JP5938784B2 - 重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物 - Google Patents

重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物 Download PDF

Info

Publication number
JP5938784B2
JP5938784B2 JP2013106395A JP2013106395A JP5938784B2 JP 5938784 B2 JP5938784 B2 JP 5938784B2 JP 2013106395 A JP2013106395 A JP 2013106395A JP 2013106395 A JP2013106395 A JP 2013106395A JP 5938784 B2 JP5938784 B2 JP 5938784B2
Authority
JP
Japan
Prior art keywords
heavy metal
contaminated
water
solid
contaminated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013106395A
Other languages
English (en)
Other versions
JP2014226580A (ja
Inventor
龍一 藤
龍一 藤
Original Assignee
株式会社ワールド・リンク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワールド・リンク filed Critical 株式会社ワールド・リンク
Priority to JP2013106395A priority Critical patent/JP5938784B2/ja
Publication of JP2014226580A publication Critical patent/JP2014226580A/ja
Application granted granted Critical
Publication of JP5938784B2 publication Critical patent/JP5938784B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、重金属成分で汚染された重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属汚染水の処理方法に好適に用いられる重金属除去処理用組成物に関する。
工業廃水等の重金属成分を含有する重金属汚染水の処理は、有害金属処理として1970年以前から積極的に技術開発が行われている。かつては重金属汚染水の処理には、イオン交換樹脂が用いられてきた。しかしながら、イオン交換樹脂は比較的高価であり、また、交換容量に限りがあることから、現行では低コストや運転の容易さが求められる廃水処理には適用されにくくなっている。
従来の重金属汚染水の処理方法として、沈殿剤として硫化物、アルカリ、石灰等を重金属含有廃水に添加し、6価クロム、カドミウム、鉛、砒素、水銀等の有害重金属等を難溶性化合物にした後、該難溶性化合物を凝集・沈殿により固液分離する方法がある(例えば、特許文献1参照)。
しかしながら、従来の処理方法では、高濃度の重金属を含有する廃水の場合、厳しい排水基準をクリアすることが必ずしもできるものではなかった。
また、重金属汚染水を処理の際に、生成する金属水酸化物や金属硫化物は凝集性に乏しく、上記の硫化剤に単に高分子凝集剤などを併用するだけでは容易に処理できない場合が多い。また、凝集剤として、PACや硫酸アルミニウムなどのアルミニウム系凝集剤では、重金属除去後の処理水を環境へ戻した際に、リン欠乏症を引き起こす場合がある等環境負荷が必ずしも小さくなく、さらにアルミニウムの人体への影響が懸念されている。
環境負荷の小さい凝集剤として、ポリシリカ鉄が注目されている(例えば、特許文献2参照)。ポリシリカ鉄は、上述のアルミニウム系凝集剤と異なり、人体に安全であり、リン欠乏症等の問題も生じない。しかしながら、ポリシリカ鉄単独では、金属水酸化物や金属硫化物の凝集効果が不十分であり、高濃度の重金属を含有する廃水の処理に実用レベルで適用できるとはいえなかった。
一方、重金属成分を含有する汚染土壌、汚泥、底質土、瓦礫や都市ごみ焼却灰など固体状被汚染物の処理は、1970年以前から積極的に技術開発が行われている。固体状被汚染物に含まれる重金属成分は水溶性のものが多く、雨水等により広範囲に拡散する傾向にある。
有害物質に汚染された土壌の浄化技術としては、大きく原位置法と掘削除去法に分けられる。原位置法は、汚染土壌中の有害物質を原位置で化学的または生物学的に分解することにより当該汚染土壌を浄化する方法である。例えば、特許文献3には、有害重金属類で汚染された汚染土壌に、酸化マグネシウムと、硫化物として硫化カルシウム及び硫化ナトリウムとを添加混合する汚染土壌を処理する方法が開示されている。しかしながら、当該処理方法は、添加、混合の処理時間が、通常で数時間から数日間の範囲であることと、汚染土壌への添加量が30〜300kg/m3と多いため、経済的とはいえない。更に、重金属の処理対象濃度は、法定基準値の20〜30倍までであり、それ以上の濃度に対しての処理方法の記載はない。
このように原位置法は、この方法は、分解可能な有機系有害物質の処理には効果的な方法であるが、非分解性の重金属成分の処理には必ずしも適さない。特に高濃度の重金属成分を含有する汚染土壌の場合、土壌の重金属成分濃度を環境基準以下にすることは極めて困難である。
掘削除去法は、汚染土壌を掘削により除去し、除去した土壌に対して有害成分の除去処理を行う方法である。この方法では、土壌の掘削やその後の運搬等の工数が必要になるが、原位置法と比較して、より低濃度になるまで重金属成分を除去することが可能である。
従来の掘削除去法では、重金属成分を還元剤で還元したり、添加剤成分と反応させて、不溶性化合物にする方法が一般的であり、例えば、特許文献2には、6価クロム等の重金属で汚染された土壌の処理方法として、チオカルボン酸ナトリウム等の還元剤水溶液と混合し、更にベントナイトを混合して元の場所に埋め戻す方法が開示されている。
一方、近年、土壌対策法の改正に伴い、第二種特定有害物質である六価クロム、水銀、鉛、砒素、カドミウム等の有害重金属溶出による拡散の防止のために、これらの重金属の環境基準がより厳しくなっている。しかしながら、特許文献4で開示されたような従来の方法では、重金属の厳しい環境基準を必ずしもクリアできていないのが実状である。
特開2002−282867号公報 特開2012−187544号公報 特開2007−105549号公報 特許第2508903号公報
このように、従来の技術には改善の余地が残されており、厳しい重金属の排水基準をクリアできないことから、重金属成分を高濃度から極低濃度まで除去ができる処理技術が求められている。
かかる状況下、本発明の目的は、重金属成分を含有する重金属汚染水から、基準値以下の濃度になるように、容易に重金属成分を除去することができる重金属汚染水の処理方法を提供することである。また、本発明の他の目的は、重金属成分を含有する汚染土壌、汚泥など固形状重金属被汚染物から効果的に重金属成分を除去し、固体状被汚染物を無害化することが可能な処理方法を提供することである。また、本発明の他の目的は、これらの処理方法に適する重金属除去処理用組成物を提供することである。
本発明者らは、重金属成分で汚染された汚染水のより効率的な処理方法について鋭意研究し、多硫化カルシウムとポリシリカ鉄とを組み合わせて使用することにより、より素早く重金属成分の処理できることを見出し、本発明に至った。
すなわち、本発明は、以下の発明に係るものである。
<1> 重金属成分を含有する汚染水を、0.5〜30kg/m 3 多硫化カルシウムCaSx(x=2〜12)及び1〜25kg/m 3 の、シリカ(SiO 2 )/Feモル比が、0.01〜3であるポリシリカ鉄と、pH6.5以上8.5未満で接触させ、前記汚染水から重金属成分を除去する工程を有する重金属汚染水の処理方法
<2> 前記汚染水を、多硫化カルシウムに接触させ、次いでポリシリカ鉄に接触させる前記<1>に記載の重金属汚染水の処理方法。
> 前記汚染水が、6価クロム、カドミウム、鉛、砒素、水銀から選択される1種以上の重金属成分を含有する前記<1>または2>に記載の重金属汚染水の処理方法。
> 重金属成分を含有する固形状重金属被汚染物を水に接触させ、前記固形状重金属被汚染物から重金属成分を溶出させる水洗工程と、
水洗工程後の重金属汚染水を前記<1>から<>のいずれかに記載の処理方法により、前記重金属汚染水から重金属成分の除去を行う重金属成分除去工程と、
を有する固形状重金属被汚染物の処理方法。
> 前記固形状重金属被汚染物が、6価クロム、カドミウム、鉛、砒素、水銀から選択される1種以上の重金属成分を含有する汚染土壌である前記<>に記載の固形状重金属被汚染物の処理方法。
> 前記水洗工程後の固形状重金属被汚染物に、多硫化カルシウムを添加混合し、残存する重金属成分を不溶化する不溶化処理工程を有する前記<>または<>に記載の固形状重金属被汚染物の処理方法。
> 多硫化カルシウムとポリシリカ鉄とを含有し、ポリシリカ鉄と多硫化カルシウムとの合計量100質量%に対するポリシリカ鉄の含有量が5〜50質量%である重金属除去処理用組成物。
本発明によれば、多硫化カルシウムとポリシリカ鉄との相乗作用により、効率的に重金属成分を除去することができる重金属汚染水の処理方法、固形状重金属被汚染物の処理方法、及びこれらの処理方法に適する重金属除去処理用組成物が提供される。
以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
<重金属汚染水の処理方法>
本発明の重金属汚染水の処理方法は、重金属成分を含有する重金属汚染水を、多硫化カルシウム及びポリシリカ鉄と接触させ、前記汚染水から重金属成分を除去する工程を有することを特徴とする。なお、以下、「重金属汚染水」を単に「汚染水」と記載する場合がある。
本発明の汚染水の処理方法では、多硫化カルシウム溶液とポリシリカ鉄との両方を同時に使用することに特徴がある。多硫化カルシウムとポリシリカ鉄と同時に使用することにより、多硫化カルシウム由来のカルシウムイオンと、ポリシリカ鉄由来の珪酸塩成分が結合した珪酸カルシウムが形成され、重金属を含む成分(イオン性成分含む)を捕集して、比重の高い酸化鉄成分と共に沈降する。そのため、重金属成分を高濃度から極低濃度まで除去することができる。
例えば、ポリシリカ鉄に含有される塩化第2鉄は、多硫化カルシウムに含まれる水酸化カルシウムと硫化物イオンとの反応で、塩化カルシウムと硫化鉄が生成される。また、珪酸ソーダに含有されるナトリウムイオンは、多硫化カルシウムに含まれる亜硫酸イオンと反応し、亜硫酸ナトリウムを生成する。
多硫化カルシウム溶液とポリシリカ鉄の両方を汚染水に添加することによる相乗効果の詳細は現時点では完全に明らかでないが、重金属含有の水中の金属の還元作用を増幅する。この還元作用は、重金属含有の水中の重金属の濃度に依存して、その濃度が濃くなるほど反応速度は速くなる。よって、従来の重金属不溶化剤の添加量より、はるかに少ない添加量で、より多くの重金属イオンを素早く安定化できる。さらに金属の硫化物、水酸化物と鉄水酸化物を同時に生成させ、さらに共沈による金属水酸化物の生成pH域を広げることで、より素早く処理できる、と推測される。
以下、本発明の汚染水の処理方法について詳細に説明する。
(処理対象)
本発明の処理方法において、重金属成分を含有する汚染水はいずれも処理対象となる。
具体的には、重金属成分を含有する工業廃水、有害重金属類を含有する廃液、廃水が挙げられる。また、地下水の処理にも有効である。さらに、有害重金属類の種類及びその存在形態が異なる汚染土壌、底質、汚泥や廃棄物等を水洗した際に発生する、重金属成分を含有する洗浄水も好適な対象となる。
除去対象となる重金属成分の限定はないが、環境省に告示される第二種特定有害物質に指定される重金属類である6価クロム、カドミウム、鉛、砒素、水銀から選択される1種以上の重金属は、本発明の処理方法の好適な対象である。
(多硫化カルシウム)
多硫化カルシウムは、化学式CaSx(x=2〜12)で表される化合物であり、還元性が高いため、溶液中で重金属イオンを還元し、硫化物や水酸化物の形態で沈澱させて無害化する効果を有する。
例えば、6価クロム(Cr6+)は、多硫化カルシウムにより、3価クロム(Cr3+)に還元されるとともに、大部分は水酸化クロムとして沈析して、無害化(不溶化)される。水銀、鉛及びカドミウムは、硫化物により硫化金属を形成し無害化(不溶化)される。
また、ポリシリカ鉄と同時に使用することにより、硫化水素ガスが発生することがないため、安全かつ有効に使用することができる。
本発明の処理方法において、多硫化カルシウム(CaSx)は、化学式CaSx(x=2〜12)が使用できるが、x=4〜12であることが好ましく、x=6〜12であることがより好ましい。このような組成の多硫化カルシウムは、例えば、特開2005−213375号公報記載の方法で製造することができる。
また、多硫化カルシウムは水に溶解させて、多硫化カルシウム溶液として用いることもできる。多硫化カルシウム溶液とすることで、処理対象となる汚染水への混合が行いやすくなる。
多硫化カルシウムを水に溶解させると溶液中には、カルシウムとの硫化物イオン、水素との硫化水素イオン、亜硫酸水素イオン等のイオンの存在があり、またカルシウムは水酸化カルシウムとしても存在する。
なお、多硫化カルシウム溶液の溶媒として水以外にも、本発明の効果を損なわない範囲で他の溶媒(例えば、エタノール等)を含んでいてもよい。
本発明の処理方法に好適に使用できる市販品として、株式会社共和熱工業製の多硫化カルシウムが挙げられる。
(ポリシリカ鉄)
ポリシリカ鉄(以下、「PSI」と記載する場合がある。)は、鉄とシリカを主成分とし、通常(SiO2n・(Fe23)で示される無機高分子である。
ポリシリカ鉄は、水和反応により有害重金属類の水酸化物を生成捕集する効果、pH値を調整する効果を有する。例えば、ポリシリカ鉄に含有される塩化第2鉄は、多硫化カルシウムに含まれる水酸化カルシウムと硫化物イオンとの反応で、塩化カルシウムと硫化鉄が生成される。そのまた、珪酸ソーダに含有されるナトリウムイオンは、多硫化カルシウムに含まれる亜硫酸イオンと反応し、亜硫酸ナトリウムを生成する。
また、通常、pH値が7.5以下であると、硫化物が処理中に反応して硫化水素ガスが発生しやすくなり、また処理後のpH値が11.0以上になると、沈殿した重金属が再溶出するおそれがあるが、ポリシリカ鉄は、廃水のpHを中性に調整する役割があるので、硫化物添加による硫化水素ガスの発生を抑制し、それにより多硫化カルシウムにより不溶化された有害重金属類の再溶出を抑制する。
ポリシリカ鉄は、水溶液として用いることが好ましい。ポリシリカ鉄溶液は、鉄塩を含む水溶液、珪酸塩水溶液、及び無機酸を混合した溶液として機能し、上述の多硫化カルシウム溶液と共に好適に使用することができる。
本発明のポリシリカ鉄溶液のシリカ(SiO2)/Feモル比は、0.03〜3であることが好ましい。
本発明の処理方法に好適に使用できる市販品として、タイキ薬品工業株式会社製の「PSI−025」(シリカ:鉄=0.25:1)、「PSI−050」、「PSI−100」等が挙げられる。
(汚染水との接触方法)
本発明の汚染水の処理方法では、従来公知の廃水処理設備を用いることができる。
本発明の汚染水の処理方法では、重金属成分を含有する汚染水と、多硫化カルシウム及びポリシリカ鉄とを接触させる方法としては、以下の(1)〜(3)の方法が挙げられる。
(1)汚染水に多硫化カルシウム及びポリシリカ鉄を一括添加して接触させる、
(2)汚染水に、まず多硫化カルシウムを添加して接触させ、次いでポリシリカ鉄を添加して接触させる、
(3)汚染水に、まずポリシリカ鉄を添加して接触させ、次いで多硫化カルシウムを添加して接触させる、
なお、(2)、(3)のように多硫化カルシウム及びポリシリカ鉄を分割添加する場合には、処多硫化カルシウムとポリシリカ鉄とをそれぞれ一回で添加・混合することのほか、それぞれ少量ずつ、数回に分けて添加・混合することもできる。分割添加する場合の添加量や、添加時間の間隔等は、事前に少量の汚染水を使用した配合試験の結果によって決定すればよい。
処理効率を高めるために、多硫化カルシウム及びポリシリカ鉄(あるいは、これらを含む処理組成物)の添加・混合は、通常、数十分から数時間の範囲で選択される。
副生ガスの発生を抑制するために、(2)汚染水を、多硫化カルシウムに接触させ、次いでポリシリカ鉄に接触させることが好ましい。
また、多硫化カルシウムを先に添加することで汚染水はアルカリ性となり、ポリシリカ鉄を混合した時に発生する硫化水素ガスも抑制できるので、硫化物の効果を減少させることがなく、また作業環境、周辺の環境上の問題も発生しない。
本発明の処理方法において、処理対象の汚染水に多硫化カルシウム0.5〜30kg/m3、ポリシリカ鉄を1〜25kg/m3で添加される。その際、pHを6.5以上8.5未満に調整することが好ましい。
廃水中の重金属水酸化物の沈殿を生成させるため、多硫化カルシウムを加えてからポリシリカ鉄を加える場合、これは金属の水酸化物と鉄水酸化物を同時に生成させることにより、共沈による金属水酸化物の生成pH域を広げることができる。さらに化合物および水酸化物は、ポリシリカ鉄に含有される重合珪素により捕集される。
次いで、多硫化カルシウムを加えてからポリシリカ鉄で処理した廃水を濾過して固体分離した上水は、排水基準をクリアしていれば放流が可能であり、また洗浄水としてリサイクルが可能である。
<固形状重金属被汚染物の処理方法>
本発明の固形状重金属被汚染物の処理方法は、重金属成分を含有する固形状重金属被汚染物を水に接触させ、前記固形状重金属被汚染物から重金属成分を溶出させる水洗工程と、水洗工程後の重金属汚染水を上記本発明の重金属汚染水の処理方法により、重金属汚染水から重金属成分の除去を行う重金属成分除去工程と、を有することを特徴とする。
このような構成とすれば、前処理である水洗工程により固形状重金属被汚染物から重金属を溶出させ、より重金属成分の除去が行いやすい液状物の重金属汚染水として、後工程である重金属成分除去工程(本発明の重金属汚染水の処理方法に相当)により、重金属成分を高濃度から極低濃度まで素早く除去することができる。結果として、固形状重金属被汚染物からの重金属の成分の除去効率が向上する。
以下、本発明の固形状重金属被汚染物の処理方法の処理対象及び各工程について説明する。
(処理対象)
本発明の固形状重金属被汚染物の処理方法において、固形状重金属被汚染物としては重金属成分を含むものであればすべて対象になり、具体的には土壌、底質、汚泥や廃棄物等が挙げられる。除去対象となる重金属成分の限定はないが、環境省に告示される第二種特定有害物質に指定される重金属類である6価クロム、カドミウム、鉛、砒素、水銀から選択される1種以上の重金属を含む重金属成分は、本発明の処理方法の好適な対象である。
(水洗工程)
水洗工程では、重金属成分を含有する固形状重金属被汚染物を水に接触させ、前記固形状重金属被汚染物から重金属成分を溶出させる。その方法は特に限定はないが、所定の処理槽に固形状重金属被汚染物と洗浄水を入れ、撹拌することによって、固形状重金属被汚染物から除去対象となる重金属成分を溶出させる方法が挙げられる。固形状重金属被汚染物に対する洗浄水の割合は、固形状重金属被汚染物の種類、含有される重金属の種類や含有量等を考慮して適宜決定すればよい。
(重金属成分除去工程)
水洗工程後に発生する重金属汚染水は、後段の重金属成分除去工程に供される。重金属成分除去工程の詳細(使用薬剤の種類、使用量等含む)は、上述の本発明の重金属汚染水の処理方法に相当するため、ここでの説明を省略する。
(その他の工程)
本発明の固形状重金属被汚染物の処理方法は、上述の水洗工程、重金属成分除去工程以外の他の工程を有していてもよい。
他の工程は
特に水洗工程後の固形状重金属被汚染物に、多硫化カルシウムを添加混合し、残存する重金属成分を不溶化する不溶化処理工程を有することが好ましい。
水洗工程後の固形状重金属被汚染物には、溶出されなかった重金属成分や、固形状重金属被汚染物から分離できない汚染水由来の重金属成分が微量ながら残存するが、不溶化処理工程において多硫化カルシウムを接触させて、残存重金属成分をより安定な還元体、硫化物にすることで、固形状重金属被汚染物に固定化することにより、残存重金属成分の拡散を防ぐことができる。
<重金属除去処理用組成物>
本発明の重金属除去処理用組成物は、多硫化カルシウム及びポリシリカ鉄で構成され、述の本発明の重金属汚染水の処理方法に好適に用いられるものである。
本発明の重金属除去処理用組成物において、前記ポリシリカ鉄に含まれるシリカ(SiO2)/Feモル比は、好適には0.01〜3である。また、本発明の重金属除去処理用組成物において、ポリシリカ鉄と多硫化カルシウムとの合計量100質量%に対して、5〜50質量%のポリシリカ鉄を含有することが好ましい。
本発明の重金属除去処理用組成物は、処理対象である汚染水に添加した際に、汚染水に素早く分散できる形態であればよく、粉末状、顆粒状、ペレット状などの固形剤、水に溶解させた液状剤のいずれでもよい。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
(1)試料
使用した試料用汚染土、薬剤は下記のとおりである。
〔試料用汚染土〕
六価クロム汚染土(実サンプル、風乾物)
クロム化合物の含有量:9.38質量%(蛍光X解析、福岡工業技術センター)

〔処理組成物成分〕
多硫化カルシウム:(株)共和熱工業製 石灰硫黄合剤(CaSx=2〜12)
全硫化態硫黄:13%以上、
カルシウムイオン濃度:7%以上、
硫化水素イオン濃度:3,000ppm以上

ポリシリカ鉄:タイキ薬品工業(株)製 「PSI−025」
(シリカ:鉄=0.25:1)
(2)試料用汚染水の製造方法
試料用汚染土として実際の六価クロム汚染土を使用し、含水率が20%以下になるまで乾燥した。試料用汚染土から4.75mm以上の土粒子を分級/除去した。次いで、汚染土を2mmアンダーに篩分けし、その汚染土50gに対し、加水比が10倍以上となるように水を添加し、卓上攪拌で200rpmで6時間攪拌し、0.46μmろ紙で濾過したものを試料用汚染水とした。
(3)試料用汚染水のクロム含有量
試料用汚染水を環境庁告示第46号法(平成3年8月23日)に準拠し、汚染土の六価クロムの含有量・溶出量試験を、(財)九州環境管理協会に依頼して測定した結果を表1に示す。
汚染土の六価クロム含有量は、環境基準の22倍、溶出量は、環境基準の4400倍に相当するものであった。
次に、試料用汚染水を100倍に希釈してICP−MS(誘導結合プラズマ質量分析装置)にてクロム化合物の測定を行った結果を表2に示す。
(4)処理水作製方法
試料用汚染水への多硫化カルシウム及びポリシリカ鉄の添加方法は、分割添加とした。まず試料用汚染水に多硫化カルシウムを添加して、次いでポリシリカ鉄を添加混合した。
混合操作はそれぞれ卓上攪拌機により、200rpmで30分間の撹拌時間とした。このようにして最終的に得られた処理水は、0.46μmアンダーのろ紙で濾過した。
(5)処理水の重金属濃度試験
ついで、(財)九州環境管理協会に依頼して、上述のように環境庁告示第46号法に準拠して測定した試料用汚染水(表1)を多硫化カルシウム及びポリシリカ鉄にて処理した。その処理水の重金属濃度をJISK 0102「ジフェニルカルバジド吸光光度試験方法」に準拠して測定した。
(6)重金属溶出液のpH値測定試験
試料用汚染水と処理水のpHを、pH測定器AND製AP-20を使用しての測定結果を表3に示す。
試料用汚染土の六価クロム含有量と試料用汚染水への溶出量、その試料用汚染水を多硫化カルシウムとポリシリカ鉄で処理した処理水の六価クロム含有量の値の比較を表4に示す。
このように本発明の汚染水の処理方法により、六価クロム総量は測定下限値0.02mg/L未満であり、排水基準を大幅にクリアできているので処理水の排出が可能となる。
次に汚染土壌の不溶化試験を多硫化カルシウム単体で行った。試料用汚染土を洗浄処理した後、その洗浄した土壌に多硫化カルシウムを添加混合して、洗浄土に残る重金属を不溶化処理することを想定した人工的実験を、(財)九州環境管理協会に依頼して行った。
(1)実験用土壌は500μmに篩をかけたマサ土を使用した。実験用土壌に対する有害物質濃度は、1000mg/kgとなるように水溶液を添加した。さらに加水して乾燥機中90℃で乾燥後、実験用土壌とした。
(2)有害物質不溶化土壌の作成は、有害物質添加土壌50gに、1%に希釈した多硫化カルシウム500mL加えて30分間振とうし、室内で7日間乾燥させたものを有害物質不溶化土壌とした。
(3)試験方法は、環境庁告示46号に準じ、含有量試験及び溶出量試験を行った結果を表5に示す。
表5の有害物質不溶化試験では、全ての有害重金属の不溶化が認められた。特に鉛、クロム、セレンは土壌環境基準を満足する結果になっており、カドミウム、水銀も多硫化カルシウムの添加量を考慮すれば基準をクリアできることが期待できる。
本発明の重金属汚染水の処理方法及び固形状重金属被汚染物の処理方法によれば、有害重金属類を含有する廃液、廃水あるいは地下水等の汚染水や、汚染土壌等から効率的に重金属成分を除去することができる。また、処理方法に使用する薬剤の割合を適正化することによって経済効果も向上させることができる。さらに環境負荷も小さいので工業的に有望である。

Claims (7)

  1. 重金属成分を含有する汚染水を、0.5〜30kg/m 3 多硫化カルシウムCaSx(x=2〜12)及び1〜25kg/m 3 の、シリカ(SiO 2 )/Feモル比が、0.01〜3であるポリシリカ鉄と、pH6.5以上8.5未満で接触させ、前記汚染水から重金属成分を除去する工程を有することを特徴とする重金属汚染水の処理方法。
  2. 前記汚染水を、多硫化カルシウムに接触させ、次いでポリシリカ鉄に接触させる請求項に記載の重金属汚染水の処理方法。
  3. 前記汚染水が、6価クロム、カドミウム、鉛、砒素、水銀から選択される1種以上の重金属成分を含有する請求項1または2に記載の重金属汚染水の処理方法。
  4. 重金属成分を含有する固形状重金属被汚染物を水に接触させ、前記固形状重金属被汚染物から重金属成分を溶出させる水洗工程と、
    水洗工程後の重金属汚染水を請求項1からのいずれかに記載の処理方法により、前記重金属汚染水から重金属成分の除去を行う重金属成分除去工程と、
    を有することを特徴とする固形状重金属被汚染物の処理方法。
  5. 前記固形状重金属被汚染物が、6価クロム、カドミウム、鉛、砒素、水銀から選択される1種以上の重金属成分を含有する汚染土壌である請求項に記載の固形状重金属被汚染物の処理方法。
  6. 前記水洗工程後の固形状重金属被汚染物に、多硫化カルシウムを添加混合し、残存する重金属成分を不溶化する不溶化処理工程を有する請求項またはに記載の固形状重金属被汚染物の処理方法。
  7. 多硫化カルシウムとポリシリカ鉄とを含有し、ポリシリカ鉄と多硫化カルシウムとの合計量100質量%に対するポリシリカ鉄の含有量が5〜50質量%であることを特徴とする重金属除去処理用組成物。
JP2013106395A 2013-05-20 2013-05-20 重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物 Active JP5938784B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106395A JP5938784B2 (ja) 2013-05-20 2013-05-20 重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106395A JP5938784B2 (ja) 2013-05-20 2013-05-20 重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物

Publications (2)

Publication Number Publication Date
JP2014226580A JP2014226580A (ja) 2014-12-08
JP5938784B2 true JP5938784B2 (ja) 2016-06-22

Family

ID=52126920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106395A Active JP5938784B2 (ja) 2013-05-20 2013-05-20 重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物

Country Status (1)

Country Link
JP (1) JP5938784B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180735B (zh) * 2016-08-19 2017-11-03 环境保护部环境规划院 一种改性微米零价铁的制备及其在土壤重金属污染修复中的应用方法
CN112299681B (zh) * 2020-09-03 2022-06-17 西南石油大学 一种水基泥浆/钻屑干化剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559755B2 (ja) * 2003-03-11 2010-10-13 株式会社トクヤマ 排水の処理方法
JP4540350B2 (ja) * 2004-01-13 2010-09-08 新日本製鐵株式会社 クロム酸化物含有スラグの処理方法
JP4712483B2 (ja) * 2005-08-19 2011-06-29 宇部興産株式会社 重金属汚染土壌用処理組成物及び処理方法
JP4598743B2 (ja) * 2006-10-16 2010-12-15 株式会社環境アネトス 多硫化物(但し、Sx(x=2〜12))を主成分とする薬剤の製造方法

Also Published As

Publication number Publication date
JP2014226580A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
Zhang et al. Influence of soil washing with a chelator on subsequent chemical immobilization of heavy metals in a contaminated soil
Piao et al. Stabilization of mercury-containing wastes using sulfide
Baker et al. Phosphate amendments for chemical immobilization of uranium in contaminated soil
Mohanty et al. Removal of heavy metal by screening followed by soil washing from contaminated soil
CN105683097B (zh) 有害物质处理药剂
JP2008184469A (ja) 混合組成物及びそれを用いた重金属処理方法
Park et al. A novel arsenic immobilization strategy via a two-step process: Arsenic concentration from dilute solution using schwertmannite and immobilization in Ca–Fe–AsO4 compounds
JP2016022406A (ja) 重金属汚染水の処理方法
Fernández-Calviño et al. Influence of mussel shell on As and Cr competitive and non-competitive sorption–desorption kinetics in a mine soil: stirred flow chamber experiments
Corrêa Nogueirol* et al. Sequential extraction and speciation of Ba, Cu, Ni, Pb and Zn in soil contaminated with automotive industry waste
Coskun et al. Recovery of mercury from spent fluorescent lamps via oxidative leaching and cementation
JP6125824B2 (ja) 重金属類汚染土壌用洗浄液組成物及び重金属類汚染土壌の洗浄方法
JP5938784B2 (ja) 重金属汚染水の処理方法、固形状重金属被汚染物の処理方法及び重金属除去処理用組成物
JP2007105669A (ja) シアン汚染系の不溶化処理方法
Wang et al. A novel heavy metal chelating agent sixthio guanidine acid for in situ remediation of soils contaminated with multielements: its synthesis, solidification, biodegradability, and leachability
JP4867700B2 (ja) 重金属処理剤及びそれを用いた重金属汚染物質の処理方法
JP2009256593A (ja) 有害物質溶出低減材、および有害物質溶出低減処理方法
JP2009256430A (ja) 重金属処理剤及びそれを用いた重金属汚染物の処理方法
Zhou et al. Stabilization of cadmium-and lead-contaminated sites using sodium tetraethylenepentamine-multi dithiocarbamate
Ranasinghe et al. Arsenite removal from drinking water using naturally available laterite in Sri Lanka
JP2015127049A (ja) 汚染水または汚染土壌の処理剤および処理方法
Mpouras et al. Evaluation of calcium polysulfide as a reducing agent for the restoration of a Cr (VI)-contaminated aquifer
JP5209251B2 (ja) 重金属汚染土壌の処理方法
JP5608352B2 (ja) 有害物質の不溶化処理方法
JP2018103133A (ja) 土壌処理材及び重金属汚染土壌の浄化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5938784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250