WO2015056569A1 - 磁気共鳴イメージング装置およびその撮像パラメータ変更支援方法 - Google Patents
磁気共鳴イメージング装置およびその撮像パラメータ変更支援方法 Download PDFInfo
- Publication number
- WO2015056569A1 WO2015056569A1 PCT/JP2014/076350 JP2014076350W WO2015056569A1 WO 2015056569 A1 WO2015056569 A1 WO 2015056569A1 JP 2014076350 W JP2014076350 W JP 2014076350W WO 2015056569 A1 WO2015056569 A1 WO 2015056569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- imaging
- target
- parameter
- displayed
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/288—Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/543—Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
Definitions
- the present invention relates to a magnetic resonance imaging (hereinafter referred to as “MRI”) apparatus.
- MRI magnetic resonance imaging
- MRI equipment measures nuclear magnetic resonance (NMR) signals generated by the nuclear spins that make up the body of a subject, especially the human body, and the shape and function of the head, abdomen, limbs, etc. are measured two-dimensionally or three-dimensionally. It is a device that automatically images.
- NMR nuclear magnetic resonance
- the NMR signal is given a phase encoding that varies depending on the gradient magnetic field, is frequency-encoded, and is measured as time-series data.
- the measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
- a plurality of pulse sequences used for imaging are used for a subject in a series of imaging operations, and a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) is continuously irradiated.
- RF pulse high-frequency magnetic field pulse
- the MRI apparatus can memorize
- a protocol Such a set of pulse sequences is called a protocol.
- Reconstructed image quality, imaging time, and specific absorption rate (SAR: Specific Absorption Rate) in magnetic resonance imaging vary greatly depending on the pulse sequence used for imaging, but the imaging parameters can be set even for the same type of pulse sequence. Values (field of view (FOV), pulse repetition time (TR): repetition time), echo time (TE: echo time), inversion recovery time (TI: inversion time), slice thickness, number of slices, imaging matrix A large difference occurs due to the difference in the number and the number of signal additions.
- the operator of the MRI apparatus considers the burden on the subject, and in order to obtain an image that can be diagnosed accurately by the doctor, for example, for each subject, the physical condition, imaging time, disease type, diagnosis site, imaging area It is necessary to set the value of the imaging parameter in detail.
- Non-Patent Document 1 according to the time-averaged SAR value during application of the gradient magnetic field, the state of the device is divided into three stages, from the lowest SAR to the normal operation mode, primary level management The operation mode and the secondary level management operation mode are defined.
- general subjects In order to reduce the burden on the subject, general subjects must be imaged in the normal operation mode or the first-level management operation mode, and subjects who are pregnant or subjects whose temperature adjustment is difficult are usually Images must be taken only in the operation mode.
- each imaging parameter There are various correlations between each imaging parameter and SAR. For example, when the pulse repetition time (TR) is shortened, the time average SAR increases. The operator must search for and set an optimum imaging parameter value in the permitted operation mode under the constraint based on the correlation.
- TR pulse repetition time
- Non-patent Document 1 in order to reduce the burden on the subject, it is required that the state of the apparatus be imaged in the normal operation mode or the first level management operation mode. Therefore, if the magnetic field fluctuation rate (dB / dt) per unit time t of SAR or magnetic flux density B in each pulse sequence exceeds the allowable value of the operation mode that can be imaged, the imaging parameters are used to reduce these. Need to be adjusted.
- SAR is the physical characteristics of the subject (height
- the SAR of the stored protocol may be a value outside the range of operation modes that can be imaged.
- Patent Document 1 displays the settable range (changeable range) of the imaging parameters that are correlated with each other, and the other imaging associated with the change of the value of one imaging parameter.
- An MRI apparatus is disclosed that includes display means for changing and displaying a parameter value settable range (changeable range).
- Patent Document 1 aims to propose specific values of imaging parameters that are conditions under which imaging parameters can be captured for a single pulse sequence, but in order to reduce SAR and dB / dt In this case, it is necessary for the operator to set specific parameters and repeatedly check whether the imaging parameters satisfy the imaging conditions.
- an object of the present invention is to provide an MRI apparatus that can adjust imaging parameters more efficiently.
- a magnetic resonance imaging apparatus includes a static magnetic field generation source that generates a static magnetic field in a space that accommodates a subject, a gradient magnetic field generation unit that generates a gradient magnetic field superimposed on the static magnetic field, and a high frequency to the subject.
- a high-frequency magnetic field generation unit for irradiating a magnetic field pulse, a signal detection unit for detecting a nuclear magnetic resonance signal generated from the subject, the static magnetic field generation source, the gradient magnetic field generation unit, the high-frequency magnetic field generation unit, A sequencer that controls the signal detection unit according to a pulse sequence; and a control unit that includes a storage device, an input device, an output device, and a CPU, and the control unit is configured to input the specified target based on an input operation.
- a display that suggests imaging parameters related to the image and a display that suggests a change direction of the imaging parameters. When exposed, and obtaining by calculating the selected value of the specified object on the basis of the changed values of the imaging parameters.
- an MRI apparatus that can adjust imaging parameters more efficiently can be obtained.
- the figure for demonstrating the whole structure of the MRI apparatus which is one Example of this invention
- the figure explaining the procedure until the imaging of the Example described in FIG. 1 is started
- the figure explaining the procedure of the parameter adjustment of the Example described in FIG. The figure explaining an example of a parameter display screen
- the figure explaining the arithmetic expression data which is an example of a database
- the figure explaining an example of the parameter change screen after parameter change The figure explaining an example of the parameter change screen after target value change
- the figure explaining the other Example of the parameter change screen described in FIG. The figure explaining further another Example of the parameter change screen described in FIG.
- the MRI apparatus 100 is an apparatus that obtains a tomographic image of the subject 11 using the NMR phenomenon.
- the MRI apparatus 100 includes a static magnetic field generation source 20, a gradient magnetic field generation unit 30, a sequencer 12, a high frequency irradiation unit 40, a signal detection unit 50, and a control unit 60.
- the static magnetic field generation source 20 is configured so that the static magnetic field space in which the subject 11 is accommodated is in a direction perpendicular to the body axis of the subject 11 if the vertical magnetic field method is used. A uniform static magnetic field is generated in the direction.
- a static magnetic field generation source 20 of a permanent magnet type, a normal conduction type or a superconductivity type is arranged.
- the gradient magnetic field generating unit 30 is superimposed on the static magnetic field space, and each of the gradient magnetic field coils 32 that generates a gradient magnetic field in the three-axis directions of X, Y, and Z that are coordinate systems (static coordinate system) of the MRI apparatus 100, And a gradient magnetic field power source 34 for driving the gradient coil.
- Gradient magnetic fields G x , G y , and G z are generated in the three axial directions of X, Y, and Z by driving the gradient magnetic field power supply 34 of each coil in accordance with a command or control from the sequencer 12 described later.
- a slice direction gradient magnetic field pulse (G s ) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 11, and the remaining planes orthogonal to the slice plane and orthogonal to each other are set.
- a phase encoding direction gradient magnetic field pulse (G p ) and a frequency encoding direction gradient magnetic field pulse (G f ) are applied in two directions, and position information in each direction is encoded in the echo signal.
- the sequencer 12 repeatedly applies a high-frequency magnetic field pulse (RF pulse) and a gradient magnetic field pulse in a predetermined pulse sequence.
- the sequencer 12 operates based on the control of the central processing unit (hereinafter referred to as CPU) 14, and performs various commands necessary for data collection of tomographic images of the subject 11, i.e., control, the gradient magnetic field generator 30 and the high-frequency irradiator 40. And sent to the signal detector 50.
- CPU central processing unit
- the high-frequency irradiation unit 40 irradiates the subject 11 with an RF pulse in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 11.
- the high-frequency irradiation unit 40 includes a high-frequency oscillator 42, a modulator 44, a high-frequency amplifier 46, and an irradiation coil 48 that is a high-frequency coil on the transmission side.
- the RF pulse output from the high-frequency oscillator 42 is amplitude-modulated by the modulator 44 at a timing according to a command from the sequencer 12, and after the amplitude-modulated RF pulse is amplified by the high-frequency amplifier 46, the RF pulse is brought close to the subject 11.
- the arranged irradiation coil 48 the subject 11 is irradiated with electromagnetic waves.
- the signal detection unit 50 detects an echo signal that is an NMR signal emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 11.
- the signal detection unit 50 includes a reception coil 52, a signal amplifier 54, a quadrature phase detector 56, and an analog / digital converter (hereinafter referred to as an A / D converter) 58, which are high-frequency coils on the reception side.
- a response NMR signal induced in the subject 11 by the electromagnetic wave irradiated from the irradiation coil 48 is detected by the receiving coil 52 arranged close to the subject 11, amplified by the signal amplifier 54, and then the sequencer 12.
- the signals are divided into two orthogonal signals by the quadrature detector 56 at the timing according to the command from each of the signals, converted into digital quantities by the A / D converter 58, and sent to the control unit 60.
- the control unit 60 performs various data processing and display and storage of processing results.
- the control unit 60 includes a processor such as the CPU 14, a storage device such as the internal memory 66, an external storage device 61 such as the optical disk 62 and the magnetic disk 64, and an input / output unit 90.
- the CPU 14 performs processing such as signal processing and image reconstruction using the internal memory 66 as a work area, and outputs a tomographic image of the subject 11 as a result of the processing.
- the information is displayed on 96 and recorded in the external storage device 61 (for example, the magnetic disk 64).
- the input / output unit 90 performs input / output of various control information of the MRI apparatus 100 and control information of processing performed by the control unit 60, specifically, input and display of imaging parameters of a pulse sequence and the like.
- the input / output unit 90 includes, for example, a pointing device 92 such as a trackball, a mouse, a pad, a touch panel, an input device 91 including a keyboard 94, and a cathode ray tube (hereinafter referred to as CRT) or a liquid crystal (hereinafter referred to as LCD).
- CTR cathode ray tube
- LCD liquid crystal
- an output device 96 including a printer 99.
- the input device 91 may be arranged close to the output device 96, and for example, the operator may control interactively by instructing the MRI apparatus 100 to perform various processes through the pointing device 92 while looking at the display 98.
- a touch panel that operates as the input device 91 may be arranged on the display surface of the display 98, and the input operation may be performed by selecting or operating the display content of the display 98.
- the subject 11 is placed on the top plate of the bed 82 and is accommodated in the static magnetic field space that is the imaging space by the bed moving device 80.
- the irradiation coil 48 and the gradient magnetic field coil 32 on the transmission side face the subject 11 in the static magnetic field space in which the subject 11 is accommodated, and the subject 11 in the horizontal magnetic field method. It is installed so as to surround it.
- the receiving coil 52 on the receiving side is disposed so as to face or surround the subject 11.
- the imaging target nuclide of the MRI apparatus 100 is a hydrogen nucleus (proton) which is a main constituent material of the subject 11 as being widely used in clinical practice.
- Information on the spatial distribution of the proton density and the spatial distribution of the relaxation time of the excited state is imaged to image the form or function of the human head, abdomen, limbs, etc. two-dimensionally or three-dimensionally.
- the MRI apparatus of the present invention and the imaging parameter change support method will be described.
- a specific target is input based on an input operation with at least one of a specific absorption rate and a magnetic field fluctuation rate per unit time of magnetic flux density as a specified target
- an indication indicating an imaging parameter related to the specified target and Display indicating the change direction of the imaging parameter is performed.
- the displayed imaging parameter is changed, the value of the specified target selected based on the changed imaging parameter value is obtained by calculation.
- the specified target input based on the input operation is the specific absorption rate
- display indicating the imaging parameter related to the specific absorption rate is performed, and information indicating the change direction of the imaging parameter is displayed.
- the specified target input based on the input operation is the magnetic field fluctuation rate per unit time of the magnetic flux density
- a display that suggests a parameter related to the magnetic field fluctuation rate per unit time is performed. Information suggesting the direction of changing the imaging parameter for reduction is displayed.
- Example 1 of the present invention will be described. First, a flow until imaging is started using the MRI apparatus 100 having the above configuration will be described with reference to FIG.
- a protocol that is a set of pulse sequences is loaded into the MRI apparatus 100 (step S201).
- the CPU 14 reads into the internal memory 66 a protocol that matches a predetermined condition (for example, biological information such as the height and weight of the subject 11).
- the protocol may be stored in advance in the external storage device 61 or the like, or may be created by an operator inputting from the input device 91.
- the imaging parameters are adjusted for the pulse sequence in the protocol (step S202). Since the operator selects an arbitrary pulse sequence using the input device 91 and changes the value of the imaging parameter, the CPU 14 specifies the pulse sequence to be changed and acquires the changed value of the imaging parameter.
- SAR and dB / dt are calculated using the changed value of the imaging parameter (step S203).
- the CPU 14 performs an operation by specifying an arithmetic expression and an imaging parameter to be used, and outputs a calculation result. Then, the CPU 14 determines whether or not the calculated value of the imaging index is larger than the allowable value of the operation mode that can be imaged (step S204).
- step S204 When the value of SAR or dB / dt is larger than the allowable value (step S204; Yes), the CPU 14 displays a screen for notifying the operator that the imaging index exceeds the allowable value, for example, on the display 98. After issuing a correction instruction, the process returns to step S202 to change the imaging parameter again.
- step S204 When the SAR and dB / dt values are smaller than the allowable values (step S204; No), the CPU 14 enables execution with a pulse sequence in which the imaging parameter is changed, and controls to start imaging (step S205). ).
- FIG. 3 is a functional block diagram showing the processing contents of the control unit 60. Specifically, the flow of processing executed through the input / output unit 90 having the input device 91 and the output device 96, and the CPU 14 executes the processing flow.
- 6 is a diagram showing the relationship between the type of processing and data stored in an external storage device 61 such as a database created on a magnetic disk 64 (including a case where data is temporarily stored in an internal memory 66).
- the CPU 14 displays a display processing unit 15 that displays various data on the output device 96 according to the purpose of the processing, an operation receiving unit 16 that receives an operation from the input device 91, acquires a change value of the imaging parameter, It functions as a parameter matching unit 17 for confirming whether or not the allowable value is satisfied, and a calculation control unit 18 for calculating the imaging index and outputting the calculation result.
- the control unit 60 displays the pulse sequence included in the loaded protocol on the input / output unit 90 (step S301). Since the protocol data 67 extracted from the database created in the external storage device 61 is loaded into the internal memory 66, the display processing unit 15 of the CPU 14 operates a plurality of pulse sequences included in the protocol data 67. It is displayed in a format such as a list on the output device 96 so that the user can select it.
- the protocol data 67 is data stored in the external storage device 61 or the like so as to be identifiable by adding identification information every time a pulse sequence or a set thereof is created, and is searched based on the identification information. Can be extracted.
- a pulse sequence for changing the imaging parameter is specified (step S302). Since the operator selects the pulse sequence for which the imaging parameter is to be changed from the plurality of pulse sequences displayed on the output device 96 by the input device 91, the operation reception unit 16 of the CPU 14 identifies the pulse sequence from the input device 91. Receives information and identifies the pulse sequence to be modified. The identification information is also used as a condition for extracting the parameter data 68 of the pulse sequence from the external storage device 61. A plurality of pulse sequences may be specified as the change target.
- the imaging parameters of the pulse sequence to be changed are displayed (step S303).
- the display processing unit 15 of the CPU 14 sets the parameter data 68 extracted from the external storage device 61 to the corresponding item on the parameter display screen as shown in FIG.
- the parameter data 68 is an imaging parameter including a plurality of attribute information such as imaging conditions of the pulse sequence, and may be data associated with the identification information of the pulse sequence, or depends on the pulse sequence. It may be data.
- Examples of the parameter display screen 102 displayed on the display 98 include an item field 112 for each parameter, a setting value field 114 for displaying the current setting value of the parameter for each item, and a parameter
- the sequence designation column 122 for performing the designation is arranged so as to be displayed as a list.
- the reduction target is specified, and the change value of the imaging parameter is acquired (step S304). Since the operator selects whether SAR or dB / dt is to be reduced by the input device 91, the parameter matching unit 17 of the CPU 14 identifies the reduction target and temporarily stores it in the internal memory 66. Further, when the operator changes the imaging parameter setting value field 114 displayed on the parameter display screen 102 by the input device 91 by operating the operation field 116, the parameter matching unit 17 of the CPU 14 acquires the changed setting value. And temporarily stored in the internal memory 66. Note that by specifying the reduction target, the imaging parameter used by the arithmetic expression data 69, the function that is the arithmetic expression, and the like are specified.
- the arithmetic expression data 69 is data indicating which imaging parameter (variable) is an imaging parameter and what arithmetic expression (not shown) is used in the calculation of SAR and dB / dt. It is. It also has data such as current values for each variable, changed values to bring SAR and dB / dt closer to the target values, and information to suggest increase / decrease.
- an area (field) for storing each data is provided in each record.
- step S305 it is determined whether or not the permissible value is satisfied with the changed imaging parameter, and if not satisfied, an increase / decrease suggestion is displayed for each parameter (step S305).
- the calculation control unit 18 of the CPU 14 included in the control unit 60 calculates the SAR and dB / dt values using the changed values temporarily stored in the internal memory 66, and determines whether or not the allowable values are satisfied. . If the allowable value is not satisfied, the operator is notified that the allowable value is not satisfied, and each parameter is highlighted to indicate whether the parameter should be increased or decreased. To suggest. If the allowable value is satisfied, the process proceeds to step S203, and SAR and dB / dt are actually calculated.
- FIG. 5 shows an example of data held in the internal memory 66 based on the database held in the external storage device 61.
- the database 150 illustrated in FIG. 5 includes a parameter column 152 that stores parameters, and a setting value column 154 that stores setting values for the parameters. Further, the database 150 includes a SAR target value column 160 for storing the target value set for the SAR to be specified, a SAR change value column 162 for storing a parameter change value related to the calculation of the SAR target value, a parameter Has an imaging parameter column 164 for storing whether or not the SAR target is related to the calculation of the SAR target, and an increase / decrease suggestion column 166 indicating whether the set value should be increased or decreased to achieve the SAR target.
- the dB / dt target value field 170 that stores the target value of dB / dt
- the dB / dt change value that stores the parameter change value related to the calculation of the target of dB / dt.
- Column 172, imaging parameter column 174 for storing whether the parameter is related to the calculation of the target of dB / dt, setting value may be increased or decreased to achieve the target of dB / dt It has an increase / decrease suggestion column 176 that represents.
- the increase / decrease suggestion column 166 in SAR and the increase / decrease suggestion column 176 in dB / dt are determined based on an arithmetic expression for calculating the SAR or dB / dt that is a regulation target.
- the contents of the increase / decrease suggestion column 166 and the increase / decrease suggestion column 176 are reversed in the increase / decrease direction when the target value is loosened. If one of the cases where the target value is tightened or loosened is stored, the other case can be handled by reversing the increase / decrease direction as described above.
- step S304 a specific example of step S304 will be described with reference to FIG.
- the CPU 14 included in the control unit 60 specifies the reduction target, as shown in FIG. 6, the imaging parameter for reducing either SAR and dB / dt or, if necessary, is searched (step S601).
- the parameter matching unit 17 specifies imaging parameters used in the calculation of SAR and dB / dt from the imaging parameters of the database 150 exemplified by the arithmetic expression data shown in FIG.
- step S602 whether the searched imaging parameter should be increased or decreased is suggested based on the data in the database illustrated in FIG. 5 (step S602).
- the parameter matching unit 17 obtains the current value for the imaging parameter, uses the current value to calculate the SAR and dB / dt values, and if necessary, calculates one of these values. Decide on an increase or decrease suggestion.
- This highlight display is a display that suggests imaging parameters related to obtaining the value of the specified target input by the selection operation in the specified target specifying field 132, and by this suggestion, what are the other displayed imaging parameters? Can be distinguished and recognized.
- the operator can grasp the viewpoint to be confirmed accurately and not only improve workability but also reduce errors such as misrecognition. As a result, reliability is improved.
- FIG. 7 is an example of highlight display when SAR is selected as a reduction target.
- a variable “TR”, a variable “Multi Slice”, and a variable “FA” are set as imaging parameters, “TR” is indicated by an increase button, and “Multi Slice” and “FA” are indicated by a decrease button.
- FIG. 8 shows an example of highlight display when dB / dt is selected as a reduction target.
- a variable “TE”, a variable “Freq #”, and a variable “Thickness” are set as imaging parameters, and “TE” and “Freq #” are suggested to decrease or increase, and “Thickness” is suggested to increase or decrease.
- a change in value is accepted for the searched imaging parameter (step S603).
- the parameter matching unit 17 acquires a change value that is increased or decreased or input by the operator and temporarily stores it in the internal memory 66. Note that changes in imaging parameters other than the highlighted parameter may be prohibited, or changes contrary to the suggestion of increase / decrease may be prohibited. By doing in this way, the influence by an operator's misoperation or misrecognition etc. can be reduced.
- step S604 If the imaging parameter input is not terminated (step S604; No), the process returns to step S602 to update the suggestion of increase / decrease with the changed imaging parameter value as the current value, and then accepts the next input.
- an imaging parameter for reducing one or both of SAR and dB / dt is extracted and displayed, and a change policy for increasing or decreasing the value is presented. To do.
- the control unit 60 extracts and displays imaging parameters for reducing the value of the entered regulation target. .
- the operator can perform an input operation using the displayed imaging parameter as a change target.
- Example 1 the allowable value of the imaging index is set as a target value in advance, and when the SAR or dB / dt predicted value exceeds the allowable value when changing the imaging parameter, It may be suggested to approach and avoid exceeding the allowable value.
- Another specific example of realizing step S304 will be described with reference to FIG.
- a parameter change screen is activated in this embodiment as an image for accepting a change in imaging parameters.
- the parameter matching unit 17 displays the parameter change screen shown in FIG. Display separately.
- FIG. 10 (a) is an example of the parameter change screen 202 when SAR is selected as a reduction target
- FIG. 10 (b) is an example of the parameter change screen 212 when dB / dt is selected as a reduction target. It is an example.
- the SAR change screen 202 shown in FIG. 10 (a) may be displayed separately from the display of FIG. 4, or the display of FIG. 7 or FIG. 8, or the display of FIG. It may be displayed on the same screen as the display, or may be displayed using a method of displaying the selected display in front by displaying the display of FIG. 4 or the display of FIG. 7 or FIG.
- step S902 the target value of SAR or dB / dt is acquired.
- the parameter matching unit 17 acquires one of the target values specified as the reduction target.
- the target value is specified in a range that does not exceed the allowable value in the operation mode that can be imaged, and this setting value may be used by setting in advance in the arithmetic expression data shown in FIG. A person may input from the input device 91. For example, in the normal operation mode, the allowable value is set as the target value.
- a progress bar 204 which is one of the graphical user interfaces (hereinafter referred to as GUI) indicating the relative position, for example, is arranged on the parameter change screen shown in FIG. ) As a guide and displayed together with the current value of SAR or dB / dt.
- GUI graphical user interfaces
- the 6-minute average SAR (whole body) is 3.74 when the reference value is set at 100% for the primary level management operation mode and 50% for the normal operation mode.
- the current SAR value is displayed as 93% (position indicated by the black triangle), and the target value is displayed as 50% (position indicated by the white triangle). That is, in this embodiment, the ratio is displayed as a ratio of the reference value with respect to the maximum value, and the display of the ratio is represented by a straight line graph.
- the current value is 93% with respect to the maximum value of the reference value, and is displayed with one mark as shown by a black triangle as an example. Further, the target value is displayed with the other mark as described with a white triangle.
- the current value or target value is displayed as a percentage of the maximum value of the reference value.
- the current value is displayed as one black mark as an example, and the target value is displayed as a white triangle. It is displayed with the mark.
- the database 150 shown in FIG. 5 is used for this search.
- the parameter matching unit 17 identifies the imaging parameter in the same manner as in step S601, and displays the imaging parameter and the currently set parameter value on the parameter change screen 202 and the parameter change screen 212 as shown in FIG.
- an imaging parameter value is searched for such that the current value of SAR or dB / dt is closer to the target value (step S904).
- the parameter matching unit 17 calculates the suggested value of the imaging parameter to be changed in order to increase or decrease the value of each imaging parameter to obtain the target value of SAR or dB / dt.
- the suggestion value (the position indicated by the white triangle) is a progress bar or the like placed on the parameter change screen 202 or parameter change screen 212 shown in FIG. ) Is displayed. In this embodiment, as an example, the ratio is displayed as a percentage and the target value is also presented.
- the imaging parameter “TR” is increased from the current value 300 to the suggested value 562, and the imaging parameter “ It can be seen that “Multi Slice” is decreased from the current value 24 to the suggested value 12 and the imaging parameter “FA” is decreased from the current value 90 to the suggested value 3.
- the imaging parameter “TE” is decreased from the current value 6.3 to the suggested value 6.1, and the imaging parameter “ It can be seen that “Freq #” is decreased from the current value 264 to the suggested value 248, and the imaging parameter “Thickness” is increased from the current value 6.0 to the suggested value 7.4.
- step S905 input of a parameter value for the searched imaging parameter is accepted (step S905).
- the parameter matching unit 17 acquires the changed value based on the position designated by the operator using a progress bar or the like, and temporarily stores it in the internal memory 66.
- a new value may be input to the setting value column 114 provided corresponding to the imaging parameter item column 112 or input to the progress bar 118 A position corresponding to the value may be specified.
- the position corresponding to the value to be input to the progress bar 118 is specified by the touch panel or the pointing device, and the control unit 60 calculates the value corresponding to the specified position and displays the calculation result in the set value column 114.
- the control unit 60 calculates the value corresponding to the specified position and displays the calculation result in the set value column 114.
- a numerical value corresponding to the specified position is displayed in the setting value column 114, and the operator can change the desired value while looking at the numerical value displayed in the setting value column 114.
- the specific position is moved along the progress bar 118 so as to be displayed and stopped at the desired position. In this way, a desired value can be input as the value of the imaging parameter.
- the control unit 60 calculates the value of the imaging parameter “FA” based on the setting of the imaging parameter “TR” and the imaging parameter “Multi ⁇ slice ”. May be.
- step S906 When the target value is changed (step S906; Yes), or when the input of imaging parameters is not completed (step S907; No), the process returns to step S904 to search for a changed value that is closer to the target value, and then Accept input.
- step S907 when the parameter matching unit 17 acquires the changed value of the imaging parameter (step S907; No), the arithmetic control unit 18 of the CPU 14 of the control unit 60 uses the changed value temporarily stored in the internal memory 66 to And the value of dB / dt is calculated, and the process returns to step S904 to search again for the imaging parameter value for which SAR or dB / dt is closest to the target value for each imaging parameter, as shown in FIG. Update the parameter change screen.
- step S906 Even when the target value is changed (step S906; Yes), the arithmetic control unit 18 of the CPU 14 calculates the SAR and dB / dt values, and returns to step S904 to determine whether the SAR or dB / dt is set for each imaging parameter.
- the imaging parameter value that is closer to the target value is searched again, and the parameter change screen is updated as shown in FIG.
- the suggested value of “TR” for bringing the SAR closer to the target value is updated to 840, and the suggested value of “Multi Slice” is updated to 6.
- the imaging parameters can be adjusted efficiently so that the SAR and dB / dt of the pulse sequence are within the operation mode range that allows imaging. I can do it.
- FIG. 10 (a), FIG. 10 (b), FIG. 11 and FIG. 12 show the current value or target value of the regulation target in comparison with the allowable value of the primary level management operation mode of the regulation target. Is displayed. In particular, it is displayed as a bar graph with the allowable value of the primary level management operation mode to be regulated as 100%.
- the general subject is imaged in the primary level management operation mode, but for subjects that need special consideration, the imaging should be performed with less burden on the basis of the primary level management operation mode. Do.
- the control unit 60 sets and displays the setting value of the imaging parameter related to the target value.
- the value of the imaging parameter can be set accurately.
- the imaging parameters include those in which the definition target is improved by increasing the set value and those in which the definition target is improved by decreasing the setting value of the imaging parameter.
- the direction of improvement of the axis of the progress bar 204 that displays the current value and target value of the prescribed target and the arrangement direction of the axis of the bar progress bar 118 that displays the current value and target value of the related imaging parameters are constant. Standards are established.
- the progress bar 204 and the progress bar 118 shown in FIGS. 10 (a), 10 (b), 11 and 12 are all directed to the left side, and the regulation target is improved.
- the progress bar 118 is not set by the magnitude of the numerical value of the axis, but the direction of the axis of the progress bar 204 or the progress bar 118 is determined according to the improvement direction of the specified object, so that there is an effect that it is very easy to operate.
- the reference value such as the progress bar 118 is displayed as a percentage on the parameter change screen 202 and the parameter change screen 212 used when changing the imaging parameters (for example, the allowable value of the first level management operation mode is set to 100). %, The normal operation mode allowable value is indicated by a relative display such as 50%, but may be indicated by other methods.
- the position corresponding to the allowable value in the normal operation mode is “normal level”
- the position corresponding to the allowable value in the primary level management operation mode is “primary level level”
- the position corresponding to the allowable value in the secondary level management operation mode may be indicated by a level display such as “secondary level level”.
- the third embodiment of the present invention in imaging based on a pulse sequence, it becomes easier to grasp whether or not the SAR or dB / dt that is the regulation target is in a state where imaging is possible.
- the imaging parameters can be adjusted efficiently. For example, in the state of the subject 11, setting the SAR or dB / dt level that is the regulation target when imaging is performed and dealing with the burden on the subject 11 is easy to judge and excellent in terms of management is there.
- expressing the state of the subject 11 with fine numbers is not only difficult, but even if it is expressed finely as a percentage, its effect is small. For example, it is possible to obtain good results by performing classification and management in three stages.
- the method has been described in which the parameter change screen 202 or the parameter change screen 212 is displayed on a different screen from the parameter display screen 102 and the operator changes the imaging parameter.
- the parameter display screen 102 and the parameter change screen may be displayed as separate screens, but the parameter display screen 102 and the SAR and dB / dt parameter change screens 202 and 204 are displayed simultaneously on the same display surface. The operator may change the imaging parameter.
- a progress bar or the like as displayed on the parameter change screen is arranged in an empty area other than the imaging parameter display area on the parameter display screen, and the current value and target value are set to the reference value (0 to 100% etc.)
- the empty area is indicated by a broken line frame 240 and a broken line frame 242.
- a broken line frame 240 and a broken line frame 242 may be provided respectively, and an area for displaying the progress bar 204 for SAR and the progress bar 214 for dB / dt may be provided respectively, but one area is shared, A progress bar 204 for SAR and a progress bar 214 for dB / dt may be displayed.
- the regulation target selected in the regulation target designation column 132 that is, the progress bar 204 or progress bar 214 selected in the regulation target designation column 132 is displayed.
- Current value and target value may be displayed when highlighting when reduction target is selected. That is, when SAR is selected as a reduction target by selection based on the regulation target designation field 132, the current value and target value of SAR are displayed, and when dB / dt is selected as the reduction target, dB / dt You may make it display the present value and target value of.
- the fourth embodiment of the present invention it is easy to understand whether or not the SAR and dB / dt of the pulse sequence are in the operation mode range that can be imaged only on the parameter display screen. Imaging parameters can be adjusted efficiently.
- a parameter display area for displaying the imaging parameters a target value display area for the regulation target indicated by the broken line frame 240 and the dashed line frame 242 and a regulation target designation area for displaying the regulation target designation field 132 are provided.
- the parameter display area at least an imaging parameter related to the SAR to be defined, its current value, and an operation column 116 that can be input as necessary by suggesting the change direction are displayed side by side.
- the target value of the regulation target is displayed as a percentage bar, for example, as indicated by a progress bar 204 or a progress bar 214.
- the progress bar 204 related to SAR and the progress bar 214 related to dB / dt may be displayed in comparison with each other, but the progress bar that is selected from the specification target designation column 132 is selectively displayed.
- the progress bar 204 related to SAR and the progress bar 214 related to dB / dt are displayed in comparison, there is an effect that it is easy to grasp the entire situation.
- the progress bar 204 related to SAR and the progress bar 214 related to dB / dt are selectively displayed, there is an advantage that the area required for display is small.
- the imaging parameters were set in the arithmetic expression data shown in FIG. 5 and extracted as imaging parameters used when calculating SAR and dB / dt.
- the imaging parameters to be changed are selected by the operator. May be arbitrarily selected.
- a check box (one GUI used to select multiple items) is provided for each imaging parameter on the parameter display screen, and the input device 91 is used to determine whether or not to change each of them. Specified by the operator. Note that when changing on the parameter display screen, the up and down buttons need only be enabled for the checked imaging parameters so that the value can be increased or decreased. Further, when the SAR or dB / dt adjustment button as shown in the lower right in the figure is pressed, it is only necessary to display and change only the imaging parameters checked in the parameter change screen. That is, the imaging parameter selected by the imaging parameter selection operation such as checking the above is a target whose setting value can be changed.
- the selected imaging parameter is displayed in the operation column 116 to suggest an increase / decrease direction in the operation.
- the selected imaging parameter “TR” indicates an increase by an upward triangle.
- the selected imaging parameters “FA” and “Multi slice” indicate a reduction direction by a downward triangle.
- FIG. 16 is a flowchart for executing the operation described in FIG. 15, and is executed by the control unit 60.
- the flowchart shown in FIG. 16 performs processing corresponding to the processing in step S304 shown in FIG. 3 and step S905 shown in FIG.
- the operator's operation is executed as a start condition, and the operator inputs the imaging parameter value shown in FIG. When this is done, this operation is executed as a start condition.
- this flowchart is activated repeatedly at regular time intervals, and whether the operator has selected the imaging parameter shown in FIG. 15 between the end of the previous execution and the start of the current execution, or imaging You may make it process based on whether input operation regarding the value of a parameter was performed.
- step S352 it is determined in step S352 whether or not the imaging parameter shown in FIG. 15 is selected. For example, when it is not the selection of the imaging parameter but the input of the value of the imaging parameter, since step S354 to step S358 are not related, the execution of the control unit 60 moves to step S362. On the other hand, in the case of selection of the imaging parameter, execution proceeds to step S354, and a display indicating that it has been selected is performed. For example, when the imaging parameter “TR” is selected, a check indicating that it is selected is displayed.
- Step S356 is executed to suggest the direction of changing the numerical value of the selected imaging parameter. For example, in the case of the imaging parameter “TR”, the upward triangle indicating the increasing direction of the display in the operation column 116 is changed to a hollow triangle. Further, in order to permit the input operation of the numerical value of the selected imaging parameter, step S358 is executed, and a setting value acceptance permission flag is set. This acceptance permission flag indicates whether or not input of a numerical value of the imaging parameter “TR” is permitted.
- step S352 is executed after step S358.
- the processing target is different. These may be operated separately under different execution conditions.
- step S362 may be operated so as to start the execution under a new activation condition.
- step S362 is executed by the control unit 60, it is determined whether or not a numerical value that is a set value of the imaging parameter is input. In the case of inputting numerical values of imaging parameters, it is determined in step S364 whether or not numerical reception is permitted. If the flag is set in step S358 described above, it is determined that the acceptance of the numerical value is permitted, and the numerical value input in step S366 is captured and stored in a predetermined storage address.
- This stored numerical value is used for, for example, calculation of SAR or dB / dt in the calculation control unit 18 shown in FIG.
- the execution of this flowchart is terminated.
- step S364 if numerical values in the imaging parameters are input but the change of numerical values is not permitted, an error is displayed in step S368, and the execution of this flowchart ends. Even if the execution of this flowchart is completed, this flowchart is executed again if the above-described activation conditions are satisfied, and the execution is repeated.
- the operator can arbitrarily set the imaging parameter to be changed in a case where the imaging parameter to be changed is desired. And the parameter adjustment method for reducing dB / dt becomes easy to understand.
- Example 5 the operator arbitrarily selects and changes the imaging parameter to be changed on the parameter display screen.
- several change patterns according to the policy are prepared in advance, and by selecting the change pattern according to the policy, the imaging parameters related to each other are automatically selected based on the selected pattern, and the above policy is selected.
- the imaging parameters may be automatically determined along with the above.
- the change policy includes, for example, not changing the contrast so that the contrast of the image to be acquired is as constant as possible, not changing the scan time, in particular not extending it, not changing the number of acquired images, that is, maintaining the number of images to be captured, etc. is there.
- a set of imaging parameters based on each policy is set as a change policy.
- a change policy display area 272 for displaying a change policy is provided on the parameter display screen 102, and a change policy list 274 that lists the change policies is arranged in the change policy display area 272.
- the operator selects a suitable change policy from the change policy list 274.
- the change policy list is created in advance by creating a database in which the contents of the list are described in the external storage device 61 and the like, and for example, by operating the pull-down display 276 in the change policy display area 272, the change policy constituting the list Are displayed in order.
- the imaging parameters according to the change policy are automatically selected. For example, a check which is a display indicating that the imaging parameter “TR” has been selected is displayed. Of course, the color may be changed instead of the check display.
- the operator can arbitrarily increase or decrease the imaging parameters to be changed after selecting a suitable change policy from the change policy list 274 by the change policy selection operation, such as an operation on the pull-down display 276 or the like. May be.
- the change policy selection operation such as an operation on the pull-down display 276 or the like. May be.
- the set of imaging parameters when the change policy is designated is “TR” and “FA”, and only “TR” needs to be changed, “FA” may be excluded from the set by operation.
- the sixth embodiment of the present invention it is possible to reduce the SAR and dB / dt by adjusting the parameters in consideration of the contrast of the obtained image, the imaging time, and the resolution. That is, the operator can easily adjust parameters for reducing SAR or dB / dt under desired conditions.
- one of the plurality of pulse sequences in the protocol that the operator wants to change is selected, but a specific example of step S304 when a plurality of pulse sequences are selected as the change target is shown in FIG. Will be described. For example, there are cases where two scans whose imaging region is “Pelvis” and “Knee” are to be changed.
- step S1701 Activating a parameter change screen for accepting changes in imaging parameters.
- the parameter matching unit 17 displays the parameter change screen shown in FIG. 18 on the display 98 of the output device 96.
- the target value of SAR or dB / dt is acquired (step S1702).
- the acquired target value is displayed on the parameter change screen 302 shown in FIG.
- the reference value of 40% is displayed at the position indicated by the white triangle as a guide.
- the current value of SAR or dB / dt is displayed for each scan (pulse sequence) and displayed at the position indicated by, for example, a black triangle by the progress bar 204, the progress bar 214, and the like.
- the arithmetic control unit 18 calculates SAR and dB / dt values for all the pulse sequences selected as the change target, calculates a ratio with respect to the allowable value, and temporarily stores it in the internal memory 66. Then, the CPU 14 identifies the scan with the highest ratio calculated as the scan with the most severe restriction.
- step S1704 Searches for imaging parameters that reduce SAR or dB / dt for the most restrictive scan (step S1704), and searches for imaging parameter values such that SAR or dB / dt is closest to the target value (step S1705). ).
- the parameter matching unit 17 displays the imaging parameter and its parameter value (current value) on the parameter change screen, and obtains the target value of SAR or dB / dt on the progress bar 118 or the like.
- the suggested value (position indicated by the white triangle) and the current value (position indicated by the black triangle) of the imaging parameter to be changed are displayed.
- step S1706 input of parameter values is accepted (step S1706).
- step S1707; Yes input of the imaging parameter is not finished (step S1708; No)
- step S1708; No input of parameter values is accepted (step S1706).
- step S1707; Yes input of the imaging parameter is not finished (step S1708; No)
- step S1708; No input of parameter values is accepted (step S1706).
- step S1707; Yes the process returns to step S904 to search for a changed value that is closest to the target value
- FIG. As shown, the parameter change screen is updated and the next input is accepted.
- FIG. 20 is a screen showing a state after the imaging parameter is changed, and the value of the imaging parameter “TR” is changed from 350 to 600.
- the operation mode capable of imaging the SAR and dB / dt of the pulse sequence in consideration of the SAR and dB / dt for each body part as well as for the whole body.
- the imaging parameters can be adjusted efficiently so that the state is within the range.
- parameter adjustment for reducing SAR or dB / dt can be performed without changing the contrast between scans.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Signal Processing (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
基準値40%は目安として白い三角形が示す位置に表示される。SARまたはdB/dtの現在値については、スキャン(パルスシーケンス)ごとに分けて、同様にプログレスバー204やプログレスバー214等により、例えば黒い三角形が示す位置に表示される。
また、各スキャン間のコントラストが変わることなく、SARまたはdB/dtを低減するパラメータ調整ができるようになる。
Claims (15)
- 被検体を収容する空間に静磁場を発生させる静磁場発生源と、
前記静磁場に重畳する傾斜磁場を発生させる傾斜磁場発生部と、
前記被検体へ高周波磁場パルスを照射するための高周波磁場発生部と、
前記被検体から発生する核磁気共鳴信号を検出する信号検出部と、
前記静磁場発生源や前記傾斜磁場発生部や前記高周波磁場発生部や前記信号検出部をパルスシーケンスに従って制御するシーケンサと、
記憶装置と入力装置と出力装置とCPUを有する制御部とを備え、
前記制御部は、規定対象が入力操作に基づき入力されると、前記規定対象に関係する撮像パラメータを示唆する表示および前記撮像パラメータの変更方向を示唆する表示を行い、
さらに前記制御部は、前記表示した撮像パラメータが変更されると、変更された前記撮像パラメータの値に基づき選択された前記規定対象の値を演算して求めることを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
前記入力操作に基づき入力された前記規定対象が比吸収率である場合に、前記制御部は、前記比吸収率に関係する撮像パラメータを示唆する表示を前記出力装置に行い、さらに前記撮像パラメータの変更方向を示唆する情報を前記出力装置に表示することを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
前記入力操作に基づき入力された前記規定対象が磁束密度の単位時間当たりの磁場変動率である場合に、前記制御部は、前記単位時間当たりの前記磁場変動率に関係する撮像パラメータを示唆する表示を前記出力装置に行い、さらに前記磁場変動率が低減するための前記撮像パラメータの変更方向を示唆する情報を前記出力装置に表示することを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
前記出力装置に比吸収率に関係する撮像パラメータおよび磁束密度の単位時間当たりの磁場変動率に関係する撮像パラメータを含む撮像パラメータが表示され、
前記入力操作に基づき入力された前記規定対象が比吸収率である場合に、前記制御部は、前記出力装置に表示された撮像パラメータの内、前記比吸収率に関係する撮像パラメータを、他の撮像パラメータと区別してハイライト表示し、
前記入力操作に基づき入力された前記規定対象が磁束密度の単位時間当たりの磁場変動率である場合に、前記制御部は、前記出力装置に表示された撮像パラメータの内、前記単位時間当たりの前記磁場変動率に関係する撮像パラメータを、他の撮像パラメータと区別してハイライト表示することを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
比吸収率あるいは単位時間当たりの磁場変動率の少なくとも一つが規定対象として前記出力装置に表示され、更に前記出力装置の表示面に前記規定対象に関係する複数の撮像パラメータが表示され、
前記規定対象の現在値および前記複数の撮像パラメータの各現在値がそれぞれ前記規定対象の表示や前記複数の撮像パラメータのそれぞれに対応して表示され、
前記規定対象の目標値が設定されると、前記設定された目標値に対応する前記複数の撮像パラメータのそれぞれの値が表示されることを特徴とする磁気共鳴イメージング装置。 - 請求項5に記載の磁気共鳴イメージング装置において、
前記比吸収率あるいは前記単位時間当たりの磁場変動率の少なくとも一つからなる前記規定対象は、その現在値と目標値が許容値に対する相対表示で表されていることを特徴とする磁気共鳴イメージング装置。 - 請求項6に記載の磁気共鳴イメージング装置において、
前記規定対象に関係する前記複数の撮像パラメータは、その値の増加が前記規定対象の改善に繋がる第1撮像パラメータと、その値の減少が前記規定対象の改善に繋がる第2撮像パラメータとを有し、
前記規定対象の現在値や前記第1撮像パラメータの現在値や前記第2撮像パラメータの現在値が、それぞれプログレスバーで、さらにそれぞれ並べて表示され、
前記規定対象の前記現在値のプログレスバーの軸の改善方向に合わせて、前記第1撮像パラメータの現在値を表すプログレスバーの軸の増加方向が配置され、さらに前記第2撮像パラメータの現在値を表すプログレスバーの軸の減少方向が配置されることを特徴とする磁気共鳴イメージング装置。 - 請求項6に記載の磁気共鳴イメージング装置において、
前記規定対象の現在値と目標値を、許容値に対して設定した複数のレベルにより表示することを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
前記出力装置の表示画面に、複数の撮像パラメータを表示する撮像パラメータ表示領域と、比吸収率あるいは磁束密度の単位時間当たりの磁場変動率の内の少なくとも一つの目標値を表示する目標値表示領域とが設けられ、
前記撮像パラメータ表示領域には、比吸収率に関係する撮像パラメータと、磁束密度の単位時間当たりの磁場変動率に関係する撮像パラメータを含む撮像パラメータとが、それぞれ並べて表示され、
前記目標値表示領域には、比吸収率あるいは磁束密度の単位時間当たりの磁場変動率の内の少なくとも一つの目標値が、許容値との相対関係で表示されることを特徴とする磁気共鳴イメージング装置。 - 請求項9に記載の磁気共鳴イメージング装置において、
前記出力装置の表示画面に、比吸収率あるいは磁束密度の単位時間当たりの磁場変動率を選択する規定対象指定欄を表示する規定対象指定領域がさらに設けられ、規定対象指定領域に表示された規定対象指定欄に基づいて選択された規定対象の目標値が前記目標値表示領域に、許容値との相対関係で表示されることを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
前記出力装置に表示された前記規定対象に関係する複数の前記撮像パラメータに対する選択操作に基づき、前記制御部によって選択状態を表す表示がされ、設定値の入力が許可されることを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
撮像パラメータの変更方針を表示する変更方針表示領域に変更方針のリストが表示され、前記リストからの前記変更方針の選択に基づき、選択された変更方針に関係する撮像パラメータに関連を表す表示がなされることを特徴とする磁気共鳴イメージング装置。 - 請求項1に記載の磁気共鳴イメージング装置において、
前記パルスシーケンスが複数指定された場合に、制御部はそれぞれの前記パルスシーケンスにおける規定対象の値を演算し、規定対象の値が最も厳しい状態にあるパルスシーケンスを変更対象とすることを特徴とする磁気共鳴イメージング装置。 - 請求項13に記載の磁気共鳴イメージング装置において、
表示画面に前記複数パルスシーケンスにおける規定対象の値を表示し、合わせて規定対象に関係する撮像パラメータの値を表示することを特徴とする磁気共鳴イメージング装置。 - パルスシーケンスに従って動作するシーケンサの制御に従って被検体を収容する空間に静磁場と傾斜磁場を発生し、前記被検体へ高周波磁場パルスを照射し、前記被検体から発生する核磁気共鳴信号を検出し、
記憶装置や入力装置や出力装置やCPUを有する制御部は、入力された規定対象に基づき、前記規定対象に関係する撮像パラメータを示唆する表示および前記撮像パラメータの変更方向を示唆する表示を行い、
さらに前記表示した撮像パラメータの値が変更されると、変更された前記撮像パラメータの値に基づく前記選択された前記規定対象の値を演算して求めることを特徴とする磁気共鳴イメージング装置の撮像パラメータ変更支援方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/023,535 US20160231396A1 (en) | 2013-10-16 | 2014-10-02 | Magnetic resonance imaging apparatus and imaging parameter setting assisting method |
JP2015542565A JP6421126B2 (ja) | 2013-10-16 | 2014-10-02 | 磁気共鳴イメージング装置およびその撮像パラメータ変更支援方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-215352 | 2013-10-16 | ||
JP2013215352 | 2013-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056569A1 true WO2015056569A1 (ja) | 2015-04-23 |
Family
ID=52828017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076350 WO2015056569A1 (ja) | 2013-10-16 | 2014-10-02 | 磁気共鳴イメージング装置およびその撮像パラメータ変更支援方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160231396A1 (ja) |
JP (1) | JP6421126B2 (ja) |
WO (1) | WO2015056569A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106923828A (zh) * | 2015-12-28 | 2017-07-07 | 三星电子株式会社 | 用于输出关于扫描磁共振图像的参数信息的方法和装置 |
JP2018102352A (ja) * | 2016-12-22 | 2018-07-05 | 株式会社日立製作所 | 磁気共鳴イメージング装置及びパルスシーケンス算出方法 |
JP2021528144A (ja) * | 2018-06-19 | 2021-10-21 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 磁気共鳴撮像における画質の追跡 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105013032B (zh) * | 2014-03-31 | 2018-06-22 | 甘布罗伦迪亚股份公司 | 体外血液处理系统及用于该系统的方法 |
US9910111B2 (en) | 2014-12-17 | 2018-03-06 | Toshiba Medical Systems Corporation | Systems and methods for improved and efficient determination of the specific absorption rate (SAR) in MRI |
DE102016214608B4 (de) * | 2016-08-05 | 2019-06-27 | Siemens Healthcare Gmbh | Verfahren zu einem Einstellen und/oder Anpassen von Messparametern für eine Messsequenz einer Magnetresonanzuntersuchung |
US10950343B2 (en) * | 2017-06-29 | 2021-03-16 | Siemens Healthcare Gmbh | Highlighting best-matching choices of acquisition and reconstruction parameters |
EP3557272B1 (de) * | 2018-04-20 | 2022-05-25 | Siemens Healthcare GmbH | Verfahren zum betreiben einer mrt-anlage und mrt-anlage |
CN112068054A (zh) * | 2020-08-19 | 2020-12-11 | 上海东软医疗科技有限公司 | 数据监控方法、装置、设备及磁共振系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005501624A (ja) * | 2001-08-28 | 2005-01-20 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 動作曲線フィードバック及び多次元パラメータ最適化を含む磁気共鳴撮像におけるユーザ誘導のシステム及び方法 |
JP2006095278A (ja) * | 2004-08-30 | 2006-04-13 | Toshiba Corp | 磁気共鳴診断装置 |
JP2007111112A (ja) * | 2005-10-18 | 2007-05-10 | Ge Medical Systems Global Technology Co Llc | 画像診断装置 |
JP2011200342A (ja) * | 2010-03-25 | 2011-10-13 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4822397B2 (ja) * | 2005-04-05 | 2011-11-24 | 株式会社日立メディコ | 磁気共鳴撮像装置 |
JP5361236B2 (ja) * | 2008-03-31 | 2013-12-04 | 株式会社東芝 | 磁気共鳴イメージング装置および撮像条件設定方法 |
DE102008060719B4 (de) * | 2008-12-05 | 2018-09-20 | Siemens Healthcare Gmbh | Verfahren zur Steuerung des Aufnahmebetriebs einer Magnetresonanzeinrichtung bei der Aufnahme von Magnetresonanzdaten eines Patienten sowie zugehörige Magnetresonanzeinrichtung |
DE102009038139A1 (de) * | 2009-08-19 | 2011-02-24 | Siemens Aktiengesellschaft | Verfahren zur Steuerung einer Magnetresonanzanlage |
JP5730214B2 (ja) * | 2009-11-12 | 2015-06-03 | 株式会社日立メディコ | 磁気共鳴イメージング装置及び2次元励起調整方法 |
US9198598B2 (en) * | 2010-03-31 | 2015-12-01 | Hitachi Medical Corporation | Magnetic resonance imaging apparatus and SAR adjustment method |
DE102012213282A1 (de) * | 2012-07-27 | 2014-02-13 | Siemens Aktiengesellschaft | Verfahren zur Erzeugung eines anzuzeigenden Gesamtbilddatensatzes |
-
2014
- 2014-10-02 JP JP2015542565A patent/JP6421126B2/ja active Active
- 2014-10-02 WO PCT/JP2014/076350 patent/WO2015056569A1/ja active Application Filing
- 2014-10-02 US US15/023,535 patent/US20160231396A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005501624A (ja) * | 2001-08-28 | 2005-01-20 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 動作曲線フィードバック及び多次元パラメータ最適化を含む磁気共鳴撮像におけるユーザ誘導のシステム及び方法 |
JP2006095278A (ja) * | 2004-08-30 | 2006-04-13 | Toshiba Corp | 磁気共鳴診断装置 |
JP2007111112A (ja) * | 2005-10-18 | 2007-05-10 | Ge Medical Systems Global Technology Co Llc | 画像診断装置 |
JP2011200342A (ja) * | 2010-03-25 | 2011-10-13 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106923828A (zh) * | 2015-12-28 | 2017-07-07 | 三星电子株式会社 | 用于输出关于扫描磁共振图像的参数信息的方法和装置 |
EP3187891A3 (en) * | 2015-12-28 | 2017-10-25 | Samsung Electronics Co., Ltd | Method and device for outputting parameter information for scanning magnetic resonance images |
EP3187891B1 (en) | 2015-12-28 | 2019-06-12 | Samsung Electronics Co., Ltd | Setting and preview of linked parameters for magnetic resonance imaging. |
US10956011B2 (en) | 2015-12-28 | 2021-03-23 | Samsung Electronics Co., Ltd. | Method and device for outputting parameter information for scanning for magnetic resonance images |
JP2018102352A (ja) * | 2016-12-22 | 2018-07-05 | 株式会社日立製作所 | 磁気共鳴イメージング装置及びパルスシーケンス算出方法 |
JP2021528144A (ja) * | 2018-06-19 | 2021-10-21 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 磁気共鳴撮像における画質の追跡 |
JP7319310B2 (ja) | 2018-06-19 | 2023-08-01 | コーニンクレッカ フィリップス エヌ ヴェ | 磁気共鳴撮像における画質の追跡 |
Also Published As
Publication number | Publication date |
---|---|
JP6421126B2 (ja) | 2018-11-07 |
US20160231396A1 (en) | 2016-08-11 |
JPWO2015056569A1 (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6421126B2 (ja) | 磁気共鳴イメージング装置およびその撮像パラメータ変更支援方法 | |
US7259559B2 (en) | Coil element selection method and magnetic resonance imaging apparatus | |
US7190992B2 (en) | Magnetic resonance imaging using technique of positioning multi-slabs to be imaged | |
US10338166B2 (en) | Magnetic resonace imaging apparatus and control method therefor | |
US9070212B2 (en) | Medical imaging apparatus and imaging slice determination method | |
JP6458033B2 (ja) | 治療システムを制御する複数のディスプレイを有する医療用機器 | |
US20140132268A1 (en) | Magnetic resonance imaging apparatus and imaging position setting assissting method | |
US20080088306A1 (en) | Method for adjustment of a shim device of a magnetic resonance apparatus | |
US20120310078A1 (en) | Method for an image data acquisition | |
JP6618988B2 (ja) | 磁気共鳴イメージング装置およびrfシミングパラメータの設定方法 | |
JP5465565B2 (ja) | 磁気共鳴イメージング装置 | |
JP6104516B2 (ja) | 医用画像診断装置及び制御プログラム | |
JP2021029408A (ja) | 励起領域の設定方法および磁気共鳴イメージング装置 | |
JP2009072521A (ja) | 磁気共鳴イメージング装置およびプレビュー画像表示装置 | |
US20160038099A1 (en) | Magnetic resonance imaging apparatus, medical information processing device, and patient information display method | |
JP6001371B2 (ja) | 磁気共鳴イメージング装置 | |
JP5484272B2 (ja) | 磁気共鳴イメージング装置および受信コイル接続状態の確認方法 | |
JP2015100407A (ja) | 磁気共鳴イメージング装置 | |
JP6408954B2 (ja) | 磁気共鳴撮像装置、情報処理装置および高周波磁場シミング方法 | |
JP4532139B2 (ja) | 磁気共鳴イメージング装置 | |
JP5426219B2 (ja) | 磁気共鳴イメージング装置 | |
JP2015029676A (ja) | 磁気共鳴イメージング装置およびプロトコル設定方法 | |
JP6341658B2 (ja) | 磁気共鳴イメージング装置及びレトロスペクティブシネ撮像条件設定方法 | |
JP2014030557A (ja) | 医用画像処理装置及び時系列画像解析法 | |
JP2013208153A (ja) | 磁気共鳴イメージング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14853634 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015542565 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15023535 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14853634 Country of ref document: EP Kind code of ref document: A1 |