WO2015058541A1 - 一种薄膜谐振器的制作方法及装置 - Google Patents

一种薄膜谐振器的制作方法及装置 Download PDF

Info

Publication number
WO2015058541A1
WO2015058541A1 PCT/CN2014/080442 CN2014080442W WO2015058541A1 WO 2015058541 A1 WO2015058541 A1 WO 2015058541A1 CN 2014080442 W CN2014080442 W CN 2014080442W WO 2015058541 A1 WO2015058541 A1 WO 2015058541A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thickness
frequency offset
layer
thickness compensation
Prior art date
Application number
PCT/CN2014/080442
Other languages
English (en)
French (fr)
Inventor
张�浩
杜良桢
庞慰
程微
江源
孙海龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14855594.9A priority Critical patent/EP3062441B1/en
Priority to KR1020167013377A priority patent/KR101857379B1/ko
Priority to JP2016526170A priority patent/JP6511675B2/ja
Publication of WO2015058541A1 publication Critical patent/WO2015058541A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0428Modification of the thickness of an element of an electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0435Modification of the thickness of an element of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0442Modification of the thickness of an element of a non-piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0471Resonance frequency of a plurality of resonators at different frequencies

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a method and an apparatus for fabricating a thin film resonator.
  • a thin film piezoelectric bulk acoustic resonator made by longitudinal resonance of a piezoelectric film in a thickness direction has become a viable surface acoustic wave device and a quartz crystal resonator in terms of mobile communication and high-speed serial data applications.
  • the RF front-end bulk acoustic wave piezoelectric filter/duplexer provides superior filtering characteristics such as low insertion loss, steep transition band, large power capacity, and strong anti-static discharge (ESD) capability.
  • CMOS complementary metal-oxide-semiconductor
  • 1 is a cross-sectional view of a bulk acoustic wave resonator in which a base cavity is used as an acoustic reflection structure, and sound waves are well reflected at the interface between the bottom electrode and the air in the cavity.
  • 2 is a cross-sectional view of a bulk acoustic wave resonator in which a Bragg reflection layer is used as an acoustic reflection structure, and a high- and low-acoustic impedance material provides a sound wave reflection effect that is weaker than a cavity-type reflection structure, but a Bragg reflection layer is easy to manufacture. And the structure is stable.
  • a filter composed of a film bulk acoustic piezoelectric resonator is usually composed of two or more resonators having different resonant frequencies.
  • Figure 4 shows an example of a topology of a filter composed of a thin film piezoelectric bulk acoustic resonator.
  • the parallel resonators 2, 4 are compared to the series resonator 1.
  • 3,5 is a certain frequency.
  • a well-known method for adjusting the resonant frequency of a thin film piezoelectric bulk acoustic resonator is to change the electrode mass by adjusting the thickness of the electrode, thereby generating a mass loading effect such that the resonant frequency of the resonator changes.
  • the desired resonant frequency offset can be produced by depositing a thickness of mass loading layer on a given resonator, and the relationship between the frequency offset and the increased mass loading layer thickness can be calculated by the model.
  • the deposition of the film especially for the deposition of a relatively large film, is inevitably subject to thickness errors, which are usually deposited in the film deposition monitoring of the product.
  • the frequency of the final product can meet the design requirements, and the thickness of the film to be deposited next will be Make compensation.
  • the thickness of all the layers on the acoustic reflection structure has a large or small effect on the resonant frequency of the resonator. Due to the different acoustic transmission characteristics of different layers, the thickness of the layers is changed after the thickness ratio of the layers is changed. It is often impossible to make the resonator reach the originally designed resonance frequency offset. Therefore, the resonator that has undergone the film thickness compensation cannot produce the ideal frequency offset under the original mass loading layer thickness, and thus the bandwidth and the pass of the filter. Band performance does not meet the requirements, affecting the yield of the product.
  • an embodiment of the present invention provides a method for fabricating a thin film resonator, comprising the steps of: detecting a thickness of each film layer that has been deposited; and determining when the detected film thickness is not within a standard thickness range; Whether the mass loading layer has been deposited, if not, selecting an undeposited film layer for thickness compensation, and calculating a mass loading layer required to generate the target frequency offset based on the compensated film layer thickness and the target frequency offset
  • the thickness of the standard is determined by the target frequency of the resonator and the process throughput; subsequent film deposition is performed according to the compensated undeposited film thickness and the recalculated thickness of the mass loading layer.
  • the method further includes: when the mass loading layer has been deposited, selecting different undeposited film layers for thickness compensation while ensuring that the fundamental frequency of the resonator is constant, determining the influence on the frequency offset With minimal film thickness compensation, subsequent film deposition is performed in accordance with a defined film thickness compensation.
  • the step of selecting different undeposited film layers for thickness compensation and determining the film thickness compensation having the least influence on the frequency offset includes: performing thickness compensation on each undeposited film layer; calculating each undeposited layer The film layer is subjected to thickness compensation and corresponding frequency offset; The compensated corresponding frequency offsets of each undeposited film layer are compared with the target frequency offset to determine the film thickness compensation with the smallest deviation from the target frequency offset.
  • the subsequent film deposition according to the determined film thickness compensation further includes: evaluating the determined film thickness compensation, when the evaluation result satisfies the preset In the case of the film, subsequent film deposition is carried out in accordance with the determined film thickness compensation. Determining the determined film thickness compensation, when the evaluation result satisfies the production requirement, the step of performing subsequent film deposition according to the determined film thickness compensation comprises: evaluating whether the minimum deviation from the target frequency offset is correct The performance of the filter has a significant effect, if not, a predetermined condition is met, the subsequent film deposition is performed in accordance with the determined film thickness compensation; the filter consists of at least two of the resonators.
  • the apparatus for fabricating a thin film resonator further includes a detecting module, a determining module, a processing module, and a thin film deposition module.
  • the detecting module is configured to detect each of the deposited a thickness of the film layer; the determining module is configured to determine whether the mass loading layer has been deposited when the detected film layer thickness is not within the standard thickness range; and the processing module is configured to determine whether the determining module is negative or not
  • the thickness of the mass loading layer required to generate the target frequency offset is calculated according to the compensated film layer thickness and the target frequency offset;
  • the target frequency of the resonator and the process throughput are determined;
  • the thin film deposition module is configured to perform subsequent thin film deposition in accordance with the compensated undeposited film thickness and the recalculated thickness of the mass loading layer.
  • the processing module is further configured to: when the determining module determines to be YES, select different undeposited film layers for thickness compensation while ensuring that the fundamental frequency of the resonator is constant, and determine the least influence on the frequency offset.
  • Film thickness compensation the thin film deposition module is further configured to perform subsequent film deposition in accordance with a determined film thickness compensation.
  • the processing module is configured to simulate thickness compensation of each undeposited film layer, and calculate a corresponding frequency offset of each undeposited film layer after thickness compensation, and correspondingly compensate each undeposited film layer The frequency offset is compared to the target frequency offset to determine the film thickness compensation that minimizes the deviation from the target frequency offset.
  • the apparatus further includes: an evaluation module; the evaluation module is configured to determine the film before performing subsequent film deposition according to the determined film thickness compensation after determining the film thickness compensation that has the least influence on the frequency offset The layer thickness compensation is evaluated, and when the evaluation result satisfies the preset condition, the thin film deposition module is notified to perform subsequent film deposition according to the determined film thickness compensation.
  • the evaluation module is configured to evaluate whether the minimum deviation from the target frequency offset has a significant influence on the performance of the filter, and if not, satisfying the preset condition, notifying the thin film deposition module to compensate according to the determined film thickness Subsequent thin film deposition is performed; the filter consists of at least two of the resonators.
  • the beneficial effects of the embodiments of the present invention are as follows:
  • the embodiments of the present invention provide a method and a device for fabricating a thin film resonator, which can accurately generate a required frequency offset and improve the yield of the product.
  • the manufacturing method of the embodiment of the present invention includes: detecting the thickness of each film layer that has been deposited; determining whether the mass loading layer has been deposited when the detected film layer thickness is not within the standard thickness range, and if not, selecting the undeposited layer
  • the film layer is subjected to thickness compensation, and the thickness of the mass loading layer required to generate the target frequency offset is calculated according to the compensated film thickness and the target frequency offset;
  • the standard thickness range is generated by the target frequency of the resonator and the process Capacity determination; subsequent film deposition according to the compensated undeposited film thickness and the recalculated thickness of the mass loading layer;
  • the manufacturing method of the embodiment of the present invention can be used when a certain film thickness exceeds the formulation In the standard case, the thickness of the
  • FIG. 1 is a schematic structural view of a thin film piezoelectric bulk acoustic resonator with a cavity on a substrate as an acoustic reflection structure
  • FIG. 2 is a thin film piezoelectric acoustic resonance using a Bragg reflection layer as an acoustic reflection structure.
  • Figure 3 is a schematic diagram of the impedance frequency of a thin film piezoelectric bulk acoustic resonator; 4 is a schematic diagram of a filter topology;
  • FIG. 1 is a schematic structural view of a thin film piezoelectric bulk acoustic resonator with a cavity on a substrate as an acoustic reflection structure
  • FIG. 2 is a thin film piezoelectric acoustic resonance using a Bragg reflection layer as an acoustic reflection structure.
  • FIG. 5 is a schematic flowchart of a method for fabricating a thin film resonator according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a thin film piezoelectric body acoustic wave according to Embodiment 1 of the present invention
  • FIG. 7 is a schematic flow chart of a method for fabricating another thin film resonator according to Embodiment 1 of the present invention
  • FIG. 8 is a schematic structural diagram of a thin film piezoelectric bulk acoustic resonator according to Embodiment 2 of the present invention
  • FIG. 9 is a schematic flow chart of a method for fabricating a thin film piezoelectric bulk acoustic resonator according to a second embodiment of the present invention
  • FIG. 10 is a schematic structural view of a thin film piezoelectric bulk acoustic resonator according to Embodiment 3 of the present invention
  • 11 is a schematic flow chart of a method for fabricating a film piezoelectric bulk acoustic resonator according to a third embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a device for fabricating a thin film resonator according to a fourth embodiment of the present invention
  • Embodiment 1 As shown in FIG. 5, this embodiment provides a method for fabricating a thin film resonator, comprising the following steps: Step 501: Detecting the thickness of each film layer that has been deposited; Step 502: When detecting the film When the layer thickness is not within the standard thickness range, it is judged whether the mass loading layer has been deposited, and if not, step 503 is performed, and if so, step 505 is performed.
  • Step 503 selecting an undeposited film layer for thickness compensation, and calculating a thickness of the mass loading layer required to generate the target frequency offset according to the compensated film layer thickness and the target frequency offset; the standard thickness range is determined by The target frequency of the resonator and the process capacity are determined; Step 504: performing subsequent film deposition according to the compensated undeposited film thickness and the recalculated thickness of the mass loading layer; Step 505: Adopt other remedies.
  • the manufacturing method of the embodiment can re-calculate the thickness of the mass loading layer under the condition that the overall frequency of the resonator does not deviate from the target value when a certain film thickness exceeds the established standard during the manufacturing process, In order to accurately generate the required frequency offset on the designated resonator, the method does not need to add an additional process, and the manufacturing method of the embodiment of the invention can save the product yield while saving the product yield compared with the prior art. production cost.
  • the medium standard thickness range of this embodiment is determined by the target frequency, and may be further determined by the tradeoff between the process capability and the frequency requirement accuracy of the product. As shown in FIG.
  • the thin film piezoelectric bulk acoustic resonator manufactured by the manufacturing method of the embodiment wherein the film layer S may be a Bragg reflection layer which is formed by separating the substrate and the high and low acoustic impedance materials.
  • the structure of the composition may also be a structure composed of a substrate and a sacrificial layer material. After the sacrificial layer material is removed, an air cavity structure is formed under the bottom electrode to provide excellent sound wave reflection efficiency.
  • the substrate may be silicon, and the high and low acoustic impedance materials may be tungsten (W) and silicon dioxide (SiO 2 ) or other materials having a large acoustic impedance ratio, respectively.
  • the sacrificial layer can be a silica silica glass (PSG) or other readily removable material.
  • a film layer B which must include a bottom metal electrode, and may also include other film layers, such as a temperature compensation layer formed of SiO 2 , a mass loading layer configured to produce a frequency offset, and the like.
  • the film layer B is a piezoelectric layer P which may be formed of aluminum nitride (A1N), zinc oxide (ZnO) or lead zirconate titanate (PZT) or other suitable piezoelectric material.
  • a film layer T which must include a top metal electrode, and may also include a temperature compensation layer formed of SiO 2 , a mass loading layer formed to generate a frequency shift, a surface passivation layer to prevent oxidation of the device, and the like.
  • the bottom electrode and the top electrode may be made of molybdenum (Mo), tungsten (W) or other metal materials, and the mass loading layer for generating a certain frequency offset may be made of the same material as the top electrode, or different materials may be used as needed.
  • a mass loading layer M for generating the desired frequency offset is located in one of the film layer groups T or B, defining a frequency offset of fl-f2.
  • the manufacturing method of this embodiment further includes: when depositing the mass loading layer, selecting different undeposited film layers for thickness compensation while ensuring that the fundamental frequency of the resonator is constant, determining frequency offset The film thickness compensation with the least impact is removed, and subsequent film deposition is performed in accordance with the determined film thickness compensation. As shown in FIG.
  • the manufacturing method of this embodiment may include: Step 701: detecting the thickness of each film layer that has been deposited on-line; Step 702: The detected film layer thickness is not within the standard thickness range; Step 703: Determine whether the quality loading layer has been deposited, and if yes, perform step 704; if no, perform step 706; Step 704: select different if the fundamental frequency of the resonator is unchanged The deposited film layer is thickness compensated to determine the film thickness compensation that has the least influence on the frequency offset; Step 705: Perform subsequent film deposition according to the determined film thickness compensation; Step 706: Select the undeposited film layer Thickness compensation, calculating a thickness of the mass loading layer required to generate the target frequency offset according to the compensated film thickness and the target frequency offset; the standard thickness range is determined by the target frequency of the resonator and the process capability Decision 707: Subsequent thin film deposition is performed in accordance with the compensated undeposited film thickness and the recalculated thickness of the mass loading layer.
  • the subsequent film layer is not simulated by the model, and the fundamental frequency of the resonator is maintained.
  • the thickness of the film with the least influence on the frequency offset is selected, and the influence of the film thickness compensation on the frequency offset is minimized within an allowable range.
  • step 704 of the embodiment different undeposited film layers are selected for thickness compensation, and the specific process of determining the film thickness compensation with the least influence on the frequency offset may include: simulating each undeposited film layer Thickness compensation; calculate the corresponding frequency offset of each undeposited film layer after thickness compensation; compare the corresponding frequency offset of each undeposited film layer with the target frequency offset to determine the target frequency Film thickness compensation with minimal offset deviation.
  • the method further includes: evaluating the determined film thickness compensation, and performing the subsequent film according to the determined film thickness compensation when the evaluation result satisfies the preset condition. Deposit.
  • Step 901 Monitor the online film thickness measurement data of the product and compare it with the standard, and find the deposited film.
  • the layer thickness is not within the thickness of the standard film layer.
  • the frequency of the resonator is affected by the thickness of the film on all acoustically reflective structures, so it is necessary to perform on-line inspection of the thickness of each layer of film.
  • On-line inspection can be performed by directly measuring the thickness of a film thickness tester such as a step meter, an ellipsometer, or the like, or by attaching an additional monitor piece.
  • the thickness range of the standard film layer in this embodiment is determined by the trade-off between the process capability and the frequency requirement accuracy of the product. If the on-line detection film thickness is found to exceed the standard film thickness range, some solutions must be taken.
  • rework can be performed or some unconventional processes can be added to adjust the film thickness of the layer to within the standard, but this increases the manufacturing process, thereby not only increasing the manufacturing cost but also causing some instability factors to affect the final product. Yield. Since the resonant frequency of the thin film piezoelectric bulk acoustic resonator is affected by the thickness of all the layers on the acoustically reflective structure, a preferred solution is to adjust the thickness of the film to be made so that the final device resonant frequency returns to within the standard. For example, in the present embodiment, it is assumed that the thickness of the bottom electrode is set to 3000 ⁇ 100 A.
  • the thickness of the bottom electrode produced is found to be 3200 A, which is beyond the standard, so that the film thickness compensation of the subsequent film layer is required.
  • Step 902 In the case where the mass loading layer is not deposited, the subsequent undeposited film layer is selected for thickness compensation based on the target frequency.
  • a piezoelectric layer, a top electrode or other film layer having an influence on frequency can be selected.
  • the thickness of the selected subsequent film compensation is recalculated by substituting the target frequency and the thickness of the deposited film into the model.
  • the top electrode is selected for film thickness compensation, and the original top electrode is designed to have a thickness of 3000 A.
  • the model is calculated to ensure that the thickness of the top electrode is reduced by 200 A, that is, the thickness of the top electrode after compensation. It is 2800A.
  • Step 903 Substituting a new film thickness into the model, recalculating the film thickness of the mass loading layer required to produce the specified frequency offset. For example, in this embodiment, the difference between the mass filter layer and the resonator having the mass load layer in the same filter is required, that is, the frequency offset is equal to 20 MHz, and when the thickness of the top and bottom electrodes is 3000 A, the mass loading layer is The thickness is designed to be 300 A. Adjusted top electrode thickness 2800A and original mass loading layer thickness 300 A Substituting the model calculation yields an actual frequency offset of 22 MHz.
  • Step 904 depositing the film according to the thickness of the re-calculated subsequent film layer and the thickness of the mass loading layer.
  • the fundamental frequency and frequency offset of the resonator produced is in accordance with the required frequency. Thereby, a filter structure based on a film bulk acoustic wave piezoelectric resonator with satisfactory performance can be obtained.
  • Third Embodiment In the present embodiment, a method of fabricating a thin film resonator of the first embodiment will be described by taking a thin film piezoelectric bulk acoustic resonator as shown in FIG.
  • Step 1111 Monitor the online film thickness measurement data of the product and compare it with the standard, and find the deposited film. The layer thickness is not within the thickness of the standard film layer.
  • the film thickness compensation for the subsequent film layer is required to increase the final device fundamental frequency fl to meet the design requirements without adding additional process steps.
  • the mass loading layer is formed at the lower portion of the bottom electrode.
  • the film thickness monitoring found that the bottom electrode thickness was 3200A, which exceeded the monitoring standard of 3000 ⁇ 100A. Therefore, it is necessary to perform film thickness compensation on the subsequent film layer;
  • Step 1112 When the mass loading layer is formed before the film thickness exceeding the standard is formed, thickness compensation is performed on the subsequent different film layers, so that the device fundamental frequency fl remains unchanged, and The frequency offset corresponding to the compensation of different layers is calculated by the model.
  • the compensated thickness can be calculated by substituting the base frequency fl and the thickness of the film layer with the deviation into the model. For example, in the present embodiment, in the case where fl is constant and the thickness of the bottom electrode is 3200 A, if the thickness of the top electrode is kept constant, the thickness of the piezoelectric layer P needs to be adjusted from 10000 A of the previous design to 9600 A, and thus the resulting The frequency offset is changed from 20MHz of design to 19MHz; if the thickness of the piezoelectric layer is kept constant, the thickness of the top electrode T needs to be adjusted to 2800A from the previously designed 3000A, and the resulting frequency offset is changed from 20MHz to 18MHz. . Step 1113: Select the layer compensation that has the least effect on the frequency offset.
  • the frequency offset generated by the piezoelectric layer thickness compensation is deviated from the design value of 20 MHz by 1 MHz, and the frequency offset generated by the top electrode thickness compensation is deviated by 2 MHz from the design value of 20 MHz. Therefore, the subsequent film formation is selected by the piezoelectric layer thickness compensation.
  • Step 1114 further evaluate the film compensation with the least influence on the frequency offset, and when the evaluation result meets the design or fabrication requirements, perform subsequent film deposition according to the determined film thickness compensation; when the evaluation result does not satisfy the design or Other remedies are used when making the request.
  • the selected frequency offset and the target frequency offset (design value) produce a 1MHz error that does not have a significant impact on the filter performance, which can meet the design requirements, so the piezoelectric layer is reduced to 9600A, film thickness compensation with the same thickness of the top electrode for subsequent film formation.
  • the thickness of the layer in the process of manufacturing the resonator, when the thickness of the layer is exceeded, the thickness of the layer is beyond the established standard, and the unprocessed subsequent layer is simulated by the model, and the resonator is maintained.
  • the fundamental frequency is constant, the thickness of the film with the least influence on the frequency offset is selected, and the influence of the film thickness compensation on the frequency offset is minimized within an allowable range.
  • the embodiment provides a thin film resonator manufacturing apparatus, including: a detecting module, a determining module, a processing module, and a thin film deposition module; and the detecting module is configured to detect that the film has been deposited.
  • the thickness of each film layer is configured to determine whether the mass loading layer has been deposited when the detected film layer thickness is not within the standard thickness range; and the processing module is configured to determine whether the determining module is
  • the thickness of the mass loading layer required to generate the target frequency offset is calculated according to the compensated film layer thickness and the target frequency offset; the standard thickness range Determined by the target frequency of the resonator and process throughput; the thin film deposition module is configured to perform subsequent thin film deposition in accordance with the compensated undeposited film thickness and the recalculated thickness of the mass loading layer.
  • the processing module is further configured to: when the determining module determines to be YES, select different undeposited film layers for thickness compensation, and determine a film thickness compensation that has the least influence on the frequency offset; the thin film deposition module It is also arranged to perform subsequent film deposition in accordance with the determined film thickness compensation.
  • the processing module is configured to simulate thickness compensation of each undeposited film layer, calculate a corresponding frequency offset of each undeposited film layer after thickness compensation, and pass each undeposited film layer The corresponding frequency offset after compensation is compared with the target frequency offset to determine the film thickness compensation with the smallest deviation from the target frequency offset. As shown in FIG.
  • the apparatus of this embodiment further includes: an evaluation module; the evaluation module is configured to perform subsequent compensation according to the determined film thickness compensation after determining the film thickness compensation that has the least influence on the frequency offset The determined film thickness compensation is evaluated prior to film deposition, and when the evaluation result satisfies the preset condition, the film deposition module is notified to perform subsequent film deposition in accordance with the determined film thickness compensation.
  • the evaluation module is configured to evaluate whether a minimum deviation from the target frequency offset has a significant influence on the performance of the filter, and if not, satisfying a preset condition, notifying the thin film deposition module according to the determined film Layer thickness compensation for subsequent film deposition; the filter consists of at least two of said resonators.
  • the manufacturing apparatus of the embodiment can re-calculate the thickness of the unloaded layer when the film thickness of a certain layer exceeds the established standard during the manufacturing process, and recalculate the thickness of the mass loading layer under the condition that the overall frequency of the resonator does not deviate from the target value.
  • the method does not need to add an additional process, and the manufacturing apparatus of the embodiment of the invention can save the product yield while saving the product yield compared with the prior art. production cost.
  • the unprocessed subsequent film layer is simulated by the model, and the resonance is maintained.
  • the fundamental frequency of the device is constant, the thickness of the film with the least influence on the frequency offset is selected, and the influence of the film thickness compensation on the frequency offset is minimized within an allowable range.
  • the invention relates to the field of electronic technology, and the manufacturing method comprises: detecting the thickness of each film layer that has been deposited; determining whether the mass loading layer has been deposited when the detected film layer thickness is not within the standard thickness range, and if not, selecting The undeposited film layer is thickness compensated, and the thickness of the mass loading layer required to generate the target frequency offset is calculated according to the compensated film thickness and the target frequency offset; the standard thickness range is determined by the target frequency of the resonator and Process capacity determination; subsequent film deposition according to the compensated undeposited film thickness and the recalculated thickness of the mass loading layer; the method of the present invention can be used when a certain film thickness exceeds the formulation In the standard case, the thickness of the unformed layer is corrected, and the thickness of the mass loading layer is recalculated under the condition that the overall frequency of the resonator does not deviate from the target value, so that the required frequency offset is accurately generated on the designated resonator.
  • the method does not need to add an additional process, and

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种薄膜谐振器的制作方法及装置,制作方法包括:检测已经淀积的各膜层的厚度;当检测到的膜层厚度不在标准厚度范围内时,判断质量加载层是否已经淀积,若否,则选取未淀积的膜层进行厚度补偿,根据补偿后的膜层厚度和目标频率偏移计算出产生所述目标频率偏移所需的质量加载层的厚度;所述标准厚度范围由所述谐振器的目标频率以及工艺生产能力决定;按照补偿后的未淀积的膜层厚度以及重新计算出的质量加载层的厚度进行后续的薄膜淀积;所述制作方法及装置能够精确地产生所需的频率偏移,提高产品的良率。

Description

一种薄膜谐振器的制作方法及装置 技术领域 本发明涉及电子技术领域, 尤其涉及一种薄膜谐振器的制作方法及装置。 背景技术 利用压电薄膜在厚度方向的纵向谐振所制成的薄膜压电体声波谐振器, 在手机通 讯和高速串行数据应用等方面已成为声表面波器件和石英晶体谐振器的一个可行的替 代。 射频前端体声波压电滤波器 /双工器提供优越的滤波特性, 例如低插入损耗, 陡峭 的过渡带, 较大的功率容量, 较强的抗静电放电 (ESD)能力。具有超低频率温度漂移的 高频薄膜压电体波振荡器, 其相位噪声低, 功耗低且带宽调制范围大。 除此之外, 这 些微型薄膜压电体声波谐振器在硅衬底上使用互补式金属氧化物半导体 (CMOS)兼容 的加工工艺, 这样可以降低单位器件成本, 并有利于最终与 CMOS电路集成。 典型的薄膜压电体声波谐振器包括两个金属电极、 位于上下电极之间的压电材料 以及位于底电极下面的声反射结构。 图 1是以基底空腔作为声反射结构的体声波谐振 器的截面图, 声波在底电极与空腔中空气的交界面上会发生良好的反射。 图 2是以布 拉格反射层作为声反射结构的体声波谐振器的截面图, 间隔的高、 低声学阻抗材料提 供的声波反射效果要弱于空腔型反射结构, 但是布拉格反射层易于制作, 并且结构稳 定。 当在电极之间施加一定频率的电压信号时, 由于压电材料所具有的逆压电效应, 电极之间会产生垂直方向传播的声波, 声波在上电极与空气交界面和底电极下的声反 射结构之间来回反射, 当声波满足一定频率条件时会发生谐振, 于是一个典型的薄膜 压电体声波谐振器表现出如图 3所示的电学频率 -阻抗特性。 一个由薄膜体声波压电谐振器构成的滤波器通常由两种或几种谐振频率不同的谐 振器组成。 为使滤波器达到理想的通带性能, 对于不同频率谐振器之间的谐振频率偏 差有着严格的要求。 图 4所示, 是一种由薄膜压电体声波谐振器组成的滤波器的拓扑 结构实例, 为使滤波器达到最佳的通带性能, 并联谐振器 2,4要比串联谐振器 1,3,5低 一定的频率。 公知的一种调整薄膜压电体声波谐振器谐振频率的方法是通过调整电极 厚度引起电极质量变化,由此产生质量加载效应 (mass loading effect)使得谐振器谐振频 率发生变化。 通过对指定的谐振器淀积一定厚度的质量加载层可以产生所需要的谐振 频率偏移,频率偏移和需要增加的质量加载层厚度之间的关系可以通过模型计算出来。 但是在实际的生产制作过程中, 薄膜的淀积尤其是对于厚度较大薄膜的淀积难以 避免地存在着厚度的误差, 在产品的薄膜淀积监控中通常会对淀积的各个膜层厚度进 行监控, 当检测到某一先淀积膜层厚度偏离理想值超过一定范围时, 为了保证产品的 良率, 使得最终产品的频率可以满足设计的要求, 会对接下来将要淀积的膜层厚度进 行补偿。 但是, 声反射结构上面所有膜层的厚度均对谐振器的谐振频率有着或大或小 的影响, 由于不同层的声波传输特性不同, 不同层之间厚度比例改变之后, 同样厚度 的质量加载层往往不能使谐振器达到原先设计的谐振频率偏移量, 因此进行过膜层厚 度补偿的谐振器在原定的质量加载层厚度下不能产生理想的频率偏移量, 从而滤波器 的带宽及通带性能不能满足要求, 影响了产品的良率。 发明内容 本发明实施例要解决的主要技术问题是,提供一种薄膜谐振器的制作方法及装置, 能够精确地产生所需的频率偏移, 提高产品的良率。 为解决上述技术问题, 本发明实施例提供一种薄膜谐振器的制作方法, 包括如下 步骤: 检测已经淀积的各膜层的厚度; 当检测到的膜层厚度不在标准厚度范围内时, 判断质量加载层是否已经淀积, 若 否, 则选取未淀积的膜层进行厚度补偿, 根据补偿后的膜层厚度和目标频率偏移计算 出产生所述目标频率偏移所需的质量加载层的厚度; 所述标准厚度范围由所述谐振器 的目标频率以及工艺生产能力决定; 按照补偿后的未淀积的膜层厚度以及重新计算出的质量加载层的厚度进行后续的 薄膜淀积。 所述方法还包括: 当所述质量加载层已经淀积时, 在保证所述谐振器基础频率不 变的情况下, 选取不同的未淀积的膜层进行厚度补偿, 确定对频率偏移影响最少的膜 层厚度补偿, 按照确定的膜层厚度补偿进行后续的薄膜淀积。 所述选取不同的未淀积的膜层进行厚度补偿, 确定对频率偏移影响最少的膜层厚 度补偿的步骤包括: 仿真对各个未淀积的膜层进行厚度补偿; 计算出各个未淀积的膜层经过厚度补偿后对应的频率偏移; 将各个未淀积的膜层经过补偿后对应的频率偏移与目标频率偏移进行比较, 确定 与目标频率偏移偏差最小的膜层厚度补偿。 在确定对频率偏移影响最少的膜层厚度补偿之后, 所述按照确定的膜层厚度补偿 进行后续的薄膜淀积之前还包括: 对确定的膜层厚度补偿进行评估, 当评估结果满足预设条件时, 按照所述确定的 膜层厚度补偿进行后续的薄膜淀积。 所述对确定的膜层厚度补偿进行评估, 当评估结果满足制作要求时, 按照所述确 定的膜层厚度补偿进行后续的薄膜淀积的步骤包括: 评估与目标频率偏移的最小偏差是否对滤波器的性能产生明显的影响, 若否, 满 足预设条件, 按照所述确定的膜层厚度补偿进行后续的薄膜淀积; 所述滤波器由至少两个所述谐振器组成。 同样为了解决上述的技术问题本发明实施例还提供了一种薄膜谐振器的制作装置 包括: 检测模块、 判断模块、 处理模块以及薄膜淀积模块; 所述检测模块设置为检测已经淀积的各膜层的厚度;; 所述判断模块设置为当检测到的膜层厚度不在标准厚度范围内时, 判断质量加载 层是否已经淀积; 所述处理模块设置为在所述判断模块判断为否的情况下, 选取未淀积的膜层进行 厚度补偿, 根据补偿后的膜层厚度和目标频率偏移计算出产生所述目标频率偏移所需 的质量加载层的厚度; 所述标准厚度范围由所述谐振器的目标频率以及工艺生产能力 决定; 所述薄膜淀积模块设置为按照补偿后的未淀积的膜层厚度以及重新计算出的质量 加载层的厚度进行后续的薄膜淀积。 所述处理模块还设置为在判断模块判断为是时, 在保证所述谐振器基础频率不变 的情况下, 选取不同的未淀积的膜层进行厚度补偿, 确定对频率偏移影响最少的膜层 厚度补偿; 所述薄膜淀积模块还设置为按照确定的膜层厚度补偿进行后续的薄膜淀积。 所述处理模块设置为仿真对各个未淀积的膜层进行厚度补偿, 计算出各个未淀积 的膜层经过厚度补偿后对应的频率偏移, 将各个未淀积的膜层经过补偿后对应的频率 偏移与目标频率偏移进行比较, 确定与目标频率偏移偏差最小的膜层厚度补偿。 所述装置还包括: 评估模块; 所述评估模块设置为在确定对频率偏移影响最少的膜层厚度补偿之后, 所述按照 确定的膜层厚度补偿进行后续的薄膜淀积之前对确定的膜层厚度补偿进行评估, 当评 估结果满足预设条件时, 通知所述薄膜淀积模块按照所述确定的膜层厚度补偿进行后 续的薄膜淀积。 所述评估模块设置为评估与目标频率偏移的最小偏差是否对滤波器的性能产生明 显的影响, 若否, 满足预设条件, 通知所述薄膜淀积模块按照所述确定的膜层厚度补 偿进行后续的薄膜淀积; 所述滤波器由至少两个所述谐振器组成。 本发明实施例的有益效果是: 本发明实施例提供了一种薄膜谐振器的制作方法及装置, 能够精确地产生所需的 频率偏移, 提高产品的良率。 本发明实施例的制作方法包括: 检测已经淀积的各膜层 的厚度; 当检测到的膜层厚度不在标准厚度范围内时,判断质量加载层是否已经淀积, 若否, 则选取未淀积的膜层进行厚度补偿, 根据补偿后的膜层厚度和目标频率偏移计 算出产生所述目标频率偏移所需的质量加载层的厚度; 标准厚度范围由谐振器的目标 频率以及工艺生产能力决定; 按照补偿后的未淀积的膜层厚度以及重新计算出的质量 加载层的厚度进行后续的薄膜淀积; 本发明实施例的制作方法可以当制作过程中某层 膜厚度超过制定的标准时, 对未制作膜层进行厚度修正, 在谐振器整体频率不偏离目 标值的条件下, 重新计算质量加载层的厚度, 使得在指定的谐振器上精确地产生需要 的频率偏移量, 该方法不需要增加额外工艺工序, 与现有技术相比, 本发明实施例的 制作方法可以在提高产品良率的同时节省了制作成本。 附图说明 图 1为一种以基底上的空腔作为声反射结构的薄膜压电体声波谐振器的结构示意 图; 图 2为一种以布拉格反射层作为声反射结构的薄膜压电体声波谐振器的结构示意 图; 图 3为一种薄膜压电体声波谐振器阻抗频率曲线; 图 4为一种滤波器拓扑结构示意图; 图 5为本发明实施例一提供的一种薄膜谐振器的制作方法的流程示意图; 图 6为本发明实施例一提供的一种薄膜压电体声波谐振器的结构示意图; 图 7为本发明实施例一提供的另一种薄膜谐振器的制作方法的流程示意图; 图 8为本发明实施例二提供的一种薄膜压电体声波谐振器的结构示意图; 图 9为本发明实施例二提供的一种薄膜压电体声波谐振器的制作方法的流程示意 图; 图 10为本发明实施三提供的一种薄膜压电体声波谐振器的结构示意图; 图 11 为本发明实施例三提供的一种膜压电体声波谐振器的制作方法的流程示意 图; 图 12为本发明实施例四提供的一种薄膜谐振器的制作装置的结构示意图; 图 13为本发明实施例四提供的另一种薄膜的制作装置的结构示意图。 具体实施方式 下面通过具体实施方式结合附图对本发明作进一步详细说明。 实施例一: 如图 5所示, 本实施例提供了一种薄膜谐振器的制作方法, 包括如下步骤: 步骤 501 : 检测已经淀积的各膜层的厚度; 步骤 502: 当检测到的膜层厚度不在标准厚度范围内时, 判断质量加载层是否已 经淀积, 若否, 执行步骤 503, 若是, 执行步骤 505。 步骤 503 : 选取未淀积的膜层进行厚度补偿, 根据补偿后的膜层厚度和目标频率 偏移计算出产生所述目标频率偏移所需的质量加载层的厚度; 所述标准厚度范围由所 述谐振器的目标频率以及工艺生产能力决定; 步骤 504: 按照补偿后的未淀积的膜层厚度以及重新计算出的质量加载层的厚度 进行后续的薄膜淀积; 步骤 505: 采用其他补救措施。 本实施例的制作方法可以当制作过程中某层膜厚度超过制定的标准时, 对未制作 膜层进行厚度修正, 在谐振器整体频率不偏离目标值的条件下, 重新计算质量加载层 的厚度, 使得在指定的谐振器上精确地产生需要的频率偏移量, 该方法不需要增加额 外工艺工序, 与现有技术相比, 本发明实施例的制作方法可以在提高产品良率的同时 节省了制作成本。 本实施例的中标准厚度范围是由目标频率决定, 进一步也可以由工 艺能力与产品的频率要求精度权衡而决定。 如图 6所示, 采用本实施例制作方法制作出的薄膜压电体声波谐振器, 其中, 膜 层 S可以是由基底和高、 低声学阻抗材料间隔淀积而成的布拉格反射层共同组成的结 构, 也可以是由基底和牺牲层材料共同构成的结构, 在牺牲层材料被除去之后, 底电 极下形成空气腔结构从而提供极佳的声波反射效率。 基底可以是硅, 高、 低声阻抗材 料可以分别是钨 (W)和二氧化硅 (Si02)或其他具有较大声阻抗比值的两种材料。牺牲层 可以是磷酸硅玻璃 (PSG) 或是其他易于除去的材料。 在基底和声反射结构上方是膜 层 B, 膜层 B中必须包括底部金属电极, 还可以包括其他膜层, 例如 Si02形成的温 度补偿层, 设置为产生频率偏移的质量加载层等。 膜层 B上是压电层 P, 可以采用氮 化铝 (A1N), 氧化锌 (ZnO) 或锆钛酸铅 (PZT) 或其他合适的压电材料形成。 压电 层 P上面是膜层 T,其中必须包括顶部金属电极,还可以包括 Si02形成的温度补偿层, 设置为产生频率偏移的质量加载层, 防止器件氧化的表面钝化层等等。 其中底部电极 和顶部电极可以采用钼 (Mo), 钨 (W) 或其他金属材料构成, 用于产生一定频率偏 移的质量加载层可以采用与顶部电极一样的材料, 或根据需要采用不同的材料形成, 用于产生所需频率偏移的质量加载层 M位于膜层组 T或 B中的某一层, 定义频率偏 移为 fl-f2。 其中 fl为当前结构去除质量加载层 M后的器件电学谐振频率, £2为当前 结构即含有质量加载层 M的器件电学谐振频率。 本实施例的制作方法还包括: 当所述质量加载层淀积时, 在保证所述谐振器基础 频率不变的情况下, 选取不同的未淀积的膜层进行厚度补偿, 确定对频率偏移影响最 少的膜层厚度补偿, 按照确定的膜层厚度补偿进行后续的薄膜淀积。 如图 7所示, 本实施例的制作方法可以包括: 步骤 701 : 在线检测已经淀积的各膜层的厚度; 步骤 702: 检测到的膜层厚度不在标准厚度范围之内; 步骤 703 : 判断所述质量加载层是否已经淀积, 若是, 则执行步骤 704; 若否, 则 执行步骤 706; 步骤 704: 在保证所述谐振器基础频率不变的情况下, 选取不同的未淀积的膜层 进行厚度补偿, 确定对频率偏移影响最少的膜层厚度补偿; 步骤 705 : 按照确定的膜层厚度补偿进行后续的薄膜淀积; 步骤 706: 选取未淀积的膜层进行厚度补偿, 根据补偿后的膜层厚度和目标频率 偏移计算出产生所述目标频率偏移所需的质量加载层的厚度; 所述标准厚度范围由所 述谐振器的目标频率以及工艺生产能力决定; 步骤 707: 按照补偿后的未淀积的膜层厚度以及重新计算出的质量加载层的厚度 进行后续的薄膜淀积。 本实施例的制作方法可以在制作过程中, 在质量加载层已经形成完毕的情况下发 现某一层厚度超出制定的标准时, 对未制作的后续膜层通过模型仿真, 在保持谐振器 的基础频率不变的情况下, 选择对频率偏移影响最少的膜层进行厚度补偿, 在可以允 许的范围内把膜厚补偿对于频率偏移的影响降到最低。 本实施例的制作方法步骤 704中选取不同的未淀积的膜层进行厚度补偿, 确定对 频率偏移影响最少的膜层厚度补偿的具体过程可以包括: 仿真对各个未淀积的膜层进行厚度补偿; 计算出各个未淀积的膜层经过厚度补偿后对应的频率偏移; 将各个未淀积的膜层经过补偿后对应的频率偏移与目标频率偏移进行比较, 确定 与目标频率偏移偏差最小的膜层厚度补偿。 本实施例的制作方法, 在步骤 704和步骤 705之间还包括: 对确定的膜层厚度补 偿进行评估, 当评估结果满足预设条件时, 按照所述确定的膜层厚度补偿进行后续的 薄膜淀积。 这样可以确定仿真得到的结果是否能满足设计应用要求, 若不能则需要采 用额外的工艺步骤对谐振器进行频率偏移的补救。 例如, 可以评估与目标频率的最小 偏差是否对滤波器的性能产生明显的影响, 若否, 满足预设条件, 按照所述确定的膜 层厚度补偿进行后续的薄膜淀积, 若是, 则采用额外的工艺步骤对谐振器进行频率偏 移的补救, 该滤波器由至少两个所述谐振器组成, 参考图 4滤波器的结构。 实施例二: 本实施例以制作如图 8所示的薄膜压电体声波谐振器为例, 来说明实施例一的薄 膜谐振器的制作方法。 如图 9所示, 本实施例薄膜压电体声波谐振器的制作过程, 主 要分为以下步骤: 步骤 901 : 监控产品的在线膜厚测量数据并与标准进行比对, 发现已淀积的膜层 厚度不在标准膜层厚度范围内。 在薄膜压电体声波谐振器的制作过程中, 由于薄膜的淀积或是溅射工艺在生产中 不可能保持绝对稳定, 所制作的薄膜厚度难以避免地要发生波动, 由于薄膜压电体声 波谐振器的频率受所有声反射结构上的膜层厚度影响, 因此有必要对每一层薄膜的厚 度进行在线检测。 在线检测可以通过直接在所做的产品上利用台阶仪, 椭偏仪等膜厚 测试仪器进行厚度的测量, 也可以通过附加额外的监控片进行检测。 本实施例中标准膜层厚度范围由工艺能力与产品的频率要求精度权衡而决定, 如 果发现在线检测膜厚超出了所制定的标准膜层厚度范围, 则必须采取一些方案。 这时 可以进行返工或者增加一些非常规的工序将本层的膜厚调整至标准以内, 但是这样增 加了制作工序, 由此不仅增加了制作成本而且还可能带来一些不稳定性因素影响最终 产品的良率。 由于薄膜压电体声波谐振器的谐振频率受到声反射结构上所有膜层的厚 度影响, 因此, 优选的一种方案为调整将要做的膜层厚度使最后的器件谐振频率回到 标准之内。例如, 在本实施例中假设底部电极厚度标准定为 3000 ± 100A, 在某次测量 中发现所制作底部电极厚度为 3200A, 超出标准, 因此需要对后续膜层进行膜厚补偿。 步骤 902: 在未淀积质量加载层的情况下, 以目标频率为准, 选取后续未淀积的 膜层进行厚度补偿。 本实施例的制作方法中可以选取压电层, 顶部电极或其他对频率有影响的膜层。 通过将目标频率和已经淀积的膜层厚度代入模型重新计算出选取的后续膜层补偿后的 厚度。例如,在本实施例中选取顶部电极进行膜厚补偿,原来顶部电极设计厚度 3000A, 经模型计算在保证目标频率不变的情况下,顶部电极厚度需要减少 200A, 即经过补偿 后的顶部电极厚度为 2800A。 步骤 903 : 将新的膜层厚度代入模型, 重新计算产生指定的频率偏移所需要的质 量加载层的膜层厚度。 例如, 在本实施例中要求同一个滤波器中没有质量加载层和有质量加载层的谐振 器之间差值即频率偏移等于 20MHz,在顶底电极厚度为 3000A的时候,质量加载层的 厚度设计为 300 A。 将调整过的顶部电极厚度 2800A和原定的质量加载层厚度 300 A 代入模型计算得到实际的频率偏移量 22MHz。 因此在频率偏移保持 20MHz的情况下 重新计算质量加载层的厚度得到新的质量加载层厚度为 250A。 步骤 904: 按照重新计算后的后续膜层的厚度和质量加载层的厚度进行薄膜的淀 积。 完成全部制作过程后,所制作出谐振器的基础频率和频率偏移符合所要求的频率。 从而可以得到性能符合要求的基于薄膜体声波压电谐振器的滤波器结构。 实施例三: 本实施例以制作图 10所示, 薄膜压电体声波谐振器为例,来说明实施例一的薄膜 谐振器的制作方法。 定义其中 fl为当前结构去除膜层 M后的器件电学谐振频率即基 础谐振频率; £2为当前结构即含有 M层厚度的器件电学谐振频率即目标谐振频率。 如图 11所示, 本实施例薄膜压电体声波谐振器的制作过程, 主要分为以下步骤: 步骤 1111 : 监控产品的在线膜厚测量数据并与标准进行比对, 发现已淀积的膜层 厚度不在标准膜层厚度范围内。 由于膜厚超出标准将会导致器件的频率偏离目标值, 因此在不增加额外工艺工序 的情况下需要针对后续膜层进行膜厚补偿以使最终器件基础频率 fl满足设计要求。例 如, 在本实施例中, 质量加载层形成于底部电极下部。 膜厚监控发现底部电极厚度为 3200A, 超出监控标准 3000± 100A。 因此需要对后续膜层进行膜厚补偿; 步骤 1112: 当质量加载层先于发现膜厚超出标准的膜层形成时, 对后续不同膜层 进行厚度补偿, 使得器件基础频率 fl保持不变, 并通过模型计算出对不同膜层进行补 偿时所对应的频率偏移。 将基础频率 fl和存在偏差的膜层厚度代入模型即可计算出补偿的厚度。例如在本 实施例中, 在 fl不变, 底部电极厚度为 3200A的情况下, 若保持顶部电极厚度不变, 压电层 P厚度需由之前设计的 10000 A调整为 9600A, 则由此产生的频率偏移由设计 的 20MHz变为 19MHz; 若保持压电层厚度不变, 顶部电极 T的厚度需由之前设计的 3000A调整为 2800A, 则由此产生的频率偏移由设计的 20MHz变为 18MHz。 步骤 1113 : 选择对频率偏移影响最小的膜层补偿。 例如,在本实施例中,通过压电层厚度补偿产生的频率偏移与设计值 20MHz偏差 1MHz, 通过顶电极厚度补偿产生的频率偏移与设计值 20MHz偏差 2MHz。 因此会选 择通过压电层厚度补偿来进行后续的膜层制作。 步骤 1114: 进一步对频率偏移影响最小的膜层补偿进行评估, 当评估结果满足设 计或制作要求时, 按照所述确定的膜层厚度补偿进行后续的薄膜淀积; 当评估结果不 满足设计或制作要求时, 采用其他补救措施。 例如通过仿真发现选择的膜层补偿对应的频率偏移与目标频率偏移 (设计值) 产 生 1MHz的误差不会对滤波器性能产生明显的影响, 可以满足设计要求, 因此选择压 电层减少为 9600A, 顶电极厚度不变的膜厚补偿进行后续的膜层制作。 本实施例的制作方法, 可以在谐振器制作过程中, 在质量加载层已经形成完毕的 情况下发现某一层厚度超出制定的标准时, 对未制作的后续膜层通过模型仿真, 在保 持谐振器的基础频率不变的情况下, 选择对频率偏移影响最少的膜层进行厚度补偿, 在可以允许的范围内把膜厚补偿对于频率偏移的影响降到最低。 上述实施例一至三主要应用了薄膜压电体声波谐振器为例来说明的本发明实施例 的制作方法, 但本发明实施例的制作方法还可以适用于其他薄膜谐振器的制作。 实施例四: 如图 12所示, 本实施例提供了一种薄膜谐振器的制作装置, 包括: 检测模块、 判 断模块、 处理模块以及薄膜淀积模块; 所述检测模块设置为检测已经淀积的各膜层的厚度; 所述判断模块设置为当检测到的膜层厚度不在标准厚度范围内时, 判断质量加载 层是否已经淀积; 所述处理模块设置为在所述判断模块判断为否的情况下, 选取未淀积的膜层进行 厚度补偿, 根据补偿后的膜层厚度和目标频率偏移计算出产生所述目标频率偏移所需 的质量加载层的厚度; 所述标准厚度范围由所述谐振器的目标频率以及工艺生产能力 决定; 所述薄膜淀积模块设置为按照补偿后的未淀积的膜层厚度以及重新计算出的质量 加载层的厚度进行后续的薄膜淀积。 优先地, 所述处理模块还设置为在判断模块判断为是时, 选取不同的未淀积的膜 层进行厚度补偿, 确定对频率偏移影响最少的膜层厚度补偿; 所述薄膜淀积模块还设置为按照确定的膜层厚度补偿进行后续的薄膜淀积。 优先地, 所述处理模块设置为仿真对各个未淀积的膜层进行厚度补偿, 计算出各 个未淀积的膜层经过厚度补偿后对应的频率偏移, 将各个未淀积的膜层经过补偿后对 应的频率偏移与目标频率偏移进行比较, 确定与目标频率偏移偏差最小的膜层厚度补 偿。 如图 13所示, 本实施例的装置还包括: 评估模块; 所述评估模块设置为在确定对频率偏移影响最少的膜层厚度补偿之后, 所述按照 确定的膜层厚度补偿进行后续的薄膜淀积之前对确定的膜层厚度补偿进行评估, 当评 估结果满足预设条件时, 通知所述薄膜淀积模块按照所述确定的膜层厚度补偿进行后 续的薄膜淀积。 优先地, 所述评估模块设置为评估与目标频率偏移的最小偏差是否对滤波器的性 能产生明显的影响, 若否, 满足预设条件, 通知所述薄膜淀积模块按照所述确定的膜 层厚度补偿进行后续的薄膜淀积; 所述滤波器由至少两个所述谐振器组成。 本实施例的制作装置可以当制作过程中某层膜厚度超过制定的标准时, 对未制作 膜层进行厚度修正, 在谐振器整体频率不偏离目标值的条件下, 重新计算质量加载层 的厚度, 使得在指定的谐振器上精确地产生需要的频率偏移量, 该方法不需要增加额 外工艺工序, 与现有技术相比, 本发明实施例的制作装置可以在提高产品良率的同时 节省了制作成本。 并且本实施例的制作装置还可以在谐振器制作过程中, 在质量加载 层已经形成完毕的情况下发现某一层厚度超出制定的标准时, 对未制作的后续膜层通 过模型仿真, 在保持谐振器的基础频率不变的情况下, 选择对频率偏移影响最少的膜 层进行厚度补偿, 在可以允许的范围内把膜厚补偿对于频率偏移的影响降到最低。 以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在 不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发 明的保护范围。 工业实用性: 本发明涉及电子技术领域, 制作方法包括: 检测已经淀积的各膜层的厚度; 当检 测到的膜层厚度不在标准厚度范围内时, 判断质量加载层是否已经淀积, 若否, 则选 取未淀积的膜层进行厚度补偿, 根据补偿后的膜层厚度和目标频率偏移计算出产生所 述目标频率偏移所需的质量加载层的厚度; 标准厚度范围由谐振器的目标频率以及工 艺生产能力决定; 按照补偿后的未淀积的膜层厚度以及重新计算出的质量加载层的厚 度进行后续的薄膜淀积; 本发明的制作方法可以当制作过程中某层膜厚度超过制定的 标准时, 对未制作膜层进行厚度修正, 在谐振器整体频率不偏离目标值的条件下, 重 新计算质量加载层的厚度, 使得在指定的谐振器上精确地产生需要的频率偏移量, 该 方法不需要增加额外工艺工序, 与现有技术相比, 本发明的制作方法可以在提高产品 良率的同时节省了制作成本。

Claims

权 利 要 求 书
1. 一种薄膜谐振器的制作方法, 包括如下步骤:
检测已经淀积的各膜层的厚度;
当检测到的膜层厚度不在标准厚度范围内时, 判断质量加载层是否已经淀 积, 若否, 则选取未淀积的膜层进行厚度补偿, 根据补偿后的膜层厚度和目标 频率偏移计算出产生所述目标频率偏移所需的质量加载层的厚度; 所述标准厚 度范围由所述谐振器的目标频率以及工艺生产能力决定; 按照补偿后的未淀积的膜层厚度以及重新计算出的质量加载层的厚度进行 后续的薄膜淀积。
2. 如权利要求 1所述的方法, 其中, 还包括: 当所述质量加载层已经淀积时, 在 保证所述谐振器基础频率不变的情况下, 选取不同的未淀积的膜层进行厚度补 偿, 确定对频率偏移影响最少的膜层厚度补偿, 按照确定的膜层厚度补偿进行 后续的薄膜淀积。
3. 如权利要求 2所述的方法,其中,所述选取不同的未淀积的膜层进行厚度补偿, 确定对频率偏移影响最少的膜层厚度补偿的步骤包括: 仿真对各个未淀积的膜层进行厚度补偿;
计算出各个未淀积的膜层经过厚度补偿后对应的频率偏移;
将各个未淀积的膜层经过补偿后对应的频率偏移与目标频率偏移进行比 较, 确定与目标频率偏移偏差最小的膜层厚度补偿。
4. 如权利要求 3所述的方法, 其中, 在确定对频率偏移影响最少的膜层厚度补偿 之后, 所述按照确定的膜层厚度补偿进行后续的薄膜淀积之前还包括:
对确定的膜层厚度补偿进行评估, 当评估结果满足预设条件时, 按照所述 确定的膜层厚度补偿进行后续的薄膜淀积。
5. 如权利要求 4所述的方法, 其中, 所述对确定的膜层厚度补偿进行评估, 当评 估结果满足制作要求时, 按照所述确定的膜层厚度补偿进行后续的薄膜淀积的 步骤包括: 评估与目标频率偏移的最小偏差是否对滤波器的性能产生明显的影响, 若 否, 满足预设条件, 按照所述确定的膜层厚度补偿进行后续的薄膜淀积; 所述滤波器由至少两个所述谐振器组成。
6. 一种薄膜谐振器的制作装置, 包括: 检测模块、 判断模块、 处理模块以及薄膜 淀积模块; 所述检测模块设置为检测已经淀积的各膜层的厚度;
所述判断模块设置为当检测到的膜层厚度不在标准厚度范围内时, 判断质 量加载层是否已经淀积;
所述处理模块设置为在所述判断模块判断为否的情况下, 选取未淀积的膜 层进行厚度补偿, 根据补偿后的膜层厚度和目标频率偏移计算出产生所述目标 频率偏移所需的质量加载层的厚度; 所述标准厚度范围由所述谐振器的目标频 率以及工艺生产能力决定; 所述薄膜淀积模块设置为按照补偿后的未淀积的膜层厚度以及重新计算出 的质量加载层的厚度进行后续的薄膜淀积。
7. 如权利要求 6所述的装置, 其中, 所述处理模块还设置为在判断模块判断为是 时, 在保证所述谐振器基础频率不变的情况下, 选取不同的未淀积的膜层进行 厚度补偿, 确定对频率偏移影响最少的膜层厚度补偿;
所述薄膜淀积模块还设置为按照确定的膜层厚度补偿进行后续的薄膜淀 积。
8. 如权利要求 7所述的装置, 其中, 所述处理模块设置为仿真对各个未淀积的膜 层进行厚度补偿, 计算出各个未淀积的膜层经过厚度补偿后对应的频率偏移, 将各个未淀积的膜层经过补偿后对应的频率偏移与目标频率偏移进行比较, 确 定与目标频率偏移偏差最小的膜层厚度补偿。
9. 如权利要求 8所述的装置, 其中, 还包括: 评估模块; 所述评估模块设置为在确定对频率偏移影响最少的膜层厚度补偿之后, 所 述按照确定的膜层厚度补偿进行后续的薄膜淀积之前对确定的膜层厚度补偿进 行评估, 当评估结果满足预设条件时, 通知所述薄膜淀积模块按照所述确定的 膜层厚度补偿进行后续的薄膜淀积。 如权利要求 9所述的装置, 其中, 所述评估模块设置为评估与目标频率偏移的 最小偏差是否对滤波器的性能产生明显的影响, 若否, 满足预设条件, 通知所 述薄膜淀积模块按照所述确定的膜层厚度补偿进行后续的薄膜淀积; 所述滤波 器由至少两个所述谐振器组成。
PCT/CN2014/080442 2013-10-23 2014-06-20 一种薄膜谐振器的制作方法及装置 WO2015058541A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14855594.9A EP3062441B1 (en) 2013-10-23 2014-06-20 Thin-film resonator manufacturing method and device
KR1020167013377A KR101857379B1 (ko) 2013-10-23 2014-06-20 박막 공진기의 제조 방법 및 장치
JP2016526170A JP6511675B2 (ja) 2013-10-23 2014-06-20 薄膜共振器の製造方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310501329.1 2013-10-23
CN201310501329.1A CN104579233B (zh) 2013-10-23 2013-10-23 一种薄膜谐振器的制作方法及装置

Publications (1)

Publication Number Publication Date
WO2015058541A1 true WO2015058541A1 (zh) 2015-04-30

Family

ID=52992204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080442 WO2015058541A1 (zh) 2013-10-23 2014-06-20 一种薄膜谐振器的制作方法及装置

Country Status (5)

Country Link
EP (1) EP3062441B1 (zh)
JP (1) JP6511675B2 (zh)
KR (1) KR101857379B1 (zh)
CN (1) CN104579233B (zh)
WO (1) WO2015058541A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951171A (zh) * 2019-03-26 2019-06-28 深圳华远微电科技有限公司 薄膜体声波谐振器和滤波器的制备方法
CN117155321A (zh) * 2023-11-01 2023-12-01 山东盈和电子科技有限公司 谐振器的生产工艺调整方法及调整系统
CN117879523A (zh) * 2024-03-12 2024-04-12 华南理工大学 一种可调谐薄膜体声波谐振器的制备系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212882B (zh) * 2019-05-13 2020-08-11 电子科技大学 空腔型体声波谐振器的制备方法及空腔型体声波谐振器
CN111934643B (zh) * 2020-07-13 2021-06-01 诺思(天津)微系统有限责任公司 压电层双侧设置质量负载的体声波谐振器、滤波器及电子设备
CN112039488A (zh) * 2020-09-04 2020-12-04 中芯集成电路制造(绍兴)有限公司 谐振器及其形成方法、滤波器及其形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001913A1 (en) * 2002-06-28 2004-01-01 Li-Peng Wang Frequency uniformity of film bulk acoustic resonators
US20040017130A1 (en) * 2002-07-24 2004-01-29 Li-Peng Wang Adjusting the frequency of film bulk acoustic resonators
US20040200049A1 (en) * 2003-04-10 2004-10-14 Paul Rich Methods of depositing piezoelectric films
WO2007140943A1 (de) * 2006-06-02 2007-12-13 Albert-Ludwigs-Universität Freiburg Massensensitive dünnschichtresonatoren für schichtdickenmesssysteme
CN101361266A (zh) * 2005-12-20 2009-02-04 英特尔公司 薄膜体声谐振器(fbar)的频率调谐

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339276B1 (en) * 1999-11-01 2002-01-15 Agere Systems Guardian Corp. Incremental tuning process for electrical resonators based on mechanical motion
JP3984441B2 (ja) * 2001-07-26 2007-10-03 松下電器産業株式会社 圧電薄膜振動子及びフィルタ
GB0308249D0 (en) * 2003-04-10 2003-05-14 Trikon Technologies Ltd Method of depositing piezoelectric films
US6975184B2 (en) * 2003-05-30 2005-12-13 Intel Corporation Adjusting the frequency of film bulk acoustic resonators
US7868522B2 (en) * 2005-09-09 2011-01-11 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Adjusted frequency temperature coefficient resonator
US7535324B2 (en) * 2007-06-15 2009-05-19 Avago Technologies Wireless Ip, Pte. Ltd. Piezoelectric resonator structure and method for manufacturing a coupled resonator device
CN102075161B (zh) * 2011-01-20 2013-06-05 张�浩 声波器件及其制作方法
US8438924B2 (en) * 2011-02-03 2013-05-14 Inficon, Inc. Method of determining multilayer thin film deposition on a piezoelectric crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001913A1 (en) * 2002-06-28 2004-01-01 Li-Peng Wang Frequency uniformity of film bulk acoustic resonators
US20040017130A1 (en) * 2002-07-24 2004-01-29 Li-Peng Wang Adjusting the frequency of film bulk acoustic resonators
US20040200049A1 (en) * 2003-04-10 2004-10-14 Paul Rich Methods of depositing piezoelectric films
CN101361266A (zh) * 2005-12-20 2009-02-04 英特尔公司 薄膜体声谐振器(fbar)的频率调谐
WO2007140943A1 (de) * 2006-06-02 2007-12-13 Albert-Ludwigs-Universität Freiburg Massensensitive dünnschichtresonatoren für schichtdickenmesssysteme

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951171A (zh) * 2019-03-26 2019-06-28 深圳华远微电科技有限公司 薄膜体声波谐振器和滤波器的制备方法
CN109951171B (zh) * 2019-03-26 2023-09-01 浙江华远微电科技有限公司 薄膜体声波谐振器和滤波器的制备方法
CN117155321A (zh) * 2023-11-01 2023-12-01 山东盈和电子科技有限公司 谐振器的生产工艺调整方法及调整系统
CN117155321B (zh) * 2023-11-01 2024-03-26 山东盈和电子科技有限公司 谐振器的生产工艺调整方法及调整系统
CN117879523A (zh) * 2024-03-12 2024-04-12 华南理工大学 一种可调谐薄膜体声波谐振器的制备系统

Also Published As

Publication number Publication date
CN104579233B (zh) 2018-12-04
KR101857379B1 (ko) 2018-06-20
JP2016537875A (ja) 2016-12-01
CN104579233A (zh) 2015-04-29
EP3062441A1 (en) 2016-08-31
EP3062441B1 (en) 2019-06-05
JP6511675B2 (ja) 2019-05-15
EP3062441A4 (en) 2016-11-02
KR20160072256A (ko) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2015058541A1 (zh) 一种薄膜谐振器的制作方法及装置
US10700660B2 (en) Bulk acoustic wave resonator
US9647625B2 (en) Method for manufacturing BAW resonators on a semiconductor wafer
JP6250697B2 (ja) 電子音響部品
US20110121916A1 (en) Hybrid bulk acoustic wave resonator
JP2012100029A (ja) 弾性波デバイス
US9800225B2 (en) Elastic wave device
US9386388B2 (en) Method of manufacturing stacked thin film piezoelectric filter
US8593234B2 (en) Bragg mirror and BAW resonator with a high quality factor on the bragg mirror
JP3885785B2 (ja) 弾性表面波装置、その製造方法、および電子機器
JP2001177365A (ja) 平衡フィルターの中心周波数の調整方法及び複数の平衡フィルター
JP2010206246A (ja) 弾性波デバイス、デュープレクサ、通信モジュール、通信装置、弾性波デバイスの製造方法
TW201933766A (zh) 表面聲波裝置及其製造方法
JP5848549B2 (ja) 弾性波デバイスの製造方法
Enlund et al. Solidly mounted thin film electro-acoustic resonator utilizing a conductive Bragg reflector
US20110080687A1 (en) Method of adjustment on manufacturing of a circuit having a resonant element
JP4978210B2 (ja) バルク音響振動子の製造方法
DeMiguel-Ramos et al. The influence of acoustic reflectors on the temperature coefficient of frequency of solidly mounted resonators
CN103825574A (zh) 声波器件及其制造方法
JP3957215B2 (ja) 圧電性発振回路、その製造方法およびフィルター構造
Shih et al. Simulation of solidly mounted resonator using mason model and its implementation
JPH09148879A (ja) 弾性表面波デバイス
DeMiguel-Ramos et al. Hafnium nitride as high acoustic impedance material for fully insulating acoustic reflectors
Olivares et al. Assessment of solidly mounted resonators with wide-band asymmetric acoustic reflectors
Hayden et al. Picosecond ultrasonics: Characterization of single crystal piezoelectric materials for advanced RF filters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016526170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167013377

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014855594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014855594

Country of ref document: EP