WO2015060568A1 - 광촉매재의 제조 방법 및 그에 의한 광촉매재 - Google Patents

광촉매재의 제조 방법 및 그에 의한 광촉매재 Download PDF

Info

Publication number
WO2015060568A1
WO2015060568A1 PCT/KR2014/009542 KR2014009542W WO2015060568A1 WO 2015060568 A1 WO2015060568 A1 WO 2015060568A1 KR 2014009542 W KR2014009542 W KR 2014009542W WO 2015060568 A1 WO2015060568 A1 WO 2015060568A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
metal
metal oxide
oxide film
porous
Prior art date
Application number
PCT/KR2014/009542
Other languages
English (en)
French (fr)
Inventor
서주환
이동일
이주형
정승문
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to EP14856781.1A priority Critical patent/EP3061526A4/en
Priority to JP2016524573A priority patent/JP2016540628A/ja
Priority to US15/030,586 priority patent/US20160263559A1/en
Priority to CN201480057896.5A priority patent/CN105682801A/zh
Publication of WO2015060568A1 publication Critical patent/WO2015060568A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • Representative photocatalyst material TiO 2 has the advantages of excellent durability and wear resistance, a safe and nontoxic material, and low price. On the other hand, because the bandgap energy is large, it can absorb only light below ultraviolet rays, and thus there is a limit in applying it to a room, not an exterior material.
  • forming a porous first metal oxide film formed of a first metal oxide by a sol-gel method Heat treating the porous first metal oxide film to crystallize the first metal oxide; Immersing the porous first metal oxide film in a precursor solution of a second metal and then irradiating with light to allow ions of the second metal to penetrate into internal pores of the porous first metal oxide film; And immersing the porous first metal oxide film containing ions of the second metal in an internal void in an alcohol solution and then irradiating with light to reduce the ions of the second metal into the internal voids of the porous first metal oxide film. It provides a method for producing a photocatalyst comprising a; forming the particles of the second metal.
  • An average diameter of the second metal particles formed in the internal pores of the porous first metal oxide film may be about 1 nm to about 10 nm, respectively.
  • the first metal oxide included in the first metal oxide film may include at least one selected from titanium oxide, tungsten oxide, zinc oxide, niobium oxide, and a combination thereof.
  • the second metal is selected from tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, cerium, cadmium, zinc, magnesium, calcium, strontium, barium, radium and combinations thereof. It may comprise at least one metal selected.
  • the photocatalyst may include the second metal particles to the porous first metal oxide film in a weight ratio of about 0.1: 99.9 to about 1:99.
  • the photocatalyst may have photoactivity to visible light in a wavelength range of about 380 nm to about 780 nm.
  • the porous first metal oxide layer may be formed to have a thickness of about 30 nm to about 100 nm.
  • the light irradiation may be UV irradiation.
  • the photocatalyst is prepared by the method of manufacturing a porous, first metal oxide film; And particles of the second metal formed in the internal pores of the porous first metal oxide film.
  • the photocatalyst may be applied to air cleaning, deodorization or antibacterial applications.
  • the photocatalyst responds to visible light and has excellent photocatalytic efficiency.
  • FIG. 1 is an SEM image of the photocatalyst prepared in Example 1.
  • FIG. 2 is an SEM image of the photocatalyst prepared in Comparative Example 1.
  • the porous first metal oxide film containing the ions of the second metal in the internal voids is immersed in an alcohol solution and then irradiated with light to reduce the ions of the second metal so that the internal voids in the porous first metal oxide film are reduced. Forming particles of the second metal;
  • It provides a method for producing a photocatalyst comprising a.
  • the photocatalyst produced by the method for producing a photocatalyst includes a porous first metal oxide film; And particles of the second metal formed in the internal pores of the porous first metal oxide film.
  • the first metal oxide forming the porous first metal oxide film a material known as a metal oxide that can be used as a photocatalyst can be used without limitation.
  • the second metal particles may be used without limitation a metal having photoactivity to visible light, specifically, the second metal may be, for example, transition metal, precious metal, and the like.
  • the photocatalyst formed by the method of manufacturing the photocatalyst such that the second metal particles are doped to the first metal oxide may have photoactivity to visible light.
  • the photocatalyst since the photocatalyst includes the second metal particles having photoactivity to visible light, the photocatalyst may be active not only to ultraviolet light but also to visible light, and may absorb light over the entire visible light region.
  • the photocatalyst may have photoactivity to visible light in the wavelength range of 380 nm to 780 nm, specifically, may exhibit about 20% absorbance to visible light at about 400 nm, and may be visible at about 500 nm. It can be prepared to exhibit an absorbance of about 10% relative to.
  • the photocatalyst is a substance capable of purifying air, deodorizing and antibacterial by generating superoxide anion or hydroxy radicals from electrons and holes generated from energy obtained by absorbing light.
  • superoxide anions or hydroxy radicals generated from the photocatalyst can decompose harmful environmental substances such as formaldehyde.
  • a separate ultraviolet light supply device may not be required.
  • the second metal particles may be uniformly doped into the pores of the porous first metal oxide film.
  • the photocatalytic material is not heat-treated to reduce the ions of the second metal to form particles, the photocatalyst is formed in a particle state having a smaller particle size and is evenly distributed and distributed on the surface of the pore inside the porous first metal oxide film. Can be.
  • An average diameter of the second metal particles and the second metal oxide particles may be about 1 nm to about 10 nm, specifically, about 1 nm to about 5 nm.
  • the second metal particles and the second metal oxide particles may be formed in a nano size having a uniform particle size distribution according to the method of manufacturing the photocatalyst.
  • the photocatalyst may include the second metal particles and the second metal oxide particles evenly in the entire range of the first metal oxide film in the above range to further improve the activity efficiency for visible light.
  • the photocatalyst may be uniformly dispersed and distributed in the pores inside the entire porous first metal oxide film.
  • the photocatalyst may be further dispersed and distributed in the second metal particle and the second metal oxide particle in the entire porous first metal oxide layer to further improve the activity efficiency of visible light of the photocatalyst. .
  • the photocatalyst may include a weight ratio of the sum of the weights of the second metal particles and the second metal oxide particles to the porous first metal oxide film of about 0.1: 99.9 to about 1:99.
  • the porous first metal oxide layer may have a thickness of about 30 nm to about 100 nm.
  • the second metal is selected from tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, cerium, cadmium, zinc, magnesium, calcium, strontium, barium, radium and combinations thereof. It may include at least one selected.
  • the porous first metal oxide film may be formed on a substrate.
  • the substrate may be a glass substrate.
  • the porous first metal oxide film may be deposited on a substrate by a sol-gel method using a first metal oxide precursor.
  • the solution containing the first metal oxide precursor may be coated in a sol form, dried to form a gel, and then subjected to a heat treatment step to form a film having crystallinity.
  • a solution including the first metal oxide precursor such as metal alkoxide, alcohol, acid, etc. may be prepared and then hydrolyzed, and a sol may be obtained by dehydration or dealcohol, and then coated on a flat substrate.
  • the sol-gel method may be carried out according to known process conditions, and is not limited to specific conditions.
  • heat treatment may be performed to crystallize the first metal oxide to impart photoactivity.
  • the heat treatment may be performed at about 500 to about 700 ° C., and may be performed at about 5 minutes to about 15 minutes.
  • the heat treatment is performed in the above range so that the first metal oxide of the first metal oxide film may be crystallized to have photocatalytic reactivity so that aggregation does not occur so that the surface area is not reduced.
  • the porous first metal oxide film formed as described above is immersed in the precursor solution of the second metal, so that the precursor solution of the second metal is evenly penetrated into the pores of the porous first metal oxide film.
  • the precursor solution of the second metal is a solution containing the ions of the second metal, so that the porous first metal oxide film is immersed in the precursor solution of the second metal so that the ions of the second metal may be formed in the porous first metal oxide film. It may penetrate into the internal pores and may be irradiated again to bind the ions of the second metal to the internal pore surface of the porous first metal oxide layer.
  • the light irradiation may be performed by, for example, UV irradiation.
  • Ions of the bound second metal may be reduced again in a later step to be formed on the inner pore surface of the porous first metal oxide film as second metal particles.
  • the porous first metal oxide film containing the ions of the second metal in the internal pores is immersed in an alcohol solution and then irradiated with light.
  • the light irradiation may be performed by, for example, UV irradiation.
  • alcohol solution for example, methanol, ethanol and the like can be used.
  • the second metal particles are first doped into the first metal oxide formed as a film as a precursor solution of the second metal, they can easily penetrate the entire inside of the first metal oxide film. It can be distributed evenly.
  • the second metal particles formed by immersing the ions of the evenly dispersed second metal by using alcohol rather than heat treatment and then reducing them by light irradiation are also uniformly dispersed and distributed throughout the first metal oxide film.
  • the size of the second metal particles to be formed can be uniformly formed in a particle size distribution in nano size.
  • the precursor compound of the second metal that can be used in the precursor solution of the second metal is a substance that can be reduced to the second metal by electrons excited by light irradiation, and a salt compound dissolved in an aqueous solution can be used without limitation.
  • a salt compound dissolved in an aqueous solution can be used without limitation.
  • nitrates, sulfates, chlorides, bromide and the like of the second metal may be used.
  • Au precursors are AuCl, AuBr, Aul, Au (OH) 2 , HAuCl 4 , KAuCl 4 , KAuBr 4 and the like, as a precursor of Pd (CH 3 COO) 2 Pd , and the like PdCl 2, PdBr 2, Pd l2, Pd (OH) 2, Pd (NO 3) 2, PdSO 4.
  • the light irradiation may be performed by specifically irradiating UV.
  • the doping amount of the second metal in the photocatalyst may be adjusted by adjusting process conditions such as light irradiation amount and light irradiation time during the light irradiation. For example, in order to increase the doping amount of the second metal, the light irradiation amount can be increased, and the light irradiation time can be increased.
  • a porous first metal oxide film prepared by the photocatalyst manufacturing method; And particles of the second metal formed in the internal pores of the porous first metal oxide film.
  • the photocatalyst can be applied to, for example, air cleaning, deodorization, and antibacterial applications.
  • a 10 wt% solution of titanium tetraisopropoxide is prepared using isopropyl alcohol as a solvent. After stirring for 30 minutes, a small amount of concentrated nitric acid was added to hydrolyze. After dehydration and dealcoholization by stirring for 30 minutes, TiO 2 sol was prepared.
  • TiO 2 membrane was immersed in 0.01 wt% aqueous solution of H 2 PtCl 6 for 30 minutes, and then irradiated with UV for about 30 minutes using a 20W UV lamp to dope Pt into the TiO 2 membrane. Subsequently, the Pt-doped TiO 2 film was immersed in a methanol solution for 30 minutes, and then irradiated with UV for about 30 minutes using a 20W UV lamp to prepare a photocatalyst.
  • a 10 wt% solution of titanium tetraisopropoxide is prepared using isopropyl alcohol as a solvent. After stirring for 30 minutes, a small amount of concentrated nitric acid was added to hydrolyze. After dehydration and dealcoholization by stirring for 30 minutes, TiO 2 sol was prepared.
  • grains was evaluated from the SEM image obtained about the photocatalyst of Example 1 and the comparative example 1, and it is shown in following Table 1.
  • FIG. 1 is an SEM image of the photocatalyst prepared in Example 1
  • Figure 2 is a SEM image of the photocatalyst prepared in Comparative Example 1. It can be seen that the Pt particles are smaller and uniformly formed in FIG. 1 than in FIG. 2.
  • Formaldehyde removal performance of the photocatalysts of Example 1 and Comparative Example 1 was evaluated. After installing the photocatalyst prepared in Example 1 and Comparative Examples 1 and 2 in a 20L small chamber (ADTEC Co.), clean air having a formaldehyde concentration of 0.08 ppm was continuously flowed at a flow rate of 167 cc / min. Was 0.5 times / hr. A 10W white fluorescent lamp was used as the light source, and the illuminance was set to be 1000 lux. Formaldehyde removal rate was calculated by measuring the concentration before entering the chamber and after passing through the chamber is shown in Table 1 below. The concentration was analyzed by high performance liquid chromatography (HPLC, Agilent) by concentrating the amount for 10 L using a DNPH (2,4-dinitrophenylhydrazine) cartridge.
  • HPLC high performance liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

졸겔법에 의해 제1 금속 산화물로 형성된 다공성 제1 금속 산화물막을 성막하는 단계; 상기 다공성 제1 금속 산화물막을 열처리하여 상기 제1 금속 산화물을 결정화하는 단계; 상기 다공성 제1 금속 산화물막을 제2 금속의 전구체 용액에 침지시킨 후 광조사하여, 상기 다공성 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 이온을 침투시키는 단계; 및 상기 제2 금속의 이온을 내부 공극에 함유한 상기 다공성의 제1 금속 산화물막을 알코올 용액에 침지시킨 후 광조사하여 상기 제2 금속의 이온이 환원되어 상기 다공성의 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 입자가 형성되는 단계;를 포함하는 광촉매재의 제조 방법이 제공된다.

Description

광촉매재의 제조 방법 및 그에 의한 광촉매재
광촉매재의 제조 방법 및 그에 의한 광촉매재에 관한 것이다.
대표적인 광촉매 물질인 TiO2는 내구성, 내마모성이 우수하고, 안전하고 무독한 물질이며, 가격이 저렴하다는 장점을 갖는다. 반면, 밴드갭 에너지가 커서 자외선 이하의 빛만을 흡수할 수 있어 외장재가 아닌 실내에 적용하는 데에 한계가 있다.
이러한 측면에서 실내 적용을 목적으로 가시광선을 흡수할 수 있는 가시광선에 광활성을 갖는 촉매에 대한 연구가 많이 진행되어 왔다. 하지만, 수많은 연구 사례에서 일관된 경향을 찾기 어렵고, 특히 실제 거주 조건에서 성능이 검증된 결과를 찾기 어렵다.
본 발명의 일 구현예에서, 실내 광원에서도 효율이 우수한 가시광선 응답형 광촉매재의 제조 방법을 제공하고자 한다.
본 발명의 다른 구현예에서, 상기 광촉매재를 제조하는 방법에 의해 제조된 광촉매재를 제공하고자 한다.
본 발명의 일 구현예에서, 졸겔법에 의해 제1 금속 산화물로 형성된 다공성 제1 금속 산화물막을 성막하는 단계; 상기 다공성 제1 금속 산화물막을 열처리하여 상기 제1 금속 산화물을 결정화하는 단계; 상기 다공성 제1 금속 산화물막을 제2 금속의 전구체 용액에 침지시킨 후 광조사하여, 상기 다공성 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 이온을 침투시키는 단계; 및 상기 제2 금속의 이온을 내부 공극에 함유한 상기 다공성의 제1 금속 산화물막을 알코올 용액에 침지시킨 후 광조사하여 상기 제2 금속의 이온이 환원되어 상기 다공성의 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 입자가 형성되는 단계;를 포함하는 광촉매재의 제조 방법을 제공한다.
상기 다공성의 제1 금속 산화물막의 내부 공극에 형성된 제2 금속 입자의 평균 직경이 각각 약 1nm 내지 약 10nm일 수 있다.
상기 제1 금속 산화물막에 포함된 제1 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합에서 선택된 적어도 하나를 포함할 수 있다.
상기 제2 금속은 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트로니튬, 바륨, 라듐 및 이들의 조합에서 선택된 적어도 하나의 금속을 포함할 수 있다.
상기 광촉매재는 상기 제2 금속 입자 대 상기 다공성 제1 금속 산화물막이 약 0.1:99.9 내지 약 1:99의 중량비로 포함할 수 있다.
상기 광촉매재는 약 380nm 내지 약 780nm 파장범위의 가시광선에 대하여 광활성을 가질 수 있다.
상기 다공성의 제1 금속 산화물막은 두께 약 30nm 내지 약 100nm로 성막될 수 있다.
상기 광조사는 UV 조사할 수 있다.
본 발명의 일 구현예에서, 상기 광촉매재의 제조 방법에 의해 제조되고, 다공성의 제1 금속 산화물막; 및 상기 다공성의 제1 금속 산화물막의 내부 공극에 형성된 상기 제2 금속의 입자를 포함하는 광촉매재를 제공한다.
상기 광촉매재는 공기청정, 탈취 또는 항균 용도에 적용될 수 있다.
상기 광촉매재는 가시광선에 응답하며, 우수한 광촉매 효율을 갖는다.
도 1은 실시예 1에서 제조된 광촉매재의 SEM 이미지이다.
도 2는 비교예 1에서 제조된 광촉매재의 SEM 이미지이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서,
졸겔법에 의해 제1 금속 산화물로 형성된 다공성 제1 금속 산화물막을 성막하는 단계; 상기 다공성 제1 금속 산화물막을 열처리하여 상기 제1 금속 산화물을 결정화하는 단계;
상기 다공성 제1 금속 산화물막을 제2 금속의 전구체 용액에 침지시킨 후 광조사하여, 상기 다공성 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 이온을 침투시키는 단계; 및
상기 제2 금속의 이온을 내부 공극에 함유한 상기 다공성의 제1 금속 산화물막을 알코올 용액에 침지시킨 후 광조사하여 상기 제2 금속의 이온이 환원되어 상기 다공성의 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 입자가 형성되는 단계;
를 포함하는 광촉매재의 제조 방법을 제공한다.
상기 광촉매재의 제조 방법에 의해 제조된 광촉매재는 다공성의 제1 금속 산화물막; 및 상기 다공성의 제1 금속 산화물막의 내부 공극에 형성된 상기 제2 금속의 입자를 포함한다.
상기 다공성 제1 금속 산화물막을 형성하는 제1 금속 산화물은 광촉매로서 사용될 수 있는 금속 산화물로서 공지된 물질이 제한 없이 사용될 수 있다. 상기 제2 금속 입자는 가시광선에 대한 광활성을 가지는 금속이 제한 없이 사용될 수 있고, 구체적으로 상기 제2 금속은 예를 들면, 전이 금속, 귀금속 등일 수 있다.
제1 금속 산화물에 상게 제2 금속 입자가 도핑되도록 상기 광촉매재의 제조 방법에 의해 형성된 상기 광촉매재는 가시광선에 대한 광활성을 가질 수 있다.
이와 같이 상기 광촉매재는 가시광선에 대해 광활성을 가지는 제2 금속 입자를 포함하기 때문에 자외선뿐만 아니라 가시광선에 대하여도 활성을 가질 수 있으며 가시광선 전영역에 걸쳐 빛을 흡수할 수 있다. 예를 들어, 상기 광촉매재는 380nm 내지 780nm 파장범위의 가시광선에 대하여 광활성을 가질 수 있고, 구체적으로 약 400nm 파장의 가시광선에 대하여 약 20%의 흡광도를 나타낼 수 있고, 약 500nm 파장의 가시광선에 대하여 약 10%의 흡광도를 나타낼 수 있도록 제조될 수 있다.
상기 광촉매재는 광을 흡수하여 얻은 에너지로부터 생성된 전자와 정공이 수퍼옥사이드 음이온 또는 하이드록시 라디칼 등을 생성함으로써 공기청정, 탈취, 항균 작용을 할 수 있는 물질이다. 예를 들어, 상기 광촉매재로부터 생성된 수퍼옥사이드 음이온 또는 하이드록시 라디칼은 포름알데히드와 같은 유해 환경 물질을 분해할 수 있다. 한편, 상기 광촉매재는 가시 광선에 대하여 높은 흡수율을 가지어 실내 광원에서도 우수한 효율을 보일 수 있고 때문에, 별도의 자외선 공급 장치를 요하지 않을 수 있다.
상기 광촉매재의 제조 방법에 의하면, 상게 제2 금속 입자는 상기 다공성 제1 금속 산화물막의 공극 내부에 고르게 도핑될 수 있다.
상기 광촉매재의 제조 방법은 상기 제2 금속의 이온을 환원시키켜 입자로 형성하기 위하여 열처리하지 않기 때문에 보다 작은 입경의 입자 상태로 형성되면서 상기 다공성 제1 금속 산화물막의 공극 내부의 표면에 고르게 분산되어 분포될 수 있다.
상기 제2 금속 입자 및 상기 제2 금속 산화물 입자의 평균 직경이 약 1nm 내지 약 10nm, 구체적으로, 약 1nm 내지 약 5nm일 수 있다. 상기 제2 금속 입자 및 상기 제2 금속 산화물 입자는 상기 광촉매재의 제조 방법에 따라 입도 분포가 균일한 나노 사이즈로 형성될 수 있다. 상기 광촉매재가 상기 제1 금속 산화물막 전체에 상기 제2 금속 입자 및 상기 제2 금속 산화물 입자를 상기 범위로 고르게 포함하여 가시광선에 대한 활성 효율을 보다 향상시킬 수 있다.
또한, 상기 광촉매재의 제조 방법에 의하여 상기 다공성의 제1 금속 산화물막 전체 내부의 공극에 균일하게 분산되어 분포될 수 있다. 이와 같이 상기 광촉매재는 상기 다공성의 제1 금속 산화물막 전체 내부에 상기 제2 금속 입자 및 상기 제2 금속 산화물 입자를 균일하게 분산시켜 분포시킴으로써 상기 광촉매재의 가시광선에 대한 활성 효율을 보다 향상시킬 수 있다.
상기 광촉매재는 상기 제2 금속 입자과 제2 금속 산화물 입자의 중량의 총합 대 상기 다공성 제1 금속 산화물막 약 0.1:99.9 내지 약 1:99의 중량비로 포함할 수 있다.
상기 다공성의 제1 금속 산화물막의 두께는 약 30nm 내지 약 100nm일 수 있다.
상기 제2 금속은 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트로니튬, 바륨, 라듐 및 이들의 조합에서 선택된 적어도 하나를 포함할 수 있다.
상기 다공성의 제1 금속 산화물막을 성막하기 위하여 예를 들면 기판 상에 상기 다공성의 제1 금속 산화물막을 형성할 수 있고, 예를 들어, 상기 기판은 유리 기판을 사용할 수 있다.
일 구현예에서, 상기 다공성의 제1 금속 산화물막은 제1 금속 산화물 전구체를 이용하는 졸겔법에 의해 기판 상에 성막될 수 있다. 구체적으로, 제1 금속 산화물 전구체를 포함하는 용액을 졸 형태로 코팅한 후, 건조하여 겔 상으로 성막한 후, 열처리 단계를 수행하여 결정성을 갖는 막으로 형성할 수 있다.
일 구현예에서, 금속 알콕사이드 등과 같은 상기 제1 금속 산화물 전구체, 알코올, 산 등을 포함하는 용액을 준비한 뒤 가수분해하고, 탈수 또는 탈알콜을 통하여 졸 상태를 얻은 뒤 평판형 기판에 코팅할 수 있다. 상기 졸겔법은 공지된 공정 조건에 따라 수행될 수 있고, 특정한 조건으로 제한되지 않는다.
상기 다공성 제1 금속 산화물막을 성막한 뒤, 열처리하여 상기 제1 금속 산화물을 결정화하여 광활성을 부여할 수 있다.
상기 열처리는 예를 들어 약 500 내지 약 700℃에서 수행할 수 있고, 약 5분 내지 약 15분간 수행될 수 있다. 상기 범위로 열처리를 수행하여 제1 금속 산화물막의 제1 금속 산화물이 광촉매 반응성을 가지도록 결정화되도록 하면서 뭉침이 일어나지 않게 하여 표면적이 작아지지 않게 조절할 수 있다.
상기와 같이 성막하여 형성된 다공성의 제1 금속 산화물막을 제2 금속의 전구체 용액에 침지시켜, 상기 다공성의 제1 금속 산화물막의 공극 내부로 상기 제2 금속의 전구체 용액이 고루 침투되게 한다.
상기 제2 금속의 전구체 용액은 제2 금속의 이온을 포함하는 용액으로 상기 다공성의 제1 금속 산화물막을 상기 제2 금속의 전구체 용액에 침지시켜 상기 제2 금속의 이온이 상기 다공성 제1 금속 산화물막의 내부 공극에 침투시킬 수 있고, 다시 광조사하여 상기 제2 금속의 이온이 상기 다공성 제1 금속 산화물막의 내부 공극 표면에 결합시킬 수 있다. 상기 광조사는, 예를 들어, UV 조사에 의해 수행될 수 있다.
상기 결합된 제2 금속의 이온은 이후의 단계에서 다시 환원되어 제2 금속 입자로서 상기 다공성 제1 금속 산화물막의 내부 공극 표면에 형성될 수 있다.
상기 결합된 제2 금속의 이온을 환원시키기 위해, 상기 제2 금속의 이온을 내부 공극에 함유한 상기 다공성의 제1 금속 산화물막을 알코올 용액에 침지시킨 후, 광조사한다. 상기 광조사는, 예를 들어, UV 조사에 의해 수행될 수 있다.
상기 알코올 용액은, 예를 들어, 메탄올, 에탄올 등이 사용될 수 있다.
상기 제2 금속의 이온을 내부 공극에 함유한 상기 다공성의 제1 금속 산화물막을 상기 알코올 용액에 침지시키고 다시 UV와 같은 광조사를 수행하면 광조사에 의해 여기된 전자에 의해 제2 금속의 이온이 환원되어 입자를 형성할 수 있다. 이와 같은 방법으로 환원되어 형성된 제2 금속의 입자는 평균 직경이 매우 작은 수나노 수준으로 작고, 또한 균일하게 형성될 수 있다.
상기 광촉매재의 제조 방법은 상기 제2 금속 입자가 먼저 제2 금속의 전구체 용액으로써 막으로 형성된 제1 금속 산화물에 도핑되어 형성되기 때문에 상기 제1 금속 산화물막 내부 전체에 쉽게 고루 침투될 수 있고, 또한 고르게 분산되어 분포될 수 있다. 이러한 고르게 분산된 제2 금속의 이온을 열처리가 아닌 알코올을 이용하여 침지시킨 후 광조사하여 환원시킴으로써 형성된 제2 금속 입자 역시 상기 제1 금속 산화물막 내부 전체에 고르게 분산되어 분포하게 된다. 또한, 상기 방법에 의할 때, 형성되는 제2 금속 입자의 크기는 나노 사이즈로 입도 분포가 균일하게 형성 가능하다. 상기 방법으로 제2 금속 입자를 형성함으로써, 전술한 바와 같이 상기 광촉매재는 가시광선에 대한 활성 효율이 보다 우수할 수 있다.
상기 제2 금속의 전구체 용액에 사용될 수 있는 제2 금속의 전구체 화합물은 광 조사에 의해 여기된 전자에 의해 제2 금속으로 환원될 수 있는 물질로서, 수용액에 용해되는 염 화합물이 제한 없이 사용될 수 있고, 구체적으로, 제2 금속의 질산염, 황산염, 염화물, 브롬화물 등이 사용될 수 있다. 예를 들어, Cu 전구체로서 Cu(NO3)2, CuSO4, CuCl2, CuCl 등이 있고, Pt 전구체로서 PtCl2, PtCl4, PtBr2, H2PtCl6, K2(PtCl4), Pt(NH3)4Cl2 등이 있고, Au의 전구체로서 AuCl, AuBr, Aul, Au(OH)2, HAuCl4, KAuCl4, KAuBr4 등이 있고, Pd의 전구체로서 (CH3COO)2Pd, PdCl2, PdBr2, Pdl2, Pd(OH)2, Pd(NO3)2, PdSO4 등이 있다.
상기 광조사는 구체적으로 UV를 조사하여 수행할 수 있다. 상기 광조사시 광 조사량, 광 조사 시간 등의 공정 조건을 조절하여 상기 광촉매재 내의 상기 제2 금속의 도핑량을 조절할 수 있다. 예를 들어, 제2 금속의 도핑량을 증가하기 위해서 광 조사량을 증가시키고, 광 조사 시간을 늘릴 수 있다.
본 발명의 다른 구현예에서, 상기 광촉매재의 제조 방법에 의해 제조된, 다공성의 제1 금속 산화물막; 및 상기 다공성의 제1 금속 산화물막의 내부 공극에 형성된 상기 제2 금속의 입자를 포함하는 광촉매재를 제공한다.
상기 광촉매는, 예를 들어, 공기청정, 탈취, 항균 용도에 적용될 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
(실시예)
실시예 1: Pt/TiO 2 의 제조
이소프로필알콜을 용매로 하여 티타늄 테트라이소프로폭사이드 10wt% 용액을 만든다. 이를 30분간 교반한 후 진한 질산을 소량 첨가하여 가수분해시켰다. 이 후 30분간 교반을 통해 탈수, 탈알콜시켜 TiO2 졸을 만들었다.
이를 스핀코터를 이용하여 보로실리케이트 글래스(borosilicate glass) 위에 코팅하고 TiO2의 결정화를 위해 600℃에서 10분간 소성하여 165mm*165mm 크기 및 50nm 두께의 TiO2 막을 제조하였다. 상기 TiO2 막을 H2PtCl6 0.01wt% 수용액에 30분 동안 침지시킨 후 20W UV 램프를 사용하여 UV를 30분 정도 조사하여 Pt를 상기 TiO2 막 내에 도핑하였다. 이어서, 상기 Pt 도핑된 TiO2 막을 메탄올 용액에 30분 동안 침지시킨 후, 20W UV 램프를 사용하여 UV를 30분 정도 조사하여 광촉매재를 제작하였다.
비교예 1
이소프로필알콜을 용매로 하여 티타늄 테트라이소프로폭사이드 10wt% 용액을 만든다. 이를 30분간 교반한 후 진한 질산을 소량 첨가하여 가수분해시켰다. 이 후 30분간 교반을 통해 탈수, 탈알콜시켜 TiO2 졸을 만들었다.
이를 스핀코터를 이용하여 보로실리케이트 글래스(borosilicate glass) 위에 코팅하고 TiO2의 결정화를 위해 600℃에서 10분간 소성하여 165mm*165mm 크기 및 50nm 두께의 TiO2 막을 제조하였다. 상기 TiO2 막을 H2PtCl6 0.01wt% 수용액에 침지시킨 후 20W UV 램프를 사용하여 UV를 30분 정도 조사하여 Pt를 상기 TiO2 막 내에 도핑하였다. 이어서, 상기 Pt 도핑된 TiO2 막을 600℃에서 30분 동안 열처리하여 광촉매재를 제작하였다.
실험예 1
실시예 1 및 비교예 1의 광촉매재에 대하여 얻은 SEM 이미지으로부터 Pt 입자의 크기를 평가하여, 하기 표 1에 기재하였다.
도 1은 실시예 1에서 제조된 광촉매재의 SEM 이미지이고, 도 2는 비교예 1에서 제조된 광촉매재의 SEM 이미지이다. 도 2에서보다 도 1에서 Pt 입자가 작고 균일하게 형성됨을 확인할 수 있다.
실험예 2
실시예 1 및 비교예 1의 광촉매재에 대하여 포름알데히드 제거 성능을 평가하였다. 실시예 1 및 비교예 1 내지 2에서 제작된 광촉매재를 20L 소형 챔버 (ADTEC사 제품) 내에 설치한 후, 0.08ppm의 포름알데히드 농도를 갖는 청정 공기를 167cc/min의 유량으로 지속적으로 흘려 환기 횟수가 0.5회/hr가 되도록 하였다. 광원으로는 10W 백색형광등을 사용하였으며, 조도가 1000lux가 되도록 설정하였다. 포름알데히드 제거율은 챔버에 들어가기 전의 농도와 챔버를 통과한 후의 농도를 측정하여 계산한 뒤 하기 표 1에 기재하였다. 농도는 DNPH (2,4-dinitrophenylhydrazine) 카트리지를 이용해 10L에 대한 양을 농축하여 고성능 액체크로마토그래피 (HPLC, Agilent사 제품)로 분석하였다.
표 1
구분 형성된 Pt 입자 크기 포름알데히드 제거율
실시예 1 1~2nm 75%
비교예 1 5~7nm 50%
표 1로부터, 실시예 1의 광촉매재는 보다 작고 균일한 Pt 입자를 형성하여 광촉매 효율이 우수하므로, 포름알데히드 제거율이 높음을 확인할 수 있었다.

Claims (16)

  1. 졸겔법에 의해 제1 금속 산화물로 형성된 다공성 제1 금속 산화물막을 성막하는 단계;
    상기 다공성 제1 금속 산화물막을 열처리하여 상기 제1 금속 산화물을 결정화하는 단계;
    상기 다공성 제1 금속 산화물막을 제2 금속의 전구체 용액에 침지시킨 후 광조사하여, 상기 다공성 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 이온을 침투시키는 단계; 및
    상기 제2 금속의 이온을 내부 공극에 함유한 상기 다공성의 제1 금속 산화물막을 알코올 용액에 침지시킨 후 광조사하여 상기 제2 금속의 이온이 환원되어 상기 다공성의 제1 금속 산화물막의 내부 공극에 상기 제2 금속의 입자가 형성되는 단계;
    를 포함하는 광촉매재의 제조 방법.
  2. 제1항에 있어서,
    상기 다공성의 제1 금속 산화물막의 내부 공극에 형성된 제2 금속 입자의 평균 직경이 각각 1nm 내지 10nm인
    광촉매재의 제조 방법.
  3. 제1항에 있어서,
    상기 제1 금속 산화물막에 포함된 제1 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합에서 선택된 적어도 하나를 포함하는
    광촉매재의 제조 방법.
  4. 제1항에 있어서,
    상기 제2 금속은 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트로니튬, 바륨, 라듐 및 이들의 조합에서 선택된 적어도 하나의 금속을 포함하는
    광촉매재의 제조 방법.
  5. 제1항에 있어서,
    상기 광촉매재는 상기 제2 금속 입자 대 상기 다공성 제1 금속 산화물막이 0.1:99.9 내지 1:99의 중량비로 포함하는
    광촉매재의 제조 방법.
  6. 제1항에 있어서,
    상기 광촉매재는 380nm 내지 780nm 파장범위의 가시광선에 대하여 광활성을 갖는
    광촉매재의 제조 방법.
  7. 제1항에 있어서,
    상기 다공성의 제1 금속 산화물막은 두께 30nm 내지 100nm로 성막되는
    광촉매재의 제조 방법.
  8. 제1항에 있어서,
    상기 광조사는 UV 조사하는
    광촉매재의 제조 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 광촉매재의 제조 방법에 의해 제조되고, 다공성의 제1 금속 산화물막; 및 상기 다공성의 제1 금속 산화물막의 내부 공극에 형성된 상기 제2 금속의 입자를 포함하는 광촉매재.
  10. 제9항에 있어서,
    상기 다공성의 제1 금속 산화물막의 내부 공극에 형성된 제2 금속 입자의 평균 직경이 각각 1nm 내지 10nm인
    광촉매재.
  11. 제9항에 있어서,
    상기 제1 금속 산화물막에 포함된 제1 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합에서 선택된 적어도 하나를 포함하는
    광촉매재.
  12. 제9항에 있어서,
    상기 제2 금속은 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트로니튬, 바륨, 라듐 및 이들의 조합에서 선택된 적어도 하나의 금속을 포함하는
    광촉매재.
  13. 제9항에 있어서,
    상기 광촉매재는 상기 제2 금속 입자 대 상기 다공성 제1 금속 산화물막이 0.1:99.9 내지 1:99의 중량비로 포함하는
    광촉매재.
  14. 제9항에 있어서,
    상기 광촉매재는 380nm 내지 780nm 파장범위의 가시광선에 대하여 광활성을 갖는
    광촉매재.
  15. 제9항에 있어서,
    상기 다공성의 제1 금속 산화물막의 두께는 30nm 내지 100nm인
    광촉매재.
  16. 제9항에 있어서,
    공기청정, 탈취 또는 항균 용도에 적용되는
    광촉매재.
PCT/KR2014/009542 2013-10-22 2014-10-10 광촉매재의 제조 방법 및 그에 의한 광촉매재 WO2015060568A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14856781.1A EP3061526A4 (en) 2013-10-22 2014-10-10 Method for preparing photocatalyst, and photocatalyst prepared thereby
JP2016524573A JP2016540628A (ja) 2013-10-22 2014-10-10 光触媒材の製造方法およびそれによる光触媒材
US15/030,586 US20160263559A1 (en) 2013-10-22 2014-10-10 Method for preparing photocatalyst, and photocatalyst prepared thereby
CN201480057896.5A CN105682801A (zh) 2013-10-22 2014-10-10 光催化剂的制备方法及由此制备的光催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130126011A KR101804599B1 (ko) 2013-10-22 2013-10-22 광촉매재의 제조 방법 및 그에 의한 광촉매재
KR10-2013-0126011 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015060568A1 true WO2015060568A1 (ko) 2015-04-30

Family

ID=52993117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009542 WO2015060568A1 (ko) 2013-10-22 2014-10-10 광촉매재의 제조 방법 및 그에 의한 광촉매재

Country Status (7)

Country Link
US (1) US20160263559A1 (ko)
EP (1) EP3061526A4 (ko)
JP (1) JP2016540628A (ko)
KR (1) KR101804599B1 (ko)
CN (1) CN105682801A (ko)
TW (1) TW201515706A (ko)
WO (1) WO2015060568A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328756A (zh) * 2023-03-16 2023-06-27 东南大学 一种复合薄膜半导体光催化剂及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927198B (zh) * 2018-07-09 2020-09-22 华南理工大学 一种改性氮化碳光催化剂及其制备与光催化氧化木糖合成木糖酸的方法
KR102302940B1 (ko) * 2019-12-04 2021-09-16 단국대학교 천안캠퍼스 산학협력단 첨가제를 사용하지 않는 금속 도핑 광촉매 나노입자의 제조방법
KR20240026334A (ko) * 2022-08-18 2024-02-28 삼성전자주식회사 광촉매, 및 상기 광촉매를 포함하는 촉매 필터, 촉매 모듈, 및 공기정화 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970705927A (ko) * 1994-10-05 1997-11-03 시게후치 마사토시 항균성 고형물, 이의 제조방법 및 이의 이용방법(Antibacterial solid, process for producing the same, and method of utilizing the same)
JP2005225758A (ja) * 1995-09-15 2005-08-25 Saint-Gobain Glass France 光触媒コーティングを備えた基材
KR20060033552A (ko) * 2004-10-15 2006-04-19 한국화학연구원 나노 크기의 광촉매용 아나타제형 이산화티탄 분말 및그의 제조방법
KR100676458B1 (ko) * 2004-06-01 2007-02-02 재단법인서울대학교산학협력재단 메조기공 TiO2 및 기공 내에 전이금속이 함침된 가시광응답 메조기공 TiO2의 합성 방법
KR100884018B1 (ko) * 2006-10-02 2009-02-17 창성엔지니어링 주식회사 가수열반응을 이용한 광활성이 높은 메조기공 이산화티타늄및 가시광 활성광촉매 그리고 이들의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284314B1 (en) * 1993-12-09 2001-09-04 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Porous ceramic thin film and method for production thereof
EP0870530B1 (en) * 1996-08-05 2005-01-19 Nippon Sheet Glass Co., Ltd. Photocatalyst and process for the preparation thereof
JP3887510B2 (ja) * 1999-07-28 2007-02-28 シャープ株式会社 光触媒膜及びその製造方法
JP5546768B2 (ja) * 2008-01-28 2014-07-09 株式会社東芝 可視光応答型光触媒粉末とそれを用いた可視光応答型の光触媒材料、光触媒塗料、光触媒製品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970705927A (ko) * 1994-10-05 1997-11-03 시게후치 마사토시 항균성 고형물, 이의 제조방법 및 이의 이용방법(Antibacterial solid, process for producing the same, and method of utilizing the same)
JP2005225758A (ja) * 1995-09-15 2005-08-25 Saint-Gobain Glass France 光触媒コーティングを備えた基材
KR100676458B1 (ko) * 2004-06-01 2007-02-02 재단법인서울대학교산학협력재단 메조기공 TiO2 및 기공 내에 전이금속이 함침된 가시광응답 메조기공 TiO2의 합성 방법
KR20060033552A (ko) * 2004-10-15 2006-04-19 한국화학연구원 나노 크기의 광촉매용 아나타제형 이산화티탄 분말 및그의 제조방법
KR100884018B1 (ko) * 2006-10-02 2009-02-17 창성엔지니어링 주식회사 가수열반응을 이용한 광활성이 높은 메조기공 이산화티타늄및 가시광 활성광촉매 그리고 이들의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3061526A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328756A (zh) * 2023-03-16 2023-06-27 东南大学 一种复合薄膜半导体光催化剂及其制备方法

Also Published As

Publication number Publication date
TW201515706A (zh) 2015-05-01
EP3061526A4 (en) 2017-06-28
CN105682801A (zh) 2016-06-15
EP3061526A1 (en) 2016-08-31
KR101804599B1 (ko) 2017-12-06
JP2016540628A (ja) 2016-12-28
US20160263559A1 (en) 2016-09-15
KR20150046811A (ko) 2015-05-04

Similar Documents

Publication Publication Date Title
WO2013176369A1 (ko) 광촉매재, 그 제조 방법 및 광촉매 장치
WO2013176367A1 (ko) 광촉매재, 그 제조 방법 및 광촉매 장치
JP6352527B2 (ja) 光触媒機能性フィルム及びこの製造方法
WO2015060568A1 (ko) 광촉매재의 제조 방법 및 그에 의한 광촉매재
KR102219256B1 (ko) 가시광 응답형 광촉매 조성물 및 이를 이용하는 조명장치
JP6352526B2 (ja) 光触媒機能性フィルム及びこの製造方法
KR101857831B1 (ko) 가시광 활성 광촉매 코팅 조성물, 가시광 활성 광촉매 코팅 조성물의 제조 방법 및 가시광 활성 광촉매층을 형성하는 방법
JP4163374B2 (ja) 光触媒膜
KR20160104167A (ko) 탈취 필터용 가시광 활성 광촉매 조성물 및 이를 포함하는 탈취 필터
CN1607035A (zh) 废气处理紫外灯制作方法及废气处理方法
KR101823178B1 (ko) 가시광 활성 광촉매 타일 및 이를 제조하는 방법
KR102262979B1 (ko) 탈취 필터용 가시광 활성 광촉매 조성물 및 이를 포함하는 탈취 필터
KR101758427B1 (ko) 광촉매재 및 상기 광촉매재의 제조 방법
KR102175462B1 (ko) 가시광 활성 광촉매 및 이의 제조방법
CN111268996B (zh) 一种光催化空气净化装饰板的制备方法
KR20150143217A (ko) 산화-환원 반응을 일으키는 광촉매졸을 이용한 탈취필터
CN109404751A (zh) 一种新型节能led灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016524573

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15030586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014856781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856781

Country of ref document: EP