづけを変えたフィルタを使用しても良い。減算器23では、d33からLPF22出力が減算される。オフセット回路24では、LPF22の出力(映像信号レベル)から輪郭信号に含まれるノイズを低減するためのオフセット信号を算出する。入力映像信号には光依存性のノイズがあるため、輪郭信号を抽出した際にも入力映像信号が大きい部分はノイズが多くなる。オフセット信号は、このノイズを低減する。オフセット信号は次式によって求める。
 オフセット=-LPF12×gain
 ここで、gainは入力映像信号に対するゲインを決めるパラメータであり、固定値を与えても良いし、外部から可変パラメータとして与えても良い。これにより、入力映像信号が大きくなるとLPF22の出力が大きくなり、オフセット信号は入力映像信号の増加とともに負の方向に増加する。
 輪郭抽出回路25にはd11~d55の5×5画素のデータと、平均値(LPF22の出力)が入力される。本実施例ではこの平均値はLPF22の出力信号を用いており、これは9画素のデータから算出した平均値であるが、精度を上げるためさらに多画素のデータから算出した平均値を用いても良い。
 図8に輪郭抽出回路25のブロック図を示す。輪郭抽出回路は、輪郭算出回路30~34と最大値選択回路35で構成される。輪郭算出回路には、輪郭抽出回路に入力された5×5画素のうち、対応する中央部、上部、下部、左部、右部の5箇所の3×3画素データ(ただし中央の画素を除く)のうちのひとつと、周辺画素の平均値が入力される。
 図9に5×5画素の構成と、中央部、上部、下部、左部、右部の5箇所の3×3画素の配置を示す。図10に輪郭算出回路のブロック図を示す。輪郭算出回路は、減算器36~43と絶対値回路44~51と加算器52で構成される。輪郭算出回路には、3×3画素データのうち、中心の画素を除いた8画素のデータが入力され、減算器36でx1と平均値の差分を計算し、絶対値回路44で絶対値を計算して、減算器37でx2と平均値の差分を計算し、絶対値回路45で絶対値を計算して、減算器38でx3と平均値の差分を計算し、絶対値回路46で絶対値を計算して、減算器39でx4と平均値の差分を計算し、絶対値回路47で絶対値を計算して、減算器40でx6と平均値の差分を計算し、絶対値回路48で絶対値を計算して、減算器41でx7と平均値の差分を計算し、絶対値回路49で絶対値を計算して、減算器42でx8と平均値の差分を計算し、絶対値回路50で絶対値を計算して、減算器43でx9と平均値の差分を計算し、絶対値回路51で絶対値を計算して、加算器52でこれら全てを加算したものを輪郭成分として出力する。
 図8に戻り説明を続ける。輪郭算出回路30から中央部の輪郭、輪郭算出回路31から上部の輪郭、輪郭算出回路32から下部の輪郭、輪郭算出回路33から左部の輪郭、輪郭算出回路34から右部の輪郭、計5箇所の輪郭成分が出力される。最大値選択回路35で、これら5箇所のうち、最大である輪郭成分が選択され、輪郭信号として出力される。
 図6に戻り説明を続ける。加算器26で、輪郭抽出回路25とオフセット回路24の出力が加算される。乗算器27で所定のゲインを乗じて混合係数Bとなる。ゲインは固定値を与えても良いし、外部から可変パラメータとして与えても良い。乗算器28で減算器23の出力と混合係数Bが乗算される。乗算器28の出力とLPF22の出力が加算器29で加算され、出力信号となる。
 以上により、輪郭部分では入力映像信号がそのまま出力され、輪郭の無い平坦な部分ではノイズが除去された信号が出力される。
 輝度レベルに相関してノイズノレベルが高くなるCMOS撮像素子を用いても、映像信号の輪郭部分をぼかすことなく、ノイズを低減することができるため、CMOS撮像素子を用いても、放送用のテレビジョンカメラを実現することが可能となる。
1:テレビジョンカメラ、2:レンズ、3:プリズム、4R,4G,4B:撮像素子、5R,5G,5B:CDS部、6R,6G,6B:VGA回路、7R,7G,7B:A/D変換器、8:映像信号処理部、9:映像信号出力部、10:TG、11:CPU、12:LPF、13:減算器、14;レベル判定回路、15:乗算器、16:加算器、

Claims (6)

  1.  映像信号のローパスフィルタと、映像信号の輪郭信号を抽出する輪郭抽出回路と、映像信号を所定の比率で混合する混合回路とを有し、
     前記入力映像信号と前記ローパスフィルタを通したローパス映像信号とを輪郭信号に対応した所定の比率で混合した混合映像信号を出力映像信号とし、
     前記輪郭抽出回路は、前記抽出した輪郭信号から前記ローパス映像信号が大きくなるほど大きくなるオフセットを減算する手段を有し、前記抽出した輪郭信号から前記ローパス映像信号が大きくなるほど大きくなるオフセットを減算し、
     前記輪郭信号が小さい部分では前記混合映像信号に含まれる前記ローパス映像信号の比率を高く、前記輪郭信号が大きい部分では前記混合映像信号に含まれる前記ローパス映像信号の比率を低くなるように、混合比率を制御することを特徴とする映像信号のノイズ除去回路。
  2.  請求項1の映像信号のノイズ除去回路において、
     前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所から、それぞれ輪郭を算出し、その輪郭成分のうちの最大値を輪郭信号として選択する回路を備え、
     前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所から、それぞれ輪郭を算出し、その輪郭成分のうちの最大値を輪郭信号として選択することを特徴とする映像信号のノイズ除去回路。
  3.  請求項1の映像信号のノイズ除去回路において、
     前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所の3×3画素にそれぞれにおいて、中心画素を除く8画素の平均値と、中心画素を除く8画素それぞれの差分の絶対値を算出し、8画素それぞれの差分の絶対値を全て加算して前記輪郭信号とする回路を備え、
     前記輪郭抽出回路は、5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所の3×3画素にそれぞれにおいて、中心画素を除く8画素の平均値と、中心画素を除く8画素それぞれの差分の絶対値を算出し、8画素それぞれの差分の絶対値を全て加算して前記輪郭信号とすることを特徴とする映像信号のノイズ除去回路。
  4.  入力映像信号とローパス映像信号とを輪郭信号に対応した所定の比率で混合した混合映像信号を出力映像信号とし、
     前記輪郭信号から前記ローパス映像信号が大きくなるほど大きくなるオフセットを減算し、
     前記輪郭信号が小さい部分では前記混合映像信号に含まれる前記ローパス映像信号の比率を高く、前記輪郭信号が大きい部分では前記混合映像信号に含まれる前記ローパス映像信号の比率を低くなるように、混合比率を制御することを特徴とする映像信号のノイズ除去方法。
  5.  請求項4の映像信号のノイズ除去方法において、
     前記輪郭信号として、前記映像信号の5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所から、それぞれ輪郭を算出し、その輪郭成分のうちの最大値を選択することを特徴とする映像信号のノイズ除去方法。
  6.  請求項4の映像信号のノイズ除去方法において、
     前記輪郭信号として、前記映像信号の5×5画素の画素配列から、中央部の3×3画素と、中央部に対して上方向に1画素ずらした3×3画素と、中央部に対して下方向に1画素ずらした3×3画素と、中央部に対して左方向に1画素ずらした3×3画素と、中央部に対して右方向に1画素ずらした3×3画素の計5箇所の3×3画素にそれぞれにおいて、中心画素を除く8画素の平均値と、中心画素を除く8画素それぞれの差分の絶対値を算出し、8画素それぞれの差分の絶対値を全て加算して前記輪郭信号とすることを特徴とする映像信号のノイズ除去方法。
PCT/JP2014/074521 2013-10-29 2014-09-17 映像信号のノイズ除去回路及び映像信号のノイズ除去方法 WO2015064234A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/917,671 US9826177B2 (en) 2013-10-29 2014-09-17 Video signal noise elimination circuit and video signal noise elimination method
JP2015544861A JP6235604B2 (ja) 2013-10-29 2014-09-17 映像信号のノイズ除去回路及び映像信号のノイズ除去方法
KR1020167006694A KR101781766B1 (ko) 2013-10-29 2014-09-17 영상 신호의 노이즈 제거 회로 및 영상 신호의 노이즈 제거 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013224249 2013-10-29
JP2013-224249 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015064234A1 true WO2015064234A1 (ja) 2015-05-07

Family

ID=53003847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074521 WO2015064234A1 (ja) 2013-10-29 2014-09-17 映像信号のノイズ除去回路及び映像信号のノイズ除去方法

Country Status (4)

Country Link
US (1) US9826177B2 (ja)
JP (1) JP6235604B2 (ja)
KR (1) KR101781766B1 (ja)
WO (1) WO2015064234A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202045B2 (en) * 2016-03-09 2021-12-14 Sony Corporation Image processing apparatus, imaging apparatus, image processing method, and program
CN109584175B (zh) * 2018-11-21 2020-08-14 浙江大华技术股份有限公司 一种图像处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331152A (ja) * 1999-05-18 2000-11-30 Matsushita Electric Ind Co Ltd 画像処理装置
JP2004336651A (ja) * 2003-05-12 2004-11-25 Sony Corp 信号処理装置および信号処理方法、並びにプログラム
JP2012124857A (ja) * 2010-12-10 2012-06-28 Hoya Corp ノイズ除去システムおよび撮像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230391B1 (ko) 1996-11-29 1999-11-15 윤종용 휘도신호의 윤곽성분을 적응적으로 보정하는방법 및 회로
KR20050011241A (ko) 2003-07-22 2005-01-29 삼성전자주식회사 영상신호의 노이즈 감쇄장치 및 그 방법
JP5229235B2 (ja) * 2007-12-25 2013-07-03 日本電気株式会社 画像処理装置、画像処理方法、画像伸張装置、画像圧縮装置、画像伝送システムおよび画像処理用プログラム
JP2010200236A (ja) 2009-02-27 2010-09-09 Hitachi Kokusai Electric Inc 横引きノイズ補正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331152A (ja) * 1999-05-18 2000-11-30 Matsushita Electric Ind Co Ltd 画像処理装置
JP2004336651A (ja) * 2003-05-12 2004-11-25 Sony Corp 信号処理装置および信号処理方法、並びにプログラム
JP2012124857A (ja) * 2010-12-10 2012-06-28 Hoya Corp ノイズ除去システムおよび撮像装置

Also Published As

Publication number Publication date
KR101781766B1 (ko) 2017-09-25
JPWO2015064234A1 (ja) 2017-03-09
US20160219230A1 (en) 2016-07-28
KR20160042133A (ko) 2016-04-18
JP6235604B2 (ja) 2017-11-22
US9826177B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
US8970745B2 (en) Image processing device, image processing method and storage medium to suppress shading of images in which pixel addition processing is performed
US8102445B2 (en) Solid-state image-capturing apparatus, camera, and method of processing signal
JP2008236271A (ja) ストリーキング補正信号生成回路、ストリーキング補正信号生成方法、プログラム、ストリーキング補正回路および撮像装置
JP2006309524A (ja) 画像処理装置、画像処理方法、電子カメラ、スキャナ
JP2007150770A (ja) 撮像装置およびその雑音低減方法
JP6525543B2 (ja) 画像処装置および画像処理方法、並びにプログラム
JP2009303139A (ja) 固体撮像装置
JP2008258848A (ja) ノイズ低減装置、ノイズ低減方法、及び電子機器
JP2008103785A (ja) 輪郭強調回路、輪郭強調方法、撮像装置およびビューファインダ
KR20140013891A (ko) 화상 처리 장치, 화상 처리 방법 및 고체 촬상 장치
JP2006319460A (ja) 輝度信号処理装置
JP6235604B2 (ja) 映像信号のノイズ除去回路及び映像信号のノイズ除去方法
JP2008005462A (ja) 画像処理装置
JP4400160B2 (ja) 画像処理装置
JP2006041687A (ja) 画像処理装置、画像処理方法、画像処理プログラム、電子カメラ、及びスキャナ
JP5227906B2 (ja) 映像記録システム
JP6462895B2 (ja) 輪郭強調処理回路、輪郭強調処理方法、及びテレビジョンカメラ
JP2006279812A (ja) 輝度信号処理装置
JP2010200236A (ja) 横引きノイズ補正方法
JP2009081526A (ja) 撮像装置
JP2006332732A (ja) 色むらノイズ抑制装置
JP2014158165A (ja) 画像処理装置、画像処理方法およびプログラム
US9013606B2 (en) Image processing apparatus and control method thereof
JP2007166400A (ja) ノイズリダクション装置及びノイズリダクション方法
JP2006238135A (ja) 画像処理装置及び画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544861

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14917671

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167006694

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858239

Country of ref document: EP

Kind code of ref document: A1