WO2015056724A1 - フィルター - Google Patents

フィルター Download PDF

Info

Publication number
WO2015056724A1
WO2015056724A1 PCT/JP2014/077474 JP2014077474W WO2015056724A1 WO 2015056724 A1 WO2015056724 A1 WO 2015056724A1 JP 2014077474 W JP2014077474 W JP 2014077474W WO 2015056724 A1 WO2015056724 A1 WO 2015056724A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
filter
resin
electret
film layer
Prior art date
Application number
PCT/JP2014/077474
Other languages
English (en)
French (fr)
Inventor
小池 弘
雄一 矢萩
誠一郎 飯田
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to US15/028,849 priority Critical patent/US10010892B2/en
Priority to EP14853452.2A priority patent/EP3058999B1/en
Priority to CN201480056580.4A priority patent/CN105682770B/zh
Publication of WO2015056724A1 publication Critical patent/WO2015056724A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • B03C3/64Use of special materials other than liquids synthetic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • B01D46/525Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material which comprises flutes
    • B01D46/526Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material which comprises flutes in stacked arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/069Special geometry of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts

Definitions

  • the present invention relates to a filter using an electret sheet.
  • the present invention relates to a charged air filter medium having a low pressure loss and an excellent dust and dirt filtration efficiency.
  • Patent Document 3 discloses that an electret filter is obtained by providing an electret characteristic to an outer wall of an array having a passage surrounded by a plastic wall.
  • the surface is filled with a conductive liquid that connects the inside of the groove to the ground potential and the outer surface of the sheet material to the high negative and positive potential. Therefore, a device for charging is required, and there is a risk of electrical leakage or electric shock due to dielectric breakdown because the device applies a high voltage.
  • Patent Documents 4 and 5 disclose a filtration device in which the film is charged with a structure having a void with a film having a high aspect ratio structure forming a flow channel.
  • these filtration devices have the advantage of high surface area and improved collection efficiency, they have irregularities on the film surface, so the processability when forming the film into a structure is inferior and the space volume of the filter is reduced.
  • Patent Document 6 a film having a specific porosity and compression height is processed into a wave shape (1) having a wavelength of 0.5 to 60 mm, and the height of the top and the bottom of the wave is 1 to 20 mm. Further, a sheet in which the thermoplastic resin film (2) is laminated on at least one surface thereof and a structure in which a plurality of the sheets are laminated are disclosed. Such a structure may charge the film surface due to the friction associated with the flow of air, but even when charged, the function as a filter is insufficient because the charge density on the film surface is small.
  • Patent Document 7 discloses a trapezoidal corrugated filter having a positively charged first surface and a negatively charged second surface opposed to the first surface.
  • the method for increasing the charge amount is not specifically described, and the electret filter obtained by the manufacturing method of the document may have a high charge decay rate and may be inferior in persistence as the electret filter. is there.
  • Japanese Unexamined Patent Publication No. 56-010312 Japanese Unexamined Patent Publication No. 56-010314 Japanese Patent Laid-Open Publication No. 2010-09965 Japanese Patent Publication No. 2002-535125 Japanese Patent Publication No. 2003-512155 Japanese Patent Application Laid-Open No. 2003-320602 Japanese Patent Laid-Open Publication No. 2000-288322
  • An object of the present invention is to provide a low pressure loss type filter which has high dust and dirt collection power and which is excellent in processability and retention of collection power.
  • the present inventors conducted various studies in view of the above problems, and as a result, using a specific electret sheet and processing it into a structure having a specific flow passage cross-sectional rate and a specific space charge density, The inventors have found that the above problems can be solved, and reach the present invention. That is, the present invention is as follows.
  • the electret sheet contains a thermoplastic resin.
  • the thermoplastic resin comprises a polyolefin resin.
  • the polyolefin resin comprises a polypropylene resin.
  • seat contains 50-98 mass% of polypropylene resin, 1-49 mass% of polyethylene-type resin, and at least one of 1-49 mass% of an inorganic fine powder and an organic filler. Filter described in. (6) The filter according to any one of the above (1) to (5), wherein the electret sheet is stretched in at least one axial direction.
  • the center plane surface roughness (SRa) of the surface of the electret sheet is 0.1 to 5 ⁇ m.
  • the air flow path alternately laminates the electret sheet processed into a corrugated shape by corrugated processing and the flat electret sheet without corrugation bonding and bonding or fusing them
  • the collection efficiency of dust etc. is high and the low pressure loss type filter excellent in the sustainability of collection power can be provided.
  • the processability to a structure is achieved by using an electretized sheet made of a general thermoplastic resin which does not contain a compound having a large dipole moment such as a fluorine-containing resin or an azo compound. Can provide excellent filters.
  • FIG. 1 is an embodiment of a resin film layer (A) used for the filter of the present invention.
  • FIG. 2 is another embodiment of the resin film layer (A) used for the filter of the present invention.
  • FIG. 3 is another aspect of the resin film layer (A) used for the filter of the present invention.
  • FIG. 4 is one aspect of the cross section of the filter of the present invention.
  • FIG. 5 is another aspect of the cross section of the filter of the present invention.
  • FIG. 6 is another aspect of the cross section of the filter of the present invention.
  • FIG. 7 is another aspect of the cross section of the filter of the present invention.
  • FIG. 8 is another aspect of the cross section of the filter of the present invention.
  • FIG. 9 shows an example of a batch type corona discharge treatment apparatus that can be used for the charge treatment of the present invention.
  • FIG. 9 shows an example of a batch type corona discharge treatment apparatus that can be used for the charge treatment of the present invention.
  • FIG. 10 shows an example of a batch type corona discharge treatment apparatus that can be used for the charge treatment of the present invention.
  • FIG. 11 shows an example of a continuous corona discharge treatment apparatus which can be used for the charging treatment of the present invention.
  • FIG. 12 shows an example of a continuous corona discharge treatment apparatus that can be used for the charging process of the present invention.
  • FIG. 13 shows an example of a continuous corona discharge treatment apparatus which can be used for the charging treatment of the present invention.
  • FIG. 14 is a schematic view of an apparatus for producing electret sheet used in an example of the present invention.
  • FIG. 15 is a schematic view of a charge amount measuring device of an electret sheet used in an example of the present invention.
  • FIG. 16 is a schematic view of an evaluation filter used in an example of the present invention.
  • FIG. 17 is a schematic view of a collection rate measuring method used in an example of the present invention.
  • FIG. 18 is a schematic view of a powder supply bin used for collection rate measurement in the example of the present invention.
  • FIG. 19 is a schematic view of equipment used for dust removal rate measurement in the example of the present invention.
  • the flow path of air is formed by using an electret sheet, the flow path cross-sectional ratio of air is 10 to 99%, and the space charge density is 10 to 5000 nC / cm 3 It is characterized by
  • the flow channel structure of the filter is to process the electretized sheet to form a flow channel of air, and the shape is not limited as long as the flow channel sectional ratio of air is 10 to 99%.
  • a flow channel structure obtained by alternately laminating an electret sheet processed into a corrugated shape by corrugated processing and a flat electret sheet without corrugation, and bonding or fusing them together has a strong structure The structure is not easily crushed even if the electrification amount of the electret sheet is increased, and the production is easy, which is preferable.
  • sheets of the same shape processed into a corrugated or pleated shape may be laminated, and the contact point or contact surface of the both may be adhered.
  • the honeycomb core having a hexagonal channel cross section and And the like structure.
  • the electretized sheets 7a and 7b processed in a wave or pleated form and the flat electretized sheet 6 not subjected to such processing are alternately laminated, It may be a filter 5 having a contact point or a contact surface, and specifically, it may have a cross-sectional structure such as a pleated feather core, a corrugated corrugated core, or a circularly processed roll core. Further, as shown in FIG. 8, it may have an undulation (projection structure) such as a pillar structure 10 or a rib structure between two electret sheets 9.
  • the pillar structure 10 or the rib structure be made of an insulating material.
  • the height of such a pillar structure 10 or rib structure is preferably 1 to 10 mm in cross-sectional observation with a microscope.
  • the pattern (for example, the hexagon in a honeycomb structure) which comprises the cross-sectional shape of such a flow path may be arrange
  • the pitch is preferably in the range of 0.5 to 10 mm from the viewpoint of processability to the filter and the collection efficiency of dust and dirt.
  • the range of 0.7 to 5 mm is more preferable, and the range of 1 to 3 mm is particularly preferable.
  • the flow passage cross-sectional ratio of air in the filter is a ratio of the flow passage of air to the cross section of the filter. Therefore, as the value is lower, the strength of the filter is increased, and at the same time, the air flow tends to be resisted and the pressure loss tends to be increased.
  • the flow channel cross-sectional ratio of air is obtained by dividing the cross-sectional area of the sheet base material which is the product of the sheet base material thickness and the length of the sheet base material used for flow channel formation from the filter cross-sectional area. . The same value can also be determined from image observation of the cross section.
  • the flow passage cross-sectional ratio of air is 10% or more, preferably 30% or more, and more preferably 50% or more.
  • the flow passage cross-sectional ratio of air is 99% or less, preferably 97% or less, and more preferably 95% or less.
  • the space charge density in the filter indicates the total amount of charge that occupies the space volume of the filter. The higher the value, the higher the dust and dirt collection performance.
  • the space charge density in the filter is the amount of charge possessed by the sheet substrate of the filter divided by the space volume formed by the sheet substrate.
  • the amount of charge possessed by the sheet base of the filter may be determined from measured values, and the space volume may be logically determined from the filter shape, or may be determined from the density of the filter. For example, when the space volume is logically determined from the filter shape, the unit space is defined as a cube of 1 cm long ⁇ 1 cm wide ⁇ 1 cm high.
  • the total length Ls (cm / cm 2 ) of the electret sheet present per square (unit area) of 1 cm ⁇ 1 cm cross section cut perpendicularly to the flow path of the electret filter is calculated or measured from the filter shape Ask.
  • the total area Ss (cm 2 / cm 3 ) of the electretized sheet present per unit space volume is a unit as the width of the sheet to the total length Ls of the electretized sheet present per sectional square (unit area) Since it is multiplied by the depth of the space, Ss and Ls are equivalent as represented by the following equation.
  • the space charge density can be obtained from the product of the total length Ls of the electret sheet per unit area of the cross section and the charge amount Qs per unit area of the electret sheet.
  • the charge amount Qa of the electret sheet existing per unit space Is represented by the sum of the charge amounts Qa1, Qa2,... Qan per unit space of each electret sheet.
  • the space charge density of the filter is higher, the dust collection efficiency of the filter is higher, and if the collection efficiency required for the filter is constant, the air flow path length (filter depth and thickness) is shortened. be able to. On the other hand, if the length of the air flow path is constant, the life of the filter can be extended. From the viewpoint of increasing the collection efficiency, the space charge density is at 10 nC / cm 3 or more, preferably 50 nC / cm 3 or more, more preferably 80nC / cm 3 or more, 110nC / cm 3 or more is particularly preferable.
  • the space charge density is 5000 nC / cm 3 or less from the restriction of the amount of charge that can be held by the sheet substrate, but 2000 nC / cm 3 or less is preferable and 1000 nC / cm 3 or less from the simplicity in sheet substrate manufacture. Is more preferable, and 500 nC / cm 3 or less is particularly preferable.
  • the electretized sheet which can be used in the present invention has a porosity of at least 1 to 70%, preferably 5 to 60%, more preferably 25 to 40%. Moreover, it is preferable that the electret sheet
  • the film containing the thermoplastic resin has a certain degree of insulation, and by performing the charging process, the charge can be stably held on the surface or in the inside.
  • a film containing a thermoplastic resin is referred to as a resin film layer (A)
  • a sheet subjected to a charging treatment is referred to as an electret sheet.
  • the resin film layer (A) becomes an electret sheet retaining charge on its surface or inside by charging treatment, and in a filter formed using the electret sheet, the electretization is achieved by its electrostatic adsorption force It is possible to adsorb dust and the like to the surface of the sheet.
  • the resin film layer (A) preferably contains a thermoplastic resin. Above all, it is preferable to use a thermoplastic resin having excellent insulating properties, since it is easy to retain the charge accumulated inside.
  • thermoplastic resin used for the resin film layer (A) is not particularly limited.
  • polyolefin resins such as high density polyethylene, medium density polyethylene, low density polyethylene, propylene resin, polymethyl-1-pentene; ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, maleic acid modified polyethylene, Functional group-containing polyolefin resins such as maleic acid-modified polypropylene; polyamide resins such as nylon-6 and nylon-6, 6; thermoplastic polyester resins such as polyethylene terephthalate and copolymers thereof, polybutylene terephthalate and aliphatic polyester Polycarbonate resins; polystyrene resins such as atactic polystyrene and syndiotactic polystyrene can be used.
  • thermoplastic resins it is preferable to use a polyolefin resin or a functional group-containing polyolefin resin which is excellent in insulation and processability.
  • the polyolefin resin include homopolymers of olefins such as ethylene, propylene, butylene, hexene, octene, butadiene, isoprene, chloroprene, methyl-1-pentene, cyclic olefin, and these olefins
  • the copolymer which consists of 2 or more types is mentioned.
  • a functional group containing polyolefin resin the copolymer of the said olefins and the functional group containing monomer which can be copolymerized is mentioned.
  • functional group-containing monomers styrenes such as styrene and ⁇ -methylstyrene; vinyl acetate, vinyl alcohol, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl caproate, vinyl laurate, vinyl stearate, benzoic acid Carboxylic acid vinyl esters such as vinyl, vinyl butylbenzoate, and vinyl cyclohexanecarboxylate; acrylic acid, methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (Meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl
  • graft modification can be used for graft modification.
  • Specific examples include graft modification with unsaturated carboxylic acids or their derivatives.
  • unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and the like.
  • an acid anhydride, ester, an amide, an imide, a metal salt etc. are mentioned.
  • esters of unsaturated carboxylic acid include maleic anhydride, itaconic anhydride, citraconic anhydride, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and (meth) acrylic Acid glycidyl, maleic acid monoethyl ester, maleic acid diethyl ester, fumaric acid monomethyl ester, fumaric acid dimethyl ester, itaconic acid monomethyl ester, itaconic acid diethyl ester, (meth) acrylamide, maleic acid monoamide, maleic acid diamide, maleic acid- N-monoethylamide, maleic acid-N, N-diethylamide, maleic acid-N-monobutylamide, maleic acid-N, N-dibutylamide, fumaric acid monoamide, fumaric acid diamide, fumaric acid-N-monoethylamide , Fumaric acid
  • thermoplastic resin contained in a resin film layer (A) 1 type may be selected from said thermoplastic resins, you may use independently, and 2 or more types are selected and combined and used It is also good. Furthermore, among these polyolefin resins, propylene resins are preferable from the viewpoint of insulation, processability, moisture resistance, chemical resistance, cost and the like.
  • the propylene-based resin is a propylene homopolymer, and isotactic to syndiotactic and polypropylene exhibiting various degrees of stereoregularity, and propylene as a main component, together with ethylene, 1-butene, 1- It is desirable to use a copolymer obtained by copolymerizing an alpha-olefin such as hexene, 1-heptene or 4-methyl-1-pentene as a main component.
  • the copolymer may be a binary system, a ternary system or more, and may be a random copolymer or a block copolymer.
  • thermoplastic resin in the resin film layer (A) is preferably 50 to 99% by mass, more preferably 51 to 99% by mass, and more preferably 60 to 95% by mass, in terms of the total mass of the thermoplastic resin.
  • the blending amount of the thermoplastic resin is 50% by mass or more, the resin film layer (A) can be easily formed, and the resin film layer (A) obtained can easily retain the charge due to the insulating property of the thermoplastic resin.
  • the compounding composition in the resin film layer (A) further preferably contains 50 to 98% by mass of a polypropylene resin and 1 to 49% by mass of a polyethylene resin, and 50 to 96% by mass of a polypropylene resin and a polyethylene resin 3 It is particularly preferable to contain up to 29% by mass.
  • the filter of the present invention may consist of only a single layer of the resin film layer (A) 1 as shown in FIG. Further, as one aspect of the present invention, when obtaining a filter comprising a structure in which a plurality of electretized sheets are laminated, if the electretized sheet has heat sealability, the filter can be easily manufactured by heat adhesion. Can.
  • the resin film layer (A) 1 has a multilayer structure of two or more layers formed of a base layer 2 and surface layers 3a and 3b. There is a method of providing surface layers 3a and 3b having a melting point lower than the melting point of the base layer 2 on one side or both sides of the base layer 2.
  • a film of a resin having a melting point lower than the melting point of the thermoplastic resin is laminated on at least one surface of the resin film layer (A) by dry laminating method or melt extrusion laminating method And a method of applying a coating liquid containing a resin having a melting point lower than the melting point of the thermoplastic resin on at least one surface of the resin film layer (A).
  • Suitable resins for imparting heat sealability include low density polyethylene, ethylene / vinyl acetate copolymer, metal salt of ethylene / (meth) acrylic acid copolymer, modified polyethylene polyethylene, chlorinated polypropylene, etc.
  • a polyolefin resin, a polyamide resin, a polybutyral resin, a urethane resin, etc. can be illustrated.
  • Inorganic fine powder and organic filler In the resin film layer (A), at least one of an inorganic fine powder and an organic filler may be added. By addition of inorganic fine powder or organic filler, voids (voids) are formed in the resin film layer (A), and the interface (surface area) between the resin and air is increased to charge the resin film layer (A). It may be possible to improve Further, as shown in FIG. 3, the surface of the resin film layer (A) is formed by forming unevenness (protrusion structure) 4a and 4b caused by the inorganic fine powder and the organic filler on the surface of the resin film layer (A) 1.
  • the total content of the inorganic fine powder and the organic filler in the resin film layer (A) is preferably 1 to 49% by mass, and more preferably 5 to 40% by mass.
  • the compounding amount of the inorganic fine powder and the organic filler is 1% by mass or more, voids are easily formed in the resin film layer (A), and when the compounding amount is 49% by mass or less, the obtained resin film layer (A Is preferable because it is easy to control the amount of charge in (1) and the collection efficiency of the filter can be easily maintained.
  • the volume average particle diameter measured with a particle size distribution analyzer by laser diffraction is preferably 0.01 to 15 ⁇ m, more preferably 0.1 to 10 ⁇ m, and further preferably Of 0.5 to 5 ⁇ m is used.
  • the inorganic fine powder having such a volume average particle diameter is preferable because it easily forms pores inside along with the stretching described later.
  • the inorganic fine powder examples include calcium carbonate, calcined clay, silica, diatomaceous earth, clay, talc, titanium oxide, barium sulfate, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite, Wollastonite, glass fiber, etc. can be used.
  • an organic filler it is preferable to select a resin of a type different from the thermoplastic resin that is the main component of the resin film layer (A).
  • thermoplastic resin is a polyolefin resin
  • organic filler polymers such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6,6, cyclic polyolefin, polystyrene, polymethacrylate, etc. It is possible to use one having a melting point (for example, 170 to 300 ° C.) to a glass transition temperature (for example, 170 to 280 ° C.) higher than the melting point of the polyolefin resin and being incompatible.
  • a melting point for example, 170 to 300 ° C.
  • glass transition temperature for example, 170 to 280 ° C.
  • a heat stabilizer antioxidant
  • a light stabilizer a dispersing agent
  • a lubricant etc.
  • a heat stabilizer it is usually added in the range of 0.001 to 1% by mass.
  • sterically hindered phenol type, phosphorus type, amine type stabilizers and the like can be used.
  • a light stabilizer it is usually used in the range of 0.001 to 1% by mass.
  • light stabilizers such as sterically hindered amines, benzotriazoles, and benzophenones can be used.
  • Dispersants and lubricants are used, for example, for the purpose of dispersing inorganic fine powders.
  • the amount used is usually in the range of 0.01 to 4% by mass.
  • silane coupling agents higher fatty acids such as oleic acid and stearic acid, metal soaps, polyacrylic acids, polymethacrylic acids or salts thereof can be used.
  • the thickness of the resin film layer (A) is preferably 20 to 300 ⁇ m, more preferably 30 to 250 ⁇ m, and still more preferably 40 to 200 ⁇ m. If the thickness of the resin film layer (A) is less than 20 ⁇ m, the strength of the obtained filter is low and the filter tends to be easily crushed by wind pressure and the like, and the shape tends to be difficult to maintain. Moreover, when processing an electret sheet
  • the thickness of the resin film layer (A) exceeds 300 ⁇ m, in the filter in which the flow path is formed using the electret sheet, the flow path cross-section tends to decrease, and the resin film layer ( The rigidity of A) tends to be too high, making it difficult to process the electretized sheet into a filter.
  • the resin film layer (A) which comprises a filter may provide an antistatic layer in the single side
  • an antistatic layer on the resin film layer (A)
  • other members are bonded to the surface of the resin film layer (A) having the antistatic layer, etc. to prevent electrification in the flow path of the final filter.
  • the surface having the layer may not be exposed.
  • the antistatic layer may be provided by applying and drying a paint containing an antistatic agent described later on one side of the resin film layer (A).
  • an antistatic agent described later may be provided in the surface layer on one side.
  • a resin film having antistatic performance may be laminated on one side of the resin film layer (A) as the antistatic layer.
  • a polymer binder may be contained in the paint from the viewpoint of suppressing dropping off from the resin film layer (A).
  • a polymer binder polyethyleneimine, alkyl modified polyethyleneimine having 1 to 12 carbon atoms, poly (ethyleneimine-urea), ethyleneimine adduct of poly (ethyleneimine-urea), polyamine polyamide, ethyleneimine addition of polyamine polyamide , Polyethylenimine polymers such as epichlorohydrin adducts of polyamine polyamide; acrylic acid ester copolymer, methacrylic acid ester copolymer, acrylic acid amide-acrylic acid ester copolymer, acrylic acid amide-acrylic acid ester-methacrylic acid Acrylic acid ester polymers such as ester copolymers, derivatives of polyacrylamide, oxazoline group-containing acrylic acid ester polymers, etc., polyvinyl pyrrolidone, vinyl
  • any of these polymer binders may be used alone or in combination of two or more. These polymeric binders can be used in the form of being diluted or dispersed in an organic solvent or water.
  • polyether urethanes, polyester polyurethanes, urethane resins such as acrylic urethanes, or acrylic acid ester copolymers have good compatibility with the antistatic agent, that is, compatibility, and are mixed and dissolved to form a paint. It is stable, easy to coat, and preferred.
  • the resin film layer (A) is preferably molded by extrusion.
  • the material of the resin film layer (A) is melt-kneaded with an extruder set at a temperature higher than the melting point or glass transition temperature of the resin film layer (A), I.
  • Extrusion into sheet form using a die etc. Sheet forming cooled by metal roll, rubber roll or metal belt, or using a circular die, while expanding into a tube form at a constant magnification by internal pressure inside the extrusion tube, air And inflation molding cooled with water.
  • the surface is roughened using a metal roll for cooling or a rubber roll having an undulating shape (irregular shape). May be By roughening the surface of the resin film layer (A), the adsorption area of the electret sheet is increased, and the collection rate of the filter is improved.
  • the resin film layer (A) may have a two-layer structure or a multilayer structure of three or more layers.
  • the multi-layering of the resin film layer (A) improves the withstand voltage performance at the time of charge injection, improves the ability to seal the injected charge so that it does not escape to the outside, and is suitable for secondary processing such as adhesion between electret sheets It becomes possible to add various functions such as antistatic property.
  • various known methods can be used. Specific examples include a feed block, a multilayer die system using a multi manifold, and an extrusion lamination system using a plurality of dies. Etc. It is also possible to use a combination of multilayer die and extrusion lamination.
  • the resin film layer (A) preferably includes a resin film stretched in at least one axial direction. Stretching of a resin film can be performed by any of various methods commonly used.
  • the resin film layer (A) has a multilayer structure, the resin film constituting the resin film has a stretching axis number of 1 axis / 1 axis, 1 axis / 2 axes, 2 axes / 1 axis, 1 axis / 1 axis / Film of 2 axes / 1 axis / 2 axes / 1 axis, 2 axes / 1 axis / 1 axis, 1 axis / 2 axes / 2 axes, 2 axes / 2 axes / 1 axis, 2 axes / 2 axes / 2 axes film It may include a laminated structure.
  • stretching method longitudinal stretching using circumferential speed difference of rolls, transverse stretching using a tenter oven, sequential biaxial stretching by combination of longitudinal stretching and transverse stretching, rolling, simultaneous 2 by a combination of a tenter oven and a linear motor
  • Axial stretching, simultaneous biaxial stretching by a combination of a tenter oven and a pantograph, and the like can be mentioned.
  • the simultaneous biaxial stretching by the tubular method is mentioned.
  • the stretching ratio is not particularly limited, and is appropriately determined in consideration of the characteristics and the like of the thermoplastic resin used for the resin film layer (A).
  • the stretching ratio is usually 1.2 to 12 times, preferably 2 to 10 times, and biaxial
  • the area magnification is usually 1.5 to 60 times, preferably 4 to 50 times.
  • the stretching ratio in the case of using other thermoplastic resin and stretching it in one direction is usually 1.2 to 10 times, preferably 2 to 5 times, and in the case of biaxial stretching, 1 in area ratio 5 to 20 times, preferably 4 to 12 times.
  • the stretching temperature can be carried out within a known temperature range suitable for thermoplastic resins mainly used for the resin film layer (A) but not lower than the glass transition temperature of the thermoplastic resin and not higher than the melting point of the crystal part.
  • thermoplastic resin of the resin film layer (A) is a propylene homopolymer (melting point 155 to 167 ° C.)
  • it is 100 to 166 ° C.
  • high density polyethylene melting point 121 to 136 ° C.
  • the temperature is 135 ° C. and 1 to 70 ° C. lower than the melting point.
  • the stretching speed is preferably 20 to 350 m / min.
  • the resin film layer (A) obtained as described above and an electret sheet obtained by subjecting the resin film layer to the later-described electrification treatment have fine pores inside the film, and specifically the following formula
  • the porosity calculated by is 1 to 70%. Since the electret sheet has pores inside, the charge can be easily confined inside the electret sheet including the pores, and the charge hardly escapes from the electret sheet, so that the collection efficiency is high and the collection power is sustained. It is easy to obtain a filter with excellent gender. In addition, having pores inside the electret sheet leads to a decrease in the density of the electret sheet, which is preferable also from the viewpoint of weight reduction of the obtained filter.
  • the porosity is preferably 5% or more, more preferably 25% or more.
  • the porosity is preferably 60% or less, more preferably 40% or less.
  • the porosity exceeds 70%, the pores communicate with each other, and the charge retention ability tends to be poor.
  • the porosity is less than 1%, although there is an ability to accumulate charge, the charge decay speed may be fast and the durability of the filter performance may be inferior.
  • the true density A 0 of the resin film layer (A) is a resin film using a compression molding machine set at a temperature 10 ° C. to 150 ° C. higher than the melting point or glass transition temperature of the thermoplastic resin used therein After heating and compressing the layer (A) at a pressure of 3 MPa or more for 3 minutes or more, the pores in the resin film layer (A) are cooled for 3 minutes or more at a pressure of 3 MPa or more with a compression molding machine set at 25.degree. And then conditioned for at least 24 hours using an oven set at a temperature 10 ° C. to 70 ° C. lower than the melting point or glass transition temperature of the thermoplastic resin used in the resin film layer (A). Condition adjustment is performed for 24 hours or more in an environment of 50 ° C. and relative humidity of 50%, and measurement is performed according to the method described in JIS-K7112: 1999.
  • the electret sheet is a component of the filter and at the same time has a role of sealing the charge so as not to escape to the outside.
  • the ability to contain this charge can be organized by the relative permittivity ⁇ of the electret sheet (the ratio ⁇ B / ⁇ 0 of the permittivity ⁇ B of the electret sheet and the permittivity ⁇ 0 of a vacuum).
  • the relative permittivity of the electret sheet is lower, the surface potential tends to increase even with the same charge amount, and a filter having excellent dust collection efficiency tends to be easily obtained.
  • the relative permittivity of the electretized sheet can be made lower and in a desired range by including an insulating resin having a low dielectric constant and forming pores in the electretized sheet.
  • the relative permittivity of the electretized sheet is preferably 1.1 to 2.5, more preferably 1.1 to 2.2, still more preferably 1.2 to 2.0, and particularly preferably 1.25 to 1. It is in the range of 9. If the relative permittivity of the electretized sheet exceeds 2.5, the electretized sheet can not hold electric charge for a long period of time, and the electrostatic adsorptive power of the filter tends to decrease.
  • the relative dielectric constant is less than 1.1, it can be achieved only when the porosity exceeds 70% from the raw material constitution of the product of the present invention, and the charge retention ability of the filter tends to be deteriorated. There is.
  • the measurement method of the relative permittivity of the electret sheet is selected according to the measurement frequency range. If the measurement frequency is 10 Hz or less, use an ultra low frequency bridge, if 10 Hz to 3 MHz, use a transformer bridge; if it exceeds 1 MHz, parallel T bridge, high frequency shelling bridge, Q meter, resonance method, The standing wave method and the cavity resonance method are used. In addition, it is possible to measure the voltage and current vector for the circuit component with respect to the AC signal of the measurement frequency, and also to measure with an LCR meter or the like that calculates the capacitance from this value.
  • a measuring apparatus for measuring the relative dielectric constant of the electret sheet a measuring apparatus capable of applying a voltage of about 5 V and capable of arbitrarily selecting a measuring frequency is preferable. According to such a measuring machine, by changing the frequency, the frequency dependency of the sample can be grasped, and it can be used as an index of the appropriate use range.
  • a measuring apparatus "4192A LF IMPEDANCE ANALYZER” manufactured by Agilent Technologies, "LCR meter 4274A” manufactured by Yokogawa Electric Corporation, "HIOKI 3522 LCR high tester” manufactured by Nikki Electric Corporation, etc. It can be mentioned.
  • a silver conductive paint is applied to the front and back of the sheet, or an electrode is formed by vacuum metal deposition to form a sample.
  • a voltage of 5 V is applied to the sample under environmental conditions of a temperature of 23 ° C. and a relative humidity of 50%, and measurement is made at a frequency of 10 Hz to 1 MHz, and a capacitance (Cx) measurement value with a frequency of 100 kHz is represented Used as a value.
  • the relative dielectric constant ( ⁇ r ) is calculated by the following equation.
  • ⁇ r C x ⁇ h / ( ⁇ 0 ⁇ A)
  • ⁇ r relative permittivity of electretized sheet (-)
  • C x Capacitance of electret sheet (pF)
  • h Thickness of electret sheet (m)
  • A: Area of main electrode 3.848 ⁇ 10 -4 (m 2 )
  • the surface of the electret sheet is preferably smooth from the viewpoint of processability to the filter structure, but preferably has irregularities from the viewpoint of the retention performance of the dust adsorbed by the filter. Therefore, the center surface average roughness (SRa) of the surface of the electret sheet is preferably 0.1 to 5 ⁇ m, and more preferably 0.3 to 4 ⁇ m.
  • the measurement of the central surface average roughness (SRa) of the surface of the electret sheet can be measured using a stylus type three-dimensional surface roughness meter.
  • the resin film layer (A) may be provided with an antistatic layer on one side as described above, but in order to electrify the resin film layer (A) to form an electret sheet, the resin film layer (A)
  • the surface resistivity of the surface having no antistatic layer is preferably in the range of 1 ⁇ 10 13 to 9 ⁇ 10 17 ⁇ .
  • the surface resistivity is more preferably in the range of 5 ⁇ 10 13 to 9 ⁇ 10 16 ⁇ , and still more preferably in the range of 1 ⁇ 10 14 to 9 ⁇ 10 15 ⁇ .
  • the surface resistivity is less than 1 ⁇ 10 13 ⁇ , the charge applied when performing the charge treatment described later is likely to travel along the film surface and escape, so the efficiency of charge injection to the resin film layer (A) decreases. Do. Therefore, the charge density on the surface of the electret sheet also decreases, the space charge density decreases, and the electrostatic adsorption performance decreases. Alternatively, it is necessary to apply excessive energy to the charging process.
  • the surface resistivity of the surface exceeds 9 ⁇ 10 17 ⁇ , there is no problem as a function of the electret sheet, but such highly insulating surface is formed using currently known materials. It is difficult, and even if it can be realized, it is not realistic because it is expensive.
  • thermoplastic resin In order to make the surface resistivity of the surface of the resin film layer (A) into a desired range, it is possible to use a polyolefin resin excellent in insulation as a thermoplastic resin, and to select the type and amount of inorganic fine powder to be added thereto. It can be achieved by adjusting.
  • the electretized sheet is obtained by subjecting the resin film layer (A) to an electretizing treatment and holding a charge on the surface or in the inside thereof.
  • the electretization of the resin film layer (A) may be performed before forming the shape of the filter having a flow path structure of air, or may be performed after forming the shape of the filter, but the electret uniformly on a three-dimensional object Since the electretizing apparatus becomes complicated to perform the denaturing treatment, it is preferable to form a filter using the electretizing sheet after the resin film layer (A) has been subjected to electrification treatment in advance.
  • the method of electretization is not particularly limited, and can be carried out according to various known methods.
  • a method of applying corona discharge or pulsed high voltage to the surface of the resin film layer (A) (electro electretization method), or holding both surfaces of the resin film layer (A) with a dielectric, DC high voltage on both surfaces
  • a method of electretizing the resin film layer (A) by irradiating ionizing radiation such as ⁇ ray or electron beam (radio electretization method), etc. may be mentioned.
  • Electro electretization method As a more specific example of the electro-electretization method, a method of fixing the resin film layer (A) 11 between the application electrodes 13 and 15 connected to the DC high voltage power supply 12 and the plate-like ground electrode 14 (batch method, FIG. 9 and 10) or a method of placing and passing the resin film layer (A) 11 on the roll-like ground electrode 17 which rotates with respect to the application electrodes 16, 18 and 19 connected to the DC high voltage power supply 12 (continuous) The formula, see FIGS. 11-13) is preferred. In the case of using this method, it is preferable to use needless electrodes arranged innumerably at equal intervals or to use metal wires, and use a flat metal plate or a metal roll as the ground electrode.
  • DC corona discharge treatment for electretization.
  • DC corona discharge treatment as illustrated in FIGS. 9 to 13, needle-like or wire-like main electrodes (applying electrodes 13, 15, 16, 18, 19) and flat-plate or roll-like counter electrodes (earth electrodes) 14, 17) using a device connected to a DC high voltage power supply 12.
  • a resin film layer (A) 11 is disposed on the counter electrode, and a corona discharge is generated by applying a DC high voltage between the main electrode and the counter electrode. Is a process of injecting a charge into the resin film layer (A).
  • the distance between the main electrode and the counter electrode is preferably 1 to 50 mm, more preferably 2 to 30 mm, and still more preferably 5 to 20 mm.
  • the distance between the electrodes is less than 1 mm, for example, it is difficult to keep the distance between the electrodes uniform in the sheet width direction in the mode of FIG. 13, and uniform charging may not be performed in the sheet width direction.
  • it exceeds 50 mm it is difficult to generate corona discharge, and the charging process to the resin film layer (A) may be uneven.
  • the voltage applied between the main electrode and the counter electrode is the electrical characteristics (insulation property etc.) of the resin film layer (A), the electrical characteristics of the electret sheet (desired surface potential and relative permittivity), the main electrode and the counter electrode And the distance between the main electrode and the counter electrode.
  • the amount of charge introduced to the resin film layer (A) by the DC corona discharge treatment depends on the amount of current flowing to the main electrode and the counter electrode during the treatment. The amount of current increases as the voltage between both electrodes increases. Therefore, when a high processing effect is desired by the electret sheet, it is desirable to set the applied voltage high enough to prevent the dielectric breakdown of the resin film layer (A).
  • the applied voltage is preferably in the range of 1 to 100 kV, more preferably in the range of 3 to 70 kV, still more preferably in the range of 5 to 50 kV, and 10 to 30 kV. Is particularly preferred.
  • the polarity on the main electrode side may be positive or negative, but it is preferable to make the main electrode side negative in order to perform a relatively stable corona discharge treatment.
  • the material of the main electrode and the counter electrode is appropriately selected from conductive materials, but usually, metal or carbon such as iron, stainless steel, copper, brass, tungsten or the like is used.
  • the resin film layer (A) can also be subjected to a diselectrification treatment after the electretization treatment.
  • the charge removal treatment referred to here means voltage application type charge removal in order to avoid problems such as adsorption of dust in the manufacturing process including processing from electretized sheets to filters, sticking between sheets, sticking between sheets and manufacturing equipment, etc.
  • the charge on the surface is temporarily reduced / removed using a known static eliminator such as an electric device (ionizer) or a self-discharge static eliminator.
  • a known static eliminator such as an electric device (ionizer) or a self-discharge static eliminator.
  • these general static eliminators can reduce / remove the charge on the sheet surface, but can not remove the charge accumulated inside the sheet. Therefore, the electrostatic adsorption force of the electret sheet is not greatly affected by the static elimination process.
  • a filter is what formed the flow path of air using the electret sheet
  • the three-dimensional structure is not specifically limited.
  • various three-dimensional structures described in the above-mentioned flow channel structure can be adopted, but among them, as shown in FIGS. 4 and 6, electretized sheets 7a and 7b processed into corrugated or pleated shape by corrugated processing. It is preferable to have a structure in which the flat electretized sheets 6 which are not corrugated are alternately laminated, and these are adhered or fused.
  • the electretized sheets 7a and 7b processed to be corrugated or pleated by corrugation are sandwiched between the flat electretized sheets 6a and 6b which are not corrugated.
  • an adhesive 8 such as a pressure-sensitive adhesive or by heat-sealing a heat-sealable adhesive or the like.
  • the corrugated structure in the case of forming the filter by corrugating the electretized sheet is a honeycomb machine or the like used for producing an ordinary paper honeycomb core or a corrugated surface such as a single facer used for producing an ordinary paper corrugated board
  • the machine can be manufactured utilizing the appropriate. For example, when using a honeycomb machine used for manufacturing a honeycomb core, a large number of application lines of a linear adhesive are provided on an electret sheet at an application width of n and a pitch of 4 n, and then on the same sheet.
  • the electretized sheet is corrugated by being supplied and bent between a pair of meshed gears.
  • An uncorrugated flat sheet hereinafter referred to as "liner 6" on one side or both sides of a processed and then corrugated sheet (hereinafter referred to as "flute 7")
  • the corrugated core is obtained by pasting together.
  • another plastic sheet or the like melt-extruded from a T-die may be used as the liner 6, but from the viewpoint of improving the space charge density of the filter, the same as the resin film layer (A) described above It is preferable to use one, and it is more preferable to use an electret sheet obtained by electretizing it.
  • a liner provided with the above-mentioned antistatic layer on one side can be used.
  • the surface on which the antistatic layer is provided in advance is used as the surface not in contact with the flute 7.
  • a corrugated structure having liners 6 on both sides of the flute 7, wherein the outer surface of both liners (the surface not in contact with the flutes of the liner) has a plurality of antistatic layers is obtained.
  • One of the liners of the corrugated structure (the side having the antistatic layer) and the other of the liners of the other corrugated structure (the side having the antistatic layer) are bonded via an adhesive. Thereby, finally, the antistatic layer can obtain the filter 5 which is not exposed to the flow path of air.
  • adhesive As an adhesive used for adhering the electret sheet, it is preferable to use a known adhesive for dry lamination or a pressure sensitive adhesive.
  • resin components consisting of ether resin, ester resin, urethane resin, urea resin, acrylic resin, amide resin, epoxy resin, etc. are dissolved, dispersed or emulsified in the phase using a conventionally known solvent. Examples include liquid adhesives in the form of solution and emulsion, which can be dispersed and diluted to be fluid and allow coating.
  • an ether resin using a low molecular weight polyol such as propylene glycol, ethylene glycol, glycerin, trimethylolpropane and bisphenol A as an initiator, polymerizing an oxirane compound such as ethylene oxide, propylene oxide, butylene oxide and tetrahydrofuran More specifically, polypropylene glycol, polyethylene glycol, polytetramethylene glycol and the like can be mentioned.
  • a low molecular weight polyol such as propylene glycol, ethylene glycol, glycerin, trimethylolpropane and bisphenol A
  • an oxirane compound such as ethylene oxide, propylene oxide, butylene oxide and tetrahydrofuran
  • polypropylene glycol, polyethylene glycol, polytetramethylene glycol and the like can be mentioned.
  • ester resins include dehydrated condensation products of polybasic acids and polyhydric alcohols.
  • polybasic acids include isophthalic acid, terephthalic acid, phthalic anhydride, dimethyl ester of isophthalic acid, dimethyl ester of terephthalic acid, adipic acid, azelaic acid, sebacic acid, gulric acid, hexahydrophthalic anhydride and the like.
  • polyhydric alcohol ethylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, propylene glycol, dipropylene glycol, 1,6-hexanediol, neopentyl glycol, hydrogenated bisphenol A, 1 2,4-butanediol, 1,4-cyclohexanedimethanol, 2,2,4-trimethylpentane-1,3-diol, polyethylene glycol, etc., and these may be used alone or in combination. It is.
  • a urethane resin the condensation reaction product of at least 1 type of the above-mentioned polyhydric alcohol, ether resin, and ester resin, and an isocyanate compound is mentioned.
  • the isocyanate compound hexamethylene diisocyanate, 2,4-diisocyanate-1-methylcyclohexane, diisocyanate cyclobutane, tetramethylene diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexylmethane diisocyanate, dimethyldicyclohexylmethane diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, dodecane diisocyanate Aliphatic isocyanates such as tetramethylxylene diisocyanate or isophorone diisocyanate; tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate,
  • urea resin the condensation reaction product of the above-mentioned isocyanate compound and an amine compound is mentioned.
  • Aliphatic amines such as ethylenediamine, 1,2-propylenediamine, 1,3-propylenediamine, 1,4-butanediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine as amine compounds; isophoronediamine And alicyclic amines such as dicyclohexylmethanediamine, methylcyclohexanediamine, isopropylidenebis-4-cyclohexyldiamine, and 1,4-cyclohexanediamine; and heterocyclic amines such as piperazine, methylpiperazine and aminoethylpiperazine.
  • an acrylic resin what polymerized the acrylic compound by using an organic peroxide as a polymerization initiator is mentioned.
  • the acrylic compound (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t- (meth) acrylate Butyl, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ( Examples thereof include 2-hydroxypropyl methacrylate, (meth) acrylonitrile, (meth) acrylamide, glycidyl (meth) acrylate and the like, and these may be used alone or in combination.
  • Examples of the epoxy resin include a single condensation reaction of a polyglycidyl ether obtained by reacting a polyhydric phenol with at least one of an epihalohydrin and a low molecular weight epoxy compound, the above-mentioned ether resin, an ester resin, a urethane resin, a urea resin, The condensation reaction product obtained by condensation reaction with an acrylic resin and an amide resin is mentioned.
  • polyhydric phenols include bisphenol A (2,2-bis (4-hydroxyphenyl) propane), bisphenol B (2,2-bis (4-hydroxyphenyl) butane), bisphenol E (2) , 2-bis (4-hydroxyphenyl) ethane), bisphenol S (2,2-bis (4-hydroxyphenyl) sulfone), 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1 -Bis (4-hydroxyphenyl) -2-methylpropane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) methane, 2,2-bis (4 -Hydroxy-3,5-dimethylphenyl) ethane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, , 2-Bis (4-hydroxy-3,5-dimethylphenyl) butane, 2,2-bis (4-hydroxy-3-methylphenyl) butane, 2,2-bis (4-hydroxy-3-methylphen
  • (Heat seal adhesive) Low-density polyethylene, ethylene / vinyl acetate copolymer, metal salt of ethylene / (meth) acrylic acid copolymer, chlorinated polyethylene, chlorinated polyethylene, as a heat-sealable adhesive used for bonding electret sheets
  • a heat-sealable adhesive used for bonding electret sheets
  • examples thereof include polyolefin resins such as polypropylene, polyamide resins, polybutyral resins and urethane resins.
  • the thickness of the adhesive after drying is preferably 0.1 to 500 ⁇ m, more preferably 0.2 to 50 ⁇ m, and still more preferably 0.5 to 25 ⁇ m.
  • the thickness of the adhesive is less than 0.1 ⁇ m, it tends to partially form a portion where the adhesive is not applied, and it tends to be difficult to maintain the structure as a filter. On the other hand, if it exceeds 500 ⁇ m, excess adhesive overflows to partially cover the surface of the electret sheet, which may inhibit the electrostatic adsorption of the filter.
  • Thermoplastic resin composition (a) Propylene homopolymer (Nippon Polypropylene Corporation, trade name: Novatec PP FY4) is melt-kneaded with a twin-screw kneader set at 210 ° C., and then extruded into strands with an extruder set at 230 ° C. After cooling, it was cut with a strand cutter to make pellets of the thermoplastic resin composition (a), and used in the following production examples.
  • thermoplastic resin composition (b) Propylene homopolymer (Nippon Polypropylene Co., Ltd., trade name: Novatec PP FY4) 90%, High density polyethylene (Nippon Polyethylene Co., Ltd., trade name: Novatek HD HJ360) 5%, Heavy calcium carbonate (Bihoku Powder Made by Kako Kogyo Co., Ltd., trade name: Sordon 1800) Melt-kneaded with a twin-screw kneader set at 210 ° C., and then extruded into strands with an extruder set at 230 ° C. Was cut to make pellets of the thermoplastic resin composition (b), which were used in the following production examples.
  • thermoplastic resin composition (c) to (h) Thermoplasticity in the same manner as in the production of the thermoplastic resin composition (b) except that the propylene homopolymer used, high density polyethylene, heavy calcium carbonate, and the compounding ratio thereof were changed as described in Table 1. Pellets of the resin compositions (c) to (h) were prepared and used in the following production examples.
  • the resin of Production Example 1 having a thickness of 30 ⁇ m and a porosity of 20.3% is applied to both surfaces of this biaxially stretched film by corona discharge.
  • the film layer (A) was obtained and used for the subsequent manufacture of electretized sheets.
  • thermoplastic resin composition (g) is melt-kneaded by one extruder set at 230 ° C.
  • thermoplastic resin composition (b) is melt-kneaded by two extruders set at 230 ° C.
  • each thermoplastic resin composition is supplied to an extrusion die set at 250 ° C., and each thermoplastic resin composition is laminated on three layers of b / g / b in the die and extruded in a sheet shape,
  • the resultant was cooled to 60 ° C. by a cooling device to obtain a non-stretched sheet having a three-layer structure.
  • the unstretched sheet was heated to 135 ° C., and stretched five times in the longitudinal direction by using the circumferential speed difference of the roll group. Next, this 5-fold stretched sheet was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 9-fold in the transverse direction, and further heated to 160 ° C. to perform heat treatment. Next, after cooling to 60 ° C.
  • both surfaces of this biaxially stretched film are subjected to surface treatment by corona discharge to have a thickness of 70 ⁇ m, a porosity of 55.4%, a three-layer structure
  • each layer resin Obtain a resin film layer (A) of Production Example 2 having a composition (b / g / b), each layer thickness (2 ⁇ m / 66 ⁇ m / 2 ⁇ m), and the number of stretching axes of each layer (2 axes / 2 axes / 2 axes), It served for manufacture of the electret-ized sheet of the following.
  • the plastic resin composition (e) After melt-kneading the plastic resin composition (e) with two extruders set at 250 ° C., it is extruded into a sheet and laminated on both sides of a 5-fold stretched sheet to obtain a laminated sheet of a three-layer structure Obtained.
  • the laminated sheet was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 8.5 times in the transverse direction, and then heated to 160 ° C. to perform heat treatment.
  • both surfaces of this laminated sheet are subjected to surface treatment by corona discharge to have a thickness of 50 ⁇ m, a porosity of 30.2%, a three-layer structure [each layer resin composition ( e / d / e), thickness of each layer (10 ⁇ m / 30 ⁇ m / 10 ⁇ m), number of stretching axes of each layer (1 axis / 2 axes / 1 axis)], the resin film layer (A) of Production Example 3 is obtained, It served for manufacture of the electret-ized sheet.
  • both surfaces of this laminated sheet are subjected to surface treatment by corona discharge to have a thickness of 110 ⁇ m, a porosity of 30%, a three-layer structure [each layer resin composition (f / d / f), thickness of each layer (20 ⁇ m / 70 ⁇ m / 20 ⁇ m), number of stretching axes of each layer (1 axis / 2 axes / 1 axis)], the resin film layer (A) of Production Example 4 is obtained, and electretization thereafter It served for manufacture of a sheet.
  • the plastic resin composition (f) After melt-kneading the plastic resin composition (f) with two extruders set at 250 ° C., it is extruded into a sheet and laminated on both sides of a 5-fold stretched sheet to obtain a three-layered laminated sheet Obtained.
  • the laminated sheet was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 8.5 times in the transverse direction, and then heated to 160 ° C. to perform heat treatment.
  • both surfaces of this laminated sheet are subjected to surface treatment by corona discharge to have a thickness of 200 ⁇ m, a porosity of 32.2%, a three-layer structure [each layer resin composition ( f / d / f), thickness of each layer (50 ⁇ m / 100 ⁇ m / 50 ⁇ m), number of stretching axes of each layer (1 axis / 2 axes / 1 axis)], the resin film layer (A) of Production Example 5 is obtained, It served for manufacture of the electret-ized sheet.
  • the plastic resin composition (e) After melt-kneading the plastic resin composition (e) with two extruders set at 250 ° C., it is extruded into a sheet and laminated on both sides of a 4-fold stretched sheet to obtain a laminated sheet of a three-layer structure.
  • the laminated sheet was cooled to 60 ° C., heated again to about 155 ° C. using a tenter oven, stretched 8-fold in the transverse direction, and then heated to 160 ° C. to perform heat treatment.
  • both surfaces of this laminated sheet are subjected to surface treatment by corona discharge to have a thickness of 60 ⁇ m, a porosity of 5.1%, a three-layer structure [each layer resin composition ( e / b / e), thickness of each layer (10 ⁇ m / 40 ⁇ m / 10 ⁇ m), number of stretching axes of each layer (1 axis / 2 axes / 1 axis)], the resin film layer (A) of Production Example 6 is obtained, It served for manufacture of the electret-ized sheet.
  • thermoplastic resin composition (a) After melt-kneading the thermoplastic resin composition (a) with an extruder set at 230 ° C., it is supplied to an extrusion die set at 250 ° C. and extruded into a sheet, which is cooled to 60 ° C. with a cooling device An oriented sheet was obtained. The unstretched sheet was heated to 150 ° C., and stretched 5 times in the longitudinal direction using the circumferential speed difference of the roll group to obtain a 5 ⁇ stretched sheet. Next, this 5-fold stretched sheet was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 9-fold in the transverse direction, and further heated to 160 ° C.
  • thermoplastic resin composition (h) is melt-kneaded by one extruder set at 230 ° C.
  • thermoplastic resin composition (b) is melt-kneaded by two extruders set at 230 ° C.
  • each thermoplastic resin composition is supplied to an extrusion die set at 250 ° C., and each thermoplastic resin composition is laminated on three layers of b / h / b in the die and extruded in a sheet shape,
  • the resultant was cooled to 60 ° C. by a cooling device to obtain a non-stretched sheet having a three-layer structure.
  • the unstretched sheet was heated to 150 ° C., and stretched 5 times in the longitudinal direction using the circumferential speed difference of the roll group to obtain a 5 ⁇ stretched sheet.
  • this 5-fold stretched sheet was cooled to 60 ° C., heated again to about 155 ° C. using a tenter oven, stretched 9-fold in the transverse direction, and further heated to 160 ° C. to perform heat treatment.
  • both surfaces of this biaxially stretched film are surface-treated by corona discharge to have a thickness of 150 ⁇ m, a porosity of 85%, a three-layer structure [each layer resin composition ( b / h / b), thickness of each layer (2 ⁇ m / 146 ⁇ m / 2 ⁇ m), number of stretching axes of each layer (2 axes / 2 axes / 2 axes)], the resin film layer (A) of Production Example 8 is obtained, and the subsequent processes It served for manufacture of the electret-ized sheet.
  • Physical properties including the central surface average roughness (SRa) of the resin film layer (A) obtained in each production example are summarized in Table 2.
  • ⁇ Test example> The thickness was measured in accordance with JIS-K7130 using a constant pressure thickness measuring device (trade name: PG-01J, manufactured by Teklo Co., Ltd.).
  • PG-01J constant pressure thickness measuring device
  • the thickness of each layer is determined by cooling the sample to be measured with liquid nitrogen to a temperature of ⁇ 60 ° C. or less, and using a razor blade for the sample placed on a glass plate (Sick Japan Co., Ltd. product name: Proline blade) is hit at a right angle and cut to prepare a sample for cross-sectional observation, and the obtained sample is used as a scanning electron microscope (Nippon Denshi Co., Ltd.
  • a conductive paint (manufactured by Fujikura Kasei Co., Ltd., trade name: Spotify D-500) was screen printed on one side of the electret sheet obtained in each production example so as to form a circle having a diameter of 70 mm, After curing for a long time to form the main electrode, a circle with a diameter of 100 mm is screen printed on the opposite surface using the same conductive paint so as to be concentric with the circle on the back surface, and cured at room temperature for 24 hours or more The counter electrode was formed to measure the capacitance.
  • "4192A LF IMPEDANCE ANALYZER" equipment name
  • Agilent Technologies was used as a capacitance measuring device.
  • a voltage of 5 V is applied to each electretized sheet under environmental conditions of a temperature of 23 ° C. and a relative humidity of 50%, and the capacitance is measured at a frequency of 10 Hz to 1 MHz. Capacitance at a frequency of 100 kHz (Cx) was determined as a representative value.
  • the relative dielectric constant ( ⁇ r ) was calculated by the following equation.
  • ⁇ r C x ⁇ h / ( ⁇ 0 ⁇ A)
  • ⁇ r relative permittivity of electretized sheet (-)
  • C x Capacitance of electret sheet (pF)
  • h Thickness of electret sheet (m)
  • A: Area of main electrode 3.848 ⁇ 10 -4 (m 2 )
  • the electretized sheet obtained in each production example is cut into a square of 15 mm ⁇ 15 mm, wrapped in aluminum foil, conditioned at 23 ° C. and 50% relative humidity for 24 hours, taken out from the aluminum foil, and cut It is installed on the ground electrode plate 31 placed on the program hot plate 33 of the charge amount measuring device shown in FIG. 15, and a 10 mm ⁇ 10 mm square, 5 mm thick, made of SUS main electrode on the electretized sheet 30 Plate 32 and thermocouple 34 were installed. Subsequently, the temperature of the electret sheet 30 is raised from 30 ° C. to 200 ° C.
  • the central surface average roughness (SRa) of the surface of the electretized sheet obtained in each production example was determined using a three-dimensional surface roughness meter “Surfcom 1500 DX3” (equipment name) manufactured by Tokyo Seimitsu Co., Ltd. as a measuring device, It measured and calculated
  • Example 1 The electretized sheet obtained in Production Example I is supplied to a single facer used for production of paper corrugated cardboard, processed to a flute having a height of 3 mm and a pitch of 3 mm, and the top of the flute is a water-based acrylic adhesive. (A mixture of 100 parts by mass of Syden Chemical Co., Ltd., trade name: Sybinol PZ-820 and 2 parts by mass of trade name: Sybinol E 102, manufactured by the same company), the coated amount after drying is 50 g / m 2
  • the electret sheet obtained in Production Example I was separately supplied as a liner, and the flute and the liner were bonded with an adhesive to form a single-sided step.
  • An adhesive is applied to the top of the other flute of the single-sided tier created, and the separately created single-sided tier is laminated so that the single-sided tiers have the same direction (the flute and the liner are alternately laminated) As a result, an electret filter 38 shown in FIG. 16 is obtained.
  • Examples 2 to 6 Comparative Examples 1 to 2
  • An electret filter was produced in the same manner as in Example 1 except that the electret sheet of the production example described in Table 4 was used for the flute and liner in the electret filter of Example 1.
  • Example 7 A filter was produced in the same manner as in Example 1 except that the electret sheet of Production Example II was used as the flute and liner in the electret filter of Example 1, and the single facer had a peak height of 1 mm.
  • Flow path cross section rate Using the filters obtained in each example and comparative example, a cross section is created using a cutter so as to be perpendicular to the flow path direction of the air, and an enlarged image obtained by digital camera photography of the same cross section is obtained, The area of the space (air flow path) in the observation area was measured using the image analysis apparatus (trade name: LUZEXR AP, manufactured by Nireco, Inc.) to obtain a flow path cross section (Sr).
  • Qa Ls ⁇ Qs
  • Qa Space charge density of the filter (nC / cm 3 )
  • Ls Total length per unit area of electret sheet (cm / cm 2 )
  • Qs Electric charge per unit area of electretized sheet (nC / cm 2 )
  • the evaluation filter 38 was prepared by cutting with a cardboard cutter so as to become a regular cube having a width of 50 mm, a height of 50 mm, and a length of 50 mm. Next, the evaluation filter 38 is placed on the collection rate measuring device shown in FIG. 17 so that the opening cross section is facing upward, and the pan 41 is placed under the evaluation filter 38 so that the distance between the evaluation filters 38 is 5 mm. A glass tube 40 with a diameter of 40 mm and a length of 100 mm was placed thereon.
  • the powder for evaluation falls uniformly on the filter for evaluation 38 from the powder supply bin 39 packed with 1.0 g of surface-treated calcium carbonate (manufactured by Maruo Calcium Co., Ltd., trade name: Calfine 200) as the powder for evaluation.
  • surface-treated calcium carbonate manufactured by Maruo Calcium Co., Ltd., trade name: Calfine 200
  • Each weight of 41 was measured, and the collection rate (Ep) was determined from the following formula.
  • Ep (Wfa ⁇ Wf0) / ((Wb0 ⁇ Wba) ⁇ (Wpa ⁇ Wp0)) ⁇ 100 Ep: Collection rate (%) Wf0: Weight before test of evaluation filter Wfa: Weight after test of evaluation filter Wb0: Weight before test of powder supply bottle Wba: Weight after test of powder supply bottle Wp0: Weight before test of glass tube Wpa: Test of glass tube After-Weight
  • the powder supply bin 39 has a structure as shown in FIG. 18, and an opening (not shown) is provided at the center of the lid 43, and a plain woven wire mesh of 200 mesh is provided at the opening. I used 44 attached.
  • good collection rate of 70% or more
  • slightly good collection rate of 50% or more and less than 70%
  • defect collection rate of less than 50%
  • the electric filter obtained in Example 2 is cut with a cardboard cutter so that the surface on which the air flow path is formed is a rectangular solid with a width of 100 mm, a height of 80 mm, and a flow path length (depth) of 10 mm.
  • An evaluation filter 45 was created. As shown in FIG. 19, a digital dust meter 47 (manufactured by Shibata Chemical Co., Ltd., trade name: Dust Mate LD-3K2), an air conditioner 48, an ion generator 49, and a clean booth 46 with an inner volume of 30 m 3.
  • the stirring fan 50 was installed, and the evaluation filter 45 was attached to the suction port of the air conditioner 48.
  • the dust removal rate (Ee) after 120 minutes in the filter obtained in Example 2 was 99%, which was effective for removing fine dust such as tobacco smoke.
  • the filter of the present invention is a low pressure loss type filter having a high dust and dirt collection power and excellent retention of collection power, filters such as dust collectors, air conditioners, air conditioners, humidifiers, etc. It is very useful in dust collection in closed spaces such as offices, factories, clean rooms, and homes.

Abstract

 本発明は、塵や埃の高い捕集力を有し、加工性および捕集力の持続性に優れた低圧力損失型フィルターを提供することを目的とする。本発明のフィルターは、エレクトレット化シートを用いて空気の流路を形成したフィルターであって、該エレクトレット化シートの空孔率が1~70%であり、該フィルターの流路断面率が10~99%であり、該フィルターの空間電荷密度が10~5000nC/cmである。

Description

フィルター
 本発明は、エレクトレット化シートを用いたフィルターに関する。詳細には、圧力損失が少なく塵や埃の濾過効率に優れた帯電型の空気濾過材に関する。
 従来、フィルムを連続的に折り曲げて積層するなどして、特定の立体構造に成形して得られた、空隙を有する構造体が知られている。さらに該構造体においてフィルムを帯電(エレクトレット化)させ、該空隙に塵を含む空気を流通したとき、静電気力で塵を吸着させる原理のエレクトレットフィルターが知られている。例えば、特許文献1、2には、エレクトレット化されたフィルムを連続的に折り曲げて、厚み方向に積層することによってエレクトレットフィルターを得ることが開示されている。
 これらのエレクトレットフィルターは、圧力損失が少ない利点がある。しかしながらこれらのエレクトレット化されたフィルムは帯電量が少ないがゆえに、該フィルムで囲まれた空間電荷密度が低く、塵の捕集能力を高くすることができなかった。また、該フィルム内に蓄積された電荷量(帯電量)の減衰が早く、長期間安定した捕集能力が得られない欠点があった。
 また、特許文献3には、プラスチック壁に囲まれた通路を有する配列体の外壁にエレクトレット特性を付与することによってエレクトレットフィルターを得ることが開示されている。ところが、エレクトレット特性を付与するための帯電処理を行う際に、溝内部をアース電位に、かつ前記シート材料の外面をそれぞれ高い負のかつ正の電位に接続する導電性液体で前記面を充填することによっておこなうため、帯電させるための装置を要し、該装置により高電圧を印加するがゆえに絶縁破壊による漏電や感電の危険があった。
 また、特許文献4、5には、フローチャンネルを形成する高アスペクト比構造を有するフィルムによる空隙を有する構造体で、該フィルムが帯電されている濾過装置が開示されている。これらの濾過装置は、表面積が高く捕集効率が向上する利点はあるが、フィルム表面に起伏を有するため、該フィルムを構造体に成形するときの加工性に劣り、フィルターの空間容積が減少し、圧力損失が上昇する欠点があり、また、フィルム内部に空孔を有していないため、帯電減衰速度が速く、エレクトレットフィルターとしての持続力が劣るものとなる恐れがある。
 一方、特許文献6には、特定の空孔率及び圧縮高さのフィルムを波長0.5~60mm、波の最頂部と最低部の高さが1~20mmの波状に加工したフィルム(1)と、少なくともその片面上に熱可塑性樹脂フィルム(2)を積層したシート及び該シートを複数積層した構造体が開示されている。このような構造体は、空気の流通に伴う摩擦によりフィルム表面が帯電する可能性があるが、帯電した場合であってもフィルム表面の電荷密度が小さいため、フィルターとしての機能は不十分であった。
 また、特許文献7には、正に帯電した第1の面と、前記第1の面に対向し、かつ負に帯電した第2の面とを具備した台形コルゲート形のフィルターが開示されているが、帯電電荷量を高める方法が具体的に記されておらず、当該文献の製造方法で得られたエレクトレットフィルターは、帯電減衰速度が速く、エレクトレットフィルターとしての持続力が劣るものとなる恐れがある。
日本国特開昭56-010312号公報 日本国特開昭56-010314号公報 日本国特開2010-099657号公報 日本国特表2002-535125号公報 日本国特表2003-512155号公報 日本国特開2003-320602号公報 日本国特開2000-288322号公報
 本発明は塵や埃の高い捕集力を有し、加工性および捕集力の持続性に優れた低圧力損失型フィルターを提供することを目的とする。
 本発明者らは、前記課題に鑑み、種々検討を重ねた結果、特定のエレクトレット化シートを用い、これを特定の流路断面率及び特定の空間電荷密度を有する構造体に加工することにより、前記課題を解決しうることを見出し、本発明に到達した。
 すなわち、本発明は下記の通りである。
(1)エレクトレット化シートを用いて空気の流路を形成したフィルターであって、該エレクトレット化シートの空孔率が1~70%であり、該フィルターの空気の流路断面率が10~99%であり、該フィルターの空間電荷密度が10~5000nC/cmであることを特徴とするフィルター。
(2)該エレクトレット化シートが熱可塑性樹脂を含む、前記(1)に記載のフィルター。
(3)該熱可塑性樹脂がポリオレフィン系樹脂を含む、前記(2)に記載のフィルター。
(4)該ポリオレフィン系樹脂がポリプロピレン系樹脂を含む、前記(3)に記載のフィルター。
(5)該エレクトレット化シートがポリプロピレン系樹脂50~98質量%と、ポリエチレン系樹脂1~49質量%と、無機微細粉末および有機フィラーの少なくとも一方1~49質量%とを含む、前記(4)に記載のフィルター。
(6)該エレクトレット化シートが少なくとも1軸方向に延伸されている、前記(1)~(5)の何れか1つに記載のフィルター。
(7)該エレクトレット化シートの比誘電率が1.1~2.5である、前記(1)~(6)の何れか一つに記載のフィルター。
(8)該エレクトレット化シートが直流式コロナ放電によってエレクトレット化されたシートを含む、前記(1)~(7)の何れか1つに記載のフィルター。
(9)該エレクトレット化シート表面の中心面平粗さ(SRa)が0.1~5μmである、前記(1)~(8)の何れか1つに記載のフィルター。
(10)前記空気の流路が、コルゲート加工により波状に加工された該エレクトレット化シートと、コルゲート加工されていない平板状の該エレクトレット化シートとを交互に積層し、これらを接着または融着することで形成される、前記(1)~(9)の何れか1つに記載のフィルター。
(11)前記(1)~(10)の何れか1つに記載のフィルターに用いられるエレクトレット化シート。
 本発明によれば、塵埃等の捕集効率が高く、捕集力の持続性に優れた低圧力損失型のフィルターを提供することができる。
 また本発明によれば、フッ素含有樹脂やアゾ化合物等の双極子モーメントが大きな化合物を含有しない一般的な熱可塑性樹樹脂を材料とするエレクトレット化シートを使用することで、構造体への加工性に優れたフィルターを提供することができる。
図1は、本発明のフィルターに用いる樹脂フィルム層(A)の一様態である。 図2は、本発明のフィルターに用いる樹脂フィルム層(A)の別の一様態である。 図3は、本発明のフィルターに用いる樹脂フィルム層(A)の別の一様態である。 図4は、本発明のフィルターの断面の一態様である。 図5は、本発明のフィルターの断面の別の一態様である。 図6は、本発明のフィルターの断面の別の一態様である。 図7は、本発明のフィルターの断面の別の一態様である。 図8は、本発明のフィルターの断面の別の一態様である。 図9は、本発明の帯電処理に用い得るバッチ式コロナ放電処理装置の一例である。 図10は、本発明の帯電処理に用い得るバッチ式コロナ放電処理装置の一例である。 図11は、本発明の帯電処理に用い得る連続式コロナ放電処理装置の一例である。 図12は、本発明の帯電処理に用い得る連続式コロナ放電処理装置の一例である。 図13は、本発明の帯電処理に用い得る連続式コロナ放電処理装置の一例である。 図14は、本発明の実施例に使用したエレクトレット化シートの製造装置の概略図である。 図15は、本発明の実施例に使用したエレクトレット化シートの電荷量測定装置の概略図である。 図16は、本発明の実施例に使用した評価用フィルターの概略図である。 図17は、本発明の実施例に使用した捕集率測定方法の概略図である。 図18は、本発明の実施例において捕集率測定に使用した紛体供給ビンの概略図である。 図19は、本発明の実施例において粉塵除去率測定に使用した設備の概略図である。
 以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの説明内容に特定されるものではない。
 なお、本発明において「~」と表記するときは、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を指す。
 また、「(メタ)アクリレート」と表記する時はアクリレートとメタクリレートの両方を指す。(メタ)アクリル酸誘導体についても同様である。
 尚、本明細書において、「質量」は「重量」のことを意味するものとする。
[フィルター]
 本発明のフィルターは、エレクトレット化シートを用いて空気の流路を形成したものであり、空気の流路断面率が10~99%であり、空間電荷密度が10~5000nC/cmであることを特徴とする。
(流路構造)
 フィルターの流路構造は、エレクトレット化シートを加工して空気の流路を形成するものであり、空気の流路断面率が10~99%であれば、その形状は限定されない。中でもコルゲート加工により波状に加工されたエレクトレット化シートと、コルゲート加工されていない平板状のエレクトレット化シートを交互に積層し、これらを接着または融着して得た流路構造が、その構造が強固であり、エレクトレット化シートの帯電量を上げても該構造が潰れにくく、かつ製造が簡便であることから好ましい。
 また、例えば波状やプリーツ状に加工した同形状のシートを積層し、両者の接触点又は接触面を接着した形状のものでもよく、具体的には流路の断面形状が六角形のハニカムコアとなるような構造が挙げられる。また、図4及び図6に示すように、波状やプリーツ状に加工したエレクトレット化シート7a,7bとそのような加工を行っていない平板状のエレクトレット化シート6とを交互に積層し、両者の接触点又は接触面を接着した形状のフィルター5でもよく、具体的にはプリーツ状に加工したフェザーコア、波状に加工したコルゲートコア、円形に加工したロールコア等の断面形状を有する構造が挙げられる。また、図8に示すように、二枚のエレクトレット化シート9の間にピラー構造10またはリブ構造等の起伏(突起構造)を有するものでもよい。この場合、エレクトレット化シート9の帯電減衰速度を低下させる観点から、ピラー構造10またはリブ構造は絶縁性材料で構成することが好ましい。また空気の流路の確保の観点から、このようなピラー構造10またはリブ構造の高さは、顕微鏡による断面観察から、1~10mmであることが好ましい。
 このような流路の断面形状を構成するパターン(例えばハニカム構造における六角形)は、一定のピッチで等間隔に配置されるものでもよく、ランダムに配置されるものでもよい。このようなパターンが、一定のピッチで配置されるものである場合、フィルターへの加工性や塵や埃の捕集効率の観点から、該ピッチは0.5~10mmの範囲であることが好ましく、0.7~5mmの範囲であることがより好ましく、1~3mmの範囲であることが特に好ましい。
(流路断面率)
 フィルターにおける空気の流路断面率は、フィルターの断面に対して空気の流路が占める割合である。したがって、その値が低いほど、フィルターの強度が増加すると同時に、空気の流通に対する抵抗となり圧力損失が増加する傾向がある。
 具体的に空気の流路断面率は、フィルターの断面積から、シート基材厚みと流路成形に使用したシート基材の長さの積であるシート基材の断面積を除したものである。また同値は断面の画像観察から求めることもできる。
 空気の流通に対する圧力損失を少なくする観点から、空気の流路断面率は10%以上であり、30%以上が好ましく、50%以上がより好ましい。一方、フィルターの強度の観点から、空気の流路断面率は99%以下であり、97%以下が好ましく、95%以下がより好ましい。
(空間電荷密度)
 フィルターにおける空間電荷密度は、フィルターの空間容積を占める電荷の総量を示すものである。その値が高いほど、塵や埃の捕集性能が高いことを示す。
 具体的にフィルターにおける空間電荷密度は、フィルターのシート基材が有する電荷量を該シート基材が形成する空間容積で除したものである。フィルターのシート基材が有する電荷量は実測値を用い、空間容積はフィルター形状から論理的に求めてもよく、フィルターの密度から求めてもよい。
 例えば、空間容積をフィルター形状から論理的に求める場合、その単位空間を縦1cm×横1cm×高さ1cmの立方体と規定する。続いてエレクトレットフィルターの流路と垂直に切断した断面の縦1cm×横1cmの正方形(単位面積)当たりに存在するエレクトレット化シートの総長さLs(cm/cm)をフィルター形状から計算または測定により求める。
 すると、単位空間容積当たりに存在するエレクトレット化シートの総面積Ss(cm/cm)は、それぞれ断面正方形(単位面積)当たりに存在するエレクトレット化シートの総長さLsに、シートの幅として単位空間の奥行きを乗じたものであるから、次式で表されるように、SsとLsは同値である。
  Ss(cm/cm)=Ls(cm/cm)×1cm/1cm
            =Ls(cm/cm
 一方、エレクトレット化シートの単位面積当たりの電荷量Qs(nC/cm)は実測で求められる。
 従って、単位空間当たりに存在するエレクトレット化シートの電荷量Qa(nC/cm)、すなわち空間電荷密度は、次式で表される。
  Qa(nC/cm)=Ss(cm/cm)×Qs(nC/cm
           =Ls(cm/cm)×Qs(nC/cm
 上記の通り、空間電荷密度は、断面の単位面積当たりのエレクトレット化シートの総長さLsと、エレクトレット化シートの単位面積当たりの電荷量Qsの積から求めることができる。
 なお、フィルターが多種類のエレクトレット化シートから構成される場合、例えば1,2,・・・n種類のエレクトレット化シートから構成される場合は、単位空間当たりに存在するエレクトレット化シートの電荷量Qaは、それぞれのエレクトレット化シートの単位空間当たりの電荷量Qa1,Qa2,・・・Qanの和で表される。
 フィルターの空間電荷密度が高いほど、同フィルターにおける塵の捕集効率が高くなり、フィルターに求める捕集効率が一定であれば、空気の流路の長さ(フィルターの奥行き・厚み)を短くすることができる。一方、空気の流路の長さが一定であれば、フィルターの寿命を長くすることができる。
 捕集効率を高くする観点から、空間電荷密度は10nC/cm以上であり、50nC/cm以上が好ましく、80nC/cm以上がより好ましく、110nC/cm以上が特に好ましい。一方、シート基材が保有できる電荷量の制約から、空間電荷密度は5000nC/cm以下であるが、シート基材製造上の簡便さから、2000nC/cm以下が好ましく、1000nC/cm以下がより好ましく、500nC/cm以下が特に好ましい。
[エレクトレット化シート]
 本発明に用いうるエレクトレット化シートは、少なくともその空孔率が1~70%であるものであり、空孔率は好ましくは5~60%であり、より好ましくは25~40%である。
 また、本発明に用いうるエレクトレット化シートは、熱可塑性樹脂を含むフィルムより形成されることが好ましい。該熱可塑性樹脂を含むフィルムはある程度の絶縁性を有するものであり、帯電処理を行うことにより、その表面や内部に電荷を安定的に保持することができるものである。本発明では以後、熱可塑性樹脂を含むフィルムを樹脂フィルム層(A)と表記し、これに帯電処理を施したものをエレクトレット化シートと表記する。
[樹脂フィルム層(A)]
 本発明における樹脂フィルム層(A)は前述のとおり、帯電処理によりその表面や内部に電荷を保持したエレクトレット化シートとなり、エレクトレット化シートを用いて形成したフィルターにおいて、その静電吸着力によってエレクトレット化シートの表面に塵埃等を吸着することを可能にするものである。
 樹脂フィルム層(A)には熱可塑性樹脂を含むことが好ましい。中でも絶縁性の優れた熱可塑性樹脂を使用することにより、内部に蓄積した電荷を保持しやすくなりより好ましい。
(熱可塑性樹脂)
 樹脂フィルム層(A)に用いる熱可塑性樹脂の種類は特に制限されない。例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、プロピレン系樹脂、ポリメチル-1-ペンテン等のポリオレフィン系樹脂;エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂;ナイロン-6、ナイロン-6,6等のポリアミド系樹脂;ポリエチレンテレフタレートやその共重合体、ポリブチレンテレフタレート、脂肪族ポリエステル等の熱可塑性ポリエステル系樹脂;ポリカーボネート系樹脂;アタクティックポリスチレン、シンジオタクティックポリスチレン等のポリスチレン系樹脂等を使用することができる。これらの熱可塑性樹脂の中では、絶縁性と加工性に優れるポリオレフィン系樹脂または官能基含有ポリオレフィン系樹脂を用いることが好ましい。
 ポリオレフィン系樹脂のより具体的な例としては、エチレン、プロピレン、ブチレン、ヘキセン、オクテン、ブタジエン、イソプレン、クロロプレン、メチル-1-ペンテン、環状オレフィンなどのオレフィン類の単独重合体、及び、これらオレフィン類2種類以上からなる共重合体が挙げられる。
 官能基含有ポリオレフィン系樹脂のより具体的な例としては、前記オレフィン類と共重合可能な官能基含有モノマーとの共重合体が挙げられる。かかる官能基含有モノマーとしては、スチレン、α-メチルスチレンなどのスチレン類;酢酸ビニル、ビニルアルコール、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ブチル安息香酸ビニル、シクロヘキサンカルボン酸ビニルなどのカルボン酸ビニルエステル類;アクリル酸、メタクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、(メタ)アクリルアミド、N-メタロール(メタ)アクリルアミドなどの(メタ)アクリル酸エステル類;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル、ベンジルビニルエーテル、フェニルビニルエーテルなどのビニルエーテル類が挙げられる。これら官能基含有モノマーの中から、必要に応じ1種類もしくは2種類以上を適宜選択し、共重合したものを用いることができる。
 更に、これらのポリオレフィン系樹脂及び官能基含有ポリオレフィン系樹脂を必要によりグラフト変性して使用することも可能である。
 グラフト変性には公知の手法が用いることができる。具体的な例としては、不飽和カルボン酸またはその誘導体によるグラフト変性が挙げられる。該不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等が挙げられる。また、上記不飽和カルボン酸の誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等が挙げられる。上記不飽和カルボン酸の誘導体の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル、イタコン酸モノメチルエステル、イタコン酸ジエチルエステル、(メタ)アクリルアミド、マレイン酸モノアミド、マレイン酸ジアミド、マレイン酸-N-モノエチルアミド、マレイン酸-N,N-ジエチルアミド、マレイン酸-N-モノブチルアミド、マレイン酸-N,N-ジブチルアミド、フマル酸モノアミド、フマル酸ジアミド、フマル酸-N-モノエチルアミド、フマル酸-N,N-ジエチルアミド、フマル酸-N-モノブチルアミド、フマル酸-N,N-ジブチルアミド、マレイミド、N-ブチルマレイミド、N-フェニルマレイミド、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム等が挙げられる。グラフト変性物は、グラフトモノマーをポリオレフィン系樹脂及び官能基含有ポリオレフィン系樹脂に対して、一般に0.005~10質量%、好ましくは0.01~5質量%グラフト変性したものである。
 樹脂フィルム層(A)に含まれる熱可塑性樹脂としては、上記の熱可塑性樹脂の中から1種を選択して単独で使用してもよいし、2種以上を選択して組み合わせて使用してもよい。
 更にこれらポリオレフィン系樹脂の中でも、プロピレン系樹脂が、絶縁性、加工性、耐湿性、耐薬品性、コストの面などから好ましい。プロピレン系樹脂としては、プロピレン単独重合体であり、アイソタクティックないしはシンジオタクティック及び種々の程度の立体規則性を示すポリプロピレンや、プロピレンを主成分とし、これと、エチレン、1-ブテン、1-ヘキセン、1-ヘプテン、4-メチル-1-ペンテン等のα-オレフィンとを共重合させた共重合体を主成分として使用することが望ましい。この共重合体は、2元系でも3元系以上でもよく、またランダム共重合体でもブロック共重合体でもよい。プロピレン系樹脂には、シート成形性の観点からプロピレン単独重合体よりも融点が低い樹脂を2~25質量%配合して使用することが好ましい。そのような融点が低い樹脂としては、高密度ないしは低密度のポリエチレンを例示することができる。
 樹脂フィルム層(A)における熱可塑性樹脂の配合量は、熱可塑性樹脂の総質量として50~99質量%であることが好ましく、51~99質量%であることがより好ましく、60~95質量%であることが更に好ましい。熱可塑性樹脂の配合量が50質量%以上であれば、樹脂フィルム層(A)を成形しやすく、得られた樹脂フィルム層(A)は、その熱可塑性樹脂の絶縁性から電荷を保持しやすい。
 樹脂フィルム層(A)における配合組成は、ポリプロピレン系樹脂50~98質量%と、ポリエチレン系樹脂1~49質量%を含むことが更に好ましく、ポリプロピレン系樹脂50~96質量%と、ポリエチレン系樹脂3~29質量%を含むことが特に好ましい。
 本発明のフィルターは、図1に示すように、樹脂フィルム層(A)1の単層のみからなるものであってもよい。
 また、本発明の一様態として、複数のエレクトレット化シートを積層した構造体よりなるフィルターを得るとき、エレクトレット化シートがヒートシール性を有していれば、熱接着により容易にフィルターを製造することができる。エレクトレット化シートにヒートシール性を付与するには、図2に示すように、樹脂フィルム層(A)1を基層2および表面層3a,3bから形成される2層または3層以上の多層構造とし、基層2の片面または両面に、基層2の融点より低い融点を有する表面層3a,3bを設ける方法がある。または、樹脂フィルム層(A)を形成した後に、樹脂フィルム層(A)の少なくとも片面に熱可塑性樹脂の融点よりも低い融点を有する樹脂のフィルムをドライラミネート法や溶融押出ラミネート法によりラミネートする方法や、樹脂フィルム層(A)の少なくとも片面に熱可塑性樹脂の融点よりも低い融点を有する樹脂を含む塗工液を塗工する方法等が挙げられる。
 ヒートシール性を付与するのに好適な樹脂としては、低密度ポリエチレン、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸共重合体の金属塩、塩素化ポリエチレン、塩素化ポリプロピレン等の変性ポリオレフィン系樹脂、ポリアミド系樹脂、ポリブチラール系樹脂、ウレタン系樹脂などが例示できる。
(無機微細粉末および有機フィラー)
 樹脂フィルム層(A)には、無機微細粉末および有機フィラーの少なくとも一方を添加してもよい。無機微細粉末や有機フィラーの添加により、樹脂フィルム層(A)の中にボイド(空隙)を形成し、樹脂と空気との界面(表面積)を増加させることで、樹脂フィルム層(A)の帯電性を向上できる場合がある。また、図3に示すように、樹脂フィルム層(A)1の表面に無機微細粉末や有機フィラーに起因する起伏(突起構造)4a,4bを形成して、樹脂フィルム層(A)の表面を粗面とすることができ、樹脂フィルム層(A)の表面積を増大させることでエレクトレット化シートの吸着面積が大きくなり、結果としてフィルターの捕集効率を向上できる場合がある。
 樹脂フィルム層(A)における無機微細粉末および有機フィラーの配合量は、総量として1~49質量%であることが好ましく、5~40質量%であることがより好ましい。無機微細粉末および有機フィラーの配合量が1質量%以上であれば樹脂フィルム層(A)中にボイドを成形しやすく、同配合量が49質量%以下であれば、得られる樹脂フィルム層(A)の帯電量を制御しやすく、フィルターの捕集効率が持続しやすくできるため好ましい。
 樹脂フィルム層(A)に無機微細粉末を添加する場合は、レーザー回折による粒度分布計で測定した体積平均粒径が、好ましくは0.01~15μm、より好ましくは0.1~10μm、更に好ましくは0.5~5μmのものを使用する。このような体積平均粒径を有する無機微細粉末は、後述する延伸に伴い内部に空孔を形成しやすく、好ましい。
 無機微細粉末としては、具体的には、炭酸カルシウム、焼成クレイ、シリカ、けいそう土、白土、タルク、酸化チタン、硫酸バリウム、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、ガラスファイバーなどを使用することができる。
 有機フィラーを添加する場合は、樹脂フィルム層(A)の主成分である熱可塑性樹脂とは異なる種類の樹脂を選択することが好ましい。例えば、熱可塑性樹脂がポリオレフィン系樹脂である場合には、有機フィラーとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ナイロン-6、ナイロン-6,6、環状ポリオレフィン、ポリスチレン、ポリメタクリレート等の重合体であって、ポリオレフィン系樹脂の融点よりも高い融点(例えば170~300℃)ないしはガラス転移温度(例えば170~280℃)を有し、かつ非相溶のものを使用することができる。
 樹脂フィルム層(A)には、必要に応じて、熱安定剤(酸化防止剤)、光安定剤、分散剤、滑剤などを添加することができる。熱安定剤を添加する場合は、通常0.001~1質量%の範囲内で添加する。具体的には、立体障害フェノール系、リン系、アミン系等の安定剤などを使用することができる。光安定剤を使用する場合は、通常0.001~1質量%の範囲内で使用する。具体的には、立体障害アミン系やベンゾトリアゾール系、ベンゾフェノン系の光安定剤などを使用することができる。分散剤や滑剤は、例えば無機微細粉末を分散させる目的で使用する。使用量は通常0.01~4質量%の範囲内にする。具体的には、シランカップリング剤、オレイン酸やステアリン酸等の高級脂肪酸、金属石鹸、ポリアクリル酸、ポリメタクリル酸ないしはそれらの塩等を使用することができる。
 樹脂フィルム層(A)の肉厚は、20~300μmであることが好ましく、より好ましくは30~250μmの範囲であり、更に好ましくは40~200μmの範囲である。樹脂フィルム層(A)の肉厚が20μm未満では、得られるフィルターの強度が低く風圧等で潰れやすく、形状を維持しにくくなる傾向がある。また、エレクトレット化シートを加工してフィルターとする際に、帯電によりシート同士又はシートと加工機が貼り付いてしまい、作業性が悪くなることがある。一方、樹脂フィルム層(A)の肉厚が300μmを超えてしまうと、エレクトレット化シートを用いて流路を形成したフィルターにおいて、流路断面率が小さくなる傾向にあり、また、樹脂フィルム層(A)の剛性が高くなりすぎて、エレクトレット化シートを加工してフィルターとするのが困難になる傾向がある。
(帯電防止層)
 フィルターを構成する樹脂フィルム層(A)は、その片面に帯電防止層を設けてもよい。樹脂フィルム層(A)に帯電防止層を設けることにより、フィルターの製造工程において、エレクトレット化シート同士が貼り付いたり、フィルターとして加工前に塵埃を付着したりするトラブルを抑制することができるため好ましい。
 帯電防止層を設ける場合は、後述するフィルター製造工程において、樹脂フィルム層(A)の帯電防止層を有する面に他の部材を貼合するなどして、最終的なフィルターの流路に帯電防止層を有する面が露出しないようにすればよい。
 帯電防止層は、樹脂フィルム層(A)の片面に、後述する帯電防止剤を含有する塗料を塗布、乾燥して設けてもよい。また、樹脂フィルム層(A)が2層以上の多層構成の場合は、その片面の表面層に後述の帯電防止剤を練りこんで設けてもよい。また、樹脂フィルム層(A)の片面に、帯電防止性能を有する樹脂フィルムを帯電防止層として積層して設けてもよい。
 帯電防止剤としては、ステアリン酸モノグリセリド、アルキルジエタノールアミン、ソルビタンモノラウレート、アルキルベンゼンスルフォン酸塩、アルキルジフェニルエーテルスルフォン酸塩などに代表される低分子量有機化合物系の帯電防止剤;ITO(インジウムドープド酸化錫)、ATO(アンチモンドープド酸化錫)、グラファイトウィスカなどに代表される導電性無機充填剤;ポリチオフェン、ポリピロイル、ポリアニリンなどの分子鎖内のパイ電子により導電性を発揮するいわゆる電子導電性ポリマー;そしてポリエチレングリコール、ポリオキシエチレンジアミン等の非イオン性ポリマー系の帯電防止剤;ポリビニルベンジルトリメチルアンモニウムクロライド、ポリジメチルアミノエチルメタクリレート四級化物等の第四級アンモニウム塩型共重合体;アルキレンオキシド基および/または水酸基含有ポリマーへのアルカリ金属イオン添加物等のアルカリ金属塩含有ポリマーに代表される帯電防止機能を有するポリマー;などが挙げられる。
 中でも、第四級アンモニウム塩型共重合体やアルカリ金属塩含有ポリマーは帯電防止性能が良好であるためより好ましい。
 帯電防止剤を含有する塗料を塗布、乾燥して帯電防止層を設ける場合は、樹脂フィルム層(A)からの脱落を抑制する観点から、前記塗料中に高分子バインダーを含んでいてもよい。
 高分子バインダーとしては、ポリエチレンイミン、炭素数1~12のアルキル変性ポリエチレンイミン、ポリ(エチレンイミン-尿素)、ポリ(エチレンイミン-尿素)のエチレンイミン付加物、ポリアミンポリアミド、ポリアミンポリアミドのエチレンイミン付加物、ポリアミンポリアミドのエピクロルヒドリン付加物等のポリエチレンイミン系重合体;アクリル酸エステル共重合体、メタクリル酸エステル共重合、アクリル酸アミド-アクリル酸エステル共重合体、アクリル酸アミド-アクリル酸エステル-メタクリル酸エステル共重合体、ポリアクリルアミドの誘導体、オキサゾリン基含有アクリル酸エステル系重合体等のアクリル酸エステル系重合体およびポリビニルピロリドン、酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、塩化ビニル樹脂、塩化ビニル-酢酸ビニル共重合体樹脂、塩化ビニリデン樹脂、塩化ビニル-塩化ビニリデン共重合体樹脂、塩素化エチレン樹脂、塩素化プロピレン樹脂、ブチラール樹脂、スチレン-アクリル共重合体樹脂、スチレン-ブタジエン共重合体樹脂、アクリルニトリル-ブタジエン共重合体等のラジカル重合系重合体;ポリエチレングリコール、シリコーン樹脂等の縮合系重合体;テルペン樹脂、石油樹脂、酢酸セルロース、ニトロセルロース樹脂等の天然系重合体などが挙げられる。
 これらの高分子バインダーは、いずれか1種を単独で使用してもよいし、2種類以上を混合して使用してもよい。これらの高分子バインダーは有機溶剤または水に希釈または分散した様態で用いることができる。これらの中でも、ポリエーテルウレタン、ポリエステルポリウレタン、アクリルウレタンなどのウレタン樹脂、若しくはアクリル酸エステル共重合体が、帯電防止剤との相性、即ち相溶性、がよく、混溶して塗料とした際に安定しており、塗工しやすく好ましい。
[成形]
 樹脂フィルム層(A)は押出し成形により成形されることが好ましい。係る押出し成形の具体的な例としては、樹脂フィルム層(A)の融点またはガラス転移点温度よりも高い温度に設定した押出機で樹脂フィルム層(A)の原料を溶融混練し、TダイやIダイなどを使用してシート状に押出し金属ロールやゴムロールや金属ベルトで冷却するシート成形や、円形のダイを使用してチューブ状に押出しチューブ内の内圧力により一定の倍率に膨らませながら、空気や水で冷却するインフレーション成形などが挙げられる。
 樹脂フィルム層(A)の成形にシート成形を用いる場合は、図3に示すように、冷却用の金属ロールやゴムロールに起伏形状(凹凸形状)を持っているものを使用して表面を粗面化してもよい。樹脂フィルム層(A)の表面の粗面化により、エレクトレット化シートの吸着面積が大きくなり、フィルターの捕集率が向上する。
[多層化]
 樹脂フィルム層(A)は、2層構造、3層以上の多層構造のものであってもよい。
 樹脂フィルム層(A)の多層化により、電荷注入時における耐電圧性能の向上、注入した電荷が外部に逃げないように封じこめる能力の向上、エレクトレット化シート同士の接着などの2次加工適性や帯電防止性等の様々な機能の付加が可能となる。
 樹脂フィルム層(A)を多層構造にする場合は公知の種々の方法が使用できるが、具体例としては、フィードブロック、マルチマニホールドを使用した多層ダイス方式と、複数のダイスを使用する押出しラミネーション方式等が挙げられる。又、多層ダイスと押出しラミネーションを組み合わせて使用することも可能である。
(延伸)
 樹脂フィルム層(A)は、少なくとも1軸方向に延伸された樹脂フィルムを含むことが好ましい。樹脂フィルムの延伸は、通常用いられる種々の方法のいずれかによって行うことができる。
 樹脂フィルム層(A)が多層構造である場合、これを構成する樹脂フィルムは、その延伸軸数が1軸/1軸、1軸/2軸、2軸/1軸、1軸/1軸/2軸、1軸/2軸/1軸、2軸/1軸/1軸、1軸/2軸/2軸、2軸/2軸/1軸、2軸/2軸/2軸のフィルムの積層構造を含むものであってもよい。
 延伸方法としては、ロール群の周速差を利用した縦延伸、テンターオーブンを使用した横延伸、縦延伸と横延伸の組み合わせによる逐次2軸延伸、圧延、テンターオーブンとリニアモーターの組み合わせによる同時2軸延伸、テンターオーブンとパンタグラフの組み合わせによる同時2軸延伸などが挙げられる。又、インフレーションフィルムの延伸方法としては、チューブラー法による同時2軸延伸が挙げられる。
 延伸倍率は、特に限定されず、樹脂フィルム層(A)に用いる熱可塑性樹脂の特性等を考慮して適宜決定する。例えば、熱可塑性樹脂としてプロピレン単独重合体ないしはその共重合体を使用しこれを一方向に延伸する場合の延伸倍率は、通常1.2~12倍、好ましくは2~10倍であり、2軸延伸の場合には、面積倍率で通常1.5~60倍、好ましくは4~50倍である。その他の熱可塑性樹脂を使用しこれを一方向に延伸する場合の延伸倍率は、通常1.2~10倍、好ましくは2~5倍であり、2軸延伸の場合には、面積倍率で1.5~20倍、好ましくは4~12倍である。
 延伸の温度は、樹脂フィルム層(A)に主に用いる熱可塑性樹脂のガラス転移点温度以上から結晶部の融点以下の熱可塑性樹脂に好適な公知の温度範囲内で行うことができる。具体的には、樹脂フィルム層(A)の熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)の場合は100~166℃、高密度ポリエチレン(融点121~136℃)の場合は70~135℃であり、融点より1~70℃低い温度である。また、延伸速度は20~350m/分にするのが好ましい。
[樹脂フィルム層(A)およびエレクトレット化シートの物性]
(空孔率)
 前述のようにして得られる樹脂フィルム層(A)、およびこれに後述の帯電処理をして得られるエレクトレット化シートは、フィルム内部に微細な空孔を有するものであり、具体的には次式で算出された空孔率が1~70%のものである。
 エレクトレット化シートが内部に空孔を有することにより、空孔を含めたエレクトレット化シート内部に電荷を閉じ込めやすく、エレクトレット化シートから電荷が逃げにくいために、捕集効率が高く、捕集力の持続性に優れたフィルターが得られやすい。
 また、エレクトレット化シート内部に空孔を有することは、エレクトレット化シートの密度の低下につながるため、得られるフィルターの軽量化の観点からも好ましい。
Figure JPOXMLDOC01-appb-M000001
 該空孔率は5%以上であることが好ましく、25%以上であることがより好ましい。一方、該空孔率は60%以下であることが好ましく、40%以下であることがより好ましい。空孔率が70%を超えると、空孔同士が互いに連通し、電荷の保持能力が劣る傾向がある。一方、空孔率が1%未満では、電荷を蓄積する能力があるものの、帯電減衰速度が速く、フィルター性能の持続性に劣る場合がある。空孔率を上記範囲に制御することにより、本発明の目的とする安定な吸着力を有するエレクトレット化シートを得ることができる。
 樹脂フィルム層(A)の真密度ρは、これに使用している熱可塑性樹脂の融点あるいはガラス転移点温度よりも10℃~150℃高い温度に設定した圧縮成形機を用いて、樹脂フィルム層(A)を3MPa以上の圧力で3分間以上加熱圧縮した後、25℃以下に設定した圧縮成形機で3MPa以上の圧力で3分間以上冷却して、樹脂フィルム層(A)内の空孔を取り除き、次いで樹脂フィルム層(A)に使用している熱可塑性樹脂の融点あるいはガラス転移点温度よりも10℃~70℃低い温度に設定したオーブンを用いて24時間以上状態調整した後、23℃、相対湿度50%の環境で24時間以上状態調整を行い、JIS-K7112:1999に記載されている方法により測定する。
 樹脂フィルム層(A)の密度は、樹脂フィルム層(A)を10cm×10cmサイズに打ち抜き、その重量を測定することにより得られた坪量Wf(g/cm)と、JIS-K7130:1999に記載の定圧厚さ測定器を用いて測定した樹脂フィルム層(A)の厚みTf(cm)を用い、下記の計算式によって求める。
   ρ=Wf/Tf
    ρ :樹脂フィルム層(A)の密度(g/cm
    Wf:樹脂フィルム層(A)の坪量(g/cm
    Tf:樹脂フィルム層(A)の厚み(cm)
(比誘電率)
 エレクトレット化シートは、フィルターにおける構成部材であると同時に、電荷が外部に逃げないように封じこめる役割を有する。この電荷を封じ込める能力は、エレクトレット化シートの比誘電率ε(エレクトレット化シートの誘電率εと真空の誘電率εの比ε/ε)で整理することができる。
 通常、エレクトレット化シートの比誘電率は低い程、同じ電荷量であっても表面電位が高くなる傾向があり、埃塵の捕集効率が優れたフィルターを得やすい傾向にある。エレクトレット化シートの比誘電率は、誘電率が低く絶縁性の樹脂を含むことや、エレクトレット化シートの内部に空孔を形成することにより、より低い、所望の範囲とすることができる。
 エレクトレット化シートの比誘電率は、好ましくは1.1~2.5、より好ましくは1.1~2.2、更に好ましくは1.2~2.0、特に好ましくは1.25~1.9の範囲である。エレクトレット化シートの比誘電率が2.5を超えると、エレクトレット化シートが電荷を長期間保持できずに、フィルターの静電吸着力が低下し易くなる傾向がある。一方、比誘電率が1.1未満のものは本発明品の原料構成からは空孔率が70%を超えたものでしか達成できずに、フィルターの電荷の保持能力が低下し易くなる傾向がある。
 エレクトレット化シートの比誘電率の測定は、測定周波数範囲により測定法が選定される。測定周波数が10Hz以下の場合には超低周波ブリッジを用い、10Hz~3MHzの場合には変成器ブリッジを用い、1MHzを超える場合には並列T型ブリッジ、高周波シェリングブリッジ、Qメーター、共振法、定在波法、空洞共振法を用いる。又、測定周波数の交流信号に対して、回路部品に対する電圧・電流ベクトルを測定し、この値から静電容量を算出するLCRメーター等でも測定できる。
 エレクトレット化シートの比誘電率を測定する測定装置としては、5V程度の電圧が印加でき、測定周波数が任意に選定できる測定装置が好ましい。このような測定機によれば、周波数を変更することにより、試料の周波数依存性が把握でき、適正使用範囲の指標にできる。このような測定装置としては、Agilent Technologies社製の「4192A LF IMPEDANCE ANALYZER」、横河電機(株)製の「LCRメーター4274A」、日置電機(株)製の「HIOKI 3522 LCRハイテスター」などが挙げられる。
 エレクトレット化シートの比誘電率の測定には、先ずシート表裏に銀導電性塗料を塗工するか、真空金属蒸着をすることにより電極を形成して試料とする。次いで好ましくは、温度23℃、相対湿度50%の環境条件下で試料に5Vの電圧を印加し、10Hz~1MHzの範囲の周波数で測定し、周波数100kHzの静電容量(Cx)測定値を代表値として用いる。
 比誘電率(ε)は以下の式により算出して求める。
  ε=C×h/(ε×A)
   ε:エレクトレット化シートの比誘電率(-)
   C:エレクトレット化シートの静電容量(pF)
   h :エレクトレット化シートの厚み(m)
   ε:真空の誘電率=8.854(pF/m)
   A :主電極の面積=3.848×10-4(m
(表面の中心面平均粗さ)
 エレクトレット化シートの表面は、フィルター構造への加工性の観点からは平滑であることが好ましい一方、フィルターの吸着した埃の保持性能の観点からは凹凸を有することが好ましい。
 そのためエレクトレット化シートの表面の中心面平均粗さ(SRa)は、0.1~5μmであることが好ましく、0.3~4μmであることがより好ましい。
 エレクトレット化シートの表面の中心面平均粗さ(SRa)の測定は、触針式の三次元表面粗さ計を用いて測定することができる。測定装置の具体例としては、東京精密(株)製の「サーフコムシリーズ(5000DX、2000DX3/SX3、1500DX3/SD3、1900DX3/SX、2900DX3/SX)」(商品名)、(株)小坂研究所製の「サーフコーダシリーズ(SE3500K、SE4000)」(商品名)などが挙げられる。中心面平均粗さ(SRa)の測定には、測定精度が0.01μm以下の装置を用いることが好ましい。
(表面の固有抵抗値)
 樹脂フィルム層(A)は、前述のとおりその片面に帯電防止層を設けたものでよいが、樹脂フィルム層(A)に帯電処理を施しエレクトレット化シートとするために、樹脂フィルム層(A)の帯電防止層を有しない表面の表面抵抗率は、1×1013~9×1017Ωの範囲であることが好ましい。該表面抵抗率は、5×1013~9×1016Ωの範囲であることがより好ましく、1×1014~9×1015Ωの範囲であることが更に好ましい。表面抵抗率が1×1013Ω未満であると、後述の帯電処理を施す際に与えた電荷がフィルム表面を伝い逃げやすくなるために、樹脂フィルム層(A)への電荷注入の効率が低下する。そのため、エレクトレット化シート表面の電荷密度も低下し、空間電荷密度が低下し、静電吸着性能が低下する。或いは、帯電処理に過剰なエネルギーの印加が必要となる。一方、該表面の表面抵抗率が9×1017Ωを超える場合には、エレクトレット化シートの機能としては問題ないが、現在公知の物資を使用してこの様な高絶縁性の表面を形成することは困難であり、実現できたとしても高コストの為、現実的でない。
 樹脂フィルム層(A)の表面の表面抵抗率を所望の範囲とすることは、熱可塑性樹脂として絶縁性に優れるポリオレフィン系樹脂を使用することや、これに配合する無機微細粉末の種類や量を調整することで達成できる。
[エレクトレット化]
 エレクトレット化シートは、樹脂フィルム層(A)にエレクトレット化処理を施し、その表面や内部に電荷を保持させることにより得られる。樹脂フィルム層(A)のエレクトレット化は、空気の流路構造を有するフィルターの形状を構成する前に行ってもよく、フィルターの形状を構成した後に行ってもよいが、立体物に均一にエレクトレット化処理を施すためにはエレクトレット化装置が複雑となるため、予め樹脂フィルム層(A)に帯電処理を行いエレクトレット化シートとした後に、これを用いてフィルターを構成することが好ましい。
 エレクトレット化の方法としては、特に制限されず、公知の種々の方法にしたがって実施することができる。例えば、樹脂フィルム層(A)の表面にコロナ放電やパルス状高電圧を加える方法(エレクトロエレクトレット化法)や、樹脂フィルム層(A)の両面を誘電体で保持し、両面に直流高電圧を加える方法や、樹脂フィルム層(A)にγ線や電子線等の電離放射線を照射してエレクトレット化する方法(ラジオエレクトレット化法)などが挙げられる。
(エレクトロエレクトレット化法)
 エレクトロエレクトレット化法のより具体的な例としては、直流高圧電源12に繋がった印加電極13,15と板状アース電極14の間に樹脂フィルム層(A)11を固定する方法(バッチ式、図9、10参照)、又は、直流高圧電源12に繋がった印加電極16,18,19に対して回転するロール状アース電極17に樹脂フィルム層(A)11を載置して通過させる方法(連続式、図11~13参照)が好ましい。本手法を用いる場合の印加電極は針状のものを等間隔で無数に配置するか金属ワイヤーを使用し、アース電極には平な金属板か金属ロールを使用することが好ましい。
 エレクトレット化には、直流式コロナ放電処理を用いることがより好ましい。直流式コロナ放電処理とは、図9~13に例示するように針状やワイヤー状の主電極(印加電極13,15,16,18,19)と平板状やロール状の対電極(アース電極14,17)を直流高圧電源12に繋げた装置を用い、対電極上に樹脂フィルム層(A)11を設置し、主電極と対電極の間に直流高電圧をかけることで発生するコロナ放電により、樹脂フィルム層(A)に電荷を注入する処理である。
 主電極と対電極の間隔は1~50mmとすることが好ましく、2~30mmとすることがより好ましく、5~20mmとすることが更に好ましい。電極間の距離が1mm未満では例えば図13の様態で電極間距離をシート幅方向に均一に保つ事が難しく、シート幅方向に均一な帯電処理を行えない場合がある。一方、50mmを超えるとコロナ放電が発生し難くなり、樹脂フィルム層(A)への帯電処理が不均一となる場合がある。
 主電極と対電極との間に印加する電圧は、樹脂フィルム層(A)の電気特性(絶縁性等)、エレクトレット化シートの電気特性(求める表面電位や比誘電率)、主電極と対電極の形状や材質、および主電極と対電極の間隔等により決定する。
 直流式コロナ放電処理によって樹脂フィルム層(A)に導入される電荷の量は、処理時に主電極と対電極に流れた電流量に依存する。該電流量は両電極間の電圧が高いほど多くなる。そのため印加電圧は、エレクトレット化シートにより高い処理効果を望む場合、樹脂フィルム層(A)が絶縁破壊しない程度に高く設定することが望ましい。一方、印加電圧は一般的な直流コロナ放電処理を考慮した場合、具体的には1~100kVの範囲が好ましく、3~70kVの範囲がより好ましく、5~50kVの範囲が更に好ましく、10~30kVの範囲が特に好ましい。主電極側の極性はプラスでもマイナスでもよいが、主電極側をマイナス極性にした方が比較的安定したコロナ放電処理を行えるために好ましい。
 主電極と対電極の材質は、導電性の物質から適宜選択されるが、通常は鉄、ステンレス、銅、真鍮、タングステンなどの金属製またはカーボン製のものが用いられる。
 樹脂フィルム層(A)はエレクトレット化処理後に除電処理を行うことも可能である。ここでいう除電処理とは、エレクトレット化シートからフィルターへの加工を含む製造工程での塵埃の吸着、シート同士の張り付き、シートと製造設備の張り付き等のトラブルを回避するために、電圧印加式除電器(イオナイザ)や自己放電式除電器など公知の除電装置を用いて、一時的に表面の電荷を減少/除去するものである。除電処理を行なうことにより上述のトラブルを回避しやすくなる。一方、これら一般的な除電器は、シート表面の電荷を減少/除去することはできるが、シート内部に蓄積した電荷までは除去できない。したがって除電処理によりエレクトレット化シートの静電吸着力が大きく影響を受けることはない。
[フィルターの製造方法]
 フィルターは、エレクトレット化シートを用いて空気の流路を形成したものであるが、その立体構造は特に限定されない。フィルターは、前述の流路構造で述べた種々の立体構造を採用できるが、中でも、図4及び図6に示したように、コルゲート加工により波状又はプリーツ状に加工されたエレクトレット化シート7a,7bと、コルゲート加工されていない平板状のエレクトレット化シート6とを交互に積層し、これらを接着または融着した構造を有することが好ましい。
 また、図5及び図7に示したように、コルゲート加工により波状又はプリーツ状に加工されたエレクトレット化シート7a,7bを、コルゲート加工されていない平板状のエレクトレット化シート6a,6bで挟み込むように積層し、次いでこれらの積層物複数のエレクトレット化シート6a,6bの接点を、感圧接着剤等の接着剤8を用いて接着、またはヒートシール性接着剤の熱融着等により接着することで、フィルターとしての立体構造や空気の流路を得ることができる。
(コルゲート加工)
 エレクトレット化シートをコルゲート加工し、フィルターを形成する場合のコルゲート構造体は、通常の紙製ハニカムコアの製造に使用するハニカムマシン等または通常の紙製段ボールの製造に使用するシングルフェーサー等のコルゲートマシンを、適宜利用して製造することができる。
 例えばハニカムコアの製造に用いるハニカムマシンを使用する場合は、エレクトレット化シート上に、線状の接着剤の塗布ラインを、nの塗布幅かつ4nのピッチで多数設け、次いで同シート上に、同様に接着剤の塗布ラインを多数設けた別のシートを1/2のピッチ(=2n)ずらして積層することを繰り返して積層体を得た後、得られた積層体をシートの面に対して垂直方向に展張することにより、ハニカムコア構造が得られる。
 一方、紙製段ボールの製造に用いるシングルフェーサーを使用する場合は、図4に示したように、エレクトレット化シートを、噛み合った一対の歯車の間に供給して屈曲させることにより、波状にコルゲート加工し、次いでコルゲート加工済みのシート(以下、「フルート7」と称することがある)の片面または両面に、コルゲート加工されていない平板状のシート(以下、「ライナー6」と称することがある)を貼り合わせることによって、コルゲートコアが得られる。
 この時、ライナー6としては、Tダイから溶融押出成形した別のプラスチックシート等を使用してもよいが、フィルターの空間電荷密度を向上させる観点から、前述の樹脂フィルム層(A)と同様のものを使用することが好ましく、更にはこれをエレクトレット化したエレクトレット化シートを使用することがより好ましい。
 コルゲート加工により波状に加工されたエレクトレット化シート(フルート7)と、コルゲート加工されていない平板状のエレクトレット化シート(ライナー6)とを交互に積層する構造体を製造する場合は、コルゲート加工後の構造体の取り扱い易さの観点から、片面に前述の帯電防止層を設けたライナーを使用することができる。
 この場合、予め帯電防止層を設けた面をフルート7とは接触しない面に用いる。好ましくは、フルート7の両面にライナー6を有するコルゲート構造であって、両ライナーの外側の面(ライナーのフルートと接触していない面)が帯電防止層を有する構造体を複数得て、次いで該コルゲート構造体の一方のライナー(の帯電防止層を有する面)と、他のコルゲート構造体の一方のライナー(の帯電防止層を有する面)とを、接着剤を介して接着する。
 これにより、最終的には帯電防止層が空気の流路に露出していないフィルター5を得ることができる。
(接着剤)
 エレクトレット化シートの接着に用いる接着剤としては、公知のドライラミネート用接着剤や、感圧接着剤を用いることが好ましい。
 接着剤としては、エーテル樹脂、エステル樹脂、ウレタン樹脂、ウリア樹脂、アクリル樹脂、アミド樹脂、エポキシ樹脂等からなる樹脂成分を、従来公知の溶剤を用いてその相の中に溶解、分散、乳濁分散、希釈して、流動性があり塗工を可能とした、溶液型やエマルジョン型の様態の液状の接着剤が挙げられる。
 エーテル樹脂の例としては、プロピレングリコール、エチレングリコール、グリセリン、トリメチロールプロパン、ビスフェノールA等の低分子量ポリオールを開始剤として用いて、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフラン等のオキシラン化合物を重合させることにより得られるポリエーテルポリオール、より具体的には、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等が挙げられる。
 エステル樹脂の例としては、多塩基酸と多価アルコールの脱水縮合反応物が挙げられる。多塩基酸としては、イソフタル酸、テレフタル酸、無水フタル酸、イソフタル酸ジメチルエステル、テレフタル酸ジメチルエステル、アジピン酸、アゼライン酸、セバシン酸、グルル酸、ヘキサヒドロ無水フタル酸などが挙げられ、これらを単独あるいは2種以上使用し、多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリメチロールプロパン、プロピレングリコール、ジプロピレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、水素化ビスフェノールA、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、2,2,4-トリメチルペンタン-1,3-ジオール、ポリエチレングリコールなどが挙げられ、これらを単独あるいは2種以上使用して重合される。
 ウレタン樹脂の例としては、前述の多価アルコール、エーテル樹脂及びエステル樹脂の少なくとも一種と、イソシアネート化合物の縮合反応物が挙げられる。イソシアネート化合物としては、ヘキサメチレンジイソシアネート、2,4-ジイソシアネート-1-メチルシクロヘキサン、ジイソシアネートシクロブタン、テトラメチレンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ジメチルジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、ドデカンジイソシアネート、テトラメチルキシレンジイソシアネートまたはイソホロンジイソシアネート等の脂肪族イソシアネート;トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3-メチルジフェニルメタン-4,4’-ジイソシアネート、m-もしくはp-フェニレンジイソシアネート、o-、m-もしくはp-キシリレンジイソシアネート、クロロフェニレン-2,4-ジイソシアネート、ナフタリン-1,5-ジイソシアネート、ジフェニル-4,4’-ジイソシアネート、3,3’-ジメチルジフェニル-1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネートカルボジイミド変性ジフェニルメタンジイソシアネート、ポリフェニルポリメチレンポリイソシアネート等の芳香族イソシアネート;ジフェニルエーテルジイソシアネート等のイソシアネートモノマー類;等が挙げられる。さらに、イソシアネート化合物は、ウレタン樹脂の分子量を上げると共に、接着力や安定性などの種々の性能を付与するために、多価アルコールで変性したポリイソシアネート化合物を使用することもできる。
 ウリア樹脂の例としては、前述のイソシアネート化合物と、アミン化合物の縮合反応物が挙げられる。アミン化合物としては、エチレンジアミン、1,2-プロピレンジアミン、1,3-プロピレンジアミン、1,4-ブタンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の脂肪族アミン;イソホロンジアミン、ジシクロヘキシルメタンジアミン、メチルシクロヘキサンジアミン、イソプロピリデンビス-4-シクロヘキシルジアミン、1,4-シクロヘキサンジアミン等の脂環式アミン;ピペラジン、メチルピペラジン、アミノエチルピペラジン等の複素環式アミン等が挙げられる。
 アクリル樹脂の例としては、有機過酸化物を重合開始剤として、アクリル化合物を重合したものが挙げられる。アクリル化合物としては、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリルニトリル、(メタ)アクリルアミド、(メタ)アクリル酸グリシジル等が挙げられ、これらを単独あるいは2種以上使用して重合される。
 アミド樹脂の例としては、前述の多塩基酸と前述のアミン化合物の縮合反応物が挙げられる。
 エポキシ樹脂の例としては、多価フェノール類と、エピハロヒドリン及び低分子量エポキシ化合物の少なくとも一方を反応して得られるポリグリシジルエーテルの単独縮合反応や前述のエーテル樹脂、エステル樹脂、ウレタン樹脂、ウリア樹脂、アクリル樹脂、アミド樹脂との縮合反応によって得られる縮合反応物が挙げられる。多価フェノール類の具体的な例としては、ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)、ビスフェノールB(2,2-ビス(4-ヒドロキシフェニル)ブタン)、ビスフェノールE(2,2-ビス(4-ヒドロキシフェニル)エタン)、ビスフェノールS(2,2-ビス(4-ヒドロキシフェニル)スルホン)、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)-2-フェニルエタン、ビフェノール、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)ケトン等のビスフェノール類が挙げられる。
(ヒートシール性接着剤)
 エレクトレット化シートの接着に用いるヒートシール性接着剤に好適なものとして、低密度ポリエチレン、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸共重合体の金属塩、塩素化ポリエチレン、塩素化ポリプロピレン等のポリオレフィン系樹脂、ポリアミド系樹脂、ポリブチラール系樹脂、ウレタン系樹脂などが例示できる。
(厚み)
 接着剤を塗工で設ける場合は、乾燥後の接着剤の厚みが好ましくは0.1~500μm、より好ましくは0.2~50μm、さらに好ましくは0.5~25μmとなるように設ける。接着剤の厚みが0.1μm未満では、部分的に接着剤が塗工されていない箇所を生じやすく、フィルターとしての構造を維持しにくくなる傾向がある。一方、500μmを超えてしまうと、過剰な接着剤が溢れてエレクトレット化シート表面を部分的に覆ってしまい、フィルターの静電吸着力を阻害する場合がある。
 以下に製造例、実施例、比較例および試験例を示し、本発明を更に具体的に説明する。しかしながら以下に示す材料、使用量、割合、操作等は、本発明の精神から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例に制限されるものではない。なお、以下に記載される原料組成に係る%の表記は、特記しない限り質量%である。
<熱可塑性樹脂組成物の製造例>
(熱可塑性樹脂組成物(a))
 プロピレン単独重合体(日本ポリプロ(株)製、商品名:ノバテックPP FY4)を210℃に設定した2軸混練機にて溶融混練し、次いで230℃に設定した押出機にてストランド状に押し出し、冷却後にストランドカッターにて切断して熱可塑性樹脂組成物(a)のペレットを作成して、以降の製造例で使用した。
(熱可塑性樹脂組成物(b))
 プロピレン単独重合体(日本ポリプロ(株)製、商品名:ノバテックPP FY4)90%、高密度ポリエチレン(日本ポリエチレン(株)製、商品名:ノバテックHD HJ360)5%、重質炭酸カルシウム(備北粉化工業(株)製、商品名:ソフトン1800)5%を210℃に設定した2軸混練機にて溶融混練し、次いで230℃に設定した押出機にてストランド状に押し出し、冷却後にストランドカッターにて切断して熱可塑性樹脂組成物(b)のペレットを作成して、以降の製造例で使用した。
(熱可塑性樹脂組成物(c)~(h))
 用いるプロピレン単独重合体、高密度ポリエチレン、重質炭酸カルシウム、およびその配合比率を表1に記載したとおりに変更した以外は、熱可塑性樹脂組成物(b)の製造と同様の方法で、熱可塑性樹脂組成物(c)~(h)のペレットを作成して、以降の製造例で使用した。
 各組成物における使用原料および配合割合を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
<樹脂フィルム層(A)の製造例>
(樹脂フィルム層(A)の製造例1)
 熱可塑性樹脂組成物(c)を230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。
 この無延伸シートを135℃に加熱し、ロール群の周速差を利用して縦方向(MD)に5倍延伸して5倍延伸シートを得た。次いで、この5倍延伸シートを60℃まで冷却し、テンターオーブンを用いて再び約155℃に加熱して、横方向(TD)に8倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃まで冷却し、耳部をスリットした後、この2軸延伸フィルムの両面にコロナ放電による表面処理を施し、肉厚が30μm、空孔率が20.3%の、製造例1の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
(樹脂フィルム層(A)の製造例2)
 熱可塑性樹脂組成物(g)を230℃に設定した1台の押出機にて溶融混練するとともに、熱可塑性樹脂組成物(b)を230℃に設定した2台の押出機にてそれぞれ溶融混練した後、それぞれの熱可塑性樹脂組成物を250℃に設定した押出ダイに供給し、各熱可塑性樹脂組成物をダイ内でb/g/bの3層に積層してシート状に押し出し、これを冷却装置により60℃まで冷却して3層構造の無延伸シートを得た。
 この無延伸シートを135℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸した。次いで、この5倍延伸シートを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱して、横方向に9倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃まで冷却し、耳部をスリットした後、この2軸延伸フィルムの両面にコロナ放電による表面処理を施し、肉厚が70μm、空孔率が55.4%、3層構造〔各層樹脂組成(b/g/b)、各層厚み(2μm/66μm/2μm)、各層延伸軸数(2軸/2軸/2軸)〕の、製造例2の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
(樹脂フィルム層(A)の製造例3)
 熱可塑性樹脂組成物(d)を230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。
 この無延伸シートを145℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸して5倍延伸シートを得た。次いで、可塑性樹脂組成物(e)を250℃に設定した2台の押出機にて溶融混練した後、シート状に押し出し、5倍延伸シートの両面にそれぞれ積層し、3層構造の積層シートを得た。次いで、この積層シートを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱して、横方向に8.5倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃に冷却し、耳部をスリットした後、この積層シートの両面にコロナ放電による表面処理を施し、肉厚が50μm、空孔率が30.2%、3層構造〔各層樹脂組成(e/d/e)、各層厚み(10μm/30μm/10μm)、各層延伸軸数(1軸/2軸/1軸)〕の、製造例3の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
(樹脂フィルム層(A)の製造例4)
 熱可塑性樹脂組成物(d)を230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。
 この無延伸シートを145℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸して5倍延伸シートを得た。次いで、可塑性樹脂組成物(f)を250℃に設定した押出機にて溶融混練した後、シート状に押し出し、5倍延伸シートの片面にグラビアロール(150線/ピラミッド型)で冷却しながら積層し、更に可塑性樹脂組成物(f)を250℃に設定した別の押出機にて溶融混練した後、シート状に押し出し、5倍延伸シートのもう片方の面にもグラビアロール(150線/ピラミッド型)で冷却しながら積層し、3層構造の積層シートを得た。次いで、この積層シートを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱して、横方向に8.5倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃に冷却し、耳部をスリットした後、この積層シートの両面にコロナ放電による表面処理を施し、肉厚が110μm、空孔率が30%、3層構造〔各層樹脂組成(f/d/f)、各層厚み(20μm/70μm/20μm)、各層延伸軸数(1軸/2軸/1軸)〕の、製造例4の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
(樹脂フィルム層(A)の製造例5)
 熱可塑性樹脂組成物(d)を230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。
 この無延伸シートを145℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸して5倍延伸シートを得た。次いで、可塑性樹脂組成物(f)を250℃に設定した2台の押出機にて溶融混練した後、シート状に押し出し、5倍延伸シートの両面にそれぞれ積層し、3層構造の積層シートを得た。次いで、この積層シートを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱して、横方向に8.5倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃に冷却し、耳部をスリットした後、この積層シートの両面にコロナ放電による表面処理を施し、肉厚が200μm、空孔率が32.2%、3層構造〔各層樹脂組成(f/d/f)、各層厚み(50μm/100μm/50μm)、各層延伸軸数(1軸/2軸/1軸)〕の、製造例5の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
(樹脂フィルム層(A)の製造例6)
 熱可塑性樹脂組成物(b)を230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。
 この無延伸シートを150℃に加熱し、ロール群の周速差を利用して縦方向に4倍延伸して4倍延伸シートを得た。次いで可塑性樹脂組成物(e)を250℃に設定した2台の押出機にて溶融混練した後、シート状に押し出し、4倍延伸シートの両面にそれぞれ積層し、3層構造の積層シートを得た。次いで、この積層シートを60℃まで冷却し、テンターオーブンを用いて再び約155℃に加熱して、横方向に8倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃に冷却し、耳部をスリットした後、この積層シートの両面にコロナ放電による表面処理を施し、肉厚が60μm、空孔率が5.1%、3層構造〔各層樹脂組成(e/b/e)、各層厚み(10μm/40μm/10μm)、各層延伸軸数(1軸/2軸/1軸)〕の、製造例6の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
(樹脂フィルム層(A)の製造例7)
 熱可塑性樹脂組成物(a)を230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。
 この無延伸シートを150℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸して5倍延伸シートを得た。次いで、この5倍延伸シートを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱して、横方向に9倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃まで冷却し、耳部をスリットした後、この2軸延伸フィルムの両面にコロナ放電による表面処理を施し、肉厚が40μm、空孔率が0%の、製造例7の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
(樹脂フィルム層(A)の製造例8)
 熱可塑性樹脂組成物(h)を230℃に設定した1台の押出機にて溶融混練するとともに、熱可塑性樹脂組成物(b)を230℃に設定した2台の押出機にてそれぞれ溶融混練した後、それぞれの熱可塑性樹脂組成物を250℃に設定した押出ダイに供給し、各熱可塑性樹脂組成物をダイ内でb/h/bの3層に積層してシート状に押し出し、これを冷却装置により60℃まで冷却して3層構造の無延伸シートを得た。
 この無延伸シートを150℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸して5倍延伸シートを得た。次いで、この5倍延伸シートを60℃まで冷却し、テンターオーブンを用いて再び約155℃に加熱して、横方向に9倍延伸した後、更に160℃まで加熱して熱処理を行った。
 次いで60℃まで冷却し、耳部をスリットした後、この2軸延伸フィルムの両面にコロナ放電による表面処理を施し、肉厚が150μm、空孔率が85%、3層構造〔各層樹脂組成(b/h/b)、各層厚み(2μm/146μm/2μm)、各層延伸軸数(2軸/2軸/2軸)〕の、製造例8の樹脂フィルム層(A)を得て、以降のエレクトレット化シートの製造に供した。
 各製造例で得た樹脂フィルム層(A)の中心面平均粗さ(SRa)を含む物性を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
<エレクトレット化シートの製造>
(エレクトレット化シートの製造例I~VIII)
 図14に概略図を示すエレクトレット化シート製造装置を用い、表3に記載の樹脂フィルム層(A)をロール21より巻きだし、針状印加電極24とロール状アース電極25間で直流高圧電源23からのコロナ放電による電荷注入処理を実施して、ガイドロール26及びニップロール27,28によって移送し、これを巻き取り、製造例I~VIIIのエレクトレット化シート22を得た。電荷注入処理の条件としては、図14中の針状印加電極24とロール状アース電極25間の距離を1cmに設定し、各製造例では表3に記載の放電電圧を用いた。
 各製造例で得たエレクトレット化シートの比誘電率を含む物性を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
<試験例>
(厚み)
 厚みは、JIS-K7130に準拠し、定圧厚さ測定器((株)テクロック製、商品名:PG-01J)を用いて測定した。
 成形した樹脂フィルム層(A)が多層構造である場合、各層の厚みは、測定対象試料を液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃(シック・ジャパン(株)製、商品名:プロラインブレード)を直角に当て切断し断面観察用の試料を作成し、得られた試料を走査型電子顕微鏡(日本電子(株)製、商品名:JSM-6490)を使用して断面観察を行い、組成外観から熱可塑性樹脂組成物ごとの境界線を判別して、樹脂フィルム層(A)全体の厚みと観察される層厚み比率を乗算して求めた。
 なお、エレクトレット化シートの厚みと樹脂フィルム層(A)の厚みは同一である。
(比誘電率)
 各製造例で得たエレクトレット化シートの一方の面に、導電性塗料((株)藤倉化成製、商品名:ドータイトD-500)を直径70mmの円となるようにスクリーン印刷し、常温で24時間以上硬化させて主電極を形成し、次いで反対側の面に、同導電性塗料を用いて直径100mmの円を、裏面の円と同心になるようにスクリーン印刷し、常温で24時間以上硬化させて対電極を形成して、静電容量を測定した。
 静電容量の測定装置としては、Agilent Technologies社製の「4192A LF IMPEDANCE ANALYZER」(機器名)を使用した。温度23℃、相対湿度50%の環境条件下で各エレクトレット化シートに5Vの電圧を印加し、10Hz~1MHzの範囲の周波数で静電容量を測定し、周波数100kHzでの静電容量(Cx)を代表値として測定した。次いで同値と別途測定した厚みを用いて、以下の式により比誘電率(ε)を計算により求めた。
  ε=C×h/(ε×A)
   ε:エレクトレット化シートの比誘電率(-)
   C:エレクトレット化シートの静電容量(pF)
   h :エレクトレット化シートの厚み(m)
   ε:真空の誘電率=8.854(pF/m)
   A :主電極の面積=3.848×10-4(m
(電荷量)
 各製造例で得たエレクトレット化シートを15mm×15mmの正方形に断裁し、これをアルミ箔に包み、23℃、相対湿度50%の環境下で24時間調整した後、アルミ箔より取り出し、これを図15に記載の電荷量測定装置のプログラムホットプレート33上に載置したアース電極板31上に設置し、エレクトレット化シート30の上に10mm×10mmの正方形、厚さ5mm、SUS製の主電極板32と熱電対34を設置した。
 次いでエレクトレット化シート30を5℃/minの昇温速度で30℃から200℃まで昇温してゆき、主電極板32とアース電極板31間に流れる電流を電流計36で測定し、コンピュータ37で同測定値を1秒毎に記録してゆき、測定された電流値の絶対値の総和を求めて、各エレクトレット化シートの電荷量(Qs(nC/cm))を求めた。
(中心面平均粗さ(SRa))
 各製造例で得たエレクトレット化シートの表面の中心面平均粗さ(SRa)は、測定装置として東京精密(株)製の三次元表面粗さ計「サーフコム1500DX3」(機器名)を使用し、測定速度:0.2mm/sec、測定長さ:5mm、送りピッチ20μmの条件で測定して求めた。
<フィルターの実施例、比較例>
(実施例1)
 製造例Iで得たエレクトレット化シートを紙製段ボールの製造に使用するシングルフェーサーに供給し、山高さ3mm、ピッチ3mmのフルートとなる様に加工し、フルートの頂上部分に水系アクリル系接着剤(サイデン化学(株)製、商品名:サイビノールPZ-820の100質量部と、同社製、商品名:サイビノールE102の2質量部の混合液)を、乾燥後の塗工量が50g/mとなるようにコンマコーターで塗工し、別途、製造例Iで得たエレクトレット化シートをライナーとして供給し、フルートとライナーを接着剤で接着して片面段を作成した。
 作成した片面段のもう一方のフルートの頂上部に接着剤を塗工し、別に作成した片面段を片面段同士が同方向になる様に(フルートとライナーが交互に積層する様に)積層してゆき、図16に図示するエレクトレットフィルター38を得た。
(実施例2~6、比較例1~2)
 実施例1のエレクトレットフィルターにおいて、フルートおよびライナーに、表4に記載の製造例のエレクトレット化シートを使用した以外は、実施例1と同様の方法によりエレクトレットフィルターを作製した。
(実施例7)
 実施例1のエレクトレットフィルターにおいて、フルートおよびライナーに、製造例IIのエレクトレット化シートを使用し、シングルフェーサーの山高さを1mmとした以外は、実施例1と同様の方法によりフィルターを作製した。
 各実施例、各比較例で得られたフィルターの物性および試験結果を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
<試験例>
(流路断面率)
 各実施例、比較例で得たフィルターを用いて、その空気の流路方向と垂直となる様にカッターを用いて断面を作成し、同断面のデジタルカメラ撮影により得た拡大画像を得て、これを画像解析装置((株)ニレコ製、商品名:LUZEXR AP)を使用して、観察領域における空間(空気の流路)の面積を測定して流路断面率(Sr)を得た。
(空間電荷密度)
 各実施例、比較例で得たフィルターを用いて、その空気の流路方向と垂直となる様にカッターを用いて断面を作成し、同断面のデジタルカメラ撮影により得た拡大画像を得て、これを画像解析装置((株)ニレコ製、商品名:LUZEXR AP)を使用して、エレクトレット化シートの単位面積当たりの総長さ(Ls)を得た。
 次いで、エレクトレット化シートの単位面積当たりの総長さ(Ls)とエレクトレット化シートの単位面積当たりの電荷量(Qs)から、下記の計算式よりフィルターの空間電荷密度(Qa)を計算により求めた。
  Qa=Ls×Qs
   Qa:フィルターの空間電荷密度(nC/cm
   Ls:エレクトレット化シートの単位面積当たりの総長さ(cm/cm
   Qs:エレクトレット化シートの単位面積当たりの電荷量(nC/cm
(捕集率)
 各実施例、比較例で得たエレクトレットフィルターを用いて、幅50mm、高さ50mm、長さ50mmの正立方体になる様に、段ボール用カッターで断裁して、評価用フィルター38を作成した。
 次いで図17に示す捕集率測定装置に評価用フィルター38を開口断面が上を向く様に設置し、その下には評価用フィルター38の間隔が5mmとなる様に受け皿41を設置し、更にその上にφ40mm×長さ100mmのガラス管40を設置した。
 評価用粉体として表面処理炭酸カルシウム(丸尾カルシウム(株)製、商品名:カルファイン200)を1.0g充填した粉体供給ビン39から、評価用フィルター38に評価用粉体が均一に落下する様に全量供給し、粉体供給後にガラス管40の上部から風速が1m/secとなる様に乾燥空気を1分間流した後に、評価用フィルター38、紛体供給ビン39、ガラス管40、受け皿41の各重量を測定して、下記の計算式より捕集率(Ep)を求めた。
  Ep=(Wfa-Wf0)/((Wb0-Wba)-(Wpa-Wp0))×100
   Ep :捕集率(%)
   Wf0:評価用フィルターの試験前重量
   Wfa:評価用フィルターの試験後重量
   Wb0:紛体供給ビンの試験前重量
   Wba:紛体供給ビンの試験後重量
   Wp0:ガラス管の試験前重量
   Wpa:ガラス管の試験後重量
 尚、粉体供給ビン39は、図18に示す様な構造であり、蓋43の中央部には開口部(図示せず)が設けてあり、該開口部には200メッシュの平織金網44を取り付けて使用した。
 各実施例、比較例で得たフィルターの捕集性能を示す目安として、得られた捕集率から以下の基準で良否を評価した。
  ○ :良好   捕集率が70%以上
  △ :やや良好 捕集率が50%以上、70%未満
  × :不良   捕集率が50%未満
(粉塵除去率)
 実施例2で得たエレクトリックフィルターを、空気の流路を成形した面を幅100mm、高さ80mm、流路の長さ(奥行)を10mmの直方体となる様に、段ボールカッターで断裁して、評価用フィルター45を作成した。
 図19に示すように、内容積30mのクリーンブース46内に、デジタル粉塵計47(柴田化学(株)製、商品名:ダストメイトLD-3K2)と、エアコン48と、イオン発生器49と、撹拌ファン50とを設置し、エアコン48の吸込み口に評価用フィルター45を取り付けた。
 攪拌ファン50を起動したクリーンブース46内でタバコ5本を燃焼させ、初期の粉塵濃度Cを4000~6000mg/mに調整した後、14分後に撹拌ファン50を停止し、その30秒後にエアコン48を起動させ、更にその30秒後に粉塵濃度の測定を開始した。デジタル粉塵計47にて10分間隔で120分間、粉塵濃度Cを測定し、下記の計算式から10分毎の除去率(Ee)を求めた。
  Ee=(C-C)/C×100
   Ee:粉塵除去率(%)
   C:粉塵の初期濃度
   C:各時間毎の粉塵濃度
 実施例2で得られたフィルターにおける120分後の粉塵除去率(Ee)は99%であり、タバコの煙などの細かい粉塵の除去に有効なものであった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年10月15日出願の日本特許出願(特願2013-214325)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のフィルターは、塵や埃の高い捕集力を有し、捕集力の持続性に優れた低圧力損失型フィルターであることから、集塵機、空気調和装置、エアコン、加湿器等のフィルターとして有用であり、オフィス、工場、クリーンルーム、家庭等の閉鎖空間の集塵においてきわめて有用である。
 1     樹脂フィルム層(A)
 2     基層
 3a    表面層(表層)
 3b    表面層(裏層)
 4a,4b 起伏形状(凹凸形状)
 5     フィルター
 6,6a,6b ライナー
 7     フルート
 7a    波状に加工したエレクトレット化シート
 7b    プリーツ状に加工したエレクトレット化シート
 8     接着剤
 9     エレクトレット化シート
10     ピラー構造
11     樹脂フィルム層(A)
12     直流高圧電源
13     針状印加電極
14     板状アース電極(面状配列)
15     ワイヤー状印加電極
16     針状印加電極
17     ロール状アース電極
18     ワイヤー状印加電極
19     針状印加電極(横一列配置)
21     ロール
22     エレクトレット化シート
23     直流高圧電源
24     針状印加電極(横一列配置)
25     ロール状アース電極
26     ガイドロール(グランドアース接続)
27     ニップロール
28     ニップロール
30     エレクトレット化シート
31     アース電極板
32     主電極板
33     プログラムホットプレート
34     熱電対
35     温度計
36     電流計
37     コンピュータ
38     評価用フィルター(エレクトレットフィルター)
39     紛体供給ビン
40     ガラス管
41     受け皿
42     ビン
43     蓋
44     金網
45     評価用フィルター
46     クリーンブース
47     デジタル粉塵計
48     エアコン
49     イオン発生器
50     攪拌ファン

Claims (11)

  1.  エレクトレット化シートを用いて空気の流路を形成したフィルターであって、該エレクトレット化シートの空孔率が1~70%であり、該フィルターの空気の流路断面率が10~99%であり、該フィルターの空間電荷密度が10~5000nC/cmであるフィルター。
  2.  該エレクトレット化シートが熱可塑性樹脂を含む、請求項1に記載のフィルター。
  3.  該熱可塑性樹脂がポリオレフィン系樹脂を含む、請求項2に記載のフィルター。
  4.  該ポリオレフィン系樹脂がポリプロピレン系樹脂を含む、請求項3に記載のフィルター。
  5.  該エレクトレット化シートがポリプロピレン系樹脂50~98質量%と、ポリエチレン系樹脂1~49質量%と、無機微細粉末および有機フィラーの少なくとも一方1~49質量%とを含む、請求項4に記載のフィルター。
  6.  該エレクトレット化シートが少なくとも1軸方向に延伸されている、請求項1~請求項5の何れか1項に記載のフィルター。
  7.  該エレクトレット化シートの比誘電率が1.1~2.5である、請求項1~請求項6の何れか1項に記載のフィルター。
  8.  該エレクトレット化シートが直流式コロナ放電によってエレクトレット化されたシートを含む、請求項1~請求項7の何れか1項に記載のフィルター。
  9.  該エレクトレット化シート表面の中心面平均粗さ(SRa)が0.1~5μmである、請求項1~請求項8の何れか1項に記載のフィルター。
  10.  前記空気の流路が、コルゲート加工により波状に加工された該エレクトレット化シートと、コルゲート加工されていない平板状の該エレクトレット化シートとを交互に積層し、これらを接着または融着することで形成される、請求項1~請求項9の何れか1項に記載のフィルター。
  11.  請求項1~請求項10の何れか1項に記載のフィルターに用いられるエレクトレット化シート。
PCT/JP2014/077474 2013-10-15 2014-10-15 フィルター WO2015056724A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/028,849 US10010892B2 (en) 2013-10-15 2014-10-15 Filter
EP14853452.2A EP3058999B1 (en) 2013-10-15 2014-10-15 Filter
CN201480056580.4A CN105682770B (zh) 2013-10-15 2014-10-15 滤器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013214325 2013-10-15
JP2013-214325 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015056724A1 true WO2015056724A1 (ja) 2015-04-23

Family

ID=52828166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077474 WO2015056724A1 (ja) 2013-10-15 2014-10-15 フィルター

Country Status (5)

Country Link
US (1) US10010892B2 (ja)
EP (1) EP3058999B1 (ja)
JP (1) JP6482814B2 (ja)
CN (1) CN105682770B (ja)
WO (1) WO2015056724A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106012680A (zh) * 2016-05-27 2016-10-12 昆山初本电子科技有限公司 一种空气净化器滤芯
WO2018164207A1 (ja) * 2017-03-10 2018-09-13 株式会社ユポ・コーポレーション エレクトレット化シートおよびフィルター
TWI671110B (zh) * 2018-06-22 2019-09-11 黃凱莉 環保可清洗長效型織品及其製法
JP2020037633A (ja) * 2018-09-03 2020-03-12 三井化学株式会社 センサ材料、センサおよび電子装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068040A (ja) * 2014-09-30 2016-05-09 スリーエム イノベイティブ プロパティズ カンパニー 帯電フィルタ
CN114345554A (zh) * 2015-04-14 2022-04-15 环境管理联合公司 用于极化空气净化器的波纹状过滤介质
WO2018064804A1 (en) * 2016-10-08 2018-04-12 Goertek. Inc Mems device and electronics apparatus
KR102167328B1 (ko) 2017-04-27 2020-10-19 엘지전자 주식회사 전기집진장치
US10424441B2 (en) * 2017-07-05 2019-09-24 Honeywell International Inc. Ultra-high charge density electrets and method of making same
KR102190081B1 (ko) * 2017-07-12 2020-12-11 주식회사 엔바이오니아 전기집진장치용 집진부 및 이의 제조방법
KR102443640B1 (ko) 2018-03-30 2022-09-15 가부시키가이샤 유포 코포레숀 일렉트릿화 시트 및 필터
US11058977B2 (en) * 2018-07-23 2021-07-13 Caterpillar Inc. 3D printed staged filtration media packs
RU2692293C1 (ru) * 2018-09-07 2019-06-24 Илья Николаевич Джус Волнистый электрофильтр
JP7453797B2 (ja) * 2020-01-24 2024-03-21 キヤノン株式会社 静電フィルター用ユニット及び静電フィルター
CN111495035B (zh) * 2020-02-28 2022-09-06 中科贝思达(厦门)环保科技股份有限公司 一种驻极纳米纤维空气过滤材料及其制备方法
CN116213116B (zh) * 2022-09-05 2023-09-19 苏州科技大学 包含雾化电晕旋转部件的雾化电晕油烟废气净化装置及净化方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610314A (en) 1979-07-09 1981-02-02 Nitta Kk Electret filter
JPS5610312A (en) 1979-07-09 1981-02-02 Nitta Kk Electret filter
JPS62110720A (ja) * 1985-11-11 1987-05-21 Japan Vilene Co Ltd 帯電不織布
JPH01199614A (ja) * 1987-11-28 1989-08-11 Toyobo Co Ltd エレクトレットフィルターおよびその製造方法
JPH0657417U (ja) * 1993-01-21 1994-08-09 クラレケミカル株式会社 空気浄化フィルター
JP2000288322A (ja) 1999-04-02 2000-10-17 Mitsubishi Electric Corp エレクトレットエアフィルタ、その製造方法および空気調和装置
JP2002102624A (ja) * 2000-10-02 2002-04-09 Mitsui Chemicals Inc ハニカムフィルター
JP2002535125A (ja) 1999-01-29 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー 起伏状層によるチャネルフロー濾過媒体
JP2003512155A (ja) 1999-10-19 2003-04-02 スリーエム イノベイティブ プロパティズ カンパニー 電子濾過装置
JP2003320602A (ja) 2002-05-09 2003-11-11 Yupo Corp シートおよびその積層体
JP2010099657A (ja) 1999-04-12 2010-05-06 Darwin Technology Ltd 空気清浄装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550257A (en) * 1965-03-26 1970-12-29 Du Pont Apparatus and method for fabricating a filter unit
US3967027A (en) * 1969-12-19 1976-06-29 Kureha Kagaku Kogyo Kabushiki Kaisha Stable electret retaining a high surface potential and method of making the same
NL181632C (nl) * 1976-12-23 1987-10-01 Minnesota Mining & Mfg Electreetfilter en werkwijze voor het vervaardigen daarvan.
US4513049A (en) * 1983-04-26 1985-04-23 Mitsui Petrochemical Industries, Ltd. Electret article
US4874659A (en) * 1984-10-24 1989-10-17 Toray Industries Electret fiber sheet and method of producing same
JPS62197118A (ja) * 1986-02-24 1987-08-31 Toray Ind Inc 積層エレクトレツトフイルタ
DE3731575A1 (de) * 1987-09-19 1989-03-30 Freudenberg Carl Fa Filterpack
JP2536584B2 (ja) * 1988-04-06 1996-09-18 東洋紡績株式会社 エレクトレットフィルタ―
DE3839956C2 (de) 1987-11-28 1998-07-02 Toyo Boseki Elektret-Folie und Verfahren zu ihrer Herstellung
US4874399A (en) * 1988-01-25 1989-10-17 Minnesota Mining And Manufacturing Company Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene)
CA2037942A1 (en) * 1990-03-12 1991-09-13 Satoshi Matsuura Process for producing an electret, a film electret, and an electret filter
JPH04161208A (ja) 1990-10-23 1992-06-04 Toyobo Co Ltd 高温気体用フィルター
JP2849291B2 (ja) 1992-10-19 1999-01-20 三井化学株式会社 エレクトレット化不織布およびその製造方法
JPH07213945A (ja) 1994-02-09 1995-08-15 Mitsui Petrochem Ind Ltd フィルター
JPH08318114A (ja) * 1995-05-25 1996-12-03 Nitto Denko Corp エレクトレットフィルタ
US6162535A (en) * 1996-05-24 2000-12-19 Kimberly-Clark Worldwide, Inc. Ferroelectric fibers and applications therefor
US5874373A (en) * 1997-03-14 1999-02-23 American Felt & Filter Company Enhanced electret needled filtration media and composites
US6196708B1 (en) * 1998-05-14 2001-03-06 Donaldson Company, Inc. Oleophobic laminated articles, assemblies of use, and methods
JP2000218112A (ja) * 1999-01-29 2000-08-08 Matsushita Electric Ind Co Ltd 集塵フィルターおよび空気調和機
US6573205B1 (en) * 1999-01-30 2003-06-03 Kimberly-Clark Worldwide, Inc. Stable electret polymeric articles
JP2001210549A (ja) * 1999-11-19 2001-08-03 Mitsui Chemicals Inc エレクトレット
JP2002102625A (ja) 2000-10-02 2002-04-09 Mitsui Chemicals Inc ハニカム状フィルター
US6420024B1 (en) * 2000-12-21 2002-07-16 3M Innovative Properties Company Charged microfibers, microfibrillated articles and use thereof
US6773488B2 (en) * 2001-06-11 2004-08-10 Rochester Institute Of Technology Electrostatic filter and a method thereof
JP4779242B2 (ja) * 2001-06-20 2011-09-28 東レ株式会社 エレクトレット繊維シート
US6846449B2 (en) * 2001-09-07 2005-01-25 S. C. Johnson Home Storage, Inc. Method of producing an electrically charged film
KR20080035477A (ko) * 2006-10-19 2008-04-23 닛토덴코 가부시키가이샤 필터 유닛 및 필터 유닛 패널
US7951229B2 (en) * 2007-09-11 2011-05-31 Columbus Industries, Inc. Air filter formed from slit and expanded layers of electrostatically enhanced material
WO2009154177A1 (ja) * 2008-06-16 2009-12-23 株式会社ユポ・コーポレーション 静電吸着シート
CN102150225B (zh) 2008-09-12 2013-01-16 优泊公司 驻极体化薄膜及含有其的驻极体
WO2010049052A1 (de) * 2008-10-31 2010-05-06 Carl Freudenberg Kg Filtermedium zur partikelfiltration
JP4837109B2 (ja) * 2010-02-17 2011-12-14 株式会社サクラクレパス エレクトレット性粗粉の製造方法
AU2011345768B2 (en) * 2010-12-22 2015-12-24 Yupo Corporation Electrostatic adhesive sheet
KR102016770B1 (ko) * 2011-04-21 2019-08-30 세키스이가가쿠 고교가부시키가이샤 일렉트릿 시트
WO2015152207A1 (ja) * 2014-04-04 2015-10-08 東洋紡株式会社 エレクトレット
JP2017524526A (ja) * 2014-06-11 2017-08-31 ファイバービジョンズ リミテッド パートナーシップ 混合繊維フィルタ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610314A (en) 1979-07-09 1981-02-02 Nitta Kk Electret filter
JPS5610312A (en) 1979-07-09 1981-02-02 Nitta Kk Electret filter
JPS62110720A (ja) * 1985-11-11 1987-05-21 Japan Vilene Co Ltd 帯電不織布
JPH01199614A (ja) * 1987-11-28 1989-08-11 Toyobo Co Ltd エレクトレットフィルターおよびその製造方法
JPH0657417U (ja) * 1993-01-21 1994-08-09 クラレケミカル株式会社 空気浄化フィルター
JP2002535125A (ja) 1999-01-29 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー 起伏状層によるチャネルフロー濾過媒体
JP2000288322A (ja) 1999-04-02 2000-10-17 Mitsubishi Electric Corp エレクトレットエアフィルタ、その製造方法および空気調和装置
JP2010099657A (ja) 1999-04-12 2010-05-06 Darwin Technology Ltd 空気清浄装置
JP2003512155A (ja) 1999-10-19 2003-04-02 スリーエム イノベイティブ プロパティズ カンパニー 電子濾過装置
JP2002102624A (ja) * 2000-10-02 2002-04-09 Mitsui Chemicals Inc ハニカムフィルター
JP2003320602A (ja) 2002-05-09 2003-11-11 Yupo Corp シートおよびその積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3058999A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106012680A (zh) * 2016-05-27 2016-10-12 昆山初本电子科技有限公司 一种空气净化器滤芯
WO2018164207A1 (ja) * 2017-03-10 2018-09-13 株式会社ユポ・コーポレーション エレクトレット化シートおよびフィルター
JPWO2018164207A1 (ja) * 2017-03-10 2020-01-09 株式会社ユポ・コーポレーション エレクトレット化シートおよびフィルター
TWI671110B (zh) * 2018-06-22 2019-09-11 黃凱莉 環保可清洗長效型織品及其製法
JP2020037633A (ja) * 2018-09-03 2020-03-12 三井化学株式会社 センサ材料、センサおよび電子装置

Also Published As

Publication number Publication date
JP2015098022A (ja) 2015-05-28
US20160250649A1 (en) 2016-09-01
EP3058999B1 (en) 2021-09-15
EP3058999A4 (en) 2017-05-31
CN105682770B (zh) 2018-07-03
JP6482814B2 (ja) 2019-03-13
US10010892B2 (en) 2018-07-03
EP3058999A1 (en) 2016-08-24
CN105682770A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2015056724A1 (ja) フィルター
JP6877530B2 (ja) エレクトレット化シートおよびフィルター
US8932703B2 (en) Electrostatic adsorbable sheet
JP6363432B2 (ja) 静電吸着シートおよびそれを用いた表示物
WO2009154177A1 (ja) 静電吸着シート
WO2019189349A1 (ja) エレクトレット化シート及びフィルター
JP5638211B2 (ja) エレクトレット化フィルム
JP4988063B1 (ja) 透明静電吸着シート
AU2017293206B2 (en) Electrostatic adsorbable laminated sheet and display material
KR101004426B1 (ko) 디스플레이 패널 적층용 쿠션재 및 이의 제조방법
WO2023163218A1 (ja) エレクレットシート及びフィルター
JP6504833B2 (ja) 情報シート、情報シートの製造方法、及び情報表示体
JP2023125987A (ja) 静電吸着シート
JP6636346B2 (ja) 静電吸着シート及びその製造方法
JP2015212494A (ja) 建築装飾シート
JP2023094422A (ja) エレクトレット化フィルム及び圧電フィルム
JP2017071073A (ja) 熱可塑性樹脂製多層シート及び熱可塑性樹脂製段ボール構造体
JP2016060057A (ja) 樹脂シート、積層シート、発泡壁紙及び発泡壁紙の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014853452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853452

Country of ref document: EP