WO2015053304A1 - 燃料電池用膜/電極複合体の製造方法 - Google Patents

燃料電池用膜/電極複合体の製造方法 Download PDF

Info

Publication number
WO2015053304A1
WO2015053304A1 PCT/JP2014/076912 JP2014076912W WO2015053304A1 WO 2015053304 A1 WO2015053304 A1 WO 2015053304A1 JP 2014076912 W JP2014076912 W JP 2014076912W WO 2015053304 A1 WO2015053304 A1 WO 2015053304A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive sheet
gas diffusion
diffusion electrode
Prior art date
Application number
PCT/JP2014/076912
Other languages
English (en)
French (fr)
Inventor
武史 仲野
佐藤 司
敏明 正木
西井 弘行
松村 健
有満 幸生
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020167008938A priority Critical patent/KR20160067852A/ko
Priority to US15/028,101 priority patent/US20160285120A1/en
Priority to CN201480055791.6A priority patent/CN105637050A/zh
Priority to EP14853095.9A priority patent/EP3057163A4/en
Publication of WO2015053304A1 publication Critical patent/WO2015053304A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • C09J7/243Ethylene or propylene polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a fuel cell membrane / electrode composite.
  • a membrane / electrode assembly (MEA) as a member of a fuel cell is a laminate composed of a polymer electrolyte membrane, a gas diffusion electrode and the like. From the viewpoint of production efficiency, production cost, etc., it is required that such a laminated film / electrode composite is produced by being laminated by a continuous method.
  • a catalyst layer is formed by coating on both sides of a long polymer electrolyte membrane, a gas diffusion layer is laminated on the catalyst layer, a long polymer electrolyte membrane Method of laminating gas diffusion electrodes having catalyst layers on both sides by pressure bonding, transferring a catalyst layer formed on a sheet composed of polytetrafluoroethylene or the like to a polymer electrolyte membrane, and then catalyst on the polymer electrolyte membrane A method of forming a layer and laminating a gas diffusion layer on the catalyst layer is known.
  • the present invention has been made to solve the above-described conventional problems, and the object thereof is excellent in the handleability of the polymer electrolyte membrane, and can prevent the deformation and wrinkle generation of the polymer electrolyte membrane, Another object of the present invention is to provide a method for producing a fuel cell membrane / electrode composite capable of efficiently assembling a polymer electrolyte membrane, a gas diffusion electrode and / or a gas diffusion layer.
  • the method for producing a fuel cell membrane / electrode composite according to the present invention is a method for producing a fuel cell membrane / electrode composite comprising a first gas diffusion electrode, a polymer electrolyte membrane, and a second gas diffusion electrode.
  • the first gas diffusion electrode and the second gas diffusion electrode each include a gas diffusion layer, and the polymer electrolyte membrane and / or the gas diffusion layer is attached to the pressure-sensitive adhesive sheet. Transporting the adhesive sheet, and applying an external stimulus to the adhesive sheet to reduce the adhesive force of the adhesive sheet and peeling the adhesive sheet.
  • a first pressure-sensitive adhesive sheet, a second pressure-sensitive adhesive sheet, and a third pressure-sensitive adhesive sheet are used as the pressure-sensitive adhesive sheet, and the polymer electrolyte membrane is attached to the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive sheet.
  • the second gas diffusion electrode is conveyed, and the first gas expansion of the polymer electrolyte membrane is carried out.
  • the responsiveness to the external stimulus of the first pressure-sensitive adhesive sheet is different from the responsiveness to the external stimulus of the second pressure-sensitive adhesive sheet.
  • the responsiveness to the external stimulus of the second pressure-sensitive adhesive sheet is different from the responsiveness of the third pressure-sensitive adhesive sheet to the external stimulus.
  • the method includes using heat as the external stimulus.
  • the pressure-sensitive adhesive sheet includes a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer includes thermally expandable microspheres. In one embodiment, it includes using an active energy ray as the external stimulus. In one embodiment, the pressure-sensitive adhesive sheet includes a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer is cured by irradiation with active energy rays.
  • the external stimulus for reducing the adhesive force of the first adhesive sheet, the external stimulus for reducing the adhesive force of the second adhesive sheet, and the adhesive force of the third adhesive sheet Heat is used as an external stimulus for reducing the pressure, the temperature Ta of the external stimulus for reducing the adhesive strength of the first adhesive sheet, and the external stimulus for reducing the adhesive strength of the second adhesive sheet
  • the relationship between the temperature Tb and the temperature Tc of the external stimulus for reducing the adhesive strength of the third pressure-sensitive adhesive sheet is Ta ⁇ Tb ⁇ Tc.
  • the pressure sensitive adhesive sheet is long.
  • the fuel cell membrane / electrode assembly surrounds the first gasket disposed so as to surround the first gas diffusion electrode and the second gas diffusion electrode.
  • the first pressure-sensitive adhesive sheet includes laminating the first gasket and the first gas diffusion electrode on the polymer electrolyte membrane by pressure bonding under heating. Using heat as an external stimulus for reducing the adhesive strength of the adhesive, the relationship between the temperature Tp at the time of crimping and the temperature Ta of the external stimulus for reducing the adhesive strength of the first adhesive sheet is Tp ⁇ Ta is there.
  • the present invention it is possible to efficiently assemble these members by transporting the polymer electrolyte membrane, the gas diffusion electrode or the gas diffusion layer using an adhesive sheet whose adhesive strength is reduced or disappears by an external stimulus. it can. Further, by using the above adhesive sheet as a transport material for the polymer electrolyte membrane, it has a sufficient adhesive force when transporting the polymer electrolyte membrane, and an adhesive force when peeling the polymer electrolyte membrane. Decreases or disappears, and deformation of the polymer electrolyte membrane and generation of wrinkles can be prevented.
  • FIG. 1 It is a schematic sectional drawing which shows an example of the adhesive sheet used for the manufacturing method of this invention. It is a figure explaining the outline
  • the manufacturing method of the present invention is a method of transporting a member constituting a membrane / electrode composite, that is, a polymer electrolyte membrane or a gas diffusion electrode, by sticking it to an adhesive sheet. Including doing. More specifically, in the production method of the present invention, in the production of a membrane / electrode composite comprising a pair of gas diffusion electrodes and a polymer electrolyte membrane sandwiched between the gas diffusion electrodes, the first polymer electrolyte membrane is used. The first gas diffusion electrode (first gas diffusion electrode) is conveyed by the second pressure sensitive adhesive sheet, and the other gas diffusion electrode (second gas diffusion electrode) is conveyed by the third pressure sensitive adhesive sheet. Including carrying. Details of the method for producing the membrane / electrode composite will be described in Section C below.
  • each of the first and second gas diffusion electrodes includes a gas diffusion layer, and the gas diffusion layer is conveyed by an adhesive sheet. That is, in the production method of the present invention, in the production of a membrane / electrode composite having gas diffusion layers on both sides of a polymer electrolyte membrane, the polymer electrolyte membrane is conveyed by the first adhesive sheet, and one gas diffusion layer is Conveying with a 2nd adhesive sheet and conveying the other gas diffusion layer with a 3rd adhesive sheet may be included.
  • the pressure-sensitive adhesive sheet preferably includes a base material and a pressure-sensitive adhesive layer disposed on one or both sides of the base material.
  • the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer is reduced or disappears by an external stimulus (for example, heat, active energy ray, etc.). If such an adhesive sheet is used, the handling property at the time of conveying each member and the peelability after the conveyance can be compatible, and the production efficiency can be improved.
  • the present invention using the above pressure-sensitive adhesive sheet as a conveying material for a fragile member mainly composed of carbon such as a gas diffusion electrode and a gas diffusion layer exhibits a remarkable effect in terms of preventing damage to the member. To do.
  • FIG. 1 is a schematic cross-sectional view showing an example of an adhesive sheet used in the production method of the present invention.
  • the pressure-sensitive adhesive sheet 100 includes a base material 110 and a pressure-sensitive adhesive layer 120 disposed on one side or both sides (one side in the illustrated example) of the base material.
  • the adhesive strength of the pressure-sensitive adhesive sheet used in the present invention decreases or disappears due to external stimulation. More specifically, in the pressure-sensitive adhesive sheet, the pressure-sensitive adhesive layer 120 decreases or disappears due to an external stimulus.
  • a pressure-sensitive adhesive layer can exhibit appropriate adhesiveness in a scene requiring adhesive force, and can exhibit good peelability in a scene requiring peeling.
  • each member can be fixed and each member can be conveyed with good handling property, and when assembling each member, the adhesive sheet can be easily peeled off.
  • the production line can be speeded up and a production method having excellent production efficiency can be obtained.
  • the said adhesive sheet is used as a conveying material of a polymer electrolyte membrane, when peeling a polymer electrolyte membrane from an adhesive sheet, it can prevent damaging a polymer electrolyte membrane.
  • the external stimulus is a general term for stimuli for reducing the adhesive force, and means, for example, thermal change (heating or cooling), irradiation with active energy rays, and the like.
  • the pressure-sensitive adhesive sheet has a long shape.
  • the long pressure-sensitive adhesive sheet can be suitably used in a continuous production process.
  • the pressure-sensitive adhesive sheet of the present invention can be set to any appropriate length depending on the desired production amount and the like.
  • the pressure-sensitive adhesive sheet may further include a protective layer that protects the pressure-sensitive adhesive layer until it is practically used.
  • the pressure-sensitive adhesive sheet of the present invention can be wound into a roll while being protected by a protective layer.
  • a protective layer for example, a plastic (for example, polyethylene terephthalate (PET), polyethylene, polypropylene) film, a nonwoven fabric surface-coated with a release agent such as a silicone release agent, a fluorine release agent, or a long-chain alkyl acrylate release agent Or paper etc. are mentioned.
  • the back surface treatment may be performed on the outermost layer opposite to the pressure-sensitive adhesive layer.
  • the back surface treatment can be performed using a release agent such as a silicone release agent or a long-chain alkyl acrylate release agent.
  • the pressure-sensitive adhesive sheet of the present invention can be wound into a roll by performing a back surface treatment.
  • the thickness of the pressure-sensitive adhesive sheet is preferably 2 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 600 ⁇ m. If it is such a range, it will be excellent in the workability
  • the initial adhesive strength of the adhesive sheet to the polyethylene terephthalate film (PET film) is preferably 0.3 N / 20 mm to 20 N / 20 mm, more preferably 0.5 N / 20 mm to 10 N / 20 mm. If it is such a range, the adhesive sheet which can convey each member (a polymer electrolyte membrane, a gas diffusion electrode, a gas diffusion layer) with sufficient handleability can be obtained.
  • the initial adhesive strength means the adhesive strength of the pressure-sensitive adhesive layer before applying an external stimulus.
  • adhesive force means the adhesive force measured by the method according to JISZ0237: 2000 (test temperature: 23 degreeC, bonding conditions: 2kg roller 1 reciprocation, peeling speed: 300 mm / min, peeling angle 180 degrees).
  • the PET film for measuring the adhesive strength for example, trade name “Lumirror S10 # 25” manufactured by Toray Industries, Inc. may be used.
  • the adhesive strength of the adhesive sheet to the polyethylene terephthalate film (PET film) is preferably reduced to 0.5 N / 20 mm or less, more preferably 0.3 N / 20 mm or less, by applying an external stimulus. preferable.
  • Such an adhesive sheet is excellent in peelability.
  • the pressure-sensitive adhesive sheet it is possible to suppress deformation of the polymer electrolyte membrane and generation of wrinkles in the electrolyte membrane when the adherend is used as a polymer electrolyte membrane.
  • the pressure-sensitive adhesive sheet for conveying an electrolyte membrane of the present invention preferably has a difference between the initial adhesive strength and the adhesive strength after reduction of the adhesive strength (initial adhesive strength-adhesive strength after reduction of the adhesive strength) of 0.2 N / 20 mm to 20N / 20mm, more preferably 5N / 20mm to 20N / 20mm, still more preferably 5N / 20mm to 19.7N / 20mm, particularly preferably 5N / 20mm to 15N / 20mm, most preferably 5N / 20mm to 9.7N / 20mm. If it is such a range, it will be excellent in the balance of the high adhesiveness at the time of conveyance, and the low adhesiveness at the time of peeling (namely, good peelability), and the effect of this invention will become remarkable.
  • the adhesive sheet may have one or more holes or marks. If there is a hole or mark, as will be described later, when the catalyst layer is transferred from the transfer sheet, the transfer sheet can be easily aligned, and the assembly accuracy is improved.
  • the positions of the holes or marks are preferably in the vicinity of both end portions in the width direction of the pressure-sensitive adhesive sheet.
  • Base material examples include resin sheets, nonwoven fabrics, paper, metal foils, woven fabrics, rubber sheets, foamed sheets, and laminates thereof (particularly, laminates including resin sheets).
  • the resin constituting the resin sheet include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, ethylene- Vinyl acetate copolymer (EVA), polyamide (nylon), wholly aromatic polyamide (aramid), polyimide (PI), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), fluororesin, polyether ether ketone (PEEK) ) And the like.
  • the nonwoven fabric include nonwoven fabrics made of natural fibers having heat resistance such as nonwoven fabrics including manila hemp; synthetic resin nonwoven fabrics such as polypropylene resin nonwoven fabrics, polyethylene resin nonwoven fabrics and ester resin nonwoven
  • the thickness of the base material can be set to any appropriate thickness depending on the desired strength or flexibility and the purpose of use.
  • the thickness of the substrate is preferably 1000 ⁇ m or less, more preferably 1 ⁇ m to 1000 ⁇ m, and still more preferably 1 ⁇ m to 500 ⁇ m.
  • the surface of the substrate may be subjected to surface treatment.
  • the surface treatment include corona treatment, chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, and coating treatment with a primer. If such a surface treatment is performed, the adhesiveness between the pressure-sensitive adhesive layer and the substrate can be enhanced.
  • a coating treatment with an organic coating material is preferable because it improves adhesion and the adhesive layer is less likely to be thrown and destroyed during heat peeling.
  • Adhesive Layer As described above, the adhesive strength of the adhesive sheet provided in the adhesive sheet is reduced by an external stimulus.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m.
  • the initial surface roughness Ra of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive layer is preferably 0 ⁇ m to 1.0 ⁇ m, more preferably 0 ⁇ m to 0.4 ⁇ m. If it is such a range, an adhesive sheet with few unevenness
  • the initial surface roughness Ra means the surface roughness Ra of the pressure-sensitive adhesive layer before giving an external stimulus. The surface roughness Ra can be measured according to JIS B 0601: 1994.
  • Pressure-sensitive adhesive layer whose adhesive strength is reduced by heating
  • the pressure-sensitive adhesive layer is reduced or disappears by heating.
  • Examples of such a pressure-sensitive adhesive layer include a pressure-sensitive adhesive layer containing thermally expandable microspheres, a heat-curable adhesive layer, and the like.
  • the pressure-sensitive adhesive layer containing the thermally expandable microspheres includes a pressure-sensitive adhesive A and thermally expandable microspheres.
  • the pressure-sensitive adhesive layer is heated, the heat-expandable microspheres expand or foam, and as a result, unevenness is generated on the pressure-sensitive adhesive surface, resulting in a decrease or disappearance of the adhesive force.
  • the thickness of the pressure-sensitive adhesive layer containing the thermally expandable microspheres is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 150 ⁇ m, and further preferably 15 ⁇ m to 100 ⁇ m. Within such a range, it is possible to obtain a pressure-sensitive adhesive sheet having appropriate pressure-sensitive adhesive properties and excellent peelability.
  • the tensile elastic modulus at 25 ° C. of the pressure-sensitive adhesive layer containing the thermally expandable microspheres is preferably 0.01 MPa or more, more preferably 0.05 MPa to 1 MPa, and further preferably 0.08 MPa to 0.8 MPa. It is. If it is such a range, it has moderate adhesiveness, is excellent in handling property when transporting each member (polymer electrolyte membrane, gas diffusion electrode, gas diffusion layer), and the positional displacement of each member. Can be prevented.
  • the tensile elastic modulus can be measured according to JIS K 7161: 2008.
  • the tensile elastic modulus at 80 ° C. of the pressure-sensitive adhesive layer containing the thermally expandable microspheres is preferably 0.01 MPa or more, more preferably 0.05 MPa to 1 MPa, and further preferably 0.08 MPa to 0.8 MPa. It is. If it is such a range, the adhesive sheet excellent in workability
  • the pressure-sensitive adhesive layer having the above physical properties can be obtained, for example, by selecting a base polymer constituting the pressure-sensitive adhesive and adjusting the weight average molecular weight of the base polymer. Can do.
  • the weight average molecular weight of the polymer is preferably 50,000 to 2,000,000, more preferably 100,000 to 1,500,000.
  • the weight average molecular weight can be determined by gel permeation chromatography (GPC) measurement (solvent tetrahydrofuran).
  • the pressure-sensitive adhesive A contained in the pressure-sensitive adhesive layer containing the thermally expandable microspheres is preferably one that does not restrain expansion or foaming of the thermally expandable microspheres during heating.
  • the adhesive include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, and styrene-diene block copolymers.
  • these pressure-sensitive adhesives for example, JP-A-56-56) (See 61468, JP-A 63-17981, etc.).
  • an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive is preferable.
  • acrylic pressure-sensitive adhesive examples include an acrylic pressure-sensitive adhesive based on a (meth) acrylic polymer (homopolymer or copolymer) using one or more (meth) acrylic acid alkyl esters as monomer components. Agents and the like.
  • the alkyl group of the (meth) acrylic acid alkyl ester is preferably a C1-20 linear, branched, or cyclic alkyl group, more preferably a C1-10 linear, branched, Or a cyclic alkyl group, particularly preferably a methyl group, an ethyl group, a butyl group, a 2-ethylhexyl group, and an octyl group.
  • the (meth) acrylic polymer may be a homopolymer obtained using only one kind of (meth) acrylic acid alkyl ester, or obtained using two or more kinds of (meth) acrylic acid alkyl ester.
  • a copolymer may also be used.
  • (meth) acrylic means to include both acrylic and methacrylic.
  • the (meth) acrylic polymer corresponds to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester as necessary for the purpose of modifying cohesive strength, heat resistance, crosslinkability and the like. Units may be included.
  • monomer components include carboxyl group-containing monomers such as acrylic acid and methacrylic acid; acid anhydride monomers such as maleic anhydride and itaconic anhydride; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate Hydroxyl group-containing monomers such as styrene sulfonic acid and allyl sulfonic acid, etc .; (N-substituted) amide monomers such as (meth) acrylamide and N, N-dimethyl (meth) acrylamide; (Meth) acrylic acid aminoalkyl monomers such as aminoethyl acrylate; (meth) alkoxyalkyl monomers such as methoxyethyl (
  • Succinimide monomers such as N- (meth) acryloyloxymethylene succinimide; vinyl monomers such as vinyl acetate, vinyl propionate and N-vinylpyrrolidone; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; Epoxy group-containing acrylic monomers such as glycidyl acrylate; glycol acrylic ester monomers such as polyethylene glycol (meth) acrylate; tetrahydrofurfuryl (meth) acrylate, complex such as fluorine (meth) acrylate and silicone (meth) acrylate Acrylic acid ester monomers having rings, halogen atoms, silicon atoms, etc .; hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) pro Lenglycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pen
  • the (meth) acrylic polymer can be obtained by polymerizing one or more of the above monomers.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the rubber-based adhesive examples include natural rubber; polyisoprene rubber, styrene / butadiene (SB) rubber, styrene / isoprene (SI) rubber, styrene / isoprene / styrene block copolymer (SIS) rubber, and styrene / butadiene.
  • SBS Styrene block copolymer
  • SEBS styrene / ethylene / butylene / styrene block copolymer
  • SEPS styrene / ethylene / propylene / styrene block copolymer
  • SEP rubber-based pressure-sensitive adhesives based on polymer
  • the pressure-sensitive adhesive A may contain any appropriate additive as necessary.
  • the additive include a crosslinking agent, a tackifier, a plasticizer (for example, trimellitic acid ester plasticizer, pyromellitic acid ester plasticizer), pigment, dye, filler, anti-aging agent, conductive material. , Antistatic agents, ultraviolet absorbers, light stabilizers, release modifiers, softeners, surfactants, flame retardants, antioxidants and the like.
  • tackifier Any appropriate tackifier may be used as the tackifier.
  • a tackifier resin is used as the tackifier.
  • Specific examples of tackifying resins include rosin tackifying resins (eg, unmodified rosin, modified rosin, rosin phenolic resin, rosin ester resin, etc.), terpene tackifying resins (eg, terpene resins, terpene phenols).
  • Resin for example, aliphatic hydrocarbon resin, aliphatic cyclic hydrocarbon resin, aromatic resin
  • hydrocarbon resins for example, aliphatic hydrocarbon resin, aliphatic cyclic hydrocarbon resin, aromatic resin
  • Hydrocarbon resins eg, styrene resins, xylene resins, etc.
  • aliphatic / aromatic petroleum resins e.g., styrene resins, xylene resins, etc.
  • aliphatic / aromatic petroleum resins aliphatic / alicyclic petroleum resins, hydrogenated hydrocarbon resins, coumarone resins, coumarone indene resins Etc.
  • phenolic tackifying resins eg, alkylphenolic resins, xyleneformaldehyde resins, resoles, novos
  • ketone-based tackifying resins such as an elastomer-based tackifying resins.
  • rosin-based tackifier resins, terpene-based tackifier resins, or hydrocarbon-based tackifier resins such as styrene resins are preferable. You may use a tackifier individually or in combination of 2 or more types.
  • the addition amount of the tackifier is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the base polymer.
  • crosslinking agent examples include an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a urea crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent, and a metal.
  • examples thereof include salt-based crosslinking agents, carbodiimide-based crosslinking agents, oxazoline-based crosslinking agents, aziridine-based crosslinking agents, and amine-based crosslinking agents. Of these, an isocyanate-based crosslinking agent or an epoxy-based crosslinking agent is preferable.
  • isocyanate-based crosslinking agent examples include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate; 2,4- Aromatic isocyanates such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate; trimethylolpropane / tolylene diisocyanate trimer adduct, trimethylolpropane / hexamethylene diisocyanate trimer adduct, hexa Examples include isocyanate adducts such as isocyanurate of methylene diisocyanate.
  • the content of the isocyanate-based crosslinking agent can be set to any appropriate amount depending on the desired adhesive strength, and is typically 0.1 to 20 parts by weight with respect to 100 parts by weight of the base polymer. More preferably, it is 0.5 to 10 parts by weight.
  • epoxy crosslinking agent examples include N, N, N ′, N′-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, 1, 6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, penta Erythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycol Dil ether, adipic acid diglycid
  • thermally expandable microsphere any appropriate thermally expandable microsphere can be used as long as it is a microsphere that can expand or foam by heating.
  • thermally expandable microsphere for example, a microsphere in which a substance that easily expands by heating is encapsulated in an elastic shell can be used.
  • thermally expandable microspheres can be produced by any appropriate method, for example, a coacervation method, an interfacial polymerization method, or the like.
  • Examples of the material that easily expands when heated include propane, propylene, butene, normal butane, isobutane, isopentane, neopentane, normal pentane, normal hexane, isohexane, heptane, octane, petroleum ether, methane halide, tetraalkylsilane.
  • low-boiling-point liquids such as azodicarbonamide that is gasified by thermal decomposition.
  • Examples of the material constituting the shell include nitrile monomers such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethoxyacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid Carboxylic acid monomers such as vinylidene chloride; vinyl acetate; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isobornyl (meth) (Meth) acrylic acid esters such as acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, ⁇ -carboxyethyl acrylate; styrene such as styrene, ⁇ -methyl
  • the polymer composed of these monomers may be a homopolymer or a copolymer.
  • the copolymer include vinylidene chloride-methyl methacrylate-acrylonitrile copolymer, methyl methacrylate-acrylonitrile-methacrylonitrile copolymer, methyl methacrylate-acrylonitrile copolymer, acrylonitrile-methacrylonitrile-itaconic acid copolymer.
  • a polymer etc. are mentioned.
  • An inorganic foaming agent or an organic foaming agent may be used as the thermally expandable microsphere.
  • the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
  • the organic foaming agent include chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azo compounds such as azobisisobutyronitrile, azodicarbonamide, and barium azodicarboxylate.
  • Hydrazine compounds such as paratoluenesulfonyl hydrazide, diphenylsulfone-3,3′-disulfonyl hydrazide, 4,4′-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p-toluylene sulfonyl semicarbazide, 4, Semicarbazide compounds such as 4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosopentamethylenetetramine, N, '- dimethyl -N, N'-dinitrosoterephthalamide; etc. N- nitroso compounds, and the like.
  • thermally expandable microspheres Commercially available products may be used for the above-mentioned thermally expandable microspheres. Specific examples of commercially available thermally expandable microspheres include “Matsumoto Microsphere” (grade: F-30, F-30D, F-36D, F-36LV, F-50) manufactured by Matsumoto Yushi Seiyaku Co., Ltd.
  • the particle diameter of the thermally expandable microsphere before heating is preferably 0.5 ⁇ m to 80 ⁇ m, more preferably 5 ⁇ m to 45 ⁇ m, still more preferably 10 ⁇ m to 20 ⁇ m, particularly
  • the thickness is preferably 10 ⁇ m to 15 ⁇ m.
  • the average particle size of the particle size before heating of the heat-expandable microspheres it is preferably 6 ⁇ m to 45 ⁇ m, more preferably 15 ⁇ m to 35 ⁇ m.
  • Thermally expandable microspheres having a particle size in such a range are excellent in dispersibility.
  • said particle diameter and average particle diameter are the values calculated
  • the average particle diameter of the thermally expandable microspheres before heating is preferably less than 1 ⁇ m, more preferably 0.8 ⁇ m or less, and further preferably 0.3 ⁇ m to 0.8 ⁇ m. is there. If the particle diameter of the heat-expandable microsphere is in such a range, an adhesive sheet with less unevenness on the adhesive surface can be obtained. By using such an adhesive sheet, it is possible to prevent the unevenness of the electrolyte membrane as the adherend from being generated. In addition, the pressure-sensitive adhesive sheet with less unevenness is particularly useful in the production of a membrane / electrode composite in which members such as gas diffusion electrodes are laminated by pressure bonding.
  • the thermally expandable microspheres have an appropriate strength that does not rupture until the volume expansion coefficient is preferably 5 times or more, more preferably 7 times or more, and even more preferably 10 times or more.
  • the adhesive force can be efficiently reduced by heat treatment.
  • the content ratio of the heat-expandable microspheres in the pressure-sensitive adhesive layer can be appropriately set according to the desired decrease in adhesive strength.
  • the content ratio of the heat-expandable microsphere is, for example, 1 to 150 parts by weight, preferably 10 to 130 parts by weight, more preferably 25 parts by weight with respect to 100 parts by weight of the base polymer forming the pressure-sensitive adhesive A. ⁇ 100 parts by weight.
  • the pressure-sensitive adhesive layer that can be heat-cured includes a pressure-sensitive adhesive B that can be heat-cured.
  • the pressure-sensitive adhesive B can be formed from, for example, a thermosetting pressure-sensitive adhesive containing a base polymer and a thermosetting resin, or a thermosetting pressure-sensitive adhesive containing a thermosetting resin as a base polymer.
  • the thermosetting resin used for the adhesive B include phenolic resins, amino resins, unsaturated polyester resins, epoxy resins, polyurethane resins, silicone resins, thermosetting polyimide resins, and the like. It is done.
  • the base polymer used in combination with the thermosetting resin include (meth) acrylic polymers and rubber polymers.
  • any appropriate pressure-sensitive adhesive layer can be used in addition to the pressure-sensitive adhesive layer described above as long as the effect of the present invention is obtained.
  • Examples of other pressure-sensitive adhesive layers whose pressure-sensitive adhesive strength is reduced by heating include pressure-sensitive pressure-sensitive adhesives C and side chain crystalline polymers.
  • the content of the side-chain crystalline polymer is preferably 4 to 9 parts by weight with respect to 100 parts by weight of the pressure-sensitive pressure-sensitive adhesive C. More preferably, it is 4 to 6 parts by weight. If it is such a range, the adhesive layer in which adhesive force will fully fall by heating can be formed.
  • the side chain crystalline polymer and the pressure sensitive adhesive C are incompatible. If the side-chain crystalline polymer and the pressure-sensitive adhesive C are not compatible with each other, a sea-island structure in which the side-chain crystalline polymer is dispersed in the pressure-sensitive adhesive C is formed, and the pressure-sensitive adhesive is sufficiently reduced by heating. A layer can be formed.
  • the pressure-sensitive adhesive C any appropriate adhesive can be used.
  • the pressure-sensitive adhesive C include: natural rubber-based adhesive; synthetic rubber-based adhesive; styrene / butadiene latex-based adhesive; block copolymer type thermoplastic rubber; butyl rubber-based adhesive; polyisobutylene-based adhesive; Acrylic adhesive; vinyl ether copolymer and the like.
  • an acrylic pressure-sensitive adhesive is preferable.
  • the acrylic pressure-sensitive adhesive preferably contains a (meth) acrylic polymer having a structural unit derived from a C1-12 alkyl acrylate ester and / or a methacrylic acid alkyl ester.
  • the (meth) acrylic polymer can be obtained, for example, by polymerizing monomers such as ethylhexyl (meth) acrylate, hydroxyethyl (meth) acrylate, methyl (meth) acrylate and the like.
  • the side chain crystalline polymer preferably can reversibly take a crystalline state and a fluid state depending on the temperature.
  • the side chain crystalline polymer is preferably crystallized at a temperature lower than the melting point of the side chain crystalline polymer and exhibits fluidity at a temperature equal to or higher than the melting point. If such a side chain crystalline polymer is used, the pressure-sensitive adhesive has an appropriate tackiness at a temperature below the melting point, and is heated above the melting point to fluidize the side chain crystalline polymer. It is possible to form a pressure-sensitive adhesive layer that can inhibit the adhesiveness of C and reduce the adhesive strength.
  • the melting point means a temperature at which a specific part of a polymer that is aligned in an ordered arrangement becomes disordered by a predetermined equilibrium process.
  • the melting point of the polymer can be obtained by measuring with a differential thermal scanning calorimeter (DSC) under measurement conditions of 10 ° C./min.
  • the melting point of the side chain crystalline polymer is preferably 50 ° C. or higher, more preferably 50 ° C. to 70 ° C.
  • Examples of the side chain crystalline polymer include (meth) acrylic acid alkyl ester having a linear alkyl group of C18 or more (preferably C18-22) and (meth) acrylic having an alkyl group of C6 or less. Examples thereof include polymers obtained using acid alkyl esters and polar monomers as monomer components.
  • Examples of the (meth) acrylic acid alkyl ester having a C18 or higher linear alkyl group include stearyl (meth) acrylate, eicosyl (meth) acrylate, and behenyl (meth) acrylate.
  • the content ratio of the (meth) acrylic acid alkyl ester having a linear alkyl group of C18 or more is preferably 15 parts by weight to 99 parts by weight with respect to 100 parts by weight of the monomer component constituting the side chain crystalline polymer. Parts, more preferably 25 parts by weight to 99 parts by weight, and still more preferably 30 parts by weight to 99 parts by weight.
  • Examples of the (meth) acrylic acid alkyl ester having an alkyl group of C6 or less include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, and the like.
  • the content ratio of the (meth) acrylic acid alkyl ester having an alkyl group of C6 or less is preferably less than 70 parts by weight, more preferably 100 parts by weight of the monomer component constituting the side chain crystalline polymer.
  • the amount is less than 65 parts by weight, more preferably less than 40 parts by weight.
  • the polar monomer examples include carboxyl group-containing ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl Examples thereof include ethylenically unsaturated monomers having a hydroxyl group such as (meth) acrylate and 2-hydroxyhexyl (meth) acrylate.
  • carboxyl group-containing ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid
  • 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl
  • ethylenically unsaturated monomers having a hydroxyl group such as (meth) acrylate and 2-hydroxyhexyl (meth) acrylate.
  • the content of the polar monomer is preferably 0.5 to 25 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the monomer component constituting the side-chain crystalline polymer. It is.
  • the weight average molecular weight of the side chain crystalline polymer is preferably 3,000 to 30,000, more preferably 5,000 to 25,000. If it is such a range, the adhesive layer in which adhesive force will fully fall by heating can be formed.
  • Pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with active energy rays
  • the pressure-sensitive adhesive layer is cured by irradiation with active energy rays, and the pressure-sensitive adhesive strength is reduced or eliminated.
  • the pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with active energy rays can include an active energy ray-curable pressure-sensitive adhesive D that is cured by irradiation with active energy rays.
  • Examples of the active energy rays include gamma rays, ultraviolet rays, visible rays, infrared rays (heat rays), radio waves, alpha rays, beta rays, electron beams, plasma flows, ionizing rays, particle rays and the like.
  • the thickness of the pressure-sensitive adhesive layer containing the active energy ray-curable pressure-sensitive adhesive D is preferably 1 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, and still more preferably 5 ⁇ m to 20 ⁇ m. Within such a range, it is possible to obtain a pressure-sensitive adhesive sheet having appropriate pressure-sensitive adhesive properties and excellent peelability.
  • the initial tensile elastic modulus at 25 ° C. of the pressure-sensitive adhesive layer containing the active energy ray-curable pressure-sensitive adhesive D is preferably 0.01 MPa or more, more preferably 0.05 MPa to 1.0 MPa, and still more preferably 0. 0.03 MPa to 0.08 MPa. If it is such a range, it has moderate adhesiveness, is excellent in handling property when transporting each member (polymer electrolyte membrane, gas diffusion electrode, gas diffusion layer), and the positional displacement of each member. Can be prevented.
  • the initial tensile elastic modulus means the tensile elastic modulus of the pressure-sensitive adhesive layer before applying an external stimulus (in the pressure-sensitive adhesive layer including the pressure-sensitive adhesive D, active energy ray irradiation).
  • the tensile elastic modulus at 25 ° C. of the pressure-sensitive adhesive layer containing the active energy ray-curable pressure-sensitive adhesive D is preferably 10 MPa to 800 MPa, more preferably 20 MPa to 500 MPa after irradiation with active energy rays. If it is such a range, the adhesive sheet excellent in workability
  • the pressure-sensitive adhesive layer having the above physical properties can be obtained, for example, by appropriately selecting a base polymer constituting the pressure-sensitive adhesive and adjusting the weight average molecular weight of the base polymer. Obtainable.
  • Examples of the active energy ray-curable pressure-sensitive adhesive D include an active energy ray-curable pressure-sensitive adhesive containing a base polymer and an active energy ray-curable monomer and / or oligomer (hereinafter referred to as “addition type active energy ray-curable pressure-sensitive adhesive”). Active energy ray-curable pressure-sensitive adhesive containing a polymer having a polymerizable carbon-carbon double bond as a base polymer (hereinafter, also referred to as “base polymer-type active energy ray-curable pressure-sensitive adhesive”). .
  • the base polymer contained in the additive-type active energy ray-curable pressure-sensitive adhesive any appropriate polymer can be adopted as long as it can exhibit adhesiveness.
  • the base polymer include (meth) acrylic polymers and rubber polymers.
  • the base polymer is a (meth) acrylic polymer.
  • the (meth) acrylic polymer include the polymers described above.
  • the (meth) acrylic polymer contained in the additive-type active energy ray-curable pressure-sensitive adhesive may have a polymerizable carbon-carbon double bond.
  • a (meth) acrylic polymer that can be used as a base polymer of the base polymer type active energy ray-curable pressure-sensitive adhesive can be used. The polymer will be described later.
  • the weight average molecular weight of the (meth) acrylic polymer contained in the additive active energy ray-curable pressure-sensitive adhesive is preferably 500,000 or more, more preferably 800,000 to 3,000,000.
  • active energy ray-curable monomer or oligomer a monomer or oligomer having a functional group that crosslinks upon irradiation with active energy rays such as a polymerizable carbon-carbon double bond can be employed.
  • Examples of the monomer or oligomer having a functional group include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1, 6-hexanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, esterified product of (meth) acrylic acid and polyhydric alcohol, ester acrylate oligomer, 2-propenyl-3-butenyl cyanurate, isocyanurate, Examples include isocyanurate compounds.
  • monomers or oligomers containing an average of 6 or more polymerizable carbon-carbon double bonds in one molecule are preferred.
  • Only one type of active energy ray-curable monomer or oligomer may be used, or two or more types may be used in combination.
  • the viscosity of the active energy ray-curable monomer or oligomer is not particularly limited.
  • the total amount of the active energy ray-curable monomer and oligomer in the additive active energy ray-curable pressure-sensitive adhesive is preferably 1 to 150 parts by weight, more preferably 1 part by weight with respect to 100 parts by weight of the base polymer. -100 parts by weight, particularly preferably 5 parts by weight to 50 parts by weight, and most preferably 10 parts by weight to 40 parts by weight. When the blending amount is within the above range, the adhesive strength is sufficiently lowered by curing.
  • the base polymer type active energy ray-curable pressure-sensitive adhesive since the base polymer itself has a property of crosslinking by irradiation with active energy rays, the addition of the active energy ray-curable monomer or oligomer is not necessarily required. Is optional. In the pressure-sensitive adhesive not containing the monomer or oligomer having a low molecular weight, these low-molecular components do not move with time, so that a pressure-sensitive adhesive layer having a stable structure can be formed.
  • the polymer having a polymerizable carbon-carbon double bond which is the base polymer of the base polymer type active energy ray-curable adhesive, includes a polymerizable carbon-carbon double bond in the side chain, in the main chain, or in the main chain.
  • a terminal polymer can be used.
  • a (meth) acrylic polymer that can be used as a base polymer in the additive-type active energy ray-curable pressure-sensitive adhesive has a basic skeleton, and a polymerizable carbon-carbon double bond is introduced into the basic skeleton.
  • Polymers are preferred. Considering the ease of molecular design, the polymerizable carbon-carbon double bond is preferably introduced into the side chain of the (meth) acrylic polymer.
  • the number of polymerizable carbon-carbon double bonds per molecule of the polymer having a polymerizable carbon-carbon double bond is preferably 6 or more on average.
  • the pressure-sensitive adhesive is sufficiently cured by irradiation with active energy rays and the adhesive strength is reduced.
  • Any appropriate method can be adopted as a method for introducing a polymerizable carbon-carbon double bond into the (meth) acrylic polymer.
  • a method for introducing a polymerizable carbon-carbon double bond into the side chain of the (meth) acrylic polymer for example, a monomer having a functional group is copolymerized to have a functional group in the side chain (meth) acrylic A polymer is synthesized, and then a compound having a functional group capable of reacting with the functional group and a polymerizable carbon-carbon double bond is condensed or the active energy ray curable property of the polymerizable carbon-carbon double bond is maintained. Examples of the method include addition reaction.
  • Examples of combinations of functional groups that can be reacted include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • each functional group is a compound having a (meth) acrylic polymer and a polymerizable carbon-carbon double bond. It can be on either side.
  • the (meth) acrylic polymer preferably has a hydroxyl group
  • the compound having a polymerizable carbon-carbon double bond preferably has an isocyanate group.
  • isocyanate compound having a polymerizable carbon-carbon double bond examples include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate and the like.
  • Examples of the (meth) acrylic polymer having a hydroxyl group in the side chain include the hydroxy group-containing monomers exemplified above and ether compounds such as 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. Examples thereof include polymers obtained by copolymerization.
  • the isocyanate In the condensation reaction between the isocyanate compound having a polymerizable carbon-carbon double bond and the (meth) acrylic polymer having a hydroxyl group in the side chain, the isocyanate is used with respect to 100 moles of the hydroxyl group of the (meth) acrylic polymer.
  • Each compounding amount can be set so that the isocyanate group of the compound is preferably 1 to 90 mol, more preferably 5 to 80 mol.
  • the condensation reaction proceeds efficiently, and a (meth) acrylic polymer having sufficient active energy ray curability can be obtained.
  • the weight average molecular weight of the polymer having a polymerizable carbon-carbon double bond is preferably about 500,000 or more, more preferably about 800,000 to 3,000,000. If the weight average molecular weight is less than 500,000, sufficient cohesive force cannot be obtained and the adherend may be contaminated.
  • the base polymer type active energy ray-curable pressure-sensitive adhesive may contain an active energy ray-curable monomer and / or oligomer as necessary.
  • Preferred examples of the active energy ray-curable monomer and oligomer include the active energy ray-curable monomer and oligomer used in the additive-type active energy ray-curable pressure-sensitive adhesive.
  • the total amount of the active energy ray-curable monomer and oligomer in the base polymer type active energy ray-curable pressure-sensitive adhesive is preferably 1 to 150 parts by weight, more preferably 1 part by weight based on 100 parts by weight of the base polymer. Parts to 100 parts by weight, particularly preferably 1 part to 50 parts by weight, and most preferably 5 parts to 40 parts by weight.
  • the additive type and base polymer type active energy ray-curable pressure-sensitive adhesive may further contain an external cross-linking agent, if necessary.
  • the base polymer reacts with the external cross-linking agent, so that the base polymer is cross-linked and the weight average molecular weight can be increased.
  • Any appropriate crosslinking agent can be adopted as the external crosslinking agent.
  • Specific examples of the external crosslinking agent include polyisocyanate compounds, epoxy compounds, aziridine compounds, melamine resins, urea resins, anhydrous compounds, polyamines, and carboxyl group-containing polymers.
  • the blending amount of the external cross-linking agent can be appropriately set according to the balance with the base polymer to be cross-linked, the use of the pressure-sensitive adhesive sheet, and the like. Generally, the blending amount of the external cross-linking agent is 0.1 to 10 parts by weight with respect to 100 parts by weight of the base polymer.
  • the additive type and base polymer type active energy ray-curable pressure-sensitive adhesive may further contain a photopolymerization initiator, if necessary. Since the photopolymerization initiator is activated by irradiation with light such as ultraviolet rays, it can be particularly suitably used when these pressure-sensitive adhesives are ultraviolet curable.
  • photopolymerization initiator examples include benzoin alkyl ethers such as benzoin methyl ether, benzoisopropyl ether, benzoin isopropyl ether and benzoin isobutyl ether; fragrances of benzyl, benzoin, benzophenone and ⁇ -hydroxycyclohexyl phenyl ketones.
  • Aromatic ketones such as benzyl dimethyl ketal; thioxanthones such as polyvinylbenzophenone, chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, and diethylthioxanthone.
  • the blending amount of the photopolymerization initiator is, for example, 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the base polymer contained in the pressure-sensitive adhesive.
  • the additive-type and base polymer-type active energy ray-curable pressure-sensitive adhesives may further contain optional additives such as tackifiers, anti-aging agents, fillers, and colorants in addition to the above components, if necessary. .
  • the pressure-sensitive adhesive layer may contain a pressure-sensitive adhesive E whose pressure-sensitive adhesive strength is reduced by cooling.
  • the adhesive E include natural rubber adhesive, cis-isoprene rubber, styrene-isoprene rubber, budadien rubber, nitrile rubber adhesive, chloroprene rubber adhesive, chlorosulfonated polyethylene adhesive, and polysulfide rubber. -Based adhesives, butyl rubber-based adhesives, and the like.
  • the pressure-sensitive adhesive E may contain a tackifier such as alkylphenol-formaldehyde resin, coumarone-indene resin, xylene-formaldehyde resin.
  • the side chain crystalline polymer described above may be used as the adhesive E.
  • an adhesive layer whose adhesive strength is reduced by cooling can be formed.
  • Examples of the manufacturing method of the pressure-sensitive adhesive sheet include (1) a method of applying a pressure-sensitive adhesive layer forming material on a base material, and (2) a method of bonding a base material and an adhesive film. Etc.
  • the pressure-sensitive adhesive layer forming material includes the above-mentioned pressure-sensitive adhesive (pressure-sensitive adhesive A, pressure-sensitive adhesive B that can be heat-cured, pressure-sensitive pressure-sensitive adhesive C, active energy ray-curable pressure-sensitive adhesive D, or pressure-sensitive adhesive E). Depending on the additive and / or any suitable solvent.
  • the pressure-sensitive adhesive layer forming material may include the thermally expandable microspheres.
  • heat-expandable microspheres are embedded in the coating layer with a press or the like to form a pressure-sensitive adhesive layer containing the heat-expandable microspheres. Good.
  • the coating of the pressure-sensitive adhesive layer forming material can be performed by applying the pressure-sensitive adhesive layer forming material by any appropriate method and then drying the coating layer. Any appropriate drying method can be adopted as a method for drying the coating layer.
  • the pressure-sensitive adhesive layer contains thermally expandable microspheres and when a pressure-sensitive adhesive that can be heat-cured is used, it is preferable to dry at a temperature that does not decrease the adhesive strength of the pressure-sensitive adhesive.
  • the adhesive film in the method of laminating the substrate and the adhesive film can be formed by applying the above-mentioned pressure-sensitive adhesive layer forming material on the release film.
  • An adhesive sheet can be obtained by transferring an adhesive film from a release film to a substrate.
  • FIG. 2 is a diagram for explaining an overview of a method for producing a fuel cell membrane / electrode composite according to a first embodiment of the present invention.
  • a membrane / electrode assembly 200 including the first gas diffusion electrode 20, the polymer electrolyte membrane 10, and the second gas diffusion electrode 30 can be manufactured.
  • at least one of the polymer electrolyte membrane, the first gas diffusion electrode, and the second gas diffusion electrode is conveyed by an adhesive sheet whose adhesive force is reduced by an external stimulus.
  • the pressure-sensitive adhesive sheet is peeled off by applying external stimuli such as heat and active energy rays to the pressure-sensitive adhesive sheet to reduce the pressure-sensitive adhesive force of the pressure-sensitive adhesive sheet.
  • external stimuli such as heat and active energy rays
  • the pressure-sensitive adhesive sheet By sticking and transporting these members to the pressure-sensitive adhesive sheet, it is excellent in handling at the time of transport, and is easily peeled off after transport without damaging the adherend. Can do.
  • the polymer electrolyte membrane, the first gas diffusion electrode, and the second gas diffusion electrode are all conveyed by the adhesive sheet. More specifically, in the first embodiment, the polymer electrolyte membrane 10 is conveyed by the first adhesive sheet 100 and supplied to the process, and the first gas diffusion electrode 20 is the second adhesive sheet 100 ′. The second gas diffusion electrode 30 is conveyed by the third adhesive sheet 100 ′′ and supplied to the process.
  • the pressure-sensitive adhesive sheet described in the above section B that is, a pressure-sensitive adhesive sheet whose adhesive strength is reduced or eliminated by an external stimulus is used.
  • the polymer electrolyte membrane 10 is adhered to the adhesive surface (that is, the adhesive layer) of the first adhesive sheet 100, and the polymer electrolyte membrane 10 is conveyed.
  • a long laminate a including the first pressure-sensitive adhesive sheet 100 and the polymer electrolyte membrane 10 disposed on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive sheet 100 is prepared in the form of a roll, and the roll The laminate a is fed out from If it is such a form, it will become possible to manufacture a membrane / electrode composite body by a continuous production process, and it can be set as the manufacturing method excellent in production efficiency.
  • the length of the laminated body a can be set to any appropriate length depending on the desired production amount.
  • the first pressure-sensitive adhesive sheet 100 is used as a conveying material for the polymer electrolyte membrane 10 and the first gas diffusion electrode 20 laminated in the subsequent step until the first pressure-sensitive adhesive sheet 100 is peeled off in the third step described later after the first step. Can function.
  • the pressure-sensitive adhesive sheet as a transport material for the polymer electrolyte membrane has sufficient adhesive strength when transporting the polymer electrolyte membrane, and the adhesive strength decreases or disappears upon peeling, and the polymer electrolyte membrane Deformation and wrinkle generation can be prevented.
  • the width of the first pressure-sensitive adhesive sheet 100 can be set to any appropriate width depending on the size of the polymer electrolyte membrane.
  • the width of the polymer electrolyte membrane 10 is preferably 50% to 100%, more preferably 70% to 95% with respect to the width of the first pressure-sensitive adhesive sheet.
  • the polymer electrolyte membrane 10 may be continuously arranged in the length direction on the first pressure-sensitive adhesive sheet 100.
  • the polymer electrolyte membrane 10 is arranged on the electrolyte membrane carrying pressure-sensitive adhesive sheet 100 at a predetermined interval. The interval can be set to any appropriate interval depending on the desired size of the membrane / electrode composite.
  • the thickness of the polymer electrolyte membrane is preferably 5 ⁇ m to 300 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m. According to the present invention, by using the pressure-sensitive adhesive sheet, the polymer electrolyte membrane can be transported with good handling properties even if the polymer electrolyte membrane is thin.
  • the first gas diffusion electrode 20 is adhered to the adhesive surface of the second adhesive sheet 100 ′, the first gas diffusion electrode 20 is conveyed, and the first of the polymer electrolyte membrane 10 is transferred.
  • the first gas diffusion electrode 20 and the second pressure-sensitive adhesive sheet 100 ′ are laminated in this order on the surface opposite to the pressure-sensitive adhesive sheet 100 from the surface.
  • the gas diffusion electrode used in the present invention is not particularly limited, and any appropriate gas diffusion electrode can be used.
  • the gas diffusion electrode includes a catalyst layer and a gas diffusion layer. The gas diffusion electrode is laminated so that the catalyst layer is on the polymer electrolyte membrane side.
  • the first gas diffusion electrode 20 is supplied as a laminated body b in a state of being adhered to the adhesive surface of the second adhesive sheet 100 '.
  • the laminate b is preferably long.
  • the laminate b is preferably formed by adhering the first gas diffusion electrode 20 to the adhesive surface of the long second adhesive sheet 100 ′ drawn out from the roll at a predetermined interval. Is done.
  • the length of the laminated body b can be set to any appropriate length according to the desired production amount.
  • a plurality of first gas diffusion electrodes 20 are arranged on the long second adhesive sheet 100 ′. When the polymer electrolyte membrane is disposed with a predetermined interval, the planar area of the first gas diffusion electrode is, for example, 60% to 90% with respect to the planar area of one polymer electrolyte membrane. %.
  • the second pressure-sensitive adhesive sheet 100 ′ is laminated after the second step until the polymer electrolyte membrane 10, the first gas diffusion electrode 20, and the post-process are peeled off in the fifth step described later. It can function as a carrier for the gas diffusion electrode 30.
  • the first gas diffusion electrode and other members polymer electrolyte membrane, second gas diffusion electrode
  • the pressure-sensitive adhesive sheet can be peeled easily by reducing the adhesive strength and without damaging the adherend.
  • the width of the second pressure-sensitive adhesive sheet 100 ′ is preferably 80% to 110%, more preferably 90% to 100% with respect to the width of the first pressure-sensitive adhesive sheet 100.
  • the pressure-sensitive adhesive layer of the first pressure-sensitive adhesive sheet 100 and the pressure-sensitive adhesive layer of the second pressure-sensitive adhesive sheet 100 ′ have different responsiveness to external stimuli. Specifically, it is preferable that the adhesive strength of the second pressure-sensitive adhesive sheet 100 ′ is not lowered by the external stimulus A given in the third step (step of peeling the first pressure-sensitive adhesive sheet 100) of the next step.
  • the responsiveness to external stimuli is different. For example, when the adhesive strength of each adhesive layer decreases due to different types of external stimuli (for example, heat / active energy rays), any adhesive layer is heated. When the temperature at which the adhesive strength is reduced but the temperature at which the adhesive strength is lost is different, the adhesive strength of any adhesive layer is reduced by the active energy rays, but the wavelength required for reducing the adhesive strength is different. To do.
  • any appropriate method can be adopted as a method of laminating the first gas electrode 20. Moreover, if an adhesive sheet provided with a hole or a mark is used as the first adhesive sheet and the second adhesive sheet, the alignment becomes easy, and the membrane / electrode composite can be manufactured with high assembly accuracy. In addition, arbitrary appropriate sensors can be used for alignment of the adhesive sheet having the mark.
  • the first pressure-sensitive adhesive sheet 100 After laminating the first gas diffusion electrode 20 and the second pressure-sensitive adhesive sheet 100 ', the first pressure-sensitive adhesive sheet 100 is peeled off (third step).
  • the first pressure-sensitive adhesive sheet 100 reduces the pressure-sensitive adhesive force of the first pressure-sensitive adhesive sheet 100 by applying an external stimulus A from the side where the polymer electrolyte membrane 10 of the first pressure-sensitive adhesive sheet 100 is not disposed. Can be peeled.
  • the second pressure-sensitive adhesive sheet 100 ′ a pressure-sensitive adhesive sheet having a different responsiveness to external stimuli from the first pressure-sensitive adhesive sheet 100 is used, and the second pressure-sensitive adhesive sheet 100 ′ is peeled off also by the external stimulus A in the third step. Preferably not.
  • the heating conditions such as temperature and time are the characteristics of the thermally expandable microspheres in the pressure-sensitive adhesive layer of the first pressure-sensitive adhesive sheet or the thermosetting resin constituting the pressure-sensitive adhesive layer.
  • the heating temperature is preferably 70 ° C. to 200 ° C., more preferably 80 ° C. to 150 ° C. When the heating temperature is such a temperature, shrinkage of the laminate can be prevented.
  • the first gas diffusion electrode 20 is pressure-bonded at the same time as the temperature at which the first gas diffusion electrode 20 is pressure-bonded and the temperature at which the pressure-sensitive adhesive layer of the first pressure-sensitive adhesive sheet is reduced.
  • One adhesive sheet 100 may be peeled off.
  • the active energy ray irradiation conditions such as wavelength, irradiation intensity, and irradiation time are the characteristics of the active energy ray-curable pressure-sensitive adhesive D in the pressure-sensitive adhesive layer of the first pressure-sensitive adhesive sheet. Depending on the, it can be set to any appropriate condition.
  • the second gas diffusion electrode 30 is adhered to the pressure-sensitive adhesive surface of the third pressure-sensitive adhesive sheet 100 ′′, the second gas diffusion electrode 30 is conveyed, and the polymer electrolyte
  • the second gas diffusion electrode 30 and the third adhesive sheet 100 '' are laminated in this order on the surface of the membrane 10 opposite to the first gas diffusion electrode 20 (fourth step).
  • the second gas diffusion electrode 30 is stacked at a position corresponding to the first gas diffusion electrode 20.
  • the second gas diffusion electrode 30 is supplied as a laminated body c in a state of being adhered to the adhesive surface of the third adhesive sheet 100 '.
  • the laminate c is preferably long.
  • the laminate c is preferably formed by adhering the second gas diffusion electrode 30 to the adhesive surface of the long third adhesive sheet 100 ′ drawn out from the roll at a predetermined interval.
  • the length of the laminate c can be set to any appropriate length depending on the desired production amount.
  • a plurality of second gas diffusion electrodes 30 are arranged on the third adhesive sheet 100 ′′.
  • the size of the second gas diffusion electrode is usually the same as the size of the first gas diffusion electrode, but may be different from the size of the first gas diffusion electrode within a practical range.
  • the third pressure-sensitive adhesive sheet 100 '' is used as a conveying material for the polymer electrolyte membrane 10, the first gas diffusion electrode 20, and the second diffusion electrode 30 until the third pressure-sensitive adhesive sheet 100 '' is peeled off in the seventh step after the fourth step. Can function.
  • the second gas diffusion electrode and other members polymer electrolyte membrane, first gas diffusion electrode
  • the pressure-sensitive adhesive sheet can be peeled easily by reducing the adhesive strength and without damaging the adherend.
  • the width of the third pressure-sensitive adhesive sheet 100 ′′ is preferably 80% to 110%, more preferably 90% to 100% with respect to the width of the second pressure-sensitive adhesive sheet 100 ′.
  • the second adhesive sheet 100 ′ and the third adhesive sheet 100 ′′ preferably have different responsiveness to external stimuli. Specifically, the adhesive force of the third pressure-sensitive adhesive sheet 100 ′′ is not reduced by B due to external stimulation given in the fifth step (step of peeling the second pressure-sensitive adhesive sheet 100 ′) of the next step. preferable.
  • any appropriate method can be adopted as a method of laminating the second gas diffusion electrode 30. Moreover, if an adhesive sheet provided with a hole or a mark is used as the second adhesive sheet and the third adhesive sheet, the alignment becomes easy, and the membrane / electrode composite can be manufactured with high assembly accuracy.
  • the membrane / electrode composite structure in which the polymer electrolyte membrane is sandwiched between the pair of gas diffusion electrodes has the adhesive surface of the second adhesive sheet 100 ′ and the third adhesive sheet 100 ′. A plurality of layers are formed between the adhesive surface of '.
  • the second pressure-sensitive adhesive sheet 100 ′ is peeled off (fifth step).
  • the second pressure-sensitive adhesive sheet 100 ′ is provided with an external stimulus B from the side where the first gas diffusion electrode 20 of the second pressure-sensitive adhesive sheet 100 ′ is not disposed, whereby the pressure-sensitive adhesive force of the second pressure-sensitive adhesive sheet 100 ′. Can be peeled off.
  • the third pressure-sensitive adhesive sheet 100 ′′ a pressure-sensitive adhesive sheet having a different responsiveness to external stimuli from the second pressure-sensitive adhesive sheet 100 ′ is used, and the third pressure-sensitive adhesive sheet 100 ′ is also applied by the external stimulus B in the fifth step. It is preferable that 'does not peel off.
  • the heating conditions such as temperature and time are the characteristics of the heat-expandable microspheres in the pressure-sensitive adhesive layer of the second pressure-sensitive adhesive sheet 100 ′ or the thermosetting property of the pressure-sensitive adhesive layer. Any appropriate conditions can be set according to the type of resin.
  • the heating temperature is preferably 70 ° C. to 200 ° C., more preferably 80 ° C. to 150 ° C. When the heating temperature is such a temperature, shrinkage of the laminate can be prevented. Note that the temperature at which the second gas diffusion electrode 30 is pressure-bonded and the temperature at which the adhesive force of the pressure-sensitive adhesive layer of the second pressure-sensitive adhesive sheet 100 ′ is reduced are the same temperature, and the second gas diffusion electrode 30 is pressure-bonded at the same time.
  • the second pressure-sensitive adhesive sheet 100 ′ may be peeled off.
  • the active energy ray irradiation conditions such as wavelength, irradiation intensity, and irradiation time are the characteristics of the active energy ray-curable pressure-sensitive adhesive C in the pressure-sensitive adhesive layer of the second pressure-sensitive adhesive sheet. Depending on the, it can be set to any appropriate condition.
  • the external stimulus B for reducing the adhesive force of the second adhesive sheet 100 ′ is preferably different from the external stimulus A for reducing the adhesive force of the first adhesive sheet 100.
  • the external stimulus A is heat
  • the external stimulus B for example, heat at a temperature different from that of the external stimulus A or active energy rays can be used.
  • the external stimulus A is an active energy ray
  • the external stimulus B for example, heat or an active energy ray having a wavelength different from that of the external stimulus A can be used.
  • the pressure-sensitive adhesive sheet that requires peeling can be peeled with good workability, and peeling of the pressure-sensitive adhesive sheet that does not require peeling can be prevented.
  • a membrane / electrode composite can be manufactured well.
  • the relationship between the temperature Ta of the external stimulus A and the temperature Tb of the external stimulus B is preferably Ta ⁇ Tb. If it is such a relationship, when the external stimulus A is given, only the first pressure-sensitive adhesive sheet 100 can be peeled while maintaining the workability and handling properties of the second pressure-sensitive adhesive sheet 100 ′ ( (3rd process) and the process (4th process) which laminates
  • Examples of combinations of pressure-sensitive adhesive sheets that can be processed under the above conditions include, for example, a combination of pressure-sensitive adhesive sheets having different thermal expansibility of the thermally expandable microspheres included, and a pressure-sensitive adhesive sheet having a different content ratio of the heat-expandable microspheres included.
  • a combination etc. are mentioned.
  • the first pressure-sensitive adhesive sheet using the heat-expandable microspheres having high thermal expansion for example, the volume expansion coefficient is 10 times or more, preferably 12 times or more
  • the thermal expansion of the first pressure-sensitive adhesive sheet Used in combination with a second pressure-sensitive adhesive sheet using thermally expandable microspheres having lower thermal expansion than expandable microspheres for example, the volume expansion coefficient is 7 to 10 times, preferably 7 to 9 times).
  • the content of thermally expandable microspheres in the pressure-sensitive adhesive layer is large (for example, 100 parts by weight to 150 parts by weight, preferably 130 parts by weight to 150 parts by weight with respect to 100 parts by weight of the base polymer).
  • the content ratio of the thermally expandable microspheres is smaller than that of the sheet and the first pressure-sensitive adhesive sheet (for example, 50 parts by weight or more and less than 100 parts by weight, preferably 60 parts by weight to 90 parts by weight with respect to 100 parts by weight of the base polymer). You may combine with a 2nd adhesive sheet.
  • the adherend polymer electrolyte membrane
  • the adherend may function as an active energy ray shielding material.
  • the production method of the present invention is as a step before separating and cutting a plurality of membrane / electrode composite structures. It includes a step of cutting the polymer electrolyte membrane 10 with the gas diffusion electrode adjacent in the length direction as a cutting position (sixth step). Any appropriate method can be adopted as the cutting method.
  • the third pressure-sensitive adhesive sheet 100 ′′ is peeled off (seventh step).
  • the third pressure-sensitive adhesive sheet 100 '' is applied to the third pressure-sensitive adhesive sheet 100 '' by applying an external stimulus C from the side where the second gas diffusion electrode 30 is not disposed. Can be peeled off with reduced adhesive strength.
  • the heating conditions such as temperature and time are the characteristics of the heat-expandable microspheres in the pressure-sensitive adhesive layer of the third pressure-sensitive adhesive sheet 100 '' or the thermosetting that forms the pressure-sensitive adhesive layer. Any appropriate conditions can be set according to the type of the adhesive resin.
  • the heating temperature is preferably 70 ° C. to 200 ° C., more preferably 80 ° C. to 150 ° C. When the heating temperature is such a temperature, shrinkage of the laminate can be prevented.
  • the active energy ray irradiation conditions such as wavelength, irradiation intensity, and irradiation time are the characteristics of the active energy ray-curable pressure-sensitive adhesive C in the pressure-sensitive adhesive layer of the third pressure-sensitive adhesive sheet. Depending on the, it can be set to any appropriate condition.
  • the external stimulus C for reducing the adhesive force of the third adhesive sheet 100 ′′ is preferably different from the external stimulus B for reducing the adhesive force of the second adhesive sheet 100 ′.
  • the external stimulus B is heat
  • the external stimulus C for example, heat at a temperature different from that of the external stimulus B or active energy rays can be used.
  • the external stimulus B is an active energy ray
  • the external stimulus C for example, heat or an active energy ray having a wavelength different from that of the external stimulus B can be used.
  • the pressure-sensitive adhesive sheet that requires peeling can be peeled with good workability, and peeling of the pressure-sensitive adhesive sheet that does not require peeling can be prevented.
  • a membrane / electrode composite can be manufactured well.
  • the relationship between the temperature Tb of the external stimulus B and the temperature Tc of the external stimulus C is preferably Tb ⁇ Tc.
  • the external stimulus B is applied, only the second pressure-sensitive adhesive sheet 100 ′ can be peeled while maintaining the workability and handling properties of the third pressure-sensitive adhesive sheet 100 ′′.
  • Yes (fifth step), and the step of cutting the polymer electrolyte membrane 10 (sixth step) can be carried out efficiently.
  • a combination of pressure-sensitive adhesive sheets that can be processed under the above-described conditions that is, a combination of pressure-sensitive adhesive sheets having different responsiveness to external stimuli (heat), for example, the pressure-sensitive adhesive sheets having different heat-expandable microspheres contained therein
  • the pressure-sensitive adhesive sheets having different heat-expandable microspheres contained therein examples thereof include combinations and combinations of pressure-sensitive adhesive sheets having different contents of the thermally expandable microspheres contained therein.
  • a third pressure-sensitive adhesive sheet using heat-expandable microspheres having low thermal expansibility for example, a volume expansion coefficient of 5 to 7 times, preferably 5 to 6 times
  • Second pressure-sensitive adhesive sheet using heat-expandable microspheres having higher thermal expansion than the heat-expandable microspheres of the pressure-sensitive adhesive sheet for example, the volume expansion coefficient is 7 to 10 times, preferably 7 to 9 times.
  • the content ratio of the heat-expandable microspheres in the pressure-sensitive adhesive layer is small (for example, 1 part by weight or more and less than 50 parts by weight, preferably 10 parts by weight to 25 parts by weight with respect to 100 parts by weight of the base polymer).
  • the content ratio of the heat-expandable microspheres is larger than that of the pressure-sensitive adhesive sheet and the third pressure-sensitive adhesive sheet (for example, 50 parts by weight or more and less than 100 parts by weight, preferably 60 parts by weight to 90 parts by weight with respect to 100 parts by weight of the base polymer) ) You may combine with a 2nd adhesive sheet.
  • heat is used as the external stimulus A, the external stimulus B, and the external stimulus C, and the relationship between the temperature Ta of the external stimulus A, the temperature Tb of the external stimulus B, and the temperature Tc of the external stimulus C is expressed as Ta. ⁇ Tb ⁇ Tc. If it is such a relationship, the adhesive force fall of the adhesive sheet which does not require peeling in each process can be prevented, and the process after giving an external stimulus can be performed efficiently.
  • the adherend polymer electrolyte membrane
  • the adherend may function as a shielding member for active energy rays.
  • the membrane / electrode complex 200 including the first gas diffusion electrode 20, the polymer electrolyte membrane 10, and the second gas diffusion electrode 30 can be manufactured. According to such a manufacturing method, it is possible to efficiently assemble each member, and it is possible to increase the speed of the production line for the membrane / electrode assembly for the fuel cell. Preferably, the obtained membrane / electrode composite is transported by a belt conveyor or the like and used for the next step.
  • FIG. 4 is a diagram for explaining the outline of a method for producing a membrane / electrode assembly for a fuel cell according to a second embodiment of the present invention.
  • the first gas diffusion electrode 20, the polymer electrolyte membrane 10, and the second gas diffusion electrode are provided in this order and surround the first gas diffusion electrode 20.
  • a membrane / electrode composite comprising a first gasket 40 and a second gasket disposed so as to surround the second gas diffusion electrode can be manufactured.
  • the first gasket 40 when the first gas diffusion electrode 20 is conveyed, the first gasket 40 is adhered to the second pressure-sensitive adhesive sheet 100 ′ together with the first gas diffusion electrode 20 and conveyed.
  • the first gasket 40 and the first gas diffusion electrode 20 are simultaneously laminated on the polymer electrolyte membrane 10.
  • the second gasket when the second gas diffusion electrode is conveyed, the second gasket is adhered to the third pressure-sensitive adhesive sheet together with the second gas diffusion electrode and conveyed, and the second gasket and the second gas diffusion are conveyed.
  • An electrode is simultaneously laminated on the polymer electrolyte membrane.
  • the first gas diffusion electrode 20 is laminated on the polymer electrolyte membrane 10 together with the first gasket 40, and the second gas diffusion electrode is combined with the second gasket.
  • a membrane / electrode composite can be produced according to the production method described in the above section C-1.
  • the first gas diffusion electrode 20 is moved to the first. The process until it laminates
  • the width of the gasket is, for example, 80% to 100% with respect to the width of the polymer electrolyte membrane in the obtained membrane / electrode composite.
  • the length of the gasket is, for example, 80% to 100% with respect to the length of the polymer electrolyte membrane in the obtained membrane / electrode composite.
  • the thickness (height) of the gasket is preferably 80% to 100%, more preferably 80% to 90% with respect to the thickness of the gas diffusion electrode.
  • the gasket 40 has an opening.
  • the width of the opening is, for example, 100% to 110% with respect to the width of the gas diffusion electrode.
  • the length of the opening is, for example, 100% to 110% with respect to the length of the gas diffusion electrode.
  • the first gas diffusion electrode 20 and the first gasket 40 are supplied as a laminated body b 'adhered to the adhesive surface of the second adhesive sheet 100'.
  • the stacked body b ' has a long shape.
  • the laminate b ′ is preferably formed by attaching the first gas diffusion electrode 20 to the adhesive surface of the long second adhesive sheet 100 ′ drawn out from the roll at a predetermined interval. It is formed by adhering a gasket 40 so as to surround one gas diffusion electrode 20.
  • any appropriate method can be adopted as a method of laminating the first gas diffusion electrode 20 and the gasket 40.
  • heating is performed during crimping.
  • the heating temperature Tp at the time of pressure bonding is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.
  • the relationship between the temperature Ta of the external stimulus A and the heating temperature Tp at the time of pressure bonding is Tp ⁇ Ta. Preferably there is.
  • the second gas diffusion electrode can also be laminated on the polymer electrolyte membrane with the second gasket as described above. That is, the second gas diffusion electrode can be laminated on the polymer electrolyte membrane together with the second gasket in a state of being attached to the third pressure-sensitive adhesive sheet.
  • the relationship between the temperature Tb of the external stimulus B and the heating temperature Tp 2 when the second gasket is crimped is Tp It is preferable that 2 ⁇ Ta.
  • FIG. 5 is a view for explaining the outline of a method for producing a fuel cell membrane / electrode composite according to a third embodiment of the present invention.
  • a membrane / electrode composite including the first gas diffusion electrode 20 ′, the polymer electrolyte membrane 10, and the second gas diffusion electrode in this order can be manufactured.
  • the first gas diffusion electrode 20 ′ includes a catalyst layer 21 and a gas diffusion layer 22 in this order from the polymer electrolyte membrane 10 side.
  • the second gas diffusion electrode can also include a catalyst layer and a gas diffusion layer.
  • the catalyst layer and the gas diffusion layer are formed separately. Note that FIG. 5 illustrates steps until the first gas diffusion electrode 20 ′ is formed in the third embodiment.
  • the first step is provided with a first pressure-sensitive adhesive sheet 100 and a polymer electrolyte membrane 10 disposed on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive sheet 100. Prepared in the form of a laminated body a and a roll, and the laminated body a is fed out from the roll.
  • the catalyst layer 21 is disposed on the surface of the polymer electrolyte membrane 10 opposite to the pressure-sensitive adhesive sheet 100. Any appropriate method can be adopted as a method of forming the catalyst layer 21.
  • the catalyst layer may be formed by a coating process in which a composition for forming a catalyst layer is applied on the pressure-sensitive adhesive sheet 100 and then dried.
  • the catalyst layer forming composition a composition containing any appropriate component is used.
  • the composition for forming a catalyst layer includes, for example, conductive particles such as carbon particles, a catalyst such as a platinum catalyst, and the like.
  • Examples of the method for applying the composition for forming a catalyst layer include a method using a bar coater, spray, screen printing, and the like.
  • the thickness of the coating layer of the composition for forming a catalyst layer is preferably 1 ⁇ m to 3000 ⁇ m, more preferably 30 ⁇ m to 1000 ⁇ m.
  • Any appropriate drying method may be used as a method of drying the coating layer of the catalyst layer forming composition.
  • the heating temperature for drying by heating is, for example, 40 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.
  • the thickness of the catalyst layer is 1 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 300 ⁇ m.
  • the width of the catalyst layer 21 is preferably 50% to 100%, more preferably 70% to 95% with respect to the width of the polymer electrolyte membrane 10.
  • the planar view area of the catalyst layer can be set to any appropriate area according to the area of the gas diffusion layer laminated on the catalyst layer.
  • the planar area of the catalyst layer is preferably 90% to 100% and more preferably 95% to 100% with respect to the planar area of the gas diffusion layer.
  • the planar view area of the catalyst layer and the planar view area of the gas diffusion layer are the same.
  • the catalyst layer formed on the transfer sheet may be transferred to form the catalyst layer on the polymer electrolyte membrane.
  • a material constituting the transfer sheet any appropriate material can be used as long as the catalyst layer can be formed satisfactorily and has a suitable adhesive property for transfer.
  • the transfer sheet a sheet composed of the substrate and the pressure-sensitive adhesive layer, that is, a transfer sheet whose adhesiveness is reduced or eliminated by an external stimulus may be used.
  • Examples of the method for forming the catalyst layer on the transfer sheet include a method of applying the catalyst layer forming composition on the transfer sheet.
  • the application method and the drying method are as described above.
  • the transfer sheet is preferably long. This is because a plurality of catalyst layers are formed on a long transfer sheet, and continuous transfer of the catalyst layers becomes possible.
  • the long transfer sheet on which a plurality of catalyst layers are formed is preferably prepared in a roll shape.
  • the transfer sheet may have one or more holes or marks.
  • the transfer sheet having holes or marks in combination with the first pressure-sensitive adhesive sheet having holes or marks described in section A, the transfer sheet can be easily aligned. Note that any appropriate sensor can be used for alignment of the transfer sheet having the mark.
  • the transfer sheet is peeled off after the catalyst layer is transferred onto the polymer electrolyte membrane and before the gas diffusion layer 22 is laminated.
  • the gas diffusion layer 22 is laminated on the surface of the catalyst layer 21 opposite to the polymer electrolyte membrane 10. Any appropriate gas diffusion layer may be used as the gas diffusion layer.
  • the planar view area of the gas diffusion layer is, for example, 60% to 90% with respect to the planar view area of each polymer electrolyte membrane.
  • the gas diffusion layer 22 is supplied as a laminated body b ′′ attached to the adhesive surface of the second adhesive sheet 100 ′.
  • the laminate b ′′ is preferably a long body.
  • the laminate b ′′ is preferably formed by adhering the gas diffusion layer 22 to the adhesive surface of the long second adhesive sheet 100 ′ drawn out from the roll at a predetermined interval.
  • a membrane / electrode composite can be manufactured according to the manufacturing method described in the first embodiment except that the gas diffusion electrode is formed as described above.
  • the gas diffusion electrode is formed as described above.
  • the method demonstrated in the 1st gas diffusion electrode can be employ
  • the formation method of the first diffusion electrode and the formation method of the second diffusion electrode may be the same or different.
  • a gasket can be arranged so as to surround each of the first gas diffusion electrode and the second gas diffusion electrode.
  • the gas diffusion layer is laminated on the catalyst layer together with the gasket to form the gas diffusion electrode. That is, taking the first gas diffusion electrode as an example, a gas diffusion layer and a gasket disposed so as to surround the gas diffusion layer are attached to the second adhesive sheet, and the gas diffusion layer is placed on the catalyst layer together with the gasket. To form a first gas diffusion electrode.
  • Example 1 (Preparation of adhesive layer forming material) A 1 L round bottom separable flask, separable cover, separatory funnel, thermometer, nitrogen inlet tube, Liebig condenser, vacuum seal, stirring rod, stirring blade equipped with a polymerization experiment apparatus, dodecyl methacrylate (manufactured by Kao Corporation) , Trade name “Exepal L-MA”) 100 parts by weight, 2-hydroxyethyl methacrylate (Mitsubishi Rayon, trade name “Acryester HO”) 10.2 parts by weight, 2,2 ′ as a polymerization initiator A mixture was prepared by adding 0.22 parts by weight of azobis-isobutyronitrile (manufactured by Kishida Chemical Co., Ltd.) and 55 parts by weight of toluene.
  • azobis-isobutyronitrile manufactured by Kishida Chemical Co., Ltd.
  • the inside of the round bottom separable flask was purged with nitrogen at room temperature. Thereafter, the mixture was stirred for 12 hours at a temperature of 60 ° C. ⁇ 2 ° C. while flowing in nitrogen to obtain an intermediate composition containing a methacrylic polymer having a functional group (hydroxyl group) in the side chain.
  • the resulting intermediate composition was cooled to room temperature. Thereafter, the intermediate composition was mixed with 9.8 parts by weight of 2-isocyanatoethyl methacrylate (trade name “Karenz MOI”, manufactured by Showa Denko KK) and dibutyltin dilaurate IV (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the mixture was stirred for 24 hours at 50 ° C. in an air atmosphere to obtain a base polymer (polymer having a polymerizable carbon-carbon double bond) solution.
  • the obtained base polymer solution 1-hydroxycyclohexyl phenyl ketone (trade name “Irgacure 184”, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and polyisocyanate-based crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., product)
  • the name “Coronate L”) was mixed and stirred to obtain a pressure-sensitive adhesive layer-forming material containing an active energy ray-curable pressure-sensitive adhesive.
  • the compounding amount of 1-hydroxycyclohexyl phenyl ketone was 3 parts by weight with respect to 100 parts by weight of the solid content of the base polymer. Moreover, the compounding quantity of the polyisocyanate-type crosslinking agent was 3 weight part with respect to 100 weight part of base polymer solid content.
  • a film (thickness: 100 ⁇ m) formed from a linear low density polyethylene resin and having one side subjected to corona treatment was prepared.
  • the pressure-sensitive adhesive film and the corona-treated surface of the substrate were bonded together with a hand roller and left at 50 ° C. for 72 hours to obtain a pressure-sensitive adhesive sheet A.
  • the following evaluation was performed as evaluation corresponding to the process of reducing the adhesive force by external stimulation and peeling the adhesive sheet.
  • the obtained pressure-sensitive adhesive sheet A was cut into a 50 mm square, and a 20 mm ⁇ 40 mm polymer electrolyte membrane (manufactured by Dupon, trade name “Nafion212CS”) was adhered on the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet A. It was confirmed that the molecular electrolyte membrane did not peel off due to its own weight. Moreover, when 450 mJ / cm ⁇ 2 > of ultraviolet-rays were irradiated from the base material side of the adhesive sheet A, it confirmed that adhesive force fell and the polymer electrolyte membrane peeled with dead weight.
  • Example 2 A 1 L round bottom separable flask, separable cover, separatory funnel, thermometer, nitrogen inlet tube, Liebig condenser, vacuum seal, stirring rod, stirring blade equipped with a polymerization experiment apparatus, dodecyl methacrylate (manufactured by Kao Corporation) , 100 parts by weight of trade name “Exepal L-MA”), 12.6 parts by weight of 2-hydroxyethyl methacrylate (trade name “Acryester HO” manufactured by Mitsubishi Rayon Co., Ltd.), and 2,2 ′ as a polymerization initiator -Azobis-isobutyronitrile (manufactured by Kishida Chemical Co., Ltd.) 0.23 parts by weight and toluene 56 parts by weight were added to prepare a mixture.
  • dodecyl methacrylate manufactured by Kao Corporation
  • Exepal L-MA trade name “Exepal L-MA”
  • 2-hydroxyethyl methacrylate trade name “Ac
  • a pressure-sensitive adhesive sheet B was obtained in the same manner as in Example 1 except that the base polymer solution thus obtained was used. (Evaluation) The following evaluation was performed as evaluation corresponding to the process of reducing the adhesive force by external stimulation and peeling the adhesive sheet.
  • the obtained pressure-sensitive adhesive sheet B was cut into a 50 mm square, and a 20 mm ⁇ 40 mm polymer electrolyte membrane (manufactured by Dupon, trade name “Nafion212CS”) was adhered onto the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet B.
  • Example 3 In the same manner as in Example 1, a pressure-sensitive adhesive sheet A was obtained. (Evaluation) The same as in Example 1 except that carbon paper (product name “10AA” manufactured by SGL Carbon Co., Ltd.) as a gas diffusion electrode was used instead of the polymer electrolyte membrane (product name “Nafion212CS” manufactured by Dupon). The evaluation corresponding to the process of peeling an adhesive sheet by the method was performed. As a result, it was confirmed that the carbon paper was not peeled off by its own weight before ultraviolet irradiation, and that the carbon paper was peeled off by its own weight after ultraviolet irradiation.
  • Example 4 In the same manner as in Example 2, an adhesive sheet B was obtained. (Evaluation) The same as Example 2 except that carbon paper (product name “10AA”, manufactured by SGL Carbon Co., Ltd.) as a gas diffusion electrode was used instead of the polymer electrolyte membrane (product name “Nafion212CS” manufactured by Dupon). The evaluation corresponding to the process of peeling an adhesive sheet by the method was performed. As a result, it was confirmed that the carbon paper was not peeled off by its own weight before ultraviolet irradiation, and that the carbon paper was peeled off by its own weight after ultraviolet irradiation.
  • Example 5 A polymer of 70 parts by weight of 2-ethylhexyl acrylate, 30 parts by weight of ethyl acrylate, and 5 parts by weight of hydroxyethyl acrylate was used as an adhesive. 105 parts by weight of the above pressure-sensitive adhesive, 1 part by weight of an isocyanate-based crosslinking agent (trade name “Coronate L”, manufactured by Nippon Polyurethane Industry Co., Ltd.) and toluene were mixed, and the resulting mixture I had a thickness after drying of 15 ⁇ m. Then, it was applied onto a polyester film (thickness: 100 ⁇ m) and then dried to form a coating layer I.
  • an isocyanate-based crosslinking agent trade name “Coronate L”, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • the said application layer I and the application layer II were bonded together, and the adhesive sheet C comprised from the polyester film (base material) and the adhesive layer containing a thermally expansible microsphere was obtained.
  • the following evaluation was performed as evaluation corresponding to the process of reducing the adhesive force by external stimulation and peeling the adhesive sheet.
  • the obtained pressure-sensitive adhesive sheet C was cut into a 50 mm square, and carbon paper (product name “10AA”, manufactured by SGL Carbon Co., Ltd.) as a 20 mm ⁇ 40 mm gas diffusion electrode was stuck on the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet C. However, it was confirmed that the carbon paper did not peel off due to its own weight.
  • the laminate of the pressure-sensitive adhesive sheet and the carbon paper is heated in an oven at 100 ° C. for 5 minutes, the pressure-sensitive adhesive strength of the pressure-sensitive adhesive sheet is reduced, and the carbon fiber does not adhere to the pressure-sensitive adhesive layer, so It was confirmed that the paper peeled.
  • Example 6 In the same manner as in Example 5, a pressure-sensitive adhesive sheet C was obtained. Instead of thermally expandable microspheres (Matsumoto Yushi Co., Ltd., trade name “F-30D”, foaming start temperature: 70 ° C. to 80 ° C.), thermally expandable microspheres (Matsumoto Yushi Co., Ltd., trade name “F-50D”) The pressure-sensitive adhesive sheet D was obtained in the same manner as the pressure-sensitive adhesive sheet C except that the foaming start temperature was 95 ° C. to 105 ° C.).
  • evaluation Corresponding to two steps (for example, the third step and the fifth step, the fifth step and the seventh step) in which the adhesive strength is reduced by different external stimuli (heating temperature difference) and the adhesive sheet is peeled separately from the front and back.
  • the following evaluations were performed as evaluations to be performed.
  • a polymer electrolyte membrane (trade name “Nafion212CS” manufactured by Dupont Co., Ltd.) cut into 10 mm ⁇ 50 mm and a carbon paper cut out into 20 mm ⁇ 20 mm (trade name “34BC” manufactured by SGL Carbon Co., Ltd.)
  • the molecular electrolyte membrane / carbon paper was laminated in this order to produce an evaluation pseudo MEA (1).
  • the carbon paper was laminated so that the microporous layer of the carbon paper and the polymer electrolyte membrane were in contact with each other.
  • pseudo MEA (1) for evaluation was produced by press-bonding under conditions of 100 ° C., 30 kgf / cm 2 and 30 seconds.
  • An adhesive sheet C (20 mm ⁇ 50 mm) was bonded to one surface (carbon paper) of the evaluation pseudo-MEA (1).
  • the adhesive sheet D (20 mm x 50 mm) was bonded to the other surface (carbon paper).
  • the laminate produced as described above was confirmed that the pressure-sensitive adhesive sheet C and the pressure-sensitive adhesive sheet D did not peel off due to their own weight at room temperature.
  • the laminate produced as described above was heated in an oven at 100 ° C.
  • Example 7 In the same manner as in Example 1, a pressure-sensitive adhesive sheet A was obtained. (Evaluation) As the evaluation corresponding to the two steps (for example, the third step and the fifth step, the fifth step and the seventh step) in which the adhesive strength is reduced by ultraviolet irradiation and the adhesive sheet is peeled separately from the front and back, the following evaluations are performed. Went. This evaluation corresponds to an aspect in which the adherend can function as a shielding material for ultraviolet rays (active energy rays). In the same manner as in Example 6, an evaluation pseudo MEA (1) was produced. The pressure-sensitive adhesive sheet A (20 mm ⁇ 50 mm) was bonded to both surfaces (carbon paper) of the evaluation pseudo MEA (1).
  • the laminate prepared as described above did not peel off the pressure-sensitive adhesive sheet A due to its own weight at room temperature (in an unirradiated state of ultraviolet rays).
  • 450 mJ / cm 2 of ultraviolet light is irradiated from one surface (that is, the base material side of the pressure-sensitive adhesive sheet A) of the laminate produced as described above, and then the other surface is irradiated with 450 mJ / cm 2 of ultraviolet light.
  • 450 mJ / cm 2 of ultraviolet light is irradiated from one surface (that is, the base material side of the pressure-sensitive adhesive sheet A) of the laminate produced as described above, and then the other surface is irradiated with 450 mJ / cm 2 of ultraviolet light.
  • the first ultraviolet irradiation only the pressure-sensitive adhesive sheet A on the side irradiated with the ultraviolet rays was easily peeled by its own weight.
  • Example 8 In the same manner as in Example 1, a pressure-sensitive adhesive sheet A was obtained. In the same manner as in Example 5, a pressure-sensitive adhesive sheet C was obtained. (Evaluation) Corresponds to two steps (for example, the third step and the fifth step, the fifth step and the seventh step) in which the adhesive strength is reduced by different external stimuli (ultraviolet rays and heating) and the adhesive sheet is peeled off separately from the front and back sides. As evaluation, the following evaluation was performed.
  • a polymer electrolyte membrane (trade name “Nafion212CS” manufactured by Dupont Co., Ltd.) cut into 10 mm ⁇ 50 mm and a carbon paper cut out into 20 mm ⁇ 20 mm (trade name “34BC” manufactured by SGL Carbon Co., Ltd.) Lamination was performed to form a molecular electrolyte membrane, and an evaluation pseudo MEA (2) was produced.
  • the carbon paper was laminated so that the microporous layer of the carbon paper and the polymer electrolyte membrane were in contact with each other.
  • pseudo MEA (2) for evaluation was produced by press-bonding under conditions of 100 ° C., 30 kgf / cm 2 and 30 seconds.
  • An adhesive sheet A (20 mm ⁇ 50 mm) was bonded to the polymer electrolyte membrane side of the evaluation pseudo MEA (2), and an adhesive sheet C (20 mm ⁇ 50 mm) was bonded to the carbon paper side.
  • the laminate produced as described above was confirmed that the pressure-sensitive adhesive sheet C and the pressure-sensitive adhesive sheet D did not peel off due to their own weight at room temperature.
  • 450 mJ / cm 2 of ultraviolet light was irradiated from the base material side of the pressure-sensitive adhesive sheet A of the laminate produced as described above, and then the laminate was heated in an oven at 100 ° C. for 5 minutes.
  • the pressure-sensitive adhesive sheet A was easily peeled by its own weight without being plastically deformed by ultraviolet irradiation.
  • the pressure-sensitive adhesive sheet C was easily peeled by its own weight by heating.
  • a carbon fiber did not adhere to an adhesive layer at this time.
  • Example 9 In the same manner as in Example 1, a pressure-sensitive adhesive sheet A was obtained. In the same manner as in Example 5, a pressure-sensitive adhesive sheet C was obtained. (Evaluation) Corresponds to two steps (for example, the third step and the fifth step, the fifth step and the seventh step) in which the adhesive strength is reduced by different external stimuli (heating and ultraviolet rays) and the adhesive sheet is peeled off separately from the front and back. As evaluation, the following evaluation was performed. In the same manner as in Example 8, an evaluation pseudo MEA (2) was produced. In the same manner as in Example 8, a pressure-sensitive adhesive sheet A and a pressure-sensitive adhesive sheet C were bonded to the evaluation pseudo MEA (2) to prepare a laminate.
  • the laminate produced as described above was heated in an oven at 100 ° C. for 5 minutes, and then irradiated with ultraviolet rays of 450 mJ / cm 2 from the substrate side of the pressure-sensitive adhesive sheet A of the laminate.
  • the pressure-sensitive adhesive sheet C was easily peeled by its own weight by heating.
  • a carbon fiber did not adhere to an adhesive layer at this time.
  • only the pressure-sensitive adhesive sheet A was easily peeled off by its own weight without being plastically deformed by ultraviolet irradiation.
  • Example 1 In the same manner as in Example 1, a pressure-sensitive adhesive sheet A was obtained. (Evaluation) In the same manner as in Example 1, a polymer electrolyte membrane was attached to the pressure-sensitive adhesive sheet A. When the polymer electrolyte membrane was peeled off without being irradiated with ultraviolet rays, the polymer electrolyte membrane was plastically deformed, and elongation and wrinkles were generated.
  • Example 2 In the same manner as in Example 2, an adhesive sheet B was obtained. (Evaluation) In the same manner as in Example 2, a polymer electrolyte membrane was attached to the pressure-sensitive adhesive sheet B. When the polymer electrolyte membrane was peeled off without being irradiated with ultraviolet rays, the polymer electrolyte membrane was plastically deformed, and elongation and wrinkles were generated.
  • Example 3 In the same manner as in Example 1, a pressure-sensitive adhesive sheet A was obtained. (Evaluation) In the same manner as in Example 3, carbon paper was attached to the pressure-sensitive adhesive sheet A. When the carbon paper was peeled off without being irradiated with ultraviolet rays, it was confirmed that the carbon fibers adhered to the pressure-sensitive adhesive layer and a part of the carbon paper was damaged.
  • Example 4 In the same manner as in Example 2, an adhesive sheet B was obtained. (Evaluation) In the same manner as in Example 4, carbon paper was attached to the pressure-sensitive adhesive sheet B. When the carbon paper was peeled off without being irradiated with ultraviolet rays, it was confirmed that the carbon fibers adhered to the pressure-sensitive adhesive layer and a part of the carbon paper was damaged.
  • Example 5 In the same manner as in Example 5, a pressure-sensitive adhesive sheet C was obtained. (Evaluation) In the same manner as in Example 5, carbon paper was attached to the pressure-sensitive adhesive sheet C. When the carbon paper was peeled off without heat treatment, it was confirmed that the carbon fibers adhered to the pressure-sensitive adhesive layer and a part of the carbon paper was damaged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Adhesive Tapes (AREA)

Abstract

 高分子電解質膜のハンドリング性に優れ、高分子電解質膜の変形およびシワの発生を防止し得、かつ、高分子電解質膜、ガス拡散電極および/またはガス拡散層を効率よく組み付けることが可能な燃料電用膜/電極複合体の製造方法を提供する。 本発明の燃料電用膜/電極複合体の製造方法は、第1のガス拡散電極と、高分子電解質膜と、第2のガス拡散電極とを含む、燃料電用膜/電極複合体の製造方法であって、該高分子電解質膜、第1のガス拡散電極および/または第2のガス拡散電極を、外部刺激により粘着力が低下する粘着シートに貼着して搬送すること、および該粘着シートに外部刺激を与えることにより、該粘着シートの粘着力を低下させて、該粘着シートを剥離することを含む。

Description

燃料電池用膜/電極複合体の製造方法
 本発明は、燃料電池用膜/電極複合体の製造方法に関する。
 一般に、燃料電池の部材としての膜/電極複合体(MEA)は、高分子電解質膜、ガス拡散電極等からなる積層体である。このような積層体構造の膜/電極複合体は、生産効率、生産コスト等の観点から、連続的な方法により積層して製造することが求められている。連続的な生産方法としては、長尺状の高分子電解質膜の両面に塗工により触媒層を形成し、該触媒層上にガス拡散層を積層する方法、長尺状の高分子電解質膜の両面に触媒層を有するガス拡散電極を圧着により積層する方法、ポリテトラフルオロエチレン等から構成されるシート上に形成させた触媒層を高分子電解質膜に転写して、高分子電解質膜上に触媒層を形成し、該触媒層上にガス拡散層を積層する方法等が知られている。
 近年、出力向上等を目的として、高分子電解質膜の薄膜化(例えば、30μm以下)が求められている。しかし、高分子電解質膜を薄膜化すると、連続生産におけるハンドリング性が悪くなる、加工精度が低下するという問題が生じる。このような問題を解消するため、高分子電解質膜を、粘着性を有する搬送シートに仮固定して搬送する方法が提案されている。この方法によれば、粘着性を有する搬送シートにより、搬送時には電解質膜が固定されて、ハンドリング性の向上を図ることができる。しかしながら、粘着性を有する搬送シートを用いた場合、搬送後の高分子電解質膜(実質的には、高分子電解質膜を含む膜/電極複合体)を、搬送シートから剥離する際に引っ張り応力がかかり、高分子電解質膜が変形(長手方向への延伸、幅方向の収縮、歪み)したり、高分子電解質膜にシワが生じる。これらの現象は、高速処理時に顕著となり、大量生産、高速生産の際には特に問題となる。
 また、MEAの連続生産においては、生産効率向上のため、律速となる工程の無いことが求められる。このような観点から、高分子電解質膜のハンドリング性向上のみならず、ガス拡散電極等の部材を効率よく組み付け得る製造方法の確立が求められる。しかし、ガス拡散電極等のカーボンから構成される脆弱な部材を損傷なく組み付けようとすると、生産効率が低下するという問題がある。
特開2006-339062号公報
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、高分子電解質膜のハンドリング性に優れ、高分子電解質膜の変形およびシワの発生を防止し得、かつ、高分子電解質膜、ガス拡散電極および/またはガス拡散層を効率よく組み付けることが可能な燃料電用膜/電極複合体の製造方法を提供することにある。
 本発明の燃料電用膜/電極複合体の製造方法は、第1のガス拡散電極と、高分子電解質膜と、第2のガス拡散電極とを含む、燃料電用膜/電極複合体の製造方法であって、該高分子電解質膜、第1のガス拡散電極および/または第2のガス拡散電極を、外部刺激により粘着力が低下する粘着シートに貼着して搬送すること、および該粘着シートに外部刺激を与えることにより、該粘着シートの粘着力を低下させて、該粘着シートを剥離することを含む。
 1つの実施形態においては、上記第1のガス拡散電極および第2のガス拡散電極が、それぞれガス拡散層を含み、前記高分子電解質膜および/または該ガス拡散層を、前記粘着シートに貼着して搬送すること、および該粘着シートに外部刺激を与えることにより、該粘着シートの粘着力を低下させて、該粘着シートを剥離することを含む。
 1つの実施形態においては、上記粘着シートとして、第1の粘着シート、第2の粘着シートおよび第3の粘着シートを用い、該第1の粘着シートの粘着面に前記高分子電解質膜を貼着して、該高分子電解質膜を搬送する工程と、該第2の粘着シートの粘着面に前記第1のガス拡散電極を貼着して、該第1のガス拡散電極を搬送し、該高分子電解質膜の該第1の粘着シートとは反対側の面に、該第1のガス拡散電極と該第2の粘着シートとをこの順に積層する工程と、該第1の粘着シートに外部刺激を与えることにより、該第1の粘着シートの粘着力を低下させて、該第1の粘着シートを剥離する工程と、該第3の粘着シートの粘着面に前記第2のガス拡散電極を貼着して、該第2のガス拡散電極を搬送し、該高分子電解質膜の該第1のガス拡散電極とは反対側の面に、該第2のガス拡散電極と該第3の粘着シートとをこの順に積層する工程と、該第2の粘着シートに外部刺激を与えることにより、該第2の粘着シートの粘着力を低下させて、該第2の粘着シートを剥離する工程と、該第3の粘着シートに外部刺激を与えることにより、該第3の粘着シートの粘着力を低下させて、該第3の粘着シートを剥離する工程とをこの順に含む。
 1つの実施形態においては、上記第1の粘着シートの外部刺激に対する応答性と、上記第2の粘着シートの外部刺激に対する応答性とが異なる。
 1つの実施形態においては、上記第2の粘着シートの外部刺激に対する応答性と、上記第3の粘着シートの外部刺激に対する応答性とが異なる。
 1つの実施形態においては、上記外部刺激として熱を用いることを含む。
 1つの実施形態においては、上記粘着シートが粘着剤層を備え、該粘着剤層が、熱膨張性微小球を含む。
 1つの実施形態においては、上記外部刺激として活性エネルギー線を用いることを含む。
 1つの実施形態においては、上記粘着シートが粘着剤層を備え、該粘着剤層が、活性エネルギー線照射により硬化する。
 1つの実施形態においては、上記第1の粘着シートの粘着力を低下させるための外部刺激、上記第2の粘着シートの粘着力を低下させるための外部刺激および上記第3の粘着シートの粘着力を低下させるための外部刺激として熱を用い、該第1の粘着シートの粘着力を低下させるための外部刺激の温度Taと、該第2の粘着シートの粘着力を低下させるための外部刺激の温度Tbと、該第3の粘着シートの粘着力を低下させるための外部刺激の温度Tcとの関係が、Ta<Tb<Tcである。
 1つの実施形態においては、上記粘着シートが長尺状である。
 1つの実施形態においては、上記燃料電用膜/電極複合体が、前記第1のガス拡散電極の周囲を囲むようにして配置された第1のガスケットと、前記第2のガス拡散電極の周囲を囲むようにして配置された第2のガスケットとをさらに備え、該第1のガス拡散電極を搬送する際に、該第1のガスケットを、該第1のガス拡散電極とともに前記第2の粘着シートに貼着して搬送し、該第1のガスケットと該第1のガス拡散電極とを同時に、前記高分子電解質膜上に積層すること、および、該第2のガス拡散電極を搬送する際に、該第2のガスケットを、該第2のガス拡散電極とともに前記第3の粘着シートに貼着して搬送し、該第2のガスケットと該第2のガス拡散電極とを同時に、前記高分子電解質膜上に積層することを含む。
 1つの実施形態においては、加熱下で圧着することにより、前記第1のガスケットと前記第1のガス拡散電極とを、前記高分子電解質膜上に積層することを含み、前記第1の粘着シートの粘着力を低下させるための外部刺激として熱を用い、圧着時の温度Tpと、該第1の粘着シートの粘着力を低下させるための外部刺激の温度Taとの関係が、Tp<Taである。
 本発明によれば、外部刺激により粘着力が低下または消失する粘着シートを用いて、高分子電解質膜、ガス拡散電極またはガス拡散層を搬送することにより、これら部材の組み付けを効率よく行うことができる。また、高分子電解質膜の搬送材として上記粘着シートを用いることにより、該高分子電解質膜を搬送する際には十分な粘着力を有し、該高分子電解質膜を剥離する際には粘着力が低下または消失して、該高分子電解質膜の変形およびシワの発生を防止することができる。
 また、上記粘着シートを長尺状とすることにより、膜/電極複合体を連続的に生産することが可能となり、製造効率向上の効果がより顕著となる。
本発明の製造方法に用いる粘着シートの一例を示す概略断面図である。 本発明の第1の実施形態による燃料電池用膜/電極複合体の製造方法の概要を説明する図である。 本発明の1つの実施形態による、粘着シートと高分子電解質膜との積層体の概略平面図である。 本発明の第2の実施形態による燃料電池用膜/電極複合体の製造方法の概要を説明する図である。 本発明の第3の実施形態による燃料電池用膜/電極複合体の製造方法の概要を説明する図である。
A.燃料電用膜/電極複合体の製造方法の概要
 本発明の製造方法は、膜/電極複合体を構成する部材、すなわち、高分子電解質膜またはガス拡散電極を、粘着シートに貼着して搬送することを含む。より詳細には、本発明の製造方法は、一対のガス拡散電極と、該ガス拡散電極に挟持された高分子電解質膜とを備える膜/電極複合体の製造において、高分子電解質膜を第1の粘着シートで搬送し、一方のガス拡散電極(第1のガス拡散電極)を第2の粘着シートで搬送し、他方のガス拡散電極(第2のガス拡散電極)を第3の粘着シートで搬送することを含む。膜/電極複合体の製造方法の詳細は、下記C項において説明する。
 また、1つの実施形態においては、上記第1および第2ガス拡散電極は、それぞれガス拡散層を含み、該ガス拡散層を粘着シートにより搬送する。すなわち、本発明の製造方法は、高分子電解質膜の両側にガス拡散層を備える膜/電極複合体の製造において、高分子電解質膜を第1の粘着シートで搬送し、一方のガス拡散層を第2の粘着シートで搬送し、他方のガス拡散層を第3の粘着シートで搬送することを含み得る。
 上記粘着シートは、好ましくは、基材と、該基材の片面または両面に配置された粘着剤層とを備える。該粘着シートは、外部刺激(例えば、熱、活性エネルギー線等)により、該粘着剤層の粘着力が、低下または消失する。このような粘着シートを用いれば、各部材を搬送する際のハンドリング性と搬送後の剥離性とが両立でき、生産効率の向上を図ることができる。また、ガス拡散電極、ガス拡散層等のカーボンを主成分として脆弱な部材の搬送材として、上記の粘着シートを用いる本願発明は、該部材の損傷を防止するという点で、顕著な効果を発揮する。
B.粘着シート
 図1は、本発明の製造方法に用いる粘着シートの一例を示す概略断面図である。好ましくは、粘着シート100は、基材110と、基材の片面または両面(図示例では片面)に配置された粘着剤層120とを備える。本発明に用いる粘着シートは、外部刺激によりその粘着力が低下または消失する。より具体的には、該粘着シートにおいて、粘着剤層120は、外部刺激により、その粘着力が低下または消失する。このような粘着剤層は、粘着力を要する場面においては適切な粘着性を発揮し得、剥離を要する場面においては良好な剥離性を発揮し得る。上記粘着シートを用いれば、各部材を固定してハンドリング性よく各部材を搬送することができ、かつ、各部材の組み付ける際には容易に該粘着シートを剥離することができる。その結果、本発明によれば、製造ラインの高速化が図れ、生産効率に優れる製造方法とすることができる。また、高分子電解質膜の搬送材として上記粘着シートを用いれば、粘着シートから高分子電解質膜を剥離する際に、高分子電解質膜にダメージを与えることを防止し得る。より具体的には、剥離する際に、高分子電解質膜の変形(長手方向への延伸、幅方向の収縮、歪み)を防止し得、かつ、高分子電解質膜にシワが発生することを防止し得る。なお、本明細書において、外部刺激とは、粘着力を低下させるための刺激の総称であり、例えば、熱変化(加熱または冷却)、活性エネルギー線の照射等を意味する。
 好ましくは、上記粘着シートは、長尺状である。長尺状の該粘着シートは、連続生産工程に好適に用いられ得る。本発明の粘着シートは、所望の生産量等に応じて、任意の適切な長さに設定され得る。
 図示していないが、上記粘着シートは、実用に供するまで粘着剤層を保護する保護層をさらに備え得る。本発明の粘着シートは、保護層により保護された状態で、ロール状に巻き取ることができる。保護層としては、例えば、シリコーン系剥離剤、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチック(例えば、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン)フィルム、不織布または紙などが挙げられる。
 上記粘着シートは、例えば、保護層により保護されていない場合、粘着剤層とは反対側の最外層に、背面処理を行っていても良い。背面処理は、例えば、シリコーン系剥離剤や長鎖アルキルアクリレート系剥離剤等の剥離剤を用いて行うことができる。本発明の粘着シートは、背面処理を行うことにより、ロール状に巻き取ることができる。
 上記粘着シートの厚みは、好ましくは2μm~1000μmであり、より好ましくは10μm~600μmである。このような範囲であれば、被着体(高分子電解質膜、ガス拡散電極、ガス拡散層)剥離時の作業性に優れる。
 上記粘着シートのポリエチレンテレフタレートフィルム(PETフィルム)に対する初期粘着力は、好ましくは0.3N/20mm~20N/20mmであり、より好ましくは0.5N/20mm~10N/20mmである。このような範囲であれば、各部材(高分子電解質膜、ガス拡散電極、ガス拡散層)をハンドリング性よく搬送することができる粘着シートを得ることができる。なお、初期粘着力とは、外部刺激を与える前の粘着剤層の粘着力を意味する。また、粘着力は、JIS Z 0237:2000に準じた方法(試験温度:23℃、貼り合わせ条件:2kgローラー1往復、剥離速度:300mm/min、剥離角度180°)により測定した粘着力をいう。粘着力測定用のPETフィルムとしては、例えば、東レ社製の商品名「ルミラーS10#25」が用いられ得る。
 上記粘着シートのポリエチレンテレフタレートフィルム(PETフィルム)に対する粘着力は、外部刺激を与えることにより、0.5N/20mm以下にまで低下することが好ましく、0.3N/20mm以下にまで低下することがより好ましい。このような粘着シートは剥離性に優れる。該粘着シートを用いれば、被着体を高分子電解質膜とした際に、該高分子電解質膜が変形すること、および該電解質膜にシワが発生することを抑制し得る。
 本発明の電解質膜搬送用粘着シートは、上記初期粘着力と、粘着力低下後の粘着力との差(初期粘着力-粘着力低下後の粘着力)が、好ましくは0.2N/20mm~20N/20mmであり、より好ましくは5N/20mm~20N/20mmであり、さらに好ましくは5N/20mm~19.7N/20mmであり、特に好ましくは5N/20mm~15N/20mmであり、最も好ましくは5N/20mm~9.7N/20mmである。このような範囲であれば、搬送時の高粘着性と、剥離時の低粘着性(すなわち、良剥離性)とのバランスに優れ、本発明の効果が顕著となる。
 1つの実施形態においては、上記粘着シートは、1以上の穴またはマークを有し得る。穴またはマークを有していれば、後述のように、転写シートから触媒層を転写する際に、転写シートの位置合わせが容易となり、組み付け精度が向上する。穴またはマークの位置は、上記粘着シートの幅方向の両端部近傍であることが好ましい。
B-1.基材
 上記基材としては、例えば、樹脂シート、不織布、紙、金属箔、織布、ゴムシート、発泡シート、これらの積層体(特に、樹脂シートを含む積層体)等が挙げられる。樹脂シートを構成する樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)、ポリアミド(ナイロン)、全芳香族ポリアミド(アラミド)、ポリイミド(PI)、ポリ塩化ビニル(PVC)、ポリフェニレンサルファイド(PPS)、フッ素系樹脂、ポリエーテルエーテルケトン(PEEK)等が挙げられる。不織布としては、マニラ麻を含む不織布等の耐熱性を有する天然繊維による不織布;ポリプロピレン樹脂不織布、ポリエチレン樹脂不織布、エステル系樹脂不織布等の合成樹脂不織布等が挙げられる。
 上記基材の厚みは、所望とする強度または柔軟性、ならびに使用目的等に応じて、任意の適切な厚みに設定され得る。基材の厚みは、好ましくは1000μm以下であり、より好ましくは1μm~1000μmであり、さらに好ましくは1μm~500μmである。
 上記基材は、表面処理が施されていてもよい。表面処理としては、例えば、コロナ処理、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理、下塗り剤によるコーティング処理等が挙げられる。このような表面処理を行えば、粘着剤層と基材との密着性を高めることができる。特に有機コーティング材料によるコーティング処理は、密着性を高め、かつ、加熱剥離時に粘着剤層が投錨破壊しにくいことから好ましい。
B-2.粘着剤層
 上記のとおり、上記粘着シートが備える粘着剤層は、外部刺激により、粘着力が低下する。
 上記粘着剤層の厚みは、好ましくは1μm~200μmであり、より好ましくは5μm~100μmである。
 上記粘着剤層の粘着面の初期表面粗さRaは、好ましくは0μm~1.0μmであり、より好ましくは0μm~0.4μmである。このような範囲であれば、粘着面の凹凸が少ない粘着シートを得ることができる。このような粘着シートを用いれば、被着体である高分子電解質膜に凹凸を生じさせることを防止し得る。また、凹凸が少ない粘着シートは、ガス拡散電極等の部材を圧着により積層する膜/電極複合体の製造において、特に有用である。なお、初期表面粗さRaとは、外部刺激を与える前の粘着剤層の表面粗さRaを意味する。表面粗さRaは、JIS B 0601:1994に準じて測定することができる。
B-2-1.加熱により粘着力が低下する粘着剤層
 1つの実施形態においては、上記粘着剤層は、加熱により粘着力が低下または消失する。このような粘着剤層としては、例えば、熱膨張性微小球を含む粘着剤層、加熱硬化し得る粘着剤層等が挙げられる。
<熱膨張性微小球を含む粘着剤層>
 上記熱膨張性微小球を含む粘着剤層は、粘着剤Aと熱膨張性微小球とを含む。該粘着剤層は、加熱されることにより熱膨張性微小球が膨張または発泡し、その結果、粘着面に凹凸が生じて粘着力が低下または消失する。
 上記熱膨張性微小球を含む粘着剤層の厚みは、好ましくは5μm~200μmであり、より好ましくは10μm~150μmであり、さらに好ましくは15μm~100μmである。このような範囲であれば、適度な粘着性を有し、かつ、剥離性にも優れる粘着シートを得ることができる。
 上記熱膨張性微小球を含む粘着剤層の25℃における引っ張り弾性率は、好ましくは0.01MPa以上であり、より好ましくは0.05MPa~1MPaであり、さらに好ましくは0.08MPa~0.8MPaである。このような範囲であれば、適度な粘着性を有し、各部材(高分子電解質膜、ガス拡散電極、ガス拡散層)を搬送する際のハンドリング性に優れ、かつ、各部材の位置ずれを防止することができる。なお、引っ張り弾性率は、JIS K 7161:2008に準じて測定することができる。
 上記熱膨張性微小球を含む粘着剤層の80℃における引っ張り弾性率は、好ましくは0.01MPa以上であり、より好ましくは0.05MPa~1MPaであり、さらに好ましくは0.08MPa~0.8MPaである。このような範囲であれば、剥離時の作業性に優れる粘着シートを得ることができる。また、熱膨張性微小球の膨張を拘束しないため、剥離性に優れる粘着シートを得ることができる。
 上記のような物理的特性(破壊靭性値、弾性率)を有する粘着剤層は、例えば、粘着剤を構成するベースポリマーを選択すること、該ベースポリマーの重量平均分子量を調整することにより得ることができる。例えば、粘着剤のベースポリマーとして、(メタ)アクリル系ポリマーを用いる場合、該ポリマーの重量平均分子量は、好ましくは5万~200万であり、より好ましくは10万~150万である。重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定(溶媒テトラヒドロフラン)により求めることができる。
(粘着剤A)
 上記熱膨張性微小球を含む粘着剤層に含まれる粘着剤Aとしては、加熱時に熱膨張性微小球の膨張または発泡を拘束しないものが好ましい。該粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、スチレン-ジエンブロック共重合体系粘着剤、放射線硬化型粘着剤、これらの粘着剤に融点が約200℃以下の熱溶融性樹脂を配合したクリ-プ特性改良型粘着剤等が挙げられる(例えば、特開昭56-61468号公報、特開昭63-17981号公報等参照)。なかでも好ましくは、アクリル系粘着剤またはゴム系粘着剤である。なお、上記粘着剤は、単独で、または2種以上組み合わせて用いてもよい。
 上記アクリル系粘着剤としては、例えば、(メタ)アクリル酸アルキルエステルの1種または2種以上をモノマー成分として用いた(メタ)アクリル系ポリマー(ホモポリマーまたはコポリマー)をベースポリマーとするアクリル系粘着剤等が挙げられる。(メタ)アクリル酸アルキルエステルのアルキル基としては、好ましくはC1~20の直鎖状、分枝鎖状、または環状のアルキル基、さらに好ましくはC1~10の直鎖状、分枝鎖状、または環状のアルキル基、特に好ましくはメチル基、エチル基、ブチル基、2-エチルヘキシル基、およびオクチル基が挙げられる。上記(メタ)アクリル系ポリマーは、1種の(メタ)アクリル酸アルキルエステルのみを用いて得られる単独重合体であってもよく、2種以上の(メタ)アクリル酸アルキルエステルを用いて得られる共重合体であってもよい。なお、本明細書において、(メタ)アクリルとは、アクリルとメタクリルの双方を含む意味である。
 上記(メタ)アクリル系ポリマーは、凝集力、耐熱性、架橋性等の改質を目的として、必要に応じて、上記(メタ)アクリル酸アルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。このようなモノマー成分として、例えば、アクリル酸、メタクリル酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸等のスルホン酸基含有モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の(N-置換)アミド系モノマー;(メタ)アクリル酸アミノエチル等の(メタ)アクリル酸アミノアルキル系モノマー;(メタ)アクリル酸メトキシエチル等の(メタ)アクリル酸アルコキシアルキル系モノマー;N-シクロヘキシルマレイミド等のマレイミド系モノマー;N-メチルイタコンイミド等のイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド等のスクシンイミド系モノマー;酢酸ビニル、プロピオン酸ビニル、N-ビニルピロリドン等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノアクリレートモノマー;(メタ)アクリル酸グリシジル等のエポキシ基含有アクリル系モノマー;(メタ)アクリル酸ポリエチレングリコール等のグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレート等の複素環、ハロゲン原子、ケイ素原子等を有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート等の多官能モノマー;イソプレン、ブタジエン、イソブチレン等のオレフィン系モノマー;ビニルエーテル等のビニルエーテル系モノマー等が挙げられる。これらのモノマー成分は、単独で、または2種以上組み合わせて用いてもよい。
 上記(メタ)アクリル系ポリマーは、上記モノマーの1種または2種以上を重合することによって得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式でも行われ得る。
 上記ゴム系粘着剤としては、例えば、天然ゴム;ポリイソプレンゴム、スチレン・ブタジエン(SB)ゴム、スチレン・イソプレン(SI)ゴム、スチレン・イソプレン・スチレンブロック共重合体(SIS)ゴム、スチレン・ブタジエン・スチレンブロック共重合体(SBS)ゴム、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)ゴム、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)ゴム、スチレン・エチレン・プロピレンブロック共重合体(SEP)ゴム、再生ゴム、ブチルゴム、ポリイソブチレン、これらの変性体等の合成ゴム;等をベースポリマーとするゴム系粘着剤が挙げられる。
 上記粘着剤Aは、必要に応じて、任意の適切な添加剤を含み得る。該添加剤としては、例えば、架橋剤、粘着付与剤、可塑剤(例えば、トリメリット酸エステル系可塑剤、ピロメリット酸エステル系可塑剤)、顔料、染料、充填剤、老化防止剤、導電材、帯電防止剤、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤等が挙げられる。
 上記粘着付与剤としては、任意の適切な粘着付与剤が用いられる。粘着付与剤としては、例えば、粘着付与樹脂が用いられる。粘着付与樹脂の具体例としては、ロジン系粘着付与樹脂(例えば、未変性ロジン、変性ロジン、ロジンフェノール系樹脂、ロジンエステル系樹脂など)、テルペン系粘着付与樹脂(例えば、テルペン系樹脂、テルペンフェノール系樹脂、スチレン変性テルペン系樹脂、芳香族変性テルペン系樹脂、水素添加テルペン系樹脂)、炭化水素系粘着付与樹脂(例えば、脂肪族系炭化水素樹脂、脂肪族系環状炭化水素樹脂、芳香族系炭化水素樹脂(例えば、スチレン系樹脂、キシレン系樹脂など)、脂肪族・芳香族系石油樹脂、脂肪族・脂環族系石油樹脂、水素添加炭化水素樹脂、クマロン系樹脂、クマロンインデン系樹脂など)、フェノール系粘着付与樹脂(例えば、アルキルフェノール系樹脂、キシレンホルムアルデヒド系樹脂、レゾール、ノボラックなど)、ケトン系粘着付与樹脂、ポリアミド系粘着付与樹脂、エポキシ系粘着付与樹脂、エラストマー系粘着付与樹脂などが挙げられる。なかでも好ましくは、ロジン系粘着付与樹脂、テルペン系粘着付与樹脂または炭化水素系粘着付与樹脂(スチレン系樹脂など)である。粘着付与剤は、単独で、または2種以上組み合わせて用いてもよい。
 上記粘着付与剤の添加量は、ベースポリマー100重量部に対して、好ましくは5重量部~100重量部であり、より好ましくは10重量部~50重量部である。
 上記架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、過酸化物系架橋剤の他、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤などが挙げられる。なかでも好ましくは、イソシアネート系架橋剤またはエポキシ系架橋剤である。
 上記イソシアネート系架橋剤の具体例としては、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロへキシレンジイソシアネート、イソホロン ジイソシアネート等の脂環族イソシアネート類;2,4-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族イソシアネート類;トリメチロールプロパン/トリレンジイソシアネート3量体付加物、トリメチロールプロパン/へキサメチレンジイソシアネート3量体付加物、ヘキサメチレンジイソシアネートのイソシアヌレート体等のイソシアネート付加物等が挙げられる。イソシアネート系架橋剤の含有量は、所望とする粘着力に応じて、任意の適切な量に設定され得、ベースポリマー100重量部に対して、代表的には0.1重量部~20重量部であり、より好ましくは0.5重量部~10重量部である。
 上記エポキシ系架橋剤としては、例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-グリシジルアミノメチル)シクロヘキサン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル、分子内にエポキシ基を2つ以上有するエポキシ系樹脂等が挙げられる。エポキシ系架橋剤の含有量は、所望とする粘着力に応じて、任意の適切な量に設定され得、ベースポリマー100重量部に対して、代表的には0.01重量部~10重量部であり、より好ましくは0.03重量部~5重量部である。
(熱膨張性微小球)
 上記熱膨張性微小球としては、加熱により膨張または発泡し得る微小球である限りにおいて、任意の適切な熱膨張性微小球を用いることができる。上記熱膨張性微小球としては、例えば、加熱により容易に膨張する物質を、弾性を有する殻内に内包させた微小球が用いられ得る。このような熱膨張性微小球は、任意の適切な方法、例えば、コアセルベーション法、界面重合法等により製造できる。
 加熱により容易に膨張する物質としては、例えば、プロパン、プロピレン、ブテン、ノルマルブタン、イソブタン、イソペンタン、ネオペンタン、ノルマルペンタン、ノルマルヘキサン、イソヘキサン、ヘプタン、オクタン、石油エーテル、メタンのハロゲン化物、テトラアルキルシラン等の低沸点液体;熱分解によりガス化するアゾジカルボンアミド;等が挙げられる。
 上記殻を構成する物質としては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エトキシアクリロニトリル、フマロニトリル等のニトリルモノマー;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸等のカルボン酸モノマー;塩化ビニリデン;酢酸ビニル;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、β-カルボキシエチルアクリレート等の(メタ)アクリル酸エステル;スチレン、α-メチルスチレン、クロロスチレン等のスチレンモノマー;アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド等のアミドモノマー;等から構成されるポリマーが挙げられる。これらのモノマーから構成されるポリマーは、ホモポリマーであってもよく、コポリマーであってもよい。該コポリマーとしては、例えば、塩化ビニリデン-メタクリル酸メチル-アクリロニトリル共重合体、メタクリル酸メチル-アクリロニトリル-メタクリロニトリル共重合体、メタクリル酸メチル-アクリロニトリル共重合体、アクリロニトリル-メタクリロニトリル-イタコン酸共重合体等が挙げられる。
 上記熱膨張性微小球として、無機系発泡剤または有機系発泡剤を用いてもよい。無機系発泡剤としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水酸化ホウ素ナトリウム、各種アジド類等が挙げられる。また、有機系発泡剤としては、例えば、トリクロロモノフルオロメタン、ジクロロモノフルオロメタン等の塩フッ化アルカン系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレート等のアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3´-ジスルホニルヒドラジド、4,4´-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)等のヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4´-オキシビス(ベンゼンスルホニルセミカルバジド)等のセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾール等のトリアゾール系化合物;N,N´-ジニトロソペンタメチレンテトラミン、N,N´-ジメチル-N,N´-ジニトロソテレフタルアミド;等のN-ニトロソ系化合物などが挙げられる。
 上記熱膨張性微小球は市販品を用いてもよい。市販品の熱膨張性微小球の具体例としては、松本油脂製薬社製の商品名「マツモトマイクロスフェアー」(グレード:F-30、F-30D、F-36D、F-36LV、F-50、F-50D、F-65、F-65D、FN-100SS、FN-100SSD、FN-180SS、FN-180SSD、F-190D、F-260D、F-2800D)、日本フィライト社製の商品名「エクスパンセル」(グレード:053-40、031-40、920-40、909-80、930-120)、呉羽化学工業社製「ダイフォーム」(グレード:H750、H850、H1100、S2320D、S2640D、M330、M430、M520)、積水化学工業社製「アドバンセル」(グレード:EML101、EMH204、EHM301、EHM302、EHM303、EM304、EHM401、EM403、EM501)等が挙げられる。
 1つの実施形態においては、上記熱膨張性微小球の加熱前の粒子径は、好ましくは0.5μm~80μmであり、より好ましくは5μm~45μmであり、さらに好ましくは10μm~20μmであり、特に好ましくは10μm~15μmである。上記熱膨張性微小球の加熱前の粒子サイズを平均粒子径で言えば、好ましくは6μm~45μmであり、より好ましくは15μm~35μmである。粒子サイズが、このような範囲の熱膨張性微小球は分散性に優れる。なお、上記の粒子径と平均粒子径はレーザー散乱法における粒度分布測定法によって求められる値である。
 別の実施形態においては、上記熱膨張性微小球の加熱前の平均粒子径は、好ましくは1μm未満であり、より好ましくは0.8μm以下であり、さらに好ましくは0.3μm~0.8μmである。熱膨張性微小球の粒子径がこのような範囲であれば、粘着面の凹凸が少ない粘着シートを得ることができる。このような粘着シートを用いれば、被着体である電解質膜に凹凸を生じさせることを防止し得る。また、凹凸が少ない粘着シートは、ガス拡散電極等の部材を圧着により積層する膜/電極複合体の製造において、特に有用である。
 上記熱膨張性微小球は、体積膨張率が好ましくは5倍以上、より好ましくは7倍以上、さらに好ましくは10倍以上となるまで破裂しない適度な強度を有することが好ましい。このような熱膨張性微小球を用いる場合、加熱処理により粘着力を効率よく低下させることができる。
 上記粘着剤層における熱膨張性微小球の含有割合は、所望とする粘着力の低下性等に応じて適切に設定し得る。熱膨張性微小球の含有割合は、粘着剤Aを形成するベースポリマー100重量部に対して、例えば1重量部~150重量部、好ましくは10重量部~130重量部、さらに好ましくは25重量部~100重量部である。
<加熱硬化し得る粘着剤層>
 上記の加熱硬化し得る粘着剤層は、加熱硬化し得る粘着剤Bを含む。該粘着剤Bとしては、例えば、ベースポリマーと熱硬化性樹脂とを含む熱硬化型粘着剤、または、熱硬化性樹脂をベースポリマーとして含む熱硬化型粘着剤から形成され得る。粘着剤Bに用いられる熱硬化性樹脂としては、例えば、フェノール系樹脂、アミノ系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、熱硬化性ポリイミド系樹脂等が挙げられる。また、上記熱硬化性樹脂と組み合わせて用いられるベースポリマーとしては、(メタ)アクリル系ポリマー、ゴム系ポリマー等が挙げられる。
<加熱により粘着力が低下するその他の粘着剤層>
  加熱により粘着力が低下する粘着剤層としては、上記で説明した粘着剤層以外にも、本発明の効果が得られる限りにおいて、任意の適切な粘着剤層が用いられ得る。加熱により粘着力が低下するその他の粘着剤層としては、例えば、感圧性粘着剤Cと側鎖結晶性ポリマーとを含む粘着剤層が挙げられる。
 感圧性粘着剤Cと側鎖結晶性ポリマーとを含む粘着剤層において、側鎖結晶性ポリマーの含有割合は、感圧性粘着剤C100重量部に対して、好ましくは4重量部~9重量部であり、より好ましくは4重量部~6重量部である。このような範囲であれば、加熱により粘着力が十分に低下する粘着剤層を形成することができる。
 好ましくは、側鎖結晶性ポリマーと、感圧性粘着剤Cとは非相溶である。側鎖結晶性ポリマーと感圧性粘着剤Cとが相溶しなければ、感圧性粘着剤Cに側鎖結晶性ポリマーが分散した海島構造が形成され、加熱により粘着力が十分に低下する粘着剤層を形成することができる。
(感圧性粘着剤C)
 上記感圧性粘着剤Cとしては、任意の適切な粘着剤が用いられ得る。感圧性粘着剤Cとしては、例えば、天然ゴム系粘着剤;合成ゴム系粘着剤;スチレン/ブタジエンラテックスベース粘着剤;ブロック共重合体型の熱可塑性ゴム;ブチルゴム系粘着剤;ポリイソブチレン系粘着剤;アクリル系粘着剤;ビニルエーテルの共重合体等が挙げられる。なかでも好ましくは、アクリル系粘着剤である。アクリル系粘着剤は、C1~12のアクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステル由来の構成単位を有する(メタ)アクリル系ポリマーを含むことが好ましい。該(メタ)アクリル系ポリマーは、例えば、エチルヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、メチル(メタ)アクリレート等のモノマーを重合して得ることができる。
(側鎖結晶性ポリマー)
 上記側鎖結晶性ポリマーは、好ましくは、温度に応じて可逆的に結晶状態と流動状態とをとり得る。具体的には、側鎖結晶性ポリマーは、該側鎖結晶性ポリマーの融点未満の温度で結晶化し、かつ、該融点以上の温度で流動性を示すのが好ましい。このような側鎖結晶性ポリマーを用いれば、融点未満の温度では適度な粘着性を有し、かつ、融点以上に加熱して側鎖結晶性ポリマーを流動化させることにより、上記感圧性粘着剤Cの粘着性を阻害して、粘着力が低下し得る粘着剤層を形成することができる。なお、本明細書において、融点とは、所定の平衡プロセスにより、秩序ある配列に整合されていたポリマーの特定部分が無秩序状態となる温度を意味する。ポリマーの融点は、示差熱走査熱量計(DSC)で、10℃/分の測定条件で測定して得られ得る。
 上記側鎖結晶性ポリマーの融点は、好ましくは50℃以上であり、より好ましくは50℃~70℃である。
 上記側鎖結晶性ポリマーとしては、例えば、C18以上(好ましくは、C18~22)の直鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルと、C6以下のアルキル基を有する(メタ)アクリル酸アルキルエステルと、極性モノマーとをモノマー成分として得られたポリマーが挙げられる。
 上記C18以上の直鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルとしては、例えば、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられる。
 上記C18以上の直鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルの含有割合は、上記側鎖結晶性ポリマーを構成するモノマー成分100重量部に対して、好ましくは15重量部~99重量部であり、より好ましくは25重量部~99重量部であり、さらに好ましくは30重量部~99重量部である。
 上記C6以下のアルキル基を有する(メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等が挙げられる。
 上記C6以下のアルキル基を有する(メタ)アクリル酸アルキルエステルの含有割合は、上記側鎖結晶性ポリマーを構成するモノマー成分100重量部に対して、好ましくは70重量部未満であり、より好ましくは65重量部未満であり、さらに好ましくは40重量部未満である。
 上記極性モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等のカルボキシル基含有エチレン不飽和単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシル基を有するエチレン不飽和単量体等が挙げられる。
 上記極性モノマーの含有割合は、上記側鎖結晶性ポリマーを構成するモノマー成分100重量部に対して、好ましくは0.5重量部~25重量部であり、より好ましくは1重量部~10重量部である。
 上記側鎖結晶性ポリマーの重量平均分子量は、好ましくは3,000~30,000であり、より好ましくは5,000~25,000である。このような範囲であれば、加熱により粘着力が十分に低下する粘着剤層を形成することができる。
B-2-2.活性エネルギー線照射により粘着力が低下する粘着剤層
 1つの実施形態においては、上記粘着剤層は、活性エネルギー線照射により硬化して、粘着力が低下または消失する。活性エネルギー線照射により粘着力が低下する粘着剤層は、活性エネルギー線を照射することにより硬化する活性エネルギー線硬化型粘着剤Dを含み得る。活性エネルギー線としては、例えば、ガンマ線、紫外線、可視光線、赤外線(熱線)、ラジオ波、アルファ線、ベータ線、電子線、プラズマ流、電離線、粒子線等が挙げられる。
 上記活性エネルギー線硬化型粘着剤Dを含む粘着剤層の厚みは、好ましくは1μm~50μmであり、より好ましくは5μm~30μmであり、さらに好ましくは5μm~20μmである。このような範囲であれば、適度な粘着性を有し、かつ、剥離性にも優れる粘着シートを得ることができる。
 上記活性エネルギー線硬化型粘着剤Dを含む粘着剤層の25℃における初期引っ張り弾性率は、好ましくは0.01MPa以上であり、より好ましくは0.05MPa~1.0MPaであり、さらに好ましくは0.03MPa~0.08MPaである。このような範囲であれば、適度な粘着性を有し、各部材(高分子電解質膜、ガス拡散電極、ガス拡散層)を搬送する際のハンドリング性に優れ、かつ、各部材の位置ずれを防止することができる。なお、初期引っ張り弾性率とは、外部刺激(粘着剤Dを含む粘着剤層においては、活性エネルギー線照射)を与える前の粘着剤層の引っ張り弾性率を意味する。
 上記活性エネルギー線硬化型粘着剤Dを含む粘着剤層の25℃における引っ張り弾性率は、活性エネルギー線を照射した後、10MPa~800MPaとなることが好ましく、20MPa~500MPaとなることがより好ましい。このような範囲であれば、剥離時の作業性に優れる粘着シートを得ることができる。
 上記のような物理的特性(破壊靭性値、弾性率)を有する粘着剤層は、例えば、粘着剤を構成するベースポリマーを適切に選択すること、該ベースポリマーの重量平均分子量を調整することにより得ることができる。
 上記活性エネルギー線硬化型粘着剤Dとしては、例えば、ベースポリマーと活性エネルギー線硬化性モノマーおよび/またはオリゴマーとを含む活性エネルギー線硬化型粘着剤(以下、「添加型活性エネルギー線硬化型粘着剤」ともいう)、重合性炭素-炭素二重結合を有するポリマーをベースポリマーとして含む活性エネルギー線硬化型粘着剤(以下、「ベースポリマー型活性エネルギー線硬化型粘着剤」ともいう)等が挙げられる。
 上記添加型活性エネルギー線硬化型粘着剤に含まれるベースポリマーとしては、粘着性を発揮し得るかぎり、任意の適切なポリマーが採用され得る。ベースポリマーの具体例としては、(メタ)アクリル系ポリマー、ゴム系ポリマー等が挙げられる。好ましくは、ベースポリマーは(メタ)アクリル系ポリマーである。(メタ)アクリル系ポリマーとしては、例えば、上記で説明したポリマーが挙げられる。
 上記添加型活性エネルギー線硬化型粘着剤に含まれる(メタ)アクリル系ポリマーは、重合性炭素-炭素二重結合を有していてもよい。重合性炭素-炭素二重結合を有する(メタ)アクリル系ポリマーとしては、上記ベースポリマー型活性エネルギー線硬化型粘着剤のベースポリマーとして使用され得る(メタ)アクリル系ポリマーが用いられ得る。該ポリマーについては、後述する。
 上記添加型活性エネルギー線硬化型粘着剤が含む(メタ)アクリル系ポリマーの重量平均分子量は、好ましくは500,000以上、さらに好ましくは800,000~3,000,000である。
 上記活性エネルギー線硬化性モノマーまたはオリゴマーとしては、重合性炭素-炭素二重結合等の活性エネルギー線照射により架橋する官能基を有するモノマーまたはオリゴマーが採用され得る。該官能基を有するモノマーまたはオリゴマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、(メタ)アクリル酸と多価アルコールとのエステル化物、エステルアクリレートオリゴマー、2-プロペニル-3-ブテニルシアヌレート、イソシアヌレート、イソシアヌレート化合物等が挙げられる。なかでも、ジペンタエリスリトールヘキサ(メタ)アクリレート等の重合性炭素-炭素二重結合を一分子中に平均6個以上含有するモノマーまたはオリゴマーが好ましい。活性エネルギー線硬化性モノマーまたはオリゴマーは、1種のみ用いてもよく、2種以上を組み合わせて用いてもよい。なお、活性エネルギー線硬化性モノマーまたはオリゴマーの粘度は、特に制限されるものではない。
 上記添加型活性エネルギー線硬化型粘着剤における上記活性エネルギー線硬化性モノマーおよびオリゴマーの合計配合量は、ベースポリマー100重量部に対し、好ましくは1重量部~150重量部、さらに好ましくは1重量部~100重量部、特に好ましくは5重量部~50重量部、最も好ましくは10重量部~40重量部である。該配合量が上記範囲内であれば、硬化により粘着力が十分に低下する。
 一方、上記ベースポリマー型活性エネルギー線硬化型粘着剤においては、ベースポリマー自身が活性エネルギー線照射により架橋する性質を有するので、上記活性エネルギー線硬化性モノマーまたはオリゴマーの添加は、必ずしも必要とされず、任意である。低分子量である該モノマーまたはオリゴマーを含まない該粘着剤においては、これらの低分子成分が経時的に移動することがないので、安定した構造の粘着剤層を形成することができる。
 上記ベースポリマー型活性エネルギー線硬化型粘着剤のベースポリマーである重合性炭素-炭素二重結合を有するポリマーとしては、重合性炭素-炭素二重結合を側鎖中、主鎖中、または主鎖末端に有するポリマーが用いられ得る。このようなポリマーとしては、上記添加型活性エネルギー線硬化型粘着剤においてベースポリマーとして用いられ得る(メタ)アクリル系ポリマーを基本骨格とし、重合性炭素-炭素二重結合が該基本骨格に導入されたポリマーが好ましい。分子設計の容易さを考慮すると、重合性炭素-炭素二重結合は、好ましくは上記(メタ)アクリル系ポリマーの側鎖に導入される。
 上記重合性炭素-炭素二重結合を有するポリマー1分子あたりの重合性炭素-炭素二重結合の数は、好ましくは平均6個以上である。1分子あたりの重合性炭素-炭素二重結合の数が、平均6個以上であれば、活性エネルギー線の照射により、粘着剤が十分に硬化し、粘着力が低下する。
 上記(メタ)アクリル系ポリマーに重合性炭素-炭素二重結合を導入する方法としては、任意の適切な方法が採用され得る。重合性炭素-炭素二重結合を上記(メタ)アクリル系ポリマーの側鎖に導入する方法としては、例えば、官能基を有するモノマーを共重合させて側鎖に官能基を有する(メタ)アクリル系ポリマーを合成し、次いで、該官能基と反応し得る官能基および重合性炭素-炭素二重結合を有する化合物を、重合性炭素-炭素二重結合の活性エネルギー線硬化性を維持したまま縮合または付加反応させる方法が挙げられる。
 上記反応し得る官能基の組み合わせとしては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基等が挙げられる。これら官能基の組み合わせのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組み合わせが好ましい。これら官能基の組み合わせによって重合性炭素-炭素二重結合を有する(メタ)アクリル系ポリマーが得られるかぎり、各官能基は(メタ)アクリル系ポリマーと重合性炭素-炭素二重結合を有する化合物のいずれの側にあってもよい。ヒドロキシル基とイソシアネート基との組み合わせにおいては、(メタ)アクリル系ポリマーがヒドロキシル基を有し、上記重合性炭素-炭素二重結合を有する化合物がイソシアネート基を有することが好ましい。
 上記重合性炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。
 側鎖にヒドロキシル基を有する(メタ)アクリル系ポリマーとしては、上記で例示したヒドロキシ基含有モノマーや、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテル等のエーテル系化合物等を共重合して得られるポリマーが挙げられる。
 上記重合性炭素-炭素二重結合を有するイソシアネート化合物と側鎖にヒドロキシル基を有する(メタ)アクリル系ポリマーとの縮合反応においては、(メタ)アクリル系ポリマーが有するヒドロキシル基100モルに対してイソシアネート化合物が有するイソシアネート基が好ましくは1~90モル、さらに好ましくは5~80モルとなるようにそれぞれの配合量が設定され得る。ヒドロキシル基とイソシアネート基の割合が該範囲であれば、縮合反応が効率的に進行し、十分な活性エネルギー線硬化性を有する(メタ)アクリル系ポリマーが得られ得る。
 上記重合性炭素-炭素二重結合を有するポリマーの重量平均分子量は、好ましくは500,000以上、さらに好ましくは800,000~3,000,000程度である。重量平均分子量が500,000未満であると、十分な凝集力が得られなくなり、被着体を汚染するおそれがある。
 上記ベースポリマー型活性エネルギー線硬化型粘着剤は、必要に応じて、活性エネルギー線硬化性モノマーおよび/またはオリゴマーを含み得る。該活性エネルギー線硬化性モノマーおよびオリゴマーとしては、上記添加型活性エネルギー線硬化型粘着剤において用いられる活性エネルギー線硬化性モノマーおよびオリゴマーが好ましく例示され得る。
 上記ベースポリマー型活性エネルギー線硬化型粘着剤における上記活性エネルギー線硬化性モノマーおよびオリゴマーの合計配合量は、ベースポリマー100重量部に対し、好ましくは1重量部~150重量部、さらに好ましくは1重量部~100重量部、特に好ましくは1重量部~50重量部、最も好ましくは5重量部~40重量部である。
 上記添加型およびベースポリマー型活性エネルギー線硬化型粘着剤は、必要に応じて、外部架橋剤をさらに含み得る。粘着剤中において、ベースポリマーと外部架橋剤とが反応することにより、ベースポリマーが架橋されて、その重量平均分子量が増大し得る。外部架橋剤としては、任意の適切な架橋剤が採用され得る。外部架橋剤の具体例としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン樹脂、尿素樹脂、無水化合物、ポリアミン、およびカルボキシル基含有ポリマーが挙げられる。
 外部架橋剤の配合量は、架橋すべきベースポリマーとのバランス、粘着シートの用途等に応じて適切に設定され得る。一般的には、外部架橋剤の配合量は、上記ベースポリマー100重量部に対して0.1重量部~10重量部である。
 上記添加型およびベースポリマー型活性エネルギー線硬化型粘着剤は、必要に応じて、光重合開始剤をさらに含み得る。光重合開始剤は、紫外線等の光線の照射によって活性化するので、これらの粘着剤が紫外線硬化性である場合に、特に好適に用いられ得る。
 上記光重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾイソプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のべンゾインアルキルエーテル類;ベンジル、ベンゾイン、ベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン類の芳香族ケトン類;ベンジルジメチルケタール等の芳香族ケタール類;ポリビニルベンゾフェノン、クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン等のチオキサントン類等が挙げられる。
 上記光重合開始剤の配合量は、粘着剤に含まれるベースポリマー100重量部に対して、例えば0.1重量部~20重量部、好ましくは0.5重量部~10重量部である。
 上記添加型およびベースポリマー型活性エネルギー線硬化型粘着剤は、必要に応じて、上記成分に加えて、粘着付与剤、老化防止剤、充填剤、着色剤等の任意の添加剤をさらに含み得る。
B-2-3.冷却により粘着力が低下する粘着剤層
 1つの実施形態においては、上記粘着剤層は、冷却により粘着力が低下または消失する。該粘着剤層は、冷却により粘着力が低下する粘着剤Eを含み得る。粘着剤Eとしては、例えば、天然ゴム系粘着剤、シス-イソプレンラバー、スチレン-イソプレンラバー、ブダジエンラバー、ニトリルゴム系粘着剤、クロロプレンゴム系粘着剤、クロロスルホン化ポリエチレン系粘着剤、多硫化ゴム系粘着剤、ブチルゴム系粘着剤等が挙げられる。粘着剤Eは、アルキルフェノール-ホルムアルデヒド系樹脂、クマロン-インデン系樹脂、キシレン-ホルムアルデヒド系樹脂等の粘着付与剤を含んでいてもよい。
 また、粘着剤Eとして、上記で説明した側鎖結晶性ポリマーを用いてもよい。側鎖結晶性ポリマーを単独で、もしくは、側鎖結晶性ポリマーが主成分となるように用いることにより、冷却により粘着力が低下する粘着剤層を形成することができる。
B-3.粘着シートの製造方法
 上記粘着シートの製造方法としては、例えば、(1)基材上に粘着剤層形成用材料を塗工する方法、(2)基材と粘着性のフィルムとを貼り合わせる方法等が挙げられる。
 上記粘着剤層形成用材料は、上記の粘着剤(粘着剤A、加熱硬化し得る粘着剤B、感圧性粘着剤C、活性エネルギー線硬化型粘着剤Dまたは粘着剤E)を含み、必要に応じて上記添加剤および/または任意の適切な溶剤を含む。
 熱膨張性微小球を含む粘着剤層を形成する場合、上記粘着剤層形成用材料は、上記熱膨張性微小球を含み得る。また、粘着剤層形成用材料を塗布して塗布層を形成した後、該塗布層に熱膨張性微小球をプレス等により埋め込んで、熱膨張性微小球を含む粘着剤層を形成してもよい。
 上記粘着剤層形成用材料の塗工は、任意の適切な方法にて粘着剤層形成用材料を塗布し、その後、塗布層を乾燥することにより行われ得る。塗布層の乾燥方法としては任意の適切な乾燥方法が採用され得る。粘着剤層が熱膨張性微小球を含む場合、および加熱硬化し得る粘着剤を用いる場合は、粘着剤の粘着力が低下しない程度の温度で乾燥させることが好ましい。
 基材と粘着性のフィルムとを貼り合わせる方法における粘着性のフィルムは、離型フィルム上に上記粘着剤層形成用材料を塗工して形成することができる。粘着性のフィルムを、離型フィルムから基材に転写して、粘着シートが得られ得る。
C.燃料電池用膜/電極複合体の製造方法
C-1.第1の実施形態
 図2は、本発明の第1の実施形態による燃料電池用膜/電極複合体の製造方法の概要を説明する図である。この第1の実施形態においては、第1のガス拡散電極20と、高分子電解質膜10と、第2のガス拡散電極30とを備える膜/電極複合体200が製造され得る。本発明においては、少なくとも、高分子電解質膜、第1のガス拡散電極または第2のガス拡散電極のいずれか1つが、外部刺激により粘着力が低下する粘着シートにより搬送される。また、その後、粘着シートに熱、活性エネルギー線等の外部刺激を与えることにより、該粘着シートの粘着力を低下させて、該粘着シートを剥離する。該粘着シートにこれらの部材を貼着して搬送することにより、搬送時のハンドリング性に優れ、かつ、搬送後には容易に、かつ、被着体を損傷させることなく該粘着シートを剥離することができる。
 好ましくは、以下に説明するように、高分子電解質膜、第1のガス拡散電極および第2のガス拡散電極のいずれもが、該粘着シートにより搬送される。より具体的には、第1の実施形態においては、高分子電解質膜10が第1の粘着シート100により搬送されて工程に供給され、第1のガス拡散電極20が第2の粘着シート100’により搬送されて工程に供給され、第2のガス拡散電極30が第3の粘着シート100’’により搬送されて工程に供給される。第1~3の粘着シートとしては、上記B項で説明した粘着シート、すなわち、外部刺激により粘着力が低下または消失する粘着シートが用いられる。
 好ましくは、第1工程として、該第1の粘着シート100の粘着面(すなわち粘着剤層)に上記高分子電解質膜10を貼着して、該高分子電解質膜10を搬送する。より詳細には、第1の粘着シート100と第1の粘着シート100の粘着面に配置された高分子電解質膜10とを備える長尺状の積層体aをロールの形態で準備し、該ロールから該積層体aを繰り出す。このような形態であれば、連続生産工程により、膜/電極複合体を製造することが可能となり、生産効率に優れた製造方法とすることができる。積層体aの長さは、所望の生産量に応じて、任意の適切な長さに設定され得る。
 第1の粘着シート100は、第1工程後、後述の第3工程で剥離されるまでの間、高分子電解質膜10、および後工程で積層される第1のガス拡散電極20の搬送材として機能し得る。高分子電解質膜の搬送材としての上記粘着シートは、高分子電解質膜を搬送する際には十分な粘着力を有し、剥離の際には粘着力が低下または消失して、高分子電解質膜の変形およびシワの発生を防止することができる。
 上記第1の粘着シート100の幅は、高分子電解質膜のサイズに応じて任意の適切な幅に設定され得る。上記高分子電解質膜10の幅は、第1の粘着シートの幅に対して、好ましくは50%~100%であり、より好ましくは70%~95%である。
 1つの実施形態においては、高分子電解質膜10は、第1の粘着シート100上で長さ方向に連続的に配置され得る。別の実施形態においては、図3(積層体aの概略平面図)に示すように、高分子電解質膜10は、電解質膜搬送用粘着シート100上で、所定の間隔をあけて配置される。該間隔は、所望とする膜/電極複合体のサイズ等に応じて、任意の適切な間隔に設定され得る。
 上記高分子電解質膜の厚みは、好ましくは5μm~300μmであり、より好ましくは10μm~100μmである。本発明によれば、上記粘着シートを用いることにより、高分子電解質膜が薄型であっても、ハンドリング性よく該高分子電解質膜を搬送することができる。
 次いで、第2工程として、第2の粘着シート100’の粘着面に第1のガス拡散電極20を貼着して、第1のガス拡散電極20を搬送し、高分子電解質膜10の第1の粘着シート100とは反対側の面に、該面から第1のガス拡散電極20と該第2の粘着シート100’とをこの順に積層する。本発明に用いるガス拡散電極としては、特に限定されることなく、任意の適切なガス拡散電極を用いることができる。代表的には、ガス拡散電極は、触媒層とガス拡散層とを備える。ガス拡散電極は、触媒層が、高分子電解質膜側となるように積層される。
 第1のガス拡散電極20は、第2の粘着シート100’の粘着面に貼着した状態の積層体bとして供給される。該積層体bは、好ましくは長尺状である。該積層体bは、好ましくは、ロールから繰り出された長尺状の第2の粘着シート100’の粘着面に、所定の間隔をあけて、第1のガス拡散電極20を貼着して形成される。このような積層体の形態で第1のガス拡散電極20を供給することで、連続生産工程により、膜/電極複合体を製造することが可能となり、生産効率に優れた製造方法とすることができる。積層体bの長さは、所望の生産量に応じて、任意の適切な長さに設定され得る。第1のガス拡散電極20は、長尺状の第2の粘着シート100’上に、複数個配置される。なお、高分子電解質膜が所定の間隔をあけて配置される場合、第1のガス拡散電極の平面視面積は、高分子電解質膜1個の平面視面積に対して、例えば、60%~90%である。
 第2の粘着シート100’は、第2工程後、後述の第5工程で剥離されるまでの間、高分子電解質膜10、第1のガス拡散電極20、および後工程で積層される第2のガス拡散電極30の搬送材として機能し得る。本発明においては、上記粘着シートを用いることにより、十分な粘着力で固定して第1のガス拡散電極およびその他の部材(高分子電解質膜、第2のガス拡散電極)をハンドリング性よく搬送し得、その後、粘着力を低下させて容易に、かつ、被着体を損傷させることなく該粘着シートを剥離することができる。
 第2の粘着シート100’の幅は、第1の粘着シート100の幅に対して、好ましくは80%~110%であり、より好ましくは90%~100%である。
 第1の粘着シート100の粘着剤層と、第2の粘着シート100’の粘着剤層とは、外部刺激に対する応答性が異なることが好ましい。具体的には、第2の粘着シート100’は、次工程の第3工程(第1の粘着シート100を剥離する工程)で与えられる外部刺激Aにより、粘着力が低下しないことが好ましい。外部刺激に対する応答性が異なるとは、例えば、各粘着剤層の粘着力が、異なる種類の外部刺激(例えば、熱/活性エネルギー線)を起因として低下する場合、いずれの粘着剤層も加熱により粘着力が低下するが、粘着力を失う温度が異なる場合、いずれの粘着剤層も活性エネルギー線により粘着力が低下するが、粘着力を低下させるために要求される波長が異なる場合等を意味する。
 第1のガス電極20を積層する方法としては、任意の適切な方法が採用され得る。また、第1の粘着シートおよび第2の粘着シートとして、穴またはマークを備える粘着シートを用いれば、位置合わせが容易となり、組み付け精度よく膜/電極複合体を製造することができる。なお、マークを有する粘着シートの位置合わせには、任意の適切なセンサーが用いられ得る。
 第1のガス拡散電極20および第2の粘着シート100’を積層した後、第1の粘着シート100を剥離する(第3工程)。第1の粘着シート100は、第1の粘着シート100の高分子電解質膜10が配置されていない側から、外部刺激Aを与えることにより、該第1の粘着シート100の粘着力を低下させて、剥離することができる。なお、第2の粘着シート100’として、第1の粘着シート100とは外部刺激に対する応答性が異なる粘着シートを用い、第3工程における外部刺激Aによっても、第2の粘着シート100’が剥離しないことが好ましい。
 上記外部刺激Aとして、熱を用いる場合、温度、時間等の加熱条件は、第1の粘着シートの粘着剤層中の熱膨張性微小球の特性または粘着剤層を構成する熱硬化性樹脂の種類等に応じて、任意の適切な条件に設定され得る。該加熱温度は、好ましくは70℃~200℃であり、より好ましくは80℃~150℃である。加熱温度がこのような温度であれば、上記積層体の収縮を防止することができる。なお、第1のガス拡散電極20を圧着する温度と、第1の粘着シートの粘着剤層の粘着力を低下させる温度とを同じ温度として、第1のガス拡散電極20を圧着すると同時に、第1の粘着シート100を剥離してもよい。
 上記外部刺激Aとして、活性エネルギー線を用いる場合、波長、照射強度、照射時間等の活性エネルギー線照射条件は、第1の粘着シートの粘着剤層中の活性エネルギー線硬化型粘着剤Dの特性に応じて任意の適切な条件に設定され得る。
 第1の粘着シート100を剥離した後、第3の粘着シート100’’の粘着面に第2のガス拡散電極30を貼着して、第2のガス拡散電極30を搬送し、高分子電解質膜10の第1のガス拡散電極20とは反対側の面に、該面から第2のガス拡散電極30と第3の粘着シート100’’とをこの順に積層する(第4工程)。第2のガス拡散電極30は、第1のガス拡散電極20に対応する位置に積層される。
 第2のガス拡散電極30は、第3の粘着シート100’の粘着面に貼着した状態の積層体cとして供給される。該積層体cは、好ましくは長尺状である。積層体cは、好ましくは、ロールから繰り出された長尺状の第3の粘着シート100’の粘着面に、所定の間隔をあけて、第2のガス拡散電極30を貼着して形成される。このような積層体の形態で第2のガス拡散電極30を供給することで、連続生産工程により、膜/電極複合体を製造することが可能となり、生産効率に優れた製造方法とすることができる。積層体cの長さは、所望の生産量に応じて、任意の適切な長さに設定され得る。第2のガス拡散電極30は、第3の粘着シート100’’上に、複数個配置される。第2のガス拡散電極のサイズは、通常、第1のガス拡散電極のサイズと同じであるが、実用的な範囲で第1のガス拡散電極のサイズと異なっていてもよい。
 第3の粘着シート100’’は、第4工程後、第7工程で剥離されるまでの間、高分子電解質膜10、第1のガス拡散電極20および第2の拡散電極30の搬送材として機能し得る。本発明においては、上記粘着シートを用いることにより、十分な粘着力で固定して第2のガス拡散電極およびその他の部材(高分子電解質膜、第1のガス拡散電極)をハンドリング性よく搬送し得、その後、粘着力を低下させて容易に、かつ、被着体を損傷させることなく該粘着シートを剥離することができる。
 第3の粘着シート100’’の幅は、第2の粘着シート100’の幅に対して、好ましくは80%~110%であり、より好ましくは90%~100%である。
 第2の粘着シート100’と、第3の粘着シート100’’とは、外部刺激に対する応答性が異なることが好ましい。具体的には、第3の粘着シート100’’は、次工程の第5工程(第2の粘着シート100’を剥離する工程)で与えられる外部刺激にBにより、粘着力が低下しないことが好ましい。
 第2のガス拡散電極30を積層する方法としては、任意の適切な方法が採用され得る。また、第2の粘着シートおよび第3の粘着シートとして、穴またはマークを備える粘着シートを用いれば、位置合わせが容易となり、組み付け精度よく膜/電極複合体を製造することができる。
 上記第4工程により、一対のガス拡散電極の間に高分子電解質膜が挟持された構成の膜/電極複合体構造が、第2の粘着シート100’の粘着面と第3の粘着シート100’’の粘着面との間に、複数個形成される。
 第2のガス拡散電極30および第3の粘着シート100’’を積層した後、第2の粘着シート100’を剥離する(第5工程)。第2の粘着シート100’は、第2の粘着シート100’の第1のガス拡散電極20が配置されていない側から、外部刺激Bを与えることにより、第2の粘着シート100’の粘着力を低下させて、剥離することができる。なお、第3の粘着シート100’’として、第2の粘着シート100’とは外部刺激に対する応答性が異なる粘着シートを用い、第5工程における外部刺激Bによっても、第3の粘着シート100’’が剥離しないことが好ましい。
 上記外部刺激Bとして、熱を用いる場合、温度、時間等の加熱条件は、第2の粘着シート100’の粘着剤層中の熱膨張性微小球の特性または粘着剤層を構成する熱硬化性樹脂の種類等に応じて、任意の適切な条件に設定され得る。該加熱温度は、好ましくは70℃~200℃であり、より好ましくは80℃~150℃である。加熱温度がこのような温度であれば、上記積層体の収縮を防止することができる。なお、第2のガス拡散電極30を圧着する温度と、第2の粘着シート100’の粘着剤層の粘着力を低下させる温度とを同じ温度として、第2のガス拡散電極30を圧着すると同時に、第2の粘着シート100’を剥離してもよい。
 上記外部刺激Bとして、活性エネルギー線を用いる場合、波長、照射強度、照射時間等の活性エネルギー線照射条件は、第2の粘着シートの粘着剤層中の活性エネルギー線硬化型粘着剤Cの特性に応じて任意の適切な条件に設定され得る。
 上記のとおり、第1の粘着シート100と第2の粘着シート100’とは、外部刺激に対する応答性が異なることが好ましい。したがって、第2の粘着シート100’の粘着力を低下させるための外部刺激Bは、第1の粘着シート100の粘着力を低下させるための外部刺激Aと異なることが好ましい。具体的には、外部刺激Aが熱の場合、外部刺激Bとしては、例えば、外部刺激Aとは異なる温度の熱、または活性エネルギー線が用いられ得る。また、外部刺激Aが活性エネルギー線の場合、外部刺激Bとしては、例えば、熱、または外部刺激Aとは波長の異なる活性エネルギー線が用いられ得る。このように異なる外部刺激により、粘着シートを剥離すれば、剥離を要する粘着シートを作業性よく剥離することができ、かつ、剥離を要さない粘着シートの剥離を防止することができ、ハンドリング性よく膜/電極複合体を製造することができる。
 外部刺激Aと外部刺激Bとが共に熱である場合、外部刺激Aの温度Taと外部刺激Bの温度Tbとの関係は、Ta<Tbであることが好ましい。このような関係であれば、外部刺激Aを与えた場合に、第2の粘着シート100’による作業性およびハンドリング性を維持した状態で、第1の粘着シート100のみを剥離することができ(第3工程)、第2のガス拡散電極30を積層する工程(第4工程)を効率よく実施することができる。上記の条件で加工に供し得る粘着シートの組み合わせとしては、例えば、含まれる熱膨張性微小球の熱膨張性が異なる粘着シートの組み合わせ、含まれる熱膨張性微小球の含有割合が異なる粘着シートの組み合わせ等が挙げられる。具体的には、熱膨張性の高い(例えば、体積膨張率が10倍以上、好ましくは12倍以上)熱膨張性微小球を用いた第1の粘着シートと、第1の粘着シートの熱膨張性微小球よりも熱膨張性の低い(例えば、体積膨張率が7倍以上10倍未満、好ましくは7倍~9倍)熱膨張性微小球を用いた第2の粘着シートとが組み合わせて用いられ得る。また、粘着剤層中の熱膨張性微小球の含有割合が多い(ベースポリマー100重量部に対して、例えば100重量部~150重量部、好ましくは130重量部~150重量部)第1の粘着シートと、第1の粘着シートよりも熱膨張性微小球の含有割合が少ない(ベースポリマー100重量部に対して例えば、50重量部以上100重量部未満、好ましくは60重量部~90重量部)第2の粘着シートとを組み合わせてもよい。
 第1の粘着シート100および第2の粘着シート100’として、共に、活性エネルギー線照射により粘着力が低下する粘着剤層を備える粘着シートを用いる場合、外部刺激としては活性エネルギー線を用いるが、このとき、被着体(高分子電解質膜)を活性エネルギー線の遮蔽材として機能させてもよい。このようにすれば、外部刺激Aと外部刺激Bとが同じ照射条件の活性エネルギー線であっても、剥離を要する粘着シートを作業性よく剥離することができ、かつ、剥離を要さない粘着シートの剥離を防止することができ、ハンドリング性よく膜/電極複合体を製造することができる。
 高分子電解質膜が、電解質膜搬送用粘着シート上で長さ方向に連続的に配置される場合、本発明の製造方法は、複数の膜/電極複合体構造を分離切断する前の段階として、長さ方向で隣り合うガス拡散電極の間を切断位置として、高分子電解質膜10を切断する工程を含む(第6工程)。切断方法としては、任意の適切な方法が採用され得る。
 次いで、第3の粘着シート100’’を剥離する(第7工程)。第3の粘着シート100’’は、第3の粘着シート100’’の第2のガス拡散電極30が配置されていない側から、外部刺激Cを与えることにより、第3の粘着シート100’’の粘着力を低下させて、剥離することができる。
 上記外部刺激Cとして、熱を用いる場合、温度、時間等の加熱条件は、第3の粘着シート100’’の粘着剤層中の熱膨張性微小球の特性または粘着剤層を構成する熱硬化性樹脂の種類等に応じて、任意の適切な条件に設定され得る。該加熱温度は、好ましくは70℃~200℃であり、より好ましくは80℃~150℃である。加熱温度がこのような温度であれば、上記積層体の収縮を防止することができる。
 上記外部刺激Cとして、活性エネルギー線を用いる場合、波長、照射強度、照射時間等の活性エネルギー線照射条件は、第3の粘着シートの粘着剤層中の活性エネルギー線硬化型粘着剤Cの特性に応じて任意の適切な条件に設定され得る。
 上記のとおり、第2の粘着シート100’と第3の粘着シート100’’とは、外部刺激に対する応答性が異なることが好ましい。したがって、第3の粘着シート100’’の粘着力を低下させるための外部刺激Cは、第2の粘着シート100’の粘着力を低下させるための外部刺激Bと異なることが好ましい。具体的には、外部刺激Bが熱の場合、外部刺激Cとしては、例えば、外部刺激Bとは異なる温度の熱、または活性エネルギー線が用いられ得る。また、外部刺激Bが活性エネルギー線の場合、外部刺激Cとしては、例えば、熱、または外部刺激Bとは波長の異なる活性エネルギー線が用いられ得る。このように異なる外部刺激により、粘着シートを剥離すれば、剥離を要する粘着シートを作業性よく剥離することができ、かつ、剥離を要さない粘着シートの剥離を防止することができ、ハンドリング性よく膜/電極複合体を製造することができる。
 外部刺激Bと外部刺激Cとが共に熱である場合、外部刺激Bの温度Tbと外部刺激Cの温度Tcとの関係は、Tb<Tcであることが好ましい。このような関係であれば、外部刺激Bを与えた場合に、第3の粘着シート100’’による作業性およびハンドリング性を維持した状態で、第2の粘着シート100’のみを剥離することができ(第5工程)、高分子電解質膜10を切断する工程(第6工程)を効率よく実施することができる。上記の条件で加工に供し得る粘着シートの組み合わせ、すなわち、外部刺激(熱)に対する応答性が異なる粘着シートの組み合わせとしては、例えば、含まれる熱膨張性微小球の熱膨張性が異なる粘着シートの組み合わせ、含まれる熱膨張性微小球の含有割合が異なる粘着シートの組み合わせ等が挙げられる。具体的には、熱膨張性の低い(例えば、体積膨張率が5倍以上7倍未満、好ましくは5倍~6倍)熱膨張性微小球を用いた第3の粘着シートと、第3の粘着シートの熱膨張性微小球よりも熱膨張性の高い(例えば、体積膨張率が7倍以上10倍未満、好ましくは7倍~9倍)熱膨張性微小球を用いた第2の粘着シートとが組み合わせて用いられ得る。また、粘着剤層中の熱膨張性微小球の含有割合が少ない(ベースポリマー100重量部に対して、例えば1重量部以上50重量部未満、好ましくは10重量部~25重量部)第3の粘着シートと、第3の粘着シートよりも熱膨張性微小球の含有割合が多い(ベースポリマー100重量部に対して例えば、50重量部以上100重量部未満、好ましくは60重量部~90重量部)第2の粘着シートとを組み合わせてもよい。
 1つの実施形態においては、外部刺激A、外部刺激B、外部刺激Cとして共に熱を用い、外部刺激Aの温度Taと外部刺激Bの温度Tbと外部刺激Cの温度Tcとの関係を、Ta<Tb<Tcとする。このような関係であれば、各工程において剥離を要さない粘着シートの粘着力低下を防止することができ、外部刺激を与えた後の工程を効率よく行うことができる。
 なお、第2の粘着シート100’および第3の粘着シート100’’として、共に、活性エネルギー線照射により粘着力が低下する粘着剤層を備える粘着シートを用いる場合、外部刺激としては活性エネルギー線を用いるが、このとき、被着体(高分子電解質膜)を活性エネルギー線の遮蔽材として機能させてもよい。このようにすれば、外部刺激Bと外部刺激Cとが同じ照射条件の活性エネルギー線であっても、剥離を要する粘着シートを作業性よく剥離することができ、かつ、剥離を要さない粘着シートの剥離を防止することができ、ハンドリング性よく膜/電極複合体を製造することができる。
 上記のようにして、第1のガス拡散電極20と、高分子電解質膜10と、第2のガス拡散電極30とを備える膜/電極複合体200が製造され得る。このような製造方法によれば、各部材の組み付けを効率よく行うことができ、燃料電用膜/電極複合体の製造ラインの高速化が可能となる。好ましくは、得られた膜/電極複合体はベルトコンベア等により搬送されて、次工程に供される。
C-2.第2の実施形態
 図4は、本発明の第2の実施形態による燃料電池用膜/電極複合体の製造方法の概要を説明する図である。第2の実施形態においては、第1のガス拡散電極20と、高分子電解質膜10と、第2のガス拡散電極とをこの順に備え、かつ、第1のガス拡散電極20の周囲を囲むように配置された第1のガスケット40および第2のガス拡散電極を囲むように配置された第2のガスケットを備える膜/電極複合体が製造され得る。
 第2の実施形態においては、第1のガス拡散電極20を搬送する際に、第1のガスケット40を、第1のガス拡散電極20とともに第2の粘着シート100’に貼着して搬送し、第1のガスケット40と第1のガス拡散電極20とを同時に、高分子電解質膜10上に積層する。また、第2のガス拡散電極を搬送する際に、第2のガスケットを、第2のガス拡散電極とともに第3の粘着シートに貼着して搬送し、第2のガスケットと第2のガス拡散電極とを同時に、前記高分子電解質膜上に積層する。なお、第2の実施形態においては、第1のガス拡散電極20が第1のガスケット40とともに高分子電解質膜10上に積層されること、および、第2のガス拡散電極が第2のガスケットとともに高分子電解質膜10上に積層されること以外は、上記C-1項で説明した製造方法に準じて膜/電極複合体を製造することができる。図4においては、第2の実施形態において、積層体a(第1の粘着シート100と高分子電解質膜10との積層体)をロールから繰り出した後、第1のガス拡散電極20を第1のガスケット40とともに、高分子電解質膜10上に積層するまでの工程を図示している。
 第1のガスケットおよび第2のガスケットとしては、任意の適切なガスケットが用いられ得る。ガスケットの幅は、得られる膜/電極複合体における高分子電解質膜の幅に対して、例えば、80%~100%である。ガスケットの長さは、得られる膜/電極複合体における高分子電解質膜の長さに対して、例えば、80%~100%である。ガスケットの厚み(高さ)は、ガス拡散電極の厚みに対して、好ましくは80%~100%であり、より好ましくは80%~90%である。ガスケットの厚みがガス拡散電極の厚みより薄い場合には、ガス拡散電極を圧縮するようにして、ガス拡散電極をガスケットとともに高分子電解質膜上に積層する。ガスケット40は開口部を有する。該開口部の幅は、ガス拡散電極の幅に対して、例えば100%~110%である。該開口部の長さは、ガス拡散電極の長さに対して、例えば100%~110%である。
 第1のガス拡散電極20と第1のガスケット40とは、第2の粘着シート100’の粘着面に貼着した状態の積層体b’として供給される。該積層体b’は長尺状である。該積層体b’は、好ましくは、ロールから繰り出された長尺状の第2の粘着シート100’の粘着面に、所定の間隔をあけて第1のガス拡散電極20を貼着し、第1のガス拡散電極20を囲むようにしてガスケット40を貼着して形成される。
 第1のガス拡散電極20とガスケット40とを積層する方法としては、任意の適切な方法が採用され得る。1つの実施形態においては、圧着の際に加熱する。圧着の際の加熱温度Tpは、好ましくは40℃~200℃であり、より好ましくは50℃~150℃である。また、第1の粘着シート100の粘着力を低下させるための外部刺激Aとして熱を用いる場合、該外部刺激Aの温度Taと、圧着の際の加熱温度Tpとの関係は、Tp<Taであることが好ましい。このような関係であれば、第1の粘着シート100による作業性およびハンドリング性を維持した状態で、第1のガス拡散電極20とガスケット40とを積層することができるので、位置ずれを防ぐことができ、かつ、高分子電解質膜10のシワを抑制することができる。また、加えて、加熱温度Tpにて熱圧着できるガスケットを選定することで、膜/電極接合体の製造(すなわち、高分子電解質膜とガス拡散電極の積層)と膜/電極接合体とガスケットとの積層を同時に実施することができ、工程数の削減、製造速度の高速化が可能となる。
 第2のガス拡散電極もまた、上記で説明したようにして、第2のガスケットとともに、高分子電解質膜上に積層され得る。すなわち、第2のガス拡散電極は、第2のガスケットとともに、第3の粘着シートに貼着された状態で高分子電解質膜上に積層され得る。第2の粘着シートの粘着力を低下させるための外部刺激Bとして熱を用いる場合、該外部刺激Bの温度Tbと、第2のガスケットを圧着の際の加熱温度Tpとの関係は、Tp<Taであることが好ましい。
C-3.第3の実施形態
 図5は、本発明の第3の実施形態による燃料電池用膜/電極複合体の製造方法の概要を説明する図である。第3の実施形態においては、第1のガス拡散電極20’と、高分子電解質膜10と、第2のガス拡散電極とをこの順に備える膜/電極複合体が製造され得る。第3の実施形態においては、第1のガス拡散電極20’は、触媒層21とガス拡散層22とを、高分子電解質膜10側からこの順に備える。また、第2のガス拡散電極もまた、触媒層とガス拡散層とを備え得る。第3の実施形態においては、触媒層とガス拡散層とを別々に形成する。なお、図5においては、第3の実施形態において、第1のガス拡散電極20’を形成するまでの工程を図示している。
 第3の実施形態においても、第1の実施形態と同様に、第1工程として、第1の粘着シート100と該粘着シート100の粘着面に配置された高分子電解質膜10とを備える長尺状の積層体aとロールの形態で準備し、該ロールから積層体aを繰り出す。
 上記触媒層21は、高分子電解質膜10の粘着シート100とは反対側の面に配置される。触媒層21の形成方法としては、任意の適切な方法が採用され得る。
 1つの実施形態においては、触媒層は、粘着シート100上に触媒層形成用組成物を塗布し、その後乾燥させるといった塗工工程により形成され得る。
 上記触媒層形成用組成物としては、任意の適切な成分を含む組成物が用いられる。触媒層形成用組成物は、例えば、炭素粒子等の導電性粒子、白金触媒等の触媒等を含む。
 上記触媒層形成用組成物の塗布方法としては、例えば、バーコーター、スプレー、スクリーン印刷等を用いた塗布方法が挙げられる。
 上記触媒層形成用組成物の塗布層の厚み(乾燥前の触媒層の厚み)は、好ましくは1μm~3000μmnであり、より好ましくは30μm~1000μmである。
 上記触媒層形成用組成物の塗布層を乾燥させる方法としては、任意の適切な乾燥方法が用いられ得る。加熱乾燥する場合の加熱温度は、例えば40℃~200℃であり、より好ましくは50℃~150℃である。
 上記触媒層の厚みは、1μm~1000μmであり、より好ましくは10μm~300μmである。
 触媒層21の幅は、高分子電解質膜10の幅に対して、好ましくは50%~100%であり、より好ましくは70%~95%である。また、上記触媒層の平面視面積は、該触媒層上に積層されるガス拡散層の面積に応じて、任意の適切な面積に設定され得る。上記触媒層の平面視面積は、ガス拡散層の平面視面積に対して、好ましくは90%~100%であり、より好ましくは95%~100%である。特に好ましくは、触媒層の平面視面積とガス拡散層の平面視面積とは同じである。
 別の実施形態においては、転写シート上に形成された触媒層を転写して、高分子電解質膜上に触媒層を形成してもよい。転写シートを構成する材料としては、良好に触媒層が形成でき、かつ、転写するのに適した粘着性を有する限り、任意の適切な材料が用いられ得る。該転写シートとして、上記基材と上記粘着剤層とから構成されるシート、すなわち、外部刺激により粘着性が低下または消失する転写シートを用いてもよい。
 上記転写シートに触媒層を形成させる方法としては、例えば、転写シート上に上記触媒層形成用組成物を塗工する方法が挙げられる。塗布方法および乾燥方法は、上記で説明したとおりである。
 上記転写シートは、長尺状であることが好ましい。長尺状の転写シートに複数の触媒層を形成し、連続的な触媒層の転写が可能となるからである。複数の触媒層が形成された長尺状の転写シートは、ロール形状で準備されることが好ましい。
 上記転写シートは、1以上の穴またはマークを有し得る。穴またはマークを有する転写シートと、A項で説明した穴またはマークを有する第1の粘着シートとを組み合わせて用いることにより、転写シートの位置合わせが容易となる。なお、マークを有する転写シートの位置合わせには、任意の適切なセンサーが用いられ得る。
 上記転写シートは、触媒層を高分子電解質膜上に転写した後、ガス拡散層22を積層する前に剥離される。
 触媒層21を形成した後、該触媒層21の高分子電解質膜10とは反対側の面に、ガス拡散層22を積層する。上記ガス拡散層としては、任意の適切なガス拡散層が用いられ得る。高分子電解質膜が所定の間隔をあけて配置される場合、ガス拡散層の平面視面積は、個々の高分子電解質膜の平面視面積に対して、例えば、60%~90%である。
 ガス拡散層22は、第2の粘着シート100’の粘着面に貼着した状態の積層体b’’として供給される。該積層体b’’は、好ましくは長尺体である。該積層体b’’は、好ましくは、ロールから繰り出された長尺状の第2の粘着シート100’の粘着面に、所定の間隔をあけて、ガス拡散層22を貼着して形成される。このような積層体の形態でガス拡散層22を供給することで、連続生産工程により、膜/電極複合体を製造することが可能となり、生産効率に優れた製造方法とすることができる。
 ガス拡散層を積層する方法としては、任意の適切な方法が採用され得る。
 第3の実施形態においては、上記のようにしてガス拡散電極を形成させる以外は、第1の実施形態において説明した製造方法に準じて、膜/電極複合体を製造することができる。なお、第2のガス拡散電極(触媒層およびガス拡散層)の形成方法としては、第1のガス拡散電極において説明した方法が採用され得る。第1の拡散電極の形成方法と、第2の拡散電極の形成方法とは、同じであってもよく、異なっていてもよい。
 第3の実施形態においても、第1のガス拡散電極および第2のガス拡散電極のそれぞれを囲むようにして、ガスケットが配置され得る。この場合、ガス拡散層を、ガスケットともに触媒層上に積層して、ガス拡散電極が形成される。すなわち、第1のガス拡散電極を例にすれば、第2の粘着シートに、ガス拡散層と該ガス拡散層を囲むようにして配置したガスケットを貼着し、ガス拡散層を、ガスケットとともに触媒層上に積層して、第1のガス拡散電極が形成される。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。
[実施例1]
(粘着剤層形成用材料の調製)
 1L丸底セパラブルフラスコ、セパラブルカバー、分液ロート、温度計、窒素導入管、リービッヒ冷却器、バキュームシール、攪拌棒、攪拌羽が装備された重合用実験装置に、ドデシルメタクリレート(花王社製、商品名「エキセパールL-MA」)100重量部と、2-ヒドロキシエチルメタクリレート(三菱レイヨン社製、商品名「アクリエステルHO」)10.2重量部と、重合開始剤としての2,2’-アゾビス-イソブチロニトリル(キシダ化学社製)0.22重量部と、トルエン55重量部とを投入し、混合物を調製した。
 該混合物を撹拌しながら、常温下で丸底セパラブルフラスコ内を窒素置換した。その後、窒素流入しながら、60℃±2℃の温度下で12時間、混合物を撹拌して、側鎖に官能基(ヒドロキシル基)を有するメタアクリル系ポリマーを含む中間組成物を得た。
 得られた中間組成物を室温まで冷却した。その後、該中間組成物と、メタクリル酸2-イソシアナトエチル(昭和電工社製、商品名「カレンズMOI」)9.8重量部と、ジラウリン酸ジブチルスズIV(和光純薬工業社製)とを混合し、空気雰囲気、50℃の温度下で24時間攪拌して、ベースポリマー(重合性炭素-炭素二重結合を有するポリマー)溶液を得た。
 得られたベースポリマー溶液と、光重合開始剤としての1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ社製、商品名「イルガキュア184」)と、ポリイソシアネート系架橋剤(日本ポリウレタン社製、商品名「コロネートL」)とを混合、撹拌して、活性エネルギー線硬化型粘着剤を含む粘着剤層形成用材料を得た。なお、1-ヒドロキシシクロヘキシルフェニルケトンの配合量は、ベースポリマー固形分100重量部に対して3重量部とした。また、ポリイソシアネート系架橋剤の配合量は、ベースポリマー固形分100重量部に対して、3重量部とした。
(粘着シートの作製)
 アプリケータを用いて、得られた粘着剤層形成用材料を、シリコーン系離型処理がされたPETフィルムに塗布した。その後、乾燥機を用いて、120℃下で5分間乾燥し、厚さ10μmの粘着性のフィルムを形成させた。
 基材として、直鎖状低密度ポリエチレン樹脂から形成され、片面がコロナ処理されたフィルム(厚さ:100μm)を準備した。
 上記粘着性のフィルムと、該基材のコロナ処理面とを、ハンドローラーにて貼り合わせて、50℃下で72時間放置し、粘着シートAを得た。
(評価)
 外部刺激により粘着力を低下させて、粘着シートを剥離させる工程に対応する評価として、以下の評価を行った。
 得られた粘着シートAを50mm角に切り出し、該粘着シートAの粘着剤層上に、20mm×40mmの高分子電解質膜(Dupon社製、商品名「Nafion212CS」)を貼着したところ、該高分子電解質膜が自重により剥離しないことを確認した。
 また、粘着シートAの基材側から、450mJ/cmの紫外線を照射したところ、粘着力が低下し、高分子電解質膜が自重により剥離することを確認した。
[実施例2]
 1L丸底セパラブルフラスコ、セパラブルカバー、分液ロート、温度計、窒素導入管、リービッヒ冷却器、バキュームシール、攪拌棒、攪拌羽が装備された重合用実験装置に、ドデシルメタクリレート(花王社製、商品名「エキセパールL-MA」)100重量部と、2-ヒドロキシエチルメタクリレート(三菱レイヨン社製、商品名「アクリエステルHO」)12.6重量部と、重合開始剤としての2,2’-アゾビス-イソブチロニトリル(キシダ化学社製)0.23重量部と、トルエン56重量部とを投入し、混合物を調製した。
 該混合物を撹拌しながら、常温下で丸底セパラブルフラスコ内を窒素置換した。その後、窒素流入しながら、60℃±2℃の温度下で12時間、混合物を撹拌して、側鎖に官能基(ヒドロキシル基)を有するメタアクリル系ポリマーを含む中間組成物を得た。
 得られた中間組成物を室温まで冷却した。その後、該中間組成物と、メタクリル酸2-イソシアナトエチル(昭和電工社製、商品名「カレンズMOI」)13.5重量部と、ジラウリン酸ジブチルスズIV(和光純薬工業社製)とを混合し、空気雰囲気、50℃の温度下で24時間攪拌して、ベースポリマー(重合性炭素-炭素二重結合を有するポリマー)溶液を得た。
 このようにして得られたベースポリマー溶液を用いた以外は、実施例1と同様にして、粘着シートBを得た。
(評価)
  外部刺激により粘着力を低下させて、粘着シートを剥離させる工程に対応する評価として、以下の評価を行った。
 得られた粘着シートBを50mm角に切り出し、該粘着シートBの粘着剤層上に、20mm×40mmの高分子電解質膜(Dupon社製、商品名「Nafion212CS」)を貼着したところ、該高分子電解質膜が自重により剥離しないことを確認した。
 また、粘着シートBの基材側から、450mJ/cmの紫外線を照射したところ、粘着力が低下し、手作業にて粘着シートが容易に剥離できた。剥離の際に高分子電解質膜に伸びなどの塑性変形やシワが発生しないことを確認した。
[実施例3]
 実施例1と同様にして、粘着シートAを得た。
(評価)
 高分子電解質膜(Dupon社製、商品名「Nafion212CS」)に代えて、ガス拡散電極としてのカーボンペーパー(SGLカーボン社製、商品名「10AA」)を用いた以外は、実施例1と同様の方法により、粘着シートを剥離させる工程に対応する評価を行った。
 その結果、紫外線照射前は、該カーボンペーパーが自重により剥離せず、紫外線照射後は、該カーボンペーパーが自重により剥離することを確認した。
[実施例4]
 実施例2と同様にして、粘着シートBを得た。
(評価)
 高分子電解質膜(Dupon社製、商品名「Nafion212CS」)に代えて、ガス拡散電極としてのカーボンペーパー(SGLカーボン社製、商品名「10AA」)を用いた以外は、実施例2と同様の方法により、粘着シートを剥離させる工程に対応する評価を行った。
 その結果、紫外線照射前は、該カーボンペーパーが自重により剥離せず、紫外線照射後は、該カーボンペーパーが自重により剥離することを確認した。
[実施例5]
 アクリル酸-2-エチルヘキシル70重量部と、アクリル酸エチル30重量部と、アクリル酸ヒドロキシエチル5重量部との重合体を粘着剤として用いた。
 上記粘着剤105重量部と、イソシアネート系架橋剤(日本ポリウレタン工業社製、商品名「コロネートL」)1重量部と、トルエンとを混合し、得られた混合物Iを、乾燥後の厚みが15μmとなるように、ポリエステルフィルム(厚み100μm)上に塗布し、その後、乾燥し、塗工層Iを形成させた。
 上記粘着剤91重量部と、イソシアネート系架橋剤(日本ポリウレタン工業社製、商品名「コロネートL」)4重量部と、ロジンフェノール系粘着付与剤(住友ベークライト社製、商品名「スミライトレジン PR-12603」)5重量部と、熱膨張性微小球(松本油脂社製、商品名「F-30D」、発泡開始温度:70℃~80℃)25重量部とを混合し、得られた混合物IIを、乾燥後の厚みが35μmとなるように、セパレータ上に塗布し、その後、乾燥させて、塗布層IIを形成させた。
 上記塗布層Iと塗布層IIとを貼り合わせて、ポリエステルフィルム(基材)と、熱膨張性微小球を含む粘着剤層とから構成される粘着シートCを得た。
(評価)
 外部刺激により粘着力を低下させて、粘着シートを剥離させる工程に対応する評価として、以下の評価を行った。
 得られた粘着シートCを50mm角に切り出し、該粘着シートCの粘着剤層上に、20mm×40mmのガス拡散電極としてのカーボンペーパー(SGLカーボン社製、商品名「10AA」)を貼着したところ、該カーボンペーパーが自重により剥離しないことを確認した。
 また、粘着シートとカーボンペーパーとの積層体を、100℃のオーブン内で5分間加熱すれば、粘着シートの粘着力が低下して、カーボン繊維が粘着剤層に付着することなく、自重でカーボンペーパーが剥離することを確認した。
[実施例6]
 実施例5と同様にして粘着シートCを得た。
 熱膨張性微小球(松本油脂社製、商品名「F-30D」、発泡開始温度:70℃~80℃)に代えて、熱膨張性微小球(松本油脂社製、商品名「F-50D」、発泡開始温度:95℃~105℃))を用いた以外は粘着シートCと同様の操作で粘着シートDを得た。
(評価)
 異なる外部刺激(加熱の温度差)により粘着力を低下させて、表裏別々に粘着シートを剥離させる2工程(例えば、上記第3工程と第5工程、上記第5工程と第7工程)に対応する評価として、以下の評価を行った。
 10mm×50mmに切り出した高分子電解質膜(Dupon社製、商品名「Nafion212CS」)と、20mm×20mmに切り出したカーボンペーパー(SGLカーボン社製、商品名「34BC」)とを、カーボンペーパー/高分子電解質膜/カーボンペーパーの順に積層し、評価用疑似MEA(1)を作製した。なお、カーボンペーパーのマイクロポーラスレイヤーと高分子電解質膜とが接触するようにして積層した。また、評価用疑似MEA(1)は、100℃、30kgf/cm、30秒間の条件でのプレス圧着により作製した。
 上記評価用疑似MEA(1)の一方の面(カーボンペーパー)に、粘着シートC(20mm×50mm)を貼り合わせた。また、もう一方の面(カーボンペーパー)に、粘着シートD(20mm×50mm)を貼り合わせた。
 上記のようにして作製した積層体は、常温下において、粘着シートCおよび粘着シートDが自重により剥離しないことを確認した。
 上記のようにして作製した積層体を100℃のオーブン内で5分間、次いで130℃のオーブン内で5分間、加熱した。その結果、100℃下では、粘着シートCのみが自重で容易に剥離することを確認した。また、このとき、カーボン繊維が粘着剤層に付着しないことを確認した。さらに、130℃下では、粘着シートDが自重で容易に剥離することを確認した。また、このとき、カーボン繊維が粘着剤層に付着しないことを確認した。
[実施例7]
 実施例1と同様にして粘着シートAを得た。
(評価)
 紫外線照射により粘着力を低下させて、表裏別々に粘着シートを剥離させる2工程(例えば、上記第3工程と第5工程、上記第5工程と第7工程)に対応する評価として、以下の評価を行った。本評価は、被着体が紫外線(活性エネルギー線)の遮蔽材として機能し得る態様に対応する。
 実施例6と同様にして、評価用疑似MEA(1)を作製した。
 記評価用疑似MEA(1)の両面(カーボンペーパー)に、粘着シートA(20mm×50mm)を貼り合わせた。
 上記のようにして作製した積層体は、常温下(紫外線未照射状態)において、粘着シートAが自重により剥離しないことを確認した。
 上記のようにして作製した積層体の一方の面(すなわち、粘着シートAの基材側)から、450mJ/cmの紫外線を照射し、その後、もう一方の面から、450mJ/cmの紫外線を照射した。その結果、一回目の紫外線照射時には、該紫外線照射をした側の粘着シートAのみが自重で容易に剥離することを確認した。また、二回目の紫外線照射時には、該紫外線照射をした側の粘着シートAのみが自重で容易に剥離することを確認した。なお、いずれの剥離の際にも、粘着剤層にカーボン繊維が付着することはなかった。
[実施例8]
 実施例1と同様にして粘着シートAを得た。
 実施例5と同様にして粘着シートCを得た。
(評価)
 異なる外部刺激(紫外線と加熱)により粘着力を低下させて、表裏別々に粘着シートを剥離させる2工程(例えば、上記第3工程と第5工程、上記第5工程と第7工程)に対応する評価として、以下の評価を行った。
 10mm×50mmに切り出した高分子電解質膜(Dupon社製、商品名「Nafion212CS」)と、20mm×20mmに切り出したカーボンペーパー(SGLカーボン社製、商品名「34BC」)とを、カーボンペーパー/高分子電解質膜となるように積層し、評価用疑似MEA(2)を作製した。なお、カーボンペーパーのマイクロポーラスレイヤーと高分子電解質膜とが接触するようにして積層した。また、評価用疑似MEA(2)は、100℃、30kgf/cm、30秒間の条件でのプレス圧着により作製した。
 上記評価用疑似MEA(2)の高分子電解質膜側に粘着シートA(20mm×50mm)を貼り合わせ、カーボンペーパー側に粘着シートC(20mm×50mm)を貼り合わせた。
 上記のようにして作製した積層体は、常温下において、粘着シートCおよび粘着シートDが自重により剥離しないことを確認した。
 上記のようにして作製した積層体の粘着シートAの基材側から、450mJ/cmの紫外線を照射し、その後、該積層体を100℃のオーブンで5分間加熱した。その結果、紫外線照射により、粘着シートAのみが塑性変形することなく自重で容易に剥離した。さらに、加熱により、粘着シートCが自重で容易に剥離することを確認した。また、このとき、カーボン繊維が粘着剤層に付着しないことを確認した。
[実施例9]
 実施例1と同様にして粘着シートAを得た。
 実施例5と同様にして粘着シートCを得た。
(評価)
 異なる外部刺激(加熱と紫外線)により粘着力を低下させて、表裏別々に粘着シートを剥離させる2工程(例えば、上記第3工程と第5工程、上記第5工程と第7工程)に対応する評価として、以下の評価を行った。
 実施例8と同様にして、評価用疑似MEA(2)を作製した。
 実施例8と同様にして、評価用疑似MEA(2)に粘着シートAおよび粘着シートCを貼り合わせて積層体を作製した。
 上記のようにして作製した積層体を100℃のオーブンで5分間加熱し、その後、該積層体の粘着シートAの基材側から、450mJ/cmの紫外線を照射した。その結果、加熱により、粘着シートCが自重で容易に剥離することを確認した。また、このとき、カーボン繊維が粘着剤層に付着しないことを確認した。さらに、紫外線照射により、粘着シートAのみが塑性変形することなく自重で容易に剥離した。
[比較例1]
 実施例1と同様にして粘着シートAを得た。
(評価)
 実施例1と同様にして、粘着シートAに高分子電解質膜を貼着した。紫外線の照射をせずに、高分子電解質膜を剥離したところ、高分子電解質膜が塑性変形し、伸びおよびシワが発生した。
[比較例2]
 実施例2と同様にして粘着シートBを得た。
(評価)
 実施例2と同様にして、粘着シートBに高分子電解質膜を貼着した。紫外線の照射をせずに、高分子電解質膜を剥離したところ、高分子電解質膜が塑性変形し、伸びおよびシワが発生した。
[比較例3]
 実施例1と同様にして粘着シートAを得た。
(評価)
 実施例3と同様にして、粘着シートAにカーボンペーパーを貼着した。紫外線の照射をせずに、カーボンペーパーを剥離したところ、カーボン繊維が粘着剤層に付着し、カーボンペーパーの一部が破損していることを確認した。
[比較例4]
 実施例2と同様にして粘着シートBを得た。
(評価)
 実施例4と同様にして、粘着シートBにカーボンペーパーを貼着した。紫外線の照射をせずに、カーボンペーパーを剥離したところ、カーボン繊維が粘着剤層に付着し、カーボンペーパーの一部が破損していることを確認した。
[比較例5]
 実施例5と同様にして粘着シートCを得た。
(評価)
 実施例5と同様にして、粘着シートCにカーボンペーパーを貼着した。加熱処理をせずに、カーボンペーパーを剥離したところ、カーボン繊維が粘着剤層に付着し、カーボンペーパーの一部が破損していることを確認した。
 10   高分子電解質膜
 20   第1のガス拡散電極
 30   第2のガス拡散電極
 100  粘着シート(第1の粘着シート)
 100’ 第2の粘着シート
 100’’第3の粘着シート
 110  基材
 120  粘着剤層
 200  膜/電極複合体
 

Claims (13)

  1.  第1のガス拡散電極と、高分子電解質膜と、第2のガス拡散電極とを含む、燃料電用膜/電極複合体の製造方法であって、
     該高分子電解質膜、第1のガス拡散電極および/または第2のガス拡散電極を、外部刺激により粘着力が低下する粘着シートに貼着して搬送すること、および
     該粘着シートに外部刺激を与えることにより、該粘着シートの粘着力を低下させて、該粘着シートを剥離することを含む、
     燃料電用膜/電極複合体の製造方法。
  2.  前記第1のガス拡散電極および第2のガス拡散電極が、それぞれガス拡散層を含み、
     前記高分子電解質膜および/または該ガス拡散層を、前記粘着シートに貼着して搬送すること、および
     該粘着シートに外部刺激を与えることにより、該粘着シートの粘着力を低下させて、該粘着シートを剥離することを含む、
     請求項1に記載の燃料電用膜/電極複合体の製造方法。
  3.  前記粘着シートとして、第1の粘着シート、第2の粘着シートおよび第3の粘着シートを用い、
     該第1の粘着シートの粘着面に前記高分子電解質膜を貼着して、該高分子電解質膜を搬送する工程と、
     該第2の粘着シートの粘着面に前記第1のガス拡散電極を貼着して、該第1のガス拡散電極を搬送し、該高分子電解質膜の該第1の粘着シートとは反対側の面に、該第1のガス拡散電極と該第2の粘着シートとをこの順に積層する工程と、
     該第1の粘着シートに外部刺激を与えることにより、該第1の粘着シートの粘着力を低下させて、該第1の粘着シートを剥離する工程と、
     該第3の粘着シートの粘着面に前記第2のガス拡散電極を貼着して、該第2のガス拡散電極を搬送し、該高分子電解質膜の該第1のガス拡散電極とは反対側の面に、該第2のガス拡散電極と該第3の粘着シートとをこの順に積層する工程と、
     該第2の粘着シートに外部刺激を与えることにより、該第2の粘着シートの粘着力を低下させて、該第2の粘着シートを剥離する工程と、
     該第3の粘着シートに外部刺激を与えることにより、該第3の粘着シートの粘着力を低下させて、該第3の粘着シートを剥離する工程とをこの順に含む、
     請求項1に記載の燃料電用膜/電極複合体の製造方法。
  4.  前記第1の粘着シートの外部刺激に対する応答性と、前記第2の粘着シートの外部刺激に対する応答性とが異なる、請求項3に記載の燃料電用膜/電極複合体の製造方法。
  5.  前記第2の粘着シートの外部刺激に対する応答性と、前記第3の粘着シートの外部刺激に対する応答性とが異なる、請求項3または4に記載の燃料電用膜/電極複合体の製造方法。
  6.  前記外部刺激として熱を用いることを含む、請求項1から5のいずれかに記載の燃料電用膜/電極複合体の製造方法。
  7.  前記粘着シートが粘着剤層を備え、該粘着剤層が、熱膨張性微小球を含む、請求項1から6のいずれかに記載の燃料電用膜/電極複合体の製造方法。
  8.  前記外部刺激として活性エネルギー線を用いることを含む、請求項1から7のいずれかに記載の燃料電用膜/電極複合体の製造方法。
  9.  前記粘着シートが粘着剤層を備え、該粘着剤層が、活性エネルギー線照射により硬化する、請求項8に記載の燃料電用膜/電極複合体の製造方法。
  10.  前記第1の粘着シートの粘着力を低下させるための外部刺激、前記第2の粘着シートの粘着力を低下させるための外部刺激および前記第3の粘着シートの粘着力を低下させるための外部刺激として熱を用い、
     該第1の粘着シートの粘着力を低下させるための外部刺激の温度Taと、該第2の粘着シートの粘着力を低下させるための外部刺激の温度Tbと、該第3の粘着シートの粘着力を低下させるための外部刺激の温度Tcとの関係が、Ta<Tb<Tcである、
     請求項3から7のいずれかに記載の燃料電用膜/電極複合体の製造方法。
  11.  前記粘着シートが長尺状である、請求項1から10のいずれかに記載の燃料電用膜/電極複合体の製造方法。
  12.  前記燃料電用膜/電極複合体が、前記第1のガス拡散電極の周囲を囲むようにして配置された第1のガスケットと、前記第2のガス拡散電極の周囲を囲むようにして配置された第2のガスケットとをさらに備え、
     該第1のガス拡散電極を搬送する際に、該第1のガスケットを、該第1のガス拡散電極とともに前記第2の粘着シートに貼着して搬送し、該第1のガスケットと該第1のガス拡散電極とを同時に、前記高分子電解質膜上に積層すること、および
     該第2のガス拡散電極を搬送する際に、該第2のガスケットを、該第2のガス拡散電極とともに前記第3の粘着シートに貼着して搬送し、該第2のガスケットと該第2のガス拡散電極とを同時に、前記高分子電解質膜上に積層することを含む、
     請求項3から11のいずれかに記載の燃料電用膜/電極複合体の製造方法。
  13.  加熱下で圧着することにより、前記第1のガスケットと前記第1のガス拡散電極とを、前記高分子電解質膜上に積層することを含み、
     前記第1の粘着シートの粘着力を低下させるための外部刺激として熱を用い、
     圧着時の温度Tpと、該第1の粘着シートの粘着力を低下させるための外部刺激の温度Taとの関係が、Tp<Taである、
     請求項12に記載の燃料電用膜/電極複合体の製造方法。
PCT/JP2014/076912 2013-10-09 2014-10-08 燃料電池用膜/電極複合体の製造方法 WO2015053304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167008938A KR20160067852A (ko) 2013-10-09 2014-10-08 연료 전지용 막/전극 복합체의 제조 방법
US15/028,101 US20160285120A1 (en) 2013-10-09 2014-10-08 Method for manufacturing fuel-cell membrane electrode assembly
CN201480055791.6A CN105637050A (zh) 2013-10-09 2014-10-08 燃料电池用膜/电极复合体的制造方法
EP14853095.9A EP3057163A4 (en) 2013-10-09 2014-10-08 Method for manufacturing fuel-cell membrane electrode assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-211857 2013-10-09
JP2013211857 2013-10-09
JP2014164798A JP2015097195A (ja) 2013-10-09 2014-08-13 燃料電池用膜/電極複合体の製造方法
JP2014-164798 2014-08-13

Publications (1)

Publication Number Publication Date
WO2015053304A1 true WO2015053304A1 (ja) 2015-04-16

Family

ID=52813120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076912 WO2015053304A1 (ja) 2013-10-09 2014-10-08 燃料電池用膜/電極複合体の製造方法

Country Status (6)

Country Link
US (1) US20160285120A1 (ja)
EP (1) EP3057163A4 (ja)
JP (1) JP2015097195A (ja)
KR (1) KR20160067852A (ja)
CN (1) CN105637050A (ja)
WO (1) WO2015053304A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016196541A1 (en) * 2015-06-03 2016-12-08 3M Innovative Properties Company Acrylic-based flexible assembly layer
WO2020121715A1 (ja) * 2018-12-13 2020-06-18 日東電工株式会社 粘着剤組成物および粘着シート
WO2020121999A1 (ja) * 2018-12-13 2020-06-18 日東電工株式会社 粘着剤組成物および粘着シート
JP2020097718A (ja) * 2018-12-13 2020-06-25 日東電工株式会社 粘着剤組成物および粘着シート
US10752810B2 (en) 2015-06-03 2020-08-25 3M Innovative Properties Company Assembly layer for flexible display
JP2021018832A (ja) * 2019-07-17 2021-02-15 株式会社Screenホールディングス サブガスケット付膜電極接合体の製造方法およびその製造装置、並びに、サブガスケット基材
CN113242893A (zh) * 2018-12-13 2021-08-10 日东电工株式会社 粘合剂组合物及粘合片

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3581630B1 (de) * 2015-04-02 2021-07-14 tesa SE Wiederablösbarer haftklebestreifen
JP6795349B2 (ja) * 2015-11-10 2020-12-02 Nok株式会社 キャリアフィルム付きガスケットの取り扱い方法
WO2017191835A1 (ja) * 2016-05-02 2017-11-09 日東電工株式会社 粘着シート
KR102071907B1 (ko) * 2016-08-10 2020-01-31 주식회사 엘지화학 연료전지용 서브 가스켓 필름, 이를 포함하는 막전극 어셈블리 및 이를 포함하는 연료 전지 스택
EP3333236B1 (de) * 2016-12-09 2021-03-31 tesa SE Haftklebestreifen
EP3333235B1 (de) * 2016-12-09 2023-06-07 tesa SE Haftklebestreifen
JP6673249B2 (ja) * 2017-02-14 2020-03-25 トヨタ自動車株式会社 ラミネート全固体電池の製造方法
CN110546179B (zh) 2017-04-14 2022-12-09 三键有限公司 光固化性树脂组合物、使用该光固化性树脂组合物的燃料电池和密封方法
US10525406B2 (en) 2017-05-30 2020-01-07 Saudi Arabian Oil Company Polymer blended membranes for sour gas separation
KR102169843B1 (ko) * 2018-01-22 2020-10-26 주식회사 엘지화학 막 전극 접합체의 제조방법 및 적층체
US20200116443A1 (en) * 2018-10-10 2020-04-16 Nanotek Instruments, Inc. Highly conductive graphitic thick films and method of production
CN109868092A (zh) * 2019-01-28 2019-06-11 东莞市澳中电子材料有限公司 一种应用于锂电池领域的热熔胶水
CN112063245A (zh) * 2020-08-28 2020-12-11 博罗冠业电子有限公司 一种用于电池的高温绝缘涂料及其制备方法
KR102633027B1 (ko) * 2021-03-23 2024-02-05 한국전력공사 점착제 전사를 이용한 고분자 전해질 연료전지 제조방법 및 이로부터 제조된 고분자 전해질 연료전지

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661468A (en) 1979-10-23 1981-05-26 Matsumoto Yushi Seiyaku Kk Releasable adhesive
JPS6317981A (ja) 1986-07-09 1988-01-25 F S K Kk 粘着シ−ト
JP2002216789A (ja) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2004300231A (ja) * 2003-03-31 2004-10-28 Nitto Denko Corp 熱剥離性両面粘着シート、被着体の加工方法および電子部品
JP2006286430A (ja) * 2005-04-01 2006-10-19 Dainippon Printing Co Ltd 固体高分子形燃料電池用ガスケット付き電解質膜−電極接合体及びその製造方法
JP2006339062A (ja) 2005-06-03 2006-12-14 Honda Motor Co Ltd 燃料電池用電極構造体の製造方法
JP2008266456A (ja) * 2007-04-20 2008-11-06 Nitto Denko Corp 熱剥離型両面粘着シート
JP2008266455A (ja) * 2007-04-20 2008-11-06 Nitto Denko Corp 層状珪酸塩を含む熱剥離型粘着シート及び該シートを使用する電子部品の製造方法
JP2010056004A (ja) * 2008-08-29 2010-03-11 Toyota Motor Corp 膜・電極接合体の製造方法
JP2011014403A (ja) * 2009-07-02 2011-01-20 Dainippon Printing Co Ltd 転写シート及び固体高分子形燃料電池用部材、並びに、固体高分子形燃料電池用部材及びエッジシール付き電極−電解質膜積層体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338805C (zh) * 2001-01-19 2007-09-19 松下电器产业株式会社 燃料电池用电解质膜-电极接合体的制造方法
JP2010055922A (ja) * 2008-08-28 2010-03-11 Toppan Printing Co Ltd 膜電極接合体の製造装置及び製造方法
JP5439867B2 (ja) * 2009-03-05 2014-03-12 凸版印刷株式会社 膜電極接合体の製造方法及び製造装置
JP5909961B2 (ja) * 2011-09-26 2016-04-27 凸版印刷株式会社 膜・電極接合体の製造方法、触媒層形成用基材、及び固体高分子形燃料電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661468A (en) 1979-10-23 1981-05-26 Matsumoto Yushi Seiyaku Kk Releasable adhesive
JPS6317981A (ja) 1986-07-09 1988-01-25 F S K Kk 粘着シ−ト
JP2002216789A (ja) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2004300231A (ja) * 2003-03-31 2004-10-28 Nitto Denko Corp 熱剥離性両面粘着シート、被着体の加工方法および電子部品
JP2006286430A (ja) * 2005-04-01 2006-10-19 Dainippon Printing Co Ltd 固体高分子形燃料電池用ガスケット付き電解質膜−電極接合体及びその製造方法
JP2006339062A (ja) 2005-06-03 2006-12-14 Honda Motor Co Ltd 燃料電池用電極構造体の製造方法
JP2008266456A (ja) * 2007-04-20 2008-11-06 Nitto Denko Corp 熱剥離型両面粘着シート
JP2008266455A (ja) * 2007-04-20 2008-11-06 Nitto Denko Corp 層状珪酸塩を含む熱剥離型粘着シート及び該シートを使用する電子部品の製造方法
JP2010056004A (ja) * 2008-08-29 2010-03-11 Toyota Motor Corp 膜・電極接合体の製造方法
JP2011014403A (ja) * 2009-07-02 2011-01-20 Dainippon Printing Co Ltd 転写シート及び固体高分子形燃料電池用部材、並びに、固体高分子形燃料電池用部材及びエッジシール付き電極−電解質膜積層体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3057163A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016196541A1 (en) * 2015-06-03 2016-12-08 3M Innovative Properties Company Acrylic-based flexible assembly layer
CN108064202A (zh) * 2015-06-03 2018-05-22 3M创新有限公司 基于丙烯酸的柔性组件层
US10640689B2 (en) 2015-06-03 2020-05-05 3M Innovative Properties Company Acrylic-based flexible assembly layer
US10752810B2 (en) 2015-06-03 2020-08-25 3M Innovative Properties Company Assembly layer for flexible display
CN108064202B (zh) * 2015-06-03 2020-09-25 3M创新有限公司 基于丙烯酸的柔性组件层
US11332642B2 (en) 2015-06-03 2022-05-17 3M Innovative Properties Company Assembly layer for flexible display
WO2020121715A1 (ja) * 2018-12-13 2020-06-18 日東電工株式会社 粘着剤組成物および粘着シート
WO2020121999A1 (ja) * 2018-12-13 2020-06-18 日東電工株式会社 粘着剤組成物および粘着シート
JP2020097718A (ja) * 2018-12-13 2020-06-25 日東電工株式会社 粘着剤組成物および粘着シート
CN113242893A (zh) * 2018-12-13 2021-08-10 日东电工株式会社 粘合剂组合物及粘合片
JP2021018832A (ja) * 2019-07-17 2021-02-15 株式会社Screenホールディングス サブガスケット付膜電極接合体の製造方法およびその製造装置、並びに、サブガスケット基材
JP7258683B2 (ja) 2019-07-17 2023-04-17 株式会社Screenホールディングス サブガスケット付膜電極接合体の製造方法およびその製造装置、並びに、サブガスケット基材

Also Published As

Publication number Publication date
EP3057163A1 (en) 2016-08-17
CN105637050A (zh) 2016-06-01
US20160285120A1 (en) 2016-09-29
JP2015097195A (ja) 2015-05-21
KR20160067852A (ko) 2016-06-14
EP3057163A4 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2015053304A1 (ja) 燃料電池用膜/電極複合体の製造方法
WO2015053303A1 (ja) 電解質膜搬送用粘着シートおよび該粘着シートを用いた燃料電池用膜/電極複合体の製造方法
JP4588021B2 (ja) 加熱剥離型粘着シートおよび該加熱剥離型粘着シートを用いた被着体の加工方法
KR20210013260A (ko) 점착 시트
JP4588022B2 (ja) 加熱剥離型粘着シートおよび該加熱剥離型粘着シートを用いた被着体の加工方法
JP4810565B2 (ja) ダイシング・ダイボンドフィルム及び半導体装置の製造方法
CN105907317A (zh) 热剥离型粘合片
WO2012099121A1 (ja) 両面粘着テープ又はシート、および被着体の加工方法
CN101824283B (zh) 热剥离型压敏粘合片及其用于切断加工层压陶瓷片的方法
KR102070823B1 (ko) 양면 점착 테이프 또는 시트, 및 피착체의 가공 방법
JP2010129700A (ja) ダイシング・ダイボンドフィルム及び半導体装置の製造方法
JP2018009050A (ja) 粘着シート
JP2018009049A (ja) 粘着シート
WO2022123932A1 (ja) 粘着シート
JP6768038B2 (ja) 粘着シート
WO2020189568A1 (ja) 粘着シート及び半導体装置の製造方法
JP4947921B2 (ja) 加熱剥離型粘着シートおよび該加熱剥離型粘着シートを用いた被着体の加工方法
JP2005200505A (ja) 加熱剥離型粘着シートおよび被着体の加工方法
JP5132064B2 (ja) 加熱剥離性粘着シート
JP2021006635A (ja) 粘着シート
JP2021006634A (ja) 粘着シート
JP2005255829A (ja) 加熱剥離型粘着シートおよび被着体の加工方法
JP2006160872A (ja) 熱剥離型粘着シート及び電子部品、回路基板
WO2022123931A1 (ja) 粘着シート
WO2022185611A1 (ja) 粘着シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167008938

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014853095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15028101

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE