WO2015058422A1 - 透明导电薄膜的制备方法及具有该导电薄膜的cf基板的制备方法 - Google Patents
透明导电薄膜的制备方法及具有该导电薄膜的cf基板的制备方法 Download PDFInfo
- Publication number
- WO2015058422A1 WO2015058422A1 PCT/CN2013/086480 CN2013086480W WO2015058422A1 WO 2015058422 A1 WO2015058422 A1 WO 2015058422A1 CN 2013086480 W CN2013086480 W CN 2013086480W WO 2015058422 A1 WO2015058422 A1 WO 2015058422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- graphene oxide
- pure
- substrate
- transparent conductive
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 134
- 239000010409 thin film Substances 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 276
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 245
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 50
- 239000007864 aqueous solution Substances 0.000 claims abstract description 43
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims abstract description 34
- 239000000243 solution Substances 0.000 claims abstract description 23
- 238000006722 reduction reaction Methods 0.000 claims abstract description 19
- 229960005070 ascorbic acid Drugs 0.000 claims abstract description 17
- 235000010323 ascorbic acid Nutrition 0.000 claims abstract description 17
- 239000011668 ascorbic acid Substances 0.000 claims abstract description 17
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 11
- 239000011812 mixed powder Substances 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000010408 film Substances 0.000 claims description 129
- 238000000034 method Methods 0.000 claims description 45
- 239000011521 glass Substances 0.000 claims description 30
- 229910002804 graphite Inorganic materials 0.000 claims description 29
- 239000010439 graphite Substances 0.000 claims description 29
- 238000002834 transmittance Methods 0.000 claims description 18
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 16
- 238000005507 spraying Methods 0.000 claims description 16
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 8
- 239000004202 carbamide Substances 0.000 claims description 8
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 8
- 238000004528 spin coating Methods 0.000 claims description 8
- 239000012279 sodium borohydride Substances 0.000 claims description 7
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 7
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 238000009795 derivation Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 3
- 238000007790 scraping Methods 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 2
- 229910000043 hydrogen iodide Inorganic materials 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 238000001035 drying Methods 0.000 abstract description 7
- 238000004140 cleaning Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 30
- 239000004973 liquid crystal related substance Substances 0.000 description 19
- 239000004020 conductor Substances 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 238000013086 organic photovoltaic Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DPENOTZHZQPMSW-UHFFFAOYSA-N [Sn]=O.[In].[Y] Chemical compound [Sn]=O.[In].[Y] DPENOTZHZQPMSW-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
- G02F1/133516—Methods for their manufacture, e.g. printing, electro-deposition or photolithography
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/30—Drying; Impregnating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3441—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
- G03F7/0007—Filters, e.g. additive colour filters; Components for display devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
- H01B1/18—Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon
Definitions
- the present invention relates to the field of liquid crystal display preparation, and in particular to a method for preparing a transparent conductive film and a method for preparing a CF substrate having the same. Background technique
- ITO indium tin oxide
- IZO indium zinc oxide
- AZO aluminum-doped zinc oxide
- ITO transparent conductive material has a light transmittance of 90%, but since the indium element is a rare metal, and the production of the ITO film requires high vacuum and high temperature, the obtained ITO film is relatively brittle. It is not easy to make a flexible electrode, which limits the further development of ⁇ transparent conductive materials.
- graphene is a new carbon shield material in which a single layer of carbon atoms is closely packed into a two-dimensional honeycomb structure.
- Graphene is currently the thinnest and hardest nanomaterial in the world, and it is almost Fully transparent, it absorbs only 2.3% of light, and its resistivity is only about 10" 6 ⁇ -cm, which is lower than copper or silver. It is the material with the lowest resistivity in the world, and it can be chemical vapor deposited (Chemical Vapor Deposition, CVD) method, micro-mechanical separation method, orientation epitaxy method, etc.
- graphene Since graphene has a conductivity comparable to that of light transmittance, the transmittance is up to 95%, and the mechanical strength and flexibility of graphene are transparent to ITO.
- the material is excellent, so graphene can completely replace the ITO to make a transparent electrode or a conductive layer; further, the production cost of the graphene by the CVD method is low, high temperature and high pressure are not required, and the graphene is relatively transparent to the ITO transparent conductive material. Unmatched superiority, therefore, graphene has more in transparent film
- the object of the present invention is to provide a method for preparing a transparent conductive film, which is simple and simple.
- the artistic condition is easy to realize, and the transparent conductive film is made of graphene as a transparent conductive material, which has the advantages of high penetration and good flexibility, can replace the existing mixed metal oxide transparent conductive film, and has mechanical strength and flexibility. better.
- Another object of the present invention is to provide a method for preparing a CF substrate, which uses a graphene transparent conductive film instead of a ruthenium transparent conductive film for use in a CF substrate of a liquid crystal display to obtain a transparent and flexible graphene transparent.
- the electrode or the electrostatic discharge layer is used in the liquid crystal display panel to enhance the transmittance of the liquid crystal panel and reduce the use of the backlight.
- the present invention provides a method for preparing a transparent conductive film, comprising the following steps:
- Step 1 Dissolving the mixed powder of graphene oxide and pure graphene in water, and ultrasonically treating the mixture to obtain a stable aqueous solution of graphene oxide and pure graphene;
- Step 2 coating the stabilized graphite oxide and pure graphite mixed aqueous solution on the substrate in step 3, and mixing the graphene oxide and the pure graphite coated on the substrate into the aqueous solution at 30-90 'C for drying Processing, obtaining a mixed film of graphene oxide and pure graphene;
- Step 4 chemically reducing the graphene oxide in the mixed graph of graphene oxide and pure graphene by a reducing agent to obtain a pure graphite film
- the reducing agent is ascorbic acid solution, hydrazine hydrate, sodium borohydride, hydrogen iodine Acid, urea or hydroquinone;
- Step 5 The pure graphene film obtained by chemical reduction is washed and dried to obtain a transparent conductive film, that is, a transparent conductive film is formed on the substrate.
- the ultrasonic treatment time is 10-60 min; the concentration of the stabilized graphene oxide and the pure graphene mixed ice solution is 0, 2-5 mg/mL; in the step 2, the method of spin coating, scraping or spraying is adopted.
- the step 4 is: spraying the reducing agent onto the surface of the mixed graph of graphene oxide and pure graphene at room temperature to perform graphene oxide in the mixed graph of graphene oxide and pure graphene.
- Chemical reduction when the reducing agent is an ascorbic acid solution, the concentration thereof is 0.01 - the transparent conductive film has a visible light transmittance of 80-95%, and a sheet resistance of 30 500 ⁇ /
- the invention also provides a method for preparing a CF substrate, comprising the following steps:
- Step] ⁇ , the graphene oxide and the pure graphene mixed powder are dissolved in water, and ultrasonically treated to obtain a stable mixed solution of graphene oxide and pure graphene; Step 12, providing a CF substrate.
- the body, the CF substrate body comprises a glass substrate and a color resist layer formed on the glass substrate;
- Step 13 Coating the stabilized graphene oxide and pure graphene mixed aqueous solution in CF ⁇ step 14, and drying the mixed solution of graphene oxide and pure graphene coated on the CF substrate body at 30-901: Thousands of treatments, obtaining a mixed film of graphene oxide and pure graphite;
- Step 15 The graphene oxide in the mixed graph of graphene oxide and pure graphite is chemically reduced by a reducing agent to obtain a pure graphite film, and the reducing agent is an ascorbic acid solution or hydrazine hydrate.
- a reducing agent is an ascorbic acid solution or hydrazine hydrate.
- Step 16 The pure graphene film obtained by chemical reduction is washed and dried to obtain a transparent conductive film, that is, a transparent conductive film is formed on the CF substrate body; the transparent conductive film has a visible light transmittance of 80-95. %, the sheet resistance is 30-500 ⁇ / port.
- the ultrasonic treatment time is 10-60 min; the concentration of the stabilized graphene oxide and pure graphene mixed aqueous solution is 0,25 mg ZmL; in the step 13, the oxidation is performed by spin coating, blade coating or spraying A mixed aqueous solution of graphene and pure graphene is coated on the substrate; the thickness of the mixed graph of graphene oxide and pure graphene is 0.68-3, 4 nm.
- the step 15 is: spraying the reducing agent onto the surface of the mixed graphene oxide and pure graphene film at room temperature to perform the graphitization of the graphitized oxide on the graphite oxide into the pure graphene mixed film.
- Chemical reduction when the reducing agent is an ascorbic acid solution, its concentration is 0,01 - i), 1 mol / L.
- the color resist layer is formed on the glass substrate by a yellow light process, and the color resist layer comprises a plurality of pixel units arranged in an array and a black matrix located at a periphery of the pixel units.
- the transparent conductive film is formed on a side of the color resist layer away from the glass substrate for use as a transparent electrode.
- the transparent conductive film is formed on a side of the glass substrate away from the color resist layer for use as an electrostatic discharge layer.
- the invention also provides a method for preparing a CF substrate, comprising the following steps:
- Step I I dissolving the graphite oxide powder and the pure graphite powder in water, and ultrasonically treating the mixture to obtain a stable aqueous solution of graphene oxide and pure graphene;
- Step 12 providing a CF substrate, the body, the CF substrate body comprising a glass substrate and a color resist layer formed on the glass substrate;
- Step 13 Coating the stabilized graphene oxide and pure graphene mixed aqueous solution in CF ⁇ step 14, mixing the graphene oxide coated on the CF substrate body with pure graphene The liquid is subjected to a drying treatment at 30-90 to obtain a mixed film of graphite oxide and pure graphene; Step 15.
- the graphene oxide in the film of the graphene oxide and the pure graphite is mixed and chemically reduced by a reducing agent to obtain a pure graphene film, the reducing agent is ascorbic acid solution, hydrazine hydrate, sodium borohydride, hydriodic acid, urea or hydroquinone;
- Step 16 The pure graphene film obtained by chemical reduction is washed and dried to obtain a transparent conductive film, that is, a transparent conductive film is formed on the CF substrate body; the transparent conductive film has a visible light transmittance of 80-95. %, the sheet resistance is 30 500 ⁇ / port;
- the ultrasonic treatment time is 10-60 min; the concentration of the stable aqueous solution of graphene oxide and pure graphene is 02 5 mg/mL; in the step 13, the method is applied by spin coating, scraping or spraying.
- the mixed aqueous solution of graphene oxide and pure graphene is coated on the substrate; the thickness of the mixed graph of graphene oxide and pure graphene is 0.68 3, 4 nm;
- the step 15 is: spraying the reducing agent onto the surface of the mixed graph of graphene oxide and pure graphene at room temperature to mix the graphite oxide in the thin film of the graphene oxide and the pure graphite
- the olefin is subjected to chemical reduction; when the reducing agent is an ascorbic acid solution, the concentration thereof is 0,01 to 0.1 mol/L.
- the color resist layer is formed on the glass substrate by a yellow light process, and the color resist layer comprises a plurality of pixel units arranged in an array and a black matrix located at a periphery of the pixel units.
- the transparent conductive film is formed on a side of the color resist layer away from the glass substrate for use as a transparent electrode.
- the transparent conductive film is formed on the side of the glass substrate away from the color resist layer, and is used for electrostatic conduction.
- the beneficial effects of the invention The method for preparing the transparent conductive film of the invention, coating the graphite oxide with the pure graphene mixed ice solution The cloth is coated on a glass substrate, and a high-purity graphite is obtained by reduction to form a transparent conductive film.
- the operation is simple, easy to implement, and the cost is low, and the conductivity of the produced graphene transparent conductive film can be transparently made of tantalum.
- the film is comparable in color and has a light transmittance of up to 95%.
- the resulting graphene transparent conductive film is superior in mechanical strength and flexibility to a transparent conductive film made of tantalum, and is more suitable for use in flexible substrates such as organic light emitting diode substrates.
- FIELD OF THE INVENTION The graphene transparent conductive film is applied to the field of liquid crystal display to produce a CF substrate having a graphene transparent conductive film.
- the method for preparing the CF substrate is simple, easy to implement, low in cost, and light transmissive.
- Graphene transparent conductive film with better mechanical strength and flexibility instead of ⁇ transparent conductive thin Therefore the CF substrate made of a transparent conductive film having a graphene applied to the liquid crystal display panel, the transmittance of the liquid crystal panel can be enhanced, reducing the use of the backlight.
- FIG. 1 is a flow chart of a method for preparing a transparent conductive film of the present invention
- FIG. 2 is a flow chart of a method for preparing a CF substrate of the present invention
- FIG. 3 is a schematic structural view of a first preferred embodiment of a CF substrate prepared by the method for preparing a CF substrate of the present invention
- FIG. 4 is a schematic view showing the structure of a second preferred embodiment of a CF substrate produced by the method for preparing a CF substrate of the present invention. Specific travel mode
- the present invention provides a method for preparing a transparent conductive film, which is simple in process, easy to implement in process conditions, and low in cost, and specifically includes the following steps:
- Step 1 Dissolve the mixed powder of graphene oxide and pure graphene in water, and ultrasonically treat it to obtain a stable aqueous solution of graphene oxide and pure graphene.
- the water-soluble graphene oxide and the pure graphene mixed powder are subjected to ultrasonic treatment for 10 to 60 minutes, and after ultrasonic treatment, a stable aqueous solution of graphene oxide and pure graphene is obtained, and the concentration thereof is 0.2- 5 mg/mL.
- Step 2 Applying the stabilized aqueous solution of graphene oxide and pure graphene to the substrate.
- the graphene oxide and the pure graphite mixed aqueous solution are coated on the substrate by spin coating, doctor coating or spraying, and the substrate is a glass substrate, a plastic substrate or a CF substrate to be provided with a conductive film. Ontology, etc.
- Step 3 The graphite oxide coated on the substrate is classified into a pure aqueous solution of graphene in 30 90
- the baking process was carried out under "C” to obtain a mixed film of graphene oxide and pure graphene, and the thickness of the mixed graph of graphene oxide and pure graphene was 0.68 - 3.4 nm.
- the substrate coated with the aqueous solution of graphene oxide and pure graphene is placed in an environment at a temperature of 30 to 90 ° C until the mixed solution of graphene oxide and pure graphene on the substrate is Drying
- Step 4 chemically reducing the graphene oxide in the mixed graph of graphene oxide and pure graphene by a reducing agent to obtain a pure graphene film, wherein the reducing agent is ascorbic acid solution, hydrazine hydrate, sodium borohydride, hydrogen iodine Acid, urea or hydroquinone.
- the reducing agent is ascorbic acid solution, hydrazine hydrate, sodium borohydride, hydrogen iodine Acid, urea or hydroquinone.
- step 4 is: spraying the reducing agent onto the surface of the mixed graph of graphene oxide and pure graphene at room temperature to treat graphene oxide in the mixed graph of graphene oxide and pure graphene
- the reducing agent is preferably an ascorbic acid solution having a concentration of 0,01 to 0.1 mol/L.
- Step 5 The pure graphene film obtained by chemical reduction is washed and dried to obtain a transparent conductive film, that is, a transparent conductive film is formed on the substrate.
- the transparent conductive film obtained in the step 5 has a visible light transmittance of 80 to 95% and a surface resistance of 30 to 500 ⁇ / ⁇ .
- the transparent conductive film made of the graphene has good electrical conductivity and light transmission property, and can completely replace the existing transparent conductive film made of indium tin oxide (ITO) for touch screen, liquid crystal display, organic photovoltaic cell, In the field of organic light-emitting diodes and the like, the transparent conductive film made of graphene is superior in mechanical strength and flexibility, and is more suitable for use in the field of flexible substrates.
- ITO indium tin oxide
- the graphite oxide and the pure graphite used in the present invention can be uniformly suspended in an aqueous solution in a monolithic layer to form a stable aqueous solution or hydrosol, so that it can be coated on a substrate of any size, thickness. It can also be freely regulated.
- the present invention further provides a method for preparing a CF substrate, comprising the steps of: dissolving a mixed powder of graphene oxide and pure graphene in ice, and ultrasonically treating the mixture to obtain stable oxidation.
- Graphene is mixed with pure graphene in an ice solution.
- the water-soluble graphene oxide and the pure graphene mixed powder are subjected to ultrasonic treatment for 10 to 60 minutes, and after ultrasonic treatment, a stable aqueous solution of graphene oxide and pure graphene is obtained, and the concentration thereof is 0.1- 5mg mL o
- Step 12 Providing a CF substrate body 40, the CF substrate body 40 includes a glass substrate 42 and a color resist layer 44 formed on the glass substrate 42.
- the color resist layer 44 is formed on the glass substrate 42 by a yellow light process, and the color resist layer 44 includes a plurality of pixel units arranged in an array and black moments located around the pixel units.
- Step 13 The stabilized graphene oxide and pure graphene mixed aqueous solution was coated on the CF substrate body 40.
- the stable aqueous solution of graphene oxide and pure graphene may be coated on the color resist layer 44 of the CF substrate body 40 (as shown in FIG. 3) as a common liquid crystal display panel.
- the electrode may also be coated on the side of the glass substrate 42 of the CF substrate body 40 away from the color resist layer 44 (as shown in FIG. 4) as an electrostatic discharge.
- Floor may also be coated on the side of the glass substrate 42 of the CF substrate body 40 away from the color resist layer 44 (as shown in FIG. 4) as an electrostatic discharge.
- the mixed solution of the graphite oxide and the pure graphene is coated on the CF substrate body 40 by spin coating, doctor coating or spraying.
- Step 14 drying the mixed solution of graphene oxide and pure graphene coated on the CF substrate body 40 at 30-90 'C to obtain a mixed film of graphene oxide and pure graphene, the graphene oxide and The thickness of the pure graphene mixed film was 0.68 3, 4 nm.
- the CF substrate body 40 coated with the mixed aqueous solution of graphene oxide and pure graphene is placed in an environment of a temperature of 30 901 : until the mixed solution of graphene oxide and pure graphene on the CF substrate body 40 is baked. thousand.
- Step 15 The graphene oxide in the graphene oxide and the pure graphite mixed film is chemically reduced by a reducing agent to obtain a pure graphene film.
- the reducing agent is ascorbic acid solution, hydrazine hydrate, sodium borohydride, and hydrogen iodine. Acid, urea or hydroquinone.
- step 15 is: spraying the reducing agent onto the surface of the mixed graph of graphene oxide and pure graphene at room temperature to treat graphene oxide in the mixed graph of graphene oxide and pure graphene
- the reducing agent is preferably an ascorbic acid solution having a concentration of ( ⁇ 1 - ⁇ 1 rnol/L.
- Step 16 The pure graphene film obtained by chemical reduction is washed and dried to obtain a transparent conductive film, that is, a transparent conductive film 20 is formed on the CF substrate body 40; the visible light region transmittance of the transparent conductive film 20 is 80-95%, surface resistance is 30-500 ⁇ .
- the transparent conductive film 20 made of the graphene has good electrical conductivity and light transmission property, and can completely replace the existing transparent conductive film 20 made of indium tin oxide (yttrium) for touch screen, liquid crystal display, organic photovoltaic In the fields of batteries, organic light-emitting diodes, and the like, the transparent conductive film 20 made of graphene is superior in mechanical strength and flexibility, and is more suitable for use in the field of flexible substrates. Moreover, the graphene oxide and the pure graphite used in the present invention can be uniformly suspended in an aqueous solution in a monolithic layer to form a stable aqueous solution or hydrosol, so that it can be coated on a substrate of any size, thickness. It can also be freely regulated.
- the transparent conductive film 20 is formed on the color resist layer 44, and serves as a common electrode of the liquid crystal display panel and a pixel electrode on the TFT substrate (not shown) (not An electric field is formed to drive the rotation of the liquid crystal molecules; at this time, the CF substrate is usually a CF substrate in a high definition display mode; however, it is not limited thereto, and It may be a CF substrate in other display modes where a transparent conductive electrode is required.
- the transparent conductive film 20 serves as an electrostatic derivation layer to guide the static electricity in the liquid crystal display panel, thereby prolonging the service life of the liquid crystal display panel.
- a protective film is applied on the surface of the ruthenium to protect the ITO electrostatic discharge layer, and the electrostatic discharge layer prepared by using the graphite transparent conductive film 20 in the present invention does not need to be protected. Layer, reducing production costs.
- the CF substrate is usually in a CF substrate in an In-Plane Switching (IPS) display mode or in a Fringe Field Switching (FSS) display mode.
- IPS In-Plane Switching
- FSS Fringe Field Switching
- CF based plate it is not limited to the CF substrate in the two display modes, and may be a CF substrate in another display mode in which an electrostatic discharge layer is to be attached.
- the transparent conductive film preparation method of the present invention applies a mixed aqueous solution of graphene oxide and pure graphene to a glass substrate, and obtains a high-purity graphene film as a transparent electrode material by reduction, which is simple in operation and easy to realize.
- the cost is lower, the conductivity of the produced graphene transparent conductive film is comparable to that of the transparent conductive film made of tantalum, the light transmittance is up to 95%, and the mechanical strength of the produced graphene transparent conductive film is
- the flexibility is superior to that of the transparent conductive film made of tantalum, and is more suitable for the flexible substrate field such as an organic light emitting diode substrate; the graphene transparent conductive film is applied to the field of liquid crystal display to obtain a transparent conductive film having a graphene.
- the CF substrate, the method for preparing the CF substrate is simple in operation, easy to implement, low in cost, and has a graphite transparent conductive film instead of a transparent conductive film by using a transparent conductive film having better light transmittance, mechanical strength and flexibility.
- the CF substrate of the olefin transparent conductive film is applied to a liquid crystal display panel, and Strong transmittance of the liquid crystal panel, the backlight reduction.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
一种透明导电薄膜的制备方法及具有该透明导电薄膜的CF基板的制备方法,所述导电薄膜的制备方法包括:步骤1、将氧化石墨烯与纯石墨烯混合粉末溶于水中,对其进行超声波处理,得到稳定的氧化石墨烯与纯石墨烯混合水溶液;步骤2、将所述稳定的氧化石墨烯与纯石墨烯混合水溶液涂布在基板上;步骤3、将涂布在基板上的氧化石墨烯与纯石墨烯混合水溶液在30-90°C下进行烘干处理,得到氧化石墨烯与纯石墨烯混合薄膜;步骤4、将所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯通过还原剂进行化学还原,得到纯石墨烯薄膜,所述还原剂为抗坏血酸溶液;步骤5、将化学还原后得到的纯石墨烯薄膜进行清洗、干燥,在基板上得到透明导电薄膜。
Description
透明导电薄膜的制备方法及具有该导电薄膜的 CF基板的制备方 法 技术领域
本发明涉及液晶显示制备领域, 特别涉及一种透明导电薄膜的制备方 法及具有该导电薄膜的 CF基板的制备方法。 背景技术
目前, 普遍使用的透明导电材料为混合金属氧化物透明导电材料, 例 如氧化铟锡(ITO ) 、 氧化铟锌 ( IZO ) 、 铝掺杂氧化锌 ( AZO ) 。 其中用 得最多的是 ITO透明导电材料, 其透光率达到 90%, 但由于其中铟元素是 稀贵金属, 且 ITO薄膜的生产需要高真空度及较高温度, 同时获得的 ITO 薄膜较脆, 不易制成柔性电极, 限制了 ΓίΌ透明导电材料的进一步发展。
近年来, 研究发现, 石墨烯 (graphene )是一种单层碳原子紧密堆积 成二维蜂窝状结构的碳盾新材料, 石墨烯目前是世上最薄却也是最坚硬的 纳米材料, 它几乎是完全透明的, 只吸收 2.3%的光, 而电阻率只约 10"6 Ω-cm, 比铜或银更低, 为目前世上电阻率最小的材料, 其可以通过化学气 相沉积 ( Chemical Vapor Deposition, CVD ) 法、 微机械分离法、 取向附生 法等方法制备。 由于石墨烯导电率可与 ΙΤΌ媲美, 透光率可达 95%以上, 且石墨烯的机械强度和柔韧性都比 ITO透明导电材料优良, 故而石墨烯完 全可以替代 ITO制作透明电极或导电层; 进一步的, CVD法制备石墨烯时 生产成本低, 不需要高温、 高压, 且在柔性显示上石墨烯相对 ITO透明导 电材料而言具有无法比拟的优越性, 因此, 石墨烯在透明薄膜方面具有更
^ 由此可见, 有必要制备一种各项参数合适的石墨烯透明导电薄膜, 代 替 ITO透明导电薄膜应用于液晶显示器的彩色滤波(Color Filter, CF )基 板中, 以得到穿透高、 柔韧性良好的石墨烯透明导电薄膜, 可以对应增强 使用所述.石墨烯透明导电材料的 CF基板的液晶显示面板的穿透率, 减少 背光的使用。 发明内容
本发明的目的在于提供一种透明导电薄膜的制备方法, 搡作简单, 工
艺条件容易实现, 所制得的透明导电薄膜以石墨烯为透明导电材料, 具有 穿透高、 柔韧性良好的优势, 可以代替现有的混合金属氧化物透明导电薄 膜, 且机械强度和柔韧性更好。
本发明的另一目的在于提供一种 CF基板的制备方法, 其使用石墨烯 透明导电薄膜代替 ΙΤΌ透明导电薄膜应用于液晶显示器的 CF基板中, 以 得到穿透高、 柔韧性良好的石墨烯透明电极或静电导出层, 使其用于液晶 显示面板中, 可以增强液晶面板的穿透率, 减少背光的使用。
为实现上述目的, 本发明提供一种透明导电薄膜的制备方法, 包括如 下步骤:
步骤 1、 将氧化石墨烯与纯石墨烯混合粉末溶于水中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合水溶液;
步骤 2、 将所述稳定的氧化石墨婦与纯石墨婦混合水溶液涂布在基板 步骤 3 , 将涂布在基板上的氧化石墨烯与纯石墨歸混合水溶液在 30-90 'C下进行烘千处理, 得到氧化石墨烯与纯石墨烯混合薄膜;
步骤 4、 将所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯通过 还原剂进行化学还原, 得到纯石墨婦薄膜, 所述还原剂为抗坏血酸溶液、 水合肼、 硼氢化钠、 氢碘酸、 尿素或对苯二酚;
步骤 5。 将化学还原后得到的纯石墨烯薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在基板上形成透明导电薄膜。
所述超声波处理时间为 10- 60min; 所述稳定的氧化石墨烯与纯石墨烯 混合氷溶液的浓度为 0,2- 5mg/mL; 所述步骤 2中, 采用旋涂、 刮涂或喷涂 方式将所述氧化石墨婦与纯石墨烯混合水溶液涂布在基板上; 所述基板为 玻璃基板、 塑料基板或待设置导电薄膜的 CF基板本体; 所述氧化石墨烯 与纯石墨烯混合薄膜的厚度为 0.68- 3.4nm。
所述步骤 4 为: 在室温下, 将所述还原剂喷涂到所述氧化石墨烯与纯 石墨烯混合薄膜的表面, 以对所述氧化石墨烯与纯石墨烯混合薄膜中的氧 化石墨烯进行化学还原; 当所述还原剂为抗坏血酸溶液时, 其浓度为 0.01- 所述透明导电薄膜的可见光区穿透率为 80-95%, 面电阻为 30 500Ω/
□。
本发明还提供一种 CF基板的制备方法, 包括如下步骤:
步骤 ] Π、 将氧化石墨烯与纯石墨烯混合粉末溶于水中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合水溶液;
步骤 12、 提供 CF基板.本体, 所述 CF基板本体包括玻璃基板及形成 于玻璃基板上的色阻层;
步骤 13。 将所述稳定的氧化石墨烯与纯石墨烯混合水溶液涂布在 CF ^ 步骤 14、 将涂布在 CF基板本.体上的氧化石墨烯与纯石墨烯混合水溶 液在 30- 901:下进行烘千处理, 得到氧化石墨烯与纯石墨婦混合薄膜;
步骤 15、 将所述氧化石墨烯与纯石墨歸混合薄膜中的氧化石墨烯通过 还原剂进行化学还原, 得到纯石墨歸薄膜, 所述还原剂为抗坏血酸溶液、 水合肼。 硼氢化钠、 氢碘酸、 尿素或对苯二酚;
步骤 16、 将化学还原后得到的纯石墨烯薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在 CF 基板本体上形成透明导电薄膜; 所述透明导电薄膜 的可见光区穿透率为 80-95%, 面电阻为 30- 500Ω/口。
所述超声波处理时间为 10- 60min; 所述稳定的氧化石墨烯与纯石墨烯 混合水溶液的浓度为 0,2 5mgZmL; 所述步骤 13 中, 采用旋涂、 刮涂或喷 涂方式将所述氧化石墨烯与纯石墨烯混合水溶液涂布在基板上; 所述氧化 石墨烯与纯石墨烯混合薄膜的厚度为 0.68- 3,4nm。
所述步骤 15 为: 在室温下, 将所述还原剂喷涂到所述氧化石墨烯与 纯石墨烯混合薄膜的表面, 以对所述氧化石墨歸与纯石墨烯混合薄膜中的 氧化石墨烯进行化学还原; 当所述还原剂为抗坏血酸溶液时, 其浓度为 0,01 - i),lmol/L。
所述色阻层通过黄光工艺形成于玻璃基板上, 该色阻层包括阵列排布 的数个像素单元及位于该些像素单元外围的黑色矩阵。
所述透明导电薄膜形成于所述色阻层远离玻璃基板的一侧, 用于作透 明电极。
所述透明导电薄膜形成于玻璃基板远离色阻层的一侧, 用于作静电导 出层。
本发明还提供一种 CF基板的制备方法, 包括如下步骤:
步骤 I I、 将氧化石墨婦和纯石墨婦混合粉末溶于水中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合水溶液;
步骤 12、 提供 CF基板.本体, 所述 CF基板本体包括玻璃基板及形成 于玻璃基板上的色阻层;
步骤 13。 将所述稳定的氧化石墨烯与纯石墨烯混合水溶液涂布在 CF ^ 步骤 14、 将涂布在 CF基板本体上的氧化石墨烯与纯石墨烯混合氷溶
液在 30- 90 下进行烘千处理, 得到氧化石墨歸与纯石墨烯混合薄膜; 步骤 15、 将所述氧化石墨烯与纯石墨歸混合薄膜中的氧化石墨烯通过 还原剂进行化学还原, 得到纯石墨烯薄膜, 所述还原剂为抗坏血酸溶液、 水合肼、 硼氢化钠、 氢碘酸、 尿素或对苯二酚;
步骤 16、 将化学还原后得到的纯石墨烯薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在 CF基板本体上形成透明导电薄膜; 所述透明导电薄膜 的可见光区穿透率为 80-95%, 面电阻为 30 500Ω/口;
其中, 所述超声波处理时间为 10- 60min; 所述稳定的氧化石墨烯与纯 石墨烯混合水溶液的浓度为 02 5mg/mL; 所述步骤 13 中, 采用旋涂、 刮 涂或喷涂方式将所述氧化石墨烯与纯石墨烯混合水溶液涂布在基板上; 所 述氧化石墨烯与纯石墨烯混合薄膜的厚度为 0.68 3,4nm;
其中, 所述步骤 15 为: 在室温下, 将所述还原剂喷涂到所述氧化石 墨烯与纯石墨烯混合薄膜的表面, 以对所述氧化石墨烯与纯石墨歸混合薄 膜中的氧化石墨烯进行化学还原; 当所述还原剂为抗坏血酸溶液时, 其浓 度为 0,01- 0.1mol/L。
所述色阻层通过黄光工艺形成于玻璃基板上, 该色阻层包括阵列排布 的数个像素单元及位于该些像素单元外围的黑色矩阵。
所述透明导电薄膜形成于所述色阻层远离玻璃基板的一侧, 用于作透 明电极。
所述透明导电薄膜形成于玻璃基板远离色阻层的一侧, 用于作静电导 本发明的有益效果: 本发明的透明导电薄膜的制备方法, 将氧化石墨 婦与純石墨烯混合氷溶液涂布在玻璃基板上, 通过还原得到高纯度的石墨 歸薄膜做透明导电薄膜, 操作简单, 易于实现, 成本较低, 制成的石墨烯 透明导电薄膜的导电率可与由 ΠΌ制成的透明导电薄膜相媲美, 透光率可 达 95%, 且制成的石墨烯透明导电薄膜的机械强度和柔韧性都比由 ΙΤΌ制 成的透明导电薄膜优良, 更适合应用于有机发光二极管基板等柔性基板领 域; 将所述石墨烯透明导电薄膜应用于液晶显示领域, 制得具有石墨烯透 明导电薄膜的 CF基板, 该 CF基板的制备方法操作筒单、 易于实现、 成 本较低、 由于使用透光性能, 机械强度和柔韧性更好的石墨烯透明导电薄 膜代替 ΙΤΌ透明导电薄膜, 因此所制的具有石墨烯透明导电薄膜的 CF基 板应用于液晶显示面板中, 可以增强液晶面板的穿透率, 减少背光的使 用。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本
发明的详细说明与酎图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1为本发明透明导电薄膜的制备方法流程图;
图 2为本发明 CF基板的制备方法流程图;
图 3为本发明 CF基板的制备方法制得的 CF基板第一优选实施例的 结构示意图;
图 4为本发明 CF基板的制备方法制得的 CF基板第二优选实施例的 结构示意图。 具体实旅方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 1 , 本发明提供一种透明导电薄膜的制备方法, 搡作简单, 工艺条件容易实现, 成本更低, 具体的包括如下步驟:
步骤 1、 将氧化石墨烯与纯石墨烯混合粉末溶于水中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合水溶液。
具体地, 对该溶于水中的氧化石墨烯与纯石墨烯混合粉末进行 10- 60min 的超声波处理, 经超声波处理后, 得到的稳定的氧化石墨烯与纯石 墨烯混合水溶液, 其浓度为 0.2- 5mg/mL。
步骤 2、 将所述稳定的氧化石墨烯与纯石墨烯混合水溶液涂布在基板 上。
所述步骤 2 中, 采用旋涂、 刮涂或喷涂方式将所述氧化石墨烯与纯石 墨婦混合水溶液涂布在基板上, 所述基板为玻璃基板、 塑料基板或待设置 导电薄膜的 CF基板本体等。
步骤 3、 将涂布在基板上的氧化石墨歸与纯石墨烯混合水溶液在 30 90
"C下进行烘千处理, 得到氧化石墨烯与纯石墨烯混合薄膜, 该氧化石墨烯 与纯石墨烯混合薄膜的厚度为 0.68- 3.4nm。
具体地, 将涂布有氧化石墨烯与纯石墨烯混合水溶液的基板置于温度 为 30- 90°C的环境内, 直至基板上的氧化石墨烯与纯石墨烯混合水溶液被
烘千„
步骤 4、 将所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯通过 还原剂进行化学还原, 得到纯石墨烯薄膜, 所述还原剂为抗坏血酸溶液、 水合肼、 硼氢化钠、 氢碘酸、 尿素或对苯二酚。
具体地, 步骤 4为: 在室温下, 将所述还原剂喷涂到所述氧化石墨烯 与纯石墨烯混合薄膜的表面, 以对所述氧化石墨烯与纯石墨烯混合薄膜中 的氧化石墨烯进行化学还原; 在本实施例中, 所述还原剂优选浓度为 0,01- 0.1mol/L的抗坏血酸溶液。
步骤 5。 将化学还原后得到的纯石墨烯薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在基板上形成透明导电薄膜。
步骤 5 中所得到的透明导电薄膜的可见光区穿透率为 80-95%, 面电 阻为 30- 500Ω/口。 由该石墨烯制成的透明导电薄膜具有良好的导电性能和 透光性能, 完全可以代替现有的由氧化铟锡(ITO )制成的透明导电薄膜 应用于触摸屏、 液晶显示、 有机光伏电池、 有机发光二极管等领域, 且, 由石墨烯制成的透明导电薄膜的机械强度和柔韧性更优, 更适合应用于柔 性基板领域。
且, 本发明中采用的氧化石墨婦与純石墨婦可以均匀的以单片层的形 式悬浮于水溶液中, 形成稳定的水溶液或水溶胶, 因此, 其可以在任意大 小的基板上涂莫, 厚度也可以自由调控。
请参阅图 2至图 4, 本发明还提供一种 CF基板的制备方法, 包括以 步骤 11、 将氧化石墨烯与纯石墨烯混合粉末溶于氷中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合氷溶液。
具体地, 对该溶于水中的氧化石墨烯与纯石墨烯混合粉末进行 10- 60min 的超声波处理, 经超声波处理后, 得到的稳定的氧化石墨烯与纯石 墨烯混合水溶液, 其浓度为 0.1-5mg mLo
步骤 12、 提供 CF基板本体 40, 所述 CF基板本体 40包括玻璃基板 42及形成于玻璃基板 42上的色阻层 44。
具体地, 所述色阻层 44通过黄光工艺形成于玻璃基板 42上, 该色阻 层 44 包括阵列排布的数个像素单元及位于该些像素单元外围的黑色矩
" 步骤 13。 将所述稳定的氧化石墨烯与纯石墨烯混合水溶液涂布在 CF 基板本体 40上。
具体地, 根据所述 CF基板本体 40的具体需求(视所制得的 CF基板
应用的显示模式而定) , 可将所述稳定的氧化石墨烯与纯石墨烯混合水溶 液涂布在 CF基板本体 40的色阻层 44上(如图 3所示 ) , 作为液晶显示 面板的公共电极; 还可以将所述稳定的氧化石墨烯与纯石墨烯混合水溶液 涂布在 CF基板本体 40的玻璃基板 42远离色阻层 44的一側上 (:如图 4所 示) , 作为静电导出层。
所述步骤 13 中, 采用旋涂、 刮涂或喷涂方式将所述氧化石墨婦与純 石墨烯混合水溶液涂布在 CF基板本体 40上„
步骤 14、 将涂布在 CF基板本体 40上的氧化石墨烯与纯石墨烯混合 水溶液在 30- 90 'C下进行烘千处理, 得到氧化石墨烯与纯石墨烯混合薄 膜, 该氧化石墨烯与纯石墨烯混合薄膜的厚度为 0.68 3,4nm。
具体地, 将涂布有氧化石墨烯与纯石墨烯混合水溶液的 CF 基板本体 40置于温度为 30 901:的环境内, 直至 CF基板本体 40上的氧化石墨烯与 纯石墨烯混合水溶液被烘千。
步骤 15、 将所述氧化石墨烯与纯石墨歸混合薄膜中的氧化石墨烯通过 还原剂进行化学还原, 得到纯石墨烯薄膜, 所述还原剂为抗坏血酸溶液、 水合肼、 硼氢化钠、 氢碘酸、 尿素或对苯二酚。
具体地, 步骤 15 为: 在室温下, 将所述还原剂喷涂到所述氧化石墨 烯与纯石墨烯混合薄膜的表面, 以对所述氧化石墨烯与纯石墨烯混合薄膜 中的氧化石墨烯进行化学还原; 在本实施例中, 所述还原剂优选浓度为 (λθ 1 - ίλ 1 rnol/L的抗坏血酸溶液。
步骤 16、 将化学还原后得到的纯石墨烯薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在 CF基板本体 40上形成透明导电薄膜 20; 所述透明导 电薄膜 20的可见光区穿透率为 80-95%, 面电阻为 30- 500ΩΖ口。
由该石墨烯制成的透明导电薄膜 20 具有良好的导电性能和透光性 能, 完全可以代替现有的由氧化铟锡(ΓΓΟ )制成的透明导电薄膜 20应用 于触摸屏、 液晶显示、 有机光伏电池、 有机发光二极管等领域, 且, 由石 墨烯制成的透明导电薄膜 20 的机械强度和柔韧性更优, 更适合应用于柔 性基板领域。 且, 本发明中采用的氧化石墨烯与纯石墨婦可以均匀的以单 片层的形式悬浮于水溶液中, 形成稳定的水溶液或水溶胶, 因此, 其可以 在任意大小的基板上涂膜, 厚度也可以自由调控。
具体地, 根据步骤 13的具体操作方式, 所述透明导电薄膜 20形成于 所述色阻层 44上, 则作为液晶显示面板的公共电极, 与 TFT基板(未图 示) 上的像素电极(未图示) 形成电场以驱动液晶分子转动; 此时所述 CF基板通常为高清显示模式中的 CF基板; 然而也不仅仅局限于此, 其还
可以是需要设置透明导电电极的其它显示模式中的 CF基板。
若透明导电薄膜 20形成于玻璃基板 42远离色阻层 44的一侧, 则所 述透明导电薄膜 20 作为静电导出层, 以将液晶显示面板中的静电导出, 延长液晶显示面板的使用寿命。 且, 使用 ΙΊΌ层作为静电导出层时需要在 ΠΌ表面贴一层保护膜来保护该 ITO静电导出层, 而本发明中的使用石墨 婦透明导电薄膜 20 制得的静电导出层则不需要贴保护层, 降低生产成 本。 当透明导电薄膜 20作为静电导出层时, 所述 CF .基板通常为平面转换 ( In-Plane Switching , IPS ) 显示模式中的 CF 基板、 或边界电场切换 ( Fringe Field Switching, FFS ) 显示模式中的 CF基.板。 然而也不仅仅局 限于这两种显示模式中的 CF基板, 也可以是需要贴附静电导出层的其它 显示模式中的 CF基板。
综上所述, 本发明的透明导电薄膜制备方法, 将氧化石墨烯与纯石墨 烯混合水溶液涂布在玻璃基板上, 通过还原得到高纯度的石墨烯薄膜做透 明电极材料, 操作简单, 易于实现, 成本较低, 制成的石墨烯透明导电薄 膜的导电率可与由 ΠΌ制成的透明导电薄膜相媲美, 透光率可达 95% , 且 制成的石墨烯透明导电薄膜的机械强度和柔韧性都比由 ΙΤΌ制成的透明导 电薄膜优良, 更适合应用于有机发光二极管基板等柔性基板领域; 将所述 石墨烯透明导电薄膜应用于液晶显示领域, 制得具有石墨烯透明导电薄膜 的 CF基板, 该 CF基板的制备方法操作简单、 易于实现、 成本较低、 由 于使用透光性能、 机械强度和柔韧性更好的石墨烯透明导电薄膜代替 ΙΤΌ 透明导电薄膜, 因此所制的具有石墨烯透明导电薄膜的 CF基板应用于液 晶显示面板中, 可以增强液晶面板的穿透率, 减少背光的使用。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。
Claims
权 利 要 求
】、 一种透明导电薄膜的制备方法, 包括如下步骤:
步骤 1、 将氧化石墨烯与纯石墨烯混合粉末溶于水中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合氷溶液;
步骤 2、 将所述稳定的氧化石墨烯与纯石墨烯混合水溶液涂布在基板 步骤 3、 将涂布在基板上的氧化石墨烯与纯石墨烯混合水溶液在 30-90 'C下进行烘千处理, 得到氧化石墨烯与纯石墨烯混合薄膜;
步骤 4、 将所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯通过 还原剂进行化学还原, 得到纯石墨婦薄膜, 所述还原剂为抗坏血酸溶液、 水合肼、 硼氢化钠、 氢碘酸、 尿素或对苯二酚;
步骤 5、 将化学还原后得到的纯石墨烯薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在基板上形成透明导电薄膜。
2、 如权利要求 1 所述的透明导电薄膜的制备方法, 其中, 所述超声 波处理时间为 0- 60min; 所述稳定的氧化石墨烯与纯石墨烯混合水溶液的 浓度为 0.2- 5mg/mL; 所述步骤 2中, 采用旋涂、 刮涂或喷涂方式将所述氧 化石墨烯与纯石墨烯混合水溶液涂布在基板上; 所述基板为玻璃基板、 塑 料基板或待设置导电薄膜的 CF基板本体; 所述氧化石墨烯与纯石墨烯混 合薄膜的厚度为 0.68-3.4nm0
3、 如权利要求 2所述的透明导电薄膜的制备方法, 其中, 所述步骤 4 为: 在室温下, 将所述还原剂喷涂到所述氧化石墨烯与纯石墨烯混合薄膜 的表面, 以对所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯进行化 学还原; 当所述还原剂为抗坏血酸溶液时, 其浓度为 0.01- 0.1mo】/L。
4、 如权利要求 1 所述的透明导电薄膜的制备方法, 其中, 所述透明 导电薄膜的可见光区穿透率为 80-95%, 面电阻为 30- 500Ω/口。
5、 一种 CF基板的制备方法, 包括如下步骤:
步骤 11、 将氧化石墨烯和纯石墨烯混合粉末溶于氷中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合水溶液;
步骤 12、 提供 CF基板本体, 所述 CF基板本体包括玻璃基板及形成 于玻璃基板上的色阻层;
步骤 13、 将所述稳定的氧化石墨烯与纯石墨烯混合水溶液涂布在 CF
步骤 14、 将涂布在 CF基板本体上的氧化石墨烯与纯石墨烯混合水溶 液在 30- 90 下进行烘千处理, 得到氧化石墨烯与纯石墨歸混合薄膜;
步骤 15。 将所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯通过 还原剂进行化学还原, 得到纯石墨烯薄膜, 所述还原剂为抗坏血酸溶液、 水合肼、 硼氢化钠、 氢碘酸、 尿素或对苯二酚;
步骤 16、 将化学还原后得到的纯石墨婦薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在 CF基板本体上形成透明导电薄膜; 所述透明导电薄膜 的可见光区穿透率为 80-95%, 面电阻为 30- 5000/口。
6、 如权利要求 5所述的 CF基板的制备方法, 其中, 所述超声波处理 时间为 10- 60min; 所述稳定的氧化石墨烯与纯石墨烯混合水溶液的浓度为
0.2-5mg/mL; 所述步骤 13 中, 采用旋涂、 刮涂或喷涂方式将所述氧化石 墨烯与纯石墨烯混合水溶液涂布在基板上; 所述氧化石墨烯与纯石墨烯混 合薄膜的厚度为 0,68- 3。4nm。
7、 如权利要求 6 所述的 CF基板的制备方法, 其中, 所述步骤 15 为: 在室温下, 将所述还原剂喷涂到所述氧化石墨烯与纯石墨烯混合薄膜 的表面, 以对所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯进行化 学还原; 当所述还原剂为抗坏血酸溶液时, 其浓度为 0.01- 0, imol/L。
8、 如权利要求 5所述的 CF基板的制备方法, 其中, 所述色阻层通过 黄光工艺形成于玻璃基板上, 该色阻层包括阵列排布的数个像素单元及位 于该些像素单元外围的黑色矩阵。
9、 如权利要求 5所述的 CF基板的制备方法, 其中, 所述透明导电薄 膜形成于所述色阻层远离玻璃基板的一侧, 用于作透明电极。
10、 如权利要求 5所述的 CF基板的制备方法, 其中, 所述透明导电 薄膜形成于玻璃基板远离色阻层的一侧, 用于作静电导出层。
11、 一种 CF基板的制备方法, 包括如下步骤:
步骤 11、 将氧化石墨烯和纯石墨烯混合粉末溶于水中, 对其进行超声 波处理, 得到稳定的氧化石墨烯与纯石墨烯混合水溶液;
步骤 12、 提供 CF基板本体, 所述 CF基板本体包括玻璃基板及形成 于玻璃基板上的色阻层;
步骤 13、 将所述稳定的氧化石墨烯与纯石墨歸混合水溶液涂布在 CF 步骤 14。 将涂布在 CF基板本体上的氧化石墨烯与纯石墨烯混合水溶 液在 30- 9CTC下进行烘干处理, 得到氧化石墨烯与纯石墨烯混合薄膜;
步骤 15、 将所述氧化石墨烯与纯石墨烯混合薄膜中的氧化石墨烯通过
还原剂进行化学还原, 得到纯石墨歸薄膜, 所述还原剂为抗坏血酸溶液、 水合肼、 硼氢化铂、 氢碘酸、 尿素或对苯二酚;
步骤 16。 将化学还原后得到的纯石墨烯薄膜进行清洗、 千燥, 得到透 明导电薄膜, 即在 CF 基板本体上形成透明导电薄膜; 所述透明导电薄膜 的可见光区穿透率为 80 95%, 面电阻为 30- 500Ω/口;
其中, 所述超声波处理时间为 10- 60min; 所述稳定的氧化石墨烯与纯 石墨烯混合水溶液的浓度为 0 2- 5mg/mL; 所述步骤 13 中, 采用旋涂、 刮 涂或喷涂方式将所述氧化石墨烯与纯石墨烯混合水溶液涂布在基板上; 所 述氧化石墨婦与纯石墨烯混合薄膜的厚度为 0.68-3.4nm;
其中, 所述步骤 15 为: 在室温下, 将所述还原剂喷涂到所述氧化石 墨烯与纯石墨烯混合薄膜的表面, 以对所述氧化石墨烯与纯石墨烯混合薄 膜中的氧化石墨烯进行化学还原; 当所述还原剂为抗坏血酸溶液时, 其浓 度为 0,01- 0.1 ιιιο1/1„
12 , 如权利要求 i i所述的 CF基板的制备方法, 其中, 所述色阻层通 过黄光工艺形成于玻璃基板上, 该色阻层包括阵列排布的数个像素单元及 位于该些 素单元外围的黑色矩阵。
13 , 如权利要求 I I所述的 CF基板的制备方法, 其中, 所述透明导电 薄膜形成于所述色阻层远离玻璃.基板的一側, 用于作透明电极。
14, 如权利要求 11所述的 CF基板的制备方法, 其中, 所述透明导电 薄膜形成于玻璃基板远离色阻层的一侧, 用于作静电导出层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/126,430 US9134567B2 (en) | 2013-10-25 | 2013-11-04 | Method for manufacturing transparent conductive film and method for manufacturing CF substrate having conductive film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310511984.5A CN103545053B (zh) | 2013-10-25 | 2013-10-25 | 透明导电薄膜的制备方法及具有该导电薄膜的cf基板的制备方法 |
CN201310511984.5 | 2013-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015058422A1 true WO2015058422A1 (zh) | 2015-04-30 |
Family
ID=49968428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/086480 WO2015058422A1 (zh) | 2013-10-25 | 2013-11-04 | 透明导电薄膜的制备方法及具有该导电薄膜的cf基板的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9134567B2 (zh) |
CN (1) | CN103545053B (zh) |
WO (1) | WO2015058422A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111302649A (zh) * | 2020-03-17 | 2020-06-19 | 中国建筑材料科学研究总院有限公司 | 石墨烯导电玻璃及制备方法、除霜玻璃和电磁屏蔽玻璃 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759823B (zh) * | 2014-02-05 | 2015-12-02 | 上海科润光电技术有限公司 | 一种红外激光探测器 |
CN104030280A (zh) * | 2014-06-16 | 2014-09-10 | 上海交通大学 | 石墨烯纸的制备方法 |
CN104163420B (zh) * | 2014-07-25 | 2016-08-24 | 中国科学院深圳先进技术研究院 | 银掺杂石墨烯复合纸及其制备方法 |
CN105304209B (zh) * | 2014-11-27 | 2017-02-22 | 中国科学院金属研究所 | 一种在彩色滤光片上制备透明导电薄膜的方法 |
CN105353555B (zh) * | 2015-12-08 | 2018-08-14 | 深圳市华星光电技术有限公司 | 量子点彩膜基板的制作方法 |
CN105974683B (zh) * | 2016-07-13 | 2019-09-24 | 深圳市华星光电技术有限公司 | 液晶显示面板及其制作方法 |
KR102344359B1 (ko) * | 2018-06-14 | 2021-12-29 | 삼성전자주식회사 | 인쇄회로기판과 그 제조 방법 |
CN109269394A (zh) * | 2018-10-26 | 2019-01-25 | 钟祥博谦信息科技有限公司 | 一种以pdms为基底材料的导电薄膜及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142294A (zh) * | 2010-01-29 | 2011-08-03 | 海洋王照明科技股份有限公司 | 石墨烯-离子液体复合材料及其制备方法 |
CN102254582A (zh) * | 2010-05-18 | 2011-11-23 | 国家纳米科学中心 | 一种石墨烯基导电材料及其制备方法 |
CN102426868A (zh) * | 2011-09-05 | 2012-04-25 | 湖南大学 | 水溶性石墨烯-贵金属纳米复合物及其制备方法和应用 |
CN102610331A (zh) * | 2012-04-01 | 2012-07-25 | 东华大学 | 一种银/石墨烯薄膜超级电容器电极材料的制备方法 |
CN103021574A (zh) * | 2012-12-27 | 2013-04-03 | 上海交通大学 | 一种石墨烯/无机半导体复合薄膜及其制备方法 |
CN103021503A (zh) * | 2011-09-26 | 2013-04-03 | 国家纳米科学中心 | 一种石墨烯-炭纳米复合透明导电薄膜及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG183997A1 (en) * | 2010-03-08 | 2012-10-30 | Univ Rice William M | Transparent electrodes based on graphene and grid hybrid structures |
KR101271249B1 (ko) * | 2010-12-22 | 2013-06-10 | 한국과학기술원 | 질소가 도핑된 투명 그래핀 필름 및 이의 제조방법 |
KR101160909B1 (ko) * | 2011-01-26 | 2012-06-29 | 성균관대학교산학협력단 | 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극 |
CN102815695A (zh) * | 2012-08-02 | 2012-12-12 | 许子寒 | 一种低成本大面积石墨烯透明导电膜制备方法 |
CN103236324A (zh) * | 2013-04-22 | 2013-08-07 | 南京邮电大学 | 一种基于还原氧化石墨烯的柔性透明导电薄膜的制备方法 |
CN103365004B (zh) * | 2013-07-26 | 2016-04-13 | 深圳市华星光电技术有限公司 | 透明导电层、具有该透明导电层的cf基板及其制备方法 |
-
2013
- 2013-10-25 CN CN201310511984.5A patent/CN103545053B/zh not_active Expired - Fee Related
- 2013-11-04 US US14/126,430 patent/US9134567B2/en not_active Expired - Fee Related
- 2013-11-04 WO PCT/CN2013/086480 patent/WO2015058422A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142294A (zh) * | 2010-01-29 | 2011-08-03 | 海洋王照明科技股份有限公司 | 石墨烯-离子液体复合材料及其制备方法 |
CN102254582A (zh) * | 2010-05-18 | 2011-11-23 | 国家纳米科学中心 | 一种石墨烯基导电材料及其制备方法 |
CN102426868A (zh) * | 2011-09-05 | 2012-04-25 | 湖南大学 | 水溶性石墨烯-贵金属纳米复合物及其制备方法和应用 |
CN103021503A (zh) * | 2011-09-26 | 2013-04-03 | 国家纳米科学中心 | 一种石墨烯-炭纳米复合透明导电薄膜及其制备方法 |
CN102610331A (zh) * | 2012-04-01 | 2012-07-25 | 东华大学 | 一种银/石墨烯薄膜超级电容器电极材料的制备方法 |
CN103021574A (zh) * | 2012-12-27 | 2013-04-03 | 上海交通大学 | 一种石墨烯/无机半导体复合薄膜及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111302649A (zh) * | 2020-03-17 | 2020-06-19 | 中国建筑材料科学研究总院有限公司 | 石墨烯导电玻璃及制备方法、除霜玻璃和电磁屏蔽玻璃 |
Also Published As
Publication number | Publication date |
---|---|
US9134567B2 (en) | 2015-09-15 |
CN103545053A (zh) | 2014-01-29 |
CN103545053B (zh) | 2016-03-09 |
US20150125786A1 (en) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015058422A1 (zh) | 透明导电薄膜的制备方法及具有该导电薄膜的cf基板的制备方法 | |
US9959946B2 (en) | Conductive graphene-metal composite material, the production method of the same and use of the same | |
WO2015010344A1 (zh) | 透明导电层、具有该透明导电层的cf基板及其制备方法 | |
Wu et al. | Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes | |
CN105070352B (zh) | 一种柔性超平透明导电薄膜及其制备方法 | |
CN102938262A (zh) | 一种透明导电薄膜及其制备方法 | |
JP5245112B2 (ja) | 透明導電膜、透明導電性フィルム及びフレキシブル透明面電極 | |
CN103151101B (zh) | 掺杂石墨烯柔性透明电极及其制备方法 | |
CN103050169A (zh) | 一种柔性透明电极及其制备方法 | |
WO2016206158A1 (zh) | 石墨烯/pedot:pss混合溶液的制备方法及具有石墨烯/pedot:pss复合透明导电膜的基板的制备方法 | |
CN103824615B (zh) | 气相聚合聚3,4-乙撑二氧噻吩和石墨烯叠层柔性透明电极的方法 | |
WO2013078712A1 (zh) | 液晶面板的制作方法及液晶面板、液晶显示装置 | |
CN107799236A (zh) | 一种石墨烯电极快速制备方法 | |
WO2018040953A1 (zh) | 一种基于亲水改性pet基材的纳米银线透明导电膜的制备方法 | |
US8749738B2 (en) | Liquid crystal panel and manufacturing method thereof, and liquid crystal display | |
CN105609217A (zh) | 一种石墨烯透明电极、其制作方法及显示装置 | |
CN110085763A (zh) | 柔性透明电极、柔性显示面板、相关制备方法及显示装置 | |
Yang et al. | Multistep deposition of gold nanoparticles on single-walled carbon nanotubes for high-performance transparent conducting films | |
CN107507675A (zh) | 一种氧化锡导电薄膜的制备方法 | |
CN109979642A (zh) | 导电薄膜及其制备方法和应用 | |
CN111899917B (zh) | 一种还原氧化石墨烯掺杂碳纳米管的柔性透明电极及其制备方法 | |
CN209561021U (zh) | 透明导电玻璃 | |
CN109192359A (zh) | 一种具有铆钉结构的石墨烯透明导电薄膜及其制备方法 | |
CN105551580B (zh) | 一种高透过率导电薄膜及其制备方法 | |
CN203700199U (zh) | 一种真空旋涂设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14126430 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13895976 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13895976 Country of ref document: EP Kind code of ref document: A1 |