WO2015058675A1 - 有害物质处理药剂 - Google Patents

有害物质处理药剂 Download PDF

Info

Publication number
WO2015058675A1
WO2015058675A1 PCT/CN2014/089057 CN2014089057W WO2015058675A1 WO 2015058675 A1 WO2015058675 A1 WO 2015058675A1 CN 2014089057 W CN2014089057 W CN 2014089057W WO 2015058675 A1 WO2015058675 A1 WO 2015058675A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weight
treatment agent
substance treatment
powder
Prior art date
Application number
PCT/CN2014/089057
Other languages
English (en)
French (fr)
Inventor
大石徹
Original Assignee
日铁住金环境株式会社
阿酷尔商贸(上海)有限公司
上海速宜环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日铁住金环境株式会社, 阿酷尔商贸(上海)有限公司, 上海速宜环境科技有限公司 filed Critical 日铁住金环境株式会社
Priority to CN201480060264.4A priority Critical patent/CN105683097B/zh
Publication of WO2015058675A1 publication Critical patent/WO2015058675A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/004Sludge detoxification

Definitions

  • the present invention relates to arsenic, lead, cadmium, hexavalent chromium, selenium, mercury, fluorine, boron, and the like for safely using sludge, incineration ash or contaminated soil generated by a factory or the like for landfill.
  • a chemical agent in which harmful substances such as nickel, copper, zinc, bismuth, and antimony are stabilized and insoluble.
  • the harmful substances contained in the wastewater are generally precipitated in the form of flocs by adding an alkaline agent or an oxidizing agent in a wastewater treatment process, and a coagulant is added, followed by concentration and precipitation using a thickener, and finally, After being dehydrated by a filter press or the like, it is treated as sludge and disposed of by landfill or the like.
  • Chelate is known to be effective in the insoluble treatment of harmful substances, but since it is used in the acidic to neutral range, insolubility occurs when it is mixed with a solidified material such as inexpensive cement for maintaining workability. The problem of performance degradation. If the amount of the chelating agent added is increased for this purpose, the processing cost becomes high.
  • Patent literature
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 2001-121131
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-272144
  • Patent Document 3 Japanese Patent Laid-Open Publication No. 2012-188544
  • Patent Document 4 Japanese Patent Laid-Open Publication No. 2012-210577
  • Patent Document 1 discloses a method of adding iron (II) sulfate and water to waste containing the harmful metal in order to detoxify harmful metals, and then adding a calcium compound to adjust the pH. This method requires a large amount of water and the whole becomes muddy.
  • Patent Document 2 discloses a calcination of calcium aluminate hydrate at a high temperature to form a heavy metal insoluble agent having a water-insoluble calcium salt on the surface of the particles. This method requires high temperature calcination and surface treatment steps.
  • Patent Document 3 discloses a heavy metal insoluble agent containing phosphoric acid or a phosphate such as hypophosphorous acid.
  • Patent Document 4 discloses a method in which an oxidizing bacterium is used to incinerate arsenic into a pentavalent form in order to detoxify arsenic in the soil, and then iron-based sulfate and calcined dolomite are mixed in the soil to perform insoluble treatment.
  • the above various methods or treatment agents have problems in that the production is complicated or complicated, or that the effects on various heavy metals and non-metallic harmful substances are insufficient.
  • the present invention provides a powdery hazardous substance treatment agent for insoluble treatment of harmful substances, which comprises a water-soluble acidic metal salt containing 5 to 90% by weight of at least one metal selected from the group consisting of iron, manganese and aluminum. And a mixture of 2 to 80% by weight of an alkali metal and/or an alkaline earth metal water-insoluble basic compound and 1 to 30% by weight of water, which are obtained by powder-mixing, which is contained when the powder is mixed.
  • a reaction product obtained by reacting at least a part of a water-soluble acidic metal salt and a poorly water-soluble basic compound.
  • the water-soluble acidic metal salt is a powder selected from at least one of ferric chloride, iron nitrate, iron sulfate, manganese chloride, aluminum chloride, and aluminum sulfate or an aqueous solution of 15 to 35% by weight.
  • the poorly water-soluble basic compound is selected from the group consisting of calcium oxide, calcium hydroxide, calcium silicate, magnesium oxide, magnesium hydroxide, sodium silicate, potassium silicate, silicate glass, steel slag, cement. a powder of at least one of them.
  • the hazardous substance treatment agent is a harmful substance treatment agent for insoluble treatment of harmful substances in sludge, incineration ash or contaminated soil
  • the harmful substance is selected from the group consisting of arsenic, lead, cadmium, hexavalent chromium, selenium, An ion of at least one of mercury, fluorine, boron, nickel, copper, zinc, cerium, and cerium.
  • the hazardous substance treatment agent comprises 10 to 90% by weight of iron sulfate and/or aluminum sulfate, and 3 to 80% by weight of magnesium oxide and/or calcium silicate, and 1 to 30% by weight.
  • the material of the water is obtained by mixing the powder.
  • the hazardous substance treatment agent is to contain 10 to 90% by weight of iron sulfate and/or aluminum sulfate, and 3 to 80% by weight of calcium hydroxide, and 1 to 30% by weight of water.
  • the material is obtained by powder mixing.
  • the hazardous substance treatment agent is a material containing 10 to 90% by weight of iron sulfate and/or aluminum sulfate, and 3 to 80% by weight of cement, and 1 to 30% by weight of water.
  • the powder is obtained by mixing.
  • the hazardous substance treatment agent is a material which will contain 10 to 90% by weight of iron sulfate and/or aluminum sulfate, and 3 to 80% by weight of steel slag powder, and 1 to 30% by weight of water. It is obtained by mixing powders.
  • insoluble treatment of sludge, incineration ash, and harmful substances in the soil can be carried out in a simple manner. After the insoluble treatment, even if the waste is wetted by rain or the like, the heavy metal is not dissolved again, or the amount of elution is remarkably reduced, and the waste can be safely disposed of by landfill or the like.
  • FIG. 1 is a graph showing the results of thermal analysis of the hazardous substance treatment agent 5.
  • FIG. 2 is a graph showing the results of thermal difference analysis of the hazardous substance treatment agent 7.
  • the harmful substances contained in the treatment of the present invention mainly include: inorganic pollutants discharged from processes such as chemical plant, mining, smelting, steel, electroplating, incineration, and the like, manufacturing, smelting, surface treatment, electroplating, incineration, and the like. Mud, incineration ash, fly ash, or pollution from the operation of these factories The soil and so on.
  • the harmful substance treating agent of the present invention comprises a mixture of a water-soluble acidic metal salt of at least one of iron, manganese and aluminum and a poorly water-soluble basic compound of an alkali metal or an alkaline earth metal, and at least a part of the powder is mixed in water.
  • a water-soluble acidic metal salt of iron, manganese or aluminum used as a raw material for treating a harmful substance, which is required to have a high solubility in water and an acidic property when added to water ferric chloride, iron nitrate, iron sulfate , manganese chloride, manganese sulfate, aluminum chloride, aluminum sulfate can be used, but the ferric chloride, iron sulfate, aluminum chloride, aluminum sulfate is less polluting to the natural environment, and the cost is lower, which is more suitable.
  • the iron compounds divalent or trivalent compounds can be used.
  • the acidic metal salt used should be a powder or an aqueous solution of 15 to 35% by weight.
  • An alkali metal or alkaline earth metal poorly water-soluble basic compound used as a raw material for a harmful substance treatment agent is required to have a low solubility in water, and has a pH-alkali property when added to water, calcium oxide, calcium hydroxide, Calcium silicate, magnesium oxide, magnesium hydroxide, sodium silicate, potassium silicate, silicate glass, steel slag, cement, etc. can be used, but calcium hydroxide, calcium silicate, magnesium oxide, steel slag, and cement are easy to use. Obtained and low cost, more suitable.
  • the water-insoluble basic salt of an alkali metal and an alkaline earth metal is more suitable as a powder.
  • the harmful substance treating agent of the present invention is characterized in that 1 to 30% by weight of water is added and mixed in a mixture of a water-soluble acidic metal salt and a water-insoluble basic compound, and it is required to contain at least a part thereof in the presence of water.
  • a hydration reaction product obtained by a chemical reaction.
  • the amount of water added is too large, the mixture will be slurried, and a powdery hazardous substance treatment agent cannot be obtained.
  • the amount of water added is too small, the amount of the hydration reaction product is reduced, and the handling property of the harmful substance is lowered.
  • water may be added to the water-soluble acidic metal salt, or water may be added to the water-soluble acidic metal salt and the water-insoluble basic compound, and then mixed, or the water-soluble acidic metal salt and water may be poorly soluble.
  • the basic compound and water are simultaneously mixed.
  • the material containing a water-soluble acidic metal salt, a poorly water-soluble basic compound, and water is powder-mixed. At this time, a part of the water-soluble acidic metal salt or the poorly water-soluble basic compound is reacted in the presence of water to form a hydration reaction product.
  • the water-soluble acidic metal salt and the water-insoluble basic compound are represented by MX and AY, respectively, it is presumed that the product is a compound such as MY, AX and a double salt thereof, and a crystalline mineral containing MY or AX or a hydrate thereof. (metal hydroxide).
  • the above material is a powder
  • the hydration reaction product is present on the surface of the powder, and the inside of the powder is still a water-soluble acidic metal salt or a poorly water-soluble basic compound.
  • the performance of the harmful substance treating agent cannot be sufficiently improved, so it is preferable to use a mixer to make two in the presence of water.
  • the powder is in full contact.
  • the mixing time with a kneader should be 2 minutes or more, and more preferably 5 minutes or more.
  • the harmful substance treatment agent obtained in this manner consumes water as it is produced by the formation of the hydration reaction product, and thus the surface thereof is relatively dry and dry powdery, but may be dried by heating or granulated as needed. Processing to improve usability.
  • the amount of the hazardous material treatment agent of the present invention to be treated with respect to the material to be treated such as sludge, incinerated ash or soil (hereinafter referred to as "waste or the like") is 0.5 to 50% by weight of the waste.
  • waste or the like contains a large amount of water, it is preferably calculated as a solid content, but if the water content is 20% or less, the weight can be used as it is.
  • a mixing device that can make the whole uniform can be used, and mixing or kneading for several minutes or more can be used.
  • the insoluble treated waste obtained in this manner, the adsorption of the highly active metal hydroxide formed by the reaction of the water-soluble acidic metal salt and the poorly water-soluble basic compound contained in the harmful substance treatment agent of the present invention, and The unreacted water-soluble acidic metal salt and the alkali metal, alkaline earth metal basic compound and the mixed waste contained in the hazardous substance treatment agent chemically react with each other to form a water-insoluble reactant, and the harmful substance contained in the sludge at that time Ion adsorption and coprecipitation to achieve insolubilization.
  • the harmful substance treatment agent As the harmful substance treatment agent, the water-soluble acidic metal salt, the water-insoluble basic compound, and water were mixed at a mixing ratio (% by weight) shown in Table 1 to prepare the chemicals 1 to 12 shown in Table 1.
  • the water-soluble acidic metal salts used are ferrous sulfate (FS), ferrous chloride (FC), and aluminum sulfate (AS).
  • Powdered industrial chemicals with aluminum chloride (AC), water-insoluble basic compounds are magnesium oxide (MO), calcium hydroxide (CH) powdered industrial chemicals and synthetic tobermorite (Tobermorite)
  • the component of calcium silicate powder (CS) is added with purified water. The above materials were mixed in a ratio shown in Table 1 using a commercially available powder mixing device, and reacted to prepare harmful substance treating chemicals 1 to 12.
  • Comparative Agents 1 to 18 shown in Table 2 were prepared by using a powder mixing device and mixing the same water-soluble acidic metal salt (A), water-insoluble basic compound (B) and water as used in the examples.
  • FS Water-soluble acidic metal salt and water-insoluble basic compound.
  • the formulated amount % means % by weight.
  • the dehydrated product (water content: 45%) (sludge 1) of the sludge generated in the sewage treatment process of the chemical plant was used.
  • any one of the agents 1 to 12 was added in an amount (% by weight) shown in Table 3, and mixed by a mixer for 10 minutes.
  • the obtained insoluble sludge was immersed for 1 day, and then subjected to a dissolution test according to a conventional analysis method, and the results are shown in Table 3. For comparison, the dissolution test was performed after the same procedure except that no drug was added.
  • the lead elution amount was 0.21 mg/L, and in the case where 3 wt% of the drug was added, the elution amount was decreased below the detection limit, or decreased to 0.004 mg/L or less and 1 /50 or less.
  • the dehydrated product water content: 40%
  • sludge 2 generated by the sludge generated in the surface treatment process of the metal processing plant
  • the drug was added to the sludge in the amount (% by weight) shown in Table 4, and mixed by a mixer for 10 minutes.
  • the obtained insoluble treated sludge was subjected to a dissolution test for 1 day after moisturizing, and the results were shown in Table 4 according to a conventional analysis method.
  • the dehydrated product water content: 49%) (sludge 3) generated by the sludge in the sewage treatment process of the chemical plant was used.
  • the drug was added to the sludge in the amount (% by weight) shown in Table 5, and mixed by a mixer for 10 minutes.
  • the insoluble treated sludge obtained was moistened for 1 day, and subjected to a dissolution test according to a conventional analysis method, and the results are shown in Table 5.
  • the amount of As dissolved was 0.14 mg/L, compared with 3 In the case of the % by weight agent, the amount of elution is reduced to 0.001 mg/L or less below the detection limit.
  • contaminated soil water content 26%) produced by the former site of the chemical plant (contaminated soil 1) was used.
  • the drug was added to the contaminated soil in the amount (% by weight) shown in Table 6, and mixed by a mixer for 10 minutes.
  • the dissolution test was carried out according to a conventional analysis method, and the results are shown in Table 6.
  • the amount of As eluted is 0.060 mg/L, and in the case of adding 0.5, 1 or 2% by weight of the drug 1 or 1% by weight of the drug 2, 3, 5, the amount of elution is Both are reduced to less than 0.001 mg/L below the detection limit.
  • the amount of Pb eluted was 0.21 mg/L, and when 3% by weight of any of the comparative agents I to 12 was added, the amount of elution was reduced, but the degree was decreased. low.
  • contaminated soil water content 28%) produced by the former site of the chemical plant (contaminated soil 2) was used.
  • the dissolution test was carried out according to a conventional analysis method, and the results are shown in Table 7.
  • the amount of Se dissolved was 0.18 mg/L, and in the case of adding 3% by weight of the drug 7, 8, or 9, the amount of dissolution was reduced to 0.001 mg/L below the detection limit. the following.
  • contaminated soil water content 25%
  • contaminated soil 3 water content 25%
  • the drug was added to the contaminated soil in the amount (% by weight) shown in Table 8, and mixed by a mixer for 10 minutes.
  • the dissolution test was carried out according to a conventional analysis method, and the results are shown in Table 8.
  • contaminated soil water content 27%) produced by the former site of the chemical plant (contaminated soil 4) was used.
  • the drug was added to the contaminated soil in the amount (% by weight) shown in Table 9, and mixed by a mixer for 10 minutes.
  • the analytical method was used for the dissolution test, and the results are shown in Table 9.
  • the amount of Cd eluted was 6.7 mg/L
  • the amount of Pb eluted was 7.5 mg/L.
  • the amount of elution was reduced below the detection limit. 0.001 mg / L or less.
  • contaminated soil water content 25%
  • contaminated soil 5 water content 25%
  • the drug was added to the contaminated soil in the amount (% by weight) shown in Table 10, and mixed by a mixer for 10 minutes.
  • the dissolution test was carried out according to a conventional analysis method, and the results are shown in Table 10.
  • the amount of Hg eluted was 5.3 mg/L, and when the drug was added in an amount of 3% by weight, the amount of elution was greatly reduced.
  • contaminated soil water content 23%) produced by the former site of the chemical plant (contaminated soil 6) was used.
  • the drug was added to the contaminated soil in the amount (% by weight) shown in Table 11, and mixed by a mixer for 10 minutes.
  • the dissolution test was carried out according to a conventional analysis method, and the results are shown in Table 11.
  • the amount of F eluted was 5.0 mg/L, and when the drug was added in an amount of 2% by weight, the amount of elution was reduced to 1/10 or less.
  • the heavy metal-containing sludge As the heavy metal-containing sludge, the same sludge 1 as in Example 1 was used, and the comparative agents 1 to 12 shown in Table 2 were added to the sludge in the amounts (% by weight) shown in Table 12, and mixed. Mix for 10 minutes. The insoluble treated sludge obtained was moistened for 1 day, and subjected to a dissolution test according to a conventional analysis method, and the results are shown in Table 12.
  • the amount of Pb eluted was 0.21 mg/L, and compared with the addition of 3% by weight of any of the comparative agents 1 to 12, the amount of dissolution was decreased, but to a lesser extent. low.
  • Comparison agent 1 2 3 4 5 6 Amount of drug added (%) 3 3 3 3 3 3 Pb dissolution (mg/L) 0.08 0.06 0.15 0.15 0.13 0.13 Comparison agent 7 8 9 10 11 12 Amount of drug added (%) 3 3 3 3 3 Pb dissolution (mg/L) 0.18 0.19 0.09 0.07 0.15 0.15
  • the heavy metal-containing sludge As the heavy metal-containing sludge, the same sludge 2 as in Example 2 was used, and the comparative agent shown in Table 2 was added to the sludge in the amount (% by weight) shown in Table 13, and mixed by a mixer 10 minute.
  • the insoluble treated sludge obtained was moist-preserved for 1 day, and subjected to a dissolution test according to a conventional analysis method, and the results are shown in Table 13.
  • the Ni elution amount was 5.0 mg/L
  • the Cr6+ elution amount was 0.48 mg/L.
  • Amount of drug added (%) 3 3 3 3 3 3 3 Ni dissolution amount (mg/L) 0.635 0.670 3.881 4.590 1.250 1.522
  • the heavy metal-containing sludge As the heavy metal-containing sludge, the same sludge 3 as in Example 3 was used, and the comparative agent shown in Table 2 was added to the sludge in the amount (% by weight) shown in Table 14, and mixed by a mixer. minute.
  • the obtained insoluble treated sludge was subjected to a dissolution test for 1 day after moisturizing, and the results of the dissolution test were shown in Table 14. In the case where no comparative agent was added, the amount of As eluted was 0.14 mg/L.
  • the same contaminated soil 1 as in Example 4 was used, and the comparative agent shown in Table 2 was added to the soil in the amount (% by weight) shown in Table 15, and mixed by a mixer for 10 minutes.
  • the obtained insoluble treated sludge was left to be moisturized for 1 day, and subjected to a dissolution test according to a conventional analysis method, and the results are shown in Table 15.
  • the amount of As eluted was 0.060 mg/L.
  • the sample temperature was raised from 30 ° C to 1000 ° C at a temperature increase rate of 10 ° C /min using a thermal difference analyzer (TG/DTA), and this was measured.
  • TG/DTA thermal difference analyzer
  • the results of the drug 5 are shown in Fig. 1
  • the results of the drug 7 are shown in Fig. 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

本发明提供一种用于对污泥、焚烧灰或土壤中的有害物质不溶性处理的粉末状的有害物质处理药剂,其由将包含有5~90重量%的选自铁、锰以及铝中至少一种金属的水溶性酸性金属盐,和2~80重量%的碱金属以及/或碱土金属的水难溶性碱性化合物,和1~30重量%的水的材料进行粉体混合而得到的混合物组成,其含有在粉体混合时使水溶性酸性金属盐和水难溶性碱性化合物的至少一部分发生反应得到的反应生成物。采用本发明经过该不溶性处理后,废弃物即使被雨水等淋湿,也不会再溶出重金属,或溶出量显著缩减,可通过填埋等安全地进行处置。

Description

有害物质处理药剂 技术领域
本发明涉及一种为了将工厂等产生的含有有害物质的污泥、焚烧灰或污染土壤安全地用于填埋等,使砷、铅、镉、六价铬、硒、汞、氟、硼、镍、铜、锌、锑、钡等有害物变得稳定,并对其进行不溶性处理的化学药剂。
背景技术
在化工厂、矿山、冶炼厂、钢铁厂、焚烧处理场等的产品制造、熔炼、表面处理、电镀、焚烧等工序中,会产生各种含有有害物质的废弃物,其中含有成分浓度较高的,将通过循环再用工序回收,作为资源返回到原料中,而含有浓度较低或原本就被视为杂质的,则被当作废弃物处理。
对于废水中含有的有害物质,一般在废水处理工序中,通过添加碱性药剂、氧化剂等,使其以絮凝物的形式在水中析出,添加凝集剂后使用增稠剂等进行浓缩沉淀,最后用压滤机等脱水后作为污泥,以填埋等方式废弃处理。
对污泥或焚烧灰进行填埋等废弃处理时,为防止污染周围环境,需要对有害物质进行固定化及稳定化处理,以免其溶出,同时为了维持处理时的施工性,需要具备一定的施工强度。
对含有有害物质的废弃物及被有害物质污染的土壤进行废弃处理时,需要对所含的有害物质进行稳定化处理,以免其溶出。在有害物质的不溶性处理方面,已知螯合剂(Chelate)是有效的,但是,因为它用在酸性至中性范围,一旦与用于保持施工性的廉价水泥等固化材料混合,便会发生不溶性性能下降的问题。如果为此增加螯合剂的药剂添加量,则处理成本会变高。
现有技术文献:
专利文献:
专利文献1日本专利特开2001-121131号公报
专利文献2日本专利特开2006-272144号公报
专利文献3日本专利特开2012-188544号公报
专利文献4日本专利特开2012-210577号公报
在专利文献1中公开了为了使有害金属无害化,而在含有该有害金属的废弃物中添加硫酸铁(II)和水,混合后再添加钙化合物调节pH的方法。该方法需要大量的水,并且整体会变成泥状。而在专利文献2中公开了一种在高温下煅烧铝酸钙水合物,以在颗粒表面形成具有水难溶性钙盐的重金属不溶解剂。该方法需要高温煅烧和表面处理工序。另外,在专利文献3中公开了一种含有次磷酸等磷酸或磷酸盐的重金属不溶解剂。而在专利文献4中公开了为了将土壤中的砷无害化处理,利用氧化菌将砷转化为五价形态之后,在土壤中混合铁系硫酸盐和煅烧白云石,进行不溶性处理的方法。上述的各种方法或处理剂,存在制造复杂或使用复杂,或对多种重金属及非金属有害物质效果不够好的问题。
发明内容
本发明的目的在于提供一种针对污泥、焚烧灰或土壤中的有害物质的不溶性处理药剂。
本发明提供一种用于有害物质不溶性处理的粉末状的有害物质处理药剂,其由将包含有5~90重量%的选自铁、锰以及铝中至少一种金属的水溶性酸性金属盐,和2~80重量%的碱金属以及/或碱土金属的水难溶性碱性化合物,和1~30重量%的水的材料进行粉体混合而得到的混合物组成,其含有在粉体混合时使水溶性酸性金属盐和水难溶性碱性化合物的至少一部分发生反应得到的反应生成物。
进一步说,所述水溶性酸性金属盐,为选自氯化铁、硝酸铁、硫酸铁、氯化锰、氯化铝以及硫酸铝中至少一种的粉末或者15~35重量%的水溶液。
再进一步说,所述水难溶性碱性化合物,为选自氧化钙、氢氧化钙、硅酸钙、氧化镁、氢氧化镁、硅酸钠、硅酸钾、硅酸盐玻璃、钢渣、水泥中至少一种的粉末。
另外,该有害物质处理药剂为用于将污泥、焚烧灰或污染土壤中的有害物质不溶性处理的有害物质处理药剂,所述有害物质为选自砷、铅、镉、六价铬、硒、汞、氟、硼、镍、铜、锌、锑以及钡中至少一种的离子。
作为优选方案,所述有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的氧化镁以及/或硅酸钙,和1~30重量%的水的材料进行粉体混合而得到。
作为另一优选方案,所述有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的氢氧化钙,和1~30重量%的水的材料进行粉体混合而得到。
作为另一优选方案,所述有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的水泥,和1~30重量%的水的材料进行粉体混合而得到。
作为另一优选方案,所述有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的钢渣粉末,和1~30重量%的水的材料进行粉体混合而得到。
发明效果:
按照本发明,可用简单的方法,对污泥、焚烧灰及土壤中的有害物质进行不溶性处理。经过该不溶性处理后,废弃物即使被雨水等淋湿,也不会再溶出重金属,或溶出量显著缩减,可通过填埋等安全地进行处置。
附图说明
图1是表示有害物质处理药剂5的热差分析结果的曲线图。
图2是表示有害物质处理药剂7的热差分析结果的曲线图。
具体实施方式
通过本发明处理的有害物质含有物主要有:化工厂、矿山、冶炼厂、钢铁厂、电镀厂、焚烧处理场等的产品制造、熔炼、表面处理、电镀、焚烧等工序中排出的无机类污泥、焚烧灰、飞灰或这些工厂等的运转过程中产生的被污染 的土壤等。
本发明的有害物质处理药剂由铁、锰、铝中至少一种的水溶性酸性金属盐和碱金属或碱土金属的水难溶性碱性化合物的混合物组成,并至少含有一部分粉体混合时在水的存在下发生化学反应得到的反应生成物。
被用作有害物质处理药剂原料的铁、锰、铝的水溶性酸性金属盐,要求具有在水中的溶解度大,且当加入到水中时pH呈酸性的性质,氯化铁、硝酸铁、硫酸铁、氯化锰、硫酸锰、氯化铝、硫酸铝均可使用,但其中的氯化铁、硫酸铁、氯化铝、硫酸铝对自然环境污染小,成本低,更加适宜。铁化合物中,二价或三价化合物均可使用。此外,所用的酸性金属盐,应为粉末或15~35重量%的水溶液。
被用作有害物质处理药剂原料的碱金属、碱土金属的水难溶性碱性化合物,要求具有在水中的溶解度小,且当加入到水时pH呈碱性的性质,氧化钙、氢氧化钙、硅酸钙、氧化镁、氢氧化镁、硅酸钠、硅酸钾、硅酸盐玻璃、钢渣、水泥等均可使用,但其中的氢氧化钙、硅酸钙、氧化镁、钢渣、水泥易于获得且成本低,更为适宜。碱金属和碱土金属的水难溶性碱性盐更适宜于为粉末。
本发明的有害物质处理药剂为,在水溶性酸性金属盐和水难溶性碱性化合物的混合物中加入1~30%(重量)的水并混合,要求含有通过将至少其一部分在水的存在下发生化学反应而得到的水合反应生成物。此时,如果加水量太大,将导致混合物浆化,不能获得粉末状的有害物质处理药剂。另外,如果加水量太小,将导致水合反应生成物的量减少,有害物质的处理性能会降低。作为加水方法,可将水加入到水溶性酸性金属盐中,或分别将水加入到水溶性酸性金属盐及水难溶性碱性化合物中后混合,也可将水溶性酸性金属盐、水难溶性碱性化合物和水同时混合。
对含有水溶性酸性金属盐、水难溶性碱性化合物和水的材料进行粉体混合。此时,水溶性酸性金属盐、水难溶性碱性化合物的一部分在水的存在下反应生成水合反应生成物。假设水溶性酸性金属盐、水难溶性碱性化合物分别用MX和AY表示,则可推测该生成物为诸如MY、AX的化合物及其复盐,以及含有MY、AX的结晶矿物或其水合物(金属氢氧化物)。如果上述材料为粉末, 则可以推测:反应将发生在其表面部分,水合反应生成物存在于粉末表面,而粉末内部仍为水溶性酸性金属盐、水难溶性碱性化合物。如果只是在无水状态下简单地混合水溶性酸性金属盐、水难溶性碱性化合物,那么有害物质处理药剂的性能不能得到充分提升,因此最好能用混炼机在水的存在下使两种粉末充分接触。用混炼机进行混炼的时间应为2分钟以上,5分钟以上更佳。以此种方式获得的有害物质处理药剂,由于添加的水会随着水合反应生成物的生成而消耗,因而其表面相对干燥呈干爽粉末状,但也可根据需要进行加热干燥,或进行粒状化处理,以提高可用性。
本发明的有害物质处理药剂相对于污泥、焚烧灰或土壤等被处理材料(以下称“废弃物等”)的调配量为废弃物等重量的0.5~50%。另外,在废弃物等含有大量水分的情况下,最好换算为固体成分计算,但如果含水量在20%以下,可以直接使用其重量。
混合废弃物等和有害物质处理药剂时,可使用能使整体变得均匀的混合装置,混合或混炼几分钟以上即可。以此种方式得到的不溶性处理废弃物,利用本发明的有害物质处理药剂中所含的水溶性酸性金属盐和水难溶性碱性化合物事先反应生成的高活性金属氢氧化物的吸附作用,以及有害物质处理药剂中所含的未反应的水溶性酸性金属盐和碱金属、碱土金属碱性化合物与混合的废弃物彼此发生化学反应,形成水不溶性反应物,对当时污泥中含有的有害物质离子的吸附及共沉淀作用,以实现不溶出。即,利用有害物质处理药剂中所含的金属氢氧化物的吸附作用和在废弃物中混合未反应的水溶性酸性金属盐和碱性化合物时发生的化学反应的吸附及共沉淀作用,进行两个阶段的稳定化。因此,无论是将该进行了不溶性处理的废弃物堆放在户外,还是用于填埋等,都不会再溶出有害物质,或溶出量大大降低。
实施例
作为有害物质处理药剂,将水溶性酸性金属盐、水难溶性碱性化合物和水按表1所示的混合比(重量%),经混合反应制备表1所示的药剂1~12。
所用的水溶性酸性金属盐为硫酸亚铁(FS)、氯化亚铁(FC)、硫酸铝(AS) 和氯化铝(AC)的粉末状工业化学品,水难溶性碱性化合物为氧化镁(MO)、氢氧化钙(CH)的粉末状工业化学品及合成雪硅钙石(Tobermorite)为主要成分的硅酸钙粉末(CS),添加水使用净化水。用市售的粉体混合装置将上述材料按表1所示的配比混合,使其反应,制备有害物质处理药剂1~12。
表1
Figure PCTCN2014089057-appb-000001
采用粉体混合装置,混合与实施例中使用的相同的水溶性酸性金属盐(A)、水难溶性碱性化合物(B)和水,制备表2所示的比较剂1~18。
在该表中,FS、FC、AS、AC、MO、CH、CS是上述水溶性酸性金属盐和水难溶性碱性化合物的略称。调配量%是指重量%。
表2
Figure PCTCN2014089057-appb-000002
实施例1
作为含有有害物质的污泥,使用了化工厂的污水处理工序中产生的烂泥的脱水物(含水率45%)(污泥1)。在该污泥中按表3所示的量(重量%)添加药剂1至12中的任意一个,用混合机混合10分钟。对于得到的不溶性处理污泥,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表3。为了进行比较,除了不添加药剂外,按同样的步骤处理后进行溶出测试。
在未加入药剂的情况下,铅溶出量为0.21mg/L,与之相比较,加入3重量%药剂的情况下,溶出量均减少至检测极限以下,或减少至0.004mg/L以下和1/50以下。
表3
药剂 1 3 4 5 6
药剂添加量(%) 3 3 3 3 3
Pb溶出量(mg/L) <0.001 0.003 0.003 <0.001 <0.001
药剂 7 8 10 11 12
药剂添加量(%) 3 3 3 3 3
Pb溶出量(mg/L) <0.001 0.003 0.004 0.003 <0.001
实施例2
作为含有有害物质的污泥,使用了金属加工厂的表面处理工序中产生的烂泥的脱水物(含水率40%)(污泥2)。在该污泥中按表4所示的量(重量%)添加药剂,用混合机混合10分钟。对于得到的不溶性处理污泥,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表4。
在未加入药剂的情况下,Ni溶出量为5.0mg/L,Cr6+溶出量为0.48mg/L,与之相比较,加入3重量%药剂的情况下,溶出量均减少至检测极限以下的0.005mg/L以下。
表4
Figure PCTCN2014089057-appb-000003
实施例3
作为含有有害物质的污泥,使用了化工厂的污水处理工序中产生的烂泥的脱水物(含水率49%)(污泥3)。在该污泥中按表5所示的量(重量%)添加药剂,用混合机混合10分钟。对于得到的不溶性处理污泥,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表5。
在未加入药剂的情况下,As溶出量为0.14mg/L,与之相比较,加入3 重量%药剂的情况下,溶出量均减少至检测极限以下的0.001mg/L以下。
表5
Figure PCTCN2014089057-appb-000004
实施例4
作为含有重金属的土壤,使用了化工厂旧址产生的污染土壤(含水率26%)(污染土壤1)。在该污染土壤中按表6所示的量(重量%)添加药剂,用混合机混合10分钟。对于得到的不溶性处理污染土壤,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表6。
在未加入药剂的情况下,As溶出量为0.060mg/L,与之相比较,加入0.5、1或2重量%的药剂1或1重量%的药剂2、3、5的情况下,溶出量均减少至检测极限以下的0.001mg/L以下。
在未加入比较剂的情况下,Pb溶出量为0.21mg/L,与之相比较,加入3重量%比较剂Ⅰ~12中的任意一个的情况下,溶出量虽均有减少,但程度较低。
表6
Figure PCTCN2014089057-appb-000005
实施例5
作为含有重金属的土壤,使用了化工厂旧址产生的污染土壤(含水率28%)(污染土壤2)。在该污染土壤中按表7所示的量(重量%)添加药剂,用混合 机混合10分钟。对于得到的不溶性处理污染土壤,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表7。
在未加入药剂的情况下,Se溶出量为0.18mg/L,与之相比较,加入3重量%的药剂7、8或9的情况下,溶出量均减少至检测极限以下的0.001mg/L以下。
表7
药剂 7 8 9
药剂添加量(%) 3 3 3
Se溶出量(mg/L) <0.001 <0.001 <0.001
实施例6
作为含有重金属的土壤,使用了化工厂旧址产生的污染土壤(含水率25%)(污染土壤3)。在该污染土壤中按表8所示的量(重量%)添加药剂,用混合机混合10分钟。对于得到的不溶性处理污染土壤,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表8。
在未加入药剂的情况下,Cd溶出量为32.3mg/L,Pb溶出量为1.34mg/L,与之相比较,加入3、5或7重量%的药剂1的情况下,溶出量均大幅减少。
表8
药剂 1 1 1
药剂添加量(%) 3 5 7
Cd溶出量(mg/L) 0.13 0.08 0.06
Pb溶出量(mg/L) 0.08 0.08 0.07
实施例7
作为含有重金属的土壤,使用了化工厂旧址产生的污染土壤(含水率27%)(污染土壤4)。在该污染土壤中按表9所示的量(重量%)添加药剂,用混合机混合10分钟。对于得到的不溶性处理污染土壤,保湿放置1天后,根据常 规分析方法进行溶出测试,将其结果示于表9。
在未加入药剂的情况下,Cd溶出量为6.7mg/L,Pb溶出量为7.5mg/L,与之相比较,加入3重量%的药剂的情况下,溶出量均减少至检测极限以下的0.001mg/L以下。
表9
药剂 7 8 9 12
药剂添加量(%) 3 3 3 3
Cd溶出量(mg/L) <0.01 <0.01 <0.01 <0.01
Pb溶出量(mg/L) <0.01 <0.01 <0.01 <0.01
实施例8
作为含有重金属的土壤,使用了化工厂旧址产生的污染土壤(含水率25%)(污染土壤5)。在该污染土壤中按表10所示的量(重量%)添加药剂,用混合机混合10分钟。对于得到的不溶性处理污染土壤,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表10。
在未加入药剂的情况下,Hg溶出量为5.3mg/L,与之相比较,加入3重量%的药剂的情况下,溶出量均大幅减少。
表10
药剂 5 6 7 8 9 12
药剂添加量(%) 3 3 3 3 3 3
Hg溶出量(mg/L) 0.012 0.012 0.013 0.010 0.005 0.011
实施例9
作为含有重金属的土壤,使用了化工厂旧址产生的污染土壤(含水率23%)(污染土壤6)。在该污染土壤中按表11所示的量(重量%)添加药剂,用混合机混合10分钟。对于得到的不溶性处理污染土壤,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表11。
在未加入药剂的情况下,F溶出量为5.0mg/L,与之相比较,加入2重量%的药剂的情况下,溶出量均减少至1/10以下。
表11
药剂 1 2 3 12
药剂添加量(%) 2 2 2 2
F溶出量(mg/L) 0.2 0.4 0.3 0.3
比较例1
作为含重金属的污泥,使用与实施例1中相同的污泥1,并在该污泥中按表12所示的量(重量%)加入表2所示的比较剂1至12,用混合机混合10分钟。对于得到的不溶性处理污泥,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表12。
在未加入比较剂的情况下,Pb溶出量为0.21mg/L,与之相比较,加入3重量%的比较剂1至12中的任一种比较剂,溶出量虽然均减少,但程度较低。
表12
比较剂 1 2 3 4 5 6
药剂添加量(%) 3 3 3 3 3 3
Pb溶出量(mg/L) 0.08 0.06 0.15 0.15 0.13 0.13
比较剂 7 8 9 10 11 12
药剂添加量(%) 3 3 3 3 3 3
Pb溶出量(mg/L) 0.18 0.19 0.09 0.07 0.15 0.15
比较例2
作为含重金属的污泥,使用与实施例2中相同的污泥2,并在该污泥中按表13所示的量(重量%)加入表2所示的比较剂,用混合机混合10分钟。对于得到的不溶性处理污泥,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表13。
在未加入比较剂的情况下,Ni溶出量为5.0mg/L,Cr6+溶出量为0.48mg/L。
表13
比较剂 13 14 15 16 17 18
药剂添加量(%) 3 3 3 3 3 3
Ni溶出量(mg/L) 0.635 0.670 3.881 4.590 1.250 1.522
比较例3
作为含重金属的污泥,使用与实施例3中相同的污泥3,并在该污泥中按表14所示的量(重量%)加入表2所示的比较剂,用混合机混合10分钟。对于得到的不溶性处理污泥,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表14。在未加入比较剂的情况下,As溶出量为0.14mg/L。
表14
比较剂 13 15 17
药剂添加量(%) 3 3 3
As溶出量(mg/L) 0.020 0.024 0.024
比较例4
作为含重金属的土壤,使用与实施例4中相同的污染土壤1,并在该土壤中按表15所示的量(重量%)加入表2所示的比较剂,用混合机混合10分钟。对于得到的不溶性处理污泥,保湿放置1天后,根据常规分析方法进行溶出测试,将其结果示于表15。在未加入比较剂的情况下,As溶出量为0.060mg/L。
表15
比较剂 13 13 13 13 14 15
药剂添加量(%) 0.5 1 2 3 1 1
As溶出量(mg/L) 0.057 0.051 0.047 0.035 0.056 0.052
实施例10
对于在上述实施例中制备的有害物质处理药剂5以及7,采用热差分析装置(TG/DTA),以10℃/分的升温速度将试样温度从30℃升至1000℃,测出此时的DTA和TG,将药剂5的结果表示在图1中,将药剂7的结果表示在图2中。

Claims (8)

  1. 一种用于有害物质不溶性处理的粉末状的有害物质处理药剂,其由将包含有5~90重量%的选自铁、锰以及铝中至少一种金属的水溶性酸性金属盐,和2~80重量%的碱金属以及/或碱土金属的水难溶性碱性化合物,和1~30重量%的水的材料进行粉体混合而得到的混合物组成,其含有在粉体混合时使水溶性酸性金属盐和水难溶性碱性化合物的至少一部分发生反应得到的反应生成物。
  2. 如权利要求1所述的有害物质处理药剂,其特征在于,所述水溶性酸性金属盐,为选自氯化铁、硝酸铁、硫酸铁、氯化锰、氯化铝以及硫酸铝中至少一种的粉末或者15~35重量%的水溶液。
  3. 如权利要求1或2所述的有害物质处理药剂,其特征在于,所述水难溶性碱性化合物,为选自氧化钙、氢氧化钙、硅酸钙、氧化镁、氢氧化镁、硅酸钠、硅酸钾、硅酸盐玻璃、钢渣、水泥中至少一种的粉末。
  4. 如权利要求1至3中任一项所述的有害物质处理药剂,其特征在于,该有害物质处理药剂为用于将污泥、焚烧灰或污染土壤中的有害物质不溶性处理的有害物质处理药剂,所述有害物质为选自砷、铅、镉、六价铬、硒、汞、氟、硼、镍、铜、锌、锑以及钡中至少一种的离子。
  5. 如权利要求1所述的有害物质处理药剂,其特征在于,该有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的氧化镁以及/或硅酸钙,和1~30重量%的水的材料进行粉体混合而得到。
  6. 如权利要求1所述的有害物质处理药剂,其特征在于,该有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的氢氧化钙,和1~30重量%的水的材料进行粉体混合而得到。
  7. 如权利要求1所述的有害物质处理药剂,其特征在于,该有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的水泥,和1~30重量%的水的材料进行粉体混合而得到。
  8. 如权利要求1所述的有害物质处理药剂,其特征在于,该有害物质处理药剂为将包含有10~90重量%的硫酸铁以及/或硫酸铝,和3~80重量%的钢渣 粉末,和1~30重量%的水的材料进行粉体混合而得到。
PCT/CN2014/089057 2013-10-21 2014-10-21 有害物质处理药剂 WO2015058675A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480060264.4A CN105683097B (zh) 2013-10-21 2014-10-21 有害物质处理药剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013218618A JP6267922B2 (ja) 2013-10-21 2013-10-21 有害物質処理薬剤
JP??2013-218618 2013-10-21

Publications (1)

Publication Number Publication Date
WO2015058675A1 true WO2015058675A1 (zh) 2015-04-30

Family

ID=52992275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089057 WO2015058675A1 (zh) 2013-10-21 2014-10-21 有害物质处理药剂

Country Status (4)

Country Link
JP (1) JP6267922B2 (zh)
CN (1) CN105683097B (zh)
TW (1) TWI646994B (zh)
WO (1) WO2015058675A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116571534A (zh) * 2023-07-12 2023-08-11 北京建工环境修复股份有限公司 一种磷石膏无害化药剂及工程应用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852188B1 (ja) * 2014-07-23 2016-02-03 株式会社アイザック 凝集沈殿汚泥中のホウ素固定化法
JP2019157053A (ja) * 2018-03-16 2019-09-19 太平洋マテリアル株式会社 焼却灰からの重金属類の溶出防止剤およびそれを用いた溶出防止方法
JP7275618B2 (ja) * 2019-02-07 2023-05-18 栗田工業株式会社 重金属含有スラリーの処理方法
CN111040769B (zh) * 2019-12-17 2021-03-23 河南省地质环境规划设计院有限公司 一种土壤修复改良剂及土壤修复改良方法
CN112843582B (zh) * 2021-01-21 2022-06-17 元素贵稀吉林省环境科技有限公司 一种节省能耗回收含铁铝危险废物的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130051A (en) * 1988-07-19 1992-07-14 Safe-Waste Systems, Inc. Composition to encapsulate chromium, arsenic and other toxic metals in wastes
US5387740A (en) * 1991-10-23 1995-02-07 En-Tech Research Institute Inc. Immobilization agent for industrial waste
CN1457939A (zh) * 2003-05-13 2003-11-26 上海大学 工业重金属固体废渣的处理方法
JP2012187517A (ja) * 2011-03-10 2012-10-04 Kurita Water Ind Ltd 重金属類を含有する固形廃棄物の無害化方法
CN102974601A (zh) * 2012-11-22 2013-03-20 中节能六合天融环保科技有限公司 一种砷污染土壤稳定剂及修复污染土壤的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401800A (zh) * 2001-08-14 2003-03-12 重庆钢铁(集团)有限责任公司 含六价铬离子废渣的综合利用及无害化处理方法
JP4109017B2 (ja) * 2002-05-21 2008-06-25 株式会社鴻池組 汚染土壌の固化・不溶化方法
US20080255400A1 (en) * 2004-03-16 2008-10-16 Waseda University Hydrotalcite-Like Substance, Process for Producing the Same and Method of Immobilizing Hazardous Substance
JP5403531B2 (ja) * 2005-12-28 2014-01-29 国立大学法人大阪大学 有機化学物質含有被汚染物の浄化方法
JP5265103B2 (ja) * 2006-10-18 2013-08-14 村樫石灰工業株式会社 有害物質不溶化処理用組成物の製造方法
JP5905669B2 (ja) * 2011-05-23 2016-04-20 日鉄住金環境株式会社 有害物質の処理材及び有害物質の処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130051A (en) * 1988-07-19 1992-07-14 Safe-Waste Systems, Inc. Composition to encapsulate chromium, arsenic and other toxic metals in wastes
US5387740A (en) * 1991-10-23 1995-02-07 En-Tech Research Institute Inc. Immobilization agent for industrial waste
CN1457939A (zh) * 2003-05-13 2003-11-26 上海大学 工业重金属固体废渣的处理方法
JP2012187517A (ja) * 2011-03-10 2012-10-04 Kurita Water Ind Ltd 重金属類を含有する固形廃棄物の無害化方法
CN102974601A (zh) * 2012-11-22 2013-03-20 中节能六合天融环保科技有限公司 一种砷污染土壤稳定剂及修复污染土壤的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116571534A (zh) * 2023-07-12 2023-08-11 北京建工环境修复股份有限公司 一种磷石膏无害化药剂及工程应用方法
CN116571534B (zh) * 2023-07-12 2023-10-27 北京建工环境修复股份有限公司 一种磷石膏无害化药剂及工程应用方法

Also Published As

Publication number Publication date
TWI646994B (zh) 2019-01-11
CN105683097A (zh) 2016-06-15
JP6267922B2 (ja) 2018-01-24
CN105683097B (zh) 2020-06-09
JP2015081270A (ja) 2015-04-27
TW201605511A (zh) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2015058675A1 (zh) 有害物质处理药剂
US5130051A (en) Composition to encapsulate chromium, arsenic and other toxic metals in wastes
WO2014166400A1 (zh) 污泥或土壤处理方法以及重金属成分稳定化药剂
CN113105899A (zh) 一种重金属稳定剂及其应用及其使用方法
CN104927871A (zh) 一种重金属稳定剂及使用该重金属稳定剂稳定化土壤重金属的方法
JP2007125536A (ja) 有害成分の固定化薬剤および固定化方法
US12053809B2 (en) Reagent system for treating mercury-contaminated material
JP2012066158A (ja) 集塵灰の安定化方法
JP5938784B2 (ja) 重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物
JP2004209372A (ja) 重金属類溶出抑制剤及び重金属類溶出抑制方法
JP5608352B2 (ja) 有害物質の不溶化処理方法
JP4061253B2 (ja) 重金属処理剤の製造方法
JPH08192128A (ja) 有害廃棄物処理用薬剤及びそれを用いる処理方法
Oladoja et al. Oxyanions in Aqua Systems—Friends or Foes?
TWI325795B (en) Method for stabilization of heavy metals and odor control with dicalcium phosphate dihydrate powder in the incinerator bottom ash
JP3850046B2 (ja) 重金属含有廃棄物の処理方法
JP2012135727A (ja) 重金属の汚染土壌からの溶出を低減する方法、重金属の汚染物質からの溶出を低減するための組成物及びキット
CN107010800B (zh) 一种铅锌冶炼废水处理污泥中砷和硒的化学稳定化药剂及化学稳定化方法
JP4374602B2 (ja) 重金属固定化剤およびその廃棄物処理方法
JPH1071381A (ja) 廃棄物処理剤及び廃棄物の処理方法
JP6551905B2 (ja) 有害物質の処理材及び処理方法
JP2001121133A (ja) 可溶性重金属を含む土壌の不溶化処理方法
JP2024083949A (ja) 有害物質の処理材及び処理方法
JP2008086867A (ja) 重金属及び/又は非金属を含有する媒体の処理方法
JPS5836690A (ja) 有害物質を含有する産業廃棄物の無害化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14855854

Country of ref document: EP

Kind code of ref document: A1