WO2015045815A1 - Ceramic wiring substrate, ceramic green sheet for ceramic wiring substrate, and glass ceramic powder for ceramic wiring substrate - Google Patents

Ceramic wiring substrate, ceramic green sheet for ceramic wiring substrate, and glass ceramic powder for ceramic wiring substrate Download PDF

Info

Publication number
WO2015045815A1
WO2015045815A1 PCT/JP2014/073567 JP2014073567W WO2015045815A1 WO 2015045815 A1 WO2015045815 A1 WO 2015045815A1 JP 2014073567 W JP2014073567 W JP 2014073567W WO 2015045815 A1 WO2015045815 A1 WO 2015045815A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
filler
glass
thermal expansion
wiring board
Prior art date
Application number
PCT/JP2014/073567
Other languages
French (fr)
Japanese (ja)
Inventor
芳夫 馬屋原
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020167003592A priority Critical patent/KR102174577B1/en
Priority to CN201480051062.3A priority patent/CN105579418B/en
Publication of WO2015045815A1 publication Critical patent/WO2015045815A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/562Using constraining layers before or during sintering made of alumina or aluminates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09709Staggered pads, lands or terminals; Parallel conductors in different planes

Definitions

  • the present invention relates to a ceramic wiring board, a ceramic green sheet for a ceramic wiring board, and a glass ceramic powder for a ceramic wiring board.
  • a probe card is arranged on the semiconductor wafer, and the semiconductor wafer is electrically connected to a tester via the probe card.
  • the probe card usually has a test head that contacts a semiconductor wafer, a printed ceramic wiring board connected to the tester, and a ceramic wiring board called an interposer board that connects the printed ceramic wiring board and the test head. .
  • Patent Document 1 describes a ceramic wiring board made of low-temperature fired ceramics including glass as a ceramic wiring board capable of low-temperature firing.
  • the distance between the electrode pads of the printed ceramic wiring board is larger than the distance between the electrode pads in the test head.
  • An electrode pad corresponding to the electrode pad of the printed ceramic wiring board is provided on one main surface of the interposer substrate, and an electrode pad corresponding to the electrode pad of the test head is provided on the other main surface. ing.
  • the electrode pads on the one main surface side and the electrode pads on the other main surface side are connected by an internal conductor. Therefore, in the interposer substrate, it is important that the position accuracy of the electrode pads on both main surfaces is high.
  • the inspection using the probe card is performed in a wide temperature range from ⁇ 40 ° C. to + 125 ° C., for example.
  • the thermal expansion coefficient of the interposer substrate is set so that there is no difference between the distance between the electrode pads of the interposer substrate and the distance between the electrode pads of the test head, the printed ceramic wiring substrate, etc. It is preferable to approximate the thermal expansion coefficient of the test head or the printed ceramic wiring board. Therefore, the interposer substrate is preferably made of a material whose thermal expansion coefficient can be adjusted according to the use environment.
  • the thermal expansion coefficient of the test head is close to the thermal expansion coefficient of the semiconductor wafer. For this reason, there is also a demand for reducing the thermal expansion coefficient of the interposer substrate to about the thermal expansion coefficient of the semiconductor wafer.
  • the ceramic wiring board described in Patent Document 1 has a problem that it is difficult to realize a thermal expansion coefficient that is as low as that of the semiconductor wafer.
  • the main object of the present invention is to provide a ceramic wiring board that can be fired at a low temperature and that can be adjusted to have a low coefficient of thermal expansion and that has high mechanical strength.
  • the ceramic wiring board according to the present invention includes a ceramic substrate and an internal conductor.
  • the inner conductor is disposed in the ceramic substrate.
  • the ceramic substrate includes glass, a first ceramic filler, and a second ceramic filler.
  • the thermal expansion coefficient of the first ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C. is lower than the thermal expansion coefficient of the second ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C.
  • the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
  • the thermal expansion coefficient of the first ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C. is ⁇ 8 to +5 ppm / ° C.
  • the three-point bending strength of the second ceramic filler is 400. It is preferable that the pressure be ⁇ 800 MPa.
  • the ceramic substrate includes three or more ceramic fillers
  • the first ceramic filler is a ceramic filler having a thermal expansion coefficient of three or more in a temperature range of ⁇ 40 ° C. to + 125 ° C.
  • the second ceramic filler has the highest three-point bending strength of each ceramic filler among the three or more kinds of ceramic fillers.
  • the ceramic substrate is preferably made of glass, a first ceramic filler, and a second ceramic filler.
  • the first ceramic filler is a willemite filler and the second ceramic filler is an alumina filler.
  • the mass ratio of glass to alumina filler and willemite filler is in the range of 30:70 to 65:35.
  • the mass ratio with the willemite filler is preferably in the range of 20:80 to 60:40.
  • the average particle diameter of the willemite filler is preferably smaller than the average particle diameter of the alumina filler.
  • the glass is preferably borosilicate glass.
  • the glass preferably contains, by mass%, SiO 2 60-80%, B 2 O 3 10-30%, Li 2 O + Na 2 O + K 2 O 1-5% and MgO + CaO + SrO + BaO 0-20% by mass.
  • the thermal expansion coefficient of the ceramic substrate in the temperature range of ⁇ 40 ° C. to + 125 ° C. is preferably 4 ppm / ° C. or less.
  • the ceramic green sheet for a ceramic wiring board according to the present invention includes glass, a first ceramic filler, and a second ceramic filler, and the thermal expansion coefficient of the first ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C. is The coefficient of thermal expansion is lower than that of the second ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C., and the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
  • the glass ceramic powder for a ceramic wiring board according to the present invention includes glass, a first ceramic filler, and a second ceramic filler.
  • the thermal expansion coefficient of the first ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C. is The coefficient of thermal expansion is lower than that of the second ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C., and the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
  • a ceramic wiring board that can be fired at a low temperature, can be adjusted to have a low coefficient of thermal expansion, and has high mechanical strength.
  • FIG. 1 is a schematic cross-sectional view of a ceramic wiring board according to the present embodiment.
  • the ceramic wiring board 1 shown in FIG. 1 can be used as a general ceramic wiring board that is required to have a low thermal expansion coefficient and high mechanical strength.
  • the ceramic wiring substrate 1 can be used as an interposer substrate for a probe card, for example.
  • the ceramic wiring substrate 1 has a ceramic substrate 10.
  • the ceramic substrate 10 has first and second main surfaces 10a and 10b.
  • the ceramic substrate 10 is configured by a laminated body of a plurality of ceramic layers 11.
  • a plurality of internal conductors 20 are arranged inside the ceramic substrate 10.
  • Each internal conductor 20 has an interlayer electrode 21 positioned between adjacent ceramic layers 11 and an interlayer electrode that penetrates the ceramic layer 11 and faces the stacking direction of the ceramic layer 11 via the ceramic layer 11. And a via-hole electrode 22 connecting the 21 to each other.
  • the plurality of internal conductors 20 are provided across the first main surface 10a and the second main surface 10b of the ceramic substrate 10.
  • the end of the inner conductor 20 on the first main surface 10a side is connected to an electrode pad 31 provided on the first main surface 10a.
  • the end of the inner conductor 20 on the second main surface 10b side is connected to an electrode pad 32 provided on the second main surface 10b.
  • the distance between adjacent electrode pads 32 is longer than the distance between adjacent electrode pads 31. For this reason, when the ceramic wiring substrate 1 is used as an interposer substrate, the test head is connected to the second main surface 10b side, and the printed ceramic wiring substrate is connected to the first main surface 10a side.
  • the inner conductor 20 and the electrode pads 31 and 32 can be made of an appropriate conductive material.
  • the internal conductor 20 and the electrode pads 31 and 32 can be made of at least one of metals such as Pt, Au, Ag, Cu, Ni, and Pd, for example.
  • the ceramic substrate 10 is made of low-temperature fired ceramics including glass.
  • the ceramic substrate 10 includes glass, a first ceramic filler, and a second ceramic filler.
  • the thermal expansion coefficient of the first ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C. is lower than the thermal expansion coefficient of the second ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C.
  • the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
  • Glass increases the density (relative density) of the ceramic substrate 10 and increases the mechanical strength of the ceramic substrate 10.
  • the ceramic filler can adjust the thermal expansion coefficient and mechanical strength in the temperature range of -40 ° C to + 125 ° C, which cannot be adjusted with glass alone.
  • the ceramic filler includes a first ceramic filler having a low coefficient of thermal expansion in a temperature range of ⁇ 40 ° C. to + 125 ° C. and a second ceramic filler having a high three-point bending strength of the ceramic filler, glass and these ceramic fillers
  • the coefficient of thermal expansion of the ceramic substrate 10 can be suitably adjusted, and the mechanical strength of the ceramic substrate 10 can be ensured. That is, the first ceramic filler can reduce the thermal expansion coefficient of the ceramic substrate 10 in the temperature range of ⁇ 40 ° C. to + 125 ° C., and the second ceramic filler improves the mechanical strength of the ceramic substrate 10. Can be made.
  • the thermal expansion coefficient of the ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C. was measured by measuring the thermal expansion coefficient of a sheet-like sintered body having a thickness of 3.0 mm produced by the following method.
  • the three-point bending strength of the ceramic filler in this specification was measured by a method based on JIS R1601 (2008) using a sheet-like sintered body having a thickness of 3.0 mm produced by the following method.
  • slurry 15 parts by mass of polyvinyl butyral (PVB), 3 parts by mass of benzylbutyl phthalate and 50 parts by mass of toluene are mixed and kneaded with 100 parts by mass of ceramic filler having an average particle diameter of 2 ⁇ m to prepare a slurry.
  • the slurry is formed into a circular sheet having a diameter of 20.32 cm (8 inches) and a thickness of 150 ⁇ m by a doctor blade method to produce a green sheet.
  • eight green sheets are laminated, thermocompression bonded at 90 ° C. and 30 MPa, heat treated at 450 ° C., degreased, and sintered at 1600 ° C. to produce a sintered body.
  • the sintered body is polished until the thickness becomes 3.0 mm to obtain a sheet-like sintered body.
  • the ceramic substrate 10 may include three or more kinds of ceramic fillers. That is, a ceramic filler other than the first ceramic filler and the second ceramic filler may be included.
  • the first ceramic filler has the lowest thermal expansion coefficient among the three or more ceramic fillers in the temperature range of ⁇ 40 ° C. to 125 ° C.
  • the second ceramic filler is 3% of the second ceramic filler.
  • the point bending strength is preferably the highest among three or more ceramic fillers.
  • the ceramic substrate 10 preferably contains two types of ceramic fillers. That is, by adjusting the mass ratio of the glass, the first ceramic filler, and the second ceramic filler, the thermal expansion coefficient of the ceramic substrate 10 can be easily reduced and the mechanical strength of the ceramic substrate 10 is improved. Can be made.
  • the thermal expansion coefficient in the temperature range of ⁇ 40 ° C. to + 125 ° C. of the first ceramic filler is preferably ⁇ 8 to +5 ppm / ° C. Thereby, the ceramic substrate 10 having a thermal expansion coefficient close to that of the semiconductor wafer can be obtained.
  • the thermal expansion coefficient of the first ceramic filler in the temperature range of ⁇ 40 ° C. to + 125 ° C. is more preferably ⁇ 5 to +4 ppm / ° C., and further preferably ⁇ 3 to +3 ppm / ° C.
  • willemite filler As the first ceramic filler, willemite filler, cordierite filler, ⁇ -spodumene filler, mullite filler, zirconia ceramic filler (ZrSiO 4 , ZrW 2 O 8 , (ZrO 2 ) P 2 O 7 , KZr 2 (PO 4 ) 3 , Zr 2 (WO 4 ) (PO 4 ) 2 ) and the like.
  • willemite filler is preferable.
  • the thermal expansion coefficient of the ceramic substrate 10 in the temperature range of ⁇ 40 ° C. to + 125 ° C. can be reduced to, for example, 4 ppm / ° C. or less, and further 3.6 ppm / ° C.
  • the willemite is a silicon / zinc composite oxide. Willemite is generally represented by ZnSiO 4 .
  • the 3-point bending strength of the second ceramic filler is preferably 400 to 800 MPa. Thereby, the ceramic substrate 10 with high mechanical strength can be obtained.
  • the three-point bending strength of the second ceramic filler is more preferably 450 to 800 MPa, and further preferably 500 to 800 MPa.
  • the second ceramic filler examples include alumina filler and zirconia filler. Among these, an alumina filler is preferable. By using the alumina filler, the mechanical strength of the ceramic substrate 10 can be sufficiently increased.
  • the thermal expansion coefficient of the ceramic substrate 10 can be suitably adjusted by adjusting the mass ratio of the alumina filler and the willemite filler.
  • the mechanical strength of the ceramic substrate 10 can be ensured. That is, the thermal expansion coefficient can be reduced by the willemite filler, and the mechanical strength of the ceramic substrate 10 can be improved by the alumina filler.
  • the thermal expansion coefficient of the ceramic substrate 10 in the temperature range of ⁇ 40 ° C. to + 125 ° C. can be reduced to, for example, 4 ppm / ° C. or less, and further to 3.6 ppm / ° C. or less.
  • FIG. 2 is a graph showing the relationship between the mass ratio of glass and filler in the ceramic substrate 10, the relative density (shown by solid lines) and the mechanical strength (three-point bending strength) (shown by dotted lines) of the ceramic wiring board.
  • the relative density D is represented by measured density / theoretical density ⁇ 100 (%) (the theoretical density is a value calculated from the theoretical density of glass and ceramics at a mixing ratio corresponding to the horizontal axis).
  • the relative density increases as the glass content increases until the glass content reaches a certain value, and the three-point bending strength increases as the relative density increases.
  • the mass ratio of glass to alumina filler and willemite filler is 30:70 to 65: It can be seen that it is preferably in the range of 35, more preferably in the range of 40:60 to 60:40.
  • the mass ratio of the willemite filler to the total amount of the alumina filler and the willemite filler (the total amount of the willemite filler / alumina filler and the willemite filler) is too small, the mechanical strength of the ceramic substrate 10.
  • the thermal expansion coefficient of the ceramic substrate 10 tends to increase and the dielectric constant tends to increase. If the mass ratio of the willemite filler to the total amount of the alumina filler and the willemite filler (the total amount of the willemite filler / alumina filler and the willemite filler) is too large, the thermal expansion coefficient of the ceramic substrate 10 becomes small and the dielectric becomes dielectric.
  • the mass ratio of the alumina filler to the willemite filler is preferably in the range of 20:80 to 60:40, more preferably in the range of 30:70 to 50:50.
  • the average particle diameter of the willemite filler is preferably smaller than the average particle diameter of the alumina filler, and more preferably 1/2 times or less. In this case, the filling rate of the filler is increased and the mechanical strength is improved.
  • the glass in the ceramic substrate 10 is preferably borosilicate glass.
  • borosilicate glass By using borosilicate glass, the thermal expansion coefficient of the ceramic substrate 10 can be easily reduced. Further, the mechanical strength of the ceramic substrate 10 can be increased.
  • the borosilicate glass has a glass composition of 60 to 80% by mass, SiO 2 10 to 30%, B 2 O 3 10 to 30%, Li 2 O + Na 2 O + K 2 O 1 to 5%, and MgO + CaO + SrO + BaO 0 to 20 as a glass composition.
  • SiO 2 is a component that forms a glass skeleton.
  • the SiO 2 content is preferably 60 to 80% in terms of mass percentage. If the content of SiO 2 decreases, vitrification may become difficult. On the other hand, when the content is increased, the melting temperature is increased, and melting may be difficult. A more preferable range of the content of SiO 2 is 65 to 75%.
  • B 2 O 3 is a component that forms a glass skeleton, widens the vitrification range, and stabilizes the glass.
  • the content of B 2 O 3 is preferably 10 to 30% in terms of mass percentage.
  • the content of B 2 O 3 decreases, the melting temperature increases and melting tends to be difficult.
  • the thermal expansion coefficient of the ceramic wiring board 1 tends to increase.
  • a more preferable range of the content of B 2 O 3 is 15 to 25%.
  • Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that lower the viscosity of the molten glass and facilitate melting.
  • the content (total amount) of the alkali metal oxide is preferably 1 to 5% in terms of mass percentage.
  • the content of the alkali metal oxide is decreased, the effect of decreasing the viscosity may be decreased.
  • the content of the alkali metal oxide increases, the water resistance tends to decrease.
  • a more preferable range of the content of the alkali metal oxide is 2 to 4%.
  • Alkaline earth metal oxides are components that lower the viscosity of the molten glass and facilitate melting.
  • the content (total amount) of the alkaline earth metal oxide is preferably 0 to 20% in terms of mass percentage. When the content of the alkaline earth metal oxide increases, the glass tends to become unstable, and the glass tends to devitrify when the glass is melted. A more preferable range of the content of the alkaline earth metal oxide is 5 to 15%.
  • a glass ceramic powder for a ceramic wiring board including the glass powder, the first ceramic filler, and the second ceramic filler described above is prepared.
  • the first ceramic filler is preferably a willemite filler
  • the second ceramic filler is preferably an alumina filler.
  • the mass ratio of glass to alumina filler and willemite filler is preferably in the range of 30:70 to 65:35, 40:60 to 60:40 More preferably, it is within the range.
  • the mass ratio of alumina filler to willemite filler is preferably in the range of 20:80 to 60:40, and preferably in the range of 30:70 to 50:50. Is more preferable.
  • the average particle size of the willemite filler is preferably smaller than the average particle size of the alumina filler, and more preferably 1 ⁇ 2 times or less the average particle size of the alumina filler.
  • the glass is preferably borosilicate glass, and more preferably borosilicate glass having the above composition.
  • the average particle size of the glass powder is preferably in the range of 1 ⁇ m to 5 ⁇ m.
  • a slurry containing a resin, a plasticizer, a solvent, and the like is added to the glass ceramic powder for a ceramic wiring board and kneaded to prepare a slurry.
  • the slurry is formed into a sheet by a doctor blade method or the like to produce a ceramic green sheet for a ceramic wiring board containing glass, an alumina filler, and a willemite filler.
  • the via hole is formed in the ceramic green sheet.
  • the via hole can be formed by, for example, laser light irradiation or mechanical punching.
  • the formed via hole is filled with a conductive paste for forming the via hole electrode 22. Further, a conductive paste for forming the interlayer electrode 21 and the electrode pads 31 and 32 is applied on the ceramic green sheet.
  • the ceramic wiring substrate 1 can be completed by firing the laminate.
  • Example 1 The glass raw material is prepared so that it becomes SiO 2 70%, B 2 O 3 28%, K 2 O 2% by mass percentage display, the glass raw material is put into a platinum crucible, and melted by melting at 1600 ° C. Glass was obtained. The molten glass was supplied between two water-cooled rotating rolls, and the molten glass was stretched to obtain a film-like glass.
  • the glass thus obtained was pulverized by a ball mill to obtain a glass powder having an average particle size of 2.2 ⁇ m.
  • the green sheet was punched to obtain a circular green sheet molded body having a diameter of 20.32 cm (8 inches).
  • through holes having a diameter of 100 ⁇ m and a distance of 500 ⁇ m were formed in the green sheet molded body by a laser punching machine, and via conductors were embedded by printing.
  • the interlayer electrode and the electrode pad were formed by printing a conductive paste.
  • a green sheet molded body was laminated, and an alumina green sheet made of an alumina filler was further laminated as a restraining member to produce a laminated body.
  • the laminate was thermocompression bonded at 90 ° C. and 30 MPa. Thereafter, the laminate was heat treated at 450 ° C. and degreased, and then sintered at 850 ° C. to obtain a sintered body. The restrained member was removed by polishing the obtained sintered body, and a ceramic wiring board having a thickness of 3.0 mm was produced.
  • the thermal expansion coefficient of the obtained ceramic wiring board in the temperature range of ⁇ 40 to 125 ° C. was 3.9 ppm / ° C., which was almost the same value as the thermal expansion coefficient of the semiconductor wafer.
  • the three-point bending strength of the ceramic wiring board measured by a method based on JIS R1601 (2008) was 300 MPa, and had sufficient strength.
  • this ceramic wiring board was used as a probe card and a semiconductor wafer was inspected with this probe card in the temperature range of ⁇ 40 to + 125 ° C., the semiconductor wafer could be inspected without any problem.
  • Example 2 A ceramic wiring board was produced in the same manner as in Example 1 except for the following points.
  • composition of the glass raw material was expressed as mass percentage, SiO 2 65%, B 2 O 3 15%, CaO 16%, K 2 O 4%.
  • the average particle size of the glass powder was 2.0 ⁇ m.
  • the thermal expansion coefficient of the obtained ceramic wiring board in the temperature range of ⁇ 40 to 125 ° C. was 3.4 ppm / ° C., which was almost the same value as the thermal expansion coefficient of the semiconductor wafer.
  • the three-point bending strength of the ceramic wiring board measured by a method based on JIS R1601 (2008) was 280 MPa, and had sufficient strength.
  • this ceramic wiring board was used as a probe card and a semiconductor wafer was inspected with this probe card in the temperature range of ⁇ 40 to + 125 ° C., the semiconductor wafer could be inspected without any problem.
  • the thermal expansion coefficient of the obtained ceramic wiring board in the temperature range of ⁇ 40 to 125 ° C. was 6.2 ppm / ° C., which was larger than the thermal expansion coefficient of the semiconductor wafer.
  • the three-point bending strength of the ceramic wiring board measured by a method based on JIS R1601 (2008) was 280 MPa.
  • this ceramic wiring board is used as a probe card and a semiconductor wafer is inspected with this probe card in a temperature range of ⁇ 40 to + 125 ° C., the semiconductor wafer can be inspected accurately due to expansion of the ceramic wiring board. There wasn't.
  • Ceramic wiring substrate 10 Ceramic substrate 10a: First main surface 10b: Second main surface 11: Ceramic layer 20: Internal conductor 21: Interlayer electrode 22: Via hole electrodes 31, 32: Electrode pads

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A ceramic wiring substrate (1) comprises a ceramic substrate (10) and an internal conductor (20). The internal conductor (20) is arranged in the ceramic substrate (10). The ceramic substrate (10) comprises a glass, a first ceramic filler and a second ceramic filler. The thermal expansion coefficient of the first ceramic filler as measured in a temperature range from -40ºC to +125ºC is lower than the thermal expansion coefficient of the second ceramic filler as measured in a temperature range from -40ºC to +125ºC. The three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.

Description

セラミック配線基板、セラミック配線基板用セラミックグリーンシート及びセラミック配線基板用ガラスセラミックス粉末Ceramic circuit board, ceramic green sheet for ceramic circuit board, and glass ceramic powder for ceramic circuit board
 本発明は、セラミック配線基板、セラミック配線基板用セラミックグリーンシート及びセラミック配線基板用ガラスセラミックス粉末に関する。 The present invention relates to a ceramic wiring board, a ceramic green sheet for a ceramic wiring board, and a glass ceramic powder for a ceramic wiring board.
 従来、半導体ウェハーを検査する際に、半導体ウェハーの上にプローブカードを配し、プローブカードを介して半導体ウェハーをテスターに電気的に接続することがなされている。 Conventionally, when a semiconductor wafer is inspected, a probe card is arranged on the semiconductor wafer, and the semiconductor wafer is electrically connected to a tester via the probe card.
 プローブカードは、通常、半導体ウェハーに接触するテストヘッドと、テスターに接続されるプリントセラミック配線基板と、プリントセラミック配線基板とテストヘッドとを接続するインターポーザ基板と呼ばれるセラミック配線基板とを有している。 The probe card usually has a test head that contacts a semiconductor wafer, a printed ceramic wiring board connected to the tester, and a ceramic wiring board called an interposer board that connects the printed ceramic wiring board and the test head. .
 例えば特許文献1には、低温焼成可能なセラミック配線基板として、ガラスを含む低温焼成セラミックスからなるセラミック配線基板が記載されている。 For example, Patent Document 1 describes a ceramic wiring board made of low-temperature fired ceramics including glass as a ceramic wiring board capable of low-temperature firing.
特開2009-074823号公報JP 2009-074823 A
  プリントセラミック配線基板の電極パッド間距離は、テストヘッドにおける電極パッド間距離よりも大きい。インターポーザ基板の一方側の主面にはプリントセラミック配線基板の電極パッドに対応した電極パッドが設けられており、他方側の主面の上にはテストヘッドの電極パッドに対応した電極パッドが設けられている。それら一方主面側の電極パッドと他方主面側の電極パッドとが、内部導体によって接続されている。従って、インターポーザ基板においては、両主面の電極パッドの位置精度が高いことが重要となる。 The distance between the electrode pads of the printed ceramic wiring board is larger than the distance between the electrode pads in the test head. An electrode pad corresponding to the electrode pad of the printed ceramic wiring board is provided on one main surface of the interposer substrate, and an electrode pad corresponding to the electrode pad of the test head is provided on the other main surface. ing. The electrode pads on the one main surface side and the electrode pads on the other main surface side are connected by an internal conductor. Therefore, in the interposer substrate, it is important that the position accuracy of the electrode pads on both main surfaces is high.
  また、プローブカードを用いた検査は、例えば、-40℃から+125℃といった広い温度範囲で行われる。このため、検査温度が変化した際に、インターポーザ基板の電極パッド間距離とテストヘッドやプリントセラミック配線基板等の電極パッド間距離との間に差が出ないようにインターポーザ基板の熱膨張係数を、テストヘッドやプリントセラミック配線基板の熱膨張係数と近似させることが好ましい。従って、インターポーザ基板は、使用環境に合わせて熱膨張係数を調節可能な材料からなることが好ましい。 In addition, the inspection using the probe card is performed in a wide temperature range from −40 ° C. to + 125 ° C., for example. For this reason, when the inspection temperature changes, the thermal expansion coefficient of the interposer substrate is set so that there is no difference between the distance between the electrode pads of the interposer substrate and the distance between the electrode pads of the test head, the printed ceramic wiring substrate, etc. It is preferable to approximate the thermal expansion coefficient of the test head or the printed ceramic wiring board. Therefore, the interposer substrate is preferably made of a material whose thermal expansion coefficient can be adjusted according to the use environment.
  また、通常は、テストヘッドの熱膨張係数は、半導体ウェハーの熱膨張係数と近似している。このため、インターポーザ基板の熱膨張係数を半導体ウェハーの熱膨張係数程度にまで小さくしたいという要望もある。 In general, the thermal expansion coefficient of the test head is close to the thermal expansion coefficient of the semiconductor wafer. For this reason, there is also a demand for reducing the thermal expansion coefficient of the interposer substrate to about the thermal expansion coefficient of the semiconductor wafer.
  しかしながら、特許文献1に記載のセラミック配線基板では、半導体ウェハーの熱膨張係数ほど低い熱膨張係数を実現することが困難であるという問題がある。 However, the ceramic wiring board described in Patent Document 1 has a problem that it is difficult to realize a thermal expansion coefficient that is as low as that of the semiconductor wafer.
  さらに、インターポーザ基板の機械的強度を確保したいという要望もある。 Furthermore, there is a desire to ensure the mechanical strength of the interposer substrate.
 本発明の主な目的は、低温焼成可能なセラミック配線基板であって、熱膨張係数を低く調節することが可能であり、かつ、機械的強度の高いセラミック配線基板を提供することにある。 The main object of the present invention is to provide a ceramic wiring board that can be fired at a low temperature and that can be adjusted to have a low coefficient of thermal expansion and that has high mechanical strength.
 本発明に係るセラミック配線基板は、セラミック基板と、内部導体とを備える。内部導体は、セラミック基板内に配されている。セラミック基板は、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーを含む。第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、第2のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数よりも低い。第2のセラミックフィラーの3点曲げ強度は、第1のセラミックフィラーの3点曲げ強度よりも高い。 The ceramic wiring board according to the present invention includes a ceramic substrate and an internal conductor. The inner conductor is disposed in the ceramic substrate. The ceramic substrate includes glass, a first ceramic filler, and a second ceramic filler. The thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is lower than the thermal expansion coefficient of the second ceramic filler in the temperature range of −40 ° C. to + 125 ° C. The three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
 本発明に係るセラミック配線基板では、第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は-8~+5ppm/℃であり、第2のセラミックフィラーの3点曲げ強度は400~800MPaであることが好ましい。 In the ceramic wiring board according to the present invention, the thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is −8 to +5 ppm / ° C., and the three-point bending strength of the second ceramic filler is 400. It is preferable that the pressure be ˜800 MPa.
 本発明に係るセラミック配線基板では、セラミック基板は、3種以上のセラミックフィラーを含み、第1のセラミックフィラーは、-40℃~+125℃の温度範囲における熱膨張係数が3種以上のセラミックフィラーの中で最も低く、第2のセラミックフィラーは、各セラミックフィラーの3点曲げ強度が3種以上のセラミックフィラーの中で最も高いことが好ましい。 In the ceramic wiring board according to the present invention, the ceramic substrate includes three or more ceramic fillers, and the first ceramic filler is a ceramic filler having a thermal expansion coefficient of three or more in a temperature range of −40 ° C. to + 125 ° C. Among them, it is preferable that the second ceramic filler has the highest three-point bending strength of each ceramic filler among the three or more kinds of ceramic fillers.
 本発明に係るセラミック配線基板では、セラミック基板は、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーからなることが好ましい。 In the ceramic wiring substrate according to the present invention, the ceramic substrate is preferably made of glass, a first ceramic filler, and a second ceramic filler.
 本発明に係るセラミック配線基板では、第1のセラミックフィラーはウイレマイトフィラーであり、第2のセラミックフィラーはアルミナフィラーであることが好ましい。 In the ceramic wiring board according to the present invention, it is preferable that the first ceramic filler is a willemite filler and the second ceramic filler is an alumina filler.
 本発明に係るセラミック配線基板では、ガラスとアルミナフィラー及びウイレマイトフィラーとの質量比(ガラス:アルミナフィラー及びウイレマイトフィラー)は30:70~65:35の範囲内にあり、アルミナフィラーとウイレマイトフィラーとの質量比(アルミナフィラー:ウイレマイトフィラー)は20:80~60:40の範囲内にあることが好ましい。 In the ceramic wiring board according to the present invention, the mass ratio of glass to alumina filler and willemite filler (glass: alumina filler and willemite filler) is in the range of 30:70 to 65:35. The mass ratio with the willemite filler (alumina filler: willemite filler) is preferably in the range of 20:80 to 60:40.
 ウイレマイトフィラーの平均粒子径は、アルミナフィラーの平均粒子径よりも小さいことが好ましい。 The average particle diameter of the willemite filler is preferably smaller than the average particle diameter of the alumina filler.
 ガラスはホウケイ酸ガラスであることが好ましい。 The glass is preferably borosilicate glass.
 ガラスは、ガラス組成として、質量%で、SiO 60~80%、B 10~30%、LiO+NaO+KO 1~5%及びMgO+CaO+SrO+BaO 0~20%を含むことが好ましい。 The glass preferably contains, by mass%, SiO 2 60-80%, B 2 O 3 10-30%, Li 2 O + Na 2 O + K 2 O 1-5% and MgO + CaO + SrO + BaO 0-20% by mass.
 セラミック基板の-40℃~+125℃の温度範囲における熱膨張係数は4ppm/℃以下であることが好ましい。 The thermal expansion coefficient of the ceramic substrate in the temperature range of −40 ° C. to + 125 ° C. is preferably 4 ppm / ° C. or less.
 本発明に係るセラミック配線基板用セラミックグリーンシートは、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーを含み、第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、第2のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数よりも低く、第2のセラミックフィラーの3点曲げ強度は、第1のセラミックフィラーの3点曲げ強度よりも高い。 The ceramic green sheet for a ceramic wiring board according to the present invention includes glass, a first ceramic filler, and a second ceramic filler, and the thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is The coefficient of thermal expansion is lower than that of the second ceramic filler in the temperature range of −40 ° C. to + 125 ° C., and the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
 本発明に係るセラミック配線基板用ガラスセラミックス粉末は、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーを含み、 第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、第2のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数よりも低く、第2のセラミックフィラーの3点曲げ強度は、第1のセラミックフィラーの3点曲げ強度よりも高い。 The glass ceramic powder for a ceramic wiring board according to the present invention includes glass, a first ceramic filler, and a second ceramic filler. The thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is The coefficient of thermal expansion is lower than that of the second ceramic filler in the temperature range of −40 ° C. to + 125 ° C., and the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
 本発明によれば、低温焼成可能なセラミック配線基板であって、熱膨張係数を低く調節することが可能であり、かつ、機械的強度の高いセラミック配線基板を提供することができる。 According to the present invention, it is possible to provide a ceramic wiring board that can be fired at a low temperature, can be adjusted to have a low coefficient of thermal expansion, and has high mechanical strength.
本発明の一実施形態に係るセラミック配線基板の模式的断面図である。It is a typical sectional view of a ceramic wiring board concerning one embodiment of the present invention. セラミック基板におけるガラスとフィラーとの質量比(ガラスの質量百分率)とセラミック配線基板の相対密度及び機械的強度との関係を表すグラフである。It is a graph showing the relationship between the mass ratio (mass percentage of glass) of glass and a filler in a ceramic substrate, the relative density of a ceramic wiring board, and mechanical strength.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 図1は、本実施形態に係るセラミック配線基板の模式的断面図である。図1に示されるセラミック配線基板1は、熱膨張係数が小さく、かつ、機械的強度の高いことが要求されるセラミック配線基板一般として用いることができる。セラミック配線基板1は、例えば、プローブカードのインターポーザ基板として用いることができる。 FIG. 1 is a schematic cross-sectional view of a ceramic wiring board according to the present embodiment. The ceramic wiring board 1 shown in FIG. 1 can be used as a general ceramic wiring board that is required to have a low thermal expansion coefficient and high mechanical strength. The ceramic wiring substrate 1 can be used as an interposer substrate for a probe card, for example.
 セラミック配線基板1は、セラミック基板10を有する。セラミック基板10は、第1及び第2の主面10a、10bを有する。セラミック基板10は、複数のセラミック層11の積層体により構成されている。 The ceramic wiring substrate 1 has a ceramic substrate 10. The ceramic substrate 10 has first and second main surfaces 10a and 10b. The ceramic substrate 10 is configured by a laminated body of a plurality of ceramic layers 11.
 セラミック基板10の内部には、複数の内部導体20が配されている。それぞれの内部導体20は、隣り合うセラミック層11の間に位置する層間電極21と、セラミック層11を貫通しており、セラミック層11を介してセラミック層11の積層方向に対向している層間電極21同士を接続しているビアホール電極22とを有する。 A plurality of internal conductors 20 are arranged inside the ceramic substrate 10. Each internal conductor 20 has an interlayer electrode 21 positioned between adjacent ceramic layers 11 and an interlayer electrode that penetrates the ceramic layer 11 and faces the stacking direction of the ceramic layer 11 via the ceramic layer 11. And a via-hole electrode 22 connecting the 21 to each other.
 複数の内部導体20は、セラミック基板10の第1の主面10aと第2の主面10bとに跨がって設けられている。内部導体20の第1の主面10a側の端部は、第1の主面10aの上に設けられた電極パッド31に接続されている。内部導体20の第2の主面10b側の端部は、第2の主面10bの上に設けられた電極パッド32に接続されている。 The plurality of internal conductors 20 are provided across the first main surface 10a and the second main surface 10b of the ceramic substrate 10. The end of the inner conductor 20 on the first main surface 10a side is connected to an electrode pad 31 provided on the first main surface 10a. The end of the inner conductor 20 on the second main surface 10b side is connected to an electrode pad 32 provided on the second main surface 10b.
 隣り合う電極パッド32間の距離は、隣り合う電極パッド31間の距離よりも長い。このため、セラミック配線基板1がインターポーザ基板として用いられる場合は、テストヘッドが第2の主面10b側に接続され、プリントセラミック配線基板が第1の主面10a側に接続される。 The distance between adjacent electrode pads 32 is longer than the distance between adjacent electrode pads 31. For this reason, when the ceramic wiring substrate 1 is used as an interposer substrate, the test head is connected to the second main surface 10b side, and the printed ceramic wiring substrate is connected to the first main surface 10a side.
 なお、内部導体20及び電極パッド31,32は、適宜の導電材料により構成することができる。内部導体20及び電極パッド31,32は、それぞれ、例えば、Pt,Au,Ag,Cu,Ni,Pd等の金属の少なくとも一種により構成することができる。 Note that the inner conductor 20 and the electrode pads 31 and 32 can be made of an appropriate conductive material. The internal conductor 20 and the electrode pads 31 and 32 can be made of at least one of metals such as Pt, Au, Ag, Cu, Ni, and Pd, for example.
 セラミック基板10は、ガラスを含む低温焼成セラミックスにより構成されている。具体的には、セラミック基板10は、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーを含む。そして、第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、第2のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数よりも低い。第2のセラミックフィラーの3点曲げ強度は、第1のセラミックフィラーの3点曲げ強度よりも高い。 The ceramic substrate 10 is made of low-temperature fired ceramics including glass. Specifically, the ceramic substrate 10 includes glass, a first ceramic filler, and a second ceramic filler. The thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is lower than the thermal expansion coefficient of the second ceramic filler in the temperature range of −40 ° C. to + 125 ° C. The three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
 ガラスは、セラミック基板10の緻密性(相対密度)を高め、セラミック基板10の機械的強度を高める。 Glass increases the density (relative density) of the ceramic substrate 10 and increases the mechanical strength of the ceramic substrate 10.
 セラミックフィラーは、ガラス単体では調整できない、-40℃~+125℃の温度範囲における熱膨張係数及び機械的強度を調整できる。 The ceramic filler can adjust the thermal expansion coefficient and mechanical strength in the temperature range of -40 ° C to + 125 ° C, which cannot be adjusted with glass alone.
 セラミックフィラーとして、-40℃~+125℃の温度範囲における熱膨張係数が低い第1のセラミックフィラー、及びセラミックフィラーの3点曲げ強度が高い第2のセラミックフィラーを含むため、ガラスとこれらのセラミックフィラーの質量比を調整することによりセラミック基板10の熱膨張係数を好適に調節することができるとともに、セラミック基板10としての機械的強度を担保することができる。つまり、第1のセラミックフィラーにより、セラミック基板10の-40℃~+125℃の温度範囲における熱膨張係数を小さくすることができるとともに、第2のセラミックフィラーにより、セラミック基板10の機械的強度を向上させることができる。 Since the ceramic filler includes a first ceramic filler having a low coefficient of thermal expansion in a temperature range of −40 ° C. to + 125 ° C. and a second ceramic filler having a high three-point bending strength of the ceramic filler, glass and these ceramic fillers By adjusting the mass ratio, the coefficient of thermal expansion of the ceramic substrate 10 can be suitably adjusted, and the mechanical strength of the ceramic substrate 10 can be ensured. That is, the first ceramic filler can reduce the thermal expansion coefficient of the ceramic substrate 10 in the temperature range of −40 ° C. to + 125 ° C., and the second ceramic filler improves the mechanical strength of the ceramic substrate 10. Can be made.
 なお、本明細書におけるセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、以下の方法により作製した、厚みが3.0mmのシート状焼結体の熱膨張係数を測定した。 In this specification, the thermal expansion coefficient of the ceramic filler in the temperature range of −40 ° C. to + 125 ° C. was measured by measuring the thermal expansion coefficient of a sheet-like sintered body having a thickness of 3.0 mm produced by the following method.
 なお、本明細書におけるセラミックフィラーの3点曲げ強度は、以下の方法により作製した、厚みが3.0mmのシート状焼結体を用い、JIS R1601(2008)に準拠する方法により測定した。 In addition, the three-point bending strength of the ceramic filler in this specification was measured by a method based on JIS R1601 (2008) using a sheet-like sintered body having a thickness of 3.0 mm produced by the following method.
 まず、平均粒子径2μmのセラミックフィラー100質量部に対して、ポリビニルブチラール(PVB)を15質量部、フタル酸ベンジルブチルを3質量部、トルエン50質量部を混合、混練してスラリーを作製する。次に、そのスラリーをドクターブレード法により、直径20.32cm(8インチ)、厚みが150μmの円形のシート状に成形してグリーンシートを作製する。次に、8枚のグリーンシートを積層し、90℃、30MPaで、熱圧着させた後、450℃で熱処理して脱脂した後に、1600℃で焼結させて焼結体を作製する。最後に、焼結体を厚みが3.0mmとなるまで研磨してシート状の焼結体を得る。 First, 15 parts by mass of polyvinyl butyral (PVB), 3 parts by mass of benzylbutyl phthalate and 50 parts by mass of toluene are mixed and kneaded with 100 parts by mass of ceramic filler having an average particle diameter of 2 μm to prepare a slurry. Next, the slurry is formed into a circular sheet having a diameter of 20.32 cm (8 inches) and a thickness of 150 μm by a doctor blade method to produce a green sheet. Next, eight green sheets are laminated, thermocompression bonded at 90 ° C. and 30 MPa, heat treated at 450 ° C., degreased, and sintered at 1600 ° C. to produce a sintered body. Finally, the sintered body is polished until the thickness becomes 3.0 mm to obtain a sheet-like sintered body.
 セラミック基板10は、3種以上のセラミックフィラーを含んでもよい。すなわち、第1のセラミックフィラー及び第2のセラミックフィラー以外のセラミックフィラーを含んでもよい。 The ceramic substrate 10 may include three or more kinds of ceramic fillers. That is, a ceramic filler other than the first ceramic filler and the second ceramic filler may be included.
 この場合、第1のセラミックフィラーは、-40℃~125℃の温度範囲における熱膨張係数が3種以上のセラミックフィラーの中で最も低く、第2のセラミックフィラーは、第2のセラミックフィラーの3点曲げ強度が3種以上のセラミックフィラーの中で最も高いことが好ましい。 In this case, the first ceramic filler has the lowest thermal expansion coefficient among the three or more ceramic fillers in the temperature range of −40 ° C. to 125 ° C., and the second ceramic filler is 3% of the second ceramic filler. The point bending strength is preferably the highest among three or more ceramic fillers.
 セラミック基板10は、2種類のセラミックフィラーを含んでいることが好ましい。すなわち、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーの質量比を調整することで、容易にセラミック基板10の熱膨張係数を小さくすることができるとともに、セラミック基板10の機械的強度を向上させることができる。 The ceramic substrate 10 preferably contains two types of ceramic fillers. That is, by adjusting the mass ratio of the glass, the first ceramic filler, and the second ceramic filler, the thermal expansion coefficient of the ceramic substrate 10 can be easily reduced and the mechanical strength of the ceramic substrate 10 is improved. Can be made.
 第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は-8~+5ppm/℃であることが好ましい。これにより、半導体ウェハーの熱膨張係数に近い熱膨張係数を有するセラミック基板10を得ることができる。第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、-5~+4ppm/℃であることがより好ましく、-3~+3ppm/℃であることがさらに好ましい。 The thermal expansion coefficient in the temperature range of −40 ° C. to + 125 ° C. of the first ceramic filler is preferably −8 to +5 ppm / ° C. Thereby, the ceramic substrate 10 having a thermal expansion coefficient close to that of the semiconductor wafer can be obtained. The thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is more preferably −5 to +4 ppm / ° C., and further preferably −3 to +3 ppm / ° C.
 第1のセラミックフィラーとしては、ウイレマイトフィラー、コージュライトフィラー、β-スポジュメンフィラー、ムライトフィラー、ジルコニア系セラミックフィラー(ZrSiO、ZrW、(ZrO)P、KZr(PO、Zr(WO)(PO)等が挙げられる。これらの中でも、ウイレマイトフィラーが好ましい。ウイレマイトフィラーを用いることで、-40℃~+125℃の温度範囲におけるセラミック基板10の熱膨張係数を、例えば、4ppm/℃以下、さらには、3.6ppm/℃以下に小さくし得る。なお、ウイレマイトとは、ケイ素・亜鉛複合酸化物である。ウイレマイトは、一般的には、ZnSiOで表される。 As the first ceramic filler, willemite filler, cordierite filler, β-spodumene filler, mullite filler, zirconia ceramic filler (ZrSiO 4 , ZrW 2 O 8 , (ZrO 2 ) P 2 O 7 , KZr 2 (PO 4 ) 3 , Zr 2 (WO 4 ) (PO 4 ) 2 ) and the like. Among these, willemite filler is preferable. By using a willemite filler, the thermal expansion coefficient of the ceramic substrate 10 in the temperature range of −40 ° C. to + 125 ° C. can be reduced to, for example, 4 ppm / ° C. or less, and further 3.6 ppm / ° C. The willemite is a silicon / zinc composite oxide. Willemite is generally represented by ZnSiO 4 .
 第2のセラミックフィラーの3点曲げ強度は、400~800MPaであることが好ましい。これにより、機械的強度が高いセラミック基板10を得ることができる。第2のセラミックフィラーの3点曲げ強度は、450~800MPaであることがより好ましく、500~800MPaであることがさらに好ましい。 The 3-point bending strength of the second ceramic filler is preferably 400 to 800 MPa. Thereby, the ceramic substrate 10 with high mechanical strength can be obtained. The three-point bending strength of the second ceramic filler is more preferably 450 to 800 MPa, and further preferably 500 to 800 MPa.
 第2のセラミックフィラーとしては、アルミナフィラー、ジルコニアフィラー等が挙げられる。これらの中でも、アルミナフィラーが好ましい。アルミナフィラーを用いることで、セラミック基板10の機械的強度を十分に大きくし得る。 Examples of the second ceramic filler include alumina filler and zirconia filler. Among these, an alumina filler is preferable. By using the alumina filler, the mechanical strength of the ceramic substrate 10 can be sufficiently increased.
 セラミック基板10は、例えば、アルミナフィラー及びウイレマイトフィラーを含む場合、アルミナフィラーとウイレマイトフィラーとの質量比を調節することによりセラミック基板10の熱膨張係数を好適に調節することができるとともに、セラミック基板10としての機械的強度を担保することができる。つまり、ウイレマイトフィラーにより、熱膨張係数を小さくすることができるとともに、アルミナフィラーにより、セラミック基板10の機械的強度を向上させることができる。また、-40℃~+125℃の温度範囲におけるセラミック基板10の熱膨張係数を、例えば、4ppm/℃以下、さらには、3.6ppm/℃以下に小さくし得る。 For example, when the ceramic substrate 10 includes an alumina filler and a willemite filler, the thermal expansion coefficient of the ceramic substrate 10 can be suitably adjusted by adjusting the mass ratio of the alumina filler and the willemite filler. The mechanical strength of the ceramic substrate 10 can be ensured. That is, the thermal expansion coefficient can be reduced by the willemite filler, and the mechanical strength of the ceramic substrate 10 can be improved by the alumina filler. Further, the thermal expansion coefficient of the ceramic substrate 10 in the temperature range of −40 ° C. to + 125 ° C. can be reduced to, for example, 4 ppm / ° C. or less, and further to 3.6 ppm / ° C. or less.
 図2は、セラミック基板10におけるガラスとフィラーとの質量比とセラミック配線基板の相対密度(実線表示)及び機械的強度(3点曲げ強度)(点線表示)との関係を表すグラフである。なお、相対密度Dは、実測密度/理論密度×100(%)、(理論密度はガラス及びセラミックスの理論密度から横軸に対応する混合比で計算した値)で表される。図2に示されるように、相対密度は、ガラス含有量がある値となるまでは、ガラス含有量の増加に伴い増加し、そして、相対密度の増加に伴い、3点曲げ強度も増加する。ガラス含有量がある値以上となると、相対密度が約100%となり、相対密度はガラス含有量がそれ以上増加しても増加せず、相対密度の増加に伴う3点曲げ強度の増加も見られなくなる。その一方で、ガラス含有量の増加に伴い、フィラーの含有量が減少していくため、それに伴い、3点曲げ強度も減少していく。これらの結果から、セラミック基板10の機械的強度を高くする観点から、ガラスとアルミナフィラー及びウイレマイトフィラーとの質量比(ガラス:アルミナフィラー及びウイレマイトフィラー)は、30:70~65:35の範囲内にあることが好ましく、40:60~60:40の範囲内にあることがより好ましいことが分かる。 FIG. 2 is a graph showing the relationship between the mass ratio of glass and filler in the ceramic substrate 10, the relative density (shown by solid lines) and the mechanical strength (three-point bending strength) (shown by dotted lines) of the ceramic wiring board. The relative density D is represented by measured density / theoretical density × 100 (%) (the theoretical density is a value calculated from the theoretical density of glass and ceramics at a mixing ratio corresponding to the horizontal axis). As shown in FIG. 2, the relative density increases as the glass content increases until the glass content reaches a certain value, and the three-point bending strength increases as the relative density increases. When the glass content exceeds a certain value, the relative density becomes about 100%, and the relative density does not increase even if the glass content increases further, and an increase in the three-point bending strength with increasing relative density is also seen. Disappear. On the other hand, since the filler content decreases as the glass content increases, the three-point bending strength also decreases accordingly. From these results, from the viewpoint of increasing the mechanical strength of the ceramic substrate 10, the mass ratio of glass to alumina filler and willemite filler (glass: alumina filler and willemite filler) is 30:70 to 65: It can be seen that it is preferably in the range of 35, more preferably in the range of 40:60 to 60:40.
 セラミック基板10において、アルミナフィラー及びウイレマイトフィラーの総量に対するウイレマイトフィラーの質量比(ウイレマイトフィラー/アルミナフィラー及びウイレマイトフィラーの総量)が小さすぎると、セラミック基板10の機械的強度が向上するものの、セラミック基板10の熱膨張係数が大きくなると共に誘電率が高くなる傾向にある。アルミナフィラー及びウイレマイトフィラーの総量に対するウイレマイトフィラーの質量比(ウイレマイトフィラー/アルミナフィラー及びウイレマイトフィラーの総量)が大きすぎると、セラミック基板10の熱膨張係数が小さくなると共に誘電率が低くなるものの、セラミック基板10の機械的強度が低下する傾向にある。従って、セラミック基板10の機械的強度を高く保ちつつ、セラミック基板10の熱膨張係数を小さくし、誘電率を低くする観点からは、アルミナフィラーとウイレマイトフィラーとの質量比(アルミナフィラー:ウイレマイトフィラー)が20:80~60:40の範囲内にあることが好ましく、30:70~50:50の範囲内にあることがより好ましい。 In the ceramic substrate 10, if the mass ratio of the willemite filler to the total amount of the alumina filler and the willemite filler (the total amount of the willemite filler / alumina filler and the willemite filler) is too small, the mechanical strength of the ceramic substrate 10. However, the thermal expansion coefficient of the ceramic substrate 10 tends to increase and the dielectric constant tends to increase. If the mass ratio of the willemite filler to the total amount of the alumina filler and the willemite filler (the total amount of the willemite filler / alumina filler and the willemite filler) is too large, the thermal expansion coefficient of the ceramic substrate 10 becomes small and the dielectric becomes dielectric. Although the rate decreases, the mechanical strength of the ceramic substrate 10 tends to decrease. Therefore, from the viewpoint of reducing the thermal expansion coefficient of the ceramic substrate 10 and lowering the dielectric constant while keeping the mechanical strength of the ceramic substrate 10 high, the mass ratio of the alumina filler to the willemite filler (alumina filler: Remite filler) is preferably in the range of 20:80 to 60:40, more preferably in the range of 30:70 to 50:50.
 ウイレマイトフィラーの平均粒子径は、アルミナフィラーの平均粒子径よりも小さいことが好ましく、1/2倍以下であることがより好ましい。この場合、フィラーの充填率が高まり、機械的強度が向上する。 The average particle diameter of the willemite filler is preferably smaller than the average particle diameter of the alumina filler, and more preferably 1/2 times or less. In this case, the filling rate of the filler is increased and the mechanical strength is improved.
 セラミック基板10中のガラスは、ホウケイ酸ガラスであることが好ましい。ホウケイ酸ガラスを用いることにより、セラミック基板10の熱膨張係数を小さくしやすい。また、セラミック基板10の機械的強度を高くすることができる。 The glass in the ceramic substrate 10 is preferably borosilicate glass. By using borosilicate glass, the thermal expansion coefficient of the ceramic substrate 10 can be easily reduced. Further, the mechanical strength of the ceramic substrate 10 can be increased.
 具体的には、ホウケイ酸ガラスは、ガラス組成として、質量%で、SiO 60~80%、B 10~30%、LiO+NaO+KO 1~5%及びMgO+CaO+SrO+BaO 0~20%を含むことが好ましい。 Specifically, the borosilicate glass has a glass composition of 60 to 80% by mass, SiO 2 10 to 30%, B 2 O 3 10 to 30%, Li 2 O + Na 2 O + K 2 O 1 to 5%, and MgO + CaO + SrO + BaO 0 to 20 as a glass composition. % Is preferably included.
 以下、特に断りなく示す百分率は、質量百分率を示す。 Hereinafter, the percentages indicated without particular notice indicate mass percentages.
 SiOはガラスの骨格を形成する成分である。SiO含有量は、質量百分率表示で、60~80%であることが好ましい。SiOの含有量が少なくなると、ガラス化し難くなる場合がある。一方、含有量が多くなると、溶融温度が高くなり、溶融が困難となる場合がある。SiOの含有量のより好ましい範囲は65~75%である。 SiO 2 is a component that forms a glass skeleton. The SiO 2 content is preferably 60 to 80% in terms of mass percentage. If the content of SiO 2 decreases, vitrification may become difficult. On the other hand, when the content is increased, the melting temperature is increased, and melting may be difficult. A more preferable range of the content of SiO 2 is 65 to 75%.
 Bはガラスの骨格を形成すると共に、ガラス化範囲を広げ、ガラスを安定化させる成分である。Bの含有量は、質量百分率表示で、10~30%であることが好ましい。Bの含有量が少なくなると、溶融温度が高くなり、溶融が困難になる傾向にある。一方、Bの含有量が多くなると、セラミック配線基板1の熱膨張係数が大きくなる傾向にある。Bの含有量のより好ましい範囲は15~25%である。 B 2 O 3 is a component that forms a glass skeleton, widens the vitrification range, and stabilizes the glass. The content of B 2 O 3 is preferably 10 to 30% in terms of mass percentage. When the content of B 2 O 3 decreases, the melting temperature increases and melting tends to be difficult. On the other hand, when the content of B 2 O 3 increases, the thermal expansion coefficient of the ceramic wiring board 1 tends to increase. A more preferable range of the content of B 2 O 3 is 15 to 25%.
 アルカリ金属酸化物(LiO、NaO、KO)は溶融ガラスの粘度を低下させ、溶融しやすくする成分である。アルカリ金属酸化物の含有量(合量)は、質量百分率表示で、1~5%であることが好ましい。アルカリ金属酸化物の含有量が少なくなると、粘度を低下させる効果が低くなる場合がある。一方、アルカリ金属酸化物の含有量が多くなると、耐水性が低下する傾向にある。アルカリ金属酸化物の含有量のより好ましい範囲は2~4%である。 Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that lower the viscosity of the molten glass and facilitate melting. The content (total amount) of the alkali metal oxide is preferably 1 to 5% in terms of mass percentage. When the content of the alkali metal oxide is decreased, the effect of decreasing the viscosity may be decreased. On the other hand, when the content of the alkali metal oxide increases, the water resistance tends to decrease. A more preferable range of the content of the alkali metal oxide is 2 to 4%.
 アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)は溶融ガラスの粘度を低下させ、溶融しやすくする成分である。アルカリ土類金属酸化物の含有量(合量)は、質量百分率表示で、0~20%であることが好ましい。アルカリ土類金属酸化物の含有量が多くなると、ガラスが不安定となりやすく、ガラスを溶融する際にガラスが失透し傾向にある。アルカリ土類金属酸化物の含有量のより好ましい範囲は5~15%である。 Alkaline earth metal oxides (MgO, CaO, SrO, BaO) are components that lower the viscosity of the molten glass and facilitate melting. The content (total amount) of the alkaline earth metal oxide is preferably 0 to 20% in terms of mass percentage. When the content of the alkaline earth metal oxide increases, the glass tends to become unstable, and the glass tends to devitrify when the glass is melted. A more preferable range of the content of the alkaline earth metal oxide is 5 to 15%.
 次に、セラミック配線基板1の製造方法について説明する。 Next, a method for manufacturing the ceramic wiring board 1 will be described.
 まず、上述したガラス粉末、第1のセラミックフィラー及び第2のセラミックフィラーを含むセラミック配線基板用ガラスセラミックス粉末用意する。ここで、セラミック配線基板用ガラスセラミックス粉末において、第1のセラミックフィラーはウイレマイトフィラーであることが好ましく、第2のセラミックフィラーはアルミナフィラーであることが好ましい。ガラスとアルミナフィラー及びウイレマイトフィラーとの質量比(ガラス:アルミナフィラー及びウイレマイトフィラー)は、30:70~65:35の範囲内にあることが好ましく、40:60~60:40の範囲内にあることがより好ましい。アルミナフィラーとウイレマイトフィラーとの質量比(アルミナフィラー:ウイレマイトフィラー)が20:80~60:40の範囲内にあることが好ましく、30:70~50:50の範囲内にあることがより好ましい。ウイレマイトフィラーの平均粒子径がアルミナフィラーの平均粒子径よりも小さいことが好ましく、アルミナフィラーの平均粒子径の1/2倍以下であることがより好ましい。 First, a glass ceramic powder for a ceramic wiring board including the glass powder, the first ceramic filler, and the second ceramic filler described above is prepared. Here, in the glass ceramic powder for a ceramic wiring board, the first ceramic filler is preferably a willemite filler, and the second ceramic filler is preferably an alumina filler. The mass ratio of glass to alumina filler and willemite filler (glass: alumina filler and willemite filler) is preferably in the range of 30:70 to 65:35, 40:60 to 60:40 More preferably, it is within the range. The mass ratio of alumina filler to willemite filler (alumina filler: willemite filler) is preferably in the range of 20:80 to 60:40, and preferably in the range of 30:70 to 50:50. Is more preferable. The average particle size of the willemite filler is preferably smaller than the average particle size of the alumina filler, and more preferably ½ times or less the average particle size of the alumina filler.
 ガラスは、ホウケイ酸塩系ガラスであることが好ましく、上記組成のホウケイ酸塩系ガラスであることがより好ましい。ガラス粉末の平均粒子径は、1μm~5μmの範囲内であることが好ましい。 The glass is preferably borosilicate glass, and more preferably borosilicate glass having the above composition. The average particle size of the glass powder is preferably in the range of 1 μm to 5 μm.
 次に、セラミック配線基板用ガラスセラミックス粉末に、樹脂、可塑剤、溶剤等を含むバインダーを添加し、混練することによりスラリーを作製する。そのスラリーを、ドクターブレード法等によりシート状に成形することにより、ガラス、アルミナフィラー及びウイレマイトフィラーを含むセラミック配線基板用セラミックグリーンシートを作製する。 Next, a slurry containing a resin, a plasticizer, a solvent, and the like is added to the glass ceramic powder for a ceramic wiring board and kneaded to prepare a slurry. The slurry is formed into a sheet by a doctor blade method or the like to produce a ceramic green sheet for a ceramic wiring board containing glass, an alumina filler, and a willemite filler.
 次に、セラミックグリーンシートにビアホールを形成する。ビアホールの形成は、例えば、レーザー光の照射や、メカニカルパンチング等により行うことができる。 Next, a via hole is formed in the ceramic green sheet. The via hole can be formed by, for example, laser light irradiation or mechanical punching.
 次に、形成したビアホールの内部に、ビアホール電極22を形成するための導電性ペーストを充填する。また、セラミックグリーンシートの上に、層間電極21及び電極パッド31,32を形成するための導電性ペーストを塗布する。 Next, the formed via hole is filled with a conductive paste for forming the via hole electrode 22. Further, a conductive paste for forming the interlayer electrode 21 and the electrode pads 31 and 32 is applied on the ceramic green sheet.
 その後、セラミックグリーンシートを適宜積層し、積層体を得る。その積層体を、焼成することによりセラミック配線基板1を完成させることができる。 Thereafter, ceramic green sheets are appropriately laminated to obtain a laminate. The ceramic wiring substrate 1 can be completed by firing the laminate.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
 (実施例1)
 質量百分率表示で、SiO 70%、B 28%、KO 2%となるように、ガラス原料を調合し、白金るつぼにガラス原料を投入し、1600℃で溶融することで溶融ガラスを得た。溶融ガラスを、水冷した2つの回転ロール間に供給し、溶融ガラスを延伸することにより、フィルム状のガラスを得た。
Example 1
The glass raw material is prepared so that it becomes SiO 2 70%, B 2 O 3 28%, K 2 O 2% by mass percentage display, the glass raw material is put into a platinum crucible, and melted by melting at 1600 ° C. Glass was obtained. The molten glass was supplied between two water-cooled rotating rolls, and the molten glass was stretched to obtain a film-like glass.
 このようにして得られたガラスを、ボールミルにより粉砕し、平均粒子径2.2μmのガラス粉末を得た。 The glass thus obtained was pulverized by a ball mill to obtain a glass powder having an average particle size of 2.2 μm.
 ガラス粉末45質量部、平均粒子径が2.0μmであるアルミナ粉末30質量部、平均粒子径が0.8μmであるウイレマイト粉末25質量部となるように調製した混合粉末100質量部に対して、ポリビニルブチラール(PVB)を15質量部、フタル酸ベンジルブチルを3質量部、トルエン50質量部を混合、混練したのち、ドクターブレード法により、厚みが150μmのグリーンシートを得た。 For 100 parts by mass of mixed powder prepared to be 45 parts by mass of glass powder, 30 parts by mass of alumina powder having an average particle diameter of 2.0 μm, and 25 parts by mass of willemite powder having an average particle diameter of 0.8 μm, After mixing and kneading 15 parts by weight of polyvinyl butyral (PVB), 3 parts by weight of benzylbutyl phthalate and 50 parts by weight of toluene, a green sheet having a thickness of 150 μm was obtained by a doctor blade method.
 グリーンシートを打ち抜き加工し、直径20.32cm(8インチ)の円形のグリーンシート成形体を得た。ついで、このグリーンシート成形体に、レーザーパンチングマシンにより、直径が100μmで、間隔が500μmの貫通孔を形成し、ビア導体を印刷により埋め込んだ。また、層間電極及び電極パッドを導電性ペーストを印刷することにより形成した。その後、グリーンシート成形体を積層し、さらに拘束部材として、アルミナフィラーからなるアルミナグリーンシートを積層し、積層体を作製した。 The green sheet was punched to obtain a circular green sheet molded body having a diameter of 20.32 cm (8 inches). Next, through holes having a diameter of 100 μm and a distance of 500 μm were formed in the green sheet molded body by a laser punching machine, and via conductors were embedded by printing. Moreover, the interlayer electrode and the electrode pad were formed by printing a conductive paste. Thereafter, a green sheet molded body was laminated, and an alumina green sheet made of an alumina filler was further laminated as a restraining member to produce a laminated body.
 次に、積層体を、90℃、30MPaで、熱圧着させた。その後、積層体を450℃で熱処理して脱脂した後に、850℃で焼結させて焼結体を得た。得られた焼結体を研磨することで拘束部材を除去し、厚みが3.0mmのセラミック配線基板を作製した。 Next, the laminate was thermocompression bonded at 90 ° C. and 30 MPa. Thereafter, the laminate was heat treated at 450 ° C. and degreased, and then sintered at 850 ° C. to obtain a sintered body. The restrained member was removed by polishing the obtained sintered body, and a ceramic wiring board having a thickness of 3.0 mm was produced.
 -40~125℃の温度範囲における得られたセラミック配線基板の熱膨張係数は、3.9ppm/℃であり、半導体ウェハーの熱膨張係数とほぼ同じ値となった。 The thermal expansion coefficient of the obtained ceramic wiring board in the temperature range of −40 to 125 ° C. was 3.9 ppm / ° C., which was almost the same value as the thermal expansion coefficient of the semiconductor wafer.
 JIS R1601(2008)に準拠する方法により測定したセラミック配線基板の3点曲げ強度は、300MPaであり、十分な強度を有していた。 The three-point bending strength of the ceramic wiring board measured by a method based on JIS R1601 (2008) was 300 MPa, and had sufficient strength.
 そして、このセラミック配線基板をプローブカードに用い、このプローブカードで半導体ウェハーを、-40~+125℃の温度範囲で検査したところ、問題無く半導体ウェハーを検査することができた。 When this ceramic wiring board was used as a probe card and a semiconductor wafer was inspected with this probe card in the temperature range of −40 to + 125 ° C., the semiconductor wafer could be inspected without any problem.
 (実施例2)
 以下の点を除いては、実施例1と同様にしてセラミック配線基板を作製した。
(Example 2)
A ceramic wiring board was produced in the same manner as in Example 1 except for the following points.
 ガラス原料の組成を、質量百分率表示で、SiO 65%、B 15%、CaO 16%、KO 4%とした。 The composition of the glass raw material was expressed as mass percentage, SiO 2 65%, B 2 O 3 15%, CaO 16%, K 2 O 4%.
 ガラス粉末の平均粒子径は、2.0μmであった。 The average particle size of the glass powder was 2.0 μm.
 ガラス粉末40質量%、アルミナフィラー粉末25質量%、ウイレマイトフィラー粉末35質量%となるように調製した混合粉末100質量部に対して、メタアクリル酸樹脂を15質量部、フタル酸ベンジルブチルを3質量部、トルエン50質量部を混合、混練したのち、ドクターブレード法により、厚みが150μmのグリーンシートを得た。 15 parts by mass of methacrylic acid resin and benzylbutyl phthalate are added to 100 parts by mass of the mixed powder prepared to be 40% by mass of glass powder, 25% by mass of alumina filler powder, and 35% by mass of willemite filler powder. After mixing 3 parts by mass and 50 parts by mass of toluene and kneading, a green sheet having a thickness of 150 μm was obtained by a doctor blade method.
 -40~125℃の温度範囲における得られたセラミック配線基板の熱膨張係数は、3.4ppm/℃であり、半導体ウェハーの熱膨張係数とほぼ同じ値となった。 The thermal expansion coefficient of the obtained ceramic wiring board in the temperature range of −40 to 125 ° C. was 3.4 ppm / ° C., which was almost the same value as the thermal expansion coefficient of the semiconductor wafer.
 JIS R1601(2008)に準拠する方法により測定したセラミック配線基板の3点曲げ強度は、280MPaであり、十分な強度を有していた。 The three-point bending strength of the ceramic wiring board measured by a method based on JIS R1601 (2008) was 280 MPa, and had sufficient strength.
 そして、このセラミック配線基板をプローブカードに用い、このプローブカードで半導体ウェハーを、-40~+125℃の温度範囲で検査したところ、問題無く半導体ウェハーを検査することができた。 When this ceramic wiring board was used as a probe card and a semiconductor wafer was inspected with this probe card in the temperature range of −40 to + 125 ° C., the semiconductor wafer could be inspected without any problem.
 (比較例)
 以下の点を除いては、実施例1と同様にしてセラミック配線基板を作製した。
(Comparative example)
A ceramic wiring board was produced in the same manner as in Example 1 except for the following points.
 ガラス粉末60質量部、アルミナ粉末40質量部なるように調製した混合粉末100質量部に対して、ポリビニルブチラール(PVB)を15質量部、フタル酸ベンジルブチルを3質量部、トルエン50質量部を混合、混練したのち、ドクターブレード法により、厚みが150μmのグリーンシートを得た。 15 parts by mass of polyvinyl butyral (PVB), 3 parts by mass of benzylbutyl phthalate, and 50 parts by mass of toluene are mixed with 100 parts by mass of the mixed powder prepared so as to be 60 parts by mass of glass powder and 40 parts by mass of alumina powder. After kneading, a green sheet having a thickness of 150 μm was obtained by a doctor blade method.
 -40~125℃の温度範囲における得られたセラミック配線基板の熱膨張係数は、6.2ppm/℃であり、半導体ウェハーの熱膨張係数よりも大きな値となった。 The thermal expansion coefficient of the obtained ceramic wiring board in the temperature range of −40 to 125 ° C. was 6.2 ppm / ° C., which was larger than the thermal expansion coefficient of the semiconductor wafer.
 JIS R1601(2008)に準拠する方法により測定したセラミック配線基板の3点曲げ強度は、280MPaであった。 The three-point bending strength of the ceramic wiring board measured by a method based on JIS R1601 (2008) was 280 MPa.
 そして、このセラミック配線基板をプローブカードに用い、このプローブカードで半導体ウェハーを、-40~+125℃の温度範囲で検査したところ、セラミック配線基板の膨張により、正確に半導体ウェハーを検査することができなかった。 When this ceramic wiring board is used as a probe card and a semiconductor wafer is inspected with this probe card in a temperature range of −40 to + 125 ° C., the semiconductor wafer can be inspected accurately due to expansion of the ceramic wiring board. There wasn't.
1:セラミック配線基板
10:セラミック基板
10a:第1の主面
10b:第2の主面
11:セラミック層
20:内部導体
21:層間電極
22:ビアホール電極
31,32:電極パッド
 
1: Ceramic wiring substrate 10: Ceramic substrate 10a: First main surface 10b: Second main surface 11: Ceramic layer 20: Internal conductor 21: Interlayer electrode 22: Via hole electrodes 31, 32: Electrode pads

Claims (12)

  1.  セラミック基板と、
     前記セラミック基板内に配された内部導体と、
    を備え、
     前記セラミック基板は、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーを含み、
     前記第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、前記第2のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数よりも低く、
     前記第2のセラミックフィラーの3点曲げ強度は、前記第1のセラミックフィラーの3点曲げ強度よりも高い、
    セラミック配線基板。
    A ceramic substrate;
    An inner conductor disposed in the ceramic substrate;
    With
    The ceramic substrate includes glass, a first ceramic filler, and a second ceramic filler,
    The thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is lower than the thermal expansion coefficient of the second ceramic filler in the temperature range of −40 ° C. to + 125 ° C.
    The three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
    Ceramic wiring board.
  2.  前記第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は-8~+5ppm/℃であり、
     前記第2のセラミックフィラーの3点曲げ強度は400~800MPaである、請求項1に記載のセラミック基板。
    The thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is −8 to +5 ppm / ° C .;
    The ceramic substrate according to claim 1, wherein the second ceramic filler has a three-point bending strength of 400 to 800 MPa.
  3.  前記セラミック基板は、3種以上のセラミックフィラーを含み、
     前記第1のセラミックフィラーは、-40℃~+125℃の温度範囲における熱膨張係数が前記3種以上のセラミックフィラーの中で最も低く、
     前記第2のセラミックフィラーは、各セラミックフィラーの3点曲げ強度が前記3種以上のセラミックフィラーの中で最も高い、請求項1又は2に記載のセラミック基板。
    The ceramic substrate includes three or more ceramic fillers,
    The first ceramic filler has the lowest thermal expansion coefficient in the temperature range of −40 ° C. to + 125 ° C. among the three or more ceramic fillers,
    The ceramic substrate according to claim 1 or 2, wherein the second ceramic filler has the highest three-point bending strength of each ceramic filler among the three or more kinds of ceramic fillers.
  4.  前記セラミック基板は、ガラス、第1のセラミックフィラー及び第2のセラミックフィラーからなる、請求項1又は2に記載のセラミック基板。 The ceramic substrate according to claim 1 or 2, wherein the ceramic substrate is made of glass, a first ceramic filler, and a second ceramic filler.
  5.  前記第1のセラミックフィラーはウイレマイトフィラーであり、前記第2のセラミックフィラーはアルミナフィラーである、請求項1~4のいずれか一項に記載のセラミック配線基板。 The ceramic wiring board according to any one of claims 1 to 4, wherein the first ceramic filler is a willemite filler and the second ceramic filler is an alumina filler.
  6.  前記ガラスと前記アルミナフィラー及び前記ウイレマイトフィラーとの質量比(前記ガラス:前記アルミナフィラー及び前記ウイレマイトフィラー)は30:70~65:35の範囲内にあり、前記アルミナフィラーと前記ウイレマイトフィラーとの質量比(前記アルミナフィラー:前記ウイレマイトフィラー)は20:80~60:40の範囲内にある、請求項5に記載のセラミック配線基板。 The mass ratio of the glass to the alumina filler and the willemite filler (the glass: the alumina filler and the willemite filler) is in the range of 30:70 to 65:35. The ceramic wiring board according to claim 5, wherein a mass ratio to the remite filler (the alumina filler: the willemite filler) is in a range of 20:80 to 60:40.
  7.  前記ウイレマイトフィラーの平均粒子径は、前記アルミナフィラーの平均粒子径よりも小さい、請求項5又は6に記載のセラミック配線基板。 The ceramic wiring board according to claim 5 or 6, wherein an average particle size of the willemite filler is smaller than an average particle size of the alumina filler.
  8.  前記ガラスはホウケイ酸ガラスである、請求項1~7のいずれか一項に記載のセラミック配線基板。 The ceramic wiring board according to any one of claims 1 to 7, wherein the glass is borosilicate glass.
  9.  前記ガラスは、ガラス組成として、質量%で、SiO 60~80%、B 10~30%、LiO+NaO+KO 1~5%及びMgO+CaO+SrO+BaO 0~20%を含む、請求項8に記載のセラミック配線基板。 The glass includes, as a glass composition, SiO 2 60-80%, B 2 O 3 10-30%, Li 2 O + Na 2 O + K 2 O 1-5% and MgO + CaO + SrO + BaO 0-20% by mass. 9. The ceramic wiring board according to 8.
  10.  前記セラミック基板の-40℃~+125℃の温度範囲における熱膨張係数は4ppm/℃以下である、請求項1~9のいずれか一項に記載のセラミック配線基板。 10. The ceramic wiring board according to claim 1, wherein the ceramic substrate has a thermal expansion coefficient of 4 ppm / ° C. or less in a temperature range of −40 ° C. to + 125 ° C.
  11.  ガラス、第1のセラミックフィラー及び第2のセラミックフィラーを含み、
     前記第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、前記第2のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数よりも低く、
     前記第2のセラミックフィラーの3点曲げ強度は、前記第1のセラミックフィラーの3点曲げ強度よりも高い、セラミック配線基板用セラミックグリーンシート。
    Including glass, a first ceramic filler and a second ceramic filler;
    The thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is lower than the thermal expansion coefficient of the second ceramic filler in the temperature range of −40 ° C. to + 125 ° C.
    The ceramic green sheet for a ceramic wiring board, wherein the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
  12.  ガラス、第1のセラミックフィラー及び第2のセラミックフィラーを含み、 前記第1のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数は、前記第2のセラミックフィラーの-40℃~+125℃の温度範囲における熱膨張係数よりも低く、
     前記第2のセラミックフィラーの3点曲げ強度は、前記第1のセラミックフィラーの3点曲げ強度よりも高い、セラミック配線基板用ガラスセラミックス粉末。
     
    Glass, a first ceramic filler and a second ceramic filler, and the thermal expansion coefficient of the first ceramic filler in the temperature range of −40 ° C. to + 125 ° C. is −40 ° C. to +125 of the second ceramic filler. Lower than the coefficient of thermal expansion in the temperature range of ℃,
    The glass ceramic powder for a ceramic wiring board, wherein the three-point bending strength of the second ceramic filler is higher than the three-point bending strength of the first ceramic filler.
PCT/JP2014/073567 2013-09-30 2014-09-05 Ceramic wiring substrate, ceramic green sheet for ceramic wiring substrate, and glass ceramic powder for ceramic wiring substrate WO2015045815A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167003592A KR102174577B1 (en) 2013-09-30 2014-09-05 Ceramic wiring substrate, ceramic green sheet for ceramic wiring substrate, and glass ceramic powder for ceramic wiring substrate
CN201480051062.3A CN105579418B (en) 2013-09-30 2014-09-05 Ceramic wiring substrate, ceramic wiring substrate ceramic green blank and ceramic wiring glass substrate ceramic powders

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-204765 2013-09-30
JP2013204765 2013-09-30
JP2014-175340 2014-08-29
JP2014175340A JP6474018B2 (en) 2013-09-30 2014-08-29 Ceramic circuit board, ceramic green sheet for ceramic circuit board, and glass ceramic powder for ceramic circuit board

Publications (1)

Publication Number Publication Date
WO2015045815A1 true WO2015045815A1 (en) 2015-04-02

Family

ID=52742962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073567 WO2015045815A1 (en) 2013-09-30 2014-09-05 Ceramic wiring substrate, ceramic green sheet for ceramic wiring substrate, and glass ceramic powder for ceramic wiring substrate

Country Status (5)

Country Link
JP (1) JP6474018B2 (en)
KR (1) KR102174577B1 (en)
CN (1) CN105579418B (en)
TW (1) TWI634091B (en)
WO (1) WO2015045815A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114208402A (en) * 2019-08-06 2022-03-18 日本电气硝子株式会社 Ceramic wiring board, ceramic green sheet for ceramic wiring board, and glass ceramic powder for ceramic wiring board
WO2022153797A1 (en) * 2021-01-15 2022-07-21 日本電気硝子株式会社 Ceramic substrate, greensheet for ceramic substrate, and composite powder for ceramic substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662872B (en) * 2018-01-26 2019-06-11 謝孟修 Ceramic printed circuit board and method of making the same
JP2021138575A (en) * 2020-03-06 2021-09-16 日本電気硝子株式会社 Combined substrate, and manufacturing method of element substrate using it
KR102575742B1 (en) * 2021-04-29 2023-09-06 (주)샘씨엔에스 Slurry composition for LTCC substrate, method of fabricating LTCC substrate, LTCC substrate, space transformer and method of fabricating space transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116019A (en) * 1992-10-07 1994-04-26 Sumitomo Metal Mining Co Ltd Glass-ceramic substrate fired at low temperature
JP2006284541A (en) * 2005-04-05 2006-10-19 Kyocera Corp Measuring wiring substrate, probe card, and evaluation device
JP2008501850A (en) * 2004-06-07 2008-01-24 ティコナ・エルエルシー Polyethylene molding powder and porous article produced therefrom
JP2010006690A (en) * 2008-06-26 2010-01-14 Korea Inst Of Science & Technology Low permittivity dielectric ceramic composition for low temperature firing
JP2012242197A (en) * 2011-05-18 2012-12-10 Seiko Epson Corp Probe card

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522559B2 (en) * 1998-12-18 2004-04-26 三星電機株式会社 Dielectric porcelain material
JP2009074823A (en) 2007-09-19 2009-04-09 Ngk Spark Plug Co Ltd Wiring board for electronic component inspection device, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116019A (en) * 1992-10-07 1994-04-26 Sumitomo Metal Mining Co Ltd Glass-ceramic substrate fired at low temperature
JP2008501850A (en) * 2004-06-07 2008-01-24 ティコナ・エルエルシー Polyethylene molding powder and porous article produced therefrom
JP2006284541A (en) * 2005-04-05 2006-10-19 Kyocera Corp Measuring wiring substrate, probe card, and evaluation device
JP2010006690A (en) * 2008-06-26 2010-01-14 Korea Inst Of Science & Technology Low permittivity dielectric ceramic composition for low temperature firing
JP2012242197A (en) * 2011-05-18 2012-12-10 Seiko Epson Corp Probe card

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114208402A (en) * 2019-08-06 2022-03-18 日本电气硝子株式会社 Ceramic wiring board, ceramic green sheet for ceramic wiring board, and glass ceramic powder for ceramic wiring board
WO2022153797A1 (en) * 2021-01-15 2022-07-21 日本電気硝子株式会社 Ceramic substrate, greensheet for ceramic substrate, and composite powder for ceramic substrate

Also Published As

Publication number Publication date
TW201534573A (en) 2015-09-16
CN105579418B (en) 2017-10-27
KR20160064072A (en) 2016-06-07
JP6474018B2 (en) 2019-02-27
KR102174577B1 (en) 2020-11-05
JP2015092541A (en) 2015-05-14
CN105579418A (en) 2016-05-11
TWI634091B (en) 2018-09-01

Similar Documents

Publication Publication Date Title
JP6214930B2 (en) Multilayer wiring board
JP6474018B2 (en) Ceramic circuit board, ceramic green sheet for ceramic circuit board, and glass ceramic powder for ceramic circuit board
WO2012015015A1 (en) Glass ceramic composition, substrate for light-emitting element, and light-emitting device
JP5158040B2 (en) Glass ceramic substrate
WO2021024918A1 (en) Ceramic wiring board, ceramic green sheet for ceramic wiring board, and glass ceramic powder for ceramic wiring board
JP4703212B2 (en) Wiring board and manufacturing method thereof
US6762369B2 (en) Multilayer ceramic substrate and method for manufacturing the same
WO2014196348A1 (en) Composition for ceramic substrates and ceramic circuit component
JP2004075534A (en) Insulating composition
JP3807257B2 (en) Manufacturing method of ceramic parts
JP2006137618A (en) Dielectric ceramic substrate
JP2004256347A (en) Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact, and its mounting structure
WO2022153797A1 (en) Ceramic substrate, greensheet for ceramic substrate, and composite powder for ceramic substrate
JP4373198B2 (en) Lead-free glass ceramic composition for low-temperature fired substrates
JP2007201276A (en) Wiring board
JP6336841B2 (en) Wiring board
JP2004182510A (en) Glass frit mixture, method of manufacturing electronic circuit board, and electronic circuit board
JP2004168557A (en) Glass ceramic composition, glass ceramic sintered compact, its manufacturing process, wiring board using the same and its mounted structure
JP5499766B2 (en) Glass ceramic substrate, method for manufacturing the same, and wiring substrate
JP2006265033A (en) Low-temperature fired substrate material and multilayer wiring board using the same
JP2005026722A (en) Multilayer ceramic substrate and method for manufacturing the same
JP2006093569A (en) Glass ceramic wiring board
JP2007227081A (en) Conductor paste and manufacturing method of ceramic multilayered substrate
JP2010080822A (en) Wiring substrate, and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051062.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167003592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850057

Country of ref document: EP

Kind code of ref document: A1