WO2015046058A1 - 長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置 - Google Patents

長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置 Download PDF

Info

Publication number
WO2015046058A1
WO2015046058A1 PCT/JP2014/074854 JP2014074854W WO2015046058A1 WO 2015046058 A1 WO2015046058 A1 WO 2015046058A1 JP 2014074854 W JP2014074854 W JP 2014074854W WO 2015046058 A1 WO2015046058 A1 WO 2015046058A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
electrode pad
impedance
unit
tape
Prior art date
Application number
PCT/JP2014/074854
Other languages
English (en)
French (fr)
Inventor
吾 根武谷
Original Assignee
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所 filed Critical 学校法人北里研究所
Priority to JP2015539166A priority Critical patent/JP6420246B2/ja
Priority to EP14849148.3A priority patent/EP3054262B1/en
Priority to US15/025,615 priority patent/US10357179B2/en
Publication of WO2015046058A1 publication Critical patent/WO2015046058A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/10Measuring tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • G01B7/293Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures for measuring radius of curvature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
    • A61B2562/182Electrical shielding, e.g. using a Faraday cage

Definitions

  • the present invention relates to a length measurement device, a length measurement method, a program, a shape estimation device, and a body fat percentage measurement device that measure the length of a measurement object.
  • Patent Document 1 An electronic tape measure (electronic major) has been promoted (see, for example, Patent Document 1).
  • the electronic measure described in Patent Document 1 has a configuration in which the tape portion is pulled out from the main body like a general tape measure, and the length of the tape portion pulled out from the main body is acquired by a sensor provided in the main body. . According to such an electronic measure, the user can easily grasp the length of the measurement object without needing to read the scale on the tape part of the measurement object.
  • the above-mentioned electronic measure is drawn out or stored when the tape portion is pulled out from the main body or stored (winded) in the main body.
  • the length of the part is detected by an optical sensor. Therefore, the user needs to perform a process of pulling out the tape portion or storing it in the main body when measuring the length.
  • the present invention provides a length measurement device, a length measurement method, a program, a shape estimation device, and a body fat percentage measurement device that can reduce the burden on the user during length measurement.
  • a length measuring device includes a plurality of electrode pads arranged, a tape portion wound around a measurement object, and a tape portion used among the plurality of electrode pads.
  • the length measuring device further includes a positional relationship data storage unit that stores positional relationship data indicating the positional relationship of the plurality of electrode pads, and the length calculation unit. The length between the electrode pad pairs is calculated using the positional relationship data.
  • the tape portion is formed by arranging the plurality of electrode pads on a flexible substrate.
  • the plurality of electrode pads are arranged along the longitudinal direction of the tape portion, and the impedance acquisition unit selects a plurality of the electrode pad pairs.
  • the electrical impedance between them is acquired, and the length calculation unit includes a region of the tape unit in which the electrode pad pairs whose electrical impedance is equal to or less than a determination threshold are arranged. Identify and calculate the length of the identified region.
  • the impedance acquisition unit selects a plurality of electrode pad pairs arranged with a first separation distance, and each of the plurality of electrode pad pairs.
  • the length calculation unit is an area in which the electrical impedance acquired in the first acquisition step is equal to or less than the determination threshold in the tape unit.
  • the electrical impedance acquired in the second acquisition step is less than or equal to the determination threshold when there are a plurality of adjacent regions that are separated from non-proximity regions that are regions that exceed the determination threshold. And if it is equal to or smaller than the determination threshold, the length of the entire area where the plurality of adjacent areas exist is calculated.
  • the tape portion is coated with a coating portion whose surface is made of an insulator.
  • the tape portion is connected to any one surface of the plurality of electrode pads and the electrode pad inside the coating portion.
  • a shield portion made of a conductor formed to cover both sides of the routing wiring is further provided.
  • the tape portion is formed by forming the electrode pad and the lead wiring connected thereto with a conductive fiber.
  • the tape unit further includes a plurality of curvature sensors arranged along a longitudinal direction, and has a curvature radius detected by the plurality of curvature sensors. Based on the above, the tape unit further includes a shape estimation unit that estimates the shape of a region wound around the measurement object.
  • each of the plurality of curvature sensors is provided integrally with each of the plurality of electrode pads.
  • the length measurement device described above calculates the body fat percentage of the living body around which the tape unit is wound based on the electrical impedance acquired by the impedance acquisition unit.
  • a calculation unit is further provided.
  • the length measuring method includes a tape unit in which a plurality of electrode pads are periodically arranged along the longitudinal direction, and the tape unit is used by being wound around a measurement object.
  • a length measurement method using an apparatus wherein an impedance acquisition unit selects a plurality of electrode pad pairs from the plurality of electrode pads, and acquires an electrical impedance between the plurality of electrode pad pairs.
  • the length calculation unit specifies a region in the tape unit where the electrode pad pair having the electrical impedance equal to or less than the determination threshold is arranged, and calculates the length of the specified region.
  • the program is a computer of a length measuring device including a tape unit in which a plurality of electrode pads are periodically arranged along the longitudinal direction and wound around a measurement object. Selecting a plurality of electrode pad pairs from among the plurality of electrode pads, and obtaining impedance between the electrode pad pairs for each of the plurality of electrode pad pairs; A region where electrode pad pairs that are equal to or less than the determination threshold are arranged is specified, and a length calculating unit that calculates the length of the specified region is caused to function.
  • the shape estimation apparatus includes a tape unit in which a plurality of curvature sensors are arranged along the longitudinal direction, wound around a measurement object, and the plurality of curvature sensors. And a shape estimation unit that estimates the shape of a region of the tape unit that is wound around the measurement object based on the radius of curvature detected by the above.
  • the body fat percentage measuring device includes a plurality of electrode pads periodically arranged along the longitudinal direction, and a tape portion wound around a living body and used.
  • a plurality of electrode pad pairs are selected from the pads, and for each of the plurality of electrode pad pairs, an impedance acquisition unit that acquires electrical impedance therebetween, and the tape based on the electrical impedance acquired by the impedance acquisition unit
  • a body fat percentage calculating unit that calculates the body fat percentage of the living body around which the part is wound.
  • the burden on the user when measuring the length can be reduced.
  • FIG. 1 is a diagram illustrating an outline of a length measurement apparatus according to the first embodiment.
  • the length measuring device 1 includes a tape portion 10 and a main body portion 20.
  • the tape unit 10 is made of a flexible material like a normal tape measure (measure), and is wound around a reel inside the main body unit 20 and stored.
  • the user of the length measuring device 1 measures the length of the measurement object by pulling out the tape part 10 from the main body part 20 and winding the tape part around the measurement object.
  • FIG. 2 is a diagram illustrating a configuration of a tape portion of the length measuring device according to the first embodiment.
  • the tape unit 10 includes a flexible substrate 11 and a coating unit 12.
  • the flexible substrate 11 has a plurality of electrode pads 100a, 100b, 101a, 101b,..., 10na, 10nb (n is an integer of 1 or more) periodically arranged along the longitudinal direction.
  • the electrode pads 100a, 100b,... Are formed on the flexible substrate 11 at equal intervals (for example, 1 mm intervals).
  • the flexible substrate 11 is formed of a resin material having shape flexibility and electrical insulation.
  • the electrode pads 100a, 100b,... And the routing wiring 120 illustrated in FIGS.
  • each electrode pad 100a, 100b,... On the tape portion 10 is extended from the reference point O (position of the electrode pad 100a) to each electrode pad 100a, 100b, 101a,. It is expressed by the separation distance.
  • the electrode pads 100a, 101a,... are used as anode terminals to which an AC voltage signal for electrical impedance measurement is applied.
  • the electrode pads 100b, 101b,... are used as cathode terminals to which a ground potential is applied.
  • the coating portion 12 is made of an insulator such as resin or fiber, and coats the entire surface of the flexible substrate 11 including the electrode pads 100a, 100b,. In this way, the coating portion 12 coats the entire flexible substrate 11, so that the electrode pads 100a, 100b,... Are not exposed to the outside, thereby preventing rust and alteration, or each electrode pad 100a, Failure due to electrostatic breakdown through 100b... Can be reduced.
  • FIG. 3A and 3B are a first diagram and a second diagram, respectively, illustrating the configuration of the tape unit of the length measuring device according to the first embodiment in more detail.
  • FIG. 3A shows a front view of a part of the tape unit 10.
  • the flexible substrate 11 has a lead wiring 120 therein.
  • the lead wiring 120 is formed in the same layer as the electrode pads 100a, 100b,..., For example, one is connected to each of the electrode pads 100a, 100b,. It is connected to the main unit 20 (electrode selection unit 25 (FIG. 4) described later).
  • the main body 20 sends a high-frequency signal to each of the electrode pads 100a, 100b,... Via the connector 13 and the routing wiring 120.
  • FIG. 3B shows a schematic cross-sectional view of the tape portion 10.
  • the flexible substrate 11 includes a signal wiring portion 100 that is a conductor layer on which the electrode pads 100a, 100b,... And the routing wiring 120 are formed, and shield portions 111 and 112 that are other layers. Have a structure in which multiple layers are stacked with an insulating layer 113 interposed therebetween.
  • the shield portions 111 and 112 are conductor layers formed of a conductor, like the signal wiring portion 100 in which the electrode pads 100a, 100b, etc. are formed. Further, the shield portions 111 and 112 are grounded at the main body portion 20 and fixed at the ground potential.
  • the “surface side U” and “back side D” of the tape unit 10 are specified and a schematic cross-sectional view of the tape unit 10 is shown. The length measurement is performed with the “surface side U” of the tape unit 10 facing the object to be measured.
  • the shield portions 111 and 112 are formed on the “front surface side U” and the “rear surface side D” shown in FIG. 3B with respect to the signal wiring portion 100 via the insulating layer 113, respectively. . That is, the signal wiring portion 100 is arranged in the flexible substrate 11 so as to be sandwiched between the shield portions 111 and 112 from the “front surface side U” and the “back surface side D”.
  • the shield part 111 laminated on the “surface side U” of the signal wiring part 100 has an intermittent part 111a in a region facing the surface of the electrode pads 100a, 100b,. Is formed. Thereby, the opposing surfaces of the electrode pads 100a, 100b,...
  • the shield portion 111 covers a portion other than the region where the opposing surfaces of the electrode pads 100a, 100b,... Of the signal wiring portion 100 exist, particularly the region where the routing wiring 120 is disposed.
  • the shield part 112 is formed so as to cover the entire “back side D” of the signal wiring part 100 without having an intermittent part.
  • the shield portions 111 and 112 are disposed on the inner side of the coating portion 12, either one of the electrode pads 100 a, 100 b,... (The “surface side U” surface) and the electrode pads 100 a, 100 b. ,... Are formed so as to cover both sides of the routing wiring 120 connected to (FIGS.
  • FIG. 4 is a diagram illustrating a functional configuration of the main body portion of the length measuring device according to the first embodiment.
  • each functional configuration of the main body 20 will be described in detail with reference to FIG.
  • the wiring of the circuit connecting the functional units is indicated by a solid line
  • the flow of signals (information) between the functional units is indicated by a broken line.
  • the main body unit 20 includes a control unit 21, an oscillation source 22, a voltmeter 23, an ammeter 24, an electrode selection unit 25, and a display unit 26.
  • the control unit 21 is a CPU (Central processing unit) that controls the entire processing of the length measuring device 1, and has functions as an impedance acquisition unit 210 and a length calculation unit 211. Specific functions of the impedance acquisition unit 210 and the length calculation unit 211 will be described later.
  • CPU Central processing unit
  • the oscillation source 22 has one terminal connected to a reference potential (ground potential) point, and outputs an AC voltage signal having a predetermined frequency based on the ground potential at the other terminal.
  • the oscillation source 22 receives a control signal from the control unit 21 (impedance acquisition unit 210) and outputs an AC voltage signal.
  • the voltmeter 23 and the ammeter 24 each acquire a voltage value and a current value on the circuit shown in FIG. 4 and output them to the control unit 21 (impedance acquisition unit 210).
  • the voltmeter 23 and the ammeter 24 may be an A / D (Analog / Digital) converter that acquires detected voltage and current as voltage information and current information (sampling value).
  • the electrode selection unit 25 is a relay switch that changes the circuit wiring in accordance with a control signal supplied from the control unit 21 (impedance acquisition unit 210). Specifically, the electrode selection unit 25 selects any one of the lead wires 120 connected to the electrode pads 100a, 101a, 102a,... As the anode-side electrode pad via the connector 13. Select and connect to the oscillation source 22 (the “other terminal”). Further, the electrode selection unit 25 selects any one of the lead wires 120 connected to the electrode pads 100b, 101b, 102b,... Connecting.
  • the display unit 26 displays the length information based on the length information (information indicating the measurement result of the length) supplied from the control unit 21 (length calculation unit 211), and allows the user to visually recognize the length information.
  • the display unit 26 is configured by, for example, a simple liquid crystal display device.
  • the impedance acquisition unit 210 selects a plurality of two electrode pads (electrode pad pairs) from the plurality of electrode pads 100a, 100b,..., And sets the electrical impedance therebetween for each of the plurality of electrode pad pairs. get. Specifically, the impedance acquisition unit 210 outputs a control signal to the above-described oscillation source 22 to output an AC voltage signal having a predetermined frequency (for example, on the order of several MHz to several hundred MHz), and the voltmeter 23, The electrical impedance is acquired based on the voltage information and current information acquired via the ammeter 24.
  • a predetermined frequency for example, on the order of several MHz to several hundred MHz
  • the impedance acquisition unit 210 also outputs a control signal to the electrode selection unit 25, and selects two of the electrode pads 100a, 100b,.
  • the electrode selection unit 25 selects and connects the electrode pad 100a and the electrode pad 100b according to the control signal of the impedance acquisition unit 210. Then, the impedance acquisition unit 210 acquires the electrical impedance between the two electrode pads 100a and 100b.
  • the impedance acquisition unit 210 acquires the electrical impedance between one electrode pad pair (for example, the electrode pad 100a and the electrode pad 100b), and temporarily stores and holds the electrical impedance. And the impedance acquisition part 210 selects another electrode pad pair (for example, electrode pad 100b and electrode pad 101a), and acquires the electrical impedance between them. The impedance acquisition unit 210 repeats such processing to acquire the electrical impedance between the electrode pad pairs in the entire range of the tape unit 10. A specific processing flow of the impedance acquisition unit 210 (control unit 21) will be described in detail with reference to a flowchart diagram (FIG. 7) described later.
  • the circuit comprised in the main-body part 20 mentioned above is an example, Comprising: In this embodiment, it is not limited to a circuit as shown in FIG.
  • the circuit shown in FIG. 4 may include various elements (resistance elements, capacitors, etc.) for impedance matching, and amplifiers (amplifiers) and filters for improving detection accuracy as appropriate.
  • the impedance acquisition part 210 mentioned above demonstrated as what acquires the electrical impedance between electrode pad pairs based on the voltage information and current information which are acquired via the voltmeter 23 and the ammeter 24, this embodiment
  • the length measuring device 1 according to the modified example is not limited to this mode.
  • the impedance acquisition unit 210 of the length measurement device 1 may detect a reflection component based on the impedance mismatch of the output from the oscillation source 22 and acquire the electrical impedance based on this. Good.
  • any mode may be used as long as the electrical impedance between the electrodes can be acquired.
  • the length calculation unit 211 refers to a series of electrical impedances acquired by the impedance acquisition unit 210 (FIG. 6 to be described later), and the electrode pad pair whose electrical impedance is equal to or less than a predetermined determination threshold among the tape unit 10
  • the arrayed area is specified, and the length of the specified area is calculated.
  • the length calculation unit 211 performs processing for outputting information indicating the calculated length (length information) to the display unit 26. The specific processing contents of the length calculation unit 211 will be described later.
  • FIG. 5A and 5B are a first diagram and a second diagram, respectively, for explaining the operation of the length measuring apparatus according to the first embodiment.
  • FIG. 5A shows a state in which the tape unit 10 is arranged so as to be partially wound around the measurement object X.
  • FIG. 5B shows a state in which the tape unit 10 is arranged so as to be partially wound around the measurement object X.
  • FIG. 5A the case where the tape unit 10 is arranged along the periphery of the measurement object X that is a living body from the position A1 to the position A2 will be described.
  • the tape unit 10 is close to the measurement object X in the region from the position A1 to the position A2, and is separated from the measurement object X in the other regions.
  • FIG. 5B is a diagram showing in detail the vicinity of the position A1 of the tape portion 10 in the state shown in FIG. 5A.
  • the electrode pads 100a, 100b, 101a, 101b, 102a, and 102b are arranged as shown in FIG. 5B in the vicinity of the position A1.
  • the impedance acquisition unit 210 for example, between the electrode pads 100a-100b, between the electrode pads 101a-100b, between the electrode pads 101a-101b,.
  • the electrical impedance between each electrode pad pair is acquired while changing the pairs in order.
  • the electrical impedance acquired by the impedance acquisition unit 210 is a value dependent on the electric fields E0, E1,..., E4 (FIG. 5B) generated between the electrode pad pairs.
  • the electrode pads 100a and 100b are not close to the measurement object X, and the electric field E0 generated therebetween is generated in the atmosphere.
  • the electrode pads 102a and 102b are close to the measurement object X at the position A1, the electric field E4 generated therebetween passes through the measurement object X (in vivo). Therefore, the electrical impedance between the electrode pads 102a and 102b is measured lower than the electrical impedance between the electrode pads 100a and 100b. That is, since the electrode pads 100a, 100b,...
  • the electrical impedance between the electrode pad pairs belonging to the region is measured low, and in the region where the tape unit 10 is not close to the measurement object X.
  • the electrical impedance between the electrode pad pairs belonging to the region is measured high.
  • FIG. 6 is a third diagram for explaining the operation of the length measuring apparatus according to the first embodiment.
  • the horizontal axis indicates the position A of the tape portion 10
  • the vertical axis indicates the electrical impedance Z between the electrode pairs arranged at the position A.
  • the electrical impedance Z acquired by the impedance acquisition unit 210 is low between the electrode pad pairs belonging to the region close to the measurement object X, and belongs to the region not close to The tendency to become high appears between electrode pad pairs. Therefore, in the state shown in FIGS. 5A and 5B, the electrical impedance Z acquired by the impedance acquisition unit 210 is acquired as in the graph shown in FIG.
  • the electrical impedance Z gradually decreases from the vicinity of the position A1 of the tape portion 10, and a region where the low electrical impedance Z is acquired continues in the region (position A1 to position A2) close to the measurement object X. .
  • the high impedance Z is acquired again after the position A2 after the region separated from the measurement object X starts again.
  • the length calculation unit 211 refers to the series of electrical impedances (FIG. 6) acquired by the impedance acquisition unit 210, and the electrical impedance Z of the tape unit 10 is a predetermined determination threshold value. A region where electrode pad pairs that are equal to or smaller than Zth are arranged is specified, and the length of the specified region is calculated. Specifically, the length calculation unit 211 stores a determination threshold value Zth for performing a determination process in advance. And as shown in FIG. 6, the area
  • the length calculation unit 211 stores each electrode pad 100a, 100b,...
  • the length calculation unit 211 includes an identifier assigned to each electrode pad 100a, 100b,... And a position on the tape unit 10 where each of the electrode pads 100a, 100b,. (Distance from a predetermined reference point) and a positional relationship data storage unit (not shown) stored in advance in association with each other. Thereby, the length calculation unit 211 detects, for example, that the electrical impedance Z between the electrode pads 102a and 102b is equal to or less than the determination threshold value Zth, and the position on the tape unit 10 corresponding to the electrode pads 102a and 102b. In A1, it can be determined that the measurement object X is a close position.
  • FIG. 7 is a diagram illustrating a processing flow of the control unit of the length measuring apparatus according to the first embodiment.
  • the processing flow of the control unit 21 having the functions described above will be described in order with reference to FIG.
  • the processing flow of the control unit 21 shown in FIG. 7 starts immediately after the user performs an operation to make the length measuring device 1 usable (for example, immediately after turning on the main power).
  • the impedance acquisition unit 210 of the control unit 21 selects two of the electrode pads 100a, 100b,... Periodically arranged on the tape unit 10 to acquire the electrical impedance Z (step S10).
  • the impedance acquisition unit 210 outputs a predetermined control signal to the electrode selection unit 25, thereby controlling the electrode selection unit 25.
  • the electrode selection unit 25 performs a wiring connection process according to the control signal, and selects a desired electrode pad pair.
  • the impedance acquisition unit 210 selects the two electrode pads 100a and 100b.
  • the impedance acquisition unit 210 acquires the electrical impedance Z between the selected electrode pads 100a and 100b (step S11).
  • the impedance acquisition unit 210 first outputs a control signal for starting measurement to the oscillation source 22.
  • the oscillation source 22 outputs an AC voltage signal having a predetermined frequency based on a control signal for starting measurement. This AC voltage signal is transmitted through the medium between the electrode pads 100 a and 100 b and is detected by the voltmeter 23 and the ammeter 24.
  • the impedance acquisition unit 210 acquires voltage impedance and current information detected by the voltmeter 23 and the ammeter 24 and acquires electrical impedance.
  • the impedance acquisition unit 210 determines whether or not to select the next electrode pad pair (step S12). For example, when the electrode pads 100a and 100b are selected in step S10, the impedance acquisition unit 210 determines that there is the next electrode pad (step S12: YES), and in step S10, the next electrode pad pair is determined. (Electrode pads 100b and 101a) are selected.
  • the impedance acquisition unit 210 repeats the processes of steps S10 to S12 to acquire the electrical impedance between the pair of electrode pads 100a, 100b,... Adjacent in order from the reference point O of the tape unit 10. Then, when the electrical impedance between the electrode pads 10na and 10nb at the end is acquired, the electrical impedance acquisition process is terminated (step S12: NO).
  • the length calculation unit 211 of the control unit 21 performs a calculation process of the length ⁇ A with reference to the acquired electrical impedance (step S10). S13). Specifically, as described above, the determination threshold Zth and the electrical impedance Z are compared, and the proximity region ⁇ where the electrical impedance Z is equal to or less than the determination threshold Zth is specified (see FIG. 6). Then, the length ⁇ A of the proximity region ⁇ that is a region close to the measurement object X is calculated.
  • the length calculation unit 211 calculates the length ⁇ A only when there is a proximity region ⁇ in which the electrical impedance Z is equal to or less than the determination threshold value Zth in step S13, and any region on the tape unit 12 is calculated. If it is not less than or equal to the determination threshold Zth, the process of calculating the length ⁇ A may not be executed.
  • the length calculation unit 211 outputs length information indicating the calculated length ⁇ A to the display unit 26, displays the calculation result (length measurement result) (step S14), and ends the measurement process. As a result, the user can grasp the length of the measurement object X (the region of positions A1 and A2).
  • the control unit 21 of the length measuring apparatus 1 may wait for a predetermined time after the end of step S14, and then return to step S10 to periodically repeat the series of measurement processes of steps S10 to S14. Thereby, since the latest result of the length measurement is always displayed on the display unit 26 while being updated, convenience for the user is improved.
  • the control unit 21 may separately execute a series of measurement processes in steps S10 to S14 upon detecting the pressing of the “measurement start button” provided on the main body unit 20. In this way, the length measurement can be started at a timing desired by the user (a timing when the measurement start button is pressed). Furthermore, in this case, when the length measurement is completed, an electronic sound may be output to make the user recognize that fact.
  • the control unit 21 determines the electrical impedance between the electrode pad pairs of the electrode pads 100a, 100b,. Based on the comparison, the length of the area close to the measuring object X is automatically calculated.
  • the length measuring apparatus 1 according to the present embodiment, the user can grasp the length ( ⁇ A) of the portion that is wound and touched only by winding the tape portion 10 around the measurement object X. .
  • the length measuring apparatus 1 can know the length of the portion on the display unit 26 just by wrapping the tape unit 10 around a desired portion, so that the shoulder width and the arm The length can be easily grasped independently even if it is a measurement about any part such as a turn.
  • the electrode pads 100a, 100b since the electrical impedance between each electrode pad pair is determined using an alternating voltage signal having a predetermined frequency generated by the oscillation source 22, the electrode pads 100a, 100b,. There is no need to acquire. Therefore, as with a normal measure, for example, the length can be measured by wrapping the tape portion 10 while wearing clothes. Moreover, it can also be set as the structure which covers electrode pad 100a, 100b, ... with the film part 12 formed with resin, a fiber, etc. (refer FIG. 2, FIG. 3A, FIG. 3B), electrode pad 100a, Rust and alteration of 100b,... Can be prevented.
  • the length measurement device As described above, according to the length measurement device according to the first embodiment, it is possible to reduce the burden on the user when measuring the length.
  • the length measuring device 1 according to the first embodiment is not limited to the above-described aspect, and can be modified as follows, for example.
  • FIG. 8 is a diagram illustrating a configuration of a tape portion of a length measuring device according to a modification of the first embodiment.
  • the tape unit 10 of the length measuring device 1 according to the first embodiment has a total of three conductor layers of the signal wiring unit 100 and the shield units 111 and 112 laminated. It has been explained that the flexible substrate 11 is used.
  • the length measuring device 1 according to the modification of the first embodiment is not limited to this aspect.
  • the lead-out wiring 120 may be formed in a layer different from the layer in which the electrode pads 100a, 100b,. Good.
  • a contact portion 121 is provided to penetrate between the layer in which the electrode pads 100a, 100b,... Are formed and the layer in which the routing wiring 120 is formed, and each tape portion 10 and the routing wiring 120 are connected to each other. Connection is made through the contact part 121.
  • the routing wiring 120 it is possible to arrange the routing wiring 120 on the back side of the electrode pads 100a, 100b,..., Thereby reducing the size of the entire tape unit 10 ( Thinning).
  • a conductor layer is further added between the layer in which the electrode pads 100a, 100b,... Are formed and the layer in which the lead wiring 120 is formed, so that the lead wiring 120 is formed.
  • a shield layer that covers only the conductor layer may be further formed.
  • FIG. 9 is a diagram illustrating a configuration of a tape portion of a length measuring device according to another modification of the first embodiment.
  • the electrode pads 100 a, 100 b,... May be periodically arranged on the tape unit 10 in a staggered manner. Good.
  • the impedance acquisition unit 210 attempts to acquire the electrical impedance between the electrode pads 101a and 101b in FIG. 3A, the electric field generated between the electrode pads 101a and 101b is adjacent due to capacitive coupling.
  • the routing wiring 120 of the length measuring device 1 according to the first embodiment is described as being connected to each electrode pad 100a, 100b,. did.
  • the length measuring device 1 according to another modification is not limited to this aspect.
  • the tape unit 10 of the length measuring device 1 according to the modification has a multiplexer inside, and this multiplexer allows one lead-out wiring 120 to be connected to a plurality of electrode pads 100a, 100b,. Share.
  • the control unit 21 performs a process of controlling the multiplexer and selecting which electrode pad to connect the single lead wiring 120. In this way, one control line for the multiplexer is added. For example, if one lead wiring 120 is shared by ten electrode pads, nine lead wirings can be reduced. By doing in this way, the number of routings which should be formed in tape part 10 (flexible substrate 11) can be reduced, and tape part 10 can be made thin.
  • the length measuring apparatus 1 which concerns on 1st Embodiment acquires an electrical impedance non-contactingly with respect to the measuring object X with the alternating voltage signal which consists of a predetermined frequency.
  • the length measuring device 1 reads whether or not the facing surfaces of the electrode pads 100a, 100b,... The length may be measured.
  • the tape portion 10 is arranged with the opposed surfaces of the electrode pads 100a, 100b,... Exposed without the coating portion 12 (FIG. 3B) on the “surface side U” being provided. It becomes.
  • the control unit 21 determines whether or not the electrode pads 100a, 100b,...
  • the length measuring apparatus 1 has a length while determining whether or not the facing surfaces of the electrode pads 100a, 100b,... Since measurement is performed, a more accurate measurement result can be obtained.
  • the AC voltage signal output from the oscillation source 22 should have a relatively low frequency. it can. Therefore, the overall configuration of the circuit can be simplified.
  • the impedance acquisition part 210 of the length measuring apparatus 1 which concerns on the above-mentioned 1st Embodiment selects two from electrode pad 100a, 100b, ..., and the application and measurement of an alternating voltage signal in the meantime
  • the impedance acquisition unit 210 of the length measurement device 1 selects four of the electrode pads 100a, 100b,... And exchanges between the electrode pad pairs located at both ends thereof. While applying a voltage signal, it is good also as what acquires the electrical impedance by measuring the voltage and electric current which arise between the electrode pad pairs located inside. By doing in this way, the impedance acquisition part 210 can perform the electrical impedance measurement with high precision which reduced the error factor by electrode pad 100a, 100b, ..., the routing wiring 120 grade
  • the length measuring apparatus 1 includes the flexible substrate 11 in which the tape portion 10 is patterned and laminated with the electrode pads 100a, 100b,..., The shield portions 111, 112, and the like. It has been explained that it is an aspect constituted by the coating film portion 12 covering the whole.
  • the aspect using the flexible substrate 11 in the tape part 10 is only an example, and the tape part 10 can be configured by other methods.
  • the tape unit 10 includes conductive fibers having conductivity and non-conductive fibers (fibers having normal insulating properties). It may be produced in combination.
  • conductive fibers are woven in a pattern similar to the layout of the electrode pads 100a, 100b,... And the routing wiring 120 (FIG. 3A) (electrode fibers). ) May be employed for the tape portion 10.
  • the electrode fibers may be sandwiched with fibers (shield fibers) having conductive fibers woven in the same pattern as the shield portions 111 and 112 (FIG. 3A).
  • the length measuring apparatus 1 may have a function of storing a plurality of pieces of length information obtained continuously by having a storage unit therein.
  • the length calculation unit 211 stores and accumulates length information that is sequentially calculated in a separately provided storage unit.
  • the length measuring device 1 may have a function of arbitrarily displaying a plurality of pieces of length information stored and accumulated in the storage unit on the display unit 26 in accordance with a user operation. By doing in this way, when the user continuously measures the length, width, depth, etc. of the measurement object, for example, it is not necessary to make a memo etc. for each length information measured continuously. Measurement work can be made more efficient.
  • the length measuring device 1 has a predetermined communication unit inside, and the length information calculated by the length calculation unit 211 via the communication unit or the length information accumulated in the storage unit is received. You may provide the function to transfer to an external server. In this case, the length measuring device 1 may have a function of continuously recording a plurality of pieces of length information on an external server (including a smartphone or the like) and sequentially reading them when necessary.
  • an external server including a smartphone or the like
  • a length measuring device according to a second embodiment will be described with reference to the drawings. Since the functional configuration of the length measuring device 1 according to the second embodiment is the same as the functional configuration of the length measuring device 1 according to the first embodiment, illustration of the functional configuration is omitted and each functional unit is illustrated. Are denoted by the same reference numerals, and description thereof is omitted.
  • the length measurement apparatus 1 according to the second embodiment is different from the first embodiment in that the processing contents of the control unit 21 (impedance acquisition unit 210, length calculation unit 211) are different.
  • the functions of the impedance acquisition unit 210 and the length calculation unit 211 according to the second embodiment will be described with reference to FIG.
  • the impedance acquisition unit 210 first selects a plurality of pairs of electrode pads 100a, 100b,... Arranged at a first separation distance, and each of the plurality of electrode pad pairs is selected.
  • the 1st acquisition step which acquires the electrical impedance in the meantime is performed.
  • the impedance acquisition unit 210 selects a plurality of electrode pad pairs arranged with a second separation distance larger than the first separation distance, and sets the electrical impedance between the electrode pad pairs for each of the plurality of electrode pad pairs.
  • a second acquisition step of acquiring is executed.
  • the first separation distance is a distance between adjacent electrode pads
  • the second separation distance is a separation distance corresponding to three electrode pads.
  • the impedance acquisition unit 210 sets adjacent electrode pad pairs (for example, a pair of electrode pads 100a and 100b, a pair of 101a and 100b, a pair of 101a and 101b, etc. Get the electrical impedance every time.
  • the electrical impedance acquisition process according to the first acquisition step has the same processing contents as the impedance acquisition unit 210 according to the first embodiment.
  • the impedance acquisition unit 210 according to the second embodiment further executes a second acquisition step after the first acquisition step. Specifically, in the second acquisition step, the impedance acquisition unit 210 acquires the electrical impedance between each pair of electrode pads separated by a distance of three electrode pads. For example, in the second acquisition step, the impedance acquisition unit 210 selects the electrode pad 100a and the electrode pad 101b arranged at a distance of three electrode pads from the electrode pad 100a, and this electrode pad Get the electrical impedance between the pair.
  • the length calculation unit 211 refers to both the electrical impedance acquired by the first acquisition step and the electrical impedance acquired by the second acquisition step, and the length ⁇ A Is calculated.
  • the specific processing contents will be described with reference to flowcharts (FIGS. 12 and 13) described later.
  • FIG. 10A and 10B are a first diagram and a second diagram illustrating the operation of the length measuring apparatus according to the second embodiment, respectively.
  • FIG. 10A shows a state in which the tape unit 10 is arranged so as to be wound around a part of the periphery of the measurement object X.
  • the tape unit 10 is wound and arranged along the periphery of the measurement object X that is a living body from the position A1 to the position A2.
  • the tape unit 10 is close to the measurement object X in the vicinity of the position A1 and the position A2, but has a gap M in a part of the region between the position A1 and the position A2, and the measurement object X
  • There is an area slightly spaced from As described above, when the length measuring device 1 is used for measuring the length of the living body, a part of the tape portion 10 is affected by the influence of unevenness of the body, wrinkles of clothes, etc. And a state in which a gap is generated between the measurement object X and the measurement object X is assumed.
  • FIG. 10B is a diagram showing in detail a portion where the gap M of the tape portion 10 exists in the state shown in FIG. 10A.
  • the electrode pads 100a, 100b, 101a, 101b, 102a, and 102b are arranged in the vicinity of the gap M as shown in FIG. 10B.
  • the impedance acquisition unit 210 determines, for example, the electrode pad pairs between the electrode pads 100a-100b, between the electrode pads 101a-100b, between the electrode pads 101a-101b,.
  • the electrical impedance between the electrode pad pairs adjacent to each other is sequentially acquired while changing the order.
  • the generation region of the electric field E0 is narrowly limited according to the separation distance between the electrode pads 100a and 100b, the generation region of the electric field E0 does not include the measurement object X existing through the gap M. Therefore, the electrical impedance between the electrode pads 100a and 100b is not affected by the presence or absence of the measurement target X, and a high value similar to the electrical impedance acquired in a range not close to the measurement target X is acquired.
  • the electrical impedance acquired between the electrode pads 101a-100b and between the electrode pads 101a-101b is also the same. That is, when the gap M is generated between the tape unit 10 and the measurement object X, the measurement object X existing through the gap M is detected by the electric field (electric field E0) generated between the adjacent electrode pads. I can't.
  • the impedance acquisition unit 210 acquires the electrical impedance between the electrode pad pairs separated by a separation distance corresponding to three electrode pads. Specifically, as shown in FIG. 10B, the electrical impedances between the electrode pads 100a-101b, between the electrode pads 100b-102a, between the electrode pads 101a-102b,. In this case, since the distance between the electrode pad pairs is wider than that acquired in the first acquisition step, the generation region of the electric field (electric fields E0 ′, E1 ′, E2 ′ in FIG. Expanded. Therefore, as shown in FIG.
  • the electric fields E0 ′, E1 ′, and E2 ′ pass through the region of the measurement object X that exists through the gap M, so that the electrical impedance between each electrode pad pair is measured. Reduced by the influence of the object X. Thus, in the second acquisition step, the presence of the measurement object X can be detected even in the region where the gap M exists.
  • FIG. 11 is a third diagram for explaining the operation of the length measuring apparatus according to the second embodiment.
  • the horizontal axis indicates the position A of the tape portion 10
  • the vertical axis indicates the electrical impedance Z between the electrode pairs arranged at the position A.
  • the electrical impedance acquired in the first acquisition step is indicated by a broken line
  • the electrical impedance acquired in the second acquisition step is indicated by a solid line.
  • the electrical impedance Z acquired by the impedance acquisition unit 210 in the first acquisition step is not affected by the measurement object X in the region where the gap M exists, and is indicated by a broken line in FIG. 11.
  • the electrical impedance is detected high in the region where the gap M exists. Therefore, when the length calculation unit 211 performs the determination with the determination threshold Zth, there are a plurality of adjacent regions ⁇ that are regions that are equal to or less than the determination threshold Zth across the non-proximity region ⁇ that is a region that exceeds the determination threshold Zth.
  • the length ⁇ A ′ that the user originally wants to know may not be calculated correctly.
  • the length calculation unit 211 can determine that the measurement object X is continuous between the positions A1 and A2 based on the determination by the determination threshold value Zth, and correctly calculate the length ⁇ A ′. can do.
  • FIG. 12 is a first diagram illustrating a processing flow of the control unit of the length measuring apparatus according to the second embodiment.
  • the processing flow of the control unit 21 having the functions described above will be described in order with reference to FIG. In addition, about the same processing content as 1st Embodiment, the same code
  • the processing flow of the control unit 21 illustrated in FIG. 12 starts immediately after the user performs an operation to make the length measuring device 1 available (for example, immediately after turning on the main power).
  • the impedance acquisition unit 210 sequentially acquires the electrical impedance between each electrode pad pair while selecting the adjacent electrode pads 100a-100b, 101a-100b,... In steps S10 to S12.
  • the electrical impedance between all electrode pad pairs is acquired (step S12: NO)
  • the first acquisition step is terminated and the process proceeds to step S21.
  • step S21 determines whether or not the second acquisition step has been completed.
  • step S21: NO when only the first acquisition step is completed (step S21: NO), the process proceeds to step S22.
  • step S21: YES when the second acquisition step is completed, the process proceeds to step S13.
  • the impedance acquisition unit 210 again selects each electrode pad in steps S10 to S12 while selecting the electrode pads 100a-101b, 102a-100b,... Separated by three electrode pads.
  • the electrical impedance between the pairs is acquired sequentially.
  • the second acquisition step is terminated, and the process proceeds to step S23 via step S21.
  • the length calculation unit 211 calculates the length ⁇ A of the measurement object X with reference to these. This is performed (step S23). Specific contents of the arithmetic processing in step S23 will be described later.
  • the length calculation unit 211 outputs length information indicating the calculated length ⁇ A to the display unit 26, displays the calculation result (length measurement result) (step S14), and ends the measurement process. As a result, the user can grasp the length of the measurement object X (the region of positions A1 and A2).
  • control unit 21 of the length measuring device 1 waits for a certain period of time after the end of step S14, returns to step S10, and performs a series of steps S10 to S14.
  • the measurement process may be repeated periodically.
  • control unit 21 may separately execute a series of measurement processes in steps S10 to S14 upon detecting the pressing of the “measurement start button” provided on the main body unit 20.
  • FIG. 13 is a second diagram illustrating a processing flow of the control unit of the length measuring apparatus according to the second embodiment.
  • the length calculation unit 211 is a “proximity region ⁇ ” that is a region where the electrical impedance Z acquired by the first acquisition step is equal to or less than the determination threshold Zth, as in the first embodiment.
  • ”And“ non-proximity region ⁇ ”that is an area exceeding the determination threshold Zth (step S230).
  • the length calculation unit 211 determines whether there are a plurality of the proximity regions ⁇ across the non-proximity region ⁇ (step S231). Specifically, the length calculation unit 211 sequentially refers to the electrical impedance value Z acquired for each electrode pad pair, and determines a section in which electrode pad pairs continuously present below the determination threshold Zth exist. One “proximity region ⁇ ” is specified. Then, after the subsequent “non-proximity region ⁇ ” region continues, when an electrode pad pair whose electric impedance value Z is equal to or less than the determination threshold value Zth appears again, this is referred to as the second “proximity region ⁇ . ".
  • the length calculator 211 determines “YES” in step S231.
  • the length calculator 211 refers to the electrical impedance acquired in the second acquisition step (step S233).
  • the length calculation unit 211 determines whether the electrical impedance Z acquired in the second acquisition step is equal to or less than the determination threshold Zth in the electrode pad pair corresponding to the non-proximity region ⁇ specified in the first acquisition step. It is determined whether or not (step S234).
  • the long The height calculation unit 211 considers that the measurement object X is present in the non-proximity region ⁇ via a slight gap (gap M), and a plurality of proximity regions ⁇ are separated from the non-proximity region ⁇ .
  • the length ⁇ A ′ (FIG. 11) of the entire existing area is calculated (step S235).
  • the length calculation unit 211 indicates a plurality of proximity regions ⁇ . Assuming that the measurement object X is separated, the length ⁇ of any one (for example, the adjacent region ⁇ having the longest length) is calculated (step S236).
  • the length calculation unit 211 considers that the measurement object X exists in that region (non-proximity region ⁇ ). Thus, the length that the user actually wants to know (the length ⁇ A ′ in the range from position A1 to position A2) can be calculated.
  • the length measuring device 1 As described above, according to the length measuring device 1 according to the second embodiment, even if a slight gap is generated between the tape unit 10 and the measurement object X, the measurement result varies depending on the presence or absence of the gap. Therefore, it is possible to accurately measure the length desired by the user.
  • the length measuring device acquires a first acquisition step of acquiring an electrical impedance between adjacent electrode pads, and acquires an electrical impedance between electrode pads separated by a larger separation distance.
  • the length measuring device includes a third acquisition step, a fourth acquisition step of acquiring an electrical impedance between the electrode pads separated by a separation distance larger than the separation distance of the electrode pads in the second acquisition step; The acquisition step may be executed.
  • FIG. 14 is a diagram illustrating a configuration of a tape portion of the length measuring device according to the third embodiment.
  • the tape unit 10 of the length measuring device 1 according to the third embodiment includes a plurality of strain gauges 140, 141,..., 14 m (m is an integer equal to or greater than 1), which is an aspect of the curvature sensor. ) At regular intervals B along the longitudinal direction.
  • the strain gauges 140, 141,... Are sensors that output detection signals according to the degree of strain (bending) applied to the strain gauges 140, 141,.
  • the strain gauges 140, 141, ... are formed on the same surface as the electrode pads 100a, 100b, ... and the routing wiring 120 (signal wiring portion 100, see FIG. 3B). Therefore, the strain gauges 140, 141,... Are arranged in an area where the electrode pads 100 a, 100 b,.
  • FIG. 15 is a diagram illustrating a functional configuration of a main body portion of a length measuring device according to the third embodiment.
  • the same functional configuration as that of the first embodiment is denoted by the same reference numeral, and the description thereof is omitted.
  • the main body unit 20 of the length measurement device 1 according to the third embodiment includes a shape estimation unit 212 in the control unit 21.
  • the shape estimation unit 212 is a portion of the measuring object X around which the tape unit 10 is wound based on the detection signals indicating the respective strain states acquired from the strain gauges 140, 141,... (FIG. 5A).
  • the impedance acquisition unit 210 first supplies a predetermined input signal to each of the strain gauges 140, 141, ...
  • the impedance acquisition part 210 is a response signal with respect to the said input signal of each strain gauge 140,141, ..., Comprising:
  • the detection signal according to the curvature radius is acquired.
  • the impedance acquisition unit 210 outputs the acquired detection signal to the shape estimation unit 212.
  • the shape estimation unit 212 grasps in advance information on the interval B arranged on the tape unit 10, and calculates from this information and detection signals in each of the selected strain gauges 140, 141,.
  • the shape of the tape part 10 wound around the measuring object X can be estimated by combining the curvature radii r0, r1,.
  • the shape estimation unit 212 refers to the “proximity region ⁇ ” identified based on the electrical impedance acquired from the electrode pads 100a, 100b,..., And the strain gauge 140 belonging to the “proximity region ⁇ ”. , 141,..., The shape of the portion related to the “proximity region ⁇ ” of the tape unit 10 may be estimated.
  • the user can grasp not only the length of the portion around which the tape portion 10 is wound but also the shape of the portion. Therefore, for example, by acquiring and combining shape information corresponding to items such as bust, waist, and hip, it is possible to easily acquire three-dimensional shape information indicating the three-dimensional shape of the body shape.
  • the length measuring apparatus 1 may be configured to transmit the shape information acquired by the shape estimating unit 212 to an external server via the communication unit 27 (FIG. 15).
  • the shape information of the own body shape acquired using the length measuring device 1 can be accumulated in the external server and used as appropriate.
  • the user can quantitatively evaluate the effect of dieting and the like based on the shape information about his / her body acquired periodically.
  • the strain gauges 140, 141,... are described as being formed on the same surface (signal wiring portion 100) as the electrode pads 100a, 100b,.
  • the present invention is not limited to this mode.
  • the strain gauges 140, 141,... May be formed in a layer different from the electrode pads 100a, 100b,. In this case, the layer in which the electrode pads 100a, 100b,... Are formed (signal wiring portion 100) and the layer in which the strain gauges 140, 141,. , In some cases, electrically separated via a shield layer).
  • the strain gauges 140, 141,... Overlap with the electrode pads 100a, 100b,... Formed in other layers (signal wiring portion 100) in the interlayer direction. It is good also as an aspect which is formed integrally with electrode pad 100a, 100b, ... by appearance. By doing in this way, the area (length in the width direction) of the tape part 12 can be reduced.
  • the length measuring apparatus 1 which concerns on each above-mentioned embodiment gave the example which measured the circumference length of "living body", all demonstrated the function
  • the measurement of the length measuring apparatus 1 which concerns on each embodiment The object is not limited to a “living body”, and for example, it is possible to measure the dimensions and perimeter of an industrial product.
  • the length measuring apparatus 1 may have a function of changing the determination threshold value Zth according to the type of the measurement object (biological / metal / non-metal).
  • the aspect provided with the classification selection part which receives the operation of a user and selects the classification of a measuring object may be sufficient as the control part 21.
  • the type selection unit changes the value of the determination threshold value Zth according to the type of the selected measurement object.
  • the length calculation unit 211 displays a region where there is an electrode pad pair from which the electrical impedance Z that is equal to or less than the determination threshold value Zth exists.
  • the description has been given assuming that the length A of the proximity region ⁇ is calculated by regarding the “proximity region ⁇ ”.
  • the present invention is not limited to this aspect.
  • the electrical impedance Z is equal to or greater than the determination threshold Zth
  • the length of the region where the electrical impedance Z equal to or greater than the determination threshold Zth is acquired. It may be an aspect to calculate.
  • the length measuring device 1 according to the third embodiment is based on curvature data acquired from “strain gauges” (strain gauges 140, 141,...) Periodically arranged on the tape unit 10.
  • strain gauges are an aspect of the “curvature sensor” for acquiring curvature data at a position where each strain gauge is disposed.
  • the length measuring apparatus 1 according to the third embodiment does not necessarily need to use a strain gauge in order to acquire curvature data, and may use a curvature sensor having another aspect capable of acquiring curvature data.
  • a curvature sensor using conductive ink can be cited.
  • the curvature sensor using the conductive ink is such that the conductive ink applied (printed) on the surface of the bendable substrate is expanded or compressed along with the curvature of the substrate, so that the electric resistance of the conductive ink is increased. It is made by utilizing the fact that changes.
  • the curvature sensor may be configured by pairing two strain gauges (similar to the above-described strain gauges 140, 141,). Specifically, in the curvature sensor according to the other embodiment, two strain gauges and a resistance element having a known resistance value are electrically connected so as to form a bridge circuit. By doing in this way, when temperature change and tensile / compressive stress occur, these error factors affect both two strain gauges, and both cause the same characteristic change and accompanying resistance value change. The detection signal (potential difference) itself does not change, and the cause of error acting on the strain gauge can be reduced.
  • the two strain gauges may be arranged in the same layer in the flexible substrate 11 or may be arranged so as to overlap the two layers with an insulating layer interposed therebetween.
  • the curvature sensor according to still another embodiment may be an aspect in which three or more (for example, four) strain gauges are electrically connected to form a bridge circuit.
  • FIG. 16 is a diagram illustrating a functional configuration of a main body portion of a length measuring device according to the fourth embodiment.
  • the same functional configuration as that of the first embodiment is denoted by the same reference numeral, and the description thereof is omitted.
  • the structure of the tape part 10 of the length measuring apparatus 1 which concerns on 4th Embodiment is the same as 1st Embodiment, it abbreviate
  • the control unit 21 of the length measurement device 1 includes a body fat percentage calculation unit 213.
  • the body fat percentage calculation unit 213 is based on the electrical impedance acquired by the impedance acquisition unit 210, and the body fat percentage of the living body around which the tape unit 10 is wound (exactly, in the local portion of the living body around which the tape 10 is wound) Local fat content) is calculated. Specifically, the body fat percentage calculation unit 213 analyzes the electrical impedance in the specified proximity region ⁇ , and calculates the body fat content in that portion. As a method for calculating the body fat content from the electrical impedance, a widely known method can be used.
  • the length measurement apparatus 1 which concerns on this embodiment can calculate the local fat content rate in the part which wound the tape part 10, a user uses his / her length measurement apparatus 1 and uses his / her own. It is possible to grasp the body fat content in a local region of the body (for example, the second arm).
  • the impedance measurement unit 210 has a function of connecting the electrode pads 100a, 100b,... And the oscillation source 22 via the electrode selection unit 25 so as to be suitable for body fat percentage measurement. You may do it. Specifically, for example, the impedance measurement unit 210 sets an electrode pad continuously arranged in a predetermined region such as the electrode pads 100a, 100b, 101a, 101b, 102a, and 102b as an “anode electrode”, and 107a, 107b, Impedance measurement for measuring body fat percentage may be performed using an electrode pad continuously arranged in another region such as 108a, 108b, 109a, 109b as a “cathode electrode”. Furthermore, the impedance measurement unit 210 refers to the length measurement electrical impedance (FIG. 6 and the like) previously performed in specifying the “anode electrode” and “cathode electrode” regions for measuring body fat percentage. However, it may be specified.
  • the impedance measurement unit 210 refers to the length measurement electrical impedance (
  • the length measuring apparatus 1 is not limited to such an embodiment, and the body fat percentage calculating unit 213 calculates the body fat percentage based on the electrical impedance acquired without contact with the living body. There may be. Moreover, the length measuring apparatus 1 may be configured to transmit the body fat percentage acquired by the body fat percentage calculating unit 213 to the external server via the communication unit 27 (FIG. 16).
  • the length measuring device 1 may have a computer system therein.
  • Each process of the length measuring device 1 described above is stored in a computer-readable recording medium in the form of a program.
  • the computer reads and executes the program to execute the above process.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disk Read Only Memory), a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • FIG. 17 is a diagram illustrating a functional configuration of the shape estimation apparatus.
  • the main body 20 of the shape estimation device has a plurality of strain gauges 140, 141,... Arranged along the longitudinal direction and is used by being wound around a measurement object.
  • a shape estimation unit 212 that estimates the shape of a region wound around the measurement object in the tape unit based on the radius of curvature detected by the plurality of strain gauges 140, 141,. It has.
  • FIG. 18 is a diagram illustrating a functional configuration of the body fat percentage measuring apparatus.
  • the body part 20 of the body fat percentage measuring apparatus is used by being wound around a living body while a plurality of electrode pads 100a, 100b,... Are periodically arranged along the longitudinal direction.
  • An impedance acquisition unit 210 that selects a plurality of electrode pad pairs from the tape unit and a plurality of electrode pads 100a, 100b,..., And acquires an electrical impedance therebetween for each of the plurality of electrode pad pairs;
  • a body fat percentage calculating unit 213 that calculates the body fat percentage of the living body around which the tape part is wound based on the electrical impedance obtained by the impedance obtaining unit 210.

Abstract

 長さ測定装置は、複数の電極パッド(100a、100b、101a、1010b、・・・)が配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部(10)と、複数の電極パッドの中から、任意の電極パッド対を選択するとともに、当該電極パッド対の間の電気インピーダンスを取得するインピーダンス取得部と、電極パッド対のインピーダンス変化に基づき当該電極パッド対の間の長さを算出する長さ演算部と、を備えている。

Description

長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置
 本発明は、測定対象物の長さを測定する長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置に関する。
 本願は、2013年9月30日に、日本に出願された特願2013-204223号に基づき優先権を主張し、その内容をここに援用する。
 近年、電子部品の小型化が進んだことに伴って、電子式の巻尺(電子メジャー)の開発が進められている(例えば、特許文献1参照)。特許文献1に記載の電子メジャーは、一般的な巻尺と同じように、テープ部分を本体から引き出す構成となっており、本体から引き出したテープ部分の長さを本体に備えられたセンサによって取得する。このような電子メジャーによれば、利用者は、測定対象物にテープ部に付された目盛りを読み取ることを要さずとも、測定対象物の長さを容易に把握することができる。
特開2005-345107号公報
 しかしながら、例えば、上述の電子メジャーは、測定対象物の長さを測定する際に、テープ部分を本体部から引出す、又は、本体部に収納(巻き取り)する際に、その引き出しまたは収納したテープ部分の長さを光センサにより検出する仕組みとなっている。そのため、利用者は、長さの測定にあたり、テープ部分の引き出し又は本体部への収納の処理を行う必要があった。また、測定対象物の長さを正確に測定するためには、測定対象物の一方をテープ部分に予め付された基準点に揃えながらテープ部分を引き出す必要があり、利用者の測定作業の負担が大きい。
 本発明は、長さの測定時における利用者の負担を軽減することができる長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置を提供する。
 本発明の第1の態様によれば、長さ測定装置は、複数の電極パッドが配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部と、前記複数の電極パッドの中から、任意の電極パッド対を選択するとともに、当該電極パッド対の間の電気インピーダンスを取得するインピーダンス取得部と、前記電極パッド対のインピーダンス変化に基づき前記電極パッド対の間の長さを算出する長さ演算部と、を備える。
 また、第2の態様によれば、上述の長さ測定装置は、前記複数の電極パッドの位置関係を示す位置関係データを記憶させた位置関係データ記憶部をさらに有し、前記長さ演算部において、前記位置関係データを用いて前記電極パッド対の間の長さの演算が行われる。
 また、第3の態様によれば、上述の長さ測定装置において、前記テープ部は、フレキシブル基板の上の前記複数の電極パッドを配列することによって形成される。
 また、第4の態様によれば、上述の長さ測定装置において、前記複数の電極パッドが、前記テープ部の長手方向に沿って配列され、前記インピーダンス取得部は、前記電極パッド対を複数選択するとともに、当該電極パッド対ごとに、その間の電気インピーダンスを取得し、前記長さ演算部は、前記テープ部のうち、前記電気インピーダンスが判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する。
 また、第5の態様によれば、上述の長さ測定装置において、前記インピーダンス取得部は、第1の離間距離を隔てて配された電極パッド対を複数選択し、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得する第1の取得ステップと、前記第1の離間距離よりも大きい第2の離間距離を隔てて配された電極パッド対を複数選択し、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得する第2の取得ステップと、を実行する。
 また、第6の態様によれば、上述の長さ測定装置において、前記長さ演算部は、前記テープ部のうち、前記第1の取得ステップで取得する電気インピーダンスが前記判定閾値以下となる領域である近接領域が、前記判定閾値を上回る領域である非近接領域を隔てて複数存在する場合には、当該非近接領域において、前記第2の取得ステップで取得する電気インピーダンスが前記判定閾値以下となるか否かを判定するとともに、当該判定閾値以下となっている場合には、複数の前記近接領域が存在する領域全体の長さを算出する。
 また、第7の態様によれば、上述の長さ測定装置において、前記テープ部は、表面が絶縁体からなる被膜部により被膜されている。
 また、第8の態様によれば、上述の長さ測定装置において、前記テープ部は、前記被膜部の内側において、前記複数の電極パッドの何れか一方の面と、当該電極パッドに接続された引き回し配線の両面と、を覆うように形成された導体からなるシールド部をさらに備える。
 また、第9の態様によれば、上述の長さ測定装置において、前記テープ部は、前記電極パッド及びこれに接続された引き回し配線を、導電性を有する繊維で形成している。
 また、第10の態様によれば、上述の長さ測定装置において、前記テープ部は、更に、複数の曲率センサを長手方向に沿って配列し、前記複数の曲率センサにより検出される曲率半径に基づいて、前記テープ部のうち、前記測定対象物の周囲に巻かれた領域の形状を推定する形状推定部を更に備える。
 また、第11の態様によれば、上述の長さ測定装置において、複数の前記曲率センサの各々は、複数の前記電極パッドの各々と一体に設けられている。
 また、第12の態様によれば、上述の長さ測定装置は、前記インピーダンス取得部が取得した前記電気インピーダンスに基づいて、前記テープ部が巻かれた生体の体脂肪率を算出する体脂肪率演算部を更に備える。
 また、第13の態様によれば、長さ測定方法は、複数の電極パッドが長手方向に沿って周期配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部を備える長さ測定装置を用いた長さ測定方法であって、インピーダンス取得部が、前記複数の電極パッドの中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得し、長さ演算部が、前記テープ部のうち、前記電気インピーダンスが判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する。
 また、第14の態様によれば、プログラムは、複数の電極パッドが長手方向に沿って周期配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部を備える長さ測定装置のコンピュータを、前記複数の電極パッドの中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得するインピーダンス取得手段、前記テープ部のうち、前記電気インピーダンスが判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する長さ演算手段、として機能させる。
 また、第15の態様によれば、形状推定装置は、複数の曲率センサが長手方向に沿って配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部と、前記複数の曲率センサにより検出される曲率半径に基づいて、前記テープ部のうち測定対象物の周囲に巻かれた領域の形状を推定する形状推定部と、を備える。
 また、第16の態様によれば、体脂肪率測定装置は、複数の電極パッドが長手方向に沿って周期配列されるとともに、生体の周囲に巻かれて用いられるテープ部と、前記複数の電極パッドの中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得するインピーダンス取得部と、前記インピーダンス取得部が取得した電気インピーダンスに基づいて、前記テープ部が巻かれた生体の体脂肪率を算出する体脂肪率演算部と、を備える。
 長さの測定時における利用者の負担を軽減することができる。
第1の実施形態に係る長さ測定装置の概要を示す図である。 第1の実施形態に係る長さ測定装置のテープ部の構成を示す図である。 第1の実施形態に係る長さ測定装置のテープ部の構成をより詳細に示す第1の図である。 第1の実施形態に係る長さ測定装置のテープ部の構成をより詳細に示す第2の図である。 第1の実施形態に係る長さ測定装置の本体部の機能構成を示す図である。 第1の実施形態に係る長さ測定装置の作用を説明する第1の図である。 第1の実施形態に係る長さ測定装置の作用を説明する第2の図である。 第1の実施形態に係る長さ測定装置の作用を説明する第3の図である。 第1の実施形態に係る長さ測定装置の制御部の処理フローを示す図である。 第1の実施形態の変形例に係る長さ測定装置のテープ部の構成を示す図である。 第1の実施形態の他の変形例に係る長さ測定装置のテープ部の構成を示す図である。 第2の実施形態に係る長さ測定装置の作用を説明する第1の図である。 第2の実施形態に係る長さ測定装置の作用を説明する第2の図である。 第2の実施形態に係る長さ測定装置の作用を説明する第3の図である。 第2の実施形態に係る長さ測定装置の制御部の処理フローを示す第1の図である。 第2の実施形態に係る長さ測定装置の制御部の処理フローを示す第2の図である。 第3の実施形態に係る長さ測定装置のテープ部の構成を示す図である。 第3の実施形態に係る長さ測定装置の本体部の機能構成を示す図である。 第4の実施形態に係る長さ測定装置の本体部の機能構成を示す図である。 形状推定装置の機能構成を示す図である。 体脂肪率測定装置の機能構成を示す図である。
<第1の実施形態>
 以下、第1の実施形態に係る長さ測定装置を、図面を参照して説明する。
 図1は、第1の実施形態に係る長さ測定装置の概要を示す図である。
 図1に示すように、長さ測定装置1は、テープ部10と、本体部20と、を備えている。長さ測定装置1は、通常の巻尺(メジャー)と同様に、テープ部10が柔軟な素材で作製されており、本体部20内部においてリールに巻き付けられて収納される。長さ測定装置1の利用者は、本体部20からテープ部10を引き出すとともに、これを測定対象物の周囲に巻き付ける等して、当該測定対象物に係る長さの測定を行う。
 図2は、第1の実施形態に係る長さ測定装置のテープ部の構成を示す図である。
 次に、図2を参照しながら、テープ部10の構成について説明する。
 図2に示すように、テープ部10は、フレキシブル基板11及び被膜部12で構成される。
 フレキシブル基板11は、その長手方向に沿って複数の電極パッド100a、100b、101a、101b、・・・、10na、10nb(nは1以上の整数)を周期配列している。電極パッド100a、100b、・・・は、いずれも等間隔(例えば、1ミリメートル間隔)で、フレキシブル基板11上に形成される。
 フレキシブル基板11は、形状の柔軟性及び電気的な絶縁性を有する樹脂素材で形成されている。テープ部10の当該電極パッド100a、100b、・・・及び引き回し配線120(後述する図3A、図3Bで図示)は、フレキシブル基板11上に形成された導電性膜をパターニングして作製されている。
 以下の説明において、テープ部10上における各電極パッド100a、100b、・・・それぞれの位置Aを、基準点O(電極パッド100aの位置)から各電極パッド100a、100b、101a、・・・までの離間距離で表す。
 後述するように、電極パッド100a、101a、・・・は、電気インピーダンス測定のための交流電圧信号が印加される陽極端子として用いられる。また、電極パッド100b、101b、・・・は、接地電位が与えられる陰極端子として用いられる。
 被膜部12は、樹脂や繊維などの絶縁体からなり、各電極パッド100a、100b、・・・を含めたフレキシブル基板11の表面全体を被膜する。このように、被膜部12がフレキシブル基板11全体を被膜することで、電極パッド100a、100b、・・・が外部に曝されなくなり、これによってさびや変質を防止し、或いは、各電極パッド100a、100b・・・を介した静電破壊による故障を低減することができる。
 図3A、図3Bは、それぞれ、第1の実施形態に係る長さ測定装置のテープ部の構成をより詳細に示す第1の図、第2の図である。
 図3Aは、テープ部10の一部の正面図を示している。図3Aに示すように、フレキシブル基板11は、内部に、引き回し配線120を有している。引き回し配線120は、例えば、各電極パッド100a、100b、・・・と同一の層に形成され、一方が電極パッド100a、100b・・・のそれぞれと接続し、その他方が、コネクタ13を介して本体部20(後述する電極選択部25(図4))と接続されている。後述するように、本体部20は、コネクタ13及び引き回し配線120を介して電極パッド100a、100b、・・・の各々に高周波信号を送出する。
 図3Bは、テープ部10の断面模式図を示している。図3Bに示すように、フレキシブル基板11は、電極パッド100a、100b、・・・及び引き回し配線120が形成される導体層である信号配線部100と、他の層であるシールド部111、112と、が、絶縁層113を介して多層積層される構造を有している。ここで、シールド部111、112は、電極パッド100a、100b・・・等が形成される信号配線部100と同様に、導体で形成された導体層である。また、シールド部111、112は、それぞれ本体部20において接地され、接地電位で固定されている。
 なお、図3Bには、テープ部10の「表面側U」及び「裏面側D」を特定してテープ部10の断面模式図を図示しているが、本実施形態における長さ測定装置1は、テープ部10の「表面側U」を、測定対象物に対向させて長さの測定を行う。
 図3Bに示すように、シールド部111、112は、それぞれ、絶縁層113を介して、信号配線部100に対し、図3Bに示す「表面側U」及び「裏面側D」に形成されている。つまり、信号配線部100は、フレキシブル基板11内において、「表面側U」及び「裏面側D」からシールド部111、112に挟まれるように配されている。
 また、図3A、図3Bに示すように、信号配線部100の「表面側U」に積層されるシールド部111は、電極パッド100a、100b、・・・の面と対向する領域に間欠部111aが形成される。これにより、電極パッド100a、100b、・・・の対向面は、シールド部111によって覆われなくなる。つまり、シールド部111は、図3Aに示すように、信号配線部100の電極パッド100a、100b・・・の対向面が存在する領域以外の部分、特に引き回し配線120が配される領域を覆う。
 一方、シールド部112は、間欠部を有することなく、信号配線部100の「裏面側D」全面を覆うように形成される。
 以上のように、シールド部111、112は、被膜部12の内側において、電極パッド100a、100b、・・・の何れか一方の面(「表面側U」の面)と、電極パッド100a、100b、・・・に接続された引き回し配線120の両面と、を覆うように形成される(図3A、図3B)。これにより、電極パッド100a、100b、・・・の測定対象物に対する対向面以外の領域(引き回し配線120の両面全体)がシールド部111、112に覆われるので、測定時における外部からの電磁的な干渉の影響を低減させ、誤差の少ない測定を行うことができる。
 図4は、第1の実施形態に係る長さ測定装置の本体部の機能構成を示す図である。
 次に、図4を参照しながら、本体部20の各機能構成について詳細に説明する。なお、図4では、各機能部を結ぶ回路の配線を実線で示し、各機能部間の信号(情報)の流れを破線で示している。
 図4に示すように、本体部20は、制御部21、発振源22、電圧計23、電流計24、電極選択部25、及び表示部26を備えている。
 制御部21は、長さ測定装置1の処理全体を司るCPU(Central Process Unit:中央演算装置)であり、インピーダンス取得部210及び長さ演算部211としての機能を有する。インピーダンス取得部210、長さ演算部211の具体的な機能については、後述する。
 発振源22は、一端子が基準電位(接地電位)点に接続されるとともに、他端子において、接地電位を基準とした所定の周波数の交流電圧信号を出力する。発振源22は、制御部21(インピーダンス取得部210)の制御信号を受けて、交流電圧信号を出力する。
 電圧計23、電流計24は、それぞれ、図4に示す回路上における電圧値及び電流値を取得して、制御部21(インピーダンス取得部210)に出力する。電圧計23、電流計24は、検出される電圧、電流を電圧情報、電流情報(サンプリング値)として取得するA/D(Analog/Digital)コンバータであってもよい。
 電極選択部25は、制御部21(インピーダンス取得部210)から供給される制御信号に応じて、回路の配線をつなぎ変えるリレースイッチである。具体的には、電極選択部25は、コネクタ13を介して、陽極側の電極パッドとして、電極パッド100a、101a、102a、・・・に接続される引き回し配線120のうちから何れか一つを選択して、発振源22(の上記“他端子”)に接続する。さらに、電極選択部25は、陰極側の電極パッドとして、電極パッド100b、101b、102b、・・・に接続される引き回し配線120のうちから何れか一つを選択して、上記接地電位点に接続する。
 表示部26は、制御部21(長さ演算部211)から供給される長さ情報(長さの測定結果を示す情報)に基づいてその長さ情報を表示し、利用者に視認させる。表示部26は、例えば、簡易的な液晶表示装置等で構成される。
 次に、制御部21が有するインピーダンス取得部210、長さ演算部211の機能について説明する。
 インピーダンス取得部210は、複数の電極パッド100a、100b、・・・の中から、2つの電極パッド(電極パッド対)を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得する。
 具体的には、インピーダンス取得部210は、上述した発振源22に制御信号を出力し、所定の周波数(例えば、数MHz~数百MHzオーダー)の交流電圧信号を出力させるとともに、電圧計23、電流計24を介して取得される電圧情報、電流情報を元に電気インピーダンスを取得する。この際、インピーダンス取得部210は、電極選択部25にも制御信号を出力し、電極パッド100a、100b、・・・のうちの2つを選択する。例えば、電極選択部25は、インピーダンス取得部210の制御信号により、電極パッド100aと、電極パッド100bと、を選択して接続する。そうすると、インピーダンス取得部210は、その二つの電極パッド100a、電極パッド100b間の電気インピーダンスを取得する。
 インピーダンス取得部210は、一の電極パッド対(例えば、電極パッド100aと電極パッド100b)の間の電気インピーダンスを取得して、その電気インピーダンスを一時的に記憶して保持しておく。そして、インピーダンス取得部210は、別の電極パッド対(例えば、電極パッド100bと電極パッド101a)を選択し、その間の電気インピーダンスを取得する。インピーダンス取得部210は、このような処理を繰り返して、テープ部10の全範囲における電極パッド対間の電気インピーダンスを取得する。
 なお、インピーダンス取得部210(制御部21)の具体的な処理フローについては、後述のフローチャート図(図7)を用いて詳細に説明する。
 なお、上述した本体部20において構成される回路は一例であって、本実施形態においては、図4に示すような回路に限定されるものではない。例えば、図4に示す回路は、インピーダンス整合のための種々の素子(抵抗素子、コンデンサ等)や、検出精度を向上させるための増幅器(アンプ)やフィルタが適宜配されたものであってもよい。
 また、上述したインピーダンス取得部210は、電圧計23及び電流計24を介して取得される電圧情報、電流情報に基づいて電極パッド対間の電気インピーダンスを取得するものとして説明したが、本実施形態の変形例に係る長さ測定装置1においては、この態様に限定されない。例えば、当該変形例に係る長さ測定装置1のインピーダンス取得部210は、発振源22からの出力のインピーダンスの不整合に基づく反射成分を検出し、これに基づいて電気インピーダンスを取得するものとしてもよい。その他、電極間の電気インピーダンスを取得可能な態様であれば、どのような態様であってもよい。
 長さ演算部211は、インピーダンス取得部210によって取得された一連の電気インピーダンス(後述する図6)を参照して、テープ部10のうち、電気インピーダンスが所定の判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する。また、長さ演算部211は、算出した長さを示す情報(長さ情報)を、表示部26に出力する処理を行う。
 長さ演算部211の具体的な処理の内容については後述する。
 図5A、図5Bは、それぞれ、第1の実施形態に係る長さ測定装置の作用を説明する第1の図、第2の図である。
 図5Aは、テープ部10が、測定対象物Xの周囲に一部巻き付けられるように配されている様子を示している。
 図5Aに示すように、テープ部10が、位置A1から位置A2にかけて、生体である測定対象物Xの周囲に沿うように配されている場合を説明する。テープ部10は、位置A1から位置A2にかけての領域において測定対象物Xに近接しており、それ以外の領域においては、測定対象物Xと離間している。
 図5Bは、図5Aに示す状態におけるテープ部10の位置A1付近を詳細に示した図である。
 例えば、位置A1付近において、電極パッド100a、100b、101a、101b、102a、102bが図5Bに示すように配されていたとする。この場合、インピーダンス取得部210は、測定の処理フロー(後述)に基づいて、例えば、電極パッド100a-100b間、電極パッド101a-100b間、電極パッド101a-101b間、・・・と、電極パッド対を順に変更しながら、各々の電極パッド対間の電気インピーダンスを取得していく。インピーダンス取得部210が取得する電気インピーダンスは、各電極パッド対間に生じる電界E0、E1、・・・、E4(図5B)に依存した値となる。
 ここで、各電極パッド対間に生じる電界E0~E4の経路に着目する。図5Bに示すように、電極パッド100a、100bは、測定対象物Xには近接しておらず、その間に生じる電界E0は大気中に生じるものとなる。一方、電極パッド102a、102bは、位置A1において測定対象物Xに近接していることから、その間に生じる電界E4は、測定対象物X内(生体内)を通過する。したがって、電極パッド102a、102b間の電気インピーダンスは、電極パッド100a、100b間の電気インピーダンスよりも低く測定される。
 すなわち、電極パッド100a、100b、・・・は、位置A1に向かうにつれて徐々に測定対象物Xに近づくため、電界E0、E1、E2、E3、E4は、その経路において、徐々に測定対象物X内を通過する領域が増えるため、各電界E0~E4に対応する電気インピーダンスは、徐々に低下していく。
 このように、テープ部10が測定対象物Xと近接する領域においては、その領域内に属する電極パッド対間の電気インピーダンスが低く測定され、テープ部10が測定対象物Xと近接しない領域においては、その領域内に属する電極パッド対間の電気インピーダンスが高く測定される。
 図6は、第1の実施形態に係る長さ測定装置の作用を説明する第3の図である。
 図6に示すグラフは、横軸にテープ部10の位置Aを、縦軸にその位置Aに配される電極対間の電気インピーダンスZを示している。
 図5A、図5Bを用いて説明したように、インピーダンス取得部210が取得する電気インピーダンスZは、測定対象物Xに近接する領域に属する電極パッド対間において低くなり、近接していない領域に属する電極パッド対間において高くなる傾向が表れる。
 したがって、図5A、図5Bに示した状態において、インピーダンス取得部210が取得する電気インピーダンスZは、図6に示すグラフのように取得される。すなわち、テープ部10の位置A1付近を境に徐々に電気インピーダンスZが低下し、測定対象物Xに近接する領域(位置A1~位置A2)の間、低い電気インピーダンスZが取得される領域が続く。測定対象物Xから再度離間される領域が始まる位置A2以降後は、再び高いインピーダンスZが取得される。
 ここで、長さ演算部211は、上述したように、インピーダンス取得部210によって取得された一連の電気インピーダンス(図6)を参照して、テープ部10のうち、電気インピーダンスZが所定の判定閾値Zth以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する。
 具体的には、長さ演算部211は、予め判定処理を行うための判定閾値Zthを記憶している。そして、図6に示すように、この判定閾値Zth以下となる電気インピーダンスZが取得された領域(近接領域α(図6))を特定する。ここで、長さ演算部211は、各電極パッド100a、100b、・・・と、それぞれのテープ部10上に配される位置Aと、を対応付けて記憶している。具体的には、長さ演算部211は、電極パッド100a、100b、・・・ごとに割り振られた識別子と、電極パッド100a、100b、・・・の各々が配置されるテープ部10上の位置(所定の基準点からの距離)と、が予め対応付けられて記憶された位置関係データ記憶部(図示せず)を有している。
 これにより、長さ演算部211は、例えば、電極パッド102a、102b間の電気インピーダンスZが判定閾値Zth以下となることを検知して、この電極パッド102a、102bに対応するテープ部10上の位置A1において、測定対象物Xが近接する位置と判断することができる。
 このようにして、長さ演算部211は、テープ部10上において電気インピーダンスZが判定閾値以下となる近接領域αを特定すると、次に、近接領域αの長さΔAを算出する。具体的には、長さ演算部211は、近接領域αの長さΔAを、ΔA=A2-A1の演算により算出する。
 図7は、第1の実施形態に係る長さ測定装置の制御部の処理フローを示す図である。
 以上に説明した機能を有する制御部21の処理フローについて、図7を参照しながら、順を追って説明する。
 図7に示す制御部21の処理フローは、利用者が長さ測定装置1を利用可能な状態にする操作を行った直後(例えば、主電源を入れた直後)から開始する。
 まず、制御部21のインピーダンス取得部210は、テープ部10に周期配列される電極パッド100a、100b、・・・のうち、電気インピーダンスZを取得しようとする2つを選択する(ステップS10)。ここで、インピーダンス取得部210は、電極選択部25に所定の制御信号を出力し、これにより電極選択部25を制御する。電極選択部25は、当該制御信号に応じた配線接続処理を行い、所望の電極パッド対を選択する。
 ここで、例えば、インピーダンス取得部210は、2つの電極パッド100a、100bを選択する。
 次に、インピーダンス取得部210は、選択した電極パッド100a、100b間の電気インピーダンスZを取得する(ステップS11)。ここで、インピーダンス取得部210は、まず発振源22に対して測定開始用の制御信号を出力する。発振源22は、測定開始用の制御信号に基づき、所定の周波数からなる交流電圧信号を出力する。この交流電圧信号は、電極パッド100a、100b間の媒体を伝達し、電圧計23、電流計24によって検出される。インピーダンス取得部210は、電圧計23、電流計24で検出される電圧情報、電流情報を取り込んで電気インピーダンスを取得する。
 次に、インピーダンス取得部210は、次の電極パッド対を選択するか否かを判定する(ステップS12)。
 例えば、ステップS10にて、電極パッド100a、100bを選択したときは、インピーダンス取得部210は、次の電極パッドがある(ステップS12:YES)と判定して、ステップS10において、次の電極パッド対(電極パッド100b、101a)を選択する。
 インピーダンス取得部210は、ステップS10~S12の処理を繰り返して、テープ部10の基準点Oから順に隣接する電極パッド100a、100b、・・・の対の間の電気インピーダンスを取得する。そして、端部の電極パッド10na、10nb間の電気インピーダンスを取得した時点で電気インピーダンスの取得処理を終了する(ステップS12:NO)。
 インピーダンス取得部210による電気インピーダンスの取得処理(ステップS10~S12)が終了すると、制御部21の長さ演算部211は、取得した電気インピーダンスを参照して、長さΔAの演算処理を行う(ステップS13)。具体的には、上述したように、判定閾値Zthと電気インピーダンスZとを比較して、電気インピーダンスZが判定閾値Zth以下となる近接領域αを特定する(図6参照)。そして、測定対象物Xに近接している領域である近接領域αの長さΔAを算出する。
 なお、長さ演算部211は、ステップS13において、電気インピーダンスZが判定閾値Zth以下となる近接領域αが存在する場合にのみ長さΔAを算出するものとし、テープ部12上におけるいずれの領域も判定閾値Zth以下となっていない場合には、長さΔAを算出する処理を実行しなくともよい。
 長さ演算部211は、算出した長さΔAを示す長さ情報を表示部26に出力して、算出結果(長さの測定結果)を表示し(ステップS14)、測定処理を終了する。これにより、利用者は、測定対象物X(位置A1~A2の領域)の長さを把握することができる。
 長さ測定装置1の制御部21は、ステップS14終了後に一定時間待機した後、ステップS10に戻って、ステップS10~S14の一連の測定処理を定期的に繰り返すようにしてもよい。これにより、表示部26には、常に最新の長さ測定の結果が更新されながら表示されるので、利用者の利便性が向上する。
 また、制御部21は、別途、本体部20に設けられた「測定開始ボタン」の押下を検知したことをもって、ステップS10~S14の一連の測定処理を実行してもよい。このようにすることで、利用者が所望するタイミング(測定開始ボタンの押下のタイミング)で長さ測定を開始することができる。さらにこの場合、長さの測定が完了した際に、電子音を出力して利用者にその旨を認識させるようにしてもよい。
 次に、上述した第1の実施形態に係る長さ測定装置1の効果について説明する。
 本実施形態に係る長さ測定装置1によれば、制御部21は、テープ部10上に設けられた電極パッド100a、100b、・・・の各電極パッド対間の電気インピーダンスと判定閾値との比較に基づいて、測定対象物Xに近接する領域の長さを自動的に算出する。ここで、通常のメジャーの場合、例えば、胸郭にテープ部を巻き付けた後、交差する部分の目盛りを読み取って引き算する等の作業が必要となる。一方、本実施形態に係る長さ測定装置1によれば、利用者は、テープ部10を測定対象物Xに巻き付けるだけで、巻き付けて接した部分の長さ(ΔA)を把握することができる。これにより、例えば、高齢者や被介護者等、体を動かすのが困難な利用者であっても、簡単に身体の測定を行うことができる。
 また、通常のメジャーで自身の体に対して測定を行う場合、測定箇所によっては一人で目盛りを読み取るのが困難で、第三者に目盛りを読み取ってもらう等の対応を必要とする場合がある。しかし、本実施形態に係る長さ測定装置1によれば、利用者は、所望する箇所にテープ部10を巻き付けるだけで表示部26にその部分の長さを知ることができるので、肩幅や腕回り等、いかなる箇所についての測定であっても、単独で簡単に長さを把握することができる。
 また、各電極パッド対間の電気インピーダンスは、発振源22が生成する所定の周波数の交流電圧信号を用いて行うため、電極パッド100a、100b、・・・を直接測定対象物Xに接触させて取得することを要さない。したがって、通常のメジャーと同じように、例えば、衣服を身に着けたまま、テープ部10を巻き付けて長さ測定を行うことが可能となる。また、これにより、電極パッド100a、100b、・・・を樹脂や繊維などで形成された被膜部12で覆う構造とすることもでき(図2、図3A、図3B参照)、電極パッド100a、100b、・・・等のさびや変質を防止することができる。
 以上、第1の実施形態に係る長さ測定装置によれば、長さの測定時における利用者の負担を軽減することができる。
<第1の実施形態の変形例>
 第1の実施形態に係る長さ測定装置1は、上述の態様に限定されることはなく、例えば、以下のように変形可能である。
 図8は、第1の実施形態の変形例に係る長さ測定装置のテープ部の構成を示す図である。
 第1の実施形態に係る長さ測定装置1のテープ部10は、図3A、図3Bで示したように、信号配線部100及びシールド部111、112の計3層の導体層が積層されたフレキシブル基板11で構成される旨を説明した。しかし、第1の実施形態の変形例に係る長さ測定装置1は、この態様に限定されない。
 例えば、当該変形例に係る長さ測定装置1においては、図8に示すように、引き回し配線120が、電極パッド100a、100b、・・・が形成される層と異なる層に形成されていてもよい。この場合、電極パッド100a、100b、・・・が形成される層と、引き回し配線120が形成される層との層間を貫くコンタクト部121が設けられ、各テープ部10と引き回し配線120は、このコンタクト部121を介して接続される。
 このようにすることで、図8に示すように、引き回し配線120を、電極パッド100a、100b、・・・の裏面側に配することが可能となり、これにより、テープ部10全体を小型化(細型化)することができる。なお、この場合、電極パッド100a、100b、・・・が形成される層と、引き回し配線120が形成される層との間に導体層を更にもう一層追加して、引き回し配線120が形成された導体層のみを覆うシールド層をさらに形成してもよい。
 図9は、第1の実施形態の他の変形例に係る長さ測定装置のテープ部の構成を示す図である。
 図9に示すように、他の変形例に係る長さ測定装置1においては、電極パッド100a、100b、・・・が、テープ部10上において、千鳥状に周期配列される態様であってもよい。このようにすることで、一の電極パッド対間の電気インピーダンスを取得する際に、隣接する電極パッドとの電磁的な干渉の影響を軽減することができる。
 例えば、第1の実施形態において、インピーダンス取得部210が、図3Aにおける電極パッド101a、101b間の電気インピーダンスを取得しようとする際、電極パッド101a、101b間に生じる電界が、容量結合により、隣接する電極パッド100bや電極パッド102aの影響を受けて誤差を生じる場合が想定される。
 しかし、図9に示す変形例に係る長さ測定装置1によれば、電極パッド100a、100b、・・・を千鳥状に配している。これにより、例えば、図9における電極パッド101a、101b間の電気インピーダンスを取得しようとする際に、隣接する電極パッド100bや電極パッド102aとの容量結合が低減され、その影響を最小限に留めることができる。
 また、第1の実施形態に係る長さ測定装置1の引き回し配線120は、各電極パッド100a、100b、・・・ごとに一本ずつ接続されて本体部20にまで引き回されるものとして説明した。しかし、他の変形例に係る長さ測定装置1は、この態様に限定されない。例えば、当該変形例に係る長さ測定装置1のテープ部10は、内部にマルチプレクサを有していて、このマルチプレクサにより、一本の引き回し配線120を複数の電極パッド100a、100b、・・・で共有化する。この場合、制御部21は、このマルチプレクサを制御して、一本の引き回し配線120をいずれの電極パッドに接続するかを選択する処理を行う。このようにすると、マルチプレクサの制御線を1本追加することになるが、例えば、1本の引き回し配線120を、10個の電極パッドで共有化すれば、引き回し配線を9本削減できる。
 このようにすることで、テープ部10(フレキシブル基板11)内に形成すべき引き回し本数を減らし、テープ部10を細型化することができる。
 また、第1の実施形態に係る長さ測定装置1は、所定の周波数からなる交流電圧信号により、測定対象物Xに対して非接触で電気インピーダンスを取得するものと説明した。しかし、第1の実施形態の他の変形例に係る長さ測定装置1は、電極パッド100a、100b、・・・の対向面が、測定対象物Xに直接接触しているか否かを読み取って、その長さの測定を行うものであってもよい。この場合、例えば、テープ部10は、「表面側U」における被膜部12(図3B)が設けられずに、電極パッド100a、100b、・・・の対向面がむき出しになって配されるものとなる。また、制御部21は、電極パッド100a、100b、・・・が測定対象物Xに直接接触しているか否かを、第1の実施形態と同様に、電極パッド対間の電気インピーダンスと、所定の判定閾値と、の比較によって読み取る。
 このようにすることで、当該変形例に係る長さ測定装置1は、電極パッド100a、100b、・・・の対向面が測定対象物Xに直接接触しているか否かを判定しながら長さ測定を行うので、より精度の高い測定結果を得ることができる。また、電極パッド100a、100b、・・・の対向面に測定対象物Xの表面が直接的に接触するので、発振源22が出力する交流電圧信号に、比較的低い周波数のものを用いることができる。よって、回路の全体構成を簡素なものとすることができる。
 また、上述の第1の実施形態に係る長さ測定装置1のインピーダンス取得部210は、電極パッド100a、100b、・・・のうちから2つを選択し、その間における交流電圧信号の印加及び計測を行う、いわゆる2電極法を用いているが、他の実施形態に係る長さ測定装置1は、この態様に限定されない。例えば、当該他の実施形態に係る長さ測定装置1のインピーダンス取得部210は、電極パッド100a、100b、・・・のうちから4つを選択し、その両端に位置する電極パッド対間に交流電圧信号を印加するとともに、内側に位置する電極パッド対間に生じる電圧、電流を計測して電気インピーダンスを取得するものとしてもよい。このようにすることで、インピーダンス取得部210は、電極パッド100a、100b、・・・、引き回し配線120等による誤差要因を低減した精度の高い電気インピーダンス測定を行うことができる。
 また、上述の第1の実施形態に係る長さ測定装置1は、テープ部10を、電極パッド100a、100b、・・・、シールド部111、112等がパターニング及び積層されたフレキシブル基板11と、全体を覆う被膜部12と、で構成する態様であることを説明した。しかし、テープ部10においてフレキシブル基板11を用いる態様は、一例にすぎず、他の方法によってテープ部10を構成することも可能である。
 例えば、第1の実施形態の他の変形例に係る長さ測定装置1において、テープ部10は、導電性を有する導電性繊維と、非導電性繊維(通常の絶縁性を有する繊維)とを組み合わせて作製されるものであってもよい。具体的には、フレキシブル基板11の代わりに、導電性繊維が電極パッド100a、100b、・・・、及び、引き回し配線120のレイアウト(図3A)と同様のパターンに織り込まれた繊維(電極用繊維)をテープ部10に採用してもよい。またこの場合、シールド部111、112と同様のパターン(図3A)に織り込まれた導電性繊維を有する繊維(シールド用繊維)をもって、上記電極用繊維を挟み込むような構成としてもよい。このようにすることで、第1の実施形態におけるフレキシブル基板11と同様の構成を、導電性繊維及び通常の繊維のみで作製することができる。これにより、テープ部10をより安価に作成することができ、長さ測定装置1の製造コスト削減を図ることができる。
 上述の実施形態に係る長さ測定装置1は、内部に記憶部を有し、連続して取得される複数の長さ情報を記憶できる機能を有していてもよい。具体的には、長さ演算部211は、別途備えられた記憶部に対し、逐次算出する長さ情報を記憶して蓄積する。この場合、長さ測定装置1は、利用者の操作に応じて、記憶部に記憶、蓄積された複数の長さ情報を任意に表示部26に表示できる機能を有していてもよい。
 このようにすることで、利用者は、例えば測定対象物の縦・横・奥行などを連続して測定したときに、その連続して測定した長さ情報ごとにメモ等を行う必要がなくなるため、測定作業を効率化させることができる。
 また、長さ測定装置1は、内部に所定の通信部を有し、この通信部を介して長さ演算部211が算出した長さ情報、若しくは、上記記憶部に蓄積された長さ情報を外部サーバへ転送する機能を備えていてもよい。この場合、長さ測定装置1は、複数の長さ情報を外部サーバー(スマートフォンなども含む)に連続して記録し、必要なときに逐次読み取る機能を有してもよい。
<第2の実施形態>
 次に、第2の実施形態に係る長さ測定装置を、図面を参照して説明する。
 第2の実施形態に係る長さ測定装置1の機能構成は、第1の実施形態に係る長さ測定装置1の機能構成と同一であるため、機能構成の図示を省略するとともに、各機能部には同一の符号を付してその説明を省略する。
 第2の実施形態係る長さ測定装置1は、その制御部21(インピーダンス取得部210、長さ演算部211)の処理内容が相違する点で、第1の実施形態と異なる。以下、図4を参照しながら、第2の実施形態に係るインピーダンス取得部210及び長さ演算部211の機能について説明する。
 第2の実施形態に係るインピーダンス取得部210は、まず、第1の離間距離を隔てて配された電極パッド100a、100b、・・・の対を複数選択し、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得する第1の取得ステップを実行する。次に、インピーダンス取得部210は、第1の離間距離よりも大きい第2の離間距離を隔てて配された電極パッド対を複数選択し、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得する第2の取得ステップを実行する。
 ここで例えば、第1の離間距離が隣接する電極パッド間の距離であるとし、第2の離間距離が電極パッド3つ分の離間距離であるとして説明する。
 つまり、この場合、インピーダンス取得部210は、第1の取得ステップにおいて、隣接する電極パッド対(例えば、電極パッド100aと100bの対、101aと100bの対、101aと101bの対、・・・)ごとに電気インピーダンスを取得する。この第1の取得ステップに係る電気インピーダンスの取得処理は、第1の実施形態に係るインピーダンス取得部210と同一の処理内容である。
 第2の実施形態に係るインピーダンス取得部210は、第1の取得ステップ後、更に、第2の取得ステップを実行する。具体的には、インピーダンス取得部210は、第2の取得ステップにおいて、電極パッド3つ分の離間距離を隔てた電極パッド対ごとに、その間の電気インピーダンスを取得する。例えば、インピーダンス取得部210は、第2の取得ステップにおいて、電極パッド100aと、この電極パッド100aから電極パッド3つ分の距離を隔てて配される電極パッド101bと、を選択し、この電極パッド対間の電気インピーダンスを取得する。
 また、第2の実施形態に係る長さ演算部211は、第1の取得ステップによって取得された電気インピーダンスと、第2の取得ステップによって取得された電気インピーダンスの両方を参照して、長さΔAを算出する。この具体的な処理内容については、後述のフローチャート図(図12、図13)を用いて説明する。
 図10A、図10Bは、それぞれ、第2の実施形態に係る長さ測定装置の作用を説明する第1の図、第2の図である。
 図10Aは、テープ部10が、測定対象物Xの周囲の一部に巻き付けられるように配されている様子を示している。
 図10Aに示すように、テープ部10は、位置A1から位置A2にかけて、生体である測定対象物Xの周囲に沿うように巻き付けられて配されている。なお、テープ部10は、位置A1と、位置A2の周辺において測定対象物Xに近接しているが、位置A1から位置A2の間の領域の一部に隙間Mを有し、測定対象物Xからわずかに離間した領域が存在している。このように、長さ測定装置1を生体の長さ測定に用いる場合、測定対象物X(生体)の巻き付ける箇所によっては、体の凹凸や衣服のしわ等の影響により、テープ部10の一部と測定対象物Xの間に隙間が生じる状況が想定される。
 図10Bは、図10Aに示す状態におけるテープ部10の隙間Mが存在する部分を詳細に示した図である。
 例えば、隙間M付近において、電極パッド100a、100b、101a、101b、102a、102bが図10Bに示すように配されていたとする。この場合、インピーダンス取得部210は、第1の取得ステップに基づいて、例えば、電極パッド100a-100b間、電極パッド101a-100b間、電極パッド101a-101b間、・・・と、電極パッド対を順に変更しながら、互いに隣接する電極パッド対間の電気インピーダンスを順次取得していく。
 ここで、隙間Mの領域において、隣接する電極パッド100a-100b間に生じる電界E0に着目する。この場合、電極パッド100a-100b間の離間距離に応じて電界E0の発生領域は狭く限定されるため、電界E0の発生領域は、隙間Mを介して存在する測定対象物Xを含まない。したがって、電極パッド100a-100b間の電気インピーダンスは、測定対象物Xの有無の影響を受けず、測定対象物Xと近接しない範囲において取得される電気インピーダンスと同様の高い値が取得される。電極パッド101a-100b間、電極パッド101a-101b間で取得される電気インピーダンスも同様となる。
 つまり、テープ部10と測定対象物Xとの間に隙間Mが生じていた場合、隣接する電極パッド間に生じる電界(電界E0)では、隙間Mを介して存在する測定対象物Xを感知することができない。
 次に、図10Bを参照しながら、本実施形態に係るインピーダンス取得部210が実行する第2の取得ステップについて説明する。
 上述の例による第2の取得ステップでは、インピーダンス取得部210は、電極パッド3つ分の離間距離を隔てた電極パッド対間の電気インピーダンスを取得する。具体的には、図10Bのように、電極パッド100a-101b間、電極パッド100b-102a間、電極パッド101a-102b間、・・・の電気インピーダンスを順次取得していく。
 この場合、電極パッド対の間隔が第1の取得ステップで取得したときよりも広いため、これに応じて、その間に生じる電界(図10Bの電界E0’、E1’、E2’)の発生領域も拡張される。したがって、図10Bに示すように、電界E0’、E1’、E2’は、隙間Mを介して存在する測定対象物Xの領域を通過するので、各電極パッド対間の電気インピーダンスが、測定対象物Xの影響を受けて低下する。
 このように、第2の取得ステップでは、隙間Mが存在する領域においても、測定対象物Xの存在を検出することができる。
 図11は、第2の実施形態に係る長さ測定装置の作用を説明する第3の図である。
 図11に示すグラフは、図6と同様、横軸にテープ部10の位置Aを、縦軸にその位置Aに配される電極対間の電気インピーダンスZを示している。また、第1の取得ステップで取得した電気インピーダンスを破線で、第2の取得ステップで取得した電気インピーダンスを実線で示している。
 図10Bで説明したように、インピーダンス取得部210が第1の取得ステップで取得する電気インピーダンスZは、隙間Mが存在する領域では測定対象物Xの影響を受けないため、図11の破線で示したように、隙間Mが存在する領域で電気インピーダンスが高く検出される。したがって、長さ演算部211が判定閾値Zthをもって判定を行うと、判定閾値Zth以下となる領域である近接領域αが、判定閾値Zthを上回る領域である非近接領域βを隔てて複数存在するため、利用者が本来知ろうとする長さΔA’を正しく算出できない場合がある。
 一方、インピーダンス取得部210が第2の取得ステップで取得する電気インピーダンスZは、隙間Mが存在する領域においても測定対象物Xの影響を受けるので、図11の実線で示したように、隙間Mが存在する領域であっても電気インピーダンスが低く検出される。したがって、長さ演算部211は、判定閾値Zthによる判定により、位置A1~位置A2間において測定対象物Xが一続きになっていることを判別することができ、その長さΔA’を正しく算出することができる。
 図12は、第2の実施形態に係る長さ測定装置の制御部の処理フローを示す第1の図である。
 以上に説明した機能を有する制御部21の処理フローについて、図12を参照しながら、順を追って説明する。なお、第1の実施形態と同一の処理内容については、同一の符号を付してその説明を省略する。
 図12に示す制御部21の処理フローは、利用者が長さ測定装置1を利用可能な状態にする操作を行った直後(例えば、主電源を入れた直後)から開始する。
まず、制御部21のインピーダンス取得部210は、第1の取得ステップを開始する。この際、インピーダンス取得部210は、第1の取得ステップにおいて選択する電極パッドの離間距離として、隣接する電極パッド間距離(離間距離d=“1”)を設定する(ステップS20)。
 次に、インピーダンス取得部210は、ステップS10~S12において、隣接する電極パッド100a-100b、101a-100b、・・・を選択しながら、各々の電極パッド対間の電気インピーダンスを順次取得する。全ての電極パッド対間の電気インピーダンスを取得すると(ステップS12:NO)、第1の取得ステップを終了してステップS21へ進む。
 次に、インピーダンス取得部210は、第2の取得ステップが終了しているか否かを判定する(ステップS21)。ここで、第1の取得ステップのみが終了している場合(ステップS21:NO)は、ステップS22へ進む。一方、第2の取得ステップが終了している場合(ステップS21:YES)は、ステップS13へ進む。
 第1の取得ステップが終了した場合、インピーダンス取得部210は、第2の取得ステップを開始する。この際、インピーダンス取得部210は、選択する電極パッドの離間距離を、第1の取得ステップにおける離間距離よりも大きい離間距離、例えば、電極パッド3つ分の離間距離(離間距離d=“3”)に変更する(ステップS22)。
 次に、インピーダンス取得部210は、再度、ステップS10~S12において、電極パッド3つ分の離間距離を隔てた電極パッド100a-101b、102a-100b、・・・を選択しながら、各々の電極パッド対間の電気インピーダンスを順次取得する。全ての電極パッド対間の電気インピーダンスを取得すると(ステップS12:NO)、第2の取得ステップを終了し、ステップS21を介してステップS23へ進む。
 本実施形態に係る長さ演算部211は、上記第1の取得ステップ、第2の取得ステップを経て電気インピーダンスを取得すると、これらを参照して、測定対象物Xの長さΔAの演算処理を行う(ステップS23)。ステップS23における演算処理の具体的な内容については後述する。
 長さ演算部211は、算出した長さΔAを示す長さ情報を表示部26に出力して、算出結果(長さの測定結果)を表示し(ステップS14)、測定処理を終了する。これにより、利用者は、測定対象物X(位置A1~A2の領域)の長さを把握することができる。
 なお、本実施形態に係る長さ測定装置1の制御部21は、第1の実施形態と同様に、ステップS14終了後に一定時間待機した後、ステップS10に戻って、ステップS10~S14の一連の測定処理を定期的に繰り返すようにしてもよい。また、制御部21は、別途、本体部20に設けられた「測定開始ボタン」の押下を検知したことをもって、ステップS10~S14の一連の測定処理を実行してもよい。
 図13は、第2の実施形態に係る長さ測定装置の制御部の処理フローを示す第2の図である。
 次に、図13を参照しながら、長さ演算部211が実行する長さΔAの演算処理(図12、ステップS23)について説明する。
 本実施形態に係る長さ演算部211は、まず、第1の実施形態と同様に、第1の取得ステップによって取得された電気インピーダンスZが、判定閾値Zth以下となる領域である「近接領域α」と、判定閾値Zthを上回る領域である「非近接領域β」と、を特定する(ステップS230)。
 次に、長さ演算部211は、近接領域αと非近接領域βの特定を完了すると、近接領域αが非近接領域βを隔てて複数存在するか否かを判定する(ステップS231)。具体的には、長さ演算部211は、電極パッド対ごとに取得された電気インピーダンス値Zを順に参照していき、判定閾値Zth以下となるような電極パッド対が連続して存在する区間を一つの「近接領域α」と特定する。そして、その後の「非近接領域β」の領域が続いた後、再度、電気インピーダンス値Zが判定閾値Zth以下となる電極パッド対が現れた場合には、これを2つ目の「近接領域α」と特定する。
 例えば、図11に示すような状態の場合は、隙間Mの存在により近接領域αが非近接領域βを隔てて複数(2つ)存在している。この場合、長さ演算部211は、ステップS231で“YES”と判定する。
 非近接領域βが存在せず近接領域αが一つのみ存在する場合(ステップS231:NO)は、長さ演算部211は、第1の実施形態と同一の処理を行う。すなわち、長さ演算部211は、単一の近接領域αの長さΔA(=A1-A2)を算出する(ステップS232)。
 一方、近接領域αが非近接領域βを隔てて複数存在する場合(ステップS231:YES)、長さ演算部211は、第2の取得ステップで取得した電気インピーダンスを参照する(ステップS233)。
 ここで、長さ演算部211は、第1の取得ステップで特定された非近接領域βに対応する電極パッド対において、第2の取得ステップで取得した電気インピーダンスZが判定閾値Zth以下となるか否かを判定する(ステップS234)。
 第1の取得ステップで特定された非近接領域βに対応する電極パッド対において、第2の取得ステップで取得した電気インピーダンスZが判定閾値Zth以下となっていた場合(ステップS234:YES)、長さ演算部211は、非近接領域βには、わずかな隙間(隙間M)を介して、測定対象物Xが存在しているものとみなし、非近接領域βを隔てて複数の近接領域αが存在する領域全体の長さΔA’(図11)を算出する(ステップS235)。
 一方、非近接領域βにおいて、第2の取得ステップで取得した電気インピーダンスZが判定閾値Zthを再度上回っていた場合(ステップS234:NO)、長さ演算部211は、複数の近接領域αを示す測定対象物Xが分離しているものとみなして、何れか(例えば、長さが最も長い近接領域α)の長さΔαを算出する(ステップS236)。
 このような処理により、例えば図10A、図10Bのような隙間Mが存在する状況であっても、長さ演算部211は、その領域(非近接領域β)において測定対象物Xが存在するとみなして、利用者が実際に知ろうとする長さ(位置A1~位置A2の範囲の長さΔA’)を算出することができる。
 以上、第2の実施形態に係る長さ測定装置1によれば、テープ部10と測定対象物Xの間にわずかな隙間が生じた状態であっても、その隙間の有無によって測定結果が変動することなく、利用者が所望する長さを精度よく測定することができる。
 なお、上述の第2の実施形態に係る長さ測定装置は、隣接する電極パッド間の電気インピーダンスを取得する第1の取得ステップと、より大きい離間距離を隔てた電極パッド間の電気インピーダンスを取得する第2の取得ステップと、を実行することを説明したが、本実施形態の変形例に係る長さ測定装置においてはこの方法に限定されない。例えば、当該変形例に係る長さ測定装置は、第2の取得ステップにおける電極パッドの離間距離よりもさらに大きい離間距離を隔てた電極パッド間の電気インピーダンスを取得する第3の取得ステップ、第4の取得ステップを実行してもよい。
<第3の実施形態>
 次に、第3の実施形態に係る長さ測定装置を、図面を参照して説明する。
 図14は、第3の実施形態に係る長さ測定装置のテープ部の構成を示す図である。なお、第1の実施形態と同一の構成については、同一の符号を付してその説明を省略する。
 図14に示すように、第3の実施形態係る長さ測定装置1のテープ部10は、曲率センサの一態様である複数の歪みゲージ140、141、・・・14m(mは1以上の整数)を長手方向に沿って、一定の間隔Bで周期配列している。
 歪みゲージ140、141、・・・は、自身に与えられる歪み(曲げ)の度合いに応じた検出信号を出力するセンサである。
 本実施形態において、歪みゲージ140、141、・・・は、電極パッド100a、100b、・・・及び引き回し配線120と同一面(信号配線部100、図3B参照)に形成される。したがって、歪みゲージ140、141、・・・は、テープ部12の面内のうち電極パッド100a、100b、・・・が配されていない領域に配される。
 図15は、第3の実施形態に係る長さ測定装置の本体部の機能構成を示す図である。
 第1の実施形態と同一の機能構成については、同一の符号を付してその説明を省略する。
 図15に示すように、第3の実施形態に係る長さ測定装置1の本体部20は、制御部21において形状推定部212を備えている。
 形状推定部212は、歪みゲージ140、141、・・・から取得されたそれぞれの歪み状態を示す検出信号に基づいて、測定対象物Xのうち、テープ部10が巻かれた部分(図5A)の形状を推定する。
 具体的には、まずインピーダンス取得部210は、電極選択部25を介して各歪みゲージ140、141、・・・に所定の入力信号を供給する。次に、インピーダンス取得部210は、各歪みゲージ140、141、・・・の上記入力信号に対する応答信号であって、その曲率半径に応じた検出信号を取得する。そして、インピーダンス取得部210は、取得した検出信号を形状推定部212に出力する。
 形状推定部212は、例えば、テープ部10上に配される間隔Bの情報を予め把握しておき、この情報と、選択された歪みゲージ140、141、・・・のそれぞれにおける検出信号から算出される曲率半径r0、r1、・・・と、を組み合わせて、測定対象物Xに巻かれているテープ部10の形状を推定することができる。
 また、形状推定部212は、電極パッド100a、100b、・・・から取得される電気インピーダンスに基づいて特定される「近接領域α」を参照して、当該「近接領域α」に属する歪みゲージ140、141、・・・のみから供給される検出信号を用いて、テープ部10の「近接領域α」に係る部分の形状を推定してもよい。
 このようにすることで、利用者は、テープ部10を巻き付けた部分の長さのみならず、その部分の形状を把握することができる。したがって、例えば、バスト、ウエスト、ヒップ等の項目に対応する形状情報を取得して組み合わせることで、簡易的に体型の立体的形状を示す三次元形状情報を取得することができる。
 また、長さ測定装置1は、形状推定部212が取得した形状情報を、通信部27を介して外部サーバに送信できるようにしてもよい(図15)。このようにすることで、長さ測定装置1を用いて取得した自己の体型の形状情報を外部サーバに蓄積し、適宜利用することができる。例えば、利用者は、定期的に取得した自己の身体についての形状情報に基づいて、ダイエットの効果等を定量的に評価することが可能となる。
 なお、本実施形態において、歪みゲージ140、141、・・・は、電極パッド100a、100b、・・・と同一面(信号配線部100)に形成されるものとして説明したが、他の実施形態においてはこの態様に限定されない。例えば、歪みゲージ140、141、・・・は、フレキシブル基板11において、電極パッド100a、100b、・・・とは異なる層に形成されてもよい。
 この場合、電極パッド100a、100b、・・・が形成される層(信号配線部100)と、歪みゲージ140、141、・・・が形成される層とは、一つ以上の絶縁層(及び、場合によってはシールド層)を介して電気的に分離される。
 また、この場合において、各歪みゲージ140、141、・・・は、他の層(信号配線部100)に形成された電極パッド100a、100b、・・・の各々と、層間方向に重なって一致するように形成されることで、見かけ上、電極パッド100a、100b、・・・と一体に形成される態様としてもよい。このようにすることで、テープ部12の面積(幅方向の長さ)を縮小することができる。
 なお、上述の各実施形態に係る長さ測定装置1は、いずれも「生体」の周囲長を測定する例を挙げてその機能を説明したが、各実施形態に係る長さ測定装置1の測定対象物は、「生体」に限定されることはなく、例えば、工業製品の寸法や周囲長を測定することも可能である。この場合、長さ測定装置1は、測定対象物の種別(生体・金属・非金属等)に応じて、判定閾値Zthを変更する機能を有していてもよい。具体的には、制御部21が、利用者の操作を受け付けて測定対象物の種別を選択する種別選択部を備える態様であってもよい。この場合、当該種別選択部が、選択された測定対象物の種別に応じて判定閾値Zthの値を変更する。
 また、本実施形態に係る長さ演算部211は、電気インピーダンスZが判定閾値Zth以下となった場合に、当該判定閾値Zth以下となる電気インピーダンスZが取得された電極パッド対が存在する領域を「近接領域α」とみなし、この近接領域αの長さAを算出するものとして説明した。しかし、他の実施形態においてはこの態様には限定されず、例えば、電気インピーダンスZが判定閾値Zth以上となった場合に、当該判定閾値Zth以上の電気インピーダンスZが取得された領域の長さを算出する態様であってもよい。
 なお、第3の実施形態に係る長さ測定装置1は、テープ部10上に周期配列された「歪みゲージ」(歪みゲージ140、141、・・・)から取得される曲率データに基づいて、測定対象物Xの輪郭の形状を精度よく推定する旨を説明したが、「歪みゲージ」は、当該歪みゲージの各々が配される位置における曲率データを取得するための「曲率センサ」の一態様に過ぎない。第3の実施形態に係る長さ測定装置1は、曲率データを取得するために必ずしも歪みゲージを用いる必要はなく、曲率データを取得可能な他の態様からなる曲率センサを用いても構わない。曲率センサの一態様としては、例えば、導電性インクを応用した曲率センサ等が挙げられる。この導電性インクを用いた曲率センサは、湾曲自在な基板の表面に塗布(プリント)された導電性インクが当該基板の湾曲に伴って伸長又は圧縮されることで、当該導電性インクの電気抵抗が変化することを利用して作製される。
 更に、他の実施形態において、上記曲率センサは、2つの歪みゲージ(上述の歪みゲージ140、141、・・・と同様のもの)を対にして構成されるものであってもよい。具体的には、当該他の実施形態に係る曲率センサは、2つの歪みゲージと抵抗値が既知の抵抗素子とがブリッジ回路をなすように電気的に接続される。このようにすることで、温度変化や引張・圧縮応力が発生した時に、これら誤差要因が2つの歪みゲージ両方に影響し、両方で同様の特性の変化とそれに伴う抵抗値の変化を起こすため、検出信号(電位差)自体は変わらず、ひずみゲージに働く誤差原因を低減できる。
 また、この場合において、上記2つの歪みゲージは、フレキシブル基板11において、同一層に並べて配置されていてもよいし、絶縁層を介して2層に重なるように配置されていてもよい。
 また、更に別の実施形態に係る曲率センサは、3つ以上(例えば4つ)の歪みゲージがブリッジ回路をなすように電気的に接続される態様であってもよい。
<第4の実施形態>
 次に、第4の実施形態に係る長さ測定装置を、図面を参照して説明する。
 図16は、第4の実施形態に係る長さ測定装置の本体部の機能構成を示す図である。
 第1の実施形態と同一の機能構成については、同一の符号を付してその説明を省略する。また、第4の実施形態に係る長さ測定装置1のテープ部10の構成は、第1の実施形態と同一であるため、図示を省略する。
 図16に示すように、本実施形態に係る長さ測定装置1の制御部21は、体脂肪率演算部213を備えている。
 体脂肪率演算部213は、インピーダンス取得部210が取得した電気インピーダンスに基づいて、テープ部10が巻かれた生体の体脂肪率(正確には、生体のうちテープ10が巻かれた局所部分における局所脂肪含有率)を算出する。具体的には、体脂肪率演算部213は、特定された近接領域αにおける電気インピーダンスを分析して、その部分における体脂肪の含有率を算出する。なお、電気インピーダンスから体脂肪の含有率を算出する手法は、広く一般に知られている手法を用いることができる。
 これにより、本実施形態に係る長さ測定装置1は、テープ部10を巻き付けた部分における局所脂肪含有率を算出することができるので、利用者は、長さ測定装置1を用いることで自己の身体の局所的な領域(例えば二の腕等)における体脂肪の含有率を把握することができる。
 なおこの場合、インピーダンス測定部210は、電極選択部25を介して、電極パッド100a、100b、・・・と、発振源22との接続を、体脂肪率測定に適するように接続する機能を有していてもよい。具体的には、例えば、インピーダンス測定部210は、電極パッド100a、100b、101a、101b、102a、102b等の所定領域に連続して配される電極パッドを「陽極電極」とし、107a、107b、108a、108b、109a、109b等の他の領域に連続して配される電極パッドを「陰極電極」として、体脂肪率測定用のインピーダンス測定を行ってもよい。
 さらに、インピーダンス測定部210は、上記体脂肪率測定用の「陽極電極」、「陰極電極」の領域を特定するにあたり、先に実施した長さ測定用の電気インピーダンス(図6等)を参照しながら特定するようにしてもよい。
 なお、体脂肪率を算出するには、電極パッド100a、100b、・・・を生体(身体)に直接接触させて取得した電気インピーダンスを用いた方が、測定精度の面で好ましいが、本実施形態に係る長さ測定装置1は、このような態様に限定されることはなく、体脂肪率演算部213は、生体と非接触で取得した電気インピーダンスに基づいて体脂肪率を算出するものであってもよい。
 また、長さ測定装置1は、体脂肪率演算部213が取得した体脂肪率を、通信部27を介して外部サーバに送信できるようにしてもよい(図16)。
 上述の説明において、各実施形態に係る長さ測定装置1は、内部にコンピュータシステムを有していてもよい。そして、上述した長さ測定装置1の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われてもよい。ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disk Read Only Memory)または半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
 図17は、形状推定装置の機能構成を示す図である。
 図17に示すように、形状推定装置の本体部20は、複数の歪みゲージ140、141、・・・が長手方向に沿って配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部と、複数の歪みゲージ140、141、・・・により検出される曲率半径に基づいて、上記テープ部のうち測定対象物の周囲に巻かれた領域の形状を推定する形状推定部212と、を備えている。
 なお、図17に示した上記形状推定装置の各機能構成については、上述した各実施形態に係る長さ測定装置1において対応する各機能構成(図4)と同様である。
 図18は、体脂肪率測定装置の機能構成を示す図である。
 図18に示すように、体脂肪率測定装置の本体部20は、複数の電極パッド100a、100b、・・・が長手方向に沿って周期配列されるとともに、生体の周囲に巻かれて用いられるテープ部と、複数の電極パッド100a、100b、・・・の中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得するインピーダンス取得部210と、インピーダンス取得部210が取得した電気インピーダンスに基づいて、上記テープ部が巻かれた生体の体脂肪率を算出する体脂肪率演算部213と、を備えている。
 なお、図18に示した上記体脂肪率測定装置の各機能構成については、上述した各実施形態に係る長さ測定装置1において対応する各機能構成(図4)と同様である。
 上述の各実施形態によれば、輪郭の形状や大きさが異なる種々の測定対象に対しても、簡素で、かつ、より正確な診断を行うことができる。
1 長さ測定装置
10 テープ部
100 信号配線部
111、112 シールド部
113 絶縁層
100a、100b、・・・、10na、10nb 電極パッド
11 フレキシブル基板
12 被膜部
120 引き回し配線
13 コネクタ
140、141、・・・14m 歪みゲージ
20 本体部
21 制御部
210 インピーダンス取得部
211 長さ演算部
212 形状推定部
213 体脂肪率演算部
22 発振源
23 電圧計
24 電流計
25 電極選択部
26 表示部
27 通信部

Claims (17)

  1.  複数の電極パッドが配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部と、
     前記複数の電極パッドの中から、任意の電極パッド対を選択するとともに、当該電極パッド対の間の電気インピーダンスを取得するインピーダンス取得部と、
     前記電極パッド対のインピーダンス変化に基づき前記電極パッド対の間の長さを算出する長さ演算部と、
     前記複数の電極パッドの位置関係を示す位置関係データを記憶させた位置関係データ記憶部と、を有し、
     前記長さ演算部において、前記位置関係データを用いて前記電極パッド対の間の長さの演算が行われることを特徴とする長さ測定装置。
  2.  前記テープ部が、フレキシブル基板の上の前記複数の電極パッドを配列することによって形成される
     請求項1に記載の長さ測定装置。
  3.  前記長さ演算部は、
     前記電気インピーダンスが判定閾値以上又は当該判定閾値以下となった場合に、前記長さを算出する
    ことを特徴とする請求項1又は請求項2に記載の長さ測定装置。
  4.  前記複数の電極パッドが、前記テープ部の長手方向に沿って配列され、
     前記インピーダンス取得部は、前記電極パッド対を複数選択するとともに、当該電極パッド対ごとに、その間の電気インピーダンスを取得し、
     前記長さ演算部は、前記テープ部のうち、前記電気インピーダンスが判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する
     請求項1に記載の長さ測定装置。
  5.  前記インピーダンス取得部は、第1の離間距離を隔てて配された電極パッド対を複数選択し、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得する第1の取得ステップと、前記第1の離間距離よりも大きい第2の離間距離を隔てて配された電極パッド対を複数選択し、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得する第2の取得ステップと、を実行する
     請求項4に記載の長さ測定装置。
  6.  前記長さ演算部は、前記テープ部のうち、前記第1の取得ステップで取得する電気インピーダンスが前記判定閾値以下となる領域である近接領域が、前記判定閾値を上回る領域である非近接領域を隔てて複数存在する場合には、当該非近接領域において、前記第2の取得ステップで取得する電気インピーダンスが前記判定閾値以下となるか否かを判定するとともに、当該判定閾値以下となっている場合には、複数の前記近接領域が存在する領域全体の長さを算出する
     請求項5に記載の長さ測定装置。
  7.  前記テープ部は、表面が絶縁体からなる被膜部により被膜されている
     請求項1から請求項6の何れか一項に記載の長さ測定装置。
  8.  前記テープ部は、前記被膜部の内側において、前記複数の電極パッドの何れか一方の面と、当該電極パッドに接続された引き回し配線の両面と、を覆うように形成された導体からなるシールド部をさらに備える
     請求項7に記載の長さ測定装置。
  9.  前記テープ部は、前記電極パッド及びこれに接続された引き回し配線を、導電性を有する繊維で形成している
     請求項1から請求項8の何れか一項に記載の長さ測定装置。
  10.  前記テープ部は、更に、複数の曲率センサを長手方向に沿って配列し、前記複数の曲率センサにより検出される曲率半径に基づいて、前記テープ部のうち、前記測定対象物の周囲に巻かれた領域の形状を推定する形状推定部を更に備える
     請求項1から請求項9の何れか一項に記載の長さ測定装置。
  11.  複数の前記曲率センサの各々は、複数の前記電極パッドの各々と一体に設けられている
     請求項10に記載の長さ測定装置。
  12.  前記インピーダンス取得部が取得した前記電気インピーダンスに基づいて、前記テープ部が巻かれた生体の体脂肪率を算出する体脂肪率演算部を更に備える
     請求項1から請求項11の何れか一項に記載の長さ測定装置。
  13.  複数の電極パッドが長手方向に沿って周期配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部と、
     前記複数の電極パッドの中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得するインピーダンス取得部と、
     前記テープ部のうち、前記電気インピーダンスが判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する長さ演算部と、
     を備える長さ測定装置。
  14.  複数の電極パッドが長手方向に沿って周期配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部を備える長さ測定装置を用いた長さ測定方法であって、
     インピーダンス取得部が、前記複数の電極パッドの中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得し、
     長さ演算部が、前記テープ部のうち、前記電気インピーダンスが判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する
     長さ測定方法。
  15.  複数の電極パッドが長手方向に沿って周期配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部を備える長さ測定装置のコンピュータを、
     前記複数の電極パッドの中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得するインピーダンス取得手段、
     前記テープ部のうち、前記電気インピーダンスが判定閾値以下となる電極パッド対が配列されている領域を特定し、当該特定された領域の長さを算出する長さ演算手段、
     として機能させるプログラム。
  16.  複数の曲率センサが長手方向に沿って配列されるとともに、測定対象物の周囲に巻かれて用いられるテープ部と、
     前記複数の曲率センサにより検出される曲率半径に基づいて、前記テープ部のうち測定対象物の周囲に巻かれた領域の形状を推定する形状推定部と、
     を備える形状推定装置。
  17.  複数の電極パッドが長手方向に沿って周期配列されるとともに、生体の周囲に巻かれて用いられるテープ部と、
     前記複数の電極パッドの中から、電極パッド対を複数選択するとともに、当該複数の電極パッド対ごとに、その間の電気インピーダンスを取得するインピーダンス取得部と、
     前記インピーダンス取得部が取得した電気インピーダンスに基づいて、前記テープ部が巻かれた生体の体脂肪率を算出する体脂肪率演算部と、
     を備える体脂肪率測定装置。
PCT/JP2014/074854 2013-09-30 2014-09-19 長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置 WO2015046058A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015539166A JP6420246B2 (ja) 2013-09-30 2014-09-19 長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置
EP14849148.3A EP3054262B1 (en) 2013-09-30 2014-09-19 Length measurement device, length measurement method, and program
US15/025,615 US10357179B2 (en) 2013-09-30 2014-09-19 Length measurement device, length measurement method, program, shape estimation device, and body fat percentage measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013204223 2013-09-30
JP2013-204223 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046058A1 true WO2015046058A1 (ja) 2015-04-02

Family

ID=52743195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074854 WO2015046058A1 (ja) 2013-09-30 2014-09-19 長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置

Country Status (4)

Country Link
US (1) US10357179B2 (ja)
EP (1) EP3054262B1 (ja)
JP (1) JP6420246B2 (ja)
WO (1) WO2015046058A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108235A1 (de) * 2015-12-21 2017-06-29 Robert Bosch Gmbh Verfahren zum betreiben eines sensorsystems, sensorelement sowie sensorsystem
JP2017123921A (ja) * 2016-01-12 2017-07-20 学校法人北里研究所 形状推定装置、スキャニング装置、動作検出装置、形状推定方法、スキャニング方法、動作検出方法、プログラム
KR20170131009A (ko) * 2016-05-20 2017-11-29 현중균 체형 측정기 및 이를 포함하는 체형 측정 시스템
CN107811616A (zh) * 2016-09-14 2018-03-20 中国科学院宁波材料技术与工程研究所 一种柔性多参量人体体征探测器及其使用方法
JP2020528299A (ja) * 2017-07-25 2020-09-24 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company センサ対応創傷被覆材のセンサ監視領域の制限
JP2020195784A (ja) * 2020-08-06 2020-12-10 学校法人北里研究所 監視装置、監視方法、プログラム、身体当接部材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10362968B2 (en) * 2010-10-15 2019-07-30 Fresenius Medical Care Holdings, Inc. Bioimpedance circumference measurement
US11293963B2 (en) * 2017-11-28 2022-04-05 Nxp B.V. Device for electromagnetic structural characterization
FR3108973A1 (fr) * 2020-04-01 2021-10-08 yannick kenga Appareil de mesure morphologique multifonction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067804A (ja) * 1983-09-23 1985-04-18 Kyowa Dengiyou:Kk 形態計測用検出器およびそれを用いた形態計測方法
JPH11113870A (ja) * 1997-10-09 1999-04-27 Matsushita Electric Ind Co Ltd 体脂肪測定装置
JP2005140700A (ja) * 2003-11-07 2005-06-02 Nippon Soken Inc 非接触式車両用接近体検出装置
JP2005253610A (ja) * 2004-03-10 2005-09-22 Fukushima Prefecture 生体センサベルト
JP2005345107A (ja) 2004-05-31 2005-12-15 Nippon Acp Kk 電子式メジャー装置
JP2011053212A (ja) * 2009-08-31 2011-03-17 Robert Bosch Gmbh 機械的な構成部分での周辺監視のためのセンサシステムおよび当該センサシステムを駆動制御および評価する方法
JP2011240775A (ja) * 2010-05-17 2011-12-01 Freescale Semiconductor Inc 感度可変型の電界測定機能を備えた物体検知装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020344A1 (en) * 1994-01-28 1995-08-03 Ep Technologies, Inc. System for examining cardiac tissue electrical characteristics
US7164349B2 (en) 2003-11-07 2007-01-16 Nippon Soken, Inc. Approaching object detection apparatus
JP4539905B2 (ja) * 2003-12-05 2010-09-08 株式会社タニタ 体脂肪測定装置
US8180601B2 (en) * 2006-03-09 2012-05-15 The Cleveland Clinic Foundation Systems and methods for determining volume of activation for deep brain stimulation
JP5513396B2 (ja) * 2007-11-05 2014-06-04 インぺディメッド リミテッド インピーダンス確定方法及び装置
US20110264000A1 (en) * 2007-12-28 2011-10-27 Saurav Paul System and method for determining tissue type and mapping tissue morphology
US8097926B2 (en) * 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
JP2010205988A (ja) 2009-03-04 2010-09-16 Panasonic Corp 窒化物半導体素子及びその製造方法
JP5239951B2 (ja) * 2009-03-09 2013-07-17 オムロンヘルスケア株式会社 健康管理装置
JP4706782B2 (ja) * 2009-07-27 2011-06-22 パナソニック電工株式会社 体脂肪測定装置
US20120198715A1 (en) * 2009-10-15 2012-08-09 Koninklijke Philips Electronics N.V. Apparatus and method for measuring a body part
CN103002800B (zh) * 2010-05-18 2015-08-26 佐尔医药公司 具有多个感测电极的可穿戴移动医疗装置
US9980662B2 (en) * 2010-05-25 2018-05-29 Neurowave Systems Inc. Method and system for electrode impedance measurement
US20120277619A1 (en) * 2011-04-29 2012-11-01 Medtronic, Inc. Detecting food intake based on impedance
JP5694139B2 (ja) * 2011-12-28 2015-04-01 日本光電工業株式会社 睡眠中における無呼吸低呼吸状態の検出装置
US20130035606A1 (en) * 2012-10-09 2013-02-07 Wichner Brian D Multi-Wave Signals to Reduce Effects of Electrode Variability
US10285618B2 (en) * 2013-07-02 2019-05-14 School Juridical Person Kitasato Institute EIT measurement device, EIT measurement method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067804A (ja) * 1983-09-23 1985-04-18 Kyowa Dengiyou:Kk 形態計測用検出器およびそれを用いた形態計測方法
JPH11113870A (ja) * 1997-10-09 1999-04-27 Matsushita Electric Ind Co Ltd 体脂肪測定装置
JP2005140700A (ja) * 2003-11-07 2005-06-02 Nippon Soken Inc 非接触式車両用接近体検出装置
JP2005253610A (ja) * 2004-03-10 2005-09-22 Fukushima Prefecture 生体センサベルト
JP2005345107A (ja) 2004-05-31 2005-12-15 Nippon Acp Kk 電子式メジャー装置
JP2011053212A (ja) * 2009-08-31 2011-03-17 Robert Bosch Gmbh 機械的な構成部分での周辺監視のためのセンサシステムおよび当該センサシステムを駆動制御および評価する方法
JP2011240775A (ja) * 2010-05-17 2011-12-01 Freescale Semiconductor Inc 感度可変型の電界測定機能を備えた物体検知装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054262A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108235A1 (de) * 2015-12-21 2017-06-29 Robert Bosch Gmbh Verfahren zum betreiben eines sensorsystems, sensorelement sowie sensorsystem
CN108370249A (zh) * 2015-12-21 2018-08-03 罗伯特·博世有限公司 用于运行传感器系统的方法、传感器元件以及传感器系统
US11137512B2 (en) 2015-12-21 2021-10-05 Robert Bosch Gmbh Method for operating a sensor system, sensor element and sensor system
JP2017123921A (ja) * 2016-01-12 2017-07-20 学校法人北里研究所 形状推定装置、スキャニング装置、動作検出装置、形状推定方法、スキャニング方法、動作検出方法、プログラム
KR20170131009A (ko) * 2016-05-20 2017-11-29 현중균 체형 측정기 및 이를 포함하는 체형 측정 시스템
KR101892992B1 (ko) * 2016-05-20 2018-08-29 현중균 체형 측정기 및 이를 포함하는 체형 측정 시스템
CN107811616A (zh) * 2016-09-14 2018-03-20 中国科学院宁波材料技术与工程研究所 一种柔性多参量人体体征探测器及其使用方法
JP2020528299A (ja) * 2017-07-25 2020-09-24 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company センサ対応創傷被覆材のセンサ監視領域の制限
JP7234200B2 (ja) 2017-07-25 2023-03-07 スミス アンド ネフュー ピーエルシー センサ対応創傷被覆材のセンサ監視領域の制限
JP2020195784A (ja) * 2020-08-06 2020-12-10 学校法人北里研究所 監視装置、監視方法、プログラム、身体当接部材
JP7186458B2 (ja) 2020-08-06 2022-12-09 学校法人北里研究所 監視装置、監視方法、プログラム

Also Published As

Publication number Publication date
JP6420246B2 (ja) 2018-11-14
US20160235334A1 (en) 2016-08-18
EP3054262A4 (en) 2017-05-10
JPWO2015046058A1 (ja) 2017-03-09
US10357179B2 (en) 2019-07-23
EP3054262A1 (en) 2016-08-10
EP3054262B1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6420246B2 (ja) 長さ測定装置、長さ測定方法、プログラム、形状推定装置、及び体脂肪率測定装置
JP7199804B2 (ja) 複数のコンデンサを使用する非接触電圧測定システム
US9615767B2 (en) Fluid level indicator determination
JP5981270B2 (ja) 電圧測定用センサおよび電圧測定装置
KR102335768B1 (ko) 체지방을 측정하는 방법 및 장치
JP5474542B2 (ja) 磁気インダクタンス断層撮影用のセンサアレイ
JP2006242855A (ja) 非接触型電圧検出方法及び非接触型電圧検出装置
CN110161350B (zh) 多芯电缆检查装置及其方法、以及多芯电缆组件制造方法
US20190274579A1 (en) Device and a method for bioimpedance measurement
CA2815930A1 (en) Guide wire with position sensing electrodes
KR20130110832A (ko) 표면 형상 측정 장치
JP2002055126A (ja) 非接触式電圧測定方法および装置
TWI809582B (zh) 非接觸式電壓感測方法及裝置
JP6555715B2 (ja) リンパ浮腫モニタ装置
WO2016194358A1 (ja) 皮膚抵抗測定装置
KR101780276B1 (ko) 비접촉 전압 계측 장치
KR20140024741A (ko) 디지타이저
TWI432744B (zh) 利用共振頻移之電容式觸控螢幕之電氣特性檢查裝置
US9689825B1 (en) Testing a layer positioned over a capacitive sensing device
JP6362414B2 (ja) 電流センサおよび測定装置
KR102011581B1 (ko) 고주파 대역 전파 기반 터치 감지 장치 및 상기 장치의 구동 방법
JP7076728B2 (ja) 静電容量型センサ
WO2020049883A1 (ja) 電流測定装置および電流測定方法
JP4780824B2 (ja) 体脂肪計
JP5189158B2 (ja) 体脂肪計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15025615

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015539166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014849148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849148

Country of ref document: EP