WO2015060004A1 - 非鉛誘電体薄膜及びこの薄膜形成用組成物並びにこの薄膜の形成方法 - Google Patents

非鉛誘電体薄膜及びこの薄膜形成用組成物並びにこの薄膜の形成方法 Download PDF

Info

Publication number
WO2015060004A1
WO2015060004A1 PCT/JP2014/072430 JP2014072430W WO2015060004A1 WO 2015060004 A1 WO2015060004 A1 WO 2015060004A1 JP 2014072430 W JP2014072430 W JP 2014072430W WO 2015060004 A1 WO2015060004 A1 WO 2015060004A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
thin film
lead
dielectric thin
free dielectric
Prior art date
Application number
PCT/JP2014/072430
Other languages
English (en)
French (fr)
Inventor
桜井 英章
順 藤井
曽山 信幸
舟窪 浩
荘雄 清水
純一 木村
Original Assignee
三菱マテリアル株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 国立大学法人東京工業大学 filed Critical 三菱マテリアル株式会社
Publication of WO2015060004A1 publication Critical patent/WO2015060004A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention is lead-free, has a high crystal orientation and a high dielectric constant, and contains at least two components of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component.
  • the present invention relates to a lead-free dielectric thin film, a composition for forming the thin film, and a method for forming the thin film. More specifically, the present invention relates to a lead-free dielectric thin film formed by a chemical solution deposition method. Note that this application claims priority based on Japanese Patent Application No. 2013-220960 filed in Japan on October 24, 2013, and the entire contents of Japanese Patent Application No. 2013-220960 are incorporated herein by reference.
  • Non-Patent Document 1 has a problem in mass production film formation because it is produced by a pulse laser vapor deposition method which is one of expensive vacuum processes, and is large because a complicated composition is formed. There was a problem with the uniformity of the film composition on the substrate.
  • An object of the present invention is to provide a lead-free dielectric thin film that is lead-free and has high crystal orientation and high relative dielectric constant.
  • the first aspect of the present invention is a lead-free dielectric controlled to have a (111) orientation by containing at least two of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component. It is a body thin film.
  • the second aspect of the present invention is a lead-free dielectric controlled to have a (100) orientation, containing at least two of the components BaTiO 3 , Bi (Mg 0.5 Ti 0.5 ) O 3 , and BiFeO 3. It is a body thin film.
  • a third aspect of the present invention is an invention based on the first aspect, and is a lead-free dielectric thin film formed on (111) -oriented SrRuO 3 .
  • a fourth aspect of the present invention is an invention based on the second aspect, and is a lead-free dielectric thin film formed on (100) oriented LaNiO 3 .
  • a lead-free dielectric thin film having a composition.
  • a lead-free dielectric thin film having a composition.
  • a lead-free dielectric thin film having a composition.
  • a lead-free dielectric thin film having a composition.
  • a lead-free dielectric thin film having a composition in three regions.
  • a lead-free dielectric thin film having a composition in three regions.
  • a lead-free dielectric thin film having a composition in three regions.
  • a lead-free dielectric thin film having a composition in three regions.
  • a twenty-first aspect of the present invention is an invention based on any one of the first to twentieth aspects, and is a lead-free dielectric thin film formed by a chemical solution deposition method.
  • a twenty-second aspect of the present invention is a liquid composition for forming a lead-free dielectric thin film for forming a dielectric thin film based on any one of the first to twentieth aspects by a chemical solution deposition method.
  • a coating process in which a liquid composition for forming a lead-free dielectric thin film according to the twenty-second aspect is applied to a substrate to form a coating film, and a coating film formed on the substrate.
  • a non-lead dielectric thin film forming method including a firing step of firing at a temperature equal to or higher than a crystallization temperature in the mixed gas or in the air containing dry air or water vapor.
  • a twenty-fourth aspect of the present invention is the invention based on the twenty-third aspect, wherein the coating step and the drying step are repeated a plurality of times, and the baking step is repeated halfway through the final drying step. It is a firing step in which the coating film is fired at a temperature equal to or higher than the crystallization temperature in O 2 , N 2 , Ar, N 2 O, H 2 or a mixed gas thereof, in dry air, or in an atmosphere containing water vapor after completion. This is a method for forming a lead-free dielectric thin film.
  • a thin film capacitor a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, an LC noise filter element, a transistor having a lead-free dielectric thin film according to any of the first to twenty-first aspects. It is a composite electronic component comprising any one of a gate insulator, a nonvolatile memory, and a pyroelectric infrared detection element.
  • a piezoelectric element an electro-optic element, an actuator, a resonator, an ultrasonic motor, a surface acoustic wave element, or the like having a lead-free dielectric thin film according to any of the first to twenty-first aspects. It is a composite electronic component consisting of one of the transducers.
  • the lead-free dielectric thin film according to the first aspect of the present invention is lead-free and has a (111) orientation and a high relative dielectric constant.
  • the lead-free dielectric thin film of the second aspect of the present invention is lead-free and has a (100) orientation and a relatively high relative dielectric constant.
  • the lead-free dielectric thin film according to the third aspect of the present invention is lead-free and is formed on (111) -oriented SrRuO 3 , it tends to drag the crystal orientation of the lower layer, and thus strongly (111) -oriented. There is a feature to do.
  • the lead-free dielectric thin film according to the fourth aspect of the present invention is lead-free and is formed on (100) -oriented LaNiO 3, so that it is easy to drag the crystal orientation of the lower layer, and therefore strongly (100) -oriented. There is a feature to do.
  • the lead-free dielectric thin film according to any one of the fifth to eighth aspects of the present invention is lead-free, and is high by making the composition of at least two components into the composition in the first region on the ternary diagram. There is a feature of having a relative dielectric constant.
  • the lead-free dielectric thin film according to any one of the ninth to twelfth aspects of the present invention is lead-free, and has a composition of at least two components in the second region on the ternary diagram. It has the feature of having a high relative dielectric constant.
  • the lead-free dielectric thin film according to any one of the thirteenth to sixteenth aspects of the present invention is lead-free, and the composition of at least two components is made to be the composition in the third region on the ternary diagram, so that It has a feature that it has a higher dielectric constant.
  • the lead-free dielectric thin film according to any one of the seventeenth to twentieth aspects of the present invention is lead-free and has a substantially constant relative dielectric constant in a high temperature atmosphere as compared with a relative dielectric constant of 25 ° C. There is a small temperature dependency.
  • (A) shows the 2 ⁇ - ⁇ scan measurement result for the thin film of Comparative Example 1 when the dielectric thin film has a low degree of crystal orientation
  • (b) shows the result of Example 6 when the dielectric thin film has a high degree of crystal orientation.
  • the measurement result with respect to this thin film is shown. Is a first region, a second region, and a third region having a high relative dielectric constant on the ternary phase diagram of [BaTiO 3 ] ⁇ [Bi (Mg 0.5 Ti 0.5 ) O 3 ] ⁇ [BiFeO 3 ] of the present invention. Show.
  • Example 1 shows X-ray peak intensity when ⁇ -2 ⁇ scan is performed on each dielectric thin film of Example 1 (1) to Example 7 (7) and Example 12 (8), and (b) These show X-ray peak intensities when the ⁇ -2 ⁇ scan is performed on the dielectric thin films of Example 6 (6) and Example 8 (9) to Example 11 (12).
  • (A) shows the X-ray peak situation when 2 ⁇ - ⁇ scan is performed on the dielectric thin film of Example 1 (1), and (b) shows 2 ⁇ for the dielectric thin film of Example 5 (5). The X-ray peak situation when the - ⁇ scan is performed is shown, and (c) shows the X-ray peak situation when the 2 ⁇ - ⁇ scan is performed on the dielectric thin film of Example 6 (6).
  • Example 5 Shows the integrated peak intensity when 2 ⁇ is scanned from 30 degrees to 35 degrees by the 2 ⁇ - ⁇ scan method with respect to the dielectric thin film of (6)
  • (c) shows 2 ⁇ for the dielectric thin film of Example 6 (6).
  • the integrated peak intensity when 2 ⁇ is scanned from 30 degrees to 35 degrees by the - ⁇ scan method is shown. Shows the X-ray peak intensity when the dielectric thin film fired at 700 ° C. in Example 13 is subjected to ⁇ -2 ⁇ scan.
  • Example 1 Denotes a [BaTiO 3] ⁇ [Bi ( Mg 0.5 Ti 0.5) O 3] ⁇ first region and the fourth region in the ternary phase diagram of [BiFeO 3] of the present invention.
  • the liquid composition for forming a lead-free dielectric thin film of the present invention contains a liquid composition capable of forming BaTiO 3 , Bi (Mg 0.5 Ti 0.5 ) O 3 , and BiFeO 3 , respectively. To be prepared.
  • the liquid composition for BaTiO 3 uses carboxylate or alkoxide as the Ba raw material and alkoxide as the Ti raw material, and these raw materials are used as solvents such as 2-methoxyethanol and acetic acid. It is prepared by mixing and dissolving at a predetermined molar ratio so that the total concentration in terms of metal oxide is about 1 to 25% by mass.
  • the barium carboxylate include barium 2-ethylbutyrate, barium 2-ethylhexanoate, and barium acetate.
  • the barium alkoxide include barium diisopropoxide and barium dibutoxide.
  • titanium alkoxide examples include titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium dimethoxydiisopropoxide, and the like.
  • the above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
  • the liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 is composed of carboxylate or alkoxide as Bi raw material, alkoxide as Mg raw material, and Ti raw material. Prepared by using each alkoxide and mixing and dissolving these raw materials in a solvent such as 2-methoxyethanol at a predetermined molar ratio and a total concentration in terms of metal oxide of about 1 to 25% by mass. Is done.
  • the bismuth carboxylate is bismuth 2-ethylbutyrate, bismuth 2-ethylhexanoate, and the bismuth alkoxide is abbreviated as Bi (OC (CH 3 ) 3 ) 3 (hereinafter referred to as Bi (Ot—Bu) 3 . ), Bi (OC (CH 3 ) 2 C 2 H 5 ) 3 (hereinafter abbreviated as Bi (Ot-Am) 3 ) and the like.
  • the magnesium alkoxide include magnesium ethoxide, magnesium methoxide, magnesium propoxide and the like.
  • examples of the titanium alkoxide include titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium dimethoxydiisopropoxide, and the like.
  • the above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
  • the liquid composition for BiFeO 3 uses carboxylate and alkoxide as Bi raw materials, acetylacetonate and nitrate as Fe raw materials, and these raw materials are solvents such as 2-methoxyethanol. In addition, it is prepared by mixing and dissolving at a predetermined molar ratio so that the total concentration in terms of metal oxide is about 1 to 25% by mass.
  • the bismuth carboxylate include bismuth 2-ethylbutyrate and bismuth 2-ethylhexanoate.
  • Examples of the bismuth alkoxide include Bi (Ot—Bu) 3 and Bi (Ot—Am) 3.
  • Iron (III) acetylacetonate complex Iron (III) acetylacetonate complex, iron nitrate and the like.
  • the above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
  • the composition is applied by spin coating, dip coating, LSMCD (Liquid Source Misted Chemical Deposition), or the like. It is applied onto a heat-resistant substrate by the method, followed by drying (preliminary firing) and main firing.
  • LSMCD Liquid Source Misted Chemical Deposition
  • the heat-resistant substrate to be used those having (111) -oriented SrRuO 3 or (100) -oriented LaNiO 3 in the substrate surface layer portion are preferable.
  • Specific examples of the heat-resistant insulating substrate include (111) oriented SrRuO 3 / Pt / TiO x / SiO 2 / Si or (100) oriented LaNiO 3 / Pt / TiO x / SiO 2 / Si.
  • the baking is performed after repeating the application and drying steps a plurality of times.
  • the desired film thickness refers to the thickness of the dielectric thin film obtained after the main firing, and in the case of a high capacity density thin film capacitor, the thickness of the dielectric thin film after the main firing is in the range of 50 to 500 nm. It is.
  • pre-baking is performed in order to remove the solvent and to convert the organic compound or organometallic compound into a composite oxide by thermal decomposition or hydrolysis, and therefore, in the air, in an oxidizing atmosphere, or in a steam-containing atmosphere. Do. Even in heating in the air, the moisture required for hydrolysis is sufficiently secured by the humidity in the air. This heating may be performed in two stages: low temperature heating for removing the solvent and high temperature heating for decomposing the organometallic compound or organic compound.
  • the main baking is a process for baking and crystallizing the thin film obtained by the preliminary baking at a temperature equal to or higher than the crystallization temperature, whereby a dielectric thin film is obtained.
  • the firing atmosphere in this crystallization step is preferably O 2 , N 2 , Ar, N 2 O, H 2, or a mixed gas thereof.
  • Pre-baking is performed at 150 to 550 ° C. for about 1 to 30 minutes, and main baking is performed at 450 to 800 ° C. for about 1 to 60 minutes.
  • the main baking may be performed in a rapid heating process (RTA process) or a muffle furnace.
  • RTA process rapid heating process
  • the rate of temperature rise is preferably 10 to 100 ° C./second.
  • the lead-free dielectric thin film thus formed has two or three of a liquid composition for BaTiO 3 , a liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 , and a liquid composition for BiFeO 3 .
  • a liquid composition for BaTiO 3 a liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3
  • a liquid composition for BiFeO 3 By setting the ratio, a high relative dielectric constant can be obtained, and when a perovskite type conductive oxide such as SrRuO 3 or LaNiO 3 is provided on the surface layer portion of the substrate, strong crystal orientation is achieved by dragging those crystal orientations.
  • the lead-free dielectric thin film obtained as described above is evaluated for crystal orientation, relative permittivity, and dielectric loss tangent (tan ⁇ ) as follows. Specifically, the evaluation of the crystal orientation of the dielectric thin film is performed by evaluating the crystal orientation plane and evaluating the degree of crystal orientation, respectively. The crystal orientation plane is evaluated by the ⁇ -2 ⁇ scan method. On the other hand, the degree of crystal orientation is evaluated based on the half width of the (110) peak at ⁇ 46 ° by the 2 ⁇ - ⁇ scan method (measuring device manufacturer: Bruker, thin film X-ray diffractometer (D8-discover)).
  • FIG. 1A shows the crystal orientation of a dielectric thin film of Comparative Example 1 described later
  • FIG. 1B shows the crystal orientation of a dielectric thin film of Example 6 described later.
  • the dielectric constant of the dielectric thin film is measured with an impedance analyzer at a frequency of 1 kHz (measuring equipment manufacturer: Agilent Technologies, HP4194A).
  • Examples 1 to 12 First, 10 ml of 2-methoxyethanol was added to 0.0025 mol of titanium tetrabutoxide and stirred at room temperature for 60 minutes. To this mixed solution, 0.0025 mol of barium acetate was added and stirred at room temperature for 120 minutes. Subsequently, 0.2 ml of acetylacetone and 5 ml of acetic acid were added, and the mixture was stirred overnight at room temperature to prepare a liquid composition for BaTiO 3 . Next, 5 ml of 2-methoxyethanol was added to 0.00125 mol of titanium tetrabutoxide and stirred at room temperature for 60 minutes.
  • liquid composition for BaTiO 3 Two or three of the liquid composition for BaTiO 3 , the liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 , and the liquid composition for BiFeO 3 prepared in this way are in the ratio in terms of oxide shown in Table 1.
  • the liquid compositions for forming lead-free dielectric thin films of Examples 1 to 12 were obtained by weighing and mixing uniformly.
  • (111) SrRuO 3 / (111) Pt / TiO x / SiO 2 / (100) Si was prepared.
  • the SrRuO 3 film was formed by an RF magnetron sputtering apparatus at a substrate temperature of 550 ° C. to obtain a (111) crystal orientation film having a film thickness of 25 nm.
  • liquid compositions for forming a dielectric thin film with different ratios were applied by spin coating.
  • (111) SrRuO 3 was deposited by a high-frequency magnetron sputtering apparatus. After the application, preliminary firing was performed at 400 ° C. for 1 minute in an air atmosphere, and further, main firing was performed at 750 ° C. for 5 minutes in an air atmosphere. After the main firing, 12 types of dielectric thin films having a thickness of 300 nm were prepared.
  • Example 13 A dielectric is obtained in the same manner as in Examples 1 to 12 except that (100) LaNiO 3 / (111) Pt / TiO x / SiO 2 / (100) Si is used as the substrate and the main baking is performed at 700 ° C. for 5 minutes. A thin film was prepared.
  • the LaNiO 3 film was formed by an RF magnetron sputtering apparatus at a substrate temperature of 450 ° C. to obtain a (100) crystal orientation film having a film thickness of 25 nm.
  • Dielectric thin films were produced in the same manner as in Examples 1 to 12, except that (111) Pt / TiO x / SiO 2 / (100) Si was used as the substrate.
  • each of the dielectric thin films of Examples 1 (1), 5 (5), and 6 (6) was subjected to 2 ⁇ - ⁇ scan by X-ray diffraction, and ⁇ direction Whether or not streaks appear or spots appear is measured, and it is examined whether the crystal orientation degree of these dielectric thin films is high or low.
  • the results are shown in FIGS. 4 (a) to (c).
  • the dielectric thin film of Example 1 (1) had a streak in the ⁇ direction when 2 ⁇ was around 31.5 degrees, and the degree of orientation was low.
  • the dielectric thin films of Examples 5 (5) and 6 (6) have a slight streak in the ⁇ direction when 2 ⁇ is around 31.5 degrees. However, the spot was clearly seen and the degree of orientation was high.
  • each dielectric thin film of Examples 1 (1), 5 (5), and 6 (6) has a weak peak intensity around 45 degrees ⁇ attributed to the (110) plane and a large half-value width (low degree of orientation).
  • each dielectric thin film of Example 5 (5) and Example 6 (6) has a ⁇ attributed to the (110) plane of 45 degrees. It was found that the peak intensity in the vicinity was strong and the half width was small (the degree of orientation was high).
  • the first region (see FIG. 2) surrounded by the values obtained in Example 1 (1), Example 8 (9), Example 12 (8) and Example 11 (12) is apparent from Table 1.
  • the (110) peak half-value width was as good as 22.0 degrees or less, the average relative dielectric constant was 600, and the dielectric characteristics were good.
  • the second region (see FIG. 2) surrounded by the values obtained in Example 3 (3), Example 8 (9), Example 7 (7) and Example 10 (11) is apparent from Table 1.
  • the (110) peak half width was as good as 9.6 degrees or less, the average relative dielectric constant was 632.5, and the dielectric properties were good.
  • the third region (see FIG. 2) surrounded by the values obtained in Example 5 (5), Example 6 (6), and Example 10 (11) is (110) as apparent from Table 1.
  • the peak half-value width was as small as 3.3 degrees or less, and the average relative dielectric constant was 882.5, which was extremely excellent in relative dielectric constant.
  • Example 6 Example 13, Comparative Example 1>
  • the (110) peak half width is The dielectric constant was as good as 3.0 and 10.0, and the relative dielectric constants were as high as 1050 and 470, respectively.
  • the (110) peak half width was extremely large and bad, and as a result, the relative dielectric constant was as small as 100. From this, it was found that improving the crystal orientation greatly affects the improvement of the dielectric constant.
  • FIG. 6 shows the results of measuring the peak intensity of the X-ray diffraction line by performing a ⁇ -2 ⁇ scan on the dielectric thin film fired at 700 ° C. in Example 13 by the X-ray diffraction method. As is apparent from FIG. 6, it was found that the dielectric thin film of Example 13 was oriented in the (100) plane.
  • Example 1 to 12 and Example 14> In addition to the lead-free dielectric thin films of Examples 1 to 12 produced in the measurement test at room temperature, the molar ratio (x) of BaTiO 3 is 0.60, and the molar ratio of Bi (Mg 0.5 Ti 0.5 ) O 3 ( A lead-free derivative thin film of Example 14 in which y) was 0.40 and the molar ratio (z) of BiFeO 3 was 0.00 was produced. Except for changing the molar ratio, the lead-free derivative thin film of Example 14 was produced in the same manner as in Examples 1-12.
  • the four types of lead-free derivative thin films of Examples 1 to 4 were 25 ° C., 50 ° C., 100 ° C., 150 ° C., 200 ° C., 250 ° C.
  • the relative dielectric constant at each temperature of 300 ° C., 350 ° C. and 400 ° C. was measured by the impedance analyzer described above.
  • Example 1 to Example 4 shows the relative dielectric constants of the 13 types of lead-free thin films at various temperatures.
  • the relative dielectric constants at temperatures of 25 ° C. or higher of the derivative thin films of Example 1 (1) to Example 7 (7) and Example 12 (8) are shown in FIG. 8, and Example 6 (6) and Example FIG. 9 shows the relative dielectric constants of the dielectric thin films of 8 (9) to 11 (12) and 14 (13) at temperatures of 25 ° C. or higher.
  • Example 2 From the lead-free derivative thin films obtained in Example 1 (1), Example 2 (2), Example 3 (3) and Example 4 (4) shown in Table 2 and FIGS.
  • Examples 1-4 The specific dielectric constant at 400 ° C. or the specific dielectric constant at 250 ° C. of Example 14 is almost constant with the specific dielectric constant at 25 ° C., has a small temperature dependence, and is suitable for a derivative thin film used in a high-temperature atmosphere. I found out.
  • FIG. 7 the region surrounded by Example 1 (1), Example 2 (2), Example 3 (3), Example 4 (4), and Example 14 (13) is shown as the fourth region. .
  • the first area is shown to clarify that the fourth area is in the first area.
  • the lead-free dielectric thin film made from the liquid composition for forming a lead-free dielectric thin film of the present invention includes a thin film capacitor, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, an LC noise filter element, a transistor gate insulator, A composite electronic component consisting of either a non-volatile memory or a pyroelectric infrared detector, or a composite consisting of a piezoelectric element, electro-optic element, actuator, resonator, ultrasonic motor, surface acoustic wave element, or transducer Available for electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Capacitors (AREA)
  • Compounds Of Iron (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3の成分のうち少なくとも2成分を含有して(111)配向に制御されるか、又はBaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3の成分のうち少なくとも2成分を含有して(100)配向に制御された非鉛誘電体薄膜である。この非鉛誘電体薄膜は(111)SrRuO3上又は(100)LaNiO3上に形成される。

Description

非鉛誘電体薄膜及びこの薄膜形成用組成物並びにこの薄膜の形成方法
 本発明は、鉛フリーで、高い結晶配向性と高い比誘電率を有し、BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3の成分のうち少なくとも2成分を含有する非鉛誘電体薄膜及びこの薄膜形成用組成物並びにこの薄膜の形成方法に関する。更に詳しくは、化学溶液堆積法(Chemical Solution Deposition法)により形成された非鉛誘電体薄膜に関する。
 なお、本願は、2013年10月24日に日本に出願された特願2013-220960に基づく優先権を主張するものであり、特願2013-220960の全内容を本願に援用する。
 近年、鉛含有の誘電体薄膜を用いた各種電子機器の廃棄後の環境負荷を危惧し、鉛フリーの誘電体薄膜が求められている。こうした鉛フリーの誘電体薄膜として、これまでBaTiO3とBi(Mg0.5Ti0.5)O3の二元系組成物をパルスレーザ蒸着法によりエピタキシャル成長させて形成された薄膜が示されている(例えば、非特許文献1参照。)。
H. Tanaka et al., J. Appl. Phys. 111 (2012) 084108
 しかしながら、上記非特許文献1に示される薄膜は、高価な真空プロセスの1種であるパルスレーザ蒸着法で作製されるため量産成膜性に課題があり、かつ複雑な組成を成膜するため大きな基板上での膜組成の均一性に問題があった。
 本発明の目的は、鉛フリーで、高い結晶配向性と高い比誘電率を有する非鉛誘電体薄膜を提供することにある。
 本発明の第1の観点は、BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3の成分のうち少なくとも2成分を含有して(111)配向に制御された非鉛誘電体薄膜である。
 本発明の第2の観点は、BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3の成分のうち少なくとも2成分を含有して(100)配向に制御された非鉛誘電体薄膜である。
 本発明の第3の観点は、第1の観点に基づく発明であって、(111)配向したSrRuO3上に形成された非鉛誘電体薄膜である。
 本発明の第4の観点は、第2の観点に基づく発明であって、(100)配向したLaNiO3上に形成された非鉛誘電体薄膜である。
  本発明の第5の観点は、第1の観点に基づく発明であって、前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である非鉛誘電体薄膜である。
  本発明の第6の観点は、第2の観点に基づく発明であって、前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である非鉛誘電体薄膜である。
  本発明の第7の観点は、第3の観点に基づく発明であって、前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である非鉛誘電体薄膜である。
  本発明の第8の観点は、第4の観点に基づく発明であって、前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である非鉛誘電体薄膜である。
  本発明の第9の観点は、第5の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である非鉛誘電体薄膜である。
  本発明の第10の観点は、第6の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である非鉛誘電体薄膜である。
  本発明の第11の観点は、第7の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である非鉛誘電体薄膜である。
  本発明の第12の観点は、第8の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である非鉛誘電体薄膜である。
 本発明の第13の観点は、第9の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である非鉛誘電体薄膜である。
 本発明の第14の観点は、第10の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である非鉛誘電体薄膜である。
 本発明の第15の観点は、第11の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である非鉛誘電体薄膜である。
 本発明の第16の観点は、第12の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である非鉛誘電体薄膜である。
 本発明の第17の観点は、第5の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である非鉛誘電体薄膜である。
 本発明の第18の観点は、第6の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である非鉛誘電体薄膜である。
 本発明の第19の観点は、第7の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である非鉛誘電体薄膜である。
 本発明の第20の観点は、第8の観点に基づく発明であって、前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である非鉛誘電体薄膜である。
  本発明の第21の観点は、第1の観点ないし第20の観点のいずれかに基づく発明であって、化学溶液堆積法により形成された非鉛誘電体薄膜である。
 本発明の第22の観点は、第1ないし第20の観点のいずれかに基づく誘電体薄膜を、化学溶液堆積法により形成するための非鉛誘電体薄膜形成用液組成物である。
  本発明の第23の観点は、第22の観点に基づく非鉛誘電体薄膜形成用液組成物を基板に塗布して塗膜を形成する塗布工程と、前記基板に形成された塗膜を、空気中、酸化雰囲気中又は含水蒸気雰囲気中で加熱して乾燥する乾燥工程と、前記乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する焼成工程とを含む非鉛誘電体薄膜の形成方法である。
  本発明の第24の観点は、第23の観点に基づく発明であって、前記塗布工程及び前記乾燥工程が複数回繰り返され、前記焼成工程が前記複数回繰り返された最終乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する焼成工程である非鉛誘電体薄膜の形成方法である。
  本発明の第25の観点は、第1ないし第21の観点のいずれかに基づく非鉛誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、LCノイズフィルタ素子、トランジスタのゲート絶縁体、不揮発性メモリ、又は焦電型赤外線検出素子のいずれかからなる複合電子部品である。
  本発明の第26の観点は、第1ないし第21の観点のいずれかに基づく非鉛誘電体薄膜を有する圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、表面弾性波素子、又はトランスジューサのいずれかからなる複合電子部品である。
 本発明の第1の観点の非鉛誘電体薄膜は、鉛フリーであって、(111)配向し高い比誘電率を有する。
 本発明の第2の観点の非鉛誘電体薄膜は、鉛フリーであって、(100)配向し比較的高い比誘電率を有する。
 本発明の第3の観点の非鉛誘電体薄膜は、鉛フリーであって、(111)配向したSrRuO3上に形成されるため、下層の結晶配向性を引きずりやすいため、強く(111)配向する特長がある。
 本発明の第4の観点の非鉛誘電体薄膜は、鉛フリーであって、(100)配向したLaNiO3上に形成されるため、下層の結晶配向性を引きずりやすいため、強く(100)配向する特長がある。
 本発明の第5ないし第8の観点のいずれかの非鉛誘電体薄膜は、鉛フリーであって、少なくとも2成分の組成を三元図上の第1領域内の組成にすることにより、高い比誘電率を有するようになる特長がある。
  本発明の第9ないし第12の観点のいずれかの非鉛誘電体薄膜は、鉛フリーであって、少なくとも2成分の組成を三元図上の第2領域内の組成にすることにより、より高い比誘電率を有するようになる特長がある。
  本発明の第13ないし第16の観点のいずれかの非鉛誘電体薄膜は、鉛フリーであって、少なくとも2成分の組成を三元図上の第3領域内の組成にすることにより、より一層高い比誘電率を有するようになる特長がある。
  本発明の第17ないし第20の観点のいずれかの非鉛誘電体薄膜は、鉛フリーであって、25℃の比誘電率と比べて高温雰囲気下で比誘電率がほぼ一定であって、温度依存性の小さい特長がある。
(a)は誘電体薄膜の結晶配向度が低い場合の比較例1の該薄膜に対する2θ-χスキャン測定結果を示し、(b)は誘電体薄膜の結晶配向度が高い場合の実施例6の該薄膜に対する測定結果を示す。 は本発明の[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上における高い比誘電率を有する第1領域、第2領域及び第3領域を示す。 (a)は実施例1(1)~実施例7(7)及び実施例12(8)の各誘電体薄膜に対してθ-2θスキャンをしたときのX線ピーク強度を示し、(b)は実施例6(6)及び実施例8(9)~実施例11(12)の各誘電体薄膜に対してθ-2θスキャンをしたときのX線ピーク強度を示す。 (a)は実施例1(1)の誘電体薄膜に対して2θ-χスキャンをしたときのX線ピーク状況を示し、(b)は実施例5(5)の誘電体薄膜に対して2θ-χスキャンをしたときのX線ピーク状況を示し、(c)は実施例6(6)の誘電体薄膜に対して2θ-χスキャンをしたときのX線ピーク状況を示す。 (a)は実施例1(1)の誘電体薄膜に対して2θ-χスキャン法で2θを30度から35度までスキャンしたときの積算ピーク強度を示し、(b)は実施例5(5)の誘電体薄膜に対して2θ-χスキャン法で2θを30度から35度までスキャンしたときの積算ピーク強度を示し、(c)は実施例6(6)の誘電体薄膜に対して2θ-χスキャン法で2θを30度から35度までスキャンしたときの積算ピーク強度を示す。 は実施例13の700℃で焼成した誘電体薄膜に対してθ-2θスキャンをしたときのX線ピーク強度を示す。 は本発明の[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上における第1領域及び第4領域を示す。 は実施例1(1)~実施例7(7)の誘導体薄膜の25℃以上の各温度における比誘電率を示す。 は実施例6(6)、実施例8(9)~実施例11(12)及び実施例14(13)の誘導体薄膜の25℃以上の各温度における比誘電率を示す。
 次に本発明を実施するための形態を図面に基づいて説明する。
 <非鉛誘電体薄膜形成用液組成物の調製>
 本発明の非鉛誘電体薄膜形成用液組成物は、BaTiO3と、Bi(Mg0.5Ti0.5)O3と、BiFeO3をそれぞれ形成可能な液組成物を含有してなり、それぞれ以下のように調製される。
(1)BaTiO3用液組成物
 BaTiO3用液組成物は、Ba原料としてカルボン酸塩やアルコキシドを、Ti原料としてアルコキシドをそれぞれ用い、これらの原料を2-メトキシエタノールや酢酸等の溶剤に、所定のモル比で、かつ、金属酸化物換算の合計濃度が1~25質量%程度となるように混合溶解させることにより調製される。カルボン酸バリウムとしては、2-エチル酪酸バリウム、2-エチルヘキサン酸バリウム、酢酸バリウム等が挙げられ、バリウムアルコキシドとしては、バリウムジイソプロポキシド、バリウムジブトキシド等が挙げられる。またチタンアルコキシドとしては、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシド等が挙げられる。上記金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。また安定化剤としてアセチルアセトン等を加えても良い。
(2)Bi(Mg0.5Ti0.5)O3用液組成物
  Bi(Mg0.5Ti0.5)O3用液組成物は、Bi原料としてカルボン酸塩やアルコキシドを、Mg原料としてアルコキシドを、Ti原料としてアルコキシドをそれぞれ用い、これらの原料を2-メトキシエタノール等の溶剤に、所定のモル比で、かつ、金属酸化物換算の合計濃度が1~25質量%程度となるように混合溶解させることにより調製される。カルボン酸ビスマスとしては、2-エチル酪酸ビスマス、2-エチルヘキサン酸ビスマス等が、ビスマスアルコキシドとしては、Bi(OC(CH3)3)3(以下、Bi(Ot-Bu)3と略記する。)、Bi(OC(CH3)225)3(以下、Bi(Ot-Am)3と略記する。)等が挙げられる。またマグネシウムアルコキシドとしては、マグネシウムエトキシド、マグネシウムメトキシド、マグネシウムプロポキシド等が挙げられる。更にチタンアルコキシドとしては、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシド等が挙げられる。上記金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。また安定化剤としてアセチルアセトン等を加えても良い。
(3)BiFeO3用液組成物
  BiFeO3用液組成物は、Bi原料としてカルボン酸塩やアルコキシドを、Fe原料としてアセチルアセトナートや硝酸塩をそれぞれ用い、これらの原料を2-メトキシエタノール等の溶剤に、所定のモル比で、かつ、金属酸化物換算の合計濃度が1~25質量%程度となるように混合溶解させることにより調製される。カルボン酸ビスマスとしては、2-エチル酪酸ビスマス、2-エチルヘキサン酸ビスマス等が、ビスマスアルコキシドとしては、Bi(Ot-Bu)3、Bi(Ot-Am)3等が挙げられ、Fe原料としては、鉄(III)アセチルアセトナート錯体、硝酸鉄等が挙げられる。上記金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。また安定化剤としてアセチルアセトン等を加えても良い。
(4)非鉛誘電体薄膜形成用液組成物の調製
 上述したBaTiO3用液組成物、Bi(Mg0.5Ti0.5)O3用液組成物及びBiFeO3用液組成物の二者又は三者を所定の割合で秤量し、均一に混合することにより、本発明の非鉛誘電体薄膜を形成するための液組成物が調製される。
 <非鉛誘電体薄膜の形成>
  得られた非鉛誘電体薄膜形成用液組成物を用いて、非鉛誘電体薄膜を形成するには、上記組成物をスピンコート、ディップコート、LSMCD(Liquid Source Misted Chemical Deposition)法等の塗布法により耐熱性基板上に塗布し、乾燥(仮焼成)及び本焼成を行う。
 使用される耐熱性基板としては、基板表層部に、(111)配向したSrRuO3を有するか、又は(100)配向したLaNiO3を有するものが好ましい。耐熱性絶縁基板の具体例としては、(111)配向したSrRuO3/Pt/TiOX/SiO2/Si又は(100)配向したLaNiO3/Pt/TiOX/SiO2/Si等が挙げられる。
 なお、1回の塗布では、所望の膜厚が得られない場合には、塗布、乾燥の工程を複数回繰返し行った後、本焼成を行う。ここで、所望の膜厚とは、本焼成後に得られる誘電体薄膜の厚さをいい、高容量密度の薄膜キャパシタ用途の場合、本焼成後の誘電体薄膜の膜厚が50~500nmの範囲である。
 また、仮焼成は、溶媒を除去するとともに有機化合物や有機金属化合物を熱分解又は加水分解して複合酸化物に転化させるために行うことから、空気中、酸化雰囲気中、又は含水蒸気雰囲気中で行う。空気中での加熱でも、加水分解に必要な水分は空気中の湿気により十分に確保される。この加熱は、溶媒の除去のための低温加熱と、有機金属化合物や有機化合物の分解のための高温加熱の2段階で実施しても良い。
 本焼成は、仮焼成で得られた薄膜を結晶化温度以上の温度で焼成して結晶化させるための工程であり、これにより誘電体薄膜が得られる。この結晶化工程の焼成雰囲気はO2、N2、Ar、N2O又はH2等或いはこれらの混合ガス等が好適である。
 仮焼成は、150~550℃で1~30分間程度行われ、本焼成は450~800℃で1~60分間程度行われる。本焼成は、急速加熱処理(RTA処理)やマッフル炉で行っても良い。RTA処理で本焼成する場合、その昇温速度は10~100℃/秒が好ましい。
 このようにして形成された非鉛誘電体薄膜は、BaTiO3用液組成物、Bi(Mg0.5Ti0.5)O3用液組成物及びBiFeO3用液組成物の二者又は三者を所定の割合にすることにより、高い比誘電率が得られ、また基板表層部にペロブスカイト型導電性酸化物、例えばSrRuO3やLaNiO3を設けた場合、それらの結晶配向性を引きずることで強い結晶配向性を有する。
 <非鉛誘電体薄膜の評価方法>
 上記のようにして得られた非鉛誘電体薄膜について、以下のようにして結晶配向性と比誘電率と誘電正接(tanδ)が評価される。具体的には、誘電体薄膜の結晶配向性の評価は、結晶配向面の評価と、結晶配向度の評価をそれぞれ行う。結晶配向面の評価はθ-2θスキャン法により行う。一方、結晶配向度の評価は2θ-χスキャン法によるχ≒46°の(110)ピークの半値幅により、行う(測定機器メーカー:ブルカー社、薄膜X線回折装置 (D8-discover))。この場合、図1(a)に示すようにχ方向にストリークを引くピークが確認されれば結晶配向度は低く(上記ピーク半値幅は大きく)、一方、図1(b)に示すようにスポット上のピークが確認されれば結晶配向度は高い(上記ピーク半値幅は小さい)と判断される。図1(a)は後述する比較例1の誘電体薄膜の結晶配向度を示し、図1(b)は後述する実施例6の誘電体薄膜の結晶配向度を示す。誘電体薄膜の比誘電率をインピーダンス・アナライザにより、周波数1kHzにて測定する(測定機器メーカー:アジレントテクノロジー、HP4194A)。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <実施例1~12>
 先ずチタニウムテトラブトキシド0.0025モルに2-メトキシエタノール10mlを添加し、室温で60分間攪拌した。この混合液に酢酸バリウムを0.0025モル加え、室温で120分間攪拌した。続いてアセチルアセトン0.2mlと酢酸5mlを加え、室温で一昼夜攪拌し、BaTiO3用液組成物を調製した。次にチタニウムテトラブトキシド0.00125モルに2-メトキシエタノール5mlを添加し、室温で60分間攪拌した。この混合液にアセチルアセトンで安定化させたマグネシウムエトキシドを0.00125モル加え、室温で30分間攪拌した。続いてBi(Ot-Am)3を0.0025モルを加え、室温で60分間攪拌し、Bi(Mg0.5Ti0.5)O3用液組成物を調製した。更に、鉄(III)アセチルアセトナート0.0025モルに2-メトキシエタノール10mlを添加し、室温で60分間攪拌し、80℃に昇温して60分間攪拌し、室温で60分間攪拌した。続いてBi(Ot-Am)3を0.0025モルを加え、室温で30分間攪拌し、BiFeO3用液組成物を調製した。
 このように調製されたBaTiO3用液組成物、Bi(Mg0.5Ti0.5)O3用液組成物及びBiFeO3用液組成物の二者又は三者を表1に示す酸化物換算の割合で秤量し、均一に混合することにより、実施例1~12の非鉛誘電体薄膜形成用液組成物を得た。
 基板として、(111)SrRuO3/(111)Pt/TiOX/SiO2/(100)Siを用意した。ここでSrRuO3膜は、RFマグネトロンスパッタ装置により基板温度550℃にて成膜し、膜厚25nmの(111)結晶配向膜とした。この(111)SrRuO3上にスピンコート法により、三者の割合の異なる誘電体薄膜形成用液組成物を塗布した。(111)SrRuO3は高周波マグネトロンスパッタリング装置により成膜した。塗布後、大気雰囲気中、400℃、1分間、仮焼成を行い、更に大気雰囲気中、750℃、5分間、本焼成を行った。本焼成後、厚さ300nmの12種類の誘電体薄膜を作製した。
<実施例13>
 基板として、(100)LaNiO3/(111)Pt/TiOX/SiO2/(100)Siを用い、本焼成を700℃、5分間行った以外は、実施例1~12同様にして誘電体薄膜を作製した。ここでLaNiO3膜は、RFマグネトロンスパッタ装置により基板温度450℃にて成膜し、膜厚25nmの(100)結晶配向膜とした。
<比較例1>
 基板として、(111)Pt/TiOX/SiO2/(100)Siを用いた以外は、実施例1~12と同様にして誘電体薄膜を作製した。
 <室温下での評価・測定試験>
 実施例1~12及び比較例1の各誘電体薄膜を室温の大気雰囲気下において、θ-2θスキャン法により結晶配向面を評価し、2θ-χスキャン法により結晶配向度を評価し、更に比誘電率と誘電正接(tanδ)を上述したインピーダンス・アナライザにより測定し、確認した。その結果を表1及び図2の三元相図に示す。なお、表1中、xはBaTiO3のモル比を、yはBi(Mg0.5Ti0.5)O3のモル比を、zはBiFeO3のモル比をそれぞれ示す。また図2の丸数字の1~7は実施例1~7を、図2の丸数字8は実施例12を、図2の丸数字9~12は実施例8~11をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 <評価1>
 実施例1~12及び比較例1の誘電体薄膜に対してX線回折法によりθ-2θスキャンを実施し、回折線のピーク強度を測定し、これらの誘電体薄膜の結晶配向面を調べた。その結果を図3(a)及び(b)に示す。図3(a)から明らかなように、実施例1(1)~実施例7(7)及び実施例12(8)の各誘電体薄膜が38度付近で(111)面に配向し、図3(b)から明らかなように、実施例6(6)及び実施例8(9)~実施例11(12)の各誘電体薄膜が38度付近で(111)面に配向していることが判った。
 次に、これらの誘電体薄膜のうち、実施例1(1)、5(5)、6(6)の各誘電体薄膜に対してX線回折法により2θ-χスキャンを実施し、χ方向にストリークが現れるか、スポットが現れるか否かを測定し、これらの誘電体薄膜の結晶配向度が高いか低いかを調べた。その結果を図4(a)~(c)に示す。図4(a)から明らかなように、実施例1(1)の誘電体薄膜は2θが31.5度付近でχ方向にストリークが現れ、配向度が低かった。一方、図4(b)及び(c)から明らかなように、実施例5(5)及び実施例6(6)の各誘電体薄膜は2θが31.5度付近でχ方向にストリークは僅かに現れるけれども、スポットの方がはっきりと見られ、配向度が高かった。
 更に詳細に結晶配向度を調査するため、実施例1(1)、5(5)、6(6)の各誘電体薄膜に対してX線回折法により2θ-χスキャンを実施し、2θが30度から35度までの積算強度とχの関係を調査した。その結果を図5(a)~(c)に示す。図5(a)から明らかなように、実施例1(1)の誘電体薄膜は(110)面に帰属されるχが45度付近のピーク強度は弱くかつ半値幅が大きく(配向度が低く)、一方、図5(b)及び(c)から明らかなように、実施例5(5)及び実施例6(6)の各誘電体薄膜は(110)面に帰属されるχが45度付近のピーク強度は強くかつ半値幅が小さい(配向度が高い)ことが判った。
 実施例1(1)と実施例8(9)と実施例12(8)と実施例11(12)で得られた値で囲んだ第1領域(図2参照)は、表1から明らかなように(110)ピーク半値幅が22.0度以下と良好で、比誘電率の平均が600であり、誘電特性が良好であった。実施例3(3)と実施例8(9)と実施例7(7)と実施例10(11)で得られた値で囲んだ第2領域(図2参照)は、表1から明らかなように(110)ピーク半値幅が9.6度以下と良好で、比誘電率の平均が632.5であり、誘電特性が良好であった。特に、実施例5(5)と実施例6(6)と実施例10(11)で得られた値で囲んだ第3領域(図2参照)は、表1から明らかなように(110)ピーク半値幅が3.3度以下と極めて小さく、比誘電率の平均が882.5と比誘電率に極めて優れていた。
 <実施例6、実施例13、比較例1>
  表1から明らかなように、膜組成が同一で結晶配向性のみが異なる実施例6、実施例13、比較例1を比較すると、実施例6、実施例13では(110)ピーク半値幅がそれぞれ3.0、10.0と良好で、比誘電率はそれぞれ1050、470と高い値を示した。一方、ランダム配向の比較例1は(110)ピーク半値幅が極めて大きくて悪く、その結果、比誘電率は100と小さい値を示した。このことから、結晶配向性を向上させることが、比誘電率向上に大きく影響することが判った。
 図6に実施例13の700℃で焼成した誘電体薄膜に対してX線回折法によりθ-2θスキャンを実施し、X線回折線のピーク強度を測定した結果を示す。図6から明らかなように、実施例13の誘電体薄膜は(100)面に配向していることが判った。
 <実施例1~12、実施例14>
  室温下での測定試験で作製した実施例1~12の非鉛誘電体薄膜に加えて、BaTiO3のモル比(x)が0.60、Bi(Mg0.5Ti0.5)O3のモル比(y)が0.40、BiFeO3のモル比(z)が0.00である実施例14の非鉛誘導体薄膜を作製した。モル比を変更した以外、実施例14の非鉛誘導体薄膜は、実施例1~12と同様に作製した。
 <高温下での測定試験>
  こうして作製した13種類の非鉛誘導体薄膜のうち、実施例1~4の4種類の非鉛誘導体薄膜について、大気雰囲気下、25℃、50℃、100℃、150℃、200℃、250℃、300℃、350℃及び400℃の各温度における比誘電率を上述したインピーダンス・アナライザによりそれぞれ測定した。実施例1~4以外の実施例5~11と実施例14の8種類の非鉛誘導体薄膜について、大気雰囲気下、25℃、50℃、100℃、150℃、200℃及び250℃の各温度における比誘電率を上述したインピーダンス・アナライザによりそれぞれ測定した。また実施例12の非鉛誘導体薄膜について、大気雰囲気下、25℃、50℃及び100℃の各温度における比誘電率を上述したインピーダンス・アナライザにより測定周波数を100kHzにてそれぞれ測定した。三元図上における実施例1~実施例4、実施例8、実施例11、実施例12及び実施例14を図7に示す。また13種類の非鉛誘導体薄膜の各温度における比誘電率を表2に示す。更に実施例1(1)~実施例7(7)及び実施例12(8)の誘導体薄膜の25℃以上の各温度における比誘電率を図8に示し、実施例6(6)及び実施例8(9)~実施例11(12)及び実施例14(13)の誘導体薄膜の25℃以上の各温度における比誘電率を図9に示す。図7及び図9の丸数字の13は実施例14を示す。
Figure JPOXMLDOC01-appb-T000002
 <評価2>
 表2及び図8、図9に示される実施例1(1)と実施例2(2)と実施例3(3)と実施例4(4)で得られた非鉛誘導体薄膜の25℃から400℃までの温度範囲における各比誘電率と実施例14(13)で得られた非鉛誘導体薄膜の25℃から250℃までの温度範囲における各比誘電率を見ると、実施例1~4の400℃における比誘電率又は実施例14の250℃における比誘電率は、それぞれ25℃における比誘電率とほぼ一定であり、温度依存性が小さく、高温雰囲気下で使用される誘導体薄膜に適することが判った。図7において、実施例1(1)と実施例2(2)と実施例3(3)と実施例4(4)と実施例14(13)で囲まれた領域は第4領域として示される。図7において、第1領域は、第4領域が第1領域内にあることを明らかにするために示している。
 本発明の非鉛誘電体薄膜形成用液組成物から作られた非鉛誘電体薄膜は、薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、LCノイズフィルタ素子、トランジスタのゲート絶縁体、不揮発性メモリ、又は焦電型赤外線検出素子のいずれかからなる複合電子部品、或いは圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、表面弾性波素子、又はトランスジューサのいずれかからなる複合電子部品に利用できる。

Claims (26)

  1.  BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3の成分のうち少なくとも2成分を含有して(111)配向に制御された非鉛誘電体薄膜。
  2.  BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3の成分のうち少なくとも2成分を含有して(100)配向に制御された非鉛誘電体薄膜。
  3.  (111)SrRuO3上に形成された請求項1記載の非鉛誘電体薄膜。
  4.  (100)LaNiO3上に形成された請求項2記載の非鉛誘電体薄膜。
  5.  前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、請求項1記載の非鉛誘電体薄膜。
  6.  前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、請求項2記載の非鉛誘電体薄膜。
  7.  前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、請求項3記載の非鉛誘電体薄膜。
  8.  前記少なくとも2成分の組成が、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、y=0.10・z=0.90と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、請求項4記載の非鉛誘電体薄膜。
  9.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である、請求項5記載の非鉛誘電体薄膜。
  10.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である、請求項6記載の非鉛誘電体薄膜。
  11.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である、請求項7記載の非鉛誘電体薄膜。
  12.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である、請求項8記載の非鉛誘電体薄膜。
  13.   前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である、請求項9記載の非鉛誘電体薄膜。
  14.   前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である、請求項10記載の非鉛誘電体薄膜。
  15.   前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である、請求項11記載の非鉛誘電体薄膜。
  16.   前記少なくとも2成分の組成が、前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・y=0.10・z=0.60と、x=0.30・y=0.50・z=0.20とで囲まれた第3領域内の組成である、請求項12記載の非鉛誘電体薄膜。
  17.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である請求項5記載の非鉛誘電体薄膜。
  18.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である請求項6記載の非鉛誘電体薄膜。
  19.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である請求項7記載の非鉛誘電体薄膜。
  20.   前記少なくとも2成分の組成が、前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である請求項8記載の非鉛誘電体薄膜。
  21.   化学溶液堆積法により形成された請求項1ないし20いずれか1項に記載の非鉛誘電体薄膜。
  22. 請求項1ないし20いずれか1項に記載の誘電体薄膜を、化学溶液堆積法により形成するための非鉛誘電体薄膜形成用液組成物。
  23.  請求項22記載の非鉛誘電体薄膜形成用液組成物を基板に塗布して塗膜を形成する塗布工程と、前記基板に形成された塗膜を、空気中、酸化雰囲気中又は含水蒸気雰囲気中で加熱して乾燥する乾燥工程と、
     前記乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する焼成工程と
     を含む非鉛誘電体薄膜の形成方法。
  24.  前記塗布工程及び前記乾燥工程が複数回繰り返され、
     前記焼成工程が前記複数回繰り返された最終乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する工程である請求項23記載の非鉛誘電体薄膜の形成方法。
  25.  請求項1ないし21いずれか1項に記載の非鉛誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、LCノイズフィルタ素子、トランジスタのゲート絶縁体、不揮発性メモリ、又は焦電型赤外線検出素子のいずれかからなる複合電子部品。
  26.  請求項1ないし21いずれか1項に記載の誘電体薄膜を有する圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、表面弾性波素子、又はトランスジューサのいずれかからなる複合電子部品。
PCT/JP2014/072430 2013-10-24 2014-08-27 非鉛誘電体薄膜及びこの薄膜形成用組成物並びにこの薄膜の形成方法 WO2015060004A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013220960 2013-10-24
JP2013-220960 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015060004A1 true WO2015060004A1 (ja) 2015-04-30

Family

ID=52992611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072430 WO2015060004A1 (ja) 2013-10-24 2014-08-27 非鉛誘電体薄膜及びこの薄膜形成用組成物並びにこの薄膜の形成方法

Country Status (2)

Country Link
JP (1) JP2015107905A (ja)
WO (1) WO2015060004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226808A (zh) * 2020-09-10 2021-01-15 清华大学 铁酸铋纳米单晶阵列及其制备方法和含有其的电子元件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137194A (ja) * 2014-01-21 2015-07-30 エプコス アクチエンゲゼルシャフトEpcos Ag 誘電体磁器組成物、誘電体素子、電子部品および積層電子部品
JP2015137193A (ja) 2014-01-21 2015-07-30 エプコス アクチエンゲゼルシャフトEpcos Ag 誘電体磁器組成物、誘電体素子、電子部品および積層電子部品
JP6950404B2 (ja) * 2017-03-15 2021-10-13 三菱マテリアル株式会社 圧電体膜形成用液組成物の製造方法及びこの液組成物を用いて圧電体膜を形成する方法
JP7166800B2 (ja) 2018-06-20 2022-11-08 キヤノン株式会社 配向性圧電体膜用塗工液組成物、配向性圧電体膜、並びに、液体吐出ヘッド
CN110981467B (zh) * 2019-12-09 2020-12-29 华中科技大学 一种无铅热释电复合陶瓷材料及其制备方法
CN112670086A (zh) * 2020-10-27 2021-04-16 西安交通大学 一种硅集成具有高储能密度的薄膜电容器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067553A (ja) * 2011-09-06 2013-04-18 Canon Inc 圧電セラミックス、圧電セラミックスの製造方法、圧電素子、液体吐出ヘッド、液体吐出装置、超音波モータ、光学機器、振動装置、塵埃除去装置、撮像装置、および電子機器
WO2013146303A1 (ja) * 2012-03-26 2013-10-03 国立大学法人山梨大学 誘電材料、誘電素子、コンデンサ、積層コンデンサ及び蓄電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067553A (ja) * 2011-09-06 2013-04-18 Canon Inc 圧電セラミックス、圧電セラミックスの製造方法、圧電素子、液体吐出ヘッド、液体吐出装置、超音波モータ、光学機器、振動装置、塵埃除去装置、撮像装置、および電子機器
WO2013146303A1 (ja) * 2012-03-26 2013-10-03 国立大学法人山梨大学 誘電材料、誘電素子、コンデンサ、積層コンデンサ及び蓄電装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
G.CHENG ET AL.: "Ferroelectric Properties of BiFeO3 Thin Films Prepared via a Simple Chemical Solution Deposition", FERROELECTRICS, vol. 406, 2010, pages 137 - 142 *
H.TANAKA ET AL.: "Growth of (111)-oriented BaTiO3-Bi (Mg0.5Ti0.5)O3 epitaxial films and their crystal structure and electrical property characterizations", JOURNAL OF APPLIED PHYSICS, vol. 111, 2012, pages 084108 *
HONGRI LIU ET AL.: "Ferroelectricity of highly preferentially oriented (BiFeO3)1-x-(BaTiO3)x solid solution film by sol-gel method", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 57, 2011, pages 1 - 5 *
M.NAGASAKA ET AL.: "Microstructure and electrical properties of BaTiO3 thin films by modified CSD", J.CERAM.SOC., vol. 119, no. 1390, 2011, JPN., pages 498 - 501 *
MASAKI ITO ET AL.: "BaTiO3-Bi(Mg, Ti)O3-BiFeO3 Usumaku no Atsuden Tokusei", EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 73RD, 2012, pages 06 - 02 5 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226808A (zh) * 2020-09-10 2021-01-15 清华大学 铁酸铋纳米单晶阵列及其制备方法和含有其的电子元件
CN112226808B (zh) * 2020-09-10 2021-12-07 清华大学 铁酸铋纳米单晶阵列及其制备方法和含有其的电子元件

Also Published As

Publication number Publication date
JP2015107905A (ja) 2015-06-11

Similar Documents

Publication Publication Date Title
WO2015060004A1 (ja) 非鉛誘電体薄膜及びこの薄膜形成用組成物並びにこの薄膜の形成方法
Tu et al. Processing and characterization of Pb (Zr, Ti) O3 films, up to 10 μm thick, produced from a diol sol-gel route
JP5418725B2 (ja) 圧電体薄膜素子
KR20120128567A (ko) 강유전체 박막의 제조 방법
WO2015060003A1 (ja) 非鉛誘電体薄膜形成用液組成物及びその薄膜の形成方法並びにその方法で形成された非鉛誘電体薄膜
KR101980382B1 (ko) 유전체 박막 형성용 조성물, 유전체 박막의 형성 방법 및 그 방법에 의해 형성된 유전체 박막
KR20130111305A (ko) Pzt 계 강유전체 박막 및 그 제조 방법
KR102334850B1 (ko) Mn 및 Nb 도프의 PZT 계 압전체막
EP3261138B1 (en) Piezoelectric ptzt film
WO2012141104A1 (ja) 強誘電体薄膜およびその製造方法
KR100803440B1 (ko) 복합 금속 산화물용 원료 조성물
JP3953810B2 (ja) ゾル−ゲル工程を利用した強誘電体薄膜の製造方法
JP5560460B2 (ja) 誘電体薄膜の形成方法
CN104072131B (zh) 铁电薄膜形成用组合物的制造方法及其用途
JP2018137334A (ja) Pzt系強誘電体薄膜及びその製造方法
Bhaskar et al. Influence of Precursor Solutions on the Ferroelectric Properties of Sol‐Gel‐Derived Lanthanum‐Modified Lead Titanate (PLT) Thin Films
US20140287136A1 (en) LaNiO3 THIN FILM-FORMING COMPOSITION AND METHOD OF FORMING LaNiO3 THIN FILM USING THE SAME
JP5754539B2 (ja) LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法
KR101138239B1 (ko) 고압전 계수 박막의 제조방법
Negi et al. Metallo-Organic Decomposition Synthesis and Characterization of Ferroelectric (PB1− XCAX) TIO3 Thin Films
Ma et al. Ferroelectric and optical properties of Bi3. 25Nd0. 75Ti3O12 thin films prepared by a chemical solution method
Čakare et al. Antiferroelectric PbZrO3 films prepared by sol-gel processing
Sadeghzadeh-Attar Dielectric Properties of Nanostructured Bi4Ti3O12 and Bi12TiO20 Films Prepared by Sol-Gel Method
Nurbaya et al. Fabrication of Spin Coating Deposited Nanofilms Lead Titanate for MFM Capacitor
Goel et al. Ferroelectric films and micro devices.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855565

Country of ref document: EP

Kind code of ref document: A1