WO2015059859A1 - リチウムイオン二次電池の負極用粉末 - Google Patents

リチウムイオン二次電池の負極用粉末 Download PDF

Info

Publication number
WO2015059859A1
WO2015059859A1 PCT/JP2014/004550 JP2014004550W WO2015059859A1 WO 2015059859 A1 WO2015059859 A1 WO 2015059859A1 JP 2014004550 W JP2014004550 W JP 2014004550W WO 2015059859 A1 WO2015059859 A1 WO 2015059859A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
carbon
lithium
negative electrode
silicon oxide
Prior art date
Application number
PCT/JP2014/004550
Other languages
English (en)
French (fr)
Inventor
裕亮 白川
木崎 信吾
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to JP2015543691A priority Critical patent/JP6195936B2/ja
Publication of WO2015059859A1 publication Critical patent/WO2015059859A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a powder used for a negative electrode material of a lithium ion secondary battery, and more particularly to a powder containing lithium-doped carbon-coated silicon oxide powder.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries, and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents.
  • the gasket 4 is provided.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c.
  • the counter electrode 1c is mainly made of lithium cobalt oxide (LiCoO 2 ) or manganese spinel (LiMn 2 O 4 ). Is done.
  • the negative electrode 2 includes a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c.
  • the negative electrode material used for the working electrode 2c is generally an active material (negative electrode) capable of occluding and releasing lithium ions. Active material), a conductive aid and a binder.
  • silicon oxide is an amorphous silicon oxide, for example, obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon. is there.
  • Silicon oxide can be a negative electrode active material capable of increasing the effective charge / discharge capacity because there is little deterioration due to structure destruction due to occlusion / release of lithium ions during charge / discharge and generation of irreversible substances. . Therefore, by using silicon oxide as the negative electrode active material, it has a high capacity compared to the case of using carbon, and compared to the case of using a high capacity negative electrode material such as Si or Sn alloy, A lithium ion secondary battery having good cycle characteristics is obtained.
  • Patent Document 1 discloses a lithium-containing silicon oxide powder represented by the general formula SiLi x O y (0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1.5). It is said that a lithium ion secondary battery having a high capacity and free from cycle deterioration can be obtained by using as a negative electrode material for a lithium ion secondary battery.
  • This lithium-containing silicon oxide powder is produced by heating and reacting a mixture of SiO z powder (1.0 ⁇ z ⁇ 1.6) with metallic lithium or a lithium compound.
  • a binder and water or an organic solvent are added to the negative electrode powder to form a slurry. It is applied and dried.
  • the binder includes an aqueous binder used in the form of organic particles dispersed in water, and an organic binder made of a resin and dissolved in an organic solvent. If the negative electrode powder is made into a slurry using only water and an aqueous binder, the viscosity of the slurry becomes too low as compared with an appropriate viscosity, and the applicability to the substrate becomes poor. For this reason, when an aqueous binder is used, a thickener is added so that the slurry has an appropriate viscosity.
  • Patent Document 1 when forming a negative electrode of a lithium ion secondary battery, the lithium-containing silicon oxide powder is made into a slurry by adding polyvinylidene fluoride and N-methylpyrrolidone. That is, Patent Document 1 discloses that a lithium-containing silicon oxide powder is made into a slurry using an organic binder.
  • organic binders are more expensive than aqueous binders.
  • a slurry is prepared using an aqueous binder.
  • data on water-based binders has been sufficiently accumulated, but data on organic binders has not been sufficiently accumulated. Therefore, even when the negative electrode powder contains lithium-doped silicon oxide powder, if an aqueous binder can be used, a wealth of knowledge about the aqueous binder obtained so far can be utilized.
  • the viscosity of the slurry is such that proper coating properties can be obtained. Lower than This is because the lithium component of the lithium-containing silicon oxide powder reacts with water, which inhibits the hydrogen bond between the thickener molecule and water, resulting in no thickening effect by the thickener. It is believed that there is.
  • the components of the slurry tend to be non-uniform.
  • the active material and the binder are localized in the slurry.
  • an active material, a binder, etc. localize in the negative electrode, and the cycle characteristics of the lithium ion secondary battery provided with the negative electrode deteriorate. This is because, due to this localization, the expansion / contraction of the active material particles due to insertion / extraction of lithium is not buffered by the binder, and the structure of the negative electrode is destroyed.
  • the present invention has been made in view of these problems, and is a negative electrode powder for a lithium ion secondary battery, and even if a negative electrode is produced using a slurry containing water, an aqueous binder, and a thickener, It aims at providing the powder which can acquire a favorable battery characteristic.
  • the gist of the present invention resides in the following negative electrode powders (A) to (C).
  • the negative electrode powder of the present invention can have a sufficiently high slurry viscosity even if it is made into a slurry using water, an aqueous binder, and a thickener. For this reason, in the slurry, the constituent components of the slurry can be maintained uniformly, and the localization of the binder and the like can be prevented from proceeding. Therefore, when a negative electrode is formed using such a slurry, the active material, the binder, and the like are uniformly distributed in the negative electrode, so that the cycle characteristics of the lithium ion secondary battery provided with the negative electrode can be improved. .
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 is a diagram showing the relationship between the values of X and Y and the overall evaluation of battery characteristics.
  • the negative electrode powder of the present invention is used for a negative electrode material of a lithium ion secondary battery (hereinafter simply referred to as “battery”).
  • a silicon powder, a lithium-doped carbon-coated silicon oxide powder, and a graphite powder are mixed, the content of the carbon-coated silicon powder is ⁇ mass%, and the lithium-doped carbon-coated silicon oxide
  • the graphite powder content is ⁇ mass%
  • X ( ⁇ + ⁇ ) / ( ⁇ + ⁇ + ⁇ ) ⁇ 100
  • Y ⁇ / ⁇ ⁇ 100
  • the proportion of the lithium-doped carbon-coated silicon oxide powder (hereinafter referred to as “carbon-coated lithium-doped silicon oxide powder”) in this negative electrode powder is 50 mass. %. That is, the proportion of the lithium-containing powder in the whole negative electrode powder is reduced in the negative electrode powder of the present invention as compared with the lithium-containing silicon oxide powder that is a conventional negative electrode powder. For this reason, in the slurry prepared using the negative electrode powder, water, an aqueous binder, and a thickener, the reaction between the lithium component in the negative electrode powder and water is reduced, and the thickener molecules and water are reduced. Can be sufficiently hydrogen bonded.
  • the negative electrode powder of the present invention is made into a slurry using water, an aqueous binder, and a thickener, the localization of the binder and the like can be prevented from proceeding in the slurry.
  • the components can be kept uniform. Therefore, when a negative electrode is formed using such a slurry, since the binder and the like are uniformly distributed in the negative electrode, the cycle characteristics of the lithium ion secondary battery provided with the negative electrode can be improved.
  • the negative electrode powder of the present invention increases the charge / discharge capacity even if the proportion of silicon oxide is low. be able to.
  • the ratio of the carbon-coated silicon powder to the carbon-coated lithium-doped silicon oxide powder is so small as 1> Y, the ratio of the carbon-coated lithium-doped silicon oxide powder in the whole negative electrode powder is sufficiently large And the charge / discharge capacity cannot be increased.
  • the carbon-coated silicon powder is fine (for example, as described later, the volume median diameter is 2 ⁇ m or less), the viscosity of the slurry can be increased by increasing the proportion of the carbon-coated silicon powder. In the case of 1> Y, such an effect cannot be obtained.
  • the ratio of carbon-coated silicon powder to carbon-coated lithium-doped silicon oxide powder is: When 10 ⁇ Y and the amount is large to some extent, the expansion / contraction of the negative electrode material at the time of occlusion / release of lithium becomes too large, and the structure of the negative electrode is destroyed, so that the cycle characteristics of the battery deteriorate.
  • the ratio of the carbon-coated silicon powder and the carbon-coated lithium-doped silicon oxide powder when the ratio of the carbon-coated silicon powder and the carbon-coated lithium-doped silicon oxide powder is small, the ratio of the graphite powder is large. Graphite has a smaller amount of occlusion of lithium than silicon and silicon oxide.
  • the proportion of the carbon-coated silicon powder and the carbon-coated lithium-doped silicon oxide powder in the negative electrode powder is as small as ⁇ 9 ⁇ X + 19> Y with respect to the above formula (3), the initial charge / discharge capacity of the battery is Lower.
  • a / ( ⁇ The carbon coating thickness calculated in S) is preferably 1 ⁇ 10 ⁇ 3 ⁇ m to 0.1 ⁇ m.
  • a literature value can be adopted as the density of carbon, for example, 2.2 ⁇ 10 6 g / m 3 .
  • the carbon-coated film thickness having such a thickness is such that the volume median diameter of the carbon-coated silicon powder is in the range of 0.01 to 2 ⁇ m, and the carbon content of the carbon-coated silicon powder is 0. It is easy to obtain when it is in the range of 6 to 10.0% by mass.
  • the volume median diameter (hereinafter referred to as “D 50 ”) is a particle size of 50% cumulative from the fine particle side (or coarse particle side) of the volume-based cumulative particle size distribution, and is an index of the average particle size of the powder. It becomes.
  • the cumulative particle size distribution can be measured by, for example, a laser diffraction particle size distribution measuring apparatus.
  • the D 50 of the carbon-coated silicon powder by a 2 ⁇ m or less, compared with the case 2 ⁇ m greater than the effect of increasing the viscosity of the slurry using the anode for powder.
  • the D 50 of the carbon-coated silicon powder by a 2 ⁇ m or less, (in FIG. 1, the working electrode current collector 2b) electrode due to expansion and contraction of the negative electrode material during charging and discharging of the battery peeling of the negative electrode material from Can be suppressed.
  • the D 50 of the carbon-coated silicon powder with more than 0.01 [mu] m the negative electrode powder can easily be slurried. Silicon powder D 50 is less than 0.01 ⁇ m, there is the rapid oxidation occurs, it is difficult to manufacture.
  • D 50 (d) of the carbon-coated silicon powder is in a range of 0.1 to 2 ⁇ m. In this case, handling of the carbon-coated silicon powder can be further facilitated.
  • silicon oxide powder for example, silicon oxide and silicon dioxide powder are mixed and heated to deposit silicon oxide on the substrate from the SiO gas generated by the sublimation reaction, and this silicon oxide is pulverized.
  • a D 50 adjusted to 3.0 to 30 ⁇ m by grinding with a ball mill can be used.
  • As lithium raw material powder what contains metallic lithium or a lithium compound (for example, LiH) can be used.
  • silicon oxide powder and lithium raw material powder are mixed, and the mixed powder is fired in an inert gas atmosphere at a temperature in the range of 200 to 1200 ° C. (preferably 350 to 900 ° C.). Thereby, silicon oxide and lithium are combined (reacted) to obtain silicon oxide powder doped with lithium.
  • the lower the firing temperature the harder the compounding proceeds, and at temperatures below 200 ° C., the compounding does not proceed substantially.
  • the firing temperature is higher than 900 ° C., disproportionation of silicon oxide (decomposition by the reaction of 2SiO ⁇ Si + SiO 2 ) proceeds. As the disproportionation of silicon oxide proceeds, battery characteristics often deteriorate.
  • the silicon oxide powder doped with lithium is coated with carbon by a thermal CVD (Chemical Vapor Deposition) reaction at 500 to 1200 ° C. (preferably 600 to 900 ° C.).
  • a thermal CVD Chemical Vapor Deposition
  • hydrocarbon methane, propane, acetylene, etc.
  • Carbon-coated silicon powder can also be obtained by coating carbon on silicon powder by the same method.
  • Silicon powder for example, D 50 is, can be used for 0.1 ⁇ 30 [mu] m.
  • a silicon oxide powder and silicon D 50 of the powder it will not change substantially.
  • the D 50 of the graphite powder can be set to 10 to 40 ⁇ m, for example.
  • the carbon-coated silicon powder, the carbon-coated lithium-doped silicon oxide, and the graphite powder are preferably used in proportions that satisfy the requirements of the above formulas (1) to (3), preferably the above formulas (1) and (4)
  • the powder for negative electrodes of this invention can be obtained by mixing in the ratio which satisfy
  • Carbon-coated silicon powder, carbon-coated lithium-doped silicon oxide powder, and graphite powder were prepared, and these powders were mixed at a ratio falling within the scope of the present invention (Examples), and a ratio not falling within the scope of the present invention (Comparative example) were prepared, batteries were prepared using the respective powders, and the characteristics were measured.
  • These raw material powders were mixed and fired at 750 ° C. for 360 minutes in an Ar atmosphere at atmospheric pressure to react silicon oxide with lithium to obtain lithium-doped silicon oxide powder.
  • the obtained powder was rotated at 5 rpm using a kiln (rotary heat treatment furnace) and heated to 850 ° C. while flowing Ar gas mixed with propane (C 3 H 8 ) gas. Thereby, carbon coating by thermal CVD reaction was performed on the particles of lithium-doped silicon oxide powder.
  • the carbon content of the lithium-doped silicon oxide powder was 1.0% by mass.
  • the carbon-coated silicon powder was produced as follows. A silicon powder having a D 50 of 1.9 ⁇ m was rotated at 5 rpm using a kiln, and heated to 850 ° C. while flowing Ar gas mixed with propane (C 3 H 8 ) gas. Thereby, carbon coating by thermal CVD reaction was performed on the silicon powder particles. The carbon content of the carbon-coated silicon powder was 10% by mass.
  • the graphite powder SWF15P2 manufactured by Chuo Electric Industry Co., Ltd. was used.
  • the D 50 of the graphite powder was 17.7Myuemu. 10% cumulative from the cumulative particle size distribution fine side of the volume-based, and cumulative 90% particle size, respectively D 10, and when the D 90, D 10 of the graphite powder, and D 90, respectively, 11.9, It was 28.6 ⁇ m.
  • the specific surface area was 3.7 m ⁇ 2 > / g and the tap density was 1.11 g / cm ⁇ 3 >.
  • a negative electrode was prepared using each sample of the obtained negative electrode powder, and a battery (coin cell) was prepared using the negative electrode.
  • a slurry containing a sample of each negative electrode powder was applied to a copper foil having a thickness of 20 ⁇ m, dried at 120 ° C. for 120 minutes, and then punched into 1 cm 2 (1 cm ⁇ 1 cm) to obtain a negative electrode.
  • the slurry is a ratio of 50: 0.75: 0.75: 0.5 in terms of a mass ratio of each negative electrode powder sample, acetylene black (AB), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC).
  • each negative electrode powder was prepared by adding ion exchange water at a ratio of 48.6 to 50.0 by mass ratio. In general, the larger the value of ⁇ , the higher the viscosity of the slurry.
  • Styrene butadiene rubber is an aqueous binder.
  • CMC is a thickener and dissolves in water in the slurry to increase the viscosity of the slurry as compared to the case where CMC is not added.
  • the battery is manufactured by using the negative electrode and a lithium foil as a counter electrode, and placing a 30 ⁇ m thick polyethylene porous film separator impregnated with an electrolyte between the negative electrode and the counter electrode. did.
  • the electrolyte is a solution obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1, and lithium hexafluoride (LiPF 6 ) is in a ratio of 1 mol / L. Thus, it was dissolved.
  • the discharge capacity ratio is the ratio of the initial discharge capacities of Comparative Examples 2 to 6 and Examples 1 to 8 to the initial discharge capacity of the battery of Comparative Example 1.
  • the initial discharge capacity is the discharge capacity at the first cycle in the cycle characteristic measurement method described below.
  • Cycle characteristics were measured using a secondary battery charge / discharge tester manufactured by Nagano Co., Ltd. Charging was performed at a constant current of 0.1 C until the voltage reached 0V, and after the voltage reached 0V, the cell voltage was maintained at 0V. Charging was terminated when the current value fell below 20 ⁇ A. Discharging was performed at a constant current of 0.1 C until the voltage reached 1.5V. The above charge / discharge cycle was performed 50 times, and the ratio (%) of the discharge capacity at the 50th cycle when the initial discharge capacity was 100 was defined as the cycle characteristics.
  • the value of 1C was calculated assuming that the discharge capacity of SiO was 1500 mAh / g and the discharge capacity of Si was 2400 mAh / g.
  • the weight of SiO as the active material in the negative electrode is M (mg)
  • Table 1 shows the measurement results of the discharge capacity ratio and the cycle characteristics.
  • the column of “Comprehensive evaluation” in Table 1 is as follows according to the sum of the discharge capacity ratio (%) and the cycle characteristics (%).
  • Impossible; 200% or less
  • Good; higher than 200% and less than 220%
  • Particularly good; higher than 220%
  • FIG. 2 shows the relationship between the values of X and Y and the overall evaluation of battery evaluation.
  • FIG. In FIG. 2, the range surrounded by the thick line is the range of the present invention, and the range surrounded by the broken line is a more preferable range of the range of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

炭素被覆された珪素粉末と、リチウムドープされ炭素被覆された酸化珪素粉末と、黒鉛粉末とを混合してなる、リチウムイオン二次電池の負極用粉末。炭素被覆された珪素粉末の含有率をα質量%、リチウムドープされ炭素被覆された酸化珪素粉末の含有率をβ質量%、黒鉛粉末の含有率をγ質量%、X=(α+β)/(α+β+γ)×100、Y=α/β×100とすると、この粉末は、X<50、1≦Y≦10、および-9×X+19≦Y≦-9/10×X+37のいずれの関係も満たす。この負極用粉末は、水、水系バインダー、および増粘剤を含むスラリー用いて負極を作製しても、良好な電池特性を得ることができる。

Description

リチウムイオン二次電池の負極用粉末
 この発明は、リチウムイオン二次電池の負極材に用いられる粉末に関し、より詳しくは、リチウムドープされ炭素被覆された酸化珪素粉末を含む粉末に関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化との観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池、およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池、およびニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、同図に示すように、正極1、負極2、電解液を含浸させたセパレータ3、および正極1と負極2との電気的絶縁性を保つとともに電池内容物を封止するガスケット4を備えている。充放電を行うと、リチウムイオンがセパレータ3の電解液を介して正極1と負極2との間を往復する。
 正極1は、対極ケース1aと、対極集電体1bと、対極1cとで構成され、対極1cには、主に、コバルト酸リチウム(LiCoO)、またはマンガンスピネル(LiMn4)が使用される。負極2は、作用極ケース2aと、作用極集電体2bと、作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵・放出が可能な活物質(負極活物質)と、導電助剤およびバインダーとで構成される。
 負極活物質としては、従来、炭素が用いられてきたが、充放電容量をより大きくするために、近年、酸化珪素を用いることが、試みられている。ここで、「酸化珪素」とは、非晶質の珪素酸化物で、たとえば、二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させて得られたものである。
 酸化珪素は、充放電時のリチウムイオンの吸蔵・放出による構造の破壊、および不可逆物質の生成等による劣化が少ないことから、有効な充放電容量をより大きくすることが可能な負極活物質となり得る。そのため、負極活物質として、酸化珪素を用いることにより、炭素を用いた場合と比較して、高容量であり、かつ、Si、またはSn合金といった高容量負極材を用いた場合と比較して、サイクル特性が良好なリチウムイオン二次電池が得られている。
 負極用粉末として、酸化珪素粉末にリチウムをドープしたものを用いると、リチウムイオン二次電池として、初期効率、およびサイクル特性を高くすることができることが知られている。たとえば、下記特許文献1には、一般式SiLi(0<x<1.0、0<y<1.5)で表されるリチウム含有酸化珪素粉末が開示されており、この粉末を、リチウムイオン二次電池用負極材として用いることで、高容量でかつサイクル劣化のないリチウムイオン二次電池を得ることができるとされている。このリチウム含有酸化珪素粉末は、SiO粉末(1.0≦z≦1.6)と、金属リチウムまたはリチウム化合物との混合物を加熱して反応させることにより製造される。
 ところで、負極材を、膜状の形態の作用極2cに成形するために、負極用粉末に、バインダーと、水、または有機溶媒とが添加されて、スラリーにされ、このスラリーが、基材の上に塗布されて乾燥される。バインダーには、有機物の粒子の形態で、水に分散させて用いる水系バインダーと、樹脂からなり、有機溶媒に溶解させて用いる有機系バインダーとがある。負極用粉末を、水、および水系バインダーのみを用いてスラリーにすると、スラリーの粘度が適正な粘度に比して低くなりすぎ、基材に対する塗布性が悪くなる。このため、水系バインダーを用いるときは、スラリーが適正な粘度を有するように、増粘剤が添加される。
 下記特許文献1では、リチウムイオン二次電池の負極を形成する際、上記リチウム含有酸化珪素粉末は、ポリフッ化ビニリデンと、N-メチルピロリドンとが加えられて、スラリーにされる。すなわち、引用文献1には、有機系バインダーを用いて、リチウム含有酸化珪素粉末をスラリーにすることが開示されている。
特許第4702510号公報
 しかし、有機系バインダーは、水系バインダーに比して、高価である。また、従来、負極活物質として炭素を用いる場合は、水系バインダーを用いてスラリーが作製されていた。このため、リチウムイオン二次電池の技術分野において、水系バインダーに関するデータは、十分に蓄積されてきたが、有機系バインダーに関するデータは、十分には蓄積されていない。したがって、負極用粉末が、リチウムドープされた酸化珪素粉末を含む場合にも、水系バインダーを用いることができれば、これまでに得られた水系バインダーに関する豊富な知見を活用することができる。
 上記特許文献1に開示されているリチウム含有酸化珪素粉末は、水、および水系バインダーを用いてスラリーにすると、増粘剤を添加したとしても、スラリーの粘度が、適正な塗布性が得られる粘度に比して低くなる。これは、リチウム含有酸化珪素粉末のリチウム成分が水と反応し、これにより、増粘剤の分子と水との水素結合が阻害される結果、増粘剤による増粘効果が得られないためであると考えられる。
 このような低粘度のスラリー中では、スラリーの構成成分が不均一になりやすい。たとえば、スラリー中で、活物質、およびバインダーが局在化する。このため、このようなスラリーを用いて負極を形成すると、その負極では、活物質、バインダー等が局在し、その負極が備えられたリチウムイオン二次電池のサイクル特性が悪化する。これは、この局在化により、リチウムの吸蔵・放出による活物質粒子の膨張・収縮が、バインダーによっては緩衝されなくなり、負極の構造が破壊されるためである。
 本発明は、これらの問題に鑑みてなされたものであり、リチウムイオン二次電池の負極用粉末であって、水、水系バインダー、および増粘剤を含むスラリー用いて負極を作製しても、良好な電池特性を得ることができる粉末を提供することを目的としている。
 本発明の要旨は、下記(A)~(C)の負極用粉末にある。
(A)リチウムイオン二次電池の負極用粉末であって、
 炭素被覆された珪素粉末と、リチウムドープされ炭素被覆された酸化珪素粉末と、黒鉛粉末とを混合してなり、
 前記炭素被覆された珪素粉末の含有率をα質量%、前記リチウムドープされ炭素被覆された酸化珪素粉末の含有率をβ質量%、前記黒鉛粉末の含有率をγ質量%、X=(α+β)/(α+β+γ)×100、Y=α/β×100とすると、下記(1)式~(3)式の関係のいずれも満たすことを特徴とする粉末。
  X<50  (1)
  1≦Y≦10  (2)
  -9×X+19≦Y≦-9/10×X+37  (3)
(B)下記(4)式、および(5)式の関係のいずれも満たすことを特徴とする上記(A)に記載の負極用粉末。
  3≦Y≦8  (4)
  -5/2×X+41/2≦Y≦-5/4×X+38  (5)
(C)前記炭素被覆された珪素粉末の体積メディアン径が、0.1~2μmの範囲内にあることを特徴とする上記(A)または(B)に記載の負極用粉末。
 本発明の負極用粉末は、水、水系バインダー、および増粘剤を用いてスラリーにしても、スラリー粘度を、十分に高くすることができる。このため、スラリー中で、スラリーの構成成分を均一に維持し、バインダー等の局在化が進行しないようにすることができる。したがって、このようなスラリーを用いて負極を形成すると、その負極では、活物質、バインダー等が均一に分布するので、その負極が備えられたリチウムイオン二次電池のサイクル特性を高くすることができる。
図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。 図2は、X、およびYの値と、電池特性の総合評価との関係を示す図である。
1.本発明の負極用粉末
 上述のように、本発明の負極用粉末は、リチウムイオン二次電池(以下、単に、「電池」という。)の負極材に用いられるものであり、「炭素被覆された珪素粉末と、リチウムドープされ炭素被覆された酸化珪素粉末と、黒鉛粉末とを混合してなり、前記炭素被覆された珪素粉末の含有率をα質量%、前記リチウムドープされ炭素被覆された酸化珪素粉末の含有率をβ質量%、前記黒鉛粉末の含有率をγ質量%、X=(α+β)/(α+β+γ)×100、Y=α/β×100とすると、下記(1)式~(3)式の関係のいずれも満たす」ことを特徴とする。
  X<50  (1)
  1≦Y≦10  (2)
  -9×X+19≦Y≦-9/10×X+37  (3)
 炭素被覆された珪素粉末(以下、「炭素被覆珪素粉末」という。)、および黒鉛粉末は、いずれも、実質的にリチウムを含まないものとする。
 この発明によれば、(1)式より、この負極用粉末において、リチウムドープされ炭素被覆された酸化珪素粉末(以下、「炭素被覆リチウムドープ酸化珪素粉末」という。)が占める割合は、50質量%未満である。すなわち、負極用粉末全体に占めるリチウム含有粉末の割合は、従来の負極用粉末であるリチウム含有酸化珪素粉末に比して、この発明の負極用粉末では低減されている。このため、この負極用粉末、水、水系バインダー、および増粘剤を用いて作製したスラリーにおいて、負極用粉末中のリチウム成分と水との反応が少なくなり、増粘剤の分子と水とが、十分に水素結合するようにすることができる。
 したがって、本発明の負極用粉末は、水、水系バインダー、および増粘剤を用いてスラリーにしても、スラリー中で、バインダー等の局在化が進行しないようにすることができ、スラリーの構成成分を均一に維持することができる。したがって、このようなスラリーを用いて負極を形成すると、その負極では、バインダー等が均一に分布するので、その負極が備えられたリチウムイオン二次電池のサイクル特性を高くすることができる。
 また、酸化珪素のみならず、珪素、および黒鉛も、リチウムを吸蔵・放出する活物質であるので、本発明の負極用粉末は、酸化珪素が占める割合が低くても、充放電容量を高くすることができる。
 上記(2)式に関して、炭素被覆リチウムドープ酸化珪素粉末に対する炭素被覆珪素粉末の割合が、1>Yである程度に少ないときは、負極用粉末全体に占める炭素被覆リチウムドープ酸化珪素粉末の割合を十分に低減し、かつ充放電容量を高くすることができない。また、炭素被覆珪素粉末が微粒(たとえば、後述のように、体積メディアン径が2μm以下)である場合は、炭素被覆珪素粉末の割合を多くすることにより、スラリーの粘度を高くすることができるが、1>Yの場合は、そのような効果が得られない。
 また、珪素は、酸化珪素に比して、リチウムの吸蔵量が多く、リチウムの吸蔵・放出時の膨張・収縮率が大きいので、炭素被覆リチウムドープ酸化珪素粉末に対する炭素被覆珪素粉末の割合が、10<Yである程度に多いときは、リチウムの吸蔵・放出時の負極材の膨張・収縮が大きくなりすぎ、負極の構造が破壊されるので、電池のサイクル特性が悪くなる。
 この負極用粉末において、炭素被覆珪素粉末、および炭素被覆リチウムドープ酸化珪素粉末の割合が少ないときは、黒鉛粉末の割合が多い。黒鉛は、珪素、および酸化珪素に比して、リチウムの吸蔵量が少ない。上記(3)式に関して、この負極用粉末に占める炭素被覆珪素粉末、および炭素被覆リチウムドープ酸化珪素粉末の割合が、-9×X+19>Yである程度に少ないときは、電池の初期充放電容量が低くなる。
 一方、この負極用粉末に占める炭素被覆珪素粉末、および炭素被覆リチウムドープ酸化珪素粉末の割合が、Y>-9/10×X+37である程度に多いときは、リチウムの吸蔵・放出時の負極材の膨張・収縮が大きくなりすぎ、サイクル特性が悪くなる。
 上記(2)式、および(3)式の要件による効果を、十分に得るためには、下記(4)式、および(5)式の要件を満たすことが好ましい。
  3≦Y≦8  (4)
  -5/2×X+41/2≦Y≦-5/4×X+38  (5)
 また、炭素被覆珪素粉末について、炭素の密度ρ(g/m)、ならびに炭素被覆珪素粉末の炭素含有率a(質量%)およびBET比表面積S(m/g)から、a/(ρ・S)で計算される炭素被覆膜厚が、1×10-3μm~0.1μmであることが好ましい。この場合、負極材として、十分に高い導電性を得つつ、電池の充放電時に、負極材の膨張・収縮による炭素被膜の破断を生じ難くすることができる。炭素の密度は、文献値を採用することができ、たとえば、2.2×106g/mとすることができる。
 このような厚さの炭素被覆膜厚は、炭素被覆珪素粉末について、体積メディアン径が、0.01~2μmの範囲内にあり、かつ、この炭素被覆珪素粉末の炭素含有率が、0.6~10.0質量%の範囲内にあるときに得られやすい。体積メディアン径(以下、「D50」という。)は、体積基準の累積粒度分布の微粒側(または粗粒側)から累積50%の粒径であり、粉体の平均的な粒径の指標となる。累積粒度分布は、たとえば、レーザー回折式粒度分布測定装置により測定することができる。
 また、上述のように、炭素被覆珪素粉末のD50を、2μm以下とすることにより、2μmより大きい場合に比して、負極用粉末を用いたスラリーの粘度を高くする効果が得られる。さらに、炭素被覆珪素粉末のD50を、2μm以下とすることにより、電池の充放電時における負極材の膨張・収縮による電極(図1で、作用極集電体2b)からの負極材の剥離を抑制することができる。炭素被覆珪素粉末のD50を0.01μm以上とすることにより、負極用粉末を、容易にスラリーにすることができる。D50が0.01μm未満である珪素粉末は、急激な酸化が生じることがあり、製造が困難である。
 炭素被覆珪素粉末のD50をd、炭素被覆リチウムドープ酸化珪素粉末のD50をe、黒鉛粉末のD50をfとすると、
  0.1<d/e<0.6、かつ
  0.2<e/f<0.6
であることが好ましい。この場合、粉体のハンドリングが容易であるとともに、電池のサイクル特性を高くすることができる。すなわち、d/e≦0.1、およびe/f≦0.2の少なくとも一方を満たす場合は、炭素被覆珪素粉末、炭素被覆リチウムドープ酸化珪素粉末、および黒鉛粉末が十分に混合されず、偏析を生じることがある。一方、d/e≧0.6、およびe/f≧0.6の少なくとも一方を満たす場合は、電池のサイクル特性が悪くなる。
 また、炭素被覆珪素粉末のD50(d)は、0.1~2μmの範囲内にあることが、さらに好ましい。この場合、炭素被覆珪素粉末のハンドリングをさらに容易にすることができる。
2.本発明の負極用粉末を製造する方法
 以下、本発明の負極用粉末を製造する方法の一例について説明する。
 まず、炭素被覆リチウムドープ酸化珪素粉末と、炭素被覆珪素粉末と、黒鉛粉末とを用意する。
 炭素被覆リチウムドープ酸化珪素は、以下のようにして製造することができる。まず、全体として、モル比で、Si:O=1:y(0.4<y<1.5)の平均組成を有する酸化珪素粉末と、リチウム原料粉末とを用意する。酸化珪素粉末としては、たとえば、珪素粉末と、二酸化珪素粉末とを混合し加熱することにより、昇華反応させて生じたSiOガスから、基体上に酸化珪素を析出させ、この酸化珪素を、粉砕器、たとえば、ボールミルにより粉砕してD50を、3.0~30μmに調整したものを用いることができる。リチウム原料粉末としては、金属リチウム、またはリチウム化合物(たとえば、LiH)を含むものを用いることができる。
 これらの酸化珪素粉末と、リチウム原料粉末とを混合し、この混合粉末を、不活性ガス雰囲気中において、200~1200℃(好ましくは、350~900℃)の範囲内の温度で焼成する。これにより、酸化珪素とリチウムとが化合(反応)して、リチウムがドープされた酸化珪素粉末が得られる。焼成温度が低くなるほど、化合が進み難くなり、200℃未満では、化合は、実質的に進まない。焼成温度が900℃より高くなると、酸化珪素の不均化(2SiO → Si+SiOの反応による分解)が進行する。酸化珪素の不均化が進行すると、電池特性が悪化することが多い。
 その後、リチウムがドープされたこの酸化珪素粉末に対して、500~1200℃(好ましくは、600~900℃)で、熱CVD(Chemical Vapor Deposition)反応による炭素被覆を行う。この際、炭素源として、たとえば、炭化水素(メタン、プロパン、アセチレン等)ガスを用いることができる。
 炭素被覆珪素粉末も、同様の方法により、珪素粉末に炭素を被覆して得ることができる。珪素粉末は、たとえば、D50が、0.1~30μmのものを用いることができる。炭素被覆によっては、酸化珪素粉末、および珪素粉末のD50は、実質的に変化しない。
 黒鉛粉末のD50は、たとえば、10~40μmとすることができる。
 そして、炭素被覆珪素粉末と、炭素被覆リチウムドープ酸化珪素と、黒鉛粉末とを、上記(1)~(3)式の要件を満たす割合で、好ましくは、上記(1)式、(4)式および(5)式の要件を満たす割合で混合することにより、本発明の負極用粉末を得ることができる。
 炭素被覆珪素粉末、炭素被覆リチウムドープ酸化珪素粉末、および黒鉛粉末を用意し、これらの粉末を、本発明の範囲に入る割合で混合したもの(実施例)、および本発明の範囲に入らない割合で混合したもの(比較例)を作製し、それぞれの粉末を用いて電池を作製し特性を測定した。
 炭素被覆リチウムドープ酸化珪素粉末は、以下のようにして作製した。まず、原料粉末として、8.8g(0.2mol)の酸化珪素粉末と、0.8g(0.1mol)の水素化リチウム(LiH)粉末とを用意した。酸化珪素粉末は、平均組成が、モル比で、Si:O=1:1.02で、D50が、4.9μmであり、BET比表面積が、3.0m/gのものであった。
 これらの原料粉末を、混合し、大気圧のAr雰囲気中、750℃で、360分焼成して、酸化珪素とリチウムとを反応させ、リチウムドープ酸化珪素粉末を得た。得られた粉末を、キルン(回転式熱処理炉)を用いて5rpmで回転させ、プロパン(C)ガスを混合したArガス流しながら、850℃に加熱した。これにより、リチウムドープ酸化珪素粉末の粒子に対して、熱CVD反応による炭素被覆を行った。このリチウムドープ酸化珪素粉末の炭素含有率は、1.0質量%であった。
 炭素被覆珪素粉末は、以下のようにして作製した。D50が1.9μmの珪素粉末を、キルンを用いて5rpmで回転させ、プロパン(C)ガスを混合したArガスを流しながら、850℃に加熱した。これにより、珪素粉末の粒子に対して、熱CVD反応による炭素被覆を行った。この炭素被覆珪素粉末の炭素含有率は、10質量%であった。
 黒鉛粉末は、中央電気工業株式会社製のSWF15P2を用いた。この黒鉛粉末のD50は、17.7μmであった。体積基準の累積粒度分布の微粒側から累積10%、および累積90%の粒径をそれぞれD10、およびD90とすると、この黒鉛粉末のD10、およびD90は、それぞれ、11.9μm、28.6μmであった。また、この黒鉛粉末について、比表面積は、3.7m/gであり、タップ密度は、1.11g/cmであった。
 以上の炭素被覆珪素粉末、炭素被覆リチウムドープ酸化珪素粉末、および黒鉛粉末を、種々の割合で混合して、負極用粉末のサンプルを得た。表1に、これらの粉末の混合割合を、X、Yで示す。X=(α+β)/(α+β+γ)×100、Y=α/β×100であり、α、βおよびγは、それぞれ、各負極用粉末における炭素被覆珪素粉末、炭素被覆リチウムドープ酸化珪素粉末、および黒鉛粉末の含有率(質量%)である。X、およびYの値が、上記(1)~(3)式の要件のいずれも満たすものが、本発明の実施例であり、上記(1)~(3)式の要件のいずれか1つでも満たさないものが、比較例である。
Figure JPOXMLDOC01-appb-T000001
 
 得られた負極用粉末の各サンプルを用いて負極を作製し、この負極を用いて電池(コインセル)を作製した。
 各負極用粉末のサンプルを含有するスラリーを、厚さ20μmの銅箔に塗布し、120℃で120分乾燥後、1cm(1cm×1cm)に打ち抜いて、負極を得た。スラリーは、各負極用粉末のサンプル、アセチレンブラック(AB)、スチレンブタジエンゴム(SBR)、およびカルボキシメチルセルロース(CMC)を、質量比で、50:0.75:0.75:0.5の割合で混合し、さらに、質量比で、各負極用粉末が50.0に対してイオン交換水を48.6の割合で加えることで作製した。概ね、αの値が大きいほど、スラリーの粘度は高かった。
 スチレンブタジエンゴムは、水系バインダーである。CMCは、増粘剤であり、スラリー中では、水に溶解して、CMCを添加しない場合に比して、スラリーの粘度を高くする。
 電池は、上記負極と、対極としてリチウム箔とを用い、負極と対極との間に、厚さ30μmのポリエチレン製多孔質フィルムのセパレータであって、電解液を含浸させたものを配置して作製した。電解質は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを1:1の体積比で混合して得た液に、六フッ化リンリチウム(LiPF)を、1モル/Lの割合になるように溶解させたものとした。
 得られた電池について、電池特性として、放電容量比、およびサイクル特性を測定した。
 放電容量比は、比較例1の電池の初回放電容量に対する、比較例2~6、および実施例1~8の初回放電容量の割合である。初回放電容量は、以下に説明するサイクル特性の測定方法において、1サイクル目の放電容量である。
 サイクル特性は、株式会社ナガノ製の二次電池充放電試験装置を用いて測定した。充電は、電圧が0Vに達するまでは0.1Cの定電流で行い、電圧が0Vに達した後はセル電圧を0Vに保ったまま行った。電流値が20μAを下回った時点で、充電を終了した。放電は、電圧が1.5Vに達するまで0.1Cの定電流で行った。以上の充放電を50サイクル行い、初回放電容量を100としたときの50サイクル目の放電容量の割合(%)を、サイクル特性とした。
 電流値の計算に際し、1Cの値は、SiOの放電容量を1500mAh/g、Siの放電容量を2400mAh/gとして計算した。たとえば、負極中の活物質としてのSiOの重量をM(mg)としたとき、0.1Cの電流値Iは、
  I=1500mAh/g×M×10-3×0.1
として算出した。
 表1に、放電容量比、およびサイクル特性の測定結果を示す。表1の「総合評価」の欄は、放電容量比(%)、およびサイクル特性(%)の合計により、以下の通りとした。
  ×:不可;200%以下
  ○:良好;200%より高く、かつ220%未満
  ◎:特に良好;220%より高い
 図2は、X、およびYの値と、電池評価の総合評価との関係を示す図である。図2で、太線で囲んだ範囲が、本願発明の範囲であり、破線で囲んだ範囲が、本願発明の範囲のうち、より好ましい範囲である。
 表1、および図2から明らかなように、比較例、すなわち、上記(1)~(3)式の要件のいずれか1つでも満たさない粉末を用いた場合は、いずれも、放電容量比(%)、およびサイクル特性(%)の合計が200%以下である。これに対して、実施例、すなわち、上記(1)~(3)式の要件をすべて満たす粉末では、放電容量比(%)、およびサイクル特性(%)の合計が200%を超えた。特に、上記(1)式、(4)式、および(5)式の要件をすべて満たす粉末では、放電容量比(%)、およびサイクル特性(%)の合計が220%を超えた。

Claims (3)

  1.  リチウムイオン二次電池の負極用粉末であって、
     炭素被覆された珪素粉末と、リチウムドープされ炭素被覆された酸化珪素粉末と、黒鉛粉末とを混合してなり、
     前記炭素被覆された珪素粉末の含有率をα質量%、前記リチウムドープされ炭素被覆された酸化珪素粉末の含有率をβ質量%、前記黒鉛粉末の含有率をγ質量%、X=(α+β)/(α+β+γ)×100、Y=α/β×100とすると、下記(1)式~(3)式の関係のいずれも満たすことを特徴とする粉末。
      X<50  (1)
      1≦Y≦10  (2)
      -9×X+19≦Y≦-9/10×X+37  (3)
  2.  下記(4)式、および(5)式の関係のいずれも満たすことを特徴とする請求項1に記載の負極用粉末。
      3≦Y≦8  (4)
      -5/2×X+41/2≦Y≦-5/4×X+38  (5)
  3.  前記炭素被覆された珪素粉末の体積メディアン径が、0.1~2μmの範囲内にあることを特徴とする請求項1または2に記載の負極用粉末。
PCT/JP2014/004550 2013-10-24 2014-09-04 リチウムイオン二次電池の負極用粉末 WO2015059859A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543691A JP6195936B2 (ja) 2013-10-24 2014-09-04 リチウムイオン二次電池の負極用粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-221085 2013-10-24
JP2013221085 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015059859A1 true WO2015059859A1 (ja) 2015-04-30

Family

ID=52992483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004550 WO2015059859A1 (ja) 2013-10-24 2014-09-04 リチウムイオン二次電池の負極用粉末

Country Status (2)

Country Link
JP (1) JP6195936B2 (ja)
WO (1) WO2015059859A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219414A (ja) * 2015-05-19 2016-12-22 株式会社半導体エネルギー研究所 電極、蓄電装置および電子機器
JP2020017421A (ja) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 負極、非水電解液二次電池、および負極の製造方法
EP3683872A4 (en) * 2017-10-27 2020-10-28 LG Chem, Ltd. SILICON-CARBON COMPOSITE AND LITHIUM SECONDARY BATTERY WITH IT
KR20210043037A (ko) * 2019-10-10 2021-04-21 한국에너지기술연구원 리튬 프리도핑 된 SiOx 입자의 제조 방법
WO2024086962A1 (zh) * 2022-10-24 2024-05-02 宁德新能源科技有限公司 一种负极极片、电化学装置和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123175A (ja) * 2003-09-26 2005-05-12 Jfe Chemical Corp 複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP2009259723A (ja) * 2008-04-21 2009-11-05 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法、ならびに非水電解質二次電池用負極及び非水電解質二次電池
JP2010205609A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 電極およびこれを用いた電池
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011290A1 (ja) * 2004-07-29 2006-02-02 Sumitomo Titanium Corporation 二次電池用SiO粉末およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123175A (ja) * 2003-09-26 2005-05-12 Jfe Chemical Corp 複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP2009259723A (ja) * 2008-04-21 2009-11-05 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法、ならびに非水電解質二次電池用負極及び非水電解質二次電池
JP2010205609A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 電極およびこれを用いた電池
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219414A (ja) * 2015-05-19 2016-12-22 株式会社半導体エネルギー研究所 電極、蓄電装置および電子機器
EP3683872A4 (en) * 2017-10-27 2020-10-28 LG Chem, Ltd. SILICON-CARBON COMPOSITE AND LITHIUM SECONDARY BATTERY WITH IT
US11929498B2 (en) 2017-10-27 2024-03-12 Lg Energy Solution, Ltd. Silicon-carbon complex and lithium secondary battery comprising the same
JP2020017421A (ja) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 負極、非水電解液二次電池、および負極の製造方法
KR20210043037A (ko) * 2019-10-10 2021-04-21 한국에너지기술연구원 리튬 프리도핑 된 SiOx 입자의 제조 방법
KR102397296B1 (ko) 2019-10-10 2022-05-13 한국에너지기술연구원 리튬 프리도핑 된 SiOx 입자의 제조 방법
WO2024086962A1 (zh) * 2022-10-24 2024-05-02 宁德新能源科技有限公司 一种负极极片、电化学装置和电子装置

Also Published As

Publication number Publication date
JPWO2015059859A1 (ja) 2017-03-09
JP6195936B2 (ja) 2017-09-13

Similar Documents

Publication Publication Date Title
US10622626B2 (en) Negative electrode material for secondary battery with non-aqueous electrolyte, method for manufacturing negative electrode material for secondary battery with non-aqueous electrolyte, and lithium ion secondary battery
JP5245592B2 (ja) 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5406799B2 (ja) 非水電解質二次電池用負極材とその製造方法及びリチウムイオン二次電池
JP4207055B2 (ja) SiOx(x<1)の製造方法
JP5379026B2 (ja) 非水電解質二次電池負極材用珪素酸化物及び非水電解質二次電池負極材用珪素酸化物の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
KR101531451B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
CN111403693B (zh) 负极活性材料和使用其的负极极片、电化学装置和电子装置
JP2021506059A (ja) 非水電解質二次電池用負極活物質、及びその製造方法
JP2009301935A (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
US20160111718A1 (en) Electrode composition, electrochemical cell and method of making electrochemical cells
WO2016098306A1 (ja) リチウムイオン二次電池の負極用粉末、およびその製造方法
JP6195936B2 (ja) リチウムイオン二次電池の負極用粉末
JP2010272411A (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
CN108199036A (zh) 用于钠离子蓄电池的阴极组合物及其制备方法
JP2013008696A (ja) 非水電解質二次電池用負極材の製造方法
JP5737265B2 (ja) 珪素酸化物及びその製造方法、負極、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP2015028855A (ja) リチウムイオン二次電池の負極材用粉末、およびそれに用いる導電助剤
WO2014188654A1 (ja) リチウム含有酸化珪素粉末
JP5182498B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5320890B2 (ja) 負極材の製造方法
WO2015183860A1 (en) Anode compositions for rechargeable batteries and methods of making same
JP2016106358A (ja) 非水電解質二次電池用負極活物質の製造方法
JP2014120247A (ja) リチウムイオン二次電池の負極材用粉末、およびそれを用いたリチウムイオン二次電池用負極材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855439

Country of ref document: EP

Kind code of ref document: A1