WO2015051569A1 - 茂金属配合物及其制备方法、催化剂组合物 - Google Patents

茂金属配合物及其制备方法、催化剂组合物 Download PDF

Info

Publication number
WO2015051569A1
WO2015051569A1 PCT/CN2013/086850 CN2013086850W WO2015051569A1 WO 2015051569 A1 WO2015051569 A1 WO 2015051569A1 CN 2013086850 W CN2013086850 W CN 2013086850W WO 2015051569 A1 WO2015051569 A1 WO 2015051569A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metallocene complex
formula
silyl
alkyl
Prior art date
Application number
PCT/CN2013/086850
Other languages
English (en)
French (fr)
Inventor
崔冬梅
吴春姬
姚昌广
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Priority to EP13895318.7A priority Critical patent/EP3056505B1/en
Priority to US15/025,244 priority patent/US9896519B2/en
Priority to JP2016547209A priority patent/JP6302565B2/ja
Priority to DK13895318.7T priority patent/DK3056505T3/en
Publication of WO2015051569A1 publication Critical patent/WO2015051569A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/58Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with silicon, germanium, tin, lead, antimony, bismuth or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/20Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated

Definitions

  • the invention belongs to the technical field of catalysts, and in particular relates to a metallocene complex, a preparation method thereof and a catalyst composition.
  • the metallocene complex refers to a compound in which a central metal is coordinated to one or more cyclopentadienyl groups or derivatives thereof, and plays a very important role as a catalyst in various polymerization reactions. Among them, a metal complex combined with a cyclopentyl group or a derivative becomes a single metallocene complex.
  • the metallocene complexes Due to the different types of central metals, the metallocene complexes have completely different properties, such as catalyst activity for polymerization, especially in the successful preparation and as a highly efficient activation reagent for organoborane B (C 6 F 5 ) 3 and organic After the boron salt [Ph 3 C][B(C 6 F 5 ) 4 ] and [PhNMe 2 H][B(C 6 F 5 ) 4 ], the single-ratrix rare earth metal complex is catalytically polar or non-polar
  • monomers such as conjugated diolefins, styrene, ethylene, and alpha-olefins
  • monomers such as conjugated diolefins, styrene, ethylene, and alpha-olefins
  • a metallocene complex containing a Group III metal or a lanthanide metal has been reported as follows: In 1999, a single-density bis-alkyl complex (C 5 Me 4 SiMe 2 R) Y(CH 2 SiMe 3 ) reported by the German scientist Okuda Group. 2 (THF) is a milestone breakthrough (K c. Hultzsch, TP Spaniol and J. Okuda, Angew. Chem. Int.
  • the cycloolefin polymer is expected to replace PMMA and PC for optical materials because of its excellent heat resistance and strength and optical properties.
  • Most of the petroleum cracking product C5-fraction is cyclopentadiene, which spontaneously undergoes a Diels-Alder reaction at room temperature and is converted to DCPD. Therefore, studies on the copolymerization of DCPD with ethylene, ⁇ -olefin or styrene have received extensive attention.
  • transition metal compounds having a heterocyclic fused five-membered ring ⁇ ligand and olefin polymerization using the transition metal compound have been studied, which have the advantages of high activity, high molecular weight, etc., but all of them contain side chains, and the pair has a larger
  • the study of open-chain, single-metallocene complexes without side chains has not been reported.
  • the technical problem to be solved by the present invention is to provide a metallocene complex and a preparation method thereof, and a catalyst composition, which does not contain a side chain.
  • the present invention provides a metallocene complex as shown in formula (I):
  • Ln is one of fourteen elements of lanthanum (Sc), y (Y) and an atomic number of 57-71;
  • Ri, R 2 , R 3 , R 4 and R 5 are each independently selected from H, C1 to C20 alkyl, acetal-containing C1 to C20 alkyl, ketal-containing C1 to C20 alkyl, and a C1 to C20 alkyl group of an ether group, a C1 to C20 alkenyl group, an acetal-containing C1-C20 alkenyl group, a ketal-containing C1 to C20 alkenyl group, an ether group-containing C1 to C20 alkenyl group, and an ether group;
  • R 2 is bonded to each other to form a ring, or R 2 and R 3 are bonded to each other to form a ring, or R 5 is bonded to each other to form a ring;
  • E is 0, S or N-R; the R is a fluorenyl group, a benzene ring or a substituted benzene ring;
  • Each of X 2 and X 2 is independently selected from the group consisting of hydrogen, an aliphatic group of C1 to C20, an alicyclic group of C1 to C20, a phenyl group, a substituted phenyl group, an alkoxy group of C1 to C20, and an alkylamine of C1 to C20.
  • the substituted phenyl group is an aliphatic group of C1 to C20; a phenyl group substituted with one or more of an alicyclic group of C1 to C20 and an aromatic group;
  • L is a neutral Lewis base
  • w is an integer of 0 to 3.
  • the C1 to C20 aliphatic group is selected from the group consisting of a mercapto group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group and a t-butyl group.
  • the X 2 and each of X 2 are independently selected from the group consisting of a silicon amino group, a dinonylamino group, a diethylamino group, a dipropylamino group, an anthracene, a fluorenyl-diphenylaminophenyl group, a tris-silyl fluorenyl group, and a bis-trimethylene group.
  • the allyl derivative is -C 3 H n R 6 ; the n is 3 or 4; the R 6 is a C1 ⁇ C20 aliphatic group, a C1 ⁇ C20 alicyclic group And a substituted phenyl group; the substituted phenyl group is a C1 to C20 aliphatic group, a C1 to C20 alicyclic group, and one or more substituted phenyl groups in the aromatic group.
  • the L is tetrahydrofuran, diethyl ether or terpene.
  • the invention also provides a preparation method of a metallocene complex, comprising:
  • the cyclopentadienyl ligand represented by the formula (II) is reacted with the rare earth compound in a first organic solvent under inert gas protection to obtain a metallocene complex represented by the formula (I). versus
  • X 2 is each independently a C1 to C20 silane group; the rare earth compound is a group containing a group and X 2 ;
  • the reaction is further carried out by adding an allyl format reagent and/or an allyl derivative format reagent for the third reaction.
  • Ln is one of fourteen elements of lanthanum (Sc), yttrium (Y) and an atomic number of 57-71;
  • Ri, R 2 , R 3 , R 4 and R 5 are each independently selected from H, C1 to C20 alkyl group, acetal-containing C1 to C20 alkyl group, ketal-containing C1 to C20 alkyl group, ether group-containing C1 to C20 alkyl group, C1 to C20 alkenyl group, and C1-C20 alkenyl of acetal, C1-C20 alkenyl group containing ketal, C1-C20 alkenyl group containing an ether group, aryl group of C6-C20, C6-C20 aryl group containing acetal, a ketal-containing C6-C20 aryl group, an acid group-containing C6-C20 aryl group, a C1 to C20 silane group, an acetal-containing C1 to C20 si
  • R 2 is bonded to each other to form a ring, or R 2 and R 3 are bonded to each other to form a ring, or R 5 is bonded to each other to form a ring;
  • E is 0, S or N-R; the R is a fluorenyl group, a benzene ring or a substituted benzene ring;
  • 1 and 2 each independently selected from the group consisting of a silane group, an allyl group and an allyl derivative of C1 to C20;
  • L is a neutral Lewis base
  • w is an integer of 0 to 3.
  • the present invention also provides a catalyst composition comprising the metallocene complex represented by formula (I) and an organic boron salt;
  • Ln is one of fourteen elements of lanthanum (Sc), yttrium (Y) and an atomic number of 57-71;
  • Ri, R 2 , R 3 , R 4 and R 5 are each independently selected from H, C1 to C20 alkyl, acetal-containing C1 to C20 alkyl, ketal-containing C1 to C20 alkyl, and a C1 to C20 alkyl group of an ether group, a C1 to C20 alkenyl group, an acetal-containing C1-C20 alkenyl group, a ketal-containing C1 to C20 alkenyl group, an ether group-containing C1 to C20 alkenyl group, and an ether group;
  • E is 0, S or N-R; the R is a fluorenyl group, a benzene ring or a substituted benzene ring;
  • Each of X 2 and X 2 is independently selected from the group consisting of hydrogen, an aliphatic group of C1 to C20, an alicyclic group of C1 to C20, a phenyl group, a substituted phenyl group, an alkoxy group of C1 to C20, and an alkylamine of C1 to C20.
  • the substituted phenyl group is an aliphatic group of C1 to C20; a phenyl group substituted with one or more of an alicyclic group of C1 to C20 and an aromatic group;
  • L is a neutral Lewis base
  • w is an integer of 0 to 3.
  • an aluminum alkyl is also included.
  • the invention also provides a preparation method of a polymer, comprising:
  • the catalyst composition is mixed with an olefin monomer to carry out a polymerization reaction to obtain a polymer.
  • the olefin monomer is selected from one or more of styrene, substituted styrene, ethylene, an ⁇ -olefin, a cyclic olefin and a non-conjugated diene.
  • the present invention provides a metallocene complex, a process for preparing the same, and a catalyst composition comprising the metallocene complex represented by formula (I) and an organic boron salt.
  • the metallocene complex represented by the catalyst (I) of the present invention does not contain a side chain, and the coordination space of the central metal is large, so the catalytic activity for the large hindered monomer is high.
  • the insertion rate is also high; and the metallocene complex represented by the formula (I) used in the present invention is a heterocyclic fused cyclopentadienyl ligand, and the heterocyclic ring has a strong electron donating ability, and is used for The fused cyclopentanyl group can change the electronic effect of the metal center, thereby increasing the activity of the catalyst. Therefore, the metallocene complex represented by the formula (I) can be used to prepare high activity. High insertion rate copolymer of ethylene and other olefins, and also high-synthesis, high activity catalyzed polymerization of styrene and substituted styrene.
  • Example 1 is a nuclear magnetic resonance spectrum of a metallocene decane complex (1-2) obtained in Example 2 of the present invention
  • Figure 2 is a nuclear magnetic resonance spectrum of the metallocene decane complex (1-3) obtained in Example 3 of the present invention
  • Figure 3 is a nuclear magnetic resonance spectrum of the styrene-ethylene polymer obtained in Example 28 of the present invention
  • Figure 4 is a nuclear magnetic resonance spectrum of the ethylene-DCPD polymer obtained in Example 34 of the present invention
  • the present invention provides a metallocene complex as shown in formula (I):
  • Ln is one of fourteen elements of lanthanum (Sc), yttrium (Y) and an atomic number of 57-71;
  • Ri, R 2 , R 3 , R 4 and R 5 are each independently selected from H, C1 to C20 alkyl, acetal-containing C1 to C20 alkyl, ketal-containing C1 to C20 alkyl, and a C1 to C20 alkyl group of an ether group, a C1 to C20 alkenyl group, an acetal-containing C1-C20 alkenyl group, a ketal-containing C1 to C20 alkenyl group, an ether group-containing C1 to C20 alkenyl group, and an ether group;
  • R 2 is bonded to each other to form a ring, or R 2 and R 3 are bonded to each other to form a ring, or R 5 is bonded to each other to form a ring;
  • E is 0, S or N-R; the R is a fluorenyl group, a benzene ring or a substituted benzene ring;
  • Each of X 2 and X 2 is independently selected from the group consisting of hydrogen, an aliphatic group of C1 to C20, an alicyclic group of C1 to C20, a phenyl group, a substituted phenyl group, an alkoxy group of C1 to C20, and an alkylamine of C1 to C20.
  • the substituted phenyl group is an aliphatic group of C1 to C20; a phenyl group substituted with one or more of an alicyclic group of C1 to C20 and an aromatic group;
  • L is a neutral Lewis base
  • w is an integer of 0 to 3.
  • Ln is one of fourteen elements of lanthanum (Sc), yttrium (Y) and an atomic number of 57-71, preferably from Sc, Y, La, Ce, Pr, Nd, Pm , Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu, more preferably Sc, Y, Lu, Dy, Er or Gd.
  • Sc lanthanum
  • Y yttrium
  • R 2 , R 3 , R 4 and R 5 are each independently selected from the group consisting of H, C1 to C20 alkyl groups, and acetal-containing
  • silane groups preferably an alkyl group of H, C1 to C10, a C1 to C10 alkyl group containing an acetal, a C1 to C10 alkyl group containing a ketal, and a C1 to C10 alkyl group having an ether group.
  • R 1 and R 2 are bonded to each other to form a ring, preferably to form a five-membered ring or a six-membered ring; or R 2 and R 3 are bonded to each other to form a ring, preferably to form a five-membered ring or a six-membered ring; or R 4 and R 5 is bonded to each other to form a ring, preferably to form a five-membered ring or a six-membered ring; when the substituent may form a ring, the metallocene ⁇ 4 represented by the formula (I) is as shown:
  • E is 0, S or N-R; and R is a fluorenyl group, a phenyl group or a substituted phenyl group, preferably a fluorenyl group or a phenyl group.
  • Each of X 2 and X 2 is independently selected from the group consisting of hydrogen, an aliphatic group of C1 to C20, an alicyclic group of C1 to C20, a phenyl group, a substituted phenyl group, an alkoxy group of C1 to C20, and an alkylamine of C1 to C20.
  • the substituted phenyl group is an aliphatic group of C1 to C20; a phenyl group substituted with one or more of an alicyclic group of C1 to C20 and an aromatic group.
  • the aliphatic group of C1 to C20 is preferably an aliphatic group of C1 to C10, more preferably one of a mercapto group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a sec-butyl group;
  • the alicyclic group of C1 to C20 is preferably a C1 to C10 alicyclic group, more preferably a C3 to C6 alicyclic group; and the C1 to C20 alkoxy group is preferably C1 to C10.
  • the alkoxy group is more preferably a C1 to C5 alkoxy group, and still more preferably one of a decyloxy group, an ethoxy group, an isopropoxy group, a n-propoxy group and a n-butoxy group;
  • the alkylamino group of C20 is preferably a C1 to C10 alkylamino group, more preferably one of a dinonylamino group, a diethylamino group and a dipropylamino group; and the C1 to C20 arylamine group is preferably a C1 to C10 group.
  • the arylamine group is more preferably an anthracene, fluorenyl-diaminophenyl group;
  • the silane group of C1 to C20 is preferably a C1 to C10 silane group, more preferably a tris-silyl fluorenyl group or a bis-trisyl fluorenyl group.
  • the substituted phenyl group is preferably o-nonylphenyl or o-diphosphinylphenyl; the halogen is one of fluorine, chlorine, bromine and iodine, and is not particularly limited.
  • the allyl derivative is preferably -C 3 H n R 6 ; the n is 3 or 4; the C1 to C20 aliphatic group, the C1 to C20 alicyclic group, the phenyl group or a substituted phenyl group; the substituted phenyl group being a C1 to C20 aliphatic group, a C1 to C20 alicyclic group, and one or more substituted phenyl groups in the aromatic group.
  • the aliphatic group of C1 to C20 in the R 6 and the alicyclic group of C1 to C20 The group has the same range as the above-mentioned C1 to C20 aliphatic group and C1 to C20 alicyclic group in X 2 , and details are not described herein again.
  • each independently of X 2 is preferably a silicon amino group (N(SiMe 3 ) 2 ), a dinonylamino group, a diethylamino group, a dipropylamino group, an anthracene, a fluorenyl-diphenylaminophenyl group, a triterpene silicon.
  • n-butoxy group and allyl group is more preferably a trimethylsilyl fluorenyl group or an allyl group.
  • the oxime 2 may be the same group or different, and is not particularly limited.
  • L is a neutral Lewis base
  • w is an integer of 0 to 3.
  • the neutral Lewis base is not particularly limited as long as it is a neutral Lewis base well known to those skilled in the art, and is preferably tetrahydrofuran, diethyl ether or anthracene in the present invention.
  • the metallocene complex represented by the formula (I) is preferably a compound having the following structure:
  • the metallocene complex represented by the formula (I) does not contain a side chain, and the coordination space of the central metal is large, so that the catalytic activity for the macro-blocking monomer is high, and the insertion ratio is also high; and the present invention is used.
  • the metallocene complex represented by the formula (I) is a heterocyclic fused cyclopentaphthyl ligand, and the heterocyclic ring has a strong electron donating ability, and is used to condense the cyclopentanyl group, and the metal center can be changed.
  • the metallocene complex represented by the formula (I) can be used to prepare a copolymer of ethylene and other olefins having high activity and high insertion rate, and also has high syndiotacticity and high activity. Polymerization of styrene and substituted styrene.
  • the present invention provides a method for producing a metallocene complex represented by the above formula (I), which comprises: when the metallocene complexes X and X 2 represented by the formula (I) are each independently a C1 to C20 alkoxy group,
  • the metallocene complex represented by the formula (I) is prepared according to the following steps: under the inert gas protection, the cyclopentadienyl ligand represented by the formula ( ⁇ ) and the rare earth compound are in the first organic solvent.
  • the anti-complex is carried out.
  • Ln is one of fourteen elements of lanthanum (Sc), y (Y) and an atomic number of 57-71;
  • Ri, R 2 , R 3 , R 4 and R 5 are each independently selected from H, C1 to C20 alkyl, acetal-containing C1 to C20 alkyl, ketal-containing C1 to C20 alkyl, and a C1 to C20 alkyl group of an ether group, a C1 to C20 alkenyl group, an acetal-containing C1-C20 alkenyl group, a ketal-containing C1 to C20 alkenyl group, an ether group-containing C1 to C20 alkenyl group, and an ether group;
  • E is 0, S or N-R; the R is a fluorenyl group, a benzene ring or a substituted benzene ring;
  • X 2 are independently selected from the group consisting of silane groups, allyl groups and allyl derivatives of C1 to C20 a substituted phenyl group is an aliphatic group of C1 to C20, an alicyclic group of C1 to C20, and a phenyl group substituted with one or more of the aromatic groups;
  • L is a neutral Lewis base
  • w is an integer of 0 to 3.
  • Ln, R 2 , R 3 , R 4 , R 5 , E , X 2 and L are the same as described above, and are not described herein again.
  • the present invention is not limited to the source of all raw materials and is commercially available.
  • the cyclopentanyl ligand represented by the formula (II) may be commercially available or may be produced according to an existing method without particular limitation.
  • cyclopentadienyl ligand represented by the formula (II) is a thiophene.
  • fused cyclopentadienyl ligand it can be prepared according to the following scheme:
  • cyclopentaphthyl ligand represented by the formula (II) is a pyrrole-fused cyclopentadienyl ligand, it is preferably prepared according to the following scheme:
  • the inert gas may be an inert gas well known to those skilled in the art, and is not particularly limited. In the present invention, nitrogen or argon is preferred.
  • the cyclopentanyl ligand represented by the formula (II) is reacted with a rare earth compound in a first organic solvent under inert gas protection, the first organic organic solvent being organically known to those skilled in the art
  • the solvent is not particularly limited, and is preferably n-hexane in the present invention;
  • the molar ratio of the cyclopentaphthyl ligand to the rare earth compound represented by the formula (II) is preferably 1: (1 to 1.2), More preferably, it is preferably 1:1;
  • the reaction time of the cyclopentanyl ligand represented by the formula (II) and the rare earth compound in the first organic solvent is preferably 6 to 15 h, more preferably 6 to 14 h, still more preferably 6 ⁇ 12h.
  • reaction solution is preferably concentrated, and after recrystallization, a metallocene complex represented by the formula (I) is obtained.
  • the metallocene complex represented by the formula (I) is prepared according to the following procedure: Under the protective conditions, the cyclopentanyl ligand represented by the formula ( ⁇ ) is first reacted with the alkyl lithium in the second organic solvent, and then the rare earth halide is added for the second reaction, and then the olefin is added. The propyl format reagent and/or the allyl derivative format reagent is subjected to a third reaction to obtain a metallocene complex represented by the formula (I) in which Xi and X 2 are each independently an allyl or allyl derivative. .
  • the inert gas is an inert gas well known to those skilled in the art, preferably nitrogen.
  • the first reaction of the cyclopentanyl ligand represented by the formula (II) with the alkyllithium in the second organic solvent under an inert gas protection, the molar ratio of the two is preferably 1: (1) ⁇ 1.2), more preferably 1:1;
  • the alkyl lithium is not limited to the alkyl lithium well known to those skilled in the art, and is preferably n-butyllithium in the present invention;
  • the solvent is not particularly limited as long as it is an organic solvent well known to those skilled in the art.
  • tetrahydrofuran is preferred; according to the present invention, it is preferred to first formula (II)
  • the cyclopentanyl ligand shown is dissolved in a second organic solvent and placed in an environment of -78 ° C to 0 ° C, followed by the addition of an alkyl lithium for the first reaction.
  • an alkyl lithium for the first reaction.
  • the organic solvent for dissolving the alkyllithium may be the same as or different from the second organic solvent, and is not particularly limited.
  • n-hexane is preferred; the alkyllithium is dissolved in an organic solvent, and the amount of the organic solvent is preferably an alkane.
  • the concentration of lithium is 1.0 to 2.0 mol/L.
  • the first reaction is carried out after the addition of the alkyllithium, and the temperature of the first reaction is preferably -78 ° C to 0 ° C, more preferably -50 ° C to 0 ° C, and even more preferably -10 to 0;
  • the time of the first reaction is preferably from 0.8 to 1.5 h, more preferably from 0.8 to 1.2 h, still more preferably 1 h.
  • the rare earth halide is a rare earth compound known to those skilled in the art, and is not particularly limited.
  • a rare earth trichloride is preferred; the rare earth!
  • the molar ratio of the compound to the cyclopentanyl ligand represented by the formula (II) is preferably (1 to 1.2): 1 , more preferably 1:1; and the time for carrying out the second reaction after adding the rare earth halide is preferred. It is 3 to 5 g, more preferably 3.5 to 4.5 h, and still more preferably 4 h.
  • an allyl format reagent and/or an allyl derivative format reagent is added, and the allyl format reagent is preferably C 3 3 ⁇ 4MgCl; the allyl derivative format reagent is preferably C 3 H n R 6 MgCl, the n is 3 or 4; the R 6 is the same as described above, and is not described herein again; the allyl format reagent and/or the allyl derivative format reagent and the formula (II)
  • the molar ratio of the cyclopentadienyl ligand shown is preferably (2 to 2.4): 1, more preferably 2:1.
  • the third reaction is carried out after adding the allyl format reagent and/or the allyl derivative format reagent, and the third reaction is preferably carried out at room temperature, and the reaction time is preferably 10 to 14 h, more preferably 11 to 1. 13 h, and more preferably 12 h.
  • the solvent is preferably removed, extracted with toluene, and concentrated to obtain a metallocene complex represented by the formula (I) which is independently an allyl or allyl derivative.
  • the present invention also provides a catalyst composition comprising the metallocene complex represented by formula (I) and an organic boron salt;
  • the organoboron salt is an activator which is an ionic compound.
  • the cationic portion of the ionic compound is preferably one or more of a carbocation, an oxonium ion, an ammonia cation, and a phosphine cation.
  • the carbocation is preferably a (triphenyl) carbocation and/or a tri(substituted phenyl) carbocation;
  • the tris(substituted phenyl) carbocation is preferably tris(nonylphenyl) One or more of a carbocation, a tris(dinonylphenyl) carbocation and a tris(tridecylphenyl) carbocation;
  • the amino cation is preferably a tridecylamino cation, a triethylammonium cation, One or more of a tripropylammonium cation and a tributylammonium cation;
  • the phosphine cation is
  • the anion portion of the ionic compound is a tetravalent boron anion, and the tetravalent boron anion is not particularly limited as long as it is a tetravalent boron anion known to those skilled in the art, and tetra(phenyl)boron is preferred in the present invention.
  • the ionic compound in the present invention may be a combination of any of the above anions and cations, preferably [Ph 3 C][B(C 6 F 5 ) 4 ], [PhMe 2 NH][B(C 6 F 5 4 ], or a neutral compound B(C 6 F 5 ) 3 containing boron, more preferably [Ph 3 C][B(C 6 F 5 ) 4 ].
  • the molar ratio of the organic boron salt to the metallocene complex represented by the formula (I) is preferably (0.5 to 10): 1 , more preferably (1 to 5): 1 , still more preferably For (1 ⁇ 3): 1.
  • the catalyst composition preferably further comprises an aluminum alkyl.
  • the aluminum alkyl is preferably tridecyl aluminum, triethyl aluminum, tri-n-propyl aluminum, tri-n-butyl aluminum, triisopropyl aluminum, triisobutyl aluminum, triamyl aluminum, trihexyl aluminum, Tricyclohexyl aluminum, trioctyl aluminum, triphenyl aluminum, tris-p-phenylphenyl aluminum, tribenzyl aluminum, ethyl dibenzyl aluminum, ethyl di-p-phenyl phenyl aluminum and diethyl benzyl aluminum One or several.
  • the molar ratio of the alkyl aluminum compound to the metallocene complex represented by the formula (I) in the catalyst composition is preferably (2 to 200): 1 , more preferably (2 to 100): 1 , still more preferably (5 to 50). ): 1.
  • the catalyst composition of the present invention can be used to catalyze the copolymerization of one or more of styrene, substituted styrene, ethylene, an ⁇ -olefin, a cyclic olefin, and a non-conjugated diene.
  • the ⁇ -olefin monomer is preferably a C2 to C20 ⁇ -olefin, more preferably 1-hexyl or 1-octene; and the cyclic olefin is preferably a C5 to C20 cyclic olefin, more preferably C5 ⁇
  • the non-conjugated diene is preferably a C4 to C20 diene or a substitution
  • the diene is more preferably a C4 to C10 diene or a substituted diene, and further preferably 1,3-hexadiene, 1,4-hexadiene, 1,5-hexadiene, 2,4-di Mercapto-1,3-pentadiene, 2-mercapto-1,3-hexad
  • the metallocene complex represented by the formula (I) does not contain a side chain, and the coordination space of the central metal is large, so that the catalytic activity for the large hindered monomer is high, and the insertion rate is also high.
  • the metallocene complex represented by the formula (I) used in the present invention is a heterocyclic fused cyclopentadienyl ligand, and the heterocyclic ring has a strong electron donating ability, and is used to condense the cyclopentane. a second base, which can change the electronic effect of the metal center, thereby increasing the activity of the catalyst.
  • a metallocene complex represented by the formula (I) can be used to prepare a copolymer of ethylene and other olefins having high activity and high insertion rate, and It is also possible to prepare styrene and substituted styrene with high syndiotacticity and high activity.
  • the present invention also provides a process for producing a polymer obtained by mixing the above catalyst composition with an olefin monomer to carry out a polymerization reaction to obtain a polymer.
  • the olefin monomer is selected from one or more of styrene, substituted styrene, ethylene, an ⁇ -olefin, a cyclic olefin and a non-conjugated diene.
  • the substituted styrene, a-olefin, cyclic olefin and non-conjugated diene are the same as described above and will not be described herein.
  • the catalyst composition is mixed with an olefin monomer, preferably after the catalyst composition is mixed, and the activation reaction is carried out for 0.5 to 10 minutes, more preferably 1 to 5 minutes, further preferably 1 minute, and then mixed with the olefin monomer to carry out polymerization.
  • the conditions of the polymerization reaction are not particularly limited, and the temperature of the polymerization reaction in the present invention is preferably from 20 ° C to 60 ° C, more preferably from 25 ° C to 40 ° C.
  • the polymerization reaction time is preferably from 5 to 100 min, more preferably from 5 to 60 min.
  • the reaction is preferably terminated with an ethanolic hydrochloric acid solution.
  • the volume ratio of hydrochloric acid to ethanol in the hydrochloric acid ethanol solution is preferably 1: (5 to 15), more preferably 1: (8-12), still more preferably 1:10.
  • the reaction solution is preferably poured into ethanol and precipitated, and filtered to obtain a polymer.
  • the catalyst composition of the present invention exhibits high activity and high comonomer insertion rate in catalyzing the copolymerization of ethylene with styrene, ⁇ -olefin, cyclic olefin, and non-conjugated diene.
  • the metallocene decane alkyl complex (1-1) obtained in Example 1 was analyzed by elemental analysis to obtain an elemental analysis (%). The result was: C 58.52; H8.85.
  • the methoxyalkylene complex (1-2) obtained in Example 2 was analyzed by nuclear magnetic resonance to obtain a nuclear magnetic resonance spectrum, as shown in Fig. 1.
  • the NMR results are:
  • Example 2 The metallocene decane complex (1-2) obtained in Example 2 was analyzed by elemental analysis to obtain an elemental analysis (%). The result was: C 59.96; H 9.68.
  • the methoxyalkyl group complex (1-3) obtained in Example 3 was analyzed by nuclear magnetic resonance to obtain a nuclear magnetic resonance spectrum, as shown in Fig. 2.
  • the NMR results are:
  • Example 3 The metallocene decane complex (1-3) obtained in Example 3 was analyzed by elemental analysis to obtain an elemental analysis (%). The result was: C 59.32; H 9.64.
  • Metallocene Complex 1-4 ⁇ [-9, except that the ligand and the rare earth compound were replaced accordingly, the other conditions and procedures were the same as in Example 1. Metallocene complexes 1-4 ⁇ 1-9 preparation materials and results are shown in Table 1.
  • the thiophene was used. Partitioned fused cyclopentanyl ligand 4 (0.23 g, 1.00 mmol) with trialkyl 4 ethane complex Y(CH 2 SiMe 3 ) 3 (thf) 2 and trialkyl ruthenium complex Dy (CH, respectively) 2 SiMe 3 ) 3 (thf) 2 is reacted to obtain metallocene complexes 1-11 and 1-12.
  • the metallocene complex 1-11 has a molecular formula of C 27 H 43 OSYSi 2 with a yield of 69%; the metallocene complex 1-12 has a molecular formula of C 27 H 43 OSD y Si 2 with a yield of 72%.
  • Example 6 The metallocene complex 1-11 obtained in Example 6 was analyzed by elemental analysis to obtain the elemental analysis (%). The result was: C 57.49; H 8.09.
  • Example 6 The metallocene complexes 1-12 obtained in Example 6 were analyzed by elemental analysis to obtain an elemental analysis (%). The results were as follows: C 51.36; H 7.14.
  • a pyrrole fused cyclopentyl ligand 5 (0.30 g, 2.04 mmol) was separately combined with a trialkyl 4 ethyl complex Y(CH 2 SiMe 3 ) 3 (thf) 2 and The trialkyl chelating complex Gd(CH 2 SiMe 3 ) 3 (thf) 2 is reacted to obtain metallocene complexes 1-14 and 1-15.
  • the metallocene complex 1-14 has a molecular formula of C 22 H 42 NOYSi 2 in a yield of 64%; the metallocene complex 1-15 has a molecular formula of C 22 H 42 NOGdSi 2 and a yield of 62%.
  • Example 8 The metallocene complexes 1-14 obtained in Example 8 were analyzed by elemental analysis to obtain the elemental analysis (%). The results were as follows: C 54.78; H8.43; N2.68.
  • Example 8 The metallocene complexes 1-15 obtained in Example 8 were analyzed by elemental analysis to obtain the elemental analysis (%). The results were as follows: C 48.36; H7.43; N2.69.
  • Example 9 The elemental analysis (%) obtained in Example 9 was analyzed by elemental analysis to give an elemental analysis (%): C 64.68; H8.75; N3.12.
  • a pyrrole fused cyclopentanyl ligand 6 (0.30 g, 1.43 mmol) was separately combined with a trialkyl ruthenium complex Y(CH 2 SiMe 3 ) 3 (thf) 2 and three Alkyl ruthenium complex
  • the reaction of Lu(CH 2 SiMe 3 ) 3 (thf) 2 gives the metallocene complex I-17 and the metallocene complex 1-18.
  • the metallocene complex 1-17 has a molecular formula of C 27 H 4 4NOYSi 2 in a yield of 66%; the metallocene complex 1-18 has a molecular formula of C 27 H 4 4NOLuSi 2 in a yield of 62%.
  • Example 10 The metallocene complexes 1-17 obtained in Example 10 were analyzed by elemental analysis to obtain the elemental analysis (%). The results were as follows: C 59.78; H 8.43; N 2.68.
  • Example 8 The metallocene complexes 1-18 obtained in Example 8 were analyzed by elemental analysis to obtain the elemental analysis (%). The results were as follows: C 51.69; H 7.43; N 2.59.
  • Example 11 The metallocene complexes 1-19 obtained in Example 11 were analyzed by elemental analysis to obtain the elemental analysis (%). The results were as follows: C 68.22; H 7.66.
  • the thiophene was used.
  • the fused cyclopentadienyl ligand 2 (0.23 g, 1.2 mmol) is reacted with ruthenium trichloride YC1 3 and ruthenium GdCl 3 respectively to obtain metallocene complex 1-20 and metallocene complex 1 -twenty one.
  • the metallocene complex 1-20 has a molecular formula of C 18 H 25 SY in a yield of 65%; the metallocene complex 1-21 has a molecular formula of C 18 H 25 SGd in a yield of 68%.
  • Example 12 The metallocene complexes 1-20 obtained in Example 12 were analyzed by elemental analysis to obtain the elemental analysis (%). The result was: C 59.78; H 6.61.
  • Example 12 The metallocene complex 1-21 obtained in Example 12 was analyzed by elemental analysis to obtain an elemental analysis (%). The result was: C 49.83; H 6.04.
  • Example 13 The metallocene complex 1-21 obtained in Example 12 was analyzed by elemental analysis to obtain an elemental analysis (%). The result was: C 49.83; H 6.04.
  • Example 13 The metallocene complex 1-22 obtained in Example 13 was analyzed by elemental analysis, and the obtained elemental analysis (%) was obtained as follows: C 75.44; H 7.54; N 3.79.
  • a pyrrole fused cyclopentyl ligand 6 (0.30 g, 1.43 mmol) was separately reacted with ruthenium trichloride YC1 3 and ruthenium trichloride LuCl 3 to obtain a metallocene complex.
  • 23 Complex with metallocene 24 The metallocene complex 23 has a molecular formula of C 21 H 24 NY in a yield of 68%; the metallocene complex 24 has a molecular formula of C 21 H 24 NLu in a yield of 72%.
  • Example 14 The metallocene complexes 1-23 obtained in Example 14 were analyzed by elemental analysis to obtain the elemental analysis (%). The results were as follows: C 66.26; H 6.64; N 4.02.
  • the metallocene complex 1-24 obtained in Example 14 was analyzed by elemental analysis, and the elemental analysis (%) was obtained as follows: C 43.86; H 5.57; N 3.37.
  • the polymerization bottle is placed in a constant temperature water bath at 25 °C, stirred for 5 min, and then added with 2 ml of hydrochloric acid in ethanol (v/v, 1 : 10). Stop the polymerization.
  • the reaction solution was poured into 100 ml of ethanol to precipitate to obtain a white polystyrene solid, and the polystyrene white solid was dried in a vacuum oven for 48 h to obtain a dry polystyrene white solid powder with a net weight of 1.04 g.
  • the conversion rate is 100%.
  • Example 15 The polystyrene obtained in Example 15 was analyzed by high temperature GPC to obtain a number average molecular weight (M n ) of 127,000 and a molecular weight distribution (M w /M n ) of 1.42.
  • Example 15 The polystyrene obtained in Example 15 was analyzed by nuclear magnetic resonance to obtain a polystyrene (rrrr) of 99%.
  • Example 15 The polystyrene obtained in Example 15 was analyzed by differential scanning calorimetry (DSC) to obtain a melting point T m of two 262 ° C and 271 ° C.
  • Polystyrene was prepared according to the method of Example 15 except that the amount of styrene was changed to 5 mmolo.
  • Polystyrene was prepared according to the method of Example 15 except that the amount of styrene was changed to 15 mmolo.
  • Polystyrene was prepared according to the method of Example 15 except that the amount of styrene was changed to 20 mmolo.
  • Polystyrene was prepared in the same manner as in Example 15 except that the metallocene complex 1-1 obtained in Example 1 was replaced with the metallocene complex 1-2 obtained in Example 2.
  • Polystyrene was prepared in the same manner as in Example 15 except that the metallocene complex 1-1 obtained in Example 1 was replaced with the metallocene complex 1-3 obtained in Example 3.
  • Polystyrene was prepared according to the method of Example 15 except that: the metallocene complex 1-1 obtained in Example 1 was replaced with the metallocene complex 1-4 obtained in Example 4, and the polymerization time was simultaneously Change to 30 min.
  • Example 22 Polystyrene was prepared according to the method of Example 15 except that the metallocene complex 1-1 obtained in Example 1 was replaced with the metallocene complex 1-5 obtained in Example 4, and the polymerization time was Change to 30 min.
  • the polystyrene was prepared in the same manner as in Example 15 except that the metallocene complex 1-1 obtained in Example 1 was replaced with the metallocene complex 1-6 obtained in Example 4 while the polymerization reaction time was obtained. Change to 30 min.
  • Polystyrene was prepared according to the method of Example 15 except that the metallocene complex 1-1 obtained in Example 1 was replaced with the metallocene complex 1-8 obtained in Example 4, and the polymerization time was simultaneously Change to 60 min.
  • the polymerization bottle is placed in a constant temperature water bath at 25 ° C, reacted for 10 min with stirring, and then 2 ml of an aqueous solution of hydrochloric acid (v/v, 1 : 10 ) is added to terminate the polymerization.
  • the reaction solution was poured into 100 ml of ethanol to obtain a white solid polystyrene, which was dried in a vacuum oven at 40 ° C for 48 h to obtain a dry polystyrene white solid powder with a net weight of 1.04 g and a conversion rate of 100%. .
  • Example 25 The polystyrene obtained in Example 25 was analyzed by high temperature GPC to obtain a number average molecular weight (M n ) of 116,000 and a molecular weight distribution (M w /M n ) of 1.46.
  • Example 25 The polystyrene obtained in Example 25 was analyzed by nuclear magnetic resonance to obtain a polystyrene (rrrr) of 99%.
  • Polystyrene obtained in Example 25 were analyzed by differential scanning calorimetry (DSC), the melting point thereof to obtain D "1 is 271 ° C.
  • Example 26 Polystyrene was prepared according to the method of Example 25 except that the metallocene complex 1-10 obtained in Example 25 was replaced with the metallocene complex 1-20 obtained in Example 12, while the polymerization reaction time was obtained. Change to 60 min.
  • Polystyrene was prepared according to the method of Example 25 except that the metallocene complex 1-10 obtained in Example 25 was replaced with the metallocene complex 1-24 obtained in Example 14, while the polymerization time was Change to 60 min.
  • the polystyrene obtained in Examples 15 to 27 was analyzed by high temperature GPC, nuclear magnetic, differential scanning calorimetry (DSC), and the results are shown in Table 2.
  • the dried polymer was measured for tacticity of styrene using nuclear magnetic resonance carbon.
  • Example 15 1-1 1000 5 100 99 12.7 1.42 262/271
  • Example 16 1-1 500 5 100 99 6.5 1.68 271
  • Example 17 1-1 1500 5 100 99 16.8 1.55 271
  • Example 18 1-1 2000 5 100 99 26.9 1.32 271
  • Example 19 1-2 1000 5 100 99 10.8 1.64 265/272
  • Example 20 1-3 1000 5 100 99 9.7 1.72 272
  • Example 21 1-4 1000 30 91 99 9.6 1.53 270
  • Example 22 1- 5 1 0 0 0 0 0 0 0 0 0 1-20 1000 60 87 98 10.4 1.61 268
  • Example 27 1-24 60 42 98 13.8 1.75 270
  • Example 28 In a glove box, add 30 ml of toluene to a 100 ml two-necked flask and mix with 1.04 g (10 mmol) of styrene, then remove the flask from the glove box and connect to the Schlenk tube, and maintain the temperature of the flask
  • the polymerization was terminated by adding 2 ml of an aqueous solution of hydrochloric acid (v/v, 1:10), and then the polymerization was carried out.
  • the reaction solution was poured into 300 ml of ethanol, filtered, and dried under vacuum at 40 ° C for 24 h to obtain a styrene-ethylene polymer net weight of 0.45 g.
  • Example 28 The styrene-ethylene polymer obtained in Example 28 was analyzed by nuclear magnetic resonance to obtain a nuclear magnetic resonance spectrum thereof as shown in Fig. 3.
  • a styrene-ethylene polymer was prepared according to the method of Example 28 except that the amount of styrene was changed to 20 mmoL.
  • a styrene-ethylene polymer was prepared according to the method of Example 28 except that the amount of styrene was changed to 30 mmoL.
  • a styrene-ethylene polymer was prepared according to the procedure of Example 28 except that the metallocene complex 1-2 was replaced with the metallocene complex 1-10 obtained in Example 5.
  • a styrene-ethylene polymer was prepared in accordance with the procedure of Example 28 except that the metallocene complex 1-2 was replaced with the metallocene complex 1-13 obtained in Example 7.
  • a styrene-ethylene polymer was prepared according to the procedure of Example 28 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-16 obtained in Example 9.
  • Example 28 1-2 10 0.45 0.54 61 8.93 1.35 213
  • Example 29 1-2 20 1.25 1.50 82 13.42 1.68 238
  • Example 30 1-2 30 0.63 0.76 93 12.87 1.57 245/265
  • Example 31 1-10 10 0.62 1.04 64 10.32 1.78 216
  • Example 32 1-13 10 0.54 0.65 59 9.12 1.54 208
  • Example 33 1-16 10 0.36 0.43 60 8.61 1.61 210
  • Example 34 Example 34
  • the temperature of the flask was maintained at 40 ° C and charged with 1.0 atm of ethylene to achieve saturation in the benzene solution; 9.2 mg ( 10 ⁇ ) [Ph 3 C][B(C 6 F 5 ) 4 4.8 mg ( 10 ⁇ )
  • the metallocene complex 1-2 obtained in Example 2 0.1 ml of Al('Bu) 3 (0.5 mol/L) was mixed with toluene and stirred for 1 min to prepare an activated catalyst.
  • the composition was quickly injected into the flask through a syringe to initiate polymerization.
  • Example 34 The ethylene-DCPD polymer obtained in Example 34 was analyzed by nuclear magnetic resonance to obtain a nuclear magnetic resonance spectrum, as shown in Fig. 4.
  • An ethylene-DCPD copolymer was prepared according to the procedure of Example 34 except that the amount of DCPD was changed to 5.28 g (40 mmol) to give a polymer of 3.01 g.
  • Example 36 An ethylene-DCPD polymer was prepared according to the procedure of Example 35 except that the amount of DCPD was changed to 10.56 g (80 mmol) to give a polymer of 1.57 g.
  • An ethylene-DCPD polymer was prepared according to the method of Example 34 except that the polymerization temperature was 25 ° C and the obtained polymer was 0.62 g.
  • An ethylene-DCPD polymer was prepared according to the method of Example 34 except that the polymerization temperature was 60 ° C and the polymer was found to be 1.19 g.
  • An ethylene-DCPD polymer was prepared according to the method of Example 34 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-6 obtained in Example 4 to obtain a flocculent trace amount of the polymer.
  • An ethylene-DCPD polymer was prepared according to the method of Example 34 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-10 obtained in Example 5 to give a polymer 2.02 g.
  • An ethylene-DCPD polymer was prepared according to the method of Example 34 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-16 obtained in Example 9, to give a polymer 1.62 g.
  • An ethylene-DCPD polymer was prepared according to the method of Example 34 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-19 obtained in Example 1 to give a polymer of 0.89 g.
  • An ethylene-DCPD polymer was prepared according to the method of Example 34 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-22 obtained in Example 13, to give a polymer of 0.64 g.
  • Example 44
  • the temperature was maintained at 40 ° C and 1.0 atm of ethylene was charged thereto to achieve saturation in the benzene solution; 9.2 mg ( 10 ⁇ ) [Ph 3 C][B(C 6 F 5 ) 4 ], 4.8 Mg ( 10 ⁇ )
  • the polymerization reaction was terminated by adding 2 ml of an aqueous solution of hydrochloric acid (v/v, 1:10).
  • the polymerization reaction solution was poured into 300 ml of ethanol, precipitated, filtered, and dried under vacuum at 60 ° C for 24 h to obtain an ethylene-1-octene polymer net weight of 2.06 g.
  • An ethylene-1-octene copolymer was prepared according to the method of Example 44 except that the amount of 1-octene was changed to 40 mmoL.
  • Example 46 An ethylene-1-octene copolymer was prepared according to the method of Example 44 except that the amount of 1-octene was changed to 10 mmol.
  • An ethylene-1-octene copolymer was prepared according to the procedure of Example 44 except that the metallocene compound 1-2 was replaced with the metallocene complexes 1-6 obtained in the Example.
  • An ethylene-1-octene copolymer was prepared according to the method of Example 44 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-10 obtained in Example 5.
  • An ethylene-1-octene copolymer was prepared by the method of Example 44 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-13 obtained in Example 7.
  • An ethylene-1-octene copolymer was prepared by the method of Example 44 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-18 obtained in Example 10.
  • An ethylene-1-octene copolymer was prepared by the method of Example 44 except that the metallocene compound 1-2 was replaced with the metallocene complex 1-21 obtained in Example 12.
  • Ethylene 1-octene copolymer obtained in Example 44 ⁇ 51 embodiment detects the number-average molecular weight M n and molecular weight distribution (M w / M n) were measured by GPC (polystyrene as a reference material) The results are shown in Table 5. The dry polymer was determined by nuclear magnetic resonance carbon spectroscopy for the content of 1-octene (for calculation, see JC Randall, JMS Rev. Macromol. Chem. Phys. C29, 1989, 201).
  • Example 44 1-2 1 20 2.06 2.5 23 2.06 1.9
  • Example 45 1-2 1 40 1.41 1.7 29 1.94 2.1
  • Example 46 1-2 1 10 0.69 0.8 18 2.68 1.5
  • the temperature of the flask was maintained at 40 ° C in an oil bath and charged with 1.0 atm of ethylene to saturate it in a solution of benzene; 36.8 mg ( 40 ⁇ ) [Ph 3 C][B(C 6 F 5 ) 4 ], 18.4 mg ( 40 ⁇ )
  • the metallocene complex 1-3 obtained in Example 3, 0.4 ml Al('Bu) 3 (0.5 mol/L) was mixed with toluene, stirred for 1 min, and prepared to be activated.
  • Catalyst composition the catalyst composition was quickly injected into the flask through a syringe to initiate polymerization, and the polymerization was carried out for 5 min under 1.0 atm ethylene pass, and then 2 ml of hydrochloric acid ethanol solution (v/v, 1 : 10) was added to terminate.
  • the polymerization reaction was carried out, and the polymerization reaction solution was poured into 300 ml of ethanol to precipitate, filtered, and dried under vacuum at 40 ° C for 24 h to obtain a net weight of ethylene-1,3-cyclohexadiene polymer of 1.24 g.
  • An ethylene-1,3-cyclohexadiene polymer was prepared by the method of Example 52 except that the amount of 1,3-cyclohexadiene was changed to 10 mmol.
  • An ethylene-1,3-cyclohexadiene polymer was prepared by the method of Example 52 except that the metallocene complexes 1-3 were replaced with the metallocene complexes 1-10 obtained in Example 5.
  • An ethylene-1,3-cyclohexadiene polymer was prepared by the method of Example 52 except that the metallocene complexes 1-3 were replaced with the metallocene complexes 1-16 obtained in Example 9.
  • An ethylene-1,3-cyclohexadiene polymer was prepared by the method of Example 52 except that the metallocene complexes 1-3 were replaced with the metallocene complexes 1-19 obtained in Example 11.
  • the ethylene-1,3-cyclohexadiene polymer obtained in Examples 52 to 56 was examined, and the number average molecular weight was determined. Both M n and molecular weight distribution (M w /M n ) were determined by GPC (polystyrene used as a reference material), and the results are shown in Table 6. The dry polymer was measured by nuclear magnetic resonance spectroscopy for the content of 1,3-cyclohexadiene (for calculation, see: R. Maromol. Chem. Phys. 2005, 206, 195).
  • the temperature of the flask was maintained at 40 ° C in an oil bath and charged with 1.0 atm of ethylene to saturate it in a solution of benzene; 9.2 mg ( 10 ⁇ ) [Ph 3 C][B(C 6 F 5 ) 4 ], 4.8 mg ( 10 ⁇ )
  • Catalyst composition the catalyst composition was quickly injected into the flask through a syringe to initiate polymerization, and the polymerization was carried out under a 1.0 atm ethylene pass for 5 min, and then 2 ml of a hydrochloric acid ethanol solution (v/v, 1:10) was added to terminate.
  • the polymerization reaction was carried out by pouring the polymerization solution into 300 ml of ethanol, filtering, and drying under vacuum at 40 ° C for 36 h to obtain a net weight of ethylene-DCPD-NB polymer of 2.08 g.
  • Example 57 The ethylene-DCPD-NB polymer obtained in Example 57 was analyzed by nuclear magnetic resonance to obtain a nuclear magnetic resonance spectrum as shown in Fig. 5.
  • An ethylene-DCPD-NB polymer was prepared according to the method of Example 57 except that the amount of NB was changed to 10 mmol, and the net weight of the polymer was 1.86 g.
  • Example 57 ⁇ 58 were obtained in detection, the number average molecular weight M n and molecular weight distribution (M w / M n) were measured by GPC (polystyrene as the reference material) was measured; Glass The temperature and melting point were determined by the DSC method; the results are shown in Table 7. The dried polymer was measured for the content of DCPD and NB by nuclear magnetic resonance spectroscopy (calculation method see: US 2008/0221275 A1).
  • DCPD NB active DCPD contains NB content M n " MM n

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)

Abstract

本发明提供了一种茂金属配合物及其制备方法、催化剂组合物,该催化剂组合物包括式(I)所示的茂金属配合物与有机硼盐。与现有技术相比,本发明所用的催化剂式(I)所示的茂金属配合物不含有侧链,中心金属的配位空间开放度大,因此对大位阻单体的催化活性较高,插入率也较高;并且本发明所用的式(I)所示的茂金属配合物为杂环稠合的环戊二婦基配体,杂环具有较强的供电子能力,用其来稠合环戊二婦基,可改变金属中心的电子效应,进而增加催化剂的活性,因此,利用式(I)所示的茂金属配合物可制备高活性、高插入率的乙烯和其他烯烃的共聚物,且也可高间规、高活性地催化苯乙烯及取代苯乙烯的聚合。

Description

茂金属配合物及其制备方法、 催化剂组合物
本申请要求于 2013 年 10 月 12 日提交中国专利局、 申请号为 201310478190.3、 发明名称为 "茂金属配合物及其制备方法、 催化剂组合物" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明属于催化剂技术领域, 尤其涉及茂金属配合物及其制备方法、催化 剂组合物。
背景技术
茂金属配合物是指中心金属与一个或多个环戊二烯基或其衍生物配位的 化合物, 在各种聚合反应中作为催化剂起着非常重要的作用。 其中, 与一个环 戊二婦基或一个衍生物结合的金属配合物成为单茂金属配合物。由于中心金属 类型的不同, 导致茂金属配合物具有完全不同的特性,如对聚合反应的催化剂 活性, 特别是在成功制备并作为高效的活化试剂有机硼烷 B ( C6F5 ) 3和有机 硼盐 [Ph3C][B(C6F5)4]和 [PhNMe2H][B(C6F5)4]后,单茂稀土金属有机配合物在催 化极性或非极性单体聚合方面(如共轭双烯烃、 苯乙烯、 乙烯和 α-烯烃等)呈 现了优越的聚合活性和选择性。
含有 III族金属或镧系金属的茂配合物已有如下报道: 1999年, 德国科学 家 Okuda 小组报道的单茂钇双烷基配合物 (C5Me4SiMe2R)Y(CH2SiMe3)2(THF) 是一个里程碑的突破 (K c. Hultzsch, T. P. Spaniol and J. Okuda, Angew. Chem .Int. Ed, 1999, 38, 227) , 其首次表现出对烯烃聚合的高活性; 日本的 Hou 研 究 组 采 用 一 类 单 茂 双 烷 基 稀 土 金 属 配 合 物 (C5Me4SiMe3)Sc(CH2SiMe3)2(THF) , 其在有机硼盐 [Ph3C] [B(C6F5)4]的活化下, 可以引发苯乙烯的高间规选择性聚合和乙烯与苯乙烯的高活性、高立体选择性 共聚合(Y.Luo, J.Baldamus and Z. Hou, J. Am. Chem. Soc. , 2004, 126, 13910; US2007/0232758A1) , 近 来 他 们 使 用 相 应 的 苄 烷 基 配 合 物 (C5Me4SiMe3)Sc(CH2C6H4NMe2-o)2/[Ph3C][B(C6F5)4]催化体系成功实现了苯乙 烯与 1,6-庚二烯或 1,5-己二烯的二元共聚、 苯乙烯和乙烯与 1,6-庚二烯或 1 ,5- 己二烯的三元共聚以及环烯烃(DCPD, 降冰片烯)与 1-己烯的共聚(F. Guo, M. Nishiura, H. Koshino and Z. Hou, Macromolecules 2011 , 44, 2400; F. Guo, M. Nishiura, H. Koshino and Z. Hou, Macromolecules 2011 , 44, 6335)。 环烯烃聚合物因其具有优异的耐热性和强度及光学性能, 有望替代 PMMA和 PC应用于光学材料。 石油裂解产物 C5-馏分中大部分是环戊二烯, 其在室温下可自发地发生狄尔斯-阿尔德反应, 转化成 DCPD。 因此, DCPD 与乙烯、 α-烯烃或苯乙烯的共聚反应研究受到广泛的关注。 今年来, 关于乙烯 与 DCPD聚合催化剂, 研究较多的是 Ti、 Zr配合物。 但 DCPD具有两个可反 应的双键, 其中 5、 6位碳双键活性比 2、 3位碳双键活性更高, 当采用 Ti、 Zr聚合催化剂进行 DCPD与乙烯型单体发生共聚反应时 , 易得到交联聚合物 (Naga, N. J. Polym. Sci. , Part A : Polym. Chem. 2005, 43 , 1285-1291)或者共 聚物的分子量和 DCPD的含量都较低。 现在已研究有杂环稠和的五元环 π配 体的过渡金属化合物以及利用该过渡金属化合物的烯烃聚合反应, 具有活性 高、 分子量高等优点, 但其均含有侧链, 而对具有更大开放空间的无侧链的单 茂金属配合物的研究未见报道。
发明内容
有鉴于此, 本发明要解决的技术问题在于提供茂金属配合物及其制备方 法、 催化剂组合物, 该茂金属配合物不含侧链。
本发明提供了一种茂金属配合物, 如式(I )所示:
Figure imgf000004_0001
( I );
其中, Ln为钪 (Sc)、 钇 (Y)与原子序数为 57-71 的镧系十四种元素中的一 种;
Ri、 R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
与 X2各自独立地选自氢、 C1〜C20的脂肪族基团、 C1〜C20的脂环族基 团、 苯基、 取代苯基、 C1〜C20的烷氧基、 C1〜C20的烷胺基、 C1〜C20的芳胺 基、 C1〜C20的硅烷基、 烯丙基、 烯丙基衍生物、 硼氢基与卤素中的一种; 所 述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中 的一种或多种取代的苯基;
L为中性路易斯碱, w为 0〜3的整数。
优选的, 所述 C1〜C20的脂肪族基团选自曱基、 乙基、 丙基、 异丙基、 丁 基、 仲丁基与叔丁基中的一种。
优选的, 所述 与 X2各自独立地选自硅氨基、 二曱氨基、 二乙胺基、 二 丙氨基、 Ν,Ν-二曱氨基苯基、 三曱硅基曱基、 双三曱硅基曱基、 邻 -曱巯基苯 基、 邻-二曱膦基苯基、 四氢硼基、 曱氧基、 乙氧基、 异丙氧基、 正丙氧基与 正丁氧基中的一种。
优选的,所述烯丙基衍生物为 -C3HnR6;所述 n为 3或 4;所述 R6为 C1〜C20 的脂肪族基团、 C1〜C20 的脂环族基团、 苯基或取代苯基; 所述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中的一种或多种 取代的苯基。
优选的, 所述 L为四氢呋喃、 乙醚或曱苯。
本发明还提供了一种茂金属配合物的制备方法, 包括:
在惰性气体保护的条件下, 将式(II )所示的环戊二婦基配体与稀土化合 物在第一有机溶剂中进行反应, 得到式(I )所示的茂金属配合物, 此时 与
X2各自独立地为 C1〜C20的硅烷基; 所述稀土化合物为含有基团 与 X2;
或在惰性气体保护的条件下, 将式(II )所示的环戊二婦基配体与烷基锂 在第二有机溶剂中进行第一次反应, 然后加入稀土 [¾化物进行第二次反应, 再 加入烯丙基格式试剂和 /或烯丙基衍生物格式试剂进行第三次反应, 得到 与 X2各 独立地为烯丙基或烯丙基衍生物的式(I )所示的茂金属配合物;
Figure imgf000006_0001
其中, Ln为钪 (Sc)、钇 (Y)与原子序数为 57-71的镧系十四种元素中的一种; Ri、 R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
1与 2各自独立地选自 C1〜C20的硅烷基、 烯丙基与烯丙基衍生物中的 一种;
L为中性路易斯碱, w为 0〜3的整数。
本发明还提供了一种催化剂组合物, 包括式(I ) 所示的茂金属配合物与 有机硼盐;
Figure imgf000006_0002
其中, Ln为钪 (Sc)、 钇 (Y)与原子序数为 57-71 的镧系十四种元素中的一 种;
Ri、 R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
与 X2各自独立地选自氢、 C1〜C20的脂肪族基团、 C1〜C20的脂环族基 团、 苯基、 取代苯基、 C1〜C20的烷氧基、 C1〜C20的烷胺基、 C1〜C20的芳胺 基、 C1〜C20的硅烷基、 烯丙基、 烯丙基衍生物、 硼氢基与卤素中的一种; 所 述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中 的一种或多种取代的苯基;
L为中性路易斯碱, w为 0〜3的整数。
优选的, 还包括烷基铝。
本发明还提供了一种聚合物的制备方法, 包括:
将催化剂组合物与烯烃单体混合, 进行聚合反应, 得到聚合物。
优选的, 所述烯烃单体选自苯乙烯、 取代的苯乙烯、 乙烯、 α-烯烃、 环状 烯烃与非共轭二烯中的一种或几种。
本发明提供了一种茂金属配合物及其制备方法、催化剂组合物, 该催化剂 组合物包括式(I ) 所示的茂金属配合物与有机硼盐。 与现有技术相比, 本发 明所用的催化剂式(I ) 所示的茂金属配合物不含有侧链, 中心金属的配位空 间开放度大, 因此对大位阻单体的催化活性较高, 插入率也较高; 并且本发明 所用的式(I ) 所示的茂金属配合物为杂环稠合的环戊二烯基配体, 杂环具有 较强的供电子能力, 用其来稠合环戊二婦基, 可改变金属中心的电子效应, 进 而增加催化剂的活性, 因此, 利用式(I )所示的茂金属配合物可制备高活性、 高插入率的乙烯和其他烯烃的共聚物,且也可高间规、 高活性地催化苯乙烯及 取代苯乙烯的聚合。
附图说明
图 1 为本发明实施例 2中得到的茂型钪烷基配合物(1-2 ) 的核磁共振氢 谱图;
图 2为本发明实施例 3 中得到的茂型钪烷基配合物(1-3 ) 的核磁共振氢 谱图;
图 3为本发明实施例 28中得到的苯乙烯 -乙烯聚合物的核磁共振氢谱图; 图 4为本发明实施例 34中得到的乙烯 -DCPD聚合物的核磁共振氢谱图; 图 5为本发明实施例 57中得到的乙烯 -NB-DCPD聚合物的核磁共振氢谱 图。
具体实施方式
为了进一步了解本发明, 下面结合实施例对本发明优选实施方案进行描 述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优点, 而不是 对本发明权利要求的限制。
本发明提供了一种茂金属配合物, 如式(I ) 所示:
Figure imgf000008_0001
其中, Ln为钪 (Sc)、 钇 (Y)与原子序数为 57-71 的镧系十四种元素中的一 种;
Ri、 R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
与 X2各自独立地选自氢、 C1〜C20的脂肪族基团、 C1〜C20的脂环族基 团、 苯基、 取代苯基、 C1〜C20的烷氧基、 C1〜C20的烷胺基、 C1〜C20的芳胺 基、 C1〜C20的硅烷基、 烯丙基、 烯丙基衍生物、 硼氢基与卤素中的一种; 所 述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中 的一种或多种取代的苯基;
L为中性路易斯碱, w为 0〜3的整数。
按照本发明, Ln为钪 (Sc)、 钇 (Y)与原子序数为 57-71 的镧系十四种元素 中的一种, 优选为自 Sc、 Y、 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb 或 Lu, 更优选为 Sc、 Y、 Lu、 Dy、 Er或 Gd。
R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的
C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种; 优选为 H、 C1〜C10的烷基、 含有缩醛 的 C1〜C10的烷基、含有缩酮的 C1〜C10的烷基、含有醚基的 C1〜C10的烷基、 C1〜C10的烯基、 含有缩醛的 C1〜C10的烯基、 含有缩酮的 C1〜C10的烯基、 含有醚基的 C1〜C10的烯基、 C6〜C18的芳基、 含有缩醛的 C6〜C28的芳基、 含有缩酮的 C6〜C28的芳基、 含有酸基的 C6〜C28的芳基、 C1〜C10的曱硅烷 基、 含有缩醛的 C1〜C10的曱硅烷基、 含有缩酮的 C1〜C10的曱硅烷基与含有 醚基的 C1〜C10的曱硅烷基中的一种; 更优选为 H、 C1〜C10的烷基、 C1〜C10 的烯基、 曱硅烷基、 苯基、 2,6-二曱基苯基、 2,6-二乙基苯基、 2,6-二异丙基苯 基与 2,6-二叔丁苯基中的一种。 或者 1^与 R2彼此连接成环, 优选为连接成五元环或六元环; 或者 R2与 R3彼此连接成环,优选为连接成五元环或六元环;或者 R4与 R5彼此连接成环, 优选为连接成五元环或六元环; 当取代基可以成环时, 式(I ) 所示的茂金属 〜4所示:
Figure imgf000010_0001
1 2 3 4
E为 0、 S或 N-R; 所述 R为曱基、苯基或取代苯基,优选为曱基或苯基。
与 X2各自独立地选自氢、 C1〜C20的脂肪族基团、 C1〜C20的脂环族基 团、 苯基、 取代苯基、 C1〜C20的烷氧基、 C1〜C20的烷胺基、 C1〜C20的芳胺 基、 C1〜C20的硅烷基、 烯丙基、 烯丙基衍生物、 硼氢基与卤素中的一种; 所 述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中 的一种或多种取代的苯基。
其中, 所述 C1〜C20的脂肪族基团优选为 C1〜C10的脂肪族基团, 更优选 为曱基、 乙基、 丙基、 异丙基、 丁基、 仲丁基中的一种; 所述 C1〜C20的脂环 族基团优选为 C1〜C10的脂环族基团, 更优选为 C3〜C6的脂环族基团; 所述 C1〜C20的烷氧基优选为 C1〜C10的烷氧基, 更优选为 C1〜C5的烷氧基, 再优 选为曱氧基、 乙氧基、异丙氧基、正丙氧基与正丁氧基中的一种; 所述 C1〜C20 的烷胺基优选为 C1〜C10的烷胺基, 更优选为二曱氨基、 二乙胺基与二丙氨基 中的一种; 所述 C1〜C20的芳胺基优选为 C1〜C10的芳胺基, 更优选为 Ν,Ν- 二曱氨基苯基; 所述 C1〜C20的硅烷基优选为 C1〜C10的硅烷基, 更优选为三 曱硅基曱基或双三曱硅基曱基; 所述取代苯基优选为邻 -曱巯基苯基或邻 -二曱 膦基苯基; 所述卤素为氟、 氯、 溴与碘中的一种, 并无特殊的限制。
所述烯丙基衍生物优选为 -C3HnR6; 所述 n为 3或 4; 所述 为 C1〜C20 的脂肪族基团、 C1〜C20 的脂环族基团、 苯基或取代苯基; 所述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中的一种或多种 取代的苯基。 其中, 所述 R6中的 C1〜C20的脂肪族基团、 C1〜C20的脂环族基 团与上所述 与 X2中的 C1〜C20脂肪族基团、 C1〜C20脂环族基团范围相同, 在此不再赘述。
按照本发明所述 与 X2各自独立地优选为硅氨基 (N(SiMe3)2)、二曱氨基、 二乙胺基、 二丙氨基、 Ν,Ν-二曱氨基苯基、 三曱硅基曱基、 双三曱硅基曱基、 邻-曱巯基苯基、 邻-二曱膦基苯基、 四氢硼基、 曱氧基、 乙氧基、 异丙氧基、 正丙氧基、 正丁氧基与烯丙基中的一种, 更优选为三曱硅基曱基或烯丙基。 本 发明中所述 与 Χ2可为相同的基团, 也可不同, 并无特殊的限制。
L为中性路易斯碱, w为 0〜3的整数。 所述中性路易斯碱为本领域技术人 员熟知的中性路易斯碱即可, 并无特殊的限制, 本发明中优选为四氢呋喃、 乙 醚或曱苯。
按照本发明, 所述式(I) 所示的茂金属配合物优选为具有以下结构的配 合物:
Figure imgf000011_0001
(I-a) (I-b) (I-c)
Figure imgf000011_0002
Ln =Sc (配合物 16) Ln = Sc (配合物 19) Ln = Sc (配合物 22) Ln =Y (配合物 17) Ln = Y (配合物 20) Ln = Y (配合物 23) Ln = Lu (配合物 18) Ln = Gd (配合物 21 ) Ln = Lu (配合物 24)
(I-d) (I-e) (I-f) 式(I )所示的茂金属配合物不含有侧链, 中心金属的配位空间开放度大, 因此对大位阻单体的催化活性较高, 插入率也较高; 并且本发明所用的式(I ) 所示的茂金属配合物为杂环稠合的环戊二婦基配体,杂环具有较强的供电子能 力, 用其来稠合环戊二婦基, 可改变金属中心的电子效应, 进而增加催化剂的 活性, 因此, 利用式(I ) 所示的茂金属配合物可制备高活性、 高插入率的乙 烯和其他烯烃的共聚物,且也可高间规、 高活性地催化苯乙烯及取代苯乙烯的 聚合。
本发明提供了上述式(I )所示的茂金属配合物的制备方法, 包括: 当式( I )所示的茂金属配合物 X与 X2各自独立地为 C1〜C20的烷氧基、 时, 式(I ) 所示的茂金属配合物按照以下步骤进行制备: 在惰性气体保护的 条件下, 将式(Π )所示的环戊二烯基配体与稀土化合物在第一有机溶剂中进 行反 配合物。
Figure imgf000012_0001
其中, Ln为钪 (Sc)、 钇 (Y)与原子序数为 57-71 的镧系十四种元素中的一 种;
Ri、 R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
与 X2各自独立地选自 C1〜C20的硅烷基、 烯丙基与烯丙基衍生物中的 一种; 所述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香 族基团中的一种或多种取代的苯基;
L为中性路易斯碱, w为 0〜3的整数。
其中, 所述 Ln、 R2、 R3、 R4、 R5、 E 、 X2与 L均同上所述, 在 此不再贅述。
本发明对所有原料的来源并没有特殊的限制, 为市售即可。 所述式(II ) 所示的环戊二婦基配体可为市售,也可按照现有方法进行制备, 并无特殊的限 制。
如当式(II )所示的环戊二烯基配体为噻。分稠合的环戊二烯基配体时, 可 按照以下流程进行制备:
Figure imgf000013_0001
当式(II )所示的环戊二婦基配体为吡咯稠合的环戊二烯基配体时, 优选 按照以下流程进行制备:
Figure imgf000014_0001
其中, 所述惰性气体为本领域技术人员熟知的惰性气体即可, 并无特殊的 限制, 本发明中优选为氮气或氩气。 在惰性气体保护的条件下, 将式(II)所 示的环戊二婦基配体与稀土化合物在第一有机溶剂中进行反应,所述第一有机 有机溶剂为本领域技术人员熟知的有机溶剂即可, 并无特殊的限制, 本发明中 优选为正己烷; 所述式(II)所示的环戊二婦基配体与稀土化合物的摩尔比优 选为 1: ( 1〜1.2), 更优选为 1: 1; 式(II)所示的环戊二婦基配体与稀土化合 物在第一有机溶剂中进行反应的时间优选为 6〜15h,更优选为 6〜14h,再优选 为 6〜12h。
反应完成之后, 优选将反应液浓缩, 重结晶后, 得到式(I )所示的茂金 属配合物。
当式(I) 所示的茂金属配合物中 与 x2各自独立地为烯丙基或烯丙基 衍生物时, 式(I) 所示的茂金属配合物按照以下步骤制备: 在惰性气体保护 的条件下, 将式(Π)所示的环戊二婦基配体与烷基锂在第二有机溶剂中进行 第一次反应, 然后加入稀土卤化物进行第二次反应,再加入烯丙基格式试剂和 /或烯丙基衍生物格式试剂进行第三次反应, 得到 Xi与 X2各自独立地为烯丙 基或烯丙基衍生物的式(I)所示的茂金属配合物。
其中, 所述惰性气体为本领域技术人员熟知的惰性气体, 优选为氮气。 在 惰性气体保护的条件下, 将式(II)所示的环戊二婦基配体与烷基锂在第二有 机溶剂中进行第一次反应, 两者的摩尔比优选为 1: ( 1〜1.2), 更优选为 1: 1; 所述烷基锂为本领域技术人员熟知的烷基锂即可, 并无特殊的限制, 本发明中 优选为正丁基锂; 所述第二有机溶剂为本领域技术人员熟知的有机溶剂即可, 并无特殊的限制, 本发明中优选为四氢呋喃; 按照本发明, 优选先将式(II) 所示的环戊二婦基配体溶于第二有机溶剂中,并将其置于 -78°C〜0°C的环境中, 然后加入烷基锂进行第一次反应。 为了使反应温度稳定,优选将烷基锂溶于有 机溶剂中, 然后加入至反应体系中。溶解烷基锂的有机溶剂可与第二有机溶剂 相同, 也可不同, 并无特殊的限制, 本发明中优选为正己烷; 将烷基锂溶于有 机溶剂中,有机溶剂的量优选使烷基锂的浓度为 1.0〜2.0 mol/L。加入烷基锂后 进行第一次反应, 所述第一次反应的温度优选为 -78°C〜0°C , 更优选为 -50°C〜0 °C , 再优选为-10 〜0 ; 所述第一次反应的时间优选为 0.8〜1.5 h, 更优选为 0.8-1.2 h, 再优选为 1 h。
第一次反应之后, 加入稀土卤化物进行第二次反应。 其中, 所述稀土卤化 物为本领域技术人员熟知的稀土! ¾化物即可, 并无特殊的限制, 本发明中优选 为稀土三氯化物; 所述稀土! ¾化物与式(II )所示的环戊二婦基配体的摩尔比 优选为 (1〜1.2 ): 1 , 更优选为 1 : 1 ; 加入稀土卤化物后进行第二次反应的时 间优选为 3〜5 g, 更优选为 3.5〜4.5 h, 再优选为 4 h。
第二次反应之后, 加入烯丙基格式试剂和 /或烯丙基衍生物格式试剂, 所 述烯丙基格式试剂优选为 C3¾MgCl; 所述烯丙基衍生物格式试剂优选为 C3HnR6MgCl, 所述 n为 3或 4; 所述 R6同上所述, 在此不再贅述; 所述烯丙 基格式试剂和 /或烯丙基衍生物格式试剂与式(II )所示的环戊二婦基配体的摩 尔比优选为 (2〜2.4 ): 1 , 更优选为 2: 1。
加入烯丙基格式试剂和 /或烯丙基衍生物格式试剂后进行第三次反应, 所 述第三次反应优选在室温下进行,其反应时间优选为 10〜14 h,更优选为 11〜13 h, 再优选为 12 h。
第三次反应之后, 优选除去溶剂, 用曱苯萃取, 浓缩, 得到 与 各自 独立地为烯丙基或烯丙基衍生物的式(I )所示的茂金属配合物。
本发明还提供了一种催化剂组合物, 包括式(I ) 所示的茂金属配合物与 有机硼盐;
按照本发明, 所述有机硼盐为活化剂, 其为离子型化合物。
该离子型化合物的阳离子部分优选为碳阳离子、 氧鐺离子、氨阳离子与膦 阳离子中的一种或几种。 其中所述碳阳离子优选为 (三苯基)碳阳离子和 /或 三 (取代苯基 )碳阳离子; 所述三 (取代苯基 )碳阳离子优选为三 (曱基苯基 ) 碳阳离子、 三(二曱基苯基)碳阳离子与三(三曱基苯基)碳阳离子中的一种 或几种; 所述氨阳离子优选为三曱基氨阳离子、 三乙基氨阳离子、 三丙基氨阳 离子与三丁基氨阳离子中的一种或几种; 所述膦阳离子优选为三苯基膦阳离 子、 三曱基苯基膦阳离子与三(二曱苯基)膦阳离子中的一种或几种。
该离子型化合物的阴离子部分为四价硼阴离子,所述四价硼阴离子为本领 域技术人员熟知的四价硼阴离子即可,并无特殊的限制,本发明中优选为四(苯 基)硼阴离子、 四(单氟苯基)硼阴离子、 四(二氟苯基)硼阴离子、 四(四 氟-曱基-苯基)硼阴离子与四 (五氟苯基)硼阴离子中的一种或几种。
本发明中所述离子型化合物可为上述任一阴离子和阳离子的结合产物,优 选为 [Ph3C][B(C6F5)4], [PhMe2NH][B(C6F5)4],或含有硼的中性化合物 B(C6F5)3, 更优选 [Ph3C][B(C6F5)4]。
本发明催化剂组合物中, 所述有机硼盐与式(I ) 所示的茂金属配合物的 摩尔比优选为 (0.5〜10 ): 1 , 更优选为 (1〜5 ): 1 , 再优选为 (1〜3 ): 1。
按照本发明, 该催化剂组合物优选还包括烷基铝。 所述烷基铝优选为三曱 基铝、 三乙基铝、 三正丙基铝、 三正丁基铝、 三异丙基铝、 三异丁基铝、 三戊 基铝、 三己基铝、 三环己基铝、 三辛基铝、 三苯基铝、 三对曱苯基铝、 三苄基 铝、 乙基二苄基铝、 乙基二对曱苯基铝与二乙基苄基铝中的一种或几种。 催化 剂组合物中烷基铝与式(I )所示的茂金属配合物的摩尔比优选为(2〜200 ): 1 , 更优选为 (2〜100 ): 1 , 再优选为 (5〜50 ): 1。
本发明催化剂组合物可用于催化苯乙烯、 取代的苯乙烯、 乙烯、 α-烯烃、 环状烯烃与非共轭二烯中的一种或几种的共聚反应。 所述 α-烯烃单体优选为 C2〜C20的 α-烯烃, 更优选为 1-己婦或 1-辛烯; 所述环状烯烃优选为 C5〜C20 的环状烯烃, 更优选为 C5〜C12的环状烯烃, 再优选为降冰片烯(NB )类环 状烯烃、 双环戊二烯(DCPD )或环己二烯; 所述非共轭二烯烃优选为 C4〜C20 的二烯或取代二烯, 更优选为 C4〜C10的二烯或取代的二烯, 再优选为 1,3-己 二烯、 1,4-己二烯、 1,5-己二烯、 2,4-二曱基 -1,3-戊二烯、 2-曱基 -1,3-己二烯或 2,4-己二烯。
催化剂组合物中所用的催化剂式(I ) 所示的茂金属配合物不含有侧链, 中心金属的配位空间开放度大, 因此对大位阻单体的催化活性较高,插入率也 较高; 并且本发明所用的式(I ) 所示的茂金属配合物为杂环稠合的环戊二烯 基配体, 杂环具有较强的供电子能力, 用其来稠合环戊二婦基, 可改变金属中 心的电子效应, 进而增加催化剂的活性, 因此, 利用式(I ) 所示的茂金属配 合物可制备高活性、 高插入率的乙烯和其他烯烃的共聚物, 且也可高间规、 高 活性地制备苯乙烯及取代苯乙烯。
本发明还提供了一种聚合物的制备方法,将上述催化剂组合物与烯烃单体 混合, 进行聚合反应, 得到聚合物。
其中所述烯烃单体选自苯乙烯、 取代的苯乙烯、 乙烯、 α-烯烃、 环状烯烃 与非共轭二烯中的一种或几种。 所述取代的苯乙烯、 a-烯烃、 环状烯烃与非共 轭二烯均同上所述, 在此不再贅述。
将催化剂组合物与烯烃单体混合,优选将催化剂组合物混合后, 活化反应 0.5〜10 min, 更优选为 1〜5 min, 再优选为 1 min, 然后再与烯烃单体混合, 进 行聚合反应。 所述聚合反应的条件为本领域技术人员熟知的条件即可, 并无特 殊的限制,本发明中优选聚合反应的温度为 20°C〜60°C , 更优选为 25 °C〜40°C ; 聚合反应的时间优选为 5〜100 min, 更优选为 5〜60 min。
聚合反应之后,优选用盐酸乙醇溶液终止反应。 所述盐酸乙醇溶液中盐酸 与乙醇的体积比优选为 1 : ( 5〜15 ), 更优选为 1 : ( 8-12 ), 再优选为 1 : 10。
终止反应之后, 优选将反应溶液倒入乙醇中沉降, 过滤, 得到聚合物。 实验表明,本发明催化剂组合物在催化乙烯与苯乙烯、 α-烯烃、环状烯烃、 非共轭二烯的共聚反应中表现出高活性、 高共聚单体插入率等特点。
为了进一步说明本发明的技术方案,下面结合实施例对本发明优选实施方 案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点, 而不是对本发明权利要求的限制。
本发明实施例采用的化学试剂均为市购。
实施例 1
在氮气保护的条件下, 将 0.3 g ( 1.56 mmol )噻吩稠合的环戊二烯基配体 1溶于 8 ml正己烷, 滴加到含有 0.7 g ( 1.56 mmol ) Sc(CH2SiMe3)3(thf)2的正己 烷溶液中, 反应 12 h, 浓缩反应溶液, 重结晶, 得到淡黄色噻。分稠合的茂型钪 烷基配合物(1-1 ) 0.57 g, 分子式 C22H41OSScSi2, 产率为 75%, 反应式如下:
Figure imgf000018_0001
利用元素分析对实施例 1 中得到的茂型钪烷基配合物(1-1 )进行分析, 得到元素分析(%)结果为: C 58.52; H8.85。
实施例 2
用配体 2替代实施例 1中的配体 1, 其余步骤相同, 得到噻。分稠合的茂型 钪烷基配合物 (1-2) , 分子式
Figure imgf000018_0002
利用核磁共振对实施例 2 中得到的茂型钪烷基配合物(1-2)进行分析, 得到其核磁共振氢谱图, 如图 1所示。 核磁共振结果为:
^NMRCQDe, 25 °C): 53.59 (brs, 2H, THF), 3.50(brs, 2H, THF ) , 2.41(s, 3H), 2.19(s, 3H), 2.15(s, 6H), 2.09(s, 1H), 1.19(br s, 4H), 0.30(s, 18H CR2SiMe3), -0.23(br s, 2H, C /2SiMe3), -0.28(d, J = 0.08Hz, 1H, CH2SiMe3) -037(d,J= 0.08Hz, 1H, C /2SiMe3) ppm。
13CNMR(C6D6, 25 °C): δ 133.31, 130.43, 126.24, 124.77, 121.80, 110.18: 109.12, 71.54, 24.96, 24.77, 13.87, 13.30, 13.03, 12.68, 12.64, 12.28, 4.34 ppm。
利用元素分析对实施例 2 中得到的茂型钪烷基配合物(1-2)进行分析, 得到元素分析 ( % )结果为: C 59.96; H 9.68。
实施例 3
用配体 3替代实施例 1中的配体 1, 其余步骤相同, 得到噻。分稠合的茂型 钪烷基配合物 (1-3 ) , 分子式 C23H43OSScSi2, 反应式如下:
Figure imgf000019_0001
配体 3 1-3
利用核磁共振对实施例 3 中得到的茂型钪烷基配合物(1-3 )进行分析, 得到其核磁共振氢谱图, 如图 2所示。 核磁共振结果为:
^ NMRCCeDe, 25 °C): δ 6.32 ( s, 1H), 3.59 ( br s, 4H), 2.29(s, 3H), 2.17(s, 3H), 2.16(s, 6H), 1.18(br s, 4H), 0.29(s, 18H), -0.20(s, 4H) ppm。
13CNMR(C6D6, 25 °C): δ 138.15, 132.56, 125.94, 123.86, 116.28, 109.77, 109.18, 71.46, 25.34, 24.94, 16.54, 16.20, 13.3 q9, 13.12, 12.51, 4.41 ppm。
利用元素分析对实施例 3 中得到的茂型钪烷基配合物(1-3 )进行分析, 得到元素分析(% )结果为: C 59.32; H 9.64。
实施例 4
制备茂金属配合物 1-4〜: [-9, 除配体与稀土化合物进行相应替换, 其他条 件与步骤与实施例 1相同。 茂金属配合物 1-4〜1-9制备原料及结果见表 1。
表 1 茂金属配合物 1-4〜1-9制备原料及结果
茂金属配合物 配体 稀土化合物 目标物分子式 元素分析 ( % ) 产率(%)
1-4 配体 1 Y(CH2SiMe3)3 C 52.56, H 8.52 58
1-5 配体 2 Y(CH2SiMe3)3 C24H45OSYSi2 C 54.32, H 8.96 65
1-6 配体 3 Y(CH2SiMe3)3 C23H43OSYSi2 C 53.79, H 8.83 62
1-7 配体 1 Er(CH2SiMe3)3 C22H41OSErSi2 C 45.98, H 7.42 75
1-8 配体 2 Er(CH2SiMe3)3 C24H45OSErSi2 C 47.36, H 7.87 69
1-9 配体 3 Er(CH2SiMe3)3 C23H43OSErSi2 C 46.99, H 6.95 64 实施例 5
在氮气保护的条件下, 将 0.23 g ( 1.00 mmol )噻。分稠合的环戊二烯基配体 4溶于 5 ml正己烷, 滴加到含有 0.45 g ( 1.00 mmol ) Sc(CH2SiMe3)3(thf)2的正 己烷溶液中, 反应 12 h, 浓缩反应溶液, 重结晶, 得到淡黄色噻。分稠合的茂型 钪烷基配合物( 1-10 ) 0.37 g, 分子式 C27H43OSScSi2, 产率为 72%, 反应式如 下:
Figure imgf000020_0001
配体 4 i-io 利用元素分析对实施例 5中得到的茂型钪烷基配合物(1-10 )进行分析, 得到元素分析(% )结果为: C 62.95; H 8.45。
实施例 6
采用实施例 5的合成路线, 将噻。分稠合的环戊二婦基配体 4 ( 0.23 g, 1.00 mmol ) 分别与三烷基 4乙配合物 Y(CH2SiMe3)3(thf)2和三烷基镝配合物 Dy(CH2SiMe3)3(thf)2反应, 得到茂金属配合物 1-11与 1-12。 茂金属配合物 1-11 的分子式为 C27H43OSYSi2 , 产率 69% ; 茂金属配合物 1-12 的分子式为 C27H43OSDySi2, 产率为 72%。
利用元素分析对实施例 6中得到的茂金属配合物 1-11进行分析, 得到元 素分析(% )结果为: C 57.49; H 8.09。
利用元素分析对实施例 6中得到的茂金属配合物 1-12进行分析, 得到元 素分析(%)结果为: C 51.36; H 7.14。
实施例 7
在氮气保护的条件下, 将 0.3 g ( 2.04 mmol )吡咯稠合的环戊二烯基配体
5溶于 5 ml正己烷, 滴加到含有 0.92 g ( 2.04 mmol ) Sc(CH2SiMe3)3(thf)2的正 己烷溶液中, 反应 6 h, 浓缩反应溶液, 重结晶, 得到淡黄色吡咯稠合的茂型 钪烷基配合物(1-13 ) 0.56 g, 分子式 C22H42NOScSi2, 产率为 63%, 反应式如 下:
Figure imgf000020_0002
配体 5 1-13 利用元素分析对实施例 7中得到的茂型钪烷基配合物(1-13)进行分析, 得到元素分析(%)结果为: C 60.68; H9.44; N3.45。
实施例 8
采用实施例 7的合成路线, 将吡咯稠合的环戊二婦基配体 5 (0.30 g, 2.04 mmol ) 分别与三烷基 4乙配合物 Y(CH2SiMe3)3(thf)2和三烷基札配合物 Gd(CH2SiMe3)3(thf)2反应得到茂金属配合物 1-14与 1-15。茂金属配合物 1-14的 分子式为 C22H42NOYSi2 , 产率为 64%; 茂金属配合物 1-15 的分子式为 C22H42NOGdSi2, 产率为 62%。
利用元素分析对实施例 8 中得到的茂金属配合物 1-14进行分析, 得到元 素分析(%)结果为: C 54.78; H8.43; N2.68。
利用元素分析对实施例 8 中得到的茂金属配合物 1-15进行分析, 得到元 素分析 (%)结果为: C 48.36; H7.43; N2.69。
实施例 9
在氮气保护的条件下, 将 0.3g (1.43 mmol)吡咯稠合的环戊二烯基配体 6溶于 5 ml正己烷, 滴加到含有 0.65 g ( 1.43 mmol ) Sc(CH2SiMe3)3(thf)2的正 己烷溶液中, 反应 8 h, 浓缩反应溶液, 重结晶, 得到淡黄色吡咯稠合的茂型 钪烷基配合物(1-16) 0.38 g, 分子式 C27H44NOScSi2, 产率为 53%, 反应式如 下:
Figure imgf000021_0001
配体 6 1-16
利用元素分析对实施例 9中得到的茂型钪烷基配合物(1-16)进行分析, 得到元素分析(%)结果为: C 64.68; H8.75; N3.12。
实施例 10
采用实施例 9的合成路线, 将吡咯稠合的环戊二婦基配体 6 (0.30 g, 1.43 mmol ) 分别与三烷基钇配合物 Y(CH2SiMe3)3(thf)2和三烷基镥配合物 Lu(CH2SiMe3)3(thf)2反应, 得到茂金属配合物 I- 17与茂金属配合物 1-18。 茂金 属配合物 1-17的分子式为 C27H44NOYSi2, 产率为 66%; 茂金属配合物 1-18的 分子式为 C27H44NOLuSi2, 产率为 62%。
利用元素分析对实施例 10中得到的茂金属配合物 1-17进行分析, 得到元 素分析(%)结果为: C 59.78; H 8.43; N 2.68。
利用元素分析对实施例 8 中得到的茂金属配合物 1-18进行分析, 得到元 素分析(%)结果为: C 51.69; H 7.43; N 2.59。
实施例 11
在氮气保护的条件下, 将 0.23 g ( 1.2 mmol )噻吩稠合的环戊二烯基配体 2溶于四氢呋喃中, 并置于 -78°C〜0°C , 然后加入 1.2 mmol正丁基锂的正己烷 溶液(浓度为 1.0〜2.0 mol/L ),反应 1 h后,加入 1.2 mmol的钪三氯化物 ScCl3, 反应 4 h后, 加入 2.4 mmol C3¾MgCl, 室温反应 12 h后, 除去溶剂, 用曱苯 萃取, 浓缩曱苯溶液, 得到 0.25 g噻。分稠合的茂金属配合物 1-19, 分子式为 C18H25SSc, 产率为 64%, 反应式如下:
Figure imgf000022_0001
配体 2 1-19
利用元素分析对实施例 11中得到的茂金属配合物 1-19进行分析, 得到元 素分析(% )结果为: C 68.22; H 7.66。
实施例 12
采用实施例 11的合成路线, 将噻。分稠合的环戊二烯基配体 2 ( 0.23 g, 1.2 mmol )分别与三氯化钇 YC13与三氯化札 GdCl3反应, 得到茂金属配合物 1-20 与茂金属配合物 1-21。 茂金属配合物 1-20的分子式为 C18H25SY, 产率为 65%; 茂金属配合物 1-21的分子式为 C18H25SGd, 产率为 68%。
利用元素分析对实施例 12中得到的茂金属配合物 1-20进行分析, 得到元 素分析(%)结果为: C 59.78; H 6.61。
利用元素分析对实施例 12中得到的茂金属配合物 1-21进行分析, 得到元 素分析 ( % )结果为: C 49.83; H 6.04。 实施例 13
在氮气保护的条件下, 将 0.30 g ( 1.43 mmol )吡咯稠合的环戊二烯基配体 6溶于四氢呋喃中, 并置于 -78°C〜0°C , 然后加入 1.43 mmol正丁基锂的正己烷 溶液(浓度为 1.0〜2.0 mol/L ),反应 1 h后,加入 1.43 mmol的钪三氯化物 ScCl3, 反应 4 h后, 加入 2.86 mmol C3¾MgCl, 室温反应 12 h后, 除去溶剂, 用曱 苯萃取, 浓缩曱苯溶液, 得到 0.27 g吡咯稠合的茂金属配合物 1-22, 分子式为 C21H24NSc,
Figure imgf000023_0001
配体 6 1-22
利用元素分析对实施例 13中得到的茂金属配合物 1-22进行分析, 得到元 素分析(%)结果为: C 75.44; H 7.54; N 3.79。
实施例 14
采用实施例 13的合成路线,将吡咯稠合的环戊二婦基配体 6 ( 0.30 g, 1.43 mmol )分别与三氯化钇 YC13与三氯化镥 LuCl3反应, 得到茂金属配合物 23 与茂金属配合物 24。 茂金属配合物 23的分子式为 C21H24NY, 产率为 68%; 茂金属配合物 24的分子式为 C21H24NLu, 产率为 72%。
利用元素分析对实施例 14中得到的茂金属配合物 1-23进行分析, 得到元 素分析(% )结果为: C 66.26; H 6.64; N 4.02。
利用元素分析对实施例 14中得到的茂金属配合物 1-24进行分析, 得到元 素分析 ( % )结果为: C 43.86; H 5.57; N 3.37。
实施例 15
在 20 ml经无水、 无氧处理的聚合瓶中加入 10 μιηοΐ实施例 1中得到的茂 金属配合物 1-1与 10 μιηοΐ [Ph3C][B(C6F5)4]的 3 ml曱苯溶液, 然后滴加 0.2 ml Al('Bu)3 ( 0.5 mol/L ) , 反应 1 min后, 在此催化剂体系中加入 10 mmol苯乙 烯单体(单体与茂金属配合物 1—1的摩尔比为 1000: 1 ) , 将聚合瓶置于 25 °C 恒温水浴中, 搅拌下反应 5 min, 再加入 2 ml盐酸乙醇溶液( v/v, 1 : 10 )终 止聚合反应。 将反应溶液倒入 100 ml乙醇中沉降, 得到聚苯乙烯白色固体, 再将该聚苯乙烯白色固体置于真空干燥箱中干燥 48 h,得到干燥的聚苯乙烯白 色固体粉末, 净重 1.04 g, 转化率为 100%。
用高温 GPC分析实施例 15中得到的聚苯乙烯, 得到其数均分子量(Mn ) 为 12.7万, 分子量分布(Mw/Mn ) 为 1.42。
利用核磁分析实施例 15中得到的聚苯乙烯,得到该聚苯乙烯间规度(rrrr ) 为 99%。
利用示差扫描量热法(DSC )对实施例 15中得到的聚苯乙烯进行分析, 得到其熔点 Tm为两个 262°C、 271 °C。
实施例 16
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将苯乙烯的投入量改 更为 5 mmolo
实施例 17
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将苯乙烯的投入量改 变为 15 mmolo
实施例 18
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将苯乙烯的投入量改 变为 20 mmolo
实施例 19
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将实施例 1中得到的 茂金属配合物 1-1替换为实施例 2中得到的茂金属配合物 1-2。
实施例 20
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将实施例 1中得到的 茂金属配合物 1-1替换为实施例 3中得到的茂金属配合物 1-3。
实施例 21
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将实施例 1中得到的 茂金属配合物 1-1替换为实施例 4中得到的茂金属配合物 1-4,同时聚合反应的 时间改为 30 min。
实施例 22 按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将实施例 1中得到的 茂金属配合物 1-1替换为实施例 4中得到的茂金属配合物 1-5 ,同时聚合反应的 时间改为 30 min。
实施例 23
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将实施例 1中得到的 茂金属配合物 1-1替换为实施例 4中得到的茂金属配合物 1-6,同时聚合反应的 时间改为 30 min。
实施例 24
按照实施例 15的方法制备聚苯乙烯, 区别只在于: 将实施例 1中得到的 茂金属配合物 1-1替换为实施例 4中得到的茂金属配合物 1-8,同时聚合反应的 时间改为 60 min。
实施例 25
在 20 ml经无水、 无氧处理的聚合瓶中加入 10 μιηοΐ实施例 5中得到的茂 金属配合物 1-10、 10 μιηοΐ [Ph3C][B(C6F5)4]与 3 ml曱苯混合, 然后滴加 0.2 ml Al('Bu)3 ( 0.5 mol/L ) , 反应 1 min后, 在此催化剂体系中加入 10 mmol苯乙 烯单体(单体与茂金属配合物 1-10的摩尔比为 1000: 1 ) , 将聚合瓶置于 25 °C恒温水浴中, 搅拌下反应 10 min, 再加入 2 ml盐酸乙醇溶液( v/v, 1 : 10 ) 终止聚合反应。 将反应溶液倒入 100 ml乙醇中沉降, 得到白色固体聚苯乙烯, 置于真空干燥箱中 40°C干燥 48 h, 得到干燥的聚苯乙烯白色固体粉末, 净重 1.04 g, 转化率为 100%。
用高温 GPC分析实施例 25中得到的聚苯乙烯, 得到其数均分子量(Mn ) 为 11.6万, 分子量分布(Mw/Mn ) 为 1.46。
利用核磁分析实施例 25中得到的聚苯乙烯,得到该聚苯乙烯间规度(rrrr ) 为 99%。
利用示差扫描量热法(DSC )对实施例 25中得到的聚苯乙烯进行分析, 得到其熔点丁„1为 271 °C。
实施例 26 按照实施例 25的方法制备聚苯乙烯, 区别只在于: 将实施例 25中得到的 茂金属配合物 1-10替换为实施例 12中得到的茂金属配合物 1-20, 同时聚合反 应的时间改为 60 min。
实施例 27
按照实施例 25的方法制备聚苯乙烯, 区别只在于: 将实施例 25中得到的 茂金属配合物 1-10替换为实施例 14中得到的茂金属配合物 1-24, 同时聚合反 应的时间改为 60 min。
利用高温 GPC、 核磁、 示差扫描量热法(DSC )对实施例 15〜27 中得到 的聚苯乙烯进行分析, 得到结果见表 2。 干燥的聚合物用核磁共振碳语测定苯 乙烯的立构规整度。
表 2 苯乙烯聚合结果
茂金属 苯乙烯 / 反应时间 转化 聚苯乙烯 Mn MJMn 7m(°C) 配合物 配合物 (min) 率(%)间规度(rrrr) ( χ ΐθ4 )
(摩尔比;) ( % )
实施例 15 1-1 1000 5 100 99 12.7 1.42 262/271 实施例 16 1-1 500 5 100 99 6.5 1.68 271 实施例 17 1-1 1500 5 100 99 16.8 1.55 271 实施例 18 1-1 2000 5 100 99 26.9 1.32 271 实施例 19 1-2 1000 5 100 99 10.8 1.64 265/272 实施例 20 1-3 1000 5 100 99 9.7 1.72 272 实施例 21 1-4 1000 30 91 99 9.6 1.53 270 实施例 22 1-5 1000 30 93 99 10.4 1.62 269 实施例 23 1-6 1000 30 89 98 9.9 1.45 267 实施例 24 1-8 1000 60 62 98 12.3 1.51 269 实施例 25 1-10 1000 10 100 98 11.6 1.46 271 实施例 26 1-20 1000 60 87 98 10.4 1.61 268 实施例 27 1-24 1000 60 42 98 13.8 1.75 270 实施例 28 在手套箱中, 向 100 ml双颈烧瓶中添加曱苯 30 ml与 1.04 g ( 10 mmol ) 苯乙烯混合搅拌, 然后从手套箱中取出该烧瓶并连接到 Schlenk管, 通过油浴 将烧瓶温度保持在 40°C并向其中充入 l.O atm乙烯, 使其在曱苯溶液中达到饱 和状态; 将 9.2 mg ( 10 μιηοΐ ) [Ph3C][B(C6F5)4]、 4.8 mg ( 10 μιηοΐ ) 实施例 2 中得到的茂金属配合物 1-2、 0.2 ml Al('Bu)3( 0.5 mol/L )与曱苯混合,搅拌 1 min , 制备得到活化的催化剂组合物;将催化剂组合物通过注射器快速注入至烧瓶中 引发聚合, 聚合反应在 1.0 atm的乙烯通入下进行 5 min后, 加入 2 ml的盐酸 乙醇溶液( v/v, 1: 10 )终止聚合反应, 再将聚合反应液倒入 300 ml的乙醇中 沉降, 过滤, 40°C真空干燥 24 h, 得到苯乙烯 -乙烯聚合物净重为 0.45 g。
利用核磁共振对实施例 28中得到的苯乙烯-乙烯聚合物进行分析,得到其 核磁共振氢谱图, 如图 3所示。
实施例 29
按照实施例 28的方法制备苯乙烯-乙烯聚合物, 区别只在于: 将苯乙烯的 投入量改为 20 mmoL
实施例 30
按照实施例 28的方法制备苯乙烯-乙烯聚合物, 区别只在于: 将苯乙烯的 投入量改为 30 mmoL
实施例 31
按照实施例 28的方法制备苯乙烯-乙烯聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 5中得到的茂金属配合物 1-10。
实施例 32
按照实施例 28的方法制备苯乙烯-乙烯聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 7中得到的茂金属配合物 1-13。
实施例 33
按照实施例 28的方法制备苯乙烯-乙烯聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 9中得到的茂金属配合物 1-16。
对实施例 28〜33 中得到的苯乙烯-乙烯聚合物进行检测, 数均分子量 Mn 和分子量分布(Mw/Mn )均通过 GPC (聚苯乙烯用作基准材料)测定; 玻璃化 温度和熔点用 DSC方法进行测定; 其结果见表 3。 干燥的聚合物用核磁共振 氢谱测定苯乙烯的含量。
表 3 苯乙烯-乙烯聚合结果
茂金属 苯乙婦 产 ϊ 活性 苯乙婦 Μη" M Mn rm(°c)c 配合物 ( mmol ) ( 10 g/mo 兮里 ( χ ΐθ4 )
l-Sc-h ) ( mol% )
实施例 28 1-2 10 0.45 0.54 61 8.93 1.35 213 实施例 29 1-2 20 1.25 1.50 82 13.42 1.68 238 实施例 30 1-2 30 0.63 0.76 93 12.87 1.57 245/265 实施例 31 1-10 10 0.62 1.04 64 10.32 1.78 216 实施例 32 1-13 10 0.54 0.65 59 9.12 1.54 208 实施例 33 1-16 10 0.36 0.43 60 8.61 1.61 210 实施例 34
在手套箱中, 向 100 ml双颈烧瓶中添加曱苯 30 ml与 2.64 g ( 20 mmol ) 双环戊二烯(DCPD )混合搅拌, 然后从手套箱中取出该烧瓶并连接到 Schlenk 管, 通过油浴将烧瓶温度保持在 40°C并向其中充入 1.0 atm乙烯, 使其在曱苯 溶液中达到饱和状态;将 9.2 mg ( 10 μιηοΐ ) [Ph3C][B(C6F5)4]、 4.8 mg ( 10 μιηοΐ ) 实施例 2中得到的茂金属配合物 1-2、 0.1 ml Al('Bu)3 ( 0.5 mol/L )与曱苯混合, 搅拌 l min, 制备得到活化的催化剂组合物; 将催化剂组合物通过注射器快速 注入至烧瓶中引发聚合, 聚合反应在 1.0 atm的乙烯通入下进行 5 min后, 加 入 2 ml的盐酸乙醇溶液(v/v, 1 : 10 )终止聚合反应, 再将聚合反应液倒入 300 ml的乙醇中沉降, 过滤, 40°C真空干燥 24 h, 得到乙烯 -DCPD聚合物净 重为 3.17 g。
利用核磁共振对实施例 34中得到的乙烯 -DCPD聚合物进行分析, 得到其 核磁共振氢谱图, 如图 4所示。
实施例 35
按照实施例 34的方法制备乙烯 -DCPD共聚物, 区别只在于: 将 DCPD的 投入量改为 5.28 g ( 40 mmol ) , 得到聚合物为 3.01 g。
实施例 36 按照实施例 35的方法制备乙烯 -DCPD聚合物, 区别只在于: 将 DCPD的 投入量改为 10.56 g ( 80 mmol ) , 得到聚合物为 1.57 g。
实施例 37
按照实施例 34的方法制备乙烯 -DCPD聚合物, 区别只在于: 聚合温度为 25 °C , 得到聚合物为 0.62 g。
实施例 38
按照实施例 34的方法制备乙烯 -DCPD聚合物, 区别只在于: 聚合温度为 60 °C , 得到聚合物为 1.19 g。
实施例 39
按照实施例 34的方法制备乙烯 -DCPD聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 4中得到的茂金属配合物 1-6, 得到絮状微量的聚合物。
实施例 40
按照实施例 34的方法制备乙烯 -DCPD聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 5中得到的茂金属配合物 1-10, 得到聚合物 2.02 g。
实施例 41
按照实施例 34的方法制备乙烯 -DCPD聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 9中得到的茂金属配合物 1-16, 得到聚合物 1.62 g。
实施例 42
按照实施例 34的方法制备乙烯 -DCPD聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 1 1中得到的茂金属配合物 1-19, 得到聚合物 0.89 g。
实施例 43
按照实施例 34的方法制备乙烯 -DCPD聚合物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 13中得到的茂金属配合物 1-22, 得到聚合物 0.64 g。
对实施例 34〜43 中得到的乙烯 -DCPD 聚合物进行检测, 数均分子量 Mn 和分子量分布 ( Mw/Mn )均通过 GPC (聚苯乙烯用作基准材料 )测定; 玻璃化 温度和熔点用 DSC方法进行测定; 其结果见表 4。 干燥的聚合物用核磁共振 氢语测定 DCPD的含量计算方法参看: X. Li, Z. Hou, Macromolecules 2005, 38, 6767 ) 。 表 4乙烯 -DCPD聚合结果
活性 DCPD含
茂金属 T DCPD Mn" M Mn
产 ϊ ( 10 g/m 里
配合物 (°C) ( mmol ) ( x lO4 ) (°C)C ol-Ln -h ) ( mol% )
实施例 34 1-2 40 20 3.17 3.8 37 2.4 1.51 113 实施例 35 1-2 40 40 3.01 3.6 42 2.1 1.58 142 实施例 36 1-2 40 80 1.57 0.9 44 5.5 2.21 147 实施例 37 1-2 25 20 0.62 0.5 20 1.4 1.46 126 实施例 38 1-2 60 20 1.19 1.2 30 1.1 1.57 97 实施例 39 1-6 40 20 械里 - - - - - 实施例 40 1-10 40 20 2.02 2.4 35 3.1 1.62 105 实施例 41 1-16 40 20 1.62 1.9 38 1.8 1.52 115 实施例 42 1-19 40 20 0.89 1.1 34 1.5 1.63 102 实施例 43 1-22 40 20 0.64 0.8 34 1.7 1.51 99 实施例 44
在手套箱中, 向 100 ml双颈烧瓶中添加曱苯 30 ml与 2.24 g ( 20 mmol ) 1-辛烯混合搅拌, 然后从手套箱中取出该烧瓶并连接到 Schlenk管, 通过油浴 将烧瓶温度保持在 40°C并向其中充入 1.0 atm乙烯, 使其在曱苯溶液中达到饱 和状态; 将 9.2 mg ( 10 μιηοΐ ) [Ph3C][B(C6F5)4]、 4.8 mg ( 10 μιηοΐ ) 实施例 2 中得到的茂金属配合物 1-2、0.1 ml Al('Bu)3( 0.5 mol/L )与曱苯混合,搅拌 1 min, 制备得到活化的催化剂组合物;将催化剂组合物通过注射器快速注入至烧瓶中 引发聚合, 聚合反应在 1.0 atm的乙烯通入下进行 5 min后, 加入 2 ml的盐酸 乙醇溶液( v/v, 1: 10 )终止聚合反应, 再将聚合反应液倒入 300 ml的乙醇中 沉降, 过滤, 60°C真空干燥 24 h, 得到乙烯 -1-辛烯聚合物净重为 2.06 g。
实施例 45
按照实施例 44的方法制备乙烯 -1-辛烯共聚物, 区别只在于: 将 1-辛烯的 投入量改为 40 mmoL
实施例 46 按照实施例 44的方法制备乙烯 -1-辛烯共聚物, 区别只在于: 将 1-辛烯的 投入量改为 10 mmol。
实施例 47
按照实施例 44的方法制备乙烯 -1-辛烯共聚物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 ΐ翁 4中得到的茂金属配合物 1-6。
实施例 48
按照实施例 44的方法制备乙烯 -1-辛烯共聚物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 5中得到的茂金属配合物 1-10。
实施例 49
按照实施例 44的方法制备乙烯 -1-辛烯共聚物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 7中得到的茂金属配合物 1-13。
实施例 50
按照实施例 44的方法制备乙烯 -1-辛烯共聚物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 10中得到的茂金属配合物 1-18。
实施例 51
按照实施例 44的方法制备乙烯 -1-辛烯共聚物, 区别只在于: 将茂金属配 合物 1-2替换为实施例 12中得到的茂金属配合物 1-21。
对实施例 44〜51中得到的乙烯 -1-辛烯共聚物进行检测,数均分子量 Mn和分 子量分布(Mw/Mn )均通过 GPC (聚苯乙烯用作基准材料)测定, 其结果见表 5。 干燥的聚合物用核磁共振碳谱测定 1-辛烯的含量 (计算方法参看: J.C. Randall, JMS Rev. Macromol. Chem. Phys. C29, 1989, 201 ) 。
表 5 乙烯 -1-辛烯聚合结果
活性
茂金属配 1-辛烯 ( io 1-辛烯含量 Mn"
产 ϊ M Mn 合物 ( mmol ) mol-Ln- ( mol% ) ( x lO4 )
h )
实施例 44 1-2 1 20 2.06 2.5 23 2.06 1.9 实施例 45 1-2 1 40 1.41 1.7 29 1.94 2.1 实施例 46 1-2 1 10 0.69 0.8 18 2.68 1.5 实施例 47 1-6 1 20
实施例 48 1-10 1 20 1.11 1.3 16 2.11 1.8 实施例 49 1-13 1 20 0.89 1.1 19 3.21 1.7 实施例 50 1-18 1 20
实施例 51 1-21 1 20
实施例 52
在手套箱中,向 100 ml双颈烧瓶中添加曱苯 30 ml与 0.40 g ( 5 mmol ) 1,3- 环己二烯混合搅拌, 然后从手套箱中取出该烧瓶并连接到 Schlenk管, 通过油 浴将烧瓶温度保持在 40°C并向其中充入 1.0 atm乙烯, 使其在曱苯溶液中达到 饱和状态; 将 36.8 mg ( 40 μιηοΐ ) [Ph3C][B(C6F5)4]、 18.4 mg ( 40 μιηοΐ ) 实施 例 3中得到的茂金属配合物 1-3、 0.4 ml Al('Bu)3 ( 0.5 mol/L )与曱苯混合, 搅 拌 l min, 制备得到活化的催化剂组合物; 将催化剂组合物通过注射器快速注 入至烧瓶中引发聚合, 聚合反应在 1.0 atm的乙烯通入下进行 5 min后,加入 2 ml的盐酸乙醇溶液( v/v, 1 : 10 )终止聚合反应, 再将聚合反应液倒入 300 ml 的乙醇中沉降, 过滤, 40°C真空干燥 24 h, 得到乙烯 -1,3-环己二烯聚合物净重 为 1.24 g。
实施例 53
按照实施例 52的方法制备乙烯 -1,3-环己二烯聚合物,区别只在于:将 1,3- 环己二烯的投入量改为 10 mmol。
实施例 54
按照实施例 52的方法制备乙烯 -1,3-环己二烯聚合物, 区别只在于: 将茂 金属配合物 1-3替换为实施例 5中得到的茂金属配合物 1-10。
实施例 55
按照实施例 52的方法制备乙烯 -1,3-环己二烯聚合物, 区别只在于: 将茂 金属配合物 1-3替换为实施例 9中得到的茂金属配合物 1-16。
实施例 56
按照实施例 52的方法制备乙烯 -1,3-环己二烯聚合物, 区别只在于: 将茂 金属配合物 1-3替换为实施例 11中得到的茂金属配合物 1-19。
对实施例 52〜56中得到的乙烯 -1,3-环己二烯聚合物进行检测, 数均分子量 Mn和分子量分布(Mw/Mn )均通过 GPC (聚苯乙烯用作基准材料)测定, 其结 果见表 6。干燥的聚合物用核磁共振氢谱测 1,3-环己二烯的含量(计算方法参看: R. Maromol. Chem. Phys. 2005, 206, 195 ) 。
表 6 乙烯 -1,3-环己二烯聚合结果
茂金属 1,3-环己二烯 活性 1,3-环己二烯 Μη"
产 ϊ M Mn 配合物 ( mmol ) ( 10 g/mol-Sc-h ) 含量( mol% ) ( χ ΐθ4 ) 实施例 52 1-3 5 1.24 0.37 8 3.2 2.1 实施例 53 1-3 10 0.34 0.10 37 2.5 1.8 实施例 54 1-10 5 0.95 0.29 9 3.8 1.7 实施例 55 1-16 5 0.87 0.26 7 10.2 2.4 实施例 56 1-19 5 0.63 0.19 8 7.6 1.9 实施例 57
在手套箱中, 向 100 ml双颈烧瓶中添加曱苯 30 ml、 2.64 g ( 20 mmol ) DCPD 1.88 g ( 20 mmol ) NB混合搅拌, 然后从手套箱中取出该烧瓶并连接 到 Schlenk管, 通过油浴将烧瓶温度保持在 40 °C并向其中充入 1.0 atm乙烯, 使其在曱苯溶液中达到饱和状态;将 9.2 mg( 10 μιηοΐ ) [Ph3C][B(C6F5)4]、 4.8 mg ( 10 μιηοΐ ) 实施例 2中得到的茂金属配合物 1-2、 0.1 ml Al('Bu)3 ( 0.5 mol/L ) 与曱苯混合, 搅拌 l min, 制备得到活化的催化剂组合物; 将催化剂组合物通 过注射器快速注入至烧瓶中引发聚合, 聚合反应在 1.0 atm的乙烯通入下进行 5 min后, 加入 2 ml的盐酸乙醇溶液( v/v, 1: 10 )终止聚合反应, 再将聚合 反应液倒入 300 ml 的乙醇中沉降, 过滤, 40 °C真空干燥 36 h, 得到乙烯 -DCPD-NB聚合物净重为 2.08 g。
利用核磁共振对实施例 57中得到的乙烯 -DCPD-NB聚合物进行分析, 得 到其核磁共振氢谱图, 如图 5所示。
实施例 58
按照实施例 57的方法制备乙烯 -DCPD-NB聚合物, 区别只在于: 将 NB 的投入量改为 10 mmol, 得到聚合物净重为 1.86 g。
对实施例 57〜58中得到的乙烯 -DCPD-NB聚合物进行检测, 数均分子量 Mn 和分子量分布(Mw/Mn )均通过 GPC (聚苯乙烯用作基准材料)测定; 玻璃化 温度和熔点用 DSC方法测定; 其结果见表 7。 干燥的聚合物用核磁共振氢谱测 DCPD和 NB的含量(计算方法参看: US 2008/0221275 A1 ) 。
表 7 乙烯 -DCPD-NB聚合结果
DCPD NB 活性 DCPD含 NB含量 Mn" M Mn
( mmol ) (mmol) ( 10 g/mo- 里 (mol%) ( x lO4 ) (°C)
ISc-h ) (mol%)
实施例 57 20 20 2.5 19 31 1.74 1.56 168 实施例 58 20 10 2.2 23 25 2.11 1.62 152 以上对本发明所提供的一种稀土元素的萃取分离方法进行了详细介绍。本 只是用于帮助理解本发明的方法及其核心思想。应当指出, 对于本技术领域技 术人员来说, 在不脱离本发明原理的前提下, 还可以对本发明进行若干改进和 修饰, 这些改进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种茂金属配合物, 如式(I )所示:
Figure imgf000035_0001
其中, Ln为钪 (Sc)、钇 (Y)与原子序数为 57-71的镧系十四种元素中的一种;
R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
与 X2各自独立地选自氢、 C1〜C20的脂肪族基团、 C1〜C20的脂环族基 团、 苯基、 取代苯基、 C1〜C20的烷氧基、 C1〜C20的烷胺基、 C1〜C20的芳胺 基、 C1〜C20的硅烷基、 烯丙基、 烯丙基衍生物、 硼氢基与卤素中的一种; 所 述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中 的一种或多种取代的苯基;
L为中性路易斯碱, w为 0〜3的整数。
2、 根据权利要求 1所述的茂金属配合物, 其特征在于, 所述 C1〜C20的 脂肪族基团选自曱基、 乙基、 丙基、异丙基、 丁基、仲丁基与叔丁基中的一种。
3、 根据权利要求 1所述的茂金属配合物, 其特征在于, 所述 与 各 自独立地选自硅氨基、 二曱氨基、 二乙胺基、 二丙氨基、 Ν,Ν-二曱氨基苯基、 三曱硅基曱基、 双三曱硅基曱基、 邻-曱巯基苯基、 邻-二曱膦基苯基、 四氢硼 基、 曱氧基、 乙氧基、 异丙氧基、 正丙氧基与正丁氧基中的一种。
4、 根据权利要求 1所述的茂金属配合物, 其特征在于, 所述烯丙基衍生 物为 -C3HnR6; 所述 n为 3或 4; 所述 R6为 C1〜C20的脂肪族基团、 C1〜C20 的脂环族基团、 苯基或取代苯基; 所述取代苯基为 C1〜C20 的脂肪族基团、 C 1〜C20的脂环族基团与芳香族基团中的一种或多种取代的苯基。
5、 根据权利要求 1所述的茂金属配合物, 其特征在于, 所述 L为四氢呋 喃、 乙醚或曱苯。
6、 一种茂金属配合物的制备方法, 其特征在于, 包括:
在惰性气体保护的条件下, 将式(II )所示的环戊二婦基配体与稀土化合 物在第一有机溶剂中进行反应, 得到式(I )所示的茂金属配合物, 此时 与 X2各自独立地为 C1〜C20的硅烷基; 所述稀土化合物为含有基团 与 X2;
或在惰性气体保护的条件下, 将式(II )所示的环戊二婦基配体与烷基锂 在第二有机溶剂中进行第一次反应, 然后加入稀土 [¾化物进行第二次反应, 再 加入烯丙基格式试剂和 /或烯丙基衍生物格式试剂进行第三次反应, 得到 与 X2各自独立地为烯丙基或烯丙基衍生物的式(I )所示的茂金属配合物;
Figure imgf000036_0001
其中, Ln为钪 (Sc)、钇 (Y)与原子序数为 57-71的镧系十四种元素中的一种; Ri、 R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
1与 2各自独立地选自 C1〜C20的硅烷基、 烯丙基与烯丙基衍生物中的 一种;;
L为中性路易斯碱, w为 0〜3的整数。
7、 一种催化剂组合物, 其特征在于, 包括式(I )所示的茂金属配合物与 有机硼盐;
Figure imgf000037_0001
其中, Ln为钪 (Sc)、 钇 (Y)与原子序数为 57-71 的镧系十四种元素中的一 种;
Ri、 R2、 R3、 R4与 R5各自独立地选自 H、 C1〜C20的烷基、 含有缩醛的 C1〜C20的烷基、 含有缩酮的 C1〜C20的烷基、 含有醚基的 C1〜C20的烷基、 C1〜C20的烯基、 含有缩醛的 C1〜C20的烯基、 含有缩酮的 C1〜C20的烯基、 含有醚基的 C1〜C20的烯基、 C6〜C20的芳基、 含有缩醛的 C6〜C20的芳基、 含有缩酮的 C6〜C20的芳基、 含有酸基的 C6〜C20的芳基、 C1〜C20的曱硅烷 基、 含有缩醛的 C1〜C20的曱硅烷基、 含有缩酮的 C1〜C20的曱硅烷基与含有 酸基的 C1〜C20的曱硅烷基中的一种, 或者 与 R2彼此连接成环, 或者 R2 与 R3彼此连接成环, 或者 与 R5彼此连接成环;
E为 0、 S或 N-R; 所述 R为曱基、 苯环或取代苯环;
与 X2各自独立地选自氢、 C1〜C20的脂肪族基团、 C1〜C20的脂环族基 团、 苯基、 取代苯基、 C1〜C20的烷氧基、 C1〜C20的烷胺基、 C1〜C20的芳胺 基、 C1〜C20的硅烷基、 烯丙基、 烯丙基衍生物、 硼氢基与卤素中的一种; 所 述取代苯基为 C1〜C20的脂肪族基团、 C1〜C20的脂环族基团与芳香族基团中 的一种或多种取代的苯基;
L为中性路易斯碱, w为 0〜3的整数。
8、 根据权利要求 7所述的催化剂组合物, 其特征在于, 还包括烷基铝。
9、 一种聚合物的制备方法, 其特征在于, 包括:
将权利要求 7〜8任意一项所述的催化剂组合物与烯烃单体混合,进行聚合 反应, 得到聚合物。
10、 根据权利要求 9所述的制备方法, 其特征在于, 所述烯烃单体选自苯 乙烯、取代的苯乙烯、 乙烯、 α-烯烃、环状烯烃与非共轭二烯中的一种或几种。
PCT/CN2013/086850 2013-10-12 2013-11-11 茂金属配合物及其制备方法、催化剂组合物 WO2015051569A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13895318.7A EP3056505B1 (en) 2013-10-12 2013-11-11 Metallocene complex, preparation method therefor, and catalyst composition
US15/025,244 US9896519B2 (en) 2013-10-12 2013-11-11 Metallocene complex, preparation method thereof and catalyst composition
JP2016547209A JP6302565B2 (ja) 2013-10-12 2013-11-11 メタロセン錯体及びその製造方法、触媒組成物
DK13895318.7T DK3056505T3 (en) 2013-10-12 2013-11-11 Metallocene complex, process for its preparation and catalyst composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310478190.3A CN104558058B (zh) 2013-10-12 2013-10-12 茂金属配合物及其制备方法、催化剂组合物
CN201310478190.3 2013-10-12

Publications (1)

Publication Number Publication Date
WO2015051569A1 true WO2015051569A1 (zh) 2015-04-16

Family

ID=52812481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086850 WO2015051569A1 (zh) 2013-10-12 2013-11-11 茂金属配合物及其制备方法、催化剂组合物

Country Status (6)

Country Link
US (1) US9896519B2 (zh)
EP (1) EP3056505B1 (zh)
JP (1) JP6302565B2 (zh)
CN (1) CN104558058B (zh)
DK (1) DK3056505T3 (zh)
WO (1) WO2015051569A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9896519B2 (en) 2013-10-12 2018-02-20 Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences Metallocene complex, preparation method thereof and catalyst composition
CN110218272A (zh) * 2019-06-20 2019-09-10 中国科学院长春应用化学研究所 一种聚异丁烯及异丁烯共聚物的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150731A1 (ja) * 2016-03-04 2017-09-08 日本ポリエチレン株式会社 メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
CN108690167B (zh) * 2017-04-11 2021-07-23 中国科学院长春应用化学研究所 一种乙烯与共轭二烯的共聚物及其制备方法
CN108070041B (zh) * 2017-07-11 2020-12-01 衢州蓝然新材料有限公司 一种醇溶性磺酸型阳离子交换树脂的制造方法
CN109467661B (zh) * 2018-11-05 2020-06-16 大连理工大学 功能化苯乙烯类热塑性弹性体及其制备方法
CN110372813B (zh) * 2019-08-19 2022-06-28 迈瑞尔实验设备(上海)有限公司 一种用于催化乙烯聚合制备聚乙烯蜡的催化剂组合物及其应用
JP2021091791A (ja) * 2019-12-10 2021-06-17 出光興産株式会社 スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体
CN113292667B (zh) * 2021-05-06 2022-03-29 中国科学院长春应用化学研究所 一种多元共聚物及其制备方法
CN113968926B (zh) * 2021-10-29 2023-01-13 大连理工大学 一类乙烯/α-烯烃/功能化苯乙烯衍生物三元共聚物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010349A (zh) * 2004-07-02 2007-08-01 独立行政法人理化学研究所 含金属茂配合物的聚合催化剂组合物和使用其制备的聚合物
US20080221275A1 (en) 2006-11-30 2008-09-11 Baugh Lisa S Ethylene/dicyclopentadiene/norbornene terpolymer materials having desirable structural and thermal properties
CN101443343A (zh) * 2006-05-09 2009-05-27 独立行政法人理化学研究所 金属茂络合物和含有它的聚合反应催化剂组合物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539124A (en) * 1994-12-19 1996-07-23 Occidental Chemical Corporation Polymerization catalysts based on transition metal complexes with ligands containing pyrrolyl ring
ID22443A (id) * 1996-11-15 1999-10-14 Montelll Technology Co Bv Metallosena heterosiklik dan polimerisasi katalis
DE19735259A1 (de) * 1997-08-14 1999-02-18 Studiengesellschaft Kohle Mbh Ein- und mehrkernige Übergangsmetallkomplexe mit an einzelne Metallatome gebundenen Pentalenliganden
IL130713A0 (en) * 1997-11-12 2000-06-01 Montell Technology Company Bv Metallocenes and catalysts for olefin-polymerisation
WO1999058539A1 (en) * 1998-05-08 1999-11-18 Montell Technology Company B.V. Metallocenes, ligands and olefin polymerization
US6444833B1 (en) * 1999-12-15 2002-09-03 Basell Technology Company Bv Metallocene compounds, process for their preparation and their use in catalytic systems for the polymerization of olefins
JP4358470B2 (ja) * 1999-12-28 2009-11-04 バセル テクノロジー カンパニー ビー.ブイ. メタロセン化合物、リガンド、触媒、ポリマーの製造方法及びプロピレンホモポリマー
EP2061136A1 (de) 2007-11-19 2009-05-20 Siemens Aktiengesellschaft Elektrischer Direktantrieb für eine Walze
JP5713380B2 (ja) * 2010-03-11 2015-05-07 独立行政法人理化学研究所 ブロック共重合体の製造方法、それに用いる触媒組成物、およびブロック共重合体
CN101880295B (zh) * 2010-03-12 2012-11-07 中国科学院长春应用化学研究所 限制几何构型稀土配合物及制法和该配合物在苯乙烯间规聚合中的应用
CN104558058B (zh) 2013-10-12 2017-08-08 中国科学院长春应用化学研究所 茂金属配合物及其制备方法、催化剂组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010349A (zh) * 2004-07-02 2007-08-01 独立行政法人理化学研究所 含金属茂配合物的聚合催化剂组合物和使用其制备的聚合物
US20070232758A1 (en) 2004-07-02 2007-10-04 Riken Polymerization Catalyst Compositions Containing Metallocene Complexes and Polymers Produced by Using the Same
CN101443343A (zh) * 2006-05-09 2009-05-27 独立行政法人理化学研究所 金属茂络合物和含有它的聚合反应催化剂组合物
US20080221275A1 (en) 2006-11-30 2008-09-11 Baugh Lisa S Ethylene/dicyclopentadiene/norbornene terpolymer materials having desirable structural and thermal properties

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
F. GUO; M. NISHIURA; H. KOSHINO; Z. HOU, MACROMOLECULES, vol. 44, 2011, pages 2400
F. GUO; M. NISHIURA; H. KOSHINO; Z. HOU, MACROMOLECULES, vol. 44, 2011, pages 6335
K. C. HULTZSCH; T. P. SPANIOL; J. OKUDA, ANGEW. CHEM. INT. ED, vol. 38, 1999, pages 227
NAGA, N., J. POLYM. SCI., PART A: POLYM. CHEM, vol. 43, 2005, pages 1285 - 1291
See also references of EP3056505A4
Y.LUO; J.BALDAMUS; Z. HOU, J. AM. CHEM. SOC., vol. 126, 2004, pages 13910

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9896519B2 (en) 2013-10-12 2018-02-20 Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences Metallocene complex, preparation method thereof and catalyst composition
CN110218272A (zh) * 2019-06-20 2019-09-10 中国科学院长春应用化学研究所 一种聚异丁烯及异丁烯共聚物的制备方法

Also Published As

Publication number Publication date
US9896519B2 (en) 2018-02-20
EP3056505B1 (en) 2019-01-02
JP6302565B2 (ja) 2018-03-28
US20160229928A1 (en) 2016-08-11
EP3056505A1 (en) 2016-08-17
DK3056505T3 (en) 2019-03-25
EP3056505A4 (en) 2017-05-17
CN104558058B (zh) 2017-08-08
CN104558058A (zh) 2015-04-29
JP2016540034A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
WO2015051569A1 (zh) 茂金属配合物及其制备方法、催化剂组合物
CN106132975B (zh) 茂金属配合物和生产烯烃聚合物的方法
Bianchini et al. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino) pyridine ligands
CN106661142B (zh) 配体化合物、过渡金属化合物和包含该化合物的催化剂组合物
TW420693B (en) Olefin polymerization catalysts, transition metal compounds, and <alpha>-olefin/conjugated diene copolymers
CN101906187B (zh) 限制几何构型稀土配合物在高选择性共轭双烯烃-苯乙烯无规或嵌段共聚合中的应用
CN103732606B (zh) 新的环戊并[B]芴基过渡金属化合物、包含其的催化剂组合物和使用其制备乙烯均聚物或乙烯和α‑烯烃的共聚物的方法
CN101880295B (zh) 限制几何构型稀土配合物及制法和该配合物在苯乙烯间规聚合中的应用
Wang et al. Novel Titanium Catalysts Bearing an [O, N, S] Tridentate Ligand for Ethylene Homo‐and Copolymerization
EP3312201B1 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
CN106795229B (zh) 金属茂-负载型催化剂以及使用该催化剂制备聚烯烃的方法
TW201938602A (zh) 矽封端之遙爪聚烯烴組成物及其製備程序
JP4988754B2 (ja) 4族遷移金属化合物を含む触媒組成物およびそれを用いたポリオレフィンの製造方法
JP7148516B2 (ja) オレフィン重合触媒用遷移金属化合物、これを含むオレフィン重合触媒およびこれを用いて重合されたポリオレフィン
KR20160009264A (ko) 신규한 리간드 화합물 및 전이금속 화합물
CN105985368B (zh) 含杂原子的π-配体的茂金属络合物及其制备方法、其催化剂体系和催化剂体系的应用
JP2018509465A (ja) ヘテロ原子含有π−配位子のメタロセン錯体及びその製造方法、その触媒系及び触媒系の応用
WO2001053362A1 (en) Metallocene catalysts comprising monocyclic siloxy substituted cyclopentadienyl group(s) for the polymerisation of olefins
WO2016195424A1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
Cortial et al. Neutral ansa-bis (fluorenyl) silane neodymium borohydrides: synthesis, structural study and behaviour as catalysts in butadiene–ethylene copolymerisation
KR20160009265A (ko) 신규한 리간드 화합물 및 전이금속 화합물의 제조방법
Polo-Cerón et al. Synthesis and structural characterization of novel three carbon atom bridged ansa-bis (indenyl) zirconocene complexes: Applications in ethylene polymerization
KR20140006726A (ko) 리간드 화합물 및 전이금속 화합물의 제조방법
JP6227457B2 (ja) フルオレン化合物、遷移金属化合物、オレフィン重合用触媒、およびオレフィン重合体の製造方法
Pinkas et al. Dehydrocoupling of SiMe 2 H substituents in permethylated zirconocene complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15025244

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016547209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013895318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013895318

Country of ref document: EP