WO2015064187A1 - タッチパネルおよび位置検出装置 - Google Patents
タッチパネルおよび位置検出装置 Download PDFInfo
- Publication number
- WO2015064187A1 WO2015064187A1 PCT/JP2014/072045 JP2014072045W WO2015064187A1 WO 2015064187 A1 WO2015064187 A1 WO 2015064187A1 JP 2014072045 W JP2014072045 W JP 2014072045W WO 2015064187 A1 WO2015064187 A1 WO 2015064187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- detection
- touch panel
- interpolation
- undetectable
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04111—Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0448—Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
Definitions
- the present disclosure relates to a technique for detecting a position designated by a user on a touch panel.
- Examples of the touch panel position detection method include a resistance film method, a light sensing method, and a capacitance method.
- Various improvements have been proposed for each method.
- the following Patent Document 1 describes a configuration that achieves downsizing in a capacitive touch screen panel by reducing dead space where drive wiring exists.
- the present application discloses a touch panel that can accurately detect a position instructed by a user even when a location where an effective value cannot be detected occurs.
- the touch panel disclosed in the present application obtains effective detection values in the detection unit and the touch panel screen that acquire detection values resulting from user instruction operations on the touch panel screen as detection values at a plurality of positions on the screen.
- a determination unit that determines whether or not a value at the undetectable position is larger than a surrounding detection value, and the detection according to the determination result of the determination unit
- An interpolation unit for interpolating a value at an impossible position; a position specifying unit for specifying a position instructed to the user on the screen by using the value interpolated by the interpolation unit and the detection values of the plurality of positions; .
- FIG. 1 is a functional block diagram illustrating a configuration example of a display device including a touch panel according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating an example of a stacked arrangement of a touch panel and a display panel.
- FIG. 3 is a diagram for explaining an example of the electrode pattern arrangement in the sensing region of the touch panel.
- FIG. 4 is a diagram showing an example of a specific shape of the electrode pattern shown in FIG.
- FIG. 5 is a view showing a cross section taken along line AA in FIG.
- FIG. 6 is a diagram for explaining an example when a non-detectable position occurs in the touch panel having the configuration shown in FIGS. 4 and 5.
- FIG. 1 is a functional block diagram illustrating a configuration example of a display device including a touch panel according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating an example of a stacked arrangement of a touch panel and a display panel.
- FIG. 3 is a diagram for explaining
- FIG. 7 is a flowchart illustrating an example of operations of the determination unit and the interpolation unit.
- the table of FIG. 8 shows an example of capacitance values before and after interpolation in Operation Example 1.
- the table of FIG. 9 shows another example of capacitance values before and after interpolation in the first operation example.
- FIG. 10 is a flowchart illustrating another example of operations of the determination unit and the interpolation unit.
- FIG. 11A is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11B is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11C is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11D is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11A is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11B is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11C is
- FIG. 11E is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11F is a diagram illustrating an example of a distribution pattern recorded in advance.
- FIG. 11G is a diagram illustrating an example of a distribution pattern recorded in advance.
- the table of FIG. 12 shows an example of capacitance values before and after interpolation in the operation example 2.
- the table of FIG. 13 shows another example of capacitance values before and after interpolation in the second operation example.
- FIG. 14 is a flowchart showing another operation example.
- FIG. 15 is a table showing the results of measuring the linearity when interpolating singularity values.
- a touch panel is effective in a detection unit that acquires detection values caused by a user instruction operation on a touch panel screen as detection values at a plurality of positions on the screen and the touch panel screen.
- a determination unit that determines whether or not a value at the undetectable position is larger than a surrounding detection value, and a determination result of the determination unit
- the interpolation unit that determines the value at the undetectable position, the value determined by the interpolation unit, and the detection values of the plurality of positions are used to identify the position designated by the user on the screen.
- a position specifying unit is used to identify the position designated by the user on the screen.
- the value of the undetectable position can be determined according to the above. Therefore, the value of the undetectable position can be interpolated with an appropriate value. For example, this undetectable position value can be interpolated with an appropriate value whether or not it is a peak value. Since the position specified by the user is specified by the appropriate interpolation value and detection value, the position instructed by the user can be accurately detected even if a location where an effective value cannot be detected occurs.
- the interpolation unit detects a value at any position adjacent to the undetectable position. A value that does not become smaller is determined as an interpolation value, and when the determination unit determines that the value at the undetectable position is not larger than the surrounding detection value, the position of the position around the undetectable position is determined.
- the interpolation value according to the level of the detection value can be determined.
- the undetectable position value is larger than the surrounding detection value, interpolation is possible with a value that is not smaller than the surrounding detection value, and the undetectable position value does not become larger than the surrounding detection value. Can be interpolated with a value corresponding to the level of the surrounding detection value. Therefore, a more appropriate interpolation value can be obtained whether or not the value of the undetectable position is larger than the surrounding detection values.
- the determination unit determines an interpolation value at the undetectable position in at least two directions by linear interpolation using detection values at at least two positions aligned in a certain direction with respect to the undetectable position. Based on the calculated interpolation values for the at least two directions, it can be determined whether or not the value at the undetectable position is larger than the detected values in the vicinity.
- the determination unit performs pattern matching between the detection values obtained at the plurality of positions acquired by the detection unit and the distribution patterns using the distribution patterns of the detection values at the plurality of positions recorded in advance. Thus, it can be determined whether or not the value at the undetectable position is larger than the surrounding detection values.
- the interpolation unit detects the value in a certain range including the undetectable position.
- An interpolated value can be determined based on the average of.
- the interpolation unit when the determination unit determines that the value at the undetectable position is not larger than the surrounding detection values, the interpolation unit includes the undetectable position and the undetectable position.
- the interpolation value can be determined based on the distance from the position where the detection value is larger than the surrounding detection values in the region.
- the value of the undetectable position when the value of the undetectable position is not larger than the detected value in the vicinity, it can be interpolated with a level value corresponding to the distance from the position of the detected value that is larger than the periphery. As a result, it is possible to interpolate with a more appropriate value.
- the determination unit can specify the undetectable position using pre-recorded data indicating a detection position where an effective detection value cannot be obtained on the touch panel screen.
- the undetectable position can be specified in advance by the structure of the touch panel
- data indicating the undetectable position can be recorded in advance as described above.
- the determination unit identifies the undetectable position, so that the undetectable position can be interpolated. Therefore, it is possible to interpolate more reliably for the undetectable position resulting from the structure of the touch panel.
- the touch panel may be a capacitive type.
- the touch panel includes a plurality of first electrode patterns including a plurality of first electrode pads arranged in a first direction and a plurality of first connection wirings connecting the plurality of first electrode pads;
- a plurality of second electrode patterns including a plurality of second electrode pads arranged in a second direction intersecting with the first direction and a second connection wiring connecting between the plurality of second electrode pads;
- a plurality of drive wirings that pass between the electrode pad and the second electrode pad and are respectively connected to the plurality of first electrode patterns may be provided.
- the detection unit detects, as the detection value, the plurality of second patterns that intersect the one first electrode pattern when a drive signal is supplied to one of the plurality of first electrode patterns through a drive wiring.
- a value indicating the capacity at a plurality of positions obtained based on the signal can be acquired.
- a position detection device that detects a position instructed by the user on the touch panel is also an example of an embodiment of the present invention.
- the position detection device acquires a detection value resulting from a user instruction operation on the screen of the touch panel as detection values at a plurality of positions on the screen, and an effective detection value cannot be obtained on the screen.
- a determination unit that determines whether or not a value at the undetectable position is larger than a surrounding detection value, and the detection is impossible according to the determination result of the determination unit
- FIG. 1 is a functional block diagram illustrating a configuration example of a display device including a touch panel according to an embodiment of the present invention.
- the display device 10 includes a display panel 2 and a touch panel 1.
- the display panel 2 and the touch panel 1 are connected to the host 3.
- the host 3 instructs the display panel 2 to display an image. Further, the host 3 can execute an application program using the user's designated position detected by the touch panel 1.
- the host 3 can comprise a computer including a processor and memory. Further, at least a part of the functions of the host 3 can be realized by a semiconductor chip incorporated in the display device 10.
- the display panel 2 includes a display panel unit 21 and a display panel drive unit 22.
- the display panel 2 displays an image based on the image signal sent from the host 3 in the display area of the display panel unit 21.
- the display panel driving unit 22 generates a signal based on the image signal received from the host 3 and supplies the signal to the display panel unit 21, thereby controlling the display area of the display panel unit 21, that is, the screen display. it can.
- the display panel 2 can be a liquid crystal display panel, for example.
- the touch panel 1 receives an instruction from the user on the screen and outputs information indicating a position instructed by the user to the host 3.
- the touch panel 1 includes a touch panel unit 11 and a touch panel drive unit 12.
- the touch panel unit 11 has a sensing area that is an area for receiving an instruction from a user's finger or an indicator.
- An area where the sensing area and the display area of the display panel unit 21 overlap can be a screen that can accept an instruction from the user.
- the touch panel drive unit 12 drives the touch panel unit 11 including the sensing area, and detects a signal caused by a user instruction in the sensing area.
- the touch panel drive unit 12 is an example of a position detection device.
- the touch panel drive unit 12 specifies a position on the screen designated by the user based on the detected signal, and outputs information indicating the position to the host 3.
- the touch panel drive unit 12 includes a detection unit 13, a determination unit 14, an interpolation unit 15, and a position specifying unit 16.
- the detection unit 13 acquires a detection value resulting from a user instruction operation on the screen of the touch panel 1.
- the detection value may be a value that represents a change in a physical quantity such as an electric field, a capacitance, a resistance, or a received light amount due to, for example, a user's finger or an indicator touching or approaching the screen.
- the sensing area of the touch panel unit 11 is provided with a plurality of positions (points) for detecting a change in physical quantity caused by such a user instruction. Therefore, the detection unit 13 can obtain detection values for a plurality of positions on the screen in one instruction operation by the user.
- the determination unit 14 determines whether or not the value at the undetectable position is larger than the surrounding detection values.
- Examples of cases where an effective detection value cannot be obtained include cases where detection is not possible because the physical quantity (voltage, etc.) of the sensor exceeds the detectable range, or cases where the obtained detection value is not within the allowable range. obtain.
- the configuration of the touch panel unit 11 has a configuration in which a change in physical quantity due to a user's instruction operation cannot be detected in a part of the screen, a part of the screen becomes an undetectable position (a specific example will be described later). ).
- the undetectable position on the screen can be specified in advance. Therefore, it is possible to record data indicating a position where detection is impossible in advance.
- the determination unit 14 can specify an undetectable position with reference to this data.
- the undetectable position may be referred to as a singular point.
- the determination unit 14 can also determine whether or not the detection values obtained by the detection unit 13 at a plurality of positions on the screen are valid detection values. Thereby, the undetectable position can be specified among a plurality of positions on the screen from which the detection value is obtained. Whether or not the detection value is valid can be determined based on, for example, whether or not the detection value is within a valid range.
- the effective range may be a predetermined range or a range determined by surrounding detection values.
- the determination by the determination unit 14 is to determine whether or not the degree of change in physical quantity caused by a user instruction at an undetectable position is greater than the degree of change in physical quantity at positions around the undetectable position. is there. In other words, the determination unit 14 determines whether or not the degree of change in the physical quantity caused by the user's instruction reaches a peak at the undetectable position. For example, in the case where the detected value increases as the degree of change in the physical quantity caused by the user's instruction increases, the determination unit 14 can determine whether or not the value peaks at the undetectable position. When the detected value decreases as the degree of change in the physical quantity caused by the user's instruction increases, the determination unit 14 can determine whether or not the value is the bottom (bottom value) at the undetectable position.
- the degree of change in physical quantity being a peak or bottom means that in a certain region, the degree is greater than or less than the surroundings.
- the determination process by the determination unit 14 is performed using detection values at a plurality of positions around the undetectable position. For example, when points (hereinafter referred to as nodes) where detection values are detected are arranged in a matrix on the screen of the touch panel 1, N ⁇ M (N and M are natural numbers) including undetectable positions are arranged.
- the detection value of the node can be used for determination. A specific example of the determination will be described later.
- the determination unit 14 can estimate the value of the undetectable position from the degree of change in the detected values of a plurality of nodes arranged in a certain direction from the undetectable position.
- the determination unit 14 determines whether or not the estimated value shows a value larger than the detected values of a plurality of nodes.
- the determination unit 14 pattern-matches the distribution pattern of the detection values in a certain range including the undetectable positions with a pre-recorded distribution pattern, so that the change in the physical quantity indicated by the value of the undetectable positions becomes a peak. It can be determined whether or not.
- Interpolation unit 15 determines a value at an undetectable position according to the determination result of determination unit 14. For example, when the determination unit 14 determines that the change in the physical quantity indicated by the value at the undetectable position is greater than the change in the physical quantity indicated by the surrounding detection values, the interpolation unit 15 A value that does not become smaller than the detected value of the position can be determined as the interpolation value. When the determination unit 14 determines that the change in the physical quantity indicated by the value at the undetectable position is not greater than the change in the physical quantity of the surrounding detection values, the interpolation unit 15 detects the position adjacent to the undetectable position. A level value corresponding to the value level can be determined as the interpolated value.
- the position specifying unit 16 specifies the position on the screen instructed by the user using the detection values of the plurality of positions detected by the detecting unit 13. When there is an undetectable position, the position on the screen instructed by the user is specified using the interpolation value at the undetectable position interpolated by the interpolation unit 15 in addition to the detection value.
- the position specifying unit 16 can determine the position where the detection amount indicated by the detection value and the interpolation value reaches a peak as the user-instructed position. When there are a plurality of positions where the detection amount reaches a peak, the position specifying unit 16 can calculate, for example, representative positions (for example, centroids) of the plurality of positions and determine them as the user's designated positions. Alternatively, the position specifying unit 16 can also determine the user's designated position according to the distribution of positions (nodes) having detection values or interpolation values within a certain range from the peak value.
- the position specifying unit 16 determines that at least one point (node) on the screen of the touch panel 1 in which the change amount of the physical quantity due to the user's instruction is larger than that of the other part due to the detection value and the interpolation value. Can be recognized. One of the recognized nodes can be specified as the user's designated position. When there is no undetectable position, the position specifying unit 16 can determine the user's designated position using the detected values of the plurality of positions detected by the detecting unit 13.
- the position specifying unit 16 can output coordinates indicating the determined user instruction position to the host 3. When the user designates two places on the screen at the same time, the position specifying unit 16 can output coordinates indicating the positions of these two places.
- FIG. 2 is a diagram illustrating an example of a stacked arrangement of the touch panel 1 and the display panel 2.
- the touch panel 1, the display panel 2, and the backlight 4 are disposed so as to overlap each other.
- FIG. 3 is a diagram for explaining an example of the electrode pattern arrangement in the sensing region of the touch panel 1.
- the example shown in FIG. 3 is an example of a capacitive touch panel.
- a plurality of first electrode patterns 41 extending in a first direction (lateral direction in the figure) and a plurality extending in a second direction (vertical direction in the figure) intersecting the first direction are formed in the sensing region E.
- the second electrode pattern 42 is provided.
- a capacitance is formed at a position corresponding to the intersection of the first electrode pattern 41 and the second electrode pattern 42.
- a plurality of drive wirings 43 are connected to the plurality of first electrode patterns 41, respectively.
- the drive wiring 43 is drawn out to the same side (side) as the side (side) from which the second electrode pattern 42 is drawn through the sensing region.
- the capacitance of the intersection capacitance changes when the user's finger or indicator touches or approaches the sensing area E. Therefore, by measuring the capacitance of the capacitance corresponding to each intersection, the coordinates of the finger or pointing tool that has touched or approached the screen of the touch panel 1 can be obtained.
- FIG. 4 is a diagram showing an example of a specific shape of the electrode pattern shown in FIG.
- FIG. 5 is a view showing a cross section taken along line AA in FIG.
- the first electrode pattern 41 includes a plurality of first electrode pads 41 a arranged in the first direction and a plurality of first connection wirings 41 b that connect the plurality of first electrode pads 41 a.
- the second electrode pattern 42 includes a plurality of second electrode pads 42a arranged in the second direction and a second connection wiring 42b for connecting the plurality of second electrode pads 42a.
- the first electrode pad 41a has a shape with the narrowest width at both ends connected to the first connection wiring 41b and the widest width at the center.
- the second electrode pad 42a is also narrowest at both ends connected to the second connection wiring 42b and is widest at the center.
- the portion of the first connection wiring 41b having the narrowest width in the first electrode pattern 41 and the portion of the second connection wiring 42b having the narrowest width in the second electrode pattern 42 are arranged to intersect each other. ing. Therefore, the first electrode pad 41a is adjacent to the four second electrode pads 42a, and the second electrode pad 42a is also adjacent to the four first electrode pads 41a. That is, the first electrode pad 41a has four sides, and these four sides respectively oppose one side of the four second electrode pads 42a.
- the second electrode pad 42a also has four sides, and these four sides respectively face one side of the four first electrode pads 41a.
- the first electrode pattern 41 and the second electrode pattern 42 shown in FIG. 4 are so-called diamond patterns.
- the first electrode pad 41a and the second electrode pad 42a are formed in the same layer. Further, as shown in FIG. 5, the second connection wiring 42b and the drive wiring 43 are also formed in this layer.
- the drive wiring 43 is connected to the first electrode pattern 41 through the space between the first electrode pad 41a and the second electrode pad 42a adjacent to each other. That is, the drive wiring 43 is disposed between the first electrode pad 41a and the second electrode pad 42a adjacent to each other in the direction parallel to the screen of the touch panel 1.
- the drive wiring 43 is disposed so as to pass between the side of the first electrode pad 41a and the side of the second electrode pad 42a facing each other.
- the drive wiring can be arranged in the sensing area E of the touch panel 1. Thereby, it is not necessary to arrange drive wiring on both sides of the sensing region E. Therefore, the design of the display module with a touch panel can be improved.
- an insulator 44 (insulator) is provided between the first connection wiring 41b, the second connection wiring 42b, and the drive wiring 43. Therefore, the first connection wiring 41 b is formed as a bridge straddling the second connection wiring 42 b and the drive wiring 43.
- the touch panel drive unit 12 sequentially supplies a drive pulse (drive pulse) signal to the plurality of first electrode patterns 41.
- the drive pulse signal generates an electric field between the first electrode pad 41a and the second electrode pad 42a adjacent to each other.
- a capacitance is generated at the intersection (node) of the first electrode pattern 41 and the second electrode pattern 42.
- the first electrode pattern 41 to which the drive pulse is supplied in this way is called a transmission side sensor or drive line
- the second electrode pattern 42 for detecting a change in electric field is called a reception side sensor or sense line. it can.
- FIG. 6 is a diagram for explaining an example when a non-detectable position occurs in the touch panel having the configuration shown in FIGS. 4 and 5.
- a singular point occurs at an intersection (node) of the first electrode pattern 41 and the second electrode pattern will be described.
- a singular point is an example of an undetectable position.
- the left diagram in FIG. 6 shows the capacity state when the drive pulse signal is supplied to the drive wiring 43-1.
- the first electrode pattern 41 to which the drive wiring 43-1 is connected is driven.
- four electrode pads surrounding the node N and adjacent to each other, that is, between the first electrode pads 41a-1, 41a-2 and the second electrode pads 42a-1, 42a-2, respectively, A capacity Ch is generated.
- a capacitance cj of the drive wiring 43-1 and the second electrode pad 42a-1 to which a drive pulse signal is supplied, and a capacitance cj of the drive wiring 43-1 and the second electrode pad 42a-2 are also generated.
- the capacitance value Cb detected at the node N is affected by the capacitance Ch and the capacitance cj.
- the right diagram in FIG. 6 shows the state of the capacitance when the drive pulse signal is not supplied to either the drive wiring 43-1 or the drive wiring 43-2.
- a capacitance Ch is generated between the four electrode pads, that is, the first electrode pads 41a-1, 41a-2 and the second electrode pads 42a-1, 42a-2.
- the capacitance cj between the drive wiring 43-1 and the second electrode pad 42a-1 or the capacitance cj between the drive wiring 43-1 and the second electrode pad 42a-2 does not occur. Therefore, the capacitance Ch affects the capacitance value Cb detected at the node N.
- the capacitance value detected at the node N in the case shown in the left figure is larger than the capacitance value detected at the node N in the case shown in the right figure.
- the node to which the drive wiring to which the drive pulse signal is supplied is connected becomes a singular point where the capacitance value exceeds an assumed limit value and a change in capacitance cannot be detected.
- the drive wiring part and the sensor part of the touch panel interfere with each other, and the capacity at the intersection of the transmission side sensor and the reception side sensor may exceed the assumed capacity.
- Such an intersection can be a singular point where a change in capacitance cannot be detected.
- the capacity value of the singular point node is estimated by software processing from the capacity value of normal nodes around the singular point.
- FIG. 7 is a flowchart illustrating an example of operations of the determination unit 14 and the interpolation unit 15. The process shown in FIG. 7 is to interpolate the values of singularity nodes among the nodes in the sensing region E.
- the detection unit 13 obtains a capacitance value as a detection value for a node in the sensing region E.
- the detection unit 13 sequentially drives the plurality of first electrode patterns to obtain a signal indicating a capacitance value via the plurality of second electrode patterns for each first electrode pattern.
- the capacitance value of the node in the sensing region E can be obtained. That is, the capacitance value of each node on the screen can be obtained by scanning the first electrode pattern.
- the capacity value is recorded in the memory.
- the determination unit 14 reads a singular point table recorded in advance in the memory (S1).
- the singularity table is an example of data indicating the undetectable position on the screen.
- the singularity table includes data indicating the coordinates of singularity nodes on the screen. For example, in the case of the touch panel 1 having the configuration shown in FIG. 3, the node closest to the point where the drive wiring 43 is connected to the second electrode pattern 42 (intersection of the first electrode pattern 41 and the second electrode pattern 42) is a singular point. Can be set.
- the determining unit 14 refers to the singular point table to determine whether or not the node to be processed is a singular point (S2). If the processing target node is a singular point (YES in S2), a capacity value in a range of 5 ⁇ 5 nodes centering on the processing target node is read from the memory (S3).
- the table on the left in FIG. 8 is an example of the capacity value in the range of 5 ⁇ 5 nodes read in S3. In this table, the central node is the singular point P1. The description of values is omitted for the end nodes.
- the determination unit 14 performs linear interpolation for each of the four directions of right, left, upper, and lower singular points (S4). Specifically, in the case of the right direction, the value of the singular point is calculated by linear interpolation using the values of two nodes arranged to the right of the singular point. Similarly, in the case of the left direction, the values of the two nodes arranged on the left of the singular point, in the upward direction, the values of the two nodes arranged on the singular point, and in the downward direction, below the singular point. Linear interpolation can be performed using two nodes arranged side by side.
- the linear interpolation value of the singular point P1 in the right direction R is “815”, the left direction L is “513”, the upward direction U is “1099”, and the downward direction D is “796”. .
- This calculation is based on the premise that the nodes are arranged at equal intervals in the horizontal direction and the vertical direction.
- the determination unit 14 determines whether or not the capacitance value (interpolation value) at the singular point is higher than the nearby capacitance value in at least two directions among the four directions (S5). For example, the determination unit 14 can determine whether the level of the interpolation value is HI in at least two of the four directions. In this case, it is assumed that the level of the capacitance value is set in three levels: a high value (HI), a medium value (MI), and a low value (LO). As an example, assuming that HI is 700 or more, MI is 500 or more and less than 700, and LO is less than 500, in the example shown in the left table of FIG. Become. In this case, YES is determined in S5.
- HI high value
- MI medium value
- LO low value
- the determination unit 14 has an interpolation value of a singular point (an undetectable position) obtained by linear interpolation in at least two directions larger than a detection value at at least two positions aligned in the direction, It can be determined that the value at the undetectable position is larger than the surrounding detection values.
- the interpolation values are calculated for the four directions, but the calculation of the interpolation values is not limited to these four directions. For example, it is also possible to calculate interpolation values for four directions of diagonal upper right, diagonal upper left, diagonal lower right, and diagonal lower left.
- the interpolation unit 15 interpolates the value of the singular point with a value higher than the capacity value of the surrounding nodes (S6).
- the value of the singular point is interpolated with the representative value of the HI level.
- the right table of FIG. 8 is a table including values of the singular point P1 after interpolation.
- the interpolation unit 15 sets the average of the capacitance values of the eight nodes near the singular point as the capacitance value of the singular point (S7).
- the left table of FIG. 9 shows an example of the capacitance values of eight nodes adjacent to the singular point P2.
- the right table of FIG. 9 shows a case where the average of the capacitance values of the eight nodes is the capacitance value of the singular point P2.
- the value of the singular point is set to the same level as the capacity value of the surrounding nodes.
- the setting of the value of the singular point according to the level of the peripheral node is not limited to this example. For example, an average of four nodes near the singular point may be used as the value of the singular point.
- the above processes S2 to S7 are repeated for all nodes to be processed (S8, S9).
- the nodes to be processed may be all the nodes in the sensing area E. Or the node of the range scanned by the detection part 13 may be a process target.
- the process shown in FIG. 7 includes a process in the case of interpolating the capacity value of the singular point from the capacity values of the surrounding nodes.
- the determination unit 14 determines whether the interpolation value is higher than the value near the singular point or at the same level as the value near the singular point.
- linear interpolation from four directions is used.
- the singular point may be the peak point of the detected value for finger or pointing tool contact or approach, or the peak point may be another node of the singular point and the singular point may be a point around the peak .
- the determination unit 14 estimates whether or not a singular point is a peak point by a method called linear interpolation majority.
- the interpolation unit 15 interpolates the value of the singular point with a value higher than the capacity value of the surrounding points (a representative value of the HI level). Thereby, the value of a singular point can be interpolated with an appropriate value whether or not the detected value is a peak point.
- FIG. 10 is a flowchart illustrating another example of the operations of the determination unit 14 and the interpolation unit 15.
- pattern matching is used when determining whether or not the capacitance value of a singular point is higher than the capacitance values of neighboring nodes.
- S1 to S3 can be executed in the same manner as the processing of S1 to S3 in FIG.
- the determination unit 14 performs pattern matching by comparing the distribution of the 5 ⁇ 5 node capacity value read in S3 with a previously recorded pattern (S11). For example, the determination unit 14 can determine a distribution pattern that most closely matches the distribution of the capacitance values in the nodes around the singular point from patterns recorded in advance.
- FIG. 11A to FIG. 11G are diagrams showing examples of distribution patterns recorded in advance.
- the upper diagram shows the relationship between the position of the node (intersection point) and the range (indicated by a circle) designated by the user's finger or pointing tool.
- the lower diagram shows the distribution pattern of capacitance values when instructed as shown in the upper diagram. In this way, distribution patterns corresponding to various positional relationships between the instruction range by the user and the nodes can be recorded in advance. Thereby, it becomes possible to specify the indicated position more accurately in accordance with various instruction modes of the user.
- the distribution pattern is represented by three types of values of HI, MI, and LO.
- the determination unit 14 labels the capacity value of the 5 ⁇ 5 node read in S11 with three types of values of HI, MI, and LO.
- the capacitance value that is the detection value can be converted into a value with fewer gradations.
- the determination unit 14 searches for a distribution pattern that matches the distribution of the labeled capacitance values. In this case, since the process becomes simple, pattern matching can be executed quickly.
- the left table of FIG. 12 is a table showing an example of the capacitance value of the portion matching the distribution pattern recorded in advance among the capacitance values of 5 ⁇ 5 nodes including the singular point P3.
- the table in the center of FIG. 12 is obtained by labeling the capacitance values in the left table with three types of values of HI, MI, and LO.
- the distribution of the capacitance values of the nodes excluding the singular point P3 matches the distribution of the capacitance values shown in FIG. 11D. Therefore, it can be determined that the distribution of capacitance values in the center table matches the distribution pattern shown in FIG. 11D.
- the determination unit 14 can generate, for each of the seven distribution patterns shown in FIGS. 11A to 11G, a horizontally inverted version of the H node and a vertically inverted pattern. That is, it is possible to generate a pre-recorded distribution pattern, a pattern that is symmetrical with respect to the H node, and a pattern that is vertically symmetrical.
- the determination unit 14 can perform pattern matching by comparing the generated distribution pattern with the distribution of the detected capacitance value. As described above, the determination unit 14 can generate a pattern obtained by modifying the distribution pattern in addition to the distribution pattern recorded in advance, and use the pattern for pattern matching. This makes it possible to use the memory efficiently.
- the determining unit 14 determines whether or not the capacity value of the singular point obtained by the pattern matching in S11 is higher than the capacity of the surrounding nodes (S12). That is, the determination unit 14 determines whether or not the distribution of the capacitance values of the nodes in the range including the singular point read in S3 can be recognized as a distribution pattern having a peak at the capacitance value of the singular point. For example, the determination unit 14 determines whether the capacitance value of the node corresponding to the singular point is at the HI level in the distribution pattern that matches the distribution of the capacitance value of the 5 ⁇ 5 node read in S3.
- the interpolation unit 15 interpolates the capacitance value of the singular point with the representative value of the HI level (S13). That is, when the detected capacitance value distribution matches a distribution pattern in which the value of a node corresponding to a singular point is a peak, the capacitance value of the singular point is interpolated with the peak value.
- the right table of FIG. 12 is a table including the values of the singular point P3 after interpolation.
- the interpolation unit 15 is a value based on the distance between the singular point and the surrounding peak value node. Interpolate (S14). For example, the interpolation unit 15 obtains the position of the node that becomes the peak value within a predetermined range including the singular point (for example, 5 ⁇ 5 nodes), and uses the distance from the node of the peak value to the singular point to determine the capacitance value. Can be interpolated.
- the interpolation unit 15 can determine a node having a higher capacity value than any adjacent node in the target range as a peak value node. Alternatively, the interpolation unit 15 may determine that the node having the highest capacity value in the target range is the peak value node. When two or more peak points are recognized in the target range, the distance from the peak point closest to the singular point can be adopted. In the calculation of the interpolation value, the interpolation value can be calculated by multiplying the distance between the node having the peak value and the singular point by a preset coefficient.
- the left table of FIG. 13 shows an example of the distance K between the singular point P3 and the surrounding peak value node.
- the right table of FIG. 13 shows an example of the capacitance value of the singular point P3 determined using the distance K.
- the singular point is the peak point of the detected value with respect to a finger touch, and where the peak point of the detected value is separate from the singular point and is a peripheral point.
- whether or not the singular point is a peak point is estimated by a method called pattern matching.
- pattern matching if the singular point is applied to the peak point, the interpolation unit 15 interpolates with a value higher than the capacity value of the peripheral points (in the above example, a representative value of the HI level).
- the interpolation unit 15 obtains the peak point within the range of 5 ⁇ 5 nodes including the singular point.
- the capacitance value is interpolated according to the distance from the peak point to the singular point. Therefore, it is possible to interpolate with an appropriate value whether or not the singular point is a peak point.
- FIG. 14 is a flowchart showing an operation example when the combination of 1) above is adopted.
- the processing of S1 to S6 and S7 to S9 can be executed in the same manner as the processing of S1 to S6 and S7 to S9 in FIG.
- the capacitance value is interpolated based on the distance between the singular point and the surrounding peak points (S15).
- the process of S15 can be executed similarly to the process of S14 in FIG.
- linear interpolation from the front, rear, left and right two points is used to determine whether or not the value of the singular point is a peak value, and the singular point and the peak point are interpolated according to the values around the singular point.
- the estimation based on the distance is used.
- FIG. 15 is a table showing the results of measuring linearity when the singularity values are interpolated in the embodiment.
- the line of ⁇ 8 and linearity indicates the linearity when a straight line is drawn on the touch panel screen with an 8 mm brass rod.
- the linearity is a value indicating the degree of deviation between the detected coordinate value and the actually drawn straight line. In this example, the maximum deviation amount (mm) is shown.
- FIG. 15 there is no singular point, linear interpolation + 4 neighborhood average (processing of FIG. 7), pattern matching + 4 neighborhood average, linear interpolation + distance from the peak point (processing of FIG. 14), and pattern matching + from the peak point.
- Linearity measurement results are shown for the five cases of distance (processing in FIG. 10).
- the degree of change in linearity compared to the case where there is no singularity remains in the practical range in any case.
- the touch panel is not limited to the capacitive method.
- the present invention can be applied to a touch panel of a resistive film type or other type in which an undetectable position may occur.
- the display panel is not limited to a liquid crystal panel.
- it may be an organic EL display, a plasma display, or a particle moving display device that controls display by moving particles by applying a voltage.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Abstract
タッチパネルは、タッチパネルの画面に対するユーザの指示動作に起因する検出値を、前記画面における複数の位置における検出値として、取得する検出部と、タッチパネルの画面において、有効な検出値が得られない検出不可能位置がある場合、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する判定部と、判定部の判定結果に応じて、当該検出不可能位置における値を決定する補間部と、補間部で補間された値、および前記複数の位置の検出値を用いて、前記画面においてユーザに指示された位置を特定する位置特定部と、を備える。
Description
本願開示は、タッチパネル上でユーザに指示された位置を検出する技術に関する。
タッチパネルの位置検出の方式として、例えば、抵抗膜方式、光感知方式、静電容量方式等が挙げられる。それぞれの方式において種々の改良が提案されている。例えば、下記特許文献1には、静電容量方式のタッチスクリーンパネルにおいて、駆動配線が存在するデッドスペースを減らすことにより、小型化を実現する構成が記載されている。
タッチパネルの改良に伴い、構造が複雑になった結果、画面の一部でユーザによる指示を示す検出値を得られない場所が発生する場合がある。例えば、上記特許文献1に記載のタッチスクリーンパネルでは、駆動パターンが活性領域に存在するため、駆動配線とセンサが干渉して、ユーザの指示による容量の変化を検出できない点が発生し得る。そこで、本願は、有効な値が検出できない箇所が生じてもユーザから指示された位置を的確に検出することができるタッチパネルを開示する。
本願開示のタッチパネルは、タッチパネルの画面に対するユーザの指示動作に起因する検出値を、前記画面における複数の位置における検出値として、取得する検出部と、前記タッチパネルの画面において、有効な検出値が得られない検出不可能位置がある場合、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する判定部と、前記判定部の判定結果に応じて、当該検出不可能位置における値を補間する補間部と、前記補間部で補間された値、および前記複数の位置の検出値を用いて、前記画面において前記ユーザに指示された位置を特定する位置特定部と、を備える。
本願開示によれば、タッチパネルにおいて、有効な値が検出できない箇所が生じてもユーザから指示された位置を的確に検出することができる。
本発明の一実施形態に係るタッチパネルは、タッチパネルの画面に対するユーザの指示動作に起因する検出値を、前記画面における複数の位置における検出値として、取得する検出部と、前記タッチパネルの画面において、有効な検出値が得られない検出不可能位置がある場合、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する判定部と、前記判定部の判定結果に応じて、当該検出不可能位置における値を決定する補間部と、前記補間部で決定された値、および前記複数の位置の検出値を用いて、前記画面において前記ユーザに指示された位置を特定する位置特定部と、を備える。
上記構成においては、有効な検出値が得られない検出不可能位置がある場合、この検出不可能位置の値が、周辺の検出値より大きな値になるか否かを判定した上で、この判定に応じて検出不可能位置の値を決定することができる。そのため、検出不可能位置の値を、適切な値で補間することができる。例えば、この検出不可能位置の値が、ピーク値である場合もそうでない場合も適切な値で補間できる。この適切な補間値および検出値で、ユーザに指定された位置を特定するため、有効な値が検出できない箇所が生じてもユーザから指示された位置を的確に検出することができる。
上記構成において、前記補間部は、前記判定部により、前記検出不可能位置における値が周辺の検出値より大きな値と判定された場合は、前記検出不可能位置に隣接するいずれの位置の検出値より小さくならない値を補間値として決定し、前記判定部により、前記検出不可能位置における値が、周辺の検出値より大きな値とならないと判定された場合、前記検出不可能位置の周辺の位置の検出値のレベルに応じた前記補間値を決定することができる。
これにより、検出不可能位置の値が、周辺の検出値より大きい場合は、周辺の検出値より小さくならない値で補間でき、検出不可能位置の値が、周辺の検出値より大きな値とならない場合は、周辺の検出値のレベルに応じた値で補間できる。そのため、検出不可能位置の値が周辺の検出値より大きな値となる場合もそうでない場合も、より適切な補間値が得られる。
上記構成において、前記判定部は、前記検出不可能位置に対して一定の方向に並ぶ少なくとも2つの位置における検出値を用いた線形補間により前記検出不可能位置における補間値を、少なくとも2つの方向について計算し、当該少なくとも2つの方向について計算された補間値に基づいて、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定することができる。
これにより、少なくとも2方向の線形補間により、検出不可能位置の値が周辺の検出値より大きな値となるか否かを判定できるので、より正確な判定が可能になる。
上記構成において、前記判定部は、予め記録された、複数の位置における検出値の分布パターンを用いて、前記検出部が取得した複数の位置における検出値と、前記分布パターンとのパターンマッチングを行うことで、前記検出不可能位置における値が、周辺の検出値よりも大きな値となるか否かを判定することができる。
これにより、実際に取得した検出値の分布パターンと、予め記録された分布パターンとのパターンマッチングにより、検出不可能位置の値が周辺の検出値より大きな値となるか否かを判定できるので、より正確な判定が可能になる。
上記構成において、前記判定部が、前記検出不可能位置における値が、周辺の検出値より大きな値とならないと判定した場合、前記補間部は、前記検出不可能位置を含む一定の範囲における検出値の平均に基づいて、補間値を決定することができる。
これにより、検出不可能位置の値が、周辺の検出値より大きな値とならない場合は、周辺の検出値のレベルに合った値で補間できる。その結果、より適切な値で補間することができる。
上記構成において、前記判定部が、前記検出不可能位置における値が周辺の検出値より大きな値とならないと判定した場合、前記補間部は、前記検出不可能位置と、前記検出不可能位置を含む領域において検出値が周辺の検出値より大きな値となっている位置との距離に基づいて、補間値を決定することができる。
これにより、検出不可能位置の値が、周辺の検出値より大きな値とならない場合は、周辺より大きな値となっている検出値の位置からの距離に応じたレベル値で補間できる。その結果、より適切な値で補間することができる。
上記構成において、前記判定部は、予め記録された、前記タッチパネルの画面において有効な検出値が得られない検出位置を示すデータを用いて、前記検出不可能位置を特定することができる。
例えば、タッチパネルの構造によって検出不可能位置が予め特定できる場合は、上記のように、予め検出不可能位置を示すデータを記録しておくことができる。そのデータを用いて判定部が検出不可能位置を特定することで、検出不可能位置の補間をすることが可能になる。そのため、タッチパネルの構造に起因する検出不可能位置に対して、より確実に補間することができる。
上記構成において、前記タッチパネルは、静電容量方式とすることができる。この場合、前記タッチパネルは、第1の方向に並ぶ複数の第1電極パッドと前記複数の第1電極パッド間を接続する複数の第1接続配線とを含む複数の第1電極パターンと、前記第1の方向と交差する第2の方向に並ぶ複数の第2電極パッドと前記複数の第2電極パッド間を接続する第2接続配線とを含む複数の第2電極パターンと、互いに隣接する第1電極パッドと第2電極パッドとの間を通り、前記複数の第1電極パターンにそれぞれ接続される複数の駆動配線を備える構成とすることができる。前記検出部は、前記検出値として、前記複数の第1電極パターンの1つに駆動配線を通じて駆動信号を供給したときに当該1つの第1電極パターンと交差する前記複数の第2パターンで検出される信号に基づいて得られる複数の位置における容量を示す値を取得することができる。
上記構成において、駆動信号が供給される駆動配線と、駆動配線に隣接する第2電極パッドとの間で干渉が起こり、それに対応する位置での有効な容量値が得られない場合であって、適切な容量値で、補間することができる。
タッチパネル上のユーザに指示された位置を検出する位置検出装置も本発明の実施形態の一例である。位置検出装置は、前記タッチパネルの画面に対するユーザの指示動作に起因する検出値を、前記画面における複数の位置における検出値として、取得する検出部と、前記画面において、有効な検出値が得られない検出不可能位置がある場合、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する判定部と、前記判定部の判定結果に応じて、当該検出不可能位置における値を決定する補間部と、前記補間部で決定された値、および前記複数の位置の検出値を用いて、前記タッチパネルにおいて前記ユーザに指示された位置を特定する位置特定部とを備える。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
<実施形態>
(タッチパネルを含む表示装置の構成例)
図1は、本発明の実施形態におけるタッチパネルを含む表示装置の構成例を示す機能ブロック図である。図1に示す例では、表示装置10は、表示パネル2、タッチパネル1を備える。表示パネル2およびタッチパネル1は、ホスト3に接続されている。
(タッチパネルを含む表示装置の構成例)
図1は、本発明の実施形態におけるタッチパネルを含む表示装置の構成例を示す機能ブロック図である。図1に示す例では、表示装置10は、表示パネル2、タッチパネル1を備える。表示パネル2およびタッチパネル1は、ホスト3に接続されている。
ホスト3は、表示パネル2へ画像の表示を指示する。また、ホスト3は、タッチパネル1で検出されたユーザの指示位置を用いたアプリケーションプログラムを実行することができる。ホスト3は、プロセッサおよびメモリを含むコンピュータを備えることができる。また、ホスト3の少なくとも一部の機能は、表示装置10に組み込まれた半導体チップで実現することもできる。
表示パネル2は、表示パネル部21と表示パネル駆動部22を備える。表示パネル2は、ホスト3から送られてくる画像信号に基づく画像を、表示パネル部21の表示領域に表示する。表示パネル駆動部22は、ホスト3から受信した画像信号に基づいて信号を生成し、表示パネル部21へ信号を供給することにより、表示パネル部21の表示領域すなわち画面の表示を制御することができる。表示パネル2は、例えば、液晶表示パネルとすることができる。
タッチパネル1は、画面上で、ユーザによる指示を受け付け、ユーザが指示した位置を示す情報をホスト3へ出力する。タッチパネル1は、タッチパネル部11とタッチパネル駆動部12を備える。タッチパネル部11は、ユーザの指または指示具による指示を受け付ける領域であるセンシング領域を有する。センシング領域と表示パネル部21の表示領域が重なる領域を、ユーザによる指示を受け付け可能な画面とすることができる。
(タッチパネル駆動部12の構成例)
タッチパネル駆動部12は、センシング領域を含むタッチパネル部11を駆動して、センシング領域におけるユーザの指示に起因する信号を検出する。タッチパネル駆動部12は、位置検出装置の一例である。タッチパネル駆動部12は、検出した信号に基づいてユーザが指示した画面上の位置を特定し、その位置を示す情報をホスト3へ出力する。タッチパネル駆動部12は、検出部13、判定部14、補間部15、位置特定部16を備える。
タッチパネル駆動部12は、センシング領域を含むタッチパネル部11を駆動して、センシング領域におけるユーザの指示に起因する信号を検出する。タッチパネル駆動部12は、位置検出装置の一例である。タッチパネル駆動部12は、検出した信号に基づいてユーザが指示した画面上の位置を特定し、その位置を示す情報をホスト3へ出力する。タッチパネル駆動部12は、検出部13、判定部14、補間部15、位置特定部16を備える。
検出部13は、タッチパネル1の画面に対するユーザの指示動作に起因する検出値を取得する。検出値は、例えば、ユーザの指又は指示具が、画面へ接触する又は近づくことによる、電界、容量、抵抗または受光量等の物理量の変化を表す値とすることができる。また、タッチパネル部11のセンシング領域には、そのようなユーザの指示に起因する物理量の変化を検出する位置(ポイント)を複数設けられる。そのため、検出部13は、ユーザによる1回の指示動作において、画面上の複数の位置について、検出値を得ることができる。
判定部14は、タッチパネル1の画面において、有効な検出値が得られない検出不可能位置がある場合、検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する。有効な検出値が得られない場合としては、例えば、センサの物理量(電圧等)が検出可能な範囲を超えるために検出できない場合、または、得られた検出値が許容範囲にない場合等があり得る。例えば、タッチパネル部11の構成が、画面の一部においてユーザの指示動作による物理量の変化を検出できない構成となっている場合、その画面の一部が検出不可能位置となる(具体例は後述する)。このような場合は、画面における検出不可能位置は予め特定できる。そのため、予め、検出不可能位置を示すデータを記録しておくことができる。判定部14は、このデータを参照して、検出不可能位置を特定することができる。検出不可能位置は、特異点と称する場合もある。
あるいは、判定部14は、検出部13で取得した、画面上の複数の位置における検出値について、それぞれ、有効な検出値であるか否かを判断することもできる。これにより、検出値が得られた画面上の複数の位置のうち検出不可能位置を特定することができる。有効な検出値であるか否かを判断は、例えば、検出値は、有効とされる範囲内にあるか否かにより判断することができる。有効な範囲は、予め決められた範囲であってもよいし、周辺の検出値によって決まる範囲であってもよい。
判定部14による判定は、検出不可能位置におけるユーザの指示に起因する物理量の変化の度合いが、検出不可能位置の周りの位置における物理量の変化の度合いより大きくなるか否かを判定するものである。すなわち、判定部14は、検出不可能位置において、ユーザの指示に起因する物理量の変化の度合いがピークになるか否かを判定する。例えば、ユーザの指示に起因する物理量の変化の度合いが大きくなるほど検出値が高くなる場合は、判定部14は、検出不可能位置において値がピークとなるか否かを判定することができる。ユーザの指示に起因する物理量の変化の度合いが大きくなるほど検出値が低くなる場合は、判定部14は、検出不可能位置において値がボトム(底値)となるか否かを判定することができる。ここで、物理量の変化の度合いがピークまたはボトムになるとは、ある領域において、その度合いが周囲より大きく、または周囲より小さくなっているという意味である。
判定部14による判定処理は、検出不可能位置の周辺の複数の位置における検出値を用いて行われる。例えば、タッチパネル1の画面において、検出値が検出されるポイント(以下、ノードと称する)がマトリクス状に配置される場合、検出不可能位置を含むN×M(N、Mはいずれも自然数)のノードの検出値を判定に用いることができる。判定の具体例は、後述するが、例えば、判定部14は、検出不可能位置から一定の方向に並ぶ複数のノードの検出値の変化度合いから検出不可能位置の値を推定することができる。この場合、2以上の方向において、推定値が複数のノードの検出値より大きな値を示すか否かにより判定することができる。あるいは、判定部14は、検出不可能位置を含む一定範囲の検出値の分布パターンを、予め記録された分布パターンとパターンマッチングすることにより、検出不可能位置の値が示す物理量の変化がピークとなるか否かを判定することができる。
補間部15は、判定部14の判定結果に応じて、検出不可能位置における値を決定する。例えば、判定部14が、検出不可能位置における値が示す物理量の変化が、周辺の検出値が示す物理量の変化より大きくなると判定した場合、補間部15は、検出不可能位置に隣接するいずれの位置の検出値より小さくならない値を補間値として決定することができる。判定部14が、検出不可能位置における値が示す物理量の変化は、周辺の検出値の物理量の変化より大きくはならないと判定した場合、補間部15は、検出不可能位置に隣接する位置の検出値のレベルに対応するレベルの値を補間値に決定することができる。
位置特定部16は、検出部13で検出された複数の位置の検出値を用いて、ユーザに指示された画面上の位置を特定する。また、検出不可能位置がある場合、検出値に加えて、補間部15で補間された検出不可能位置における補間値も用いて、ユーザに指示された画面上の位置を特定する。
例えば、位置特定部16は、検出値及び補間値が示す検出量がピークになる位置を、ユーザの指示位置に決めることができる。検出量がピークになる位置が複数ある場合は、位置特定部16は、例えば、複数の位置の代表位置(例えば、重心)を計算し、ユーザの指示位置に決定することができる。あるいは、位置特定部16は、ピークの値から一定の範囲の検出値又は補間値を持つ位置(ノード)の分布に応じて、ユーザの指示位置を決定することもできる。
このように、位置特定部16は、検出値及び補間値により、タッチパネル1の画面において、ユーザの指示に起因する物理量の変化度合いが他の部分より大きくなっている点(ノード)を、少なくとも1つ認識することができる。この認識したノードの中のうちの1つを、ユーザの指示位置に特定することができる。なお、検出不可能位置がない場合、位置特定部16は、検出部13で検出された複数の位置の検出値を用いてユーザの指示位置を決定することができる。
位置特定部16は、決定したユーザの指示位置を示す座標を、ホスト3へ出力することができる。ユーザが画面の2箇所を同時に指示した場合、位置特定部16は、これら2箇所の位置を示す座標を出力することができる。
(タッチパネル1の構成例)
図2は、タッチパネル1及び表示パネル2の積層配置の例を示す図である。図2に示す例では、タッチパネル1、表示パネル2、およびバックライト4が重ねて配置される。図3は、タッチパネル1のセンシング領域における電極パターン配置の例を説明するための図である。
図2は、タッチパネル1及び表示パネル2の積層配置の例を示す図である。図2に示す例では、タッチパネル1、表示パネル2、およびバックライト4が重ねて配置される。図3は、タッチパネル1のセンシング領域における電極パターン配置の例を説明するための図である。
図3に示す例は、静電容量方式のタッチパネルの例である。この例では、センシング領域Eに、第1の方向(図の横方向)に伸びる複数の第1電極パターン41と、第1の方向と交差する第2の方向(図の縦方向)に伸びる複数の第2電極パターン42とが設けられる。これによって、第1電極パターン41と第2電極パターン42との交点に対応する位置に容量が形成される。複数の第1電極パターン41には、複数の駆動配線43がそれぞれ接続される。駆動配線43は、センシング領域を通って、第2電極パターン42が引き出される側(辺)と同じ側(辺)へ引き出される。
交点の容量の静電容量は、センシング領域Eに、ユーザの指または指示具が接触または接近することによって変化する。そのため、各交点に対応する容量の静電容量を測定することによって、タッチパネル1の画面に接触または接近した指または指示具の座標を求めることができる。
図4は、図3に示す電極パターンの具体的な形状の一例を示す図である。図5は、図4におけるA-A線に沿う断面を示す図である。図4に示す例では、第1電極パターン41は、第1の方向に並ぶ複数の第1電極パッド41aと、これら複数の第1電極パッド41a間を接続する複数の第1接続配線41bとを含む。第2電極パターン42は、第2の方向に並ぶ複数の第2電極パッド42aと、これら複数の第2電極パッド42a間を接続する第2接続配線42bとを含む。
第1電極パッド41aは、第1接続配線41bに接続される両端部で最も幅が狭く、中央部で最も幅が広い形状を有している。第2電極パッド42aも、第2接続配線42bに接続される両端部で最も幅が狭く、中央部で最も幅が広くなっている。第1電極パターン41において最も幅が狭くなっている第1接続配線41bの部分と、第2電極パターン42において最も幅が狭くなっている第2接続配線42bの部分とが交差するように配置されている。そのため、第1電極パッド41aは、4つの第2電極パッド42aと隣接し、第2電極パッド42aも、4つの第1電極パッド41aと隣接する構成となっている。すなわち、第1電極パッド41aは4つの辺を持ち、これら4つの辺は、それぞれ4つの第2電極パッド42aの1辺に対向している。第2電極パッド42aも、4つの辺を持ち、これら4つの辺は、それぞれ4つの第1電極パッド41aの1辺に対向している。図4に示す第1電極パターン41および第2電極パターン42は、いわゆるダイヤモンドパターンである。
本例では、第1電極パッド41aと、第2電極パッド42aは、同じ層に形成されている。また、図5に示すように、第2接続配線42bおよび駆動配線43もこの層に形成されている。この層おいて、駆動配線43は、互いに隣接する第1電極パッド41aと第2電極パッド42aとの間を通って、第1電極パターン41へ接続される。すなわち、駆動配線43は、タッチパネル1の画面に平行な方向において互いに隣接する第1電極パッド41aおよび第2電極パッド42aの間に配置される。駆動配線43は、互いに対向する第1電極パッド41aの辺と、第2電極パッド42aの辺との間を通るよう配置される。
図3~5に示す例では、駆動配線をタッチパネル1のセンシング領域Eに配置することができる。これにより、センシング領域Eの両側に駆動配線を配置しなくてよくなる。そのため、タッチパネル付表示モジュールのデザイン性を向上させることができる。
また、第1接続配線41bと、第2接続配線42bおよび駆動配線43の間には、絶縁体44(インシュレータ)が設けられる。そのため、第1接続配線41bは、第2接続配線42bおよび駆動配線43を跨ぐブリッジとして形成される。
タッチパネル駆動部12は、複数の第1電極パターン41に順次、ドライブパルス(駆動パルス)信号を供給する。この駆動パルス信号により、互いに隣接する第1電極パッド41aと第2電極パッド42aとの間の電界が発生する。その結果、例えば、第1電極パターン41と第2電極パターン42の交点(ノード)において容量が発生する。タッチパネル1の画面において指または指示具が接触または接近すると、第1電極パッド41aと第2電極パッド42aとの間の電界が変化する。その結果、指または指示具に近いノードの容量が変化する。この各ノードにおける容量変化を、複数の第2電極パターン42の各ラインを介して検出することで、タッチパネル1の画面において指又は指示具による指示動作に起因して容量が変化した位置(座標)を検出することができる。
このように駆動パルスが供給される第1電極パターン41は、送信側センサまたは駆動ラインと呼び、電界の変化を検出するための第2電極パターン42は、受信側センサまたはセンスラインと呼ぶことができる。
(検出不可能位置(特異点)の発生例)
図6は、図4および図5に示す構成のタッチパネルにおいて、検出不可能位置が発生する場合の例を説明するための図である。ここでは、一例として、第1電極パターン41と第2電極パターンの交点(ノード)において、特異点が発生する場合について説明する。特異点は、検出不可能位置の一例である。
図6は、図4および図5に示す構成のタッチパネルにおいて、検出不可能位置が発生する場合の例を説明するための図である。ここでは、一例として、第1電極パターン41と第2電極パターンの交点(ノード)において、特異点が発生する場合について説明する。特異点は、検出不可能位置の一例である。
図6の左図は、駆動配線43-1に、ドライブパルス信号が供給されているときの容量の状態を示している。図6の左図に示す例では、駆動配線43-1が接続される第1電極パターン41が駆動している。この場合、ノードNを囲んで互いに隣接している4つの電極パッド、すなわち、第1電極パッド41a-1、41a-2および第2電極パッド42a-1、42a-2の間には、それぞれ、容量Chが発生している。さらに、ドライブパルス信号が供給されている駆動配線43-1と第2電極パッド42a-1の容量cj、駆動配線43-1と第2電極パッド42a-2の容量cjも発生する。ノードNで検出される容量値Cbには、容量Chおよび容量cjが影響する。
図6の右図は、駆動配線43-1にも駆動配線43-2にも、ドライブパルス信号が供給されていないときの容量の状態を示している。この場合は、4つの電極パッド、すなわち、第1電極パッド41a-1、41a-2および第2電極パッド42a-1、42a-2の間には、それぞれ、容量Chが発生するのみである。駆動配線43-1と第2電極パッド42a-1間の容量cj、または、駆動配線43-1と第2電極パッド42a―2間の容量cjは発生しない。そのため、ノードNで検出される容量値Cbには、容量Chが影響する。この右図に示す場合のノードNで検出される容量値よりも、左図に示す場合のノードNで検出される容量値の方が大きくなる。
この例では、ドライブパルス信号が供給されている駆動配線が接続されたノードは、容量値が想定される限界値を超えてしまい、容量の変化を検出できない特異点となる。このように、駆動配線部分とタッチパネルのセンサ部分が干渉して、送信側のセンサと受信側のセンサの交点の容量が想定される容量を超えることがある。このような交点は、容量の変化を検出できない特異点となり得る。
電圧が限界値を超えてしまうノード(特異点ノード)は、座標検出に使えない。そのため、本実施形態では、特異点の周りの正常なノードの容量値から、特異点ノードの容量値をソフトウエア処理により推測する。
(動作例1)
図7は、判定部14および補間部15の動作の一例を示すフローチャートである。図7に示す処理は、センシング領域Eのノードのうち、特異点のノードの値を補間するものである。
図7は、判定部14および補間部15の動作の一例を示すフローチャートである。図7に示す処理は、センシング領域Eのノードのうち、特異点のノードの値を補間するものである。
ここでは、一例として、検出部13が、センシング領域Eのノードについて検出値として容量値を得た場合について説明する。検出部13は、例えば、複数の第1電極パターンに順次駆動させ、第1電極パターンごとに、複数の第2電極パターンを介して容量値を示す信号を得る。これにより、センシング領域Eのノードの容量値を得ることができる。すなわち、すなわち、第1電極パターンを走査することで、画面の各ノードの容量値を得ることができる。容量値は、メモリに記録される。
判定部14は、メモリに予め記録されている特異点テーブルを読み込む(S1)。特異点テーブルは、画面における検出不可能位置を示すデータの一例である。特異点テーブルには、画面における特異点ノードの座標を示すデータが含まれる。例えば、図3に示す構成のタッチパネル1の場合、駆動配線43が第2電極パターン42に接続される点に最も近いノード(第1電極パターン41と第2電極パターン42の交点)を特異点に設定することができる。
判定部14は、特異点テーブルを参照して、処理の対象とするノードが特異点か否かを判断する(S2)。処理対象ノードが、特異点である場合(S2でYESの場合)、処理対象ノードを中心とする5×5ノードの範囲の容量値をメモリから読み込む(S3)。図8の左表は、S3で読み込まれた5×5ノードの範囲の容量値の一例である。この表では、中央のノードが特異点P1である。端部のノードについては値の記載の省略している。
判定部14は、特異点の右、左、上、下の4方向について、それぞれ線形補間を行う(S4)。具体的には、右方向の場合、特異点の右に並ぶ2つのノードの値を用いた線形補間により特異点の値を計算する。同様に、左方向の場合は、特異点の左に並ぶ2つのノードの値、上方向の場合は、特異点の上に並ぶ2つのノードの値、下方向の場合は、特異点の下に並ぶ2つのノードを用いて、線形補間することができる。
図8の左表の例では、右方向Rの特異点P1の線形補間値は「815」、左方向Lは「513」、上方向Uは「1099」、下方向Dは「796」となる。なお、この計算は、左右方向および上下方向においてノードが等間隔でならんでいることを前提としている。
判定部14は、4方向のうち、少なくとも2方向において、線形補間の結果が、近傍の容量値より特異点の容量値(補間値)のほうが高くなっているか否かを判断する(S5)。例えば、判定部14は、4方向のうち、少なくとも2方向において、補間値のレベルがHIとなる否かを判断することができる。この場合、容量値のレベルは、高い値(HI)、中ぐらいの値(MI)、低い値(LO)の3段階に設定されているものとする。一例として、HIは、700以上、MIは、500以上700未満、LOは、500未満であるとすると、図8左表の例では、右、上、下の3方向において、補間結果がHIとなる。この場合、S5でYESと判断される。
ここで、判定部14は、少なくとも2つの方向において、線形補間により求められる特異点(検出不可能位置)の補間値が、その方向に並ぶ少なくとも2つの位置のおける検出値よりも大きい場合に、検出不可能位置における値が周辺の検出値よりも大きい値となると判定することができる。なお、上記例では、4方向について補間値を計算しているが、補間値の計算はこの4方向に限られない。例えば、さらに、斜め右上、斜め左上、斜め右下、斜め左下の4方向について補間値を計算することもできる。
少なくとも2方向の補間値がHIである(S5でYES)と判定された場合、補間部15は、特異点の値を、周辺のノードの容量値より高い値で補間する(S6)。ここでは、一例として、HIレベルの代表値で特異点の値を補間する。図8の右表は、補間後の特異点P1の値を含む表である。
少なくとも2方向の補間値がHIでない(S5でNO)と判定された場合、補間部15は、特異点の近傍の8つノードの容量値の平均を、特異点の容量値とする(S7)。図9の左表は、特異点P2に隣接する8つのノードの容量値の例を示す。図9の右表は、この8つのノードの容量値の平均を、特異点P2の容量値とした場合を示す。この例では、特異点の値を、周辺のノードの容量値と同程度のレベルに設定している。なお、周辺ノードのレベルに応じた特異点の値の設定は、この例に限定されない。例えば、特異点近傍4ノードの平均を特異点の値としてもよい。
上記のS2~S7の処理は、処理対象のノード全てについて、繰り返される(S8、S9)。処理対象のノードは、センシング領域Eの全てのノードであってもよい。あるいは、検出部13によって走査される範囲のノードが処理対象であってもよい。
図7に示した処理は、特異点の容量値を、周辺のノードの容量値から補間する場合の処理を含んでいる。この処理においては、判定部14が、補間値を特異点の近傍の値より高い値にするか、近傍の値と同レベルにするかを判定している。この判定の方法として、4方向からの線形補間を用いている。特異点は、指または指示具の接触または接近に対する検出値のピーク点となる場合と、ピーク点は特異点の他のノードであって、特異点はピークの周辺の点になる場合とがある。図7に示す例では、まず、判定部14が、特異点がピーク点であるか否かを線形補間の多数決という方式で推測している。特異点がピーク点と推測されれば、補間部15が、周辺の点の容量値より高い値(HIレベルの代表値)で特異点の値を補間する。これにより、検出値がピークの点であるも、そうでない場合も、特異点の値を、適切な値で補間することができる。
(動作例2)
図10は、判定部14および補間部15の動作の他の例を示すフローチャートである。図10に示す例では、特異点の容量値が、周辺のノードの容量値より高くなるか否かを判定する際に、パターンマッチングを用いている。図10において、S1~3は、図7のS1~S3の処理と同様に実行することができる。
図10は、判定部14および補間部15の動作の他の例を示すフローチャートである。図10に示す例では、特異点の容量値が、周辺のノードの容量値より高くなるか否かを判定する際に、パターンマッチングを用いている。図10において、S1~3は、図7のS1~S3の処理と同様に実行することができる。
判定部14は、S3において読み込んだ5×5ノードの容量値の分布を、予め記録されたパターンと比較することにより、パターンマッチングを実行する(S11)。判定部14は、例えば、特異点の周辺のノードにおける容量値の分布に最もマッチする分布パターンを予め記録されたパターンの中から決定することができる。
図11A~図11Gは、予め記録しておく分布パターンの一例を示す図である。図11A~図11Gそれぞれにおいて、上図は、ノード(交点)の位置と、ユーザの指または指示具によって指示された範囲(図中円で示される)との関係を表す。下図は、上図のように指示された場合の容量値の分布パターンを示す。このように、ユーザによる指示範囲とノードとの様々な位置関係に、それぞれ対応する分布パターンを、予め記録しておくことができる。これにより、ユーザの様々な指示態様に対応して、より正確に指示位置を特定することが可能になる。
また、図11A~図11Gに示す例では、分布パターンをHI、MI、LOの3種類の値で表される。この場合、判定部14は、S11で読み込んだ5×5ノードの容量値を、HI、MI、LOの3種類の値でラベリングする。これにより、検出値である容量値を、より少ない階調の値に変換することができる。判定部14は、このラベリングした容量値の分布と一致する分布パターンを検索する。この場合、処理が簡単になるので、パターンマッチングを迅速に実行することができる。
図12の左表は、特異点P3を含む5×5ノードの容量値のうち、予め記録された分布パターンに一致する部分の容量値の例を示す表である。図12の中央の表は、左表の容量値を、HI、MI、LOの3種類の値でラベリングしたものである。この中央の表における、特異点P3を除くノードの容量値の分布は、図11Dに示す容量値の分布と一致している。そのため、中央の表の容量値の分布は、図11Dに示す分布パターンにマッチすると判断することができる。
なお、判定部14は、図11A~図11Gに示す7つの分布パターンそれぞれについて、Hのノードに中心に左右反転させたものおよび、上下反転させたものを生成することができる。すなわち、予め記録された分布パターンと、Hノードに対して左右対称なパターンおよび上下対称なパターンを生成することができる。判定部14は、生成した分布パターンを、検出した容量値の分布と比較してパターンマッチングを実行することができる。このように、判定部14は、予め記録された分布パターンに加えて、分布パターンを変形したパターンを生成し、パターンマッチングに用いることができる。これにより、メモリを効率的に利用することが可能になる。
判定部14は、S11のパターンマッチングにより得られた特異点の容量値が、周辺のノードの容量より高くなるか否かを判定する(S12)。すなわち、判定部14は、S3で読み込んだ特異点を含む範囲のノードの容量値の分布が、その特異点の容量値をピークとする分布パターンと認識できるか否かを判断する。例えば、判定部14は、S3で読み込んだ5×5ノードの容量値の分布にマッチする分布パターンにおいて、特異点に相当するノードの容量値がHIレベルであるか否かを判定する。
S11のパターンマッチングによる特異点の容量値の補間結果がHIとなる場合(S12でYESの場合)、補間部15は、特異点の容量値を、HIレベルの代表値で補間する(S13)。すなわち、検出された容量値の分布が、特異点に相当するノードの値がピークとなる分布パターンにマッチした場合に、特異点の容量値を、ピークの値で補間する。図12の右表は、補間後の特異点P3の値を含む表である。
S11のパターンマッチングによる特異点の容量値の補間結果がHIとならなかった場合(S12でNOの場合)、補間部15は、特異点と周辺のピーク値のノードとの距離に基づいた値で補間する(S14)。例えば、補間部15は、特異点を含む所定範囲(例えば、5×5ノード)内で、ピーク値となるノードの位置を求め、ピーク値のノードから特異点までの距離を用いて、容量値を補間することができる。
具体的には、補間部15は、対象範囲において、隣接するいずれのノードより高い容量値を有するノードをピーク値のノードと判断することができる。あるいは、補間部15は、対象範囲において最も高い容量値を有するノードをピーク値のノードと判断してもよい。対象範囲にピーク点が2以上認識される場合は、特異点から最も近い位置のピーク点からの距離を採用することができる。補間値の計算においては、ピーク値を有するノードと特異点との距離に、予め設定された係数を掛けることで、補間値を計算することができる。
図13の左表では、特異点P3と周辺のピーク値のノードとの距離Kの一例を示している。図13の右表は、距離Kを用いて決定された特異点P3の容量値の例を示している。
上記のS2~S7の処理は、処理対象のノード全てについて、繰り返される(S8、S9)。
上記例では、特異点が、指のタッチに対する検出値のピーク点になる場合と、検出値のピークの点は特異点とは別にあって周辺の点になる場合がある。図10に示した処理では、特異点がピーク点であるかどうかをパターンマッチングという方式で推測する。パターンマッチングで、特異点がピーク点に当てはまれば、補間部15は、周辺の点の容量値より高い値(上記例では、HIレベルの代表値)で補間する。パターンマッチングで、特異点がピーク点に当てはまらなかった場合、補間部15は、特異点を含む5×5ノードの範囲内でピーク点を求める。ピーク点から特異点までの距離に応じて容量値が補間される。そのため、特異点がピーク点である場合もそうでない場合も適切な値で補間できる。
(変形例)
上記動作例1および動作例2では、特異点の値がピークとなるか否かの判定方法として、特異点の前後左右の各2点からの線形補間、および、パターンマッチング、の2通りを用いている。また、特異点がピーク値以外の値(周辺値)である場合の補間方法として、特異点に隣接する8ノードの平均による推定、および、特異点とピーク点との距離に基づいた推定、の2通りを用いている。これらの方法の組み合わせとしては、上記動作例1,2の方法以外に、次の2通りがある。すなわち、1)特異点の前後左右各2点からの線形補間と、特異点とピーク点との距離に基づいた推定の組み合わせ、および、2)パターンマッチングによる補間と、特異点に隣接する8ノードの平均による推定の組み合わせ、である。
上記動作例1および動作例2では、特異点の値がピークとなるか否かの判定方法として、特異点の前後左右の各2点からの線形補間、および、パターンマッチング、の2通りを用いている。また、特異点がピーク値以外の値(周辺値)である場合の補間方法として、特異点に隣接する8ノードの平均による推定、および、特異点とピーク点との距離に基づいた推定、の2通りを用いている。これらの方法の組み合わせとしては、上記動作例1,2の方法以外に、次の2通りがある。すなわち、1)特異点の前後左右各2点からの線形補間と、特異点とピーク点との距離に基づいた推定の組み合わせ、および、2)パターンマッチングによる補間と、特異点に隣接する8ノードの平均による推定の組み合わせ、である。
図14は、上記1)の組み合わせを採用した場合の動作例を示すフローチャートである。図14において、S1~S6、S7~S9の処理は、図7におけるS1~S6、S7~S9の処理と同様に実行できる。図14では、S5で、特異点の容量値がピークでないと判断された場合に、特異点と周辺のピーク点との距離に基づいて、容量値を補間する(S15)。このS15の処理は、図10におけるS14の処理と同様に実行することができる。この例では、特異点の値がピーク値になるか否かの判定に、前後左右各2点からの線形補間を用い、特異点の周辺の値に応じた補間に、特異点とピーク点との距離に基づいた推定を用いている。
(実施形態の効果)
図15は、上記実施形態において、特異点の値を補間した場合の、リニアリティを測定した結果を示す表である。図15に示す表において、Φ8、リニアリティの行は、8mmの真鍮棒でタッチパネルの画面に直線を引いた場合のリニアリティを示している。リニアリティは、検出された座標値と実際に引いた直線とのずれの程度を示す値である。本例では、ずれ量の最大値(mm)を示している。図15では、特異点なし、線形補間+4近傍平均(図7の処理)、パターンマッチング+4近傍平均、線形補間+ピーク点からの距離(図14の処理)、および、パターンマッチング+ピーク点からの距離(図10の処理)、の5通りの場合についてリニアリティの測定結果が示されている。図15に示す結果では、特異点がない場合に比べたリニアリティの変化の度合いは、いずれの場合も、実用範囲に留まっている。
図15は、上記実施形態において、特異点の値を補間した場合の、リニアリティを測定した結果を示す表である。図15に示す表において、Φ8、リニアリティの行は、8mmの真鍮棒でタッチパネルの画面に直線を引いた場合のリニアリティを示している。リニアリティは、検出された座標値と実際に引いた直線とのずれの程度を示す値である。本例では、ずれ量の最大値(mm)を示している。図15では、特異点なし、線形補間+4近傍平均(図7の処理)、パターンマッチング+4近傍平均、線形補間+ピーク点からの距離(図14の処理)、および、パターンマッチング+ピーク点からの距離(図10の処理)、の5通りの場合についてリニアリティの測定結果が示されている。図15に示す結果では、特異点がない場合に比べたリニアリティの変化の度合いは、いずれの場合も、実用範囲に留まっている。
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されない。上記実施形態では、タッチパネルの電極パターンがダイヤモンドパターンであり、駆動配線がセンシング領域に設けられる構成で、検出不可能位置が発生する場合について説明した。しかし、検出不可能位置が発生するメカニズムは、上記例に限られない。
また、上記実施形態では、投影型静電タッチパネル付表示モジュールに本発明を適用する場合について説明した。しかし、タッチパネルは、静電容量方式に限定されない。抵抗膜方式その他の方式のタッチパネルにおいて、検出不可能位置が発生し得るものに、本発明を適用することができる。また、表示パネルは、液晶パネルに限定されない。例えば、有機ELディスプレイ、プラズマディスプレイ、または、電圧印加によって粒子を移動させることによって表示を制御する粒子移動型表示装置などであってもよい。
Claims (9)
- タッチパネルの画面に対するユーザの指示動作に起因する検出値を、前記画面における複数の位置における検出値として、取得する検出部と、
前記タッチパネルの画面において、有効な検出値が得られない検出不可能位置がある場合、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する判定部と、
前記判定部の判定結果に応じて、当該検出不可能位置における値を決定する補間部と、
前記補間部で決定された値、および前記複数の位置の検出値を用いて、前記画面において前記ユーザに指示された位置を特定する位置特定部と、を備える、タッチパネル。 - 前記補間部は、前記判定部により、前記検出不可能位置における値が周辺の検出値より大きな値と判定された場合は、前記検出不可能位置に隣接するいずれの位置の検出値より小さくならない値を補間値として決定し、前記判定部により、前記検出不可能位置における値が、周辺の検出値より大きな値とならないと判定された場合、前記検出不可能位置の周辺の検出値のレベルに応じて前記補間値を決定する、請求項1に記載のタッチパネル。
- 前記判定部は、前記検出不可能位置に対して一定の方向に並ぶ少なくとも2つの位置における検出値を用いた線形補間により前記検出不可能位置における補間値を、少なくとも2つの方向について計算し、当該少なくとも2つの方向について計算された補間値に基づいて、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する、請求項1又は2に記載のタッチパネル。
- 前記判定部は、予め記録された、複数の位置における検出値の分布パターンを用いて、前記検出部が取得した複数の位置における検出値と、前記分布パターンとのパターンマッチングを行うことで、前記検出不可能位置における値が、周辺の検出値よりも大きな値となるか否かを判定する、請求項1又は2に記載のタッチパネル。
- 前記判定部が、前記検出不可能位置における値が、周辺の検出値より大きな値とならないと判定した場合、前記補間部は、前記検出不可能位置を含む一定の範囲における検出値の平均に基づいて、補間値を決定する、請求項1~4のいずれか1項に記載のタッチパネル。
- 前記判定部が、前記検出不可能位置における値が周辺の検出値より大きな値とならないと判定した場合、前記補間部は、前記検出不可能位置と、前記検出不可能位置を含む領域において検出値が周辺の検出値より大きな値となっている位置との距離に基づいて、補間値を決定する、請求項1~4のいずれか1項に記載のタッチパネル。
- 前記判定部は、予め記録された、前記タッチパネルの画面において有効な検出値が得られない検出位置を示すデータを用いて、前記検出不可能位置を特定する、請求項1~6のいずれか1項に記載のタッチパネル。
- 前記タッチパネルは、静電容量方式であり、
第1の方向に並ぶ複数の第1電極パッドと前記複数の第1電極パッド間を接続する複数の第1接続配線とを含む複数の第1電極パターンと、
前記第1の方向と交差する第2の方向に並ぶ複数の第2電極パッドと前記複数の第2電極パッド間を接続する第2接続配線とを含む複数の第2電極パターンと、
互いに隣接する第1電極パッドと第2電極パッドとの間を通り、前記複数の第1電極パターンにそれぞれ接続される複数の駆動配線を備え、
前記検出部は、前記検出値として、前記複数の第1電極パターンの1つに駆動配線を通じて駆動信号を供給したときに当該1つの第1電極パターンと交差する前記複数の第2パターンで検出される信号に基づいて得られる複数の位置における容量を示す値を取得する、請求項1~7のいずれか1項に記載のタッチパネル。 - タッチパネルの画面上のユーザに指示された位置を検出する位置検出装置であって、
前記タッチパネルの画面に対するユーザの指示動作に起因する検出値を、前記画面における複数の位置における検出値として、取得する検出部と、
前記画面において、有効な検出値が得られない検出不可能位置がある場合、前記検出不可能位置における値が周辺の検出値よりも大きな値になるか否かを判定する判定部と、
前記判定部の判定結果に応じて、当該検出不可能位置における値を決定する補間部と、
前記補間部で決定された値、および前記複数の位置の検出値を用いて、前記タッチパネルにおいて前記ユーザに指示された位置を特定する位置特定部と、を備える位置検出装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013226382 | 2013-10-31 | ||
JP2013-226382 | 2013-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064187A1 true WO2015064187A1 (ja) | 2015-05-07 |
Family
ID=53003802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072045 WO2015064187A1 (ja) | 2013-10-31 | 2014-08-22 | タッチパネルおよび位置検出装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015064187A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018049388A (ja) * | 2016-09-20 | 2018-03-29 | シャープ株式会社 | 入力検出装置、電子機器、制御プログラムおよび入力検出方法 |
JP2021163337A (ja) * | 2020-04-01 | 2021-10-11 | アルパイン株式会社 | 静電容量タッチパネル装置および静電容量タッチパネル装置の制御方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094079A (ja) * | 2010-10-29 | 2012-05-17 | Mitsubishi Electric Corp | タッチパネルおよびそれを備える表示装置 |
JP2012150782A (ja) * | 2011-01-18 | 2012-08-09 | Samsung Mobile Display Co Ltd | タッチスクリーンパネル |
JP2013029971A (ja) * | 2011-07-28 | 2013-02-07 | Japan Display East Co Ltd | タッチパネル |
US20130057493A1 (en) * | 2011-09-01 | 2013-03-07 | Jonghee Hwang | Display having touch sensor and method for improving touch performance thereof |
-
2014
- 2014-08-22 WO PCT/JP2014/072045 patent/WO2015064187A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094079A (ja) * | 2010-10-29 | 2012-05-17 | Mitsubishi Electric Corp | タッチパネルおよびそれを備える表示装置 |
JP2012150782A (ja) * | 2011-01-18 | 2012-08-09 | Samsung Mobile Display Co Ltd | タッチスクリーンパネル |
JP2013029971A (ja) * | 2011-07-28 | 2013-02-07 | Japan Display East Co Ltd | タッチパネル |
US20130057493A1 (en) * | 2011-09-01 | 2013-03-07 | Jonghee Hwang | Display having touch sensor and method for improving touch performance thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018049388A (ja) * | 2016-09-20 | 2018-03-29 | シャープ株式会社 | 入力検出装置、電子機器、制御プログラムおよび入力検出方法 |
JP2021163337A (ja) * | 2020-04-01 | 2021-10-11 | アルパイン株式会社 | 静電容量タッチパネル装置および静電容量タッチパネル装置の制御方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101685902B1 (ko) | 터치 감지 장치 및 그의 접근 감지 방법 | |
US9335859B2 (en) | Adaptive touch sensing electrode | |
US9001070B2 (en) | System and method for determining user input from occluded objects | |
US20090187375A1 (en) | Touch sensor, method and program for controlling touch sensor | |
TWI414979B (zh) | 手寫輸入裝置及其角度校正方法 | |
JP5717764B2 (ja) | 5線抵抗性タッチスクリーンの圧力測定回路および方法 | |
KR101811636B1 (ko) | 디스플레이 장치 및 이의 오브젝트 표시 방법 | |
US20170185225A1 (en) | Touch screen and method of determining a touch position | |
US9715297B2 (en) | Flexible display and touch driver IC architecture | |
US20170300163A1 (en) | Touch display panel and driving method thereof | |
JP5132604B2 (ja) | 座標入力装置およびタッチパネル装置 | |
JP5878598B2 (ja) | 投影型静電容量式タッチパネルの周縁部座標の精度改善方法、装置、プログラムおよび記録媒体 | |
KR20110113035A (ko) | 멀티터치 감지를 위한 접촉 감지 패널 및 접촉 감지 장치 | |
KR20140037026A (ko) | 추정 강체 운동 응답을 사용하여 물체 정보를 결정하기 위한 시스템 및 방법 | |
KR102286333B1 (ko) | 터치 위치 결정 방법, 장치 및 전자 장비 | |
US9495046B2 (en) | Parasitic capacitance filter for single-layer capacitive imaging sensors | |
JP2014525610A (ja) | 高分解能なゴースト除去ジェスチャ | |
WO2015064187A1 (ja) | タッチパネルおよび位置検出装置 | |
WO2014080864A1 (ja) | タッチパネル付表示装置 | |
WO2015060932A1 (en) | Ghost suppression using hybrid capacitive sensing | |
TWI590131B (zh) | 光學觸控裝置及觸控點偵測方法 | |
US20130249856A1 (en) | Touch device and touch sensing method thereof | |
JP2018128712A (ja) | 傾き導出装置及び傾き導出方法 | |
KR101124713B1 (ko) | 정전용량 방식 터치 패널에서의 스캔 방향 스위칭에 의한 노이즈 제거 방법 | |
KR101598807B1 (ko) | 펜의 기울기를 측정하는 방법 및 그 디지타이저 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14859131 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14859131 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |