WO2015051626A1 - 一种光场相机 - Google Patents

一种光场相机 Download PDF

Info

Publication number
WO2015051626A1
WO2015051626A1 PCT/CN2014/074914 CN2014074914W WO2015051626A1 WO 2015051626 A1 WO2015051626 A1 WO 2015051626A1 CN 2014074914 W CN2014074914 W CN 2014074914W WO 2015051626 A1 WO2015051626 A1 WO 2015051626A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved
wide
image
main lens
angle main
Prior art date
Application number
PCT/CN2014/074914
Other languages
English (en)
French (fr)
Inventor
徐晶
赵聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015051626A1 publication Critical patent/WO2015051626A1/zh
Priority to US15/094,489 priority Critical patent/US10321033B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator

Definitions

  • the present invention relates to the field of image capture processing technologies, and in particular, to a light field camera. Background technique
  • a light field camera is a novel imaging device that can simultaneously record object light intensity information and depth information (ie, complete light field information), and is widely used due to its advantages such as digital refocusing.
  • the light field camera mainly comprises five parts: a main lens 1, a flat type microlens array 2, a flat type image sensor 3, an image processor 3, a driver 4 and a controller 5, as shown in Fig. 1A.
  • the main lens 1 of the light field camera is generally a non-wide-angle lens, and the non-wide-angle main lens 1 images the photographed object, and the image is located on the image plane of the non-wide-angle main lens 1 (a side as shown in FIG. 1A).
  • the image plane of the non-wide-angle main lens 1 is a virtual plane perpendicular to the optical axis between the non-wide-angle main lens 1 and the flat-panel imaging array 2, and the optical axis is an axis parallel to the horizontal plane, and is not a wide-angle main
  • the image distance of the lens 1 distance b as shown in FIG.
  • the object plane of the lens 1 (c plane shown in FIG. 1A) is the surface on which the subject is located on the side of the light field camera, and the object distance of the non-wide-angle main lens 1 (distance d as shown in FIG. 1A) is a non-wide angle master.
  • the lens 1 is located at a vertical distance between one side of the subject and the object plane of the non-wide-angle main lens 1.
  • the flat type microlens array e includes a plurality of microlenses g, and the flat type microlens array e is to image an image generated on the virtual image plane a of the non-wide-angle main lens 1, and the image to be imaged again is a flat type microlens
  • the virtual image plane of the array e (the h-plane shown in Figure 1A), and then each micro-transparent
  • the plane formed by the image produced by the mirror g is the virtual image plane h of the flat type microlens array e, and the image distance of the flat type microlens array e (distance i as shown in FIG.
  • the flat type microlens array e The vertical distance between one side of the image processor 3 and the virtual image plane h of the flat-type microlens array e.
  • the object plane of the flat type microlens array e is the virtual image plane a of the non-wide-angle main lens 1
  • the object distance of the flat type microlens array e (distance j as shown in FIG. 1A) is that the flat type microlens array e is located at a non-wide angle The distance between one side of the main lens 1 and the equivalent image plane a of the non-wide-angle main lens 1.
  • the type microlens array e is to image an image generated on the virtual image plane a of the non-wide-angle main lens 1, in fact, each microlens g in the flat-type microlens array e is to be virtual to the non-wide-angle main lens 1.
  • the image generated on the image plane a is imaged. Therefore, each microlens g in the flat type microlens array e also has a corresponding microlens object distance j n , a microlens equivalent image distance, and a microlens equivalent focal length.
  • n is the number of the microlens, in Fig. 1A, the flat type microlens
  • the number of each microlens g in array e is from top to bottom: number 1, number 2, number 3 number 4, number 5, number 6, number 7, number 8
  • the flat type microlens array e is to be imaged on the flat image sensor f after imaging the image formed on the virtual image plane a of the non-wide-angle main lens 1.
  • the flat type microlens array The virtual image plane h of e coincides with the plane of the flat image sensor f, or the vertical distance between the virtual image plane h of the flat microlens array e and the plane of the flat image sensor f is within a preset range.
  • the quality of the final photograph is higher and clearer, that is, the image formed by each microlens g in the flat microlens array e is located on the flat image sensor f, or the virtual image plane of the formed image.
  • the vertical distance between h and the flat-panel image sensor f is within a preset range, the quality of the final captured picture is higher and clearer.
  • the wide-angle main lens can collect light with a larger incident angle than the non-wide-angle main lens, that is, the viewing angle is larger, for example, the angle of view of some wide-angle main lenses can reach 180. , even 270. , you can shoot more space objects, so replace the wide-angle main lens with the current light field camera.
  • the non-wide-angle main lens is particularly important, wherein, as shown in FIG. 1B, when the wide-angle main lens is used instead of the non-wide-angle main lens 1 used in the current light field camera, the object surface of the flat-type microlens array e is a wide-angle main lens.
  • the virtual image plane a The virtual image plane of the flat-type microlens array e is the equivalent focal plane of the h-plate type microlens array e.
  • the focal length of the lens/ cooperate is the same. Since the virtual image plane of the wide-angle main lens is curved, the distance between each microlens g in the flat-type microlens array e to the virtual image plane of the wide-angle main lens is different. That is, the object distance of each microlens is different.
  • the flat type microlens is known.
  • the image distance of each of the microlenses in the array e is different, since the distance of each of the microlenses g in the flat type microlens array e to the flat type image sensor f is the same, and each of the flat type microlens arrays
  • the image distances of the microlenses g are different, as shown in FIG. 1B. Therefore, a part of the microlenses g in the flat microlens array e re-images the image formed on the virtual image plane of the wide-angle lens.
  • the virtual image plane is located on the flat panel image sensor f, or the distance from the image sensor f is within a preset range, and another portion of the microlens g in the flat microlens array e is formed on the virtual image plane of the wide angle lens After the image is re-imaged, the vertical distance between the virtual image plane where the image is formed and the image sensor has exceeded the preset range. Therefore, the quality of the final captured image is poor, resulting in blurring, distortion, and the like.
  • the embodiment of the invention provides a light field camera for solving the problem that the captured image of the prior art light field camera is blurred and of poor quality when photographed by the wide-angle lens.
  • a light field camera comprising:
  • a wide-angle main lens for acquiring an image signal and imaging the acquired image signal, on the virtual image plane of the wide-angle main lens, a distance from the image point to the optical axis and an object point corresponding to the image point
  • the distance to the optical axis is proportional;
  • a curved type microlens array and a curved type image sensor wherein the curved microlens array is used to re-image an image formed by wide-angle main lens imaging, and the image formed by re-imaging is recorded on the curved image sensor ;
  • the reciprocal of the vertical distance between the image sensors and the reciprocal of the vertical distance between the curved microlens array and the virtual image plane of the wide-angle main lens is equal to the reciprocal of the focal length of the curved microlens array.
  • the wide-angle main lens is a zoom wide-angle main lens or a fixed-focus wide-angle main lens.
  • the shape of the virtual image plane of the wide-angle main lens is a spherical surface, a hyperboloid, or an arbitrary curved surface.
  • the curved microlens array includes at least one microlens sequentially connected, the curved type
  • the image sensor includes at least one unit image sensor, the number of the unit image sensors being the same as the number of microlenses, each microlens corresponding to a unit image sensor; for any microlens, the microlens to the microlens
  • the reciprocal of the vertical distance between the corresponding unit image sensors and the reciprocal of the vertical distance between the microlens and the virtual image plane of the wide-angle main lens is equal to the reciprocal of the focal length of the microlens.
  • any one of the unit image sensors is a charge coupled device CCD or a complementary metal oxide semiconductor CMOS sensor.
  • the curved microlens array includes at least one microlens sequentially connected, the curved type An image sensor is shared by the at least one microlens;
  • the reciprocal of the reciprocal of the vertical distance between the microlens and the virtual image plane of the wide-angle main lens is equal to the reciprocal of the focal length of the microlens.
  • a light field camera comprising:
  • a wide-angle main lens for acquiring an image signal and imaging the acquired image signal, on the virtual image plane of the wide-angle main lens, a distance from the image point to the optical axis and an object point corresponding to the image point
  • the distance to the optical axis is proportional;
  • a flat type imaging array of a flat type liquid crystal spatial modulator and a curved type image sensor wherein a flat type liquid crystal spatial modulator is used to re-image an image formed by wide-angle main lens imaging, and an image formed by re-imaging is recorded in a curved image sensor
  • a flat type liquid crystal spatial modulator is used to re-image an image formed by wide-angle main lens imaging, and an image formed by re-imaging is recorded in a curved image sensor
  • a driver for adjusting a refractive index of the flat-panel liquid crystal spatial modulator by applying a voltage to the flat-type liquid crystal spatial modulator during re-imaging of an image formed by imaging the wide-angle main lens by the flat-type liquid crystal spatial modulator Changing a focal length of the flat type liquid crystal spatial modulator; a reciprocal of a vertical distance between the flat type liquid crystal spatial modulator and the curved image sensor, and the flat type liquid crystal spatial modulator to the wide angle main
  • the sum of the reciprocal of the vertical distance between the virtual image planes of the lens is equal to the reciprocal of the focal length of the flat panel liquid crystal spatial modulator.
  • the wide-angle main lens is a zoom wide-angle main lens or a fixed-focus wide-angle main lens.
  • the shape of the wide-angle main lens is a spherical surface, a hyperboloid, or an arbitrary curved surface.
  • the flat type liquid crystal spatial modulator comprises at least one liquid crystal unit connected in sequence
  • the reciprocal of the vertical distance between the liquid crystal cell to the curved image sensor and the reciprocal of the vertical distance between the liquid crystal cell and the virtual image plane of the wide-angle main lens is equal to The reciprocal of the focal length of the liquid crystal cell.
  • the flat type liquid crystal spatial modulator is an integral liquid crystal panel.
  • One of the light field cameras mainly includes: a wide-angle main lens and a curved imaging array.
  • a wide-angle main lens for acquiring an image signal and imaging the acquired image signal, on the virtual image plane of the wide-angle main lens, the distance from the image point to the optical axis and the object point corresponding to the image point to the optical axis a curved imaging array of a curved microlens array and a curved image sensor, wherein the curved microlens array is used to re-image an image formed by wide-angle main lens imaging, and the image formed by re-imaging is recorded in a curved On the image sensor; the curved shape of the curved microlens array and the curved shape of the curved image sensor are respectively the same as the curved shape of the virtual image plane of the wide-angle main lens, and between the curved microlens array and the curved image sensor The reciprocal of the vertical distance, and the reciprocal of the vertical distance
  • the shape of the virtual image plane formed by the curved microlens array to re-image the image formed by the wide-angle main lens is the same as that of the curved image sensor, but in order to further bend
  • the image formed by the microlens array re-forming the image formed by the wide-angle main lens falls on the curved image sensor, that is, the virtual image plane formed by the curved microlens array re-imaging the image formed by the wide-angle main lens imaging.
  • the curved image sensor is superposed on the face, or the vertical distance between the two faces is small, and the reciprocal of the vertical distance between the curved microlens array and the curved image sensor is compared with the curved microlens array to the wide angle.
  • the sum of the reciprocal of the vertical distance between the virtual image planes of the main lens is equal to the reciprocal of the vertical distance between the curved microlens array to the equivalent focal plane of the curved microlens array, such that the curved microlens array is wide-angled
  • the image formed by the main lens imaging is re-formed, and it falls on the curved image sensing.
  • the light field camera solved preclude the presence of wide-angle shooting shots blurry images, poor quality; the other major field of an optical camera comprising: a main wide-angle lens, the imaging array and the flat type drive.
  • a wide-angle main lens for acquiring an image signal and imaging the acquired image signal, on the virtual image plane of the wide-angle main lens, the distance from the image point to the optical axis and the object point corresponding to the image point to the optical axis a flat-type imaging array of a flat-panel liquid crystal spatial modulator and a curved image sensor, wherein a flat-panel liquid crystal spatial modulator is used to re-image an image formed by wide-angle main lens imaging, And recording an image formed by re-imaging on the curved image sensor; and a driver for applying a voltage to the flat-type liquid crystal spatial modulator during re-imaging of the image formed by the wide-angle main lens imaging by the flat-type liquid crystal spatial modulator To adjust the refractive index of the flat-panel liquid crystal spatial modulator, to change the focal length of the flat-panel liquid crystal spatial modulator; the reciprocal of the vertical distance between the flat-type liquid crystal spatial modulator and the curved image sensor, and the flat-panel liquid crystal spatial modulator to the wide angle
  • FIG. 2A is a schematic structural view of a light field camera according to a first embodiment of the present invention.
  • FIG. 2B is a first implementation manner of a curved image forming array of a light field camera according to an embodiment of the present invention
  • FIG. 2C is a second implementation manner of a curved image forming array of a light field camera according to the first embodiment of the present invention
  • - a schematic diagram of the structure of an embodiment light field camera
  • the shooting picture existing when shooting with a wide-angle lens is more
  • two kinds of light field cameras are proposed.
  • the curved shape of the curved microlens array and the curved shape of the curved image sensor are respectively different from the wide angle main
  • the curved shape of the virtual image plane of the lens is the same, and the reciprocal of the vertical distance between the curved microlens array and the curved image sensor, and the reciprocal of the vertical distance between the curved microlens array and the virtual image plane of the wide-angle main lens
  • the sum is equal to the reciprocal of the focal length of the curved microlens array, thus solving the problem that the light field camera has a blurry picture and poor quality when shooting with a wide-angle lens; in another solution, due to the flat type liquid crystal
  • the light field camera of the first embodiment of the present invention is as follows:
  • a wide-angle main lens the wide-angle main lens is used to acquire an image signal and image the acquired image signal, wherein, on the virtual image plane of the wide-angle main lens, the distance from the image point to the optical axis corresponds to the image point The distance from the object point to the optical axis is proportional;
  • Curved imaging array 2 1 curved imaging array includes curved microlens array 2 and curved image sensor, wherein curved microlens array 2 is used to re-image an image formed by wide-angle main lens imaging, and will be imaged again The formed image is recorded on the curved image sensor 2;
  • the curved shape of the curved microlens array 2 and the curved shape of the curved image sensor 2 are respectively the same as the curved shape of the virtual image plane of the wide-angle main lens, and between the curved microlens array 2 and the curved image sensor 2 the vertical distance between the reciprocal of the virtual image plane, the curved-type microlens array 2 perpendicular distance to the main wide-angle lens and the reciprocals of ⁇ , the microlens array is equal to the reciprocal bendable 2 7 a curved profile to the focal length of the microlens array.
  • the wide-angle main lens has a wide zoom.
  • the main lens of the corner, or, the wide-angle main lens is a fixed-focus wide-angle main lens.
  • the shape of the wide-angle main lens is various.
  • the shape of the wide-angle main lens is a spherical surface, or a hyperboloid of a wide-angle main lens, or the shape of the wide-angle main lens is an arbitrary curved surface.
  • the wide-angle main lens and the body of the light field camera may be disposed in a detachable structure (for example, the wide-angle main lens and the body of the light field camera may be combined Alternatively, it may be separated to meet the needs of multiple lens switching, or a fixed connection structure (for example, the wide-angle main lens and the body of the light field camera are integrated), which is not limited in the embodiment of the present invention.
  • the producer of the wide-angle master lens and the producer of the body of the light field camera may be the same or different.
  • the curved microlens array 2 in the curved imaging array includes at least one microlens g sequentially connected, and the curved imaging array includes The curved image sensor 2 includes at least one unit image sensor m. As shown in FIG.
  • the number of unit image sensors m is the same as the number of microlenses g, and each microlens g corresponds to one unit image sensor m;
  • the reciprocal of the vertical distance between the microlens g, the microlens g to the unit image sensor m connected to the microlens g, and the reciprocal of the vertical distance between the microlens g and the virtual image plane of the wide-angle main lens The sum is equal to the reciprocal of the focal length of the microlens g.
  • the curved microlens array 2 is composed of a plurality of microlenses g, and the microlenses g are sequentially connected to constitute a curved microlens array, the shape of the curved microlens array 2 may be curved.
  • the curved image sensor 2 is composed of a plurality of unit image sensors m, each of the microlenses g is connected to one unit image sensor m, and therefore, if the microlenses g are sequentially connected to form the curved microlens array 2, it is curved.
  • the shape of the curved image sensor 2 composed of the plurality of unit image sensors m may also be curved, so that the curved shape of the curved microlens array 2 and the curved shape of the curved image sensor 2 can be realized, respectively
  • the curved shape of the virtual image plane of the wide-angle main lens is the same.
  • the image formed by the curved microlens array 2 re-imaging the image formed by the wide-angle main lens falls on On the curved image sensor 2, not only the curved shape of the curved microlens array 2 and the curved shape of the curved image sensor 2 are the same as the curved shape of the virtual image plane of the wide-angle main lens, but also the curved microlens.
  • Array 2 re-images the image formed by the wide-angle main lens to form an image of the virtual image plane 1 ⁇ coincides with the curved surface of the curved image sensor 2, or the vertical distance between the two faces is smaller than the aberration tolerance.
  • the virtual image plane 1 ⁇ where the image formed by re-imaging the image formed by the wide-angle main lens coincides with the curved surface of the curved image sensor 2, or the vertical between the two faces
  • the distance is smaller than the aberration tolerance
  • the vertical distance between the curved microlens array 2 to the curved image sensor 2 the vertical distance between the curved microlens array 2 to the virtual image plane of the wide-angle main lens, and the bending
  • the focal length of the type microlens array 2 satisfies a preset rule, for example, for any one of the microlenses g constituting the curved microlens array 2, the microlens g
  • any one of the microlenses g may be composed of one lens or a plurality of lenses.
  • the unit image sensor m has various forms, for example, may be a CCD (Charge-coupled Device), or may be a CMOS (Complementary Metal Oxide Semiconductor). Photosensitive device.
  • CCD Charge-coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the curved imaging array may be in the form that the curved microlens array 2 in the curved imaging array includes at least one microlens g sequentially connected, and the curved image sensor 2 included in the curved imaging array is at least A microlens g is shared, as shown in FIG. 2C, for any microlens g, the reciprocal of the vertical distance between the microlens g and the curved image sensor 2, and the virtual image plane of the microlens g to the wide-angle main lens The sum of the reciprocal of the vertical distance between them is equal to the micro-transparent The reciprocal of the focal length of the mirror g.
  • the microlens may be a solid microlens, or a liquid microlens, or a liquid crystal microlens, wherein the solid microlens may be made of glass or plastic, and the liquid microlens may be a liquid lens. Or a fluid lens.
  • the shape of the curved microlens array 2 may be curved. It is possible to realize that the curved shape of the curved microlens array 2 is the same as the curved shape of the virtual image plane of the wide-angle main lens, and the curved image sensor 2 is an integral curved image sensor, which is shared by all the microlenses g of the curved microlens array 2. Therefore, the curved shape of the curved image sensor 2 can also be realized, which is the same as the curved shape of the virtual image plane of the wide-angle main lens.
  • the curved shape of the curved microlens array 2 is required.
  • the curved shape is the same as the curved shape of the virtual image plane of the wide-angle main lens, and the virtual micro-lens array 2 is again imaged by the image formed by the wide-angle main lens.
  • the curved surfaces of the image sensor 2 are coincident, or the vertical distance between the two faces is smaller than the aberration tolerance, in order to conform to the image formed by the curved microlens array 2 re-imaging the image formed by the wide-angle main lens
  • the virtual image plane 1 ⁇ coincides with the curved surface of the curved image sensor 2, or the vertical distance between the two faces is smaller than the aberration tolerance, and the curved microlens array 2 to the curved image sensor 2 Vertical distance, vertical distance between the curved microlens array 2 to the virtual image plane of the wide-angle main lens, and the curved microlens array 2
  • the predetermined rule is satisfied, for example, for any one of the microlenses g constituting the curved microlens array 2, the reciprocal of the vertical distance between the microlens g to the curved image sensor 2, and the microlens g to the wide-angle main lens
  • the sum of the reciprocal of the vertical distance between the virtual image planes is equal to the reciprocal of the focal
  • the light field camera of the second embodiment of the present invention is as follows:
  • the light field camera of the second embodiment includes:
  • the wide-angle main lens the wide-angle main lens is used to acquire an image signal, and image the acquired image signal.
  • the distance from the image point to the optical axis and the object point corresponding to the image point are The distance of the optical axis is proportional;
  • the flat type imaging array 2 includes a flat type liquid crystal spatial modulator 2a and a curved type image sensor 2b, wherein the flat type liquid crystal spatial modulator 2a is used for re-imaging the image formed by the wide-angle main lens, and Recording an image formed by re-imaging on the flat panel image sensor 2b;
  • the driver 4 is configured to adjust the refractive index of the flat type liquid crystal spatial modulator 2a by pressurizing the flat type liquid crystal spatial modulator 2a during the re-imaging of the image formed by the wide-angle main lens imaging by the flat-type liquid crystal spatial modulator 2a
  • the focal length of the flat type liquid crystal spatial modulator 2a is changed; wherein, after adjusting the refractive index of the flat type liquid crystal spatial modulator 2a, the flat type liquid crystal spatial modulator 2a can equivalently form a curved microlens array.
  • the reciprocal of the vertical distance between the flat type liquid crystal spatial modulator 2a to the curved image sensor 2b and the reciprocal of the vertical distance between the flat type liquid crystal spatial modulator 2a and the virtual image plane of the wide-angle main lens is equal to the flat type
  • the reciprocal of the focal length of the liquid crystal spatial modulator is equal to the flat type
  • the wide-angle main lens has various forms.
  • the wide-angle main lens is a variable-focus wide-angle main lens, or the wide-angle main lens is a fixed-focus wide-angle main lens.
  • the wide-angle main lens has various shapes.
  • the wide-angle main lens has a spherical shape, or a hyperboloid, or an arbitrary curved surface.
  • the flat type imaging array 2 has various forms.
  • the flat type liquid crystal spatial modulator 2a includes at least one liquid crystal unit g sequentially connected;
  • the reciprocal of the vertical distance between the liquid crystal cell g to the curved image sensor 2b and the reciprocal of the vertical distance between the liquid crystal cell g and the virtual image plane of the wide-angle main lens is equal to The reciprocal of the focal length of the liquid crystal cell g.
  • any one of the liquid crystal cells can be equivalently formed after applying a voltage.
  • the shape of the flat type liquid crystal spatial modulator 2a for re-imaging the image formed by the wide-angle main lens is a flat type, and the recording flat type liquid crystal spatial modulator is used.
  • the curved image sensor 2b that re-images the image formed by the wide-angle main lens is also curved, and therefore, the image formed by the flat-type liquid crystal spatial modulator 2a re-imaging the image formed by the wide-angle main lens falls on the curved
  • the virtual image plane 1 ⁇ where the image formed by the flat-type liquid crystal spatial modulator 2a is imaged again by the image formed by the wide-angle main lens is coincident with the curved surface of the curved image sensor 2b, or both
  • the vertical distance between the faces is smaller than the aberration tolerance.
  • the driver 4 passes through the flat-type liquid crystal spatial modulator in the process of re-imaging the image formed by the wide-angle main lens imaging by the flat-type liquid crystal spatial modulator 2a.
  • 2a is pressurized to adjust the refractive index of the flat type liquid crystal spatial modulator 2a
  • the reciprocal of the vertical distance between the flat type liquid crystal spatial modulator 2a to the flat type image sensor 2b and the reciprocal of the vertical distance between the flat type liquid crystal spatial modulator 2a and the virtual image plane of the wide-angle main lens is equal to the flat plate
  • the light field camera provided by the first embodiment mainly includes: a wide-angle main lens and a curved imaging array, wherein the curved imaging array mainly includes a curved microlens array and a curved image sensor.
  • the curved shape of the device is the same as the curved shape of the virtual image plane of the wide-angle main lens, the reciprocal of the vertical distance between the curved microlens array and the curved image sensor, and the virtual image of the curved microlens array to the wide-angle main lens
  • the sum of the reciprocal of the vertical distance between the faces is equal to the reciprocal of the focal length of the curved microlens array, thus realizing that the image formed by the curved microlens array re-imaging the image formed by the wide-angle main lens falls on the curved type
  • the problem that the light field camera in the prior art is photographed with a wide-angle lens is relatively blurred and the quality is poor.
  • the light field camera provided by the second embodiment mainly includes: a wide-angle main lens and a flat type. a liquid crystal spatial modulator, a curved image sensor, and a driver, wherein a reciprocal of a vertical distance between the flat type liquid crystal spatial modulator and the curved image sensor, and a virtual image plane of the flat type liquid crystal spatial modulator to the wide-angle main lens
  • the sum of the reciprocal of the vertical distance between the two is equal to the focal length of the flat panel liquid crystal spatial modulator
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • a computer-usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the computer readable memory is stored in the computer readable memory.
  • the instructions in the production result include an article of manufacture of an instruction device that implements the functions specified in a block or blocks of a flow or a flow and/or a block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Studio Devices (AREA)
  • Lenses (AREA)

Abstract

本发明涉及图像摄取处理技术领域,公开了一种光场相机,弯曲型微透镜阵列的弯曲形状和弯曲型图像传感器的弯曲形状,均与广角主镜头的虚拟像面的弯曲形状相同,弯曲型微透镜阵列至弯曲型图像传感器之间的垂直距离的倒数,与弯曲型微透镜阵列至广角主镜头的虚拟像面之间的垂直距离的倒数之和,等于弯曲型微透镜阵列焦距的倒数,解决了光场相机采用广角主镜头时,由于平板型微透镜阵列和平板型图像传感器与广角主镜头的弯曲虚拟像面无法匹配,从而导致模糊、畸变等图像质量变差的问题。

Description

一种光场相机
本申请要求在 2013 年 10 月 10 日提交中国专利局、 申请号为 201310469827.2、 发明名称为 "一种光场相机" 的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。 技术领域
本发明涉及图像摄取处理技术领域, 特别涉及一种光场相机。 背景技术
光场相机是可以同时记录物体光强信息和深度信息(即完整的光场信息) 的新型成像装置, 由于具有数字重聚焦等优点而被广泛使用。 目前, 光场相 机主要包括五部分: 主镜头 1、 平板型微透镜阵列 2、 平板型图像传感器 3、 图像处理器 3、 驱动器 4和控制器 5 , 具体如图 1A所示。
光场相机的主镜头 1一般为非广角的镜头, 非广角主镜头 1将拍摄的物 体进行成像, 该成像所在的面为非广角主镜头 1的像面 (如图 1A中所示的 a 面 ), 非广角主镜头 1的像面是位于非广角主镜头 1和平板型成像阵列 2之间 的一个虚拟的、 与光轴垂直的平面, 光轴是与水平面相平行的轴线, 非广角 主镜头 1的像距(如图 1A中所示的距离 b )是非广角主镜头 1位于平板型成 像阵列 2的一侧与非广角主镜头 1的虚拟像面 a之间的垂直距离; 非广角主 镜头 1的物面 (如图 1A中所示的 c面)是拍摄物体位于光场相机一侧的面, 非广角主镜头 1的物距(如图 1A中所示的距离 d )是非广角主镜头 1位于拍 摄物体的一侧与非广角主镜头 1的物面之间的垂直距离。
平板型微透镜阵列 e包括多个微透镜 g,平板型微透镜阵列 e要对非广角 主镜头 1的虚拟像面 a上产生的图像进行成像, 再次成像的图像所在的面为 平板型微透镜阵列 e的虚拟像面 (如图 1A中所示的 h面), 然后, 每个微透 镜 g所产生的图像组成的平面为平板型微透镜阵列 e的虚拟像面 h,平板型微 透镜阵列 e的像距(如图 1A中所示的距离 i )是平板型微透镜阵列 e位于图 像处理器 3的一侧与平板型微透镜阵列 e的虚拟像面 h之间的垂直距离。 平 板型微透镜阵列 e的物面是非广角主镜头 1的虚拟像面 a,平板型微透镜阵列 e的物距(如图 1A中所示的距离 j )是平板型微透镜阵列 e位于非广角主镜头 1的一侧与非广角主镜头 1的等效像面 a之间的距离。
其中, 平板型微透镜阵列 e的物距 j、 平板型微透镜阵列 e的像距 i、 平 板型微透镜阵列 e的等效焦距 1之间的关系满足公式: i/ = 1/ + 1/ , 由于平板
// / j / 1
型微透镜阵列 e要对非广角主镜头 1的虚拟像面 a上产生的图像进行成像,实 际上是, 平板型微透镜阵列 e中的每个微透镜 g要对非广角主镜头 1的虚拟 像面 a上产生的图像进行成像, 因此, 平板型微透镜阵列 e中的每个微透镜 g 也存在相应的微透镜物距 jn、微透镜等效像距和微透镜等效焦距 /„,且 „、 和
/„满足公式: n为微透镜的编号, 在图 1A中, 平板型微透镜
Figure imgf000004_0001
阵列 e中的每个微透镜 g的编号从上到下依次为: 编号 1、 编号 2、 编号 3 编号 4、 编号 5、 编号 6、 编号 7、 编号 8
平板型微透镜阵列 e在成像过程中, 要对非广角主镜头 1的虚拟像面 a 上所成的像进行成像后要记录在平板型图像传感器 f上,此时,若平板型微透 镜阵列 e的虚拟像面 h与平板型图像传感器 f所在的平面重合, 或者, 平板型 微透镜阵列 e的虚拟像面 h与平板型图像传感器 f所在的平面之间的垂直距离 位于预设范围时, 最终拍摄图片的质量较高, 比较清晰, 也就是说, 平板型 微透镜阵列 e中的每个微透镜 g所成的像位于平板型图像传感器 f上,或者所 成的像所在的虚拟像面 h与平板型图像传感器 f之间的垂直距离位于预设范围 时, 最终拍摄的图片的质量较高, 比较清晰。
目前, 由于广角主镜头可以比非广角主镜头收集到入射角度更大的光线, 即视角更大, 例如, 有些广角主镜头的视角可以达到 180。, 甚至 270。, 可以 把更多的空间物体拍摄进来, 因此, 将广角主镜头替代目前光场相机所使用 的非广角主镜头显得尤为重要, 其中, 如图 1B所示, 将广角主镜头 替代目 前光场相机所使用的非广角主镜头 1 时, 平板型微透镜阵列 e的物面就为广 角主镜头 的虚拟像面 a 平板型微透镜阵列 e的虚拟像面为 h 平板型微透 镜阵列 e的等效焦面为 。广角主镜头替代目前光场相机所使用的非广角主镜 头时, 由于每个微透镜是相同的, 因此, 它们对光线的折射率是一定的, 即 平板型微透镜阵列 e中的每个微透镜的焦距 /„是相同的,由于广角主镜头的虚 拟像面是弯曲的, 因此, 平板型微透镜阵列 e中的每个微透镜 g到广角主镜 头的虚拟像面的距离是不同的, 即每个微透镜的物距 „是不同的, 根据上述 公式中所示的每个微透镜的物距、 每个微透镜的像距和每个微透镜的焦距的 关系可知, 平板型微透镜阵列 e中的每个微透镜的像距是不同的, 由于平板 型微透镜阵列 e中的每个微透镜 g到平板型图像传感器 f的距离是相同的,而 平板型微透镜阵列中的每个微透镜 g的像距是不同的, 具体如图 1B所示, 因 此,平板型微透镜阵列 e中的部分微透镜 g对广角镜头的虚拟像面 上所成的 像进行再次成像后, 所成的像所在的虚拟像面位于平板型图像传感器 f上,或 者与图像传感器 f之间的距离位于预设范围内,平板型微透镜阵列 e中的另外 一部分微透镜 g对广角镜头的虚拟像面 上所成的像进行再次成像后 ,所成的 像所在的虚拟像面与图像传感器之间 f的垂直距离已经超出预设范围, 因此, 导致最终拍摄的图片的质量较差, 产生模糊、 畸变等像差。 发明内容
本发明实施例提供一种光场相机, 用以解决现有技术中的光场相机釆用 广角镜头拍摄时存在的拍摄图片较模糊、 质量较差的问题。
第一方面, 提供一种光场相机, 包括:
用于获取图像信号、 并对获取的图像信号进行成像的广角主镜头, 在所 述广角主镜头的所述虚拟像面上, 像点到光轴的距离与该像点所对应的的物 点到光轴的距离成正比; 弯曲型微透镜阵列和弯曲型图像传感器的弯曲型成像阵列, 其中弯曲型 微透镜阵列用于对广角主镜头成像形成的图像进行再次成像, 并将再次成像 形成的图像记录在弯曲型图像传感器上;
所述弯曲型微透镜阵列的弯曲形状和所述弯曲型图像传感器的弯曲形 状, 分别与所述广角主镜头的虚拟像面的弯曲形状相同, 且所述弯曲型微透 镜阵列至所述弯曲型图像传感器之间的垂直距离的倒数, 与所述弯曲型微透 镜阵列至所述广角主镜头的虚拟像面之间的垂直距离的倒数之和, 等于所述 弯曲型微透镜阵列焦距的倒数。
结合第一方面, 在第一种可能的实现方式中, 所述广角主镜头为变焦广 角主镜头, 或者为定焦广角主镜头。
结合第一方面、 第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述广角主镜头的虚拟像面的形状为球面、 双曲面或者为任意曲 面。
结合第一方面、 第一方面的第一至第二种可能的实现方式, 在第三种可 能的实现方式中, 所述弯曲型微透镜阵列包括依次连接的至少一个微透镜, 所述弯曲型图像传感器包括至少一个单元图像传感器, 所述单元图像传感器 的数目与微透镜的数目相同, 每一个微透镜均与一个单元图像传感器相对应; 针对任意一微透镜, 该微透镜至与该微透镜对应的单元图像传感器之间 的垂直距离的倒数, 与该微透镜至所述广角主镜头的虚拟像面之间的垂直距 离的倒数之和, 等于该微透镜焦距的倒数。
结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 任意一单元图像传感器为电荷耦合元件 CCD, 或者为互补金属氧化物半导体 CMOS感光器件。
结合第一方面、 第一方面的第一至第二种可能的实现方式, 在第五种可 能的实现方式中, 所述弯曲型微透镜阵列包括依次连接的至少一个微透镜, 所述弯曲型图像传感器被所述至少一个微透镜共用;
针对任意一微透镜, 该微透镜至所述弯曲型图像传感器之间的垂直距离 的倒数, 与该微透镜至所述广角主镜头的虚拟像面之间的垂直距离的倒数之 和, 等于该微透镜焦距的倒数。
第二方面, 提供一种光场相机, 包括:
用于获取图像信号、 并对获取的图像信号进行成像的广角主镜头, 在所 述广角主镜头的所述虚拟像面上, 像点到光轴的距离与该像点所对应的的物 点到光轴的距离成正比;
平板型液晶空间调制器和弯曲型图像传感器的平板型成像阵列, 其中平 板型液晶空间调制器用于对广角主镜头成像形成的图像进行再次成像, 并将 再次成像形成的图像记录在弯曲型图像传感器上;
驱动器, 用于在平板型液晶空间调制器对广角主镜头成像形成的图像进 行再次成像过程中, 通过对所述平板型液晶空间调制器施加电压以调节所述 平板型液晶空间调制器的折射率, 更改所述平板型液晶空间调制器的焦距; 所述平板型液晶空间调制器至所述弯曲型图像传感器之间的垂直距离的 倒数, 与所述平板型液晶空间调制器至所述广角主镜头的虚拟像面之间的垂 直距离的倒数之和, 等于所述平板型液晶空间调制器的焦距的倒数。
结合第二方面, 在第一种可能的实现方式中, 所述广角主镜头为变焦广 角主镜头, 或者为定焦广角主镜头。
结合第二方面、 第二方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述广角主镜头的形状为球面、 双曲面或者任意曲面。
结合第二方面, 在第三种可能的实现方式中, 所述平板型液晶空间调制 器包括依次连接的至少一个液晶单元;
针对任意一液晶单元, 该液晶单元至所述弯曲型图像传感器之间的垂直 距离的倒数, 与该液晶单元至所述广角主镜头的虚拟像面之间的垂直距离的 倒数之和, 等于该液晶单元的焦距的倒数。
结合第二方面, 在第四种可能的实现方式中, 所述平板型液晶空间调制 器为一个整体液晶面板。
本发明实施例中, 提出两种光场相机: 其中一种光场相机主要包括: 广角主镜头和弯曲型成像阵列。 用于获取 图像信号、 并对获取的图像信号进行成像的广角主镜头, 在广角主镜头的虚 拟像面上, 像点到光轴的距离与该像点所对应的的物点到光轴的距离成正比; 弯曲型微透镜阵列和弯曲型图像传感器的弯曲型成像阵列, 其中弯曲型微透 镜阵列用于对广角主镜头成像形成的图像进行再次成像, 并将再次成像形成 的图像记录在弯曲型图像传感器上; 弯曲型微透镜阵列的弯曲形状和弯曲型 图像传感器的弯曲形状, 分别与广角主镜头的虚拟像面的弯曲形状相同, 且 弯曲型微透镜阵列至弯曲型图像传感器之间的垂直距离的倒数, 与弯曲型微 透镜阵列至广角主镜头的虚拟像面之间的垂直距离的倒数之和, 等于弯曲型 微透镜阵列焦距的倒数; 在该方案中, 弯曲型微透镜阵列的弯曲形状和弯曲 型图像传感器的弯曲形状, 分别与广角主镜头的虚拟像面的弯曲形状相同, 此时, 只保证了弯曲型微透镜阵列对广角主镜头成像形成的图像进行再次成 像后形成的虚拟像面与弯曲型图像传感器所在的面的形状相同, 但是, 为了 进一步使弯曲型微透镜阵列对广角主镜头成像形成的图像进行再次形成的 像, 落在弯曲型图像传感器上, 即弯曲型微透镜阵列对广角主镜头成像形成 的图像进行再次成像后形成的虚拟像面与弯曲型图像传感器所在的面重合, 或者两个面之间的垂直距离较小, 还要使弯曲型微透镜阵列至弯曲型图像传 感器之间的垂直距离的倒数, 与弯曲型微透镜阵列至广角主镜头的虚拟像面 之间的垂直距离的倒数之和, 等于弯曲型微透镜阵列至弯曲型微透镜阵列的 等效焦面之间的垂直距离的倒数, 这样, 弯曲型微透镜阵列对广角主镜头成 像形成的图像进行再次形成的像, 就落在了弯曲型图像传感器上, 就解决了 光场相机釆用广角镜头拍摄时存在的拍摄图片较模糊、 质量较差的问题; 另一种光场相机主要包括: 广角主镜头、 平板型成像阵列和驱动器。 用 于获取图像信号、 并对获取的图像信号进行成像的广角主镜头, 在广角主镜 头的虚拟像面上, 像点到光轴的距离与该像点所对应的的物点到光轴的距离 成正比; 平板型液晶空间调制器和弯曲型图像传感器的平板型成像阵列, 其 中平板型液晶空间调制器用于对广角主镜头成像形成的图像进行再次成像, 并将再次成像形成的图像记录在弯曲型图像传感器上; 驱动器, 用于在平板 型液晶空间调制器对广角主镜头成像形成的图像进行再次成像过程中, 通过 对平板型液晶空间调制器施加电压以调节平板型液晶空间调制器的折射率, 更改平板型液晶空间调制器的焦距; 平板型液晶空间调制器至弯曲型图像传 感器之间的垂直距离的倒数, 与平板型液晶空间调制器至广角主镜头的虚拟 像面之间的垂直距离的倒数之和, 等于平板型液晶空间调制器的焦距的倒数, 在该方案中, 为了使平板型液晶空间调制器对广角主镜头成像形成的图像进 行再次成像后形成的像, 落在弯曲型图像传感器上, 即平板型液晶空间调制 器对广角主镜头成像形成的图像进行再次成像后形成的虚拟像面与弯曲型图 像传感器所在的面重合, 或者两个面之间的距离较小, 使平板型液晶空间调 制器至弯曲型图像传感器之间的垂直距离的倒数, 与平板型液晶空间调制器 至广角主镜头的虚拟像面之间的垂直距离的倒数之和, 等于平板型液晶空间 调制器的焦距的倒数, 这样, 平板型液晶空间调制器对广角主镜头成像形成 的图像进行再次成像后形成的像, 落在了弯曲型图像传感器上, 解决了光场 相机釆用广角镜头拍摄时存在的拍摄图片较模糊、 质量较差的问题。 附图说明
Figure imgf000009_0001
图 2A为本发明第 -实施例光场相机的结构示意图;
图 2B为本发明第 实施例光场相机弯曲型成像阵列的第一种实现方式; 图 2C为本发明第 实施例光场相机弯曲型成像阵列的第二种实现方式; 图 3A为本发明第 -实施例光场相机的结构示意图;
图 3B为本发明第 实施例光场相机弯曲型成像阵列的第一种实现方式 t 具体实施方式
为了解决现有技术中的光场相机釆用广角镜头拍摄时存在的拍摄图片较 模糊、 质量较差的问题, 本发明实施例中, 提出两种光场相机, 在其中一种 方案中, 由于弯曲型微透镜阵列的弯曲形状和弯曲型图像传感器的弯曲形状, 分别与广角主镜头的虚拟像面的弯曲形状相同, 及弯曲型微透镜阵列至弯曲 型图像传感器之间的垂直距离的倒数, 与弯曲型微透镜阵列至广角主镜头的 虚拟像面之间的垂直距离的倒数之和, 等于弯曲型微透镜阵列焦距的倒数, 这样, 就解决了光场相机釆用广角镜头拍摄时存在的拍摄图片较模糊、 质量 较差的问题; 在另一种方案中, 由于平板型液晶空间调制器至弯曲型图像传 感器之间的垂直距离的倒数, 与平板型液晶空间调制器至广角主镜头的虚拟 像面之间的垂直距离的倒数之和, 等于平板型液晶空间调制器的焦距的倒数, 就解决了光场相机釆用广角镜头拍摄时存在的拍摄图片较模糊、 质量较差的 问题。
下面结合附图对本发明优选的实施方式进行详细说明。
参阅图 2A所示, 本发明第一个实施例的光场相机如下:
第一个实施例的光场相机, 包括:
广角主镜头 ,广角主镜头 用于获取图像信号、并对获取的图像信号进 行成像的, 其中, 在广角主镜头的虚拟像面上 上, 像点到光轴的距离与像点 所对应的的物点到光轴的距离成正比;
弯曲型成像阵列 21, 弯曲型成像阵列 ^包括弯曲型微透镜阵列 2 和弯曲 型图像传感器 其中,弯曲型微透镜阵列 2 用于对广角主镜头 成像形成 的图像进行再次成像, 并将再次成像形成的图像记录在弯曲型图像传感器 2 上;
弯曲型微透镜阵列 2 的弯曲形状和弯曲型图像传感器 2 的弯曲形状, 分别与广角主镜头的虚拟像面 ^的弯曲形状相同, 且弯曲型微透镜阵列 2 至 弯曲型图像传感器 2 之间的垂直距离的倒数, 与弯曲型微透镜阵列 2 至广 角主镜头的虚拟像面 ^之间的垂直距离的倒数之和, 等于弯曲型微透镜阵列 27a至弯曲型微透镜阵列焦距的倒数。
本发明实施例中, 广角主镜头 有多种, 较佳的, 广角主镜头 为变焦广 角主镜头, 或者, 广角主镜头 为定焦广角主镜头。
本发明实施例中, 广角主镜头 的形状有多种, 较佳的, 广角主镜头 的形状为球面、 或者, 广角主镜头 的形状双曲面, 或者, 广角主镜头 的形 状为任意曲面。
需要说明的是, 本发明实施例中, 该广角主镜头和该光场相机的机身之 间可以设置为可拆卸结构 (例如, 该广角主镜头和该光场相机的机身之间可 以组合或者分离, 以满足多个镜头切换的需要),或者是固定连接结构(例如, 该广角主镜头和该光场相机的机身为一体结构), 本发明实施例不做限定。 在 实际的应用中, 该广角主镜头的生产者和该光场相机的机身的生产者可能相 同, 也可能不同。
本发明实施例中, 弯曲型成像阵列 ^的形式有多种, 较佳的, 弯曲型成 像阵列 ^中的弯曲型微透镜阵列 2 包括依次连接的至少一个微透镜 g, 弯曲 型成像阵列 ^包括的弯曲型图像传感器 2 包括至少一个单元图像传感器 m, 如图 2B所示, 单元图像传感器 m的数目与微透镜 g的数目相同, 每一个微 透镜 g均与一个单元图像传感器 m相对应; 针对任意一微透镜 g, 该微透镜 g 至与该微透镜 g相连的单元图像传感器 m之间的垂直距离的倒数, 与该微透 镜 g至广角主镜头的虚拟像面之间的垂直距离的倒数之和, 等于该微透镜 g 焦距的倒数。
在上述方案中, 由于弯曲型微透镜阵列 2 是由多个微透镜 g组成的, 且 微透镜 g依次连接组成弯曲型微透镜阵列 因此, 弯曲型微透镜阵列 2 的形状可以是弯曲型的, 并且, 由于弯曲型图像传感器 2 是由多个单元图像 传感器 m组成的, 每一个微透镜 g均与一个单元图像传感器 m相连, 因此, 若微透镜 g依次连接组成弯曲型微透镜阵列 2 是弯曲的, 则由多个单元图像 传感器 m组成的弯曲型图像传感器 2 的形状也可以是弯曲型的, 从而, 可 以实现弯曲型微透镜阵列 2 的弯曲形状和弯曲型图像传感器 2 的弯曲形状, 分别与广角主镜头的虚拟像面 的弯曲形状相同。在该实施例中,为了使弯曲 型微透镜阵列 2 对广角主镜头 所形成的图像进行再次成像后形成的像落在 弯曲型图像传感器 2 上, 不仅要使弯曲型微透镜阵列 2 的弯曲形状和弯曲 型图像传感器 2 的弯曲形状, 分别与广角主镜头的虚拟像面 的弯曲形状相 同, 还要使弯曲型微透镜阵列 2 对广角主镜头 所形成的图像进行再次成像 后形成的像所在的虚拟像面 1Λ与弯曲型图像传感器 2 的曲面相重合,或者, 两个面之间的垂直距离小于像差容差,若要满足弯曲型微透镜阵列 2 对广角 主镜头 所形成的图像进行再次成像后形成的像所在的虚拟像面 1Λ与弯曲型 图像传感器 2 的曲面相重合, 或者, 两个面之间的垂直距离小于像差容差, 还要使弯曲型微透镜阵列 2 至弯曲型图像传感器 2 之间的垂直距离、 弯曲 型微透镜阵列 2 至广角主镜头的虚拟像面 之间的垂直距离, 及弯曲型微透 镜阵列 2 的焦距满足预设规则, 例如, 针对组成弯曲型微透镜阵列 2 的任 意一微透镜 g, 该微透镜 g至与该微透镜 g相连的单元图像传感器 m之间的 垂直距离的倒数,与该微透镜 g至广角主镜头的虚拟像面 之间的垂直距离的 倒数之和, 等于该微透镜 g焦距的倒数, 这样, 就实现了弯曲型微透镜阵列 27a对广角主镜头 所形成的图像进行再次成像后形成的像落在弯曲型图像传 感器 2 上,解决了现有技术中的光场相机釆用广角镜头拍摄时存在的拍摄图 片较模糊、 质量较差的问题。
本发明实施例中, 任意一微透镜 g可以是一片透镜组成, 也可以是多片 透镜组成。
本发明实施例中, 单元图像传感器 m的形式有多种, 例如, 可以为 CCD ( Charge-coupled Device , 电荷耦合元件) , 或者, 也可以为 CMOS ( Complementary Metal Oxide Semiconductor, 互补金属氧化物半导体)感光 器件。
或者, 弯曲型成像阵列 ^的形式也可以为, 弯曲型成像阵列 ^中的弯曲型 微透镜阵列 2 包括依次连接的至少一个微透镜 g, 弯曲型成像阵列 ^包括的 弯曲型图像传感器 2 被至少一个微透镜 g共用, 如图 2C所示, 针对任意一 微透镜 g, 该微透镜 g至弯曲型图像传感器 2 之间的垂直距离的倒数, 与该 微透镜 g至广角主镜头的虚拟像面 之间的垂直距离的倒数之和,等于该微透 镜 g焦距的倒数。
在上述方案中, 微透镜可以为固体微透镜, 或者为液态微透镜, 或者为 液晶微透镜, 其中, 固体微透镜可以釆用玻璃材质或者, 釆用塑料材质; 液 态微透镜可以为液体镜头, 或者为流态镜头。
在上述方案中, 由于弯曲型微透镜阵列 2 是由多个微透镜 g组成的, 且 微透镜 g依次连接组成弯曲型微透镜阵列 因此, 弯曲型微透镜阵列 2 的形状可以是弯曲型的,可以实现弯曲型微透镜阵列 2 的弯曲形状和广角主 镜头的虚拟像面 的弯曲形状相同, 弯曲型图像传感器 2 为一个整体的弯曲 型图像传感器, 被弯曲型微透镜阵列 2 所有微透镜 g共用, 因此, 也可以实 现弯曲型图像传感器 2 的弯曲形状, 与广角主镜头的虚拟像面 的弯曲形状 相同。 为了使弯曲型微透镜阵列 2 对广角主镜头 所形成的图像进行再次成 像后形成的像落在弯曲型图像传感器 2 上, 不仅要使弯曲型微透镜阵列 2 的弯曲形状和弯曲型图像传感器 2 的弯曲形状,分别与广角主镜头的虚拟像 面 的弯曲形状相同, 还要使弯曲型微透镜阵列 2 对广角主镜头 所形成的 图像进行再次成像后形成的像所在的虚拟像面 1Λ 与弯曲型图像传感器 2 的 曲面相重合, 或者, 两个面之间的垂直距离小于像差容差, 若要符合弯曲型 微透镜阵列 2 对广角主镜头 所形成的图像进行再次成像后形成的像所在的 虚拟像面 1Λ 与弯曲型图像传感器 2 的曲面相重合, 或者, 两个面之间的垂 直距离小于像差容差, 还要使弯曲型微透镜阵列 2 至弯曲型图像传感器 2 之间的垂直距离、 弯曲型微透镜阵列 2 至广角主镜头的虚拟像面 之间的垂 直距离, 及弯曲型微透镜阵列 2 的焦距满足预设规则, 例如, 针对组成弯曲 型微透镜阵列 2 的任意一微透镜 g, 该微透镜 g至弯曲型图像传感器 2 之 间的垂直距离的倒数,与该微透镜 g至广角主镜头的虚拟像面 之间的垂直距 离的倒数之和, 等于该微透镜 g焦距的倒数, 这样, 就实现了弯曲型微透镜 阵列 2 对广角主镜头 所形成的图像进行再次成像后形成的像落在弯曲型图 像传感器 2 上,解决了现有技术中的光场相机釆用广角镜头拍摄时存在的拍 摄图片较模糊、 质量较差的问题。 参阅图 3A和 3B所示, 本发明第二个实施例的光场相机如下: 第二个实施例的光场相机, 包括:
广角主镜头 ,广角主镜头 用于获取图像信号、并对获取的图像信号进 行成像, 在广角主镜头 的虚拟像面上, 像点到光轴的距离与该像点所对应 的的物点到光轴的距离成正比;
平板型成像阵列 2, 平板型成像阵列 2包括平板型液晶空间调制器 2a和 弯曲型图像传感器 2b, 其中, 平板型液晶空间调制器 2a用于对广角主镜头 所形成的图像进行再次成像,并将再次成像形成的图像记录在平板型图像传 感器 2b上;
驱动器 4, 用于在平板型液晶空间调制器 2a对广角主镜头 成像形成的 图像进行再次成像过程中, 通过对平板型液晶空间调制器 2a加压以调节平板 型液晶空间调制器 2a的折射率, 更改平板型液晶空间调制器 2a的焦距; 其中, 调节平板型液晶空间调制器 2a的折射率后, 平板型液晶空间调制 器 2a可以等效地形成弯曲型的微透镜阵列。
平板型液晶空间调制器 2a至弯曲型图像传感器 2b之间的垂直距离的倒 数, 与平板型液晶空间调制器 2a至广角主镜头的虚拟像面 之间的垂直距离 的倒数之和, 等于平板型液晶空间调制器的焦距的倒数。
本发明实施例中, 广角主镜头 有多种形式, 较佳的, 广角主镜头 为变 焦广角主镜头, 或者广角主镜头 为定焦广角主镜头。
本发明实施例中, 广角主镜头 的形状有多种, 较佳的, 广角主镜头 的形状为球面、 或者, 为双曲面, 或者, 为任意曲面。
本发明实施例中, 平板型成像阵列 2 的形式有多种, 较佳的, 平板型液 晶空间调制器 2a包括依次连接的至少一个液晶单元 g;
针对任意一液晶单元 g, 该液晶单元 g至弯曲型图像传感器 2b之间的垂 直距离的倒数,与该液晶单元 g至广角主镜头的虚拟像面 之间的垂直距离的 倒数之和, 等于该液晶单元 g焦距的倒数。
在上述方案中, 任意一个液晶单元在施加电压后可以等效地形成一个具 有特定焦距的微透镜, 其中, 每一个液晶单元施加的电压不同, 等效微透镜 的特定焦距也不同。
在上述方案中, 由于广角主镜头 的虚拟像面是弯曲型的, 对广角主镜 头 形成的图像进行再次成像的平板型液晶空间调制器 2a 的形状是平板型 的, 记录平板型液晶空间调制器 2a对广角主镜头 形成的图像进行再次成像 的弯曲型图像传感器 2b也是弯曲型的, 因此, 为了使平板型液晶空间调制器 2a对广角主镜头 形成的图像进行再次成像后形成的像落在弯曲型图像传感 器 2b上,要使平板型液晶空间调制器 2a对广角主镜头 形成的图像进行再次 成像后形成的像所在的虚拟像面 1Λ 与弯曲型图像传感器 2b的曲面相重合, 或者, 两个面之间的垂直距离小于像差容差, 若要符合上述条件, 驱动器 4 在平板型液晶空间调制器 2a对广角主镜头 成像形成的图像进行再次成像过 程中,通过对平板型液晶空间调制器 2a加压以调节平板型液晶空间调制器 2a 的折射率, 使平板型液晶空间调制器 2a至平板型图像传感器 2b之间的垂直 距离的倒数, 与平板型液晶空间调制器 2a至广角主镜头的虚拟像面 之间的 垂直距离的倒数之和, 等于平板型液晶空间调制器 2a经过驱动器 4加压后的 焦距的倒数, 由于平板型液晶空间调制器 2a是由多个液晶单元 g组成的, 因 此, 驱动器 4调节平板型液晶空间调制器 2a的折射率, 也就是调节组成平板 型等效透镜 2a的任一液晶单元 g的折射率, 进而使每一个液晶单元形成等效 的微透镜, 针对任意一液晶单元 g, 该液晶单元 g至弯曲型图像传感器 2b之 间的垂直距离的倒数,与该液晶单元 g至广角主镜头的虚拟像面 之间的垂直 距离的倒数之和, 等于该液晶单元 g焦距的倒数, 这样, 就使平板型液晶空 间调制器 2a对广角主镜头 成像形成的弯曲图像进行再次成像后形成的像落 在弯曲型图像传感器 2b上, 解决了现有技术中的光场相机釆用广角镜头拍摄 时存在的拍摄图片较模糊、 质量较差的问题。
综上所述, 本发明实施例中, 第一实施例提供的光场相机主要包括: 广 角主镜头、 弯曲型成像阵列, 其中, 弯曲型成像阵列主要包括弯曲型微透镜 阵列和弯曲型图像传感器, 弯曲型微透镜阵列的弯曲形状和弯曲型图像传感 器的弯曲形状, 均与广角主镜头的虚拟像面的弯曲形状相同, 弯曲型微透镜 阵列至弯曲型图像传感器之间的垂直距离的倒数, 与弯曲型微透镜阵列至广 角主镜头的虚拟像面之间的垂直距离的倒数之和, 等于弯曲型微透镜阵列焦 距的倒数, 这样, 就实现了弯曲型微透镜阵列对广角主镜头所形成的图像进 行再次成像后形成的像落在弯曲型图像传感器上, 解决了现有技术中的光场 相机釆用广角镜头拍摄时存在的拍摄图片较模糊、 质量较差的问题; 第二实 施例提供的光场相机主要包括: 广角主镜头、 平板型液晶空间调制器、 弯曲 型图像传感器, 及驱动器, 其中, 平板型液晶空间调制器至弯曲型图像传感 器之间的垂直距离的倒数, 与平板型液晶空间调制器至广角主镜头的虚拟像 面之间的垂直距离的倒数之和, 等于平板型液晶空间调制器焦距的倒数, 这 样, 就实现了平板型液晶空间调制器对广角主镜头所形成的图像进行再次成 像后形成的像落在弯曲型图像传感器上, 解决了现有技术中的光场相机釆用 广角镜头拍摄时存在的拍摄图片较模糊、 质量较差的问题。
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、 或计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 装置 (设备)和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 / 或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框 的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处 理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机 或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种光场相机, 其特征在于, 包括:
用于获取图像信号、 并对获取的图像信号进行成像的广角主镜头, 在所 述广角主镜头的所述虚拟像面上, 像点到光轴的距离与该像点所对应的的物 点到光轴的距离成正比;
弯曲型微透镜阵列和弯曲型图像传感器的弯曲型成像阵列, 其中弯曲型 微透镜阵列用于对广角主镜头成像形成的图像进行再次成像, 并将再次成像 形成的图像记录在弯曲型图像传感器上;
所述弯曲型微透镜阵列的弯曲形状和所述弯曲型图像传感器的弯曲形 状, 分别与所述广角主镜头的虚拟像面的弯曲形状相同, 且所述弯曲型微透 镜阵列至所述弯曲型图像传感器之间的垂直距离的倒数, 与所述弯曲型微透 镜阵列至所述广角主镜头的虚拟像面之间的垂直距离的倒数之和, 等于所述 弯曲型微透镜阵列焦距的倒数。
2、 如权利要求 1所述的光场相机, 其特征在于, 所述广角主镜头为变焦 广角主镜头, 或者为定焦广角主镜头。
3、 如权利要求 1或 2所述的光场相机, 其特征在于, 所述广角主镜头的 虚拟像面的形状为球面、 双曲面或者为任意曲面。
4、 如权利要求 1-3任一项所述的光场相机, 其特征在于, 所述弯曲型微 透镜阵列包括依次连接的至少一个微透镜, 所述弯曲型图像传感器包括至少 一个单元图像传感器, 所述单元图像传感器的数目与微透镜的数目相同, 每 一个微透镜均与一个单元图像传感器相对应;
针对任意一微透镜, 该微透镜至与该微透镜对应的单元图像传感器之间 的垂直距离的倒数, 与该微透镜至所述广角主镜头的虚拟像面之间的垂直距 离的倒数之和, 等于该微透镜焦距的倒数。
5、 如权利要求 4所述的光场相机, 其特征在于, 任意一单元图像传感器 为电荷耦合元件 CCD, 或者为互补金属氧化物半导体 CMOS感光器件。
6、 如权利要求 1-3任一项所述的光场相机, 其特征在于, 所述弯曲型微 透镜阵列包括依次连接的至少一个微透镜, 所述弯曲型图像传感器被所述至 少一个微透镜共用;
针对任意一微透镜, 该微透镜至所述弯曲型图像传感器之间的垂直距离 的倒数, 与该微透镜至所述广角主镜头的虚拟像面之间的垂直距离的倒数之 和, 等于该微透镜焦距的倒数。
7、 一种光场相机, 其特征在于, 包括:
用于获取图像信号、 并对获取的图像信号进行成像的广角主镜头, 在所 述广角主镜头的所述虚拟像面上, 像点到光轴的距离与该像点所对应的的物 点到光轴的距离成正比;
平板型液晶空间调制器和弯曲型图像传感器的平板型成像阵列, 其中平 板型液晶空间调制器用于对广角主镜头成像形成的图像进行再次成像, 并将 再次成像形成的图像记录在弯曲型图像传感器上;
驱动器, 用于在平板型液晶空间调制器对广角主镜头成像形成的图像进 行再次成像过程中, 通过对所述平板型液晶空间调制器施加电压以调节所述 平板型液晶空间调制器的折射率, 更改所述平板型液晶空间调制器的焦距; 所述平板型液晶空间调制器至所述弯曲型图像传感器之间的垂直距离的 倒数, 与所述平板型液晶空间调制器至所述广角主镜头的虚拟像面之间的垂 直距离的倒数之和, 等于所述平板型液晶空间调制器的焦距的倒数。
8、 如权利要求 7所述的光场相机, 其特征在于, 所述广角主镜头为变焦 广角主镜头, 或者为定焦广角主镜头。
9、 如权利要求 7或 8所述的光场相机, 其特征在于, 所述广角主镜头的 形状为球面、 双曲面或者任意曲面。
10、 如权利要求 7 所述的光场相机, 其特征在于, 所述平板型液晶空间 调制器包括依次连接的至少一个液晶单元;
针对任意一液晶单元, 该液晶单元至所述弯曲型图像传感器之间的垂直 距离的倒数, 与该液晶单元至所述广角主镜头的虚拟像面之间的垂直距离的 倒数之和, 等于该液晶单元的焦距的倒数。
11、 如权利要求 7 所述的光场相机, 其特征在于, 所述平板型液 调制器为一个整体液晶面板。
PCT/CN2014/074914 2013-10-10 2014-04-08 一种光场相机 WO2015051626A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/094,489 US10321033B2 (en) 2013-10-10 2016-04-08 Light field camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310469827.2 2013-10-10
CN201310469827.2A CN104580869B (zh) 2013-10-10 2013-10-10 一种光场相机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/094,489 Continuation US10321033B2 (en) 2013-10-10 2016-04-08 Light field camera

Publications (1)

Publication Number Publication Date
WO2015051626A1 true WO2015051626A1 (zh) 2015-04-16

Family

ID=52812494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074914 WO2015051626A1 (zh) 2013-10-10 2014-04-08 一种光场相机

Country Status (3)

Country Link
US (1) US10321033B2 (zh)
CN (1) CN104580869B (zh)
WO (1) WO2015051626A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106303166A (zh) * 2015-05-22 2017-01-04 电信科学技术研究院 一种图像采集设备
TWI752905B (zh) * 2015-04-28 2022-01-21 日商新力股份有限公司 畫像處理裝置及畫像處理方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587786B2 (en) * 2015-07-10 2020-03-10 Nikon Corporation Imaging device, imaging optical system, method for manufacturing imaging device, and imaging method
CN105093472B (zh) * 2015-08-25 2017-11-28 华为技术有限公司 成像装置和成像方法
CN106254750B (zh) * 2015-08-31 2019-04-26 北京智谷睿拓技术服务有限公司 图像采集控制方法和装置
CN106236011B (zh) * 2015-09-17 2017-12-12 北京智谷睿拓技术服务有限公司 眼底图像获取方法和装置、眼底相机
CN106236009B (zh) * 2015-09-17 2017-12-19 北京智谷睿拓技术服务有限公司 眼底图像获取方法和装置、眼底相机
KR101668815B1 (ko) * 2016-02-15 2016-10-24 정은진 광시야각 렌즈 및 그 렌즈를 포함한 광시야각 카메라
CN106153977A (zh) * 2016-06-21 2016-11-23 上海交通大学 一种基于单光场相机的三维流场测试方法
CN106291910B (zh) * 2016-09-22 2019-09-20 昆明物理研究所 适用于微光夜视镜的轻型化目镜系统
US10712572B1 (en) * 2016-10-28 2020-07-14 Facebook Technologies, Llc Angle sensitive pixel array including a liquid crystal layer
CN106973203B (zh) * 2017-04-21 2020-11-17 华为机器有限公司 摄像头模组
CN107959781B (zh) * 2017-12-11 2020-07-31 信利光电股份有限公司 一种摄像模组及其调整控制方法
JP2019215489A (ja) * 2018-06-14 2019-12-19 オリンパス株式会社 撮像装置および焦点調節方法
CN110876001B (zh) * 2018-08-31 2022-05-17 南昌欧菲光电技术有限公司 摄像光学系统及电子装置
KR102662032B1 (ko) 2019-06-19 2024-05-03 삼성전자주식회사 이미지 센서 및 이미지 센서를 포함하는 전자 장치
WO2021035473A1 (zh) 2019-08-26 2021-03-04 京东方科技集团股份有限公司 三维显示装置及虚拟现实设备
CN111526273B (zh) * 2020-04-29 2022-06-10 维沃移动通信有限公司 摄像头模组、电子设备、拍摄控制方法和控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345826A (zh) * 2007-07-13 2009-01-14 索尼株式会社 图像拾取设备
CN101554042A (zh) * 2006-12-04 2009-10-07 索尼株式会社 图像拾取装置和图像拾取方法
CN101874400A (zh) * 2007-10-18 2010-10-27 奥多比公司 基于两个透镜阵列的快速计算式照相机
US20100277629A1 (en) * 2009-05-01 2010-11-04 Samsung Electronics Co., Ltd. Photo detecting device and image pickup device and method thereon
CN102439979A (zh) * 2009-04-22 2012-05-02 雷特利克斯股份有限公司 数字成像系统,全光照光学设备及图像数据处理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3495631B2 (ja) * 1999-02-15 2004-02-09 ペンタックス株式会社 広角レンズ
US7893957B2 (en) * 2002-08-28 2011-02-22 Visual Intelligence, LP Retinal array compound camera system
CA2540516C (en) * 2003-09-30 2010-02-09 Matsushita Electric Industrial Co., Ltd. Projection lens, and projection display apparatus and rear projection display apparatus using the projection lens
US20060044451A1 (en) * 2004-08-30 2006-03-02 Eastman Kodak Company Wide angle lenslet camera
US9182228B2 (en) * 2006-02-13 2015-11-10 Sony Corporation Multi-lens array system and method
US7962033B2 (en) 2008-01-23 2011-06-14 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
HU0900478D0 (en) 2009-07-31 2009-09-28 Holografika Hologrameloeallito Method and apparatus for displaying 3d images
EP2306230B1 (en) * 2009-09-30 2011-12-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for fabricating an artificial compound eye
CN102739949A (zh) 2011-04-01 2012-10-17 张可伦 多镜头相机和多镜头装置的控制方法
CN202455435U (zh) * 2012-01-19 2012-09-26 深圳市华安泰智能科技有限公司 一种安防监控摄像机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101554042A (zh) * 2006-12-04 2009-10-07 索尼株式会社 图像拾取装置和图像拾取方法
CN101345826A (zh) * 2007-07-13 2009-01-14 索尼株式会社 图像拾取设备
CN101874400A (zh) * 2007-10-18 2010-10-27 奥多比公司 基于两个透镜阵列的快速计算式照相机
CN102439979A (zh) * 2009-04-22 2012-05-02 雷特利克斯股份有限公司 数字成像系统,全光照光学设备及图像数据处理方法
US20100277629A1 (en) * 2009-05-01 2010-11-04 Samsung Electronics Co., Ltd. Photo detecting device and image pickup device and method thereon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752905B (zh) * 2015-04-28 2022-01-21 日商新力股份有限公司 畫像處理裝置及畫像處理方法
CN106303166A (zh) * 2015-05-22 2017-01-04 电信科学技术研究院 一种图像采集设备

Also Published As

Publication number Publication date
US20160227085A1 (en) 2016-08-04
CN104580869B (zh) 2018-06-05
US10321033B2 (en) 2019-06-11
CN104580869A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2015051626A1 (zh) 一种光场相机
TWI631382B (zh) 攝像系統透鏡組、取像裝置及電子裝置
TWI585455B (zh) 影像擷取透鏡系統、取像裝置及電子裝置
TWI531815B (zh) 攝像光學鏡片組、取像裝置及電子裝置
US10594919B2 (en) Camera device and method for capturing images by using the same
CN108432230B (zh) 一种成像设备和一种用于显示场景的图像的方法
EP3136707A1 (en) Image shooting terminal and image shooting method
TWI629527B (zh) 攝影系統鏡片組、取像裝置及電子裝置
JP2018529256A (ja) 低fナンバープレノプティックカメラのための2表面マイクロレンズアレイを有する方法および装置
TW201905528A (zh) 成像系統透鏡組、取像裝置及電子裝置
US20140104389A1 (en) Methods and Camera Systems for Recording and Creation of 3-Dimension (3-D) Capable Videos and 3-Dimension (3-D) Still Photos
US20170307855A1 (en) Camera lens assembly and portable electronic device
CN105530431A (zh) 一种反射式全景成像系统及方法
CN104980644A (zh) 一种拍摄方法及装置
CN110058380A (zh) 光学摄像镜组、取像装置及电子装置
JP6003578B2 (ja) 画像生成方法及び装置
TWM511632U (zh) 相機模組及電子裝置
TW201913162A (zh) 影像鏡片系統組、取像裝置及電子裝置
US10095100B2 (en) Panoramic viewing system and method thereof
US9743007B2 (en) Lens module array, image sensing device and fusing method for digital zoomed images
JP4588439B2 (ja) 立体視画像撮影装置および方法
CN102890400A (zh) 一种全景拍摄及全景放映的装置
CN201965319U (zh) 一种立体镜头及一种数码相机
TWI617833B (zh) 影像擷取透鏡系統、取像裝置及電子裝置
TWI785796B (zh) 具音圈馬達之自動對齊的對焦結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852423

Country of ref document: EP

Kind code of ref document: A1