WO2015045327A1 - 球帯状シール体 - Google Patents

球帯状シール体 Download PDF

Info

Publication number
WO2015045327A1
WO2015045327A1 PCT/JP2014/004765 JP2014004765W WO2015045327A1 WO 2015045327 A1 WO2015045327 A1 WO 2015045327A1 JP 2014004765 W JP2014004765 W JP 2014004765W WO 2015045327 A1 WO2015045327 A1 WO 2015045327A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
outer layer
wire mesh
mesh
reinforcing material
Prior art date
Application number
PCT/JP2014/004765
Other languages
English (en)
French (fr)
Inventor
貝田 英俊
佐藤 栄治
吉田 敦史
崇之 木下
憲司 滝上
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Publication of WO2015045327A1 publication Critical patent/WO2015045327A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1811Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1827Sealings specially adapted for exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • F16J15/0812Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment with a braided or knitted body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/02Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction
    • F16L27/04Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces
    • F16L27/053Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces held in place by bolts passing through flanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/02Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction
    • F16L27/04Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces
    • F16L27/06Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces with special sealing means between the engaging surfaces
    • F16L27/073Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces with special sealing means between the engaging surfaces one of the cooperating surfaces forming the sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/36Seal compatibility, e.g. with rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/023Multi-layer lubricant coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/14Wire mesh fabric, woven glass cloth or the like

Definitions

  • the present invention relates to a ball-shaped seal body used for a spherical pipe joint of an automobile exhaust pipe.
  • FIG. 30 showing an example of the exhaust passage of the automobile engine
  • the exhaust gas generated in each cylinder (not shown) of the automobile engine is collected in the exhaust manifold catalytic converter 600, and the sub muffler 603 is passed through the exhaust pipe 601 and the exhaust pipe 602. Is further sent to a muffler (silencer) 606 through an exhaust pipe 604 and an exhaust pipe 605, and is released into the atmosphere through the muffler 606.
  • exhaust pipes 601, 602, 604 and 605 and the exhaust system members such as the sub-muffler 603 and the muffler 606 are repeatedly subjected to stress due to the roll behavior and vibration of the engine.
  • the stress applied to the exhaust system member becomes quite large, which may cause fatigue damage to the exhaust system member, and the engine vibration causes the exhaust system member to resonate, resulting in room quietness. May worsen.
  • the connection portion 607 between the exhaust manifold catalytic converter 600 and the exhaust pipe 601 and the connection portion 608 between the exhaust pipe 604 and the exhaust pipe 605 are absorbed by vibrations such as an exhaust pipe spherical joint or a bellows type joint.
  • the exhaust pipe joint described in Patent Document 1 as an example of the vibration absorbing mechanism described above and the seal body used for the exhaust pipe joint can reduce the manufacturing cost as compared with the bellows type joint, and are durable.
  • This sealing body compresses a heat-resistant material made of expanded graphite and a reinforcing material made of a wire mesh, and fills the mesh of the wire mesh of the reinforcing material with the heat-resistant material. Since the reinforcement material is mixed and integrated, in addition to the problem of exhaust gas leakage through the seal body itself due to the ratio of the reinforcement material to the heat resistance material, the degree of compression of the heat resistance material and the reinforcement material, etc.
  • the sealing body described in Patent Document 2 includes a reinforcing material and a reinforcing material made of a wire mesh whose sliding surfaces (outer surfaces of partially convex spherical surfaces) are deformed and intertwined. Since the solid lubricant filled and held in the mesh of the metal mesh is formed on a smooth and integrated surface, the portion of the seal body described in Patent Document 1 is slidably in contact with the mating material Although it has the advantage of avoiding as much as possible the disadvantage of the generation of frictional noise due to the presence of heat-resistant material on the outer surface of the convex spherical surface, the problem of exhaust gas leakage inherent in the sealing body is still Still not resolved.
  • the seal body described in Patent Document 3 is a reinforcing material and a reinforcing material composed of a wire mesh in which the surface of the partially convex spherical surface that is the sliding surface is deformed and entangled
  • the solid lubricant filled and held in the mesh of the metal mesh is formed on a smooth surface that is mixed and integrated.
  • the sealing body described in Patent Document 2 It has superior sliding characteristics in the high temperature region and has the advantage that no abnormal noise is generated even when sliding with the mating material.
  • the present inventors have focused on the outer surface of the partially convex spherical surface of the spherical belt-shaped sealing body that becomes the sliding friction surface with the counterpart material, and the reinforcement made of a wire mesh exposed on the outer surface
  • the intersection of adjacent loops of the braided wire mesh forming the reinforcing material became a large lump-like lump, which is the sliding friction with the mating material.
  • the knowledge that it is what damages the other party's surface was acquired.
  • the present invention has been made on the basis of the above knowledge, and the object of the present invention is to prevent damage to the mating material surface or roughening as much as possible in sliding friction with the mating material, An object of the present invention is to provide a spherical belt-like sealing body that can prevent the deterioration of the sealing performance and the generation of abnormal noises as much as possible.
  • the spherical band-shaped sealing body of the present invention used for an exhaust pipe joint includes a spherical inner surface defined by a cylindrical inner surface, a partially convex spherical surface, an annular end surface on the large diameter side and a small diameter side of the partial convex spherical surface, An outer layer integrally formed on the partially convex spherical surface of the belt-shaped substrate, the spherical belt-shaped substrate is filled with a reinforcing material made of a wire mesh, and a mesh of the wire mesh of the reinforcing material, and the reinforcing material The outer layer is on one diagonal of a pair of diagonal lines connecting the intersections of adjacent vertical lines and adjacent horizontal lines forming a square mesh.
  • intersection group located on the other side is arranged in the axial direction, while the other intersection group located on the other diagonal line of the pair of diagonal lines is composed of a plain woven wire mesh arranged in the circumferential direction and compressed. At least a reinforcing material.
  • the outer layer is located on one of the diagonal lines connecting the intersections of the adjacent vertical lines and the adjacent horizontal lines forming a square mesh.
  • a pair of diagonal lines is arranged in the axial direction, while the other intersection group located on the other diagonal line of the pair of diagonal lines is composed of a plain woven wire mesh arranged in the circumferential direction and a compressed reinforcing material.
  • the outer layer may be filled with a mesh of a plain woven wire mesh of a reinforcing material and may include a heat-resistant material mixed and integrated with the reinforcing material.
  • the outer surface of the outer layer may be a smooth surface exposed by mixing the surface of the heat-resistant material and the surface of the reinforcing material, and the outer layer is filled with a mesh of a plain woven wire mesh of the reinforcing material.
  • the outer surface of the outer layer may be a mixture of the solid lubricant surface and the reinforcing material surface. Then, it may be a smooth surface exposed.
  • the ball-shaped seal body of the present invention is the surface of the heat-resistant material, Because it slides on the surface of the reinforcing material made of plain weave wire mesh, it is possible to avoid the induction of abrasive wear and the generation of frictional noise without assuming initial wear, and excessive heat-resistant material coating is excessively applied to the surface of the mating material.
  • frictional noise is generated as much as possible on the surface of the mating material due to the sliding friction through an appropriate film due to the action of scraping off the excessive film by the exposed reinforcing material.
  • the outer surface of the outer layer is a smooth surface exposed by mixing the surface of the solid lubricant and the surface of one or the other intersection group in the plain woven wire mesh of the reinforcing material, Smooth sliding by reducing the initial frictional resistance by the surface of the solid lubricant Rukoto can.
  • the surface of the plain woven wire mesh of the reinforcing material is preferably 10 to 65%, more preferably, with respect to the entire outer surface of the outer layer.
  • the area ratio of 15 to 60% may be exposed on the outer surface of the outer layer.
  • the plain weave wire mesh surface of the reinforcing material is exposed on the outer surface of the outer layer with an area ratio of 10 to 65% with respect to the entire outer surface of the outer layer, the exposed reinforcing material in the sliding friction with the counterpart material
  • the action of scraping off the excessive coating caused by the material can reduce the induction of abrasive wear with the surface of the mating material as much as possible, and reduce the roughening caused by the damage of the mating material surface to reduce the sealing performance as much as possible. Can be prevented.
  • the outer layer is filled with the mesh of the plain woven wire mesh of the reinforcing material and covers the heat-resistant material and the reinforcing material mixed with and integrated with the reinforcing material.
  • the outer surface of the outer layer may be a smooth surface with the surface of the solid lubricant exposed, and according to such a ball-shaped seal body, the initial frictional resistance is further improved. It can reduce and can make smooth sliding.
  • the solid lubricant is a tetrafluoroethylene resin (hereinafter abbreviated as PTFE), a tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter abbreviated as FEP). ) And hexagonal boron nitride (hereinafter abbreviated as “h-BN”).
  • PTFE tetrafluoroethylene resin
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • h-BN hexagonal boron nitride
  • the composition ratio of the solid lubricant is 10% by mass of PTFE, 10% by mass of FEP and 80% by mass of h-BN in the ternary composition diagram of PTFE, FEP and h-BN, 10% by mass of PTFE, and FEP45.
  • the composition ratio of the solid lubricant is in a numerical range corresponding to a region bounded by a quadrangle having four composition points as vertices in the ternary composition diagram
  • the FEP melts and softens, and elasticity is exhibited by its viscosity.
  • the PTFE when the PTFE is not melted and used in a temperature range in which it is in a solid state, the elasticity of the FEP is increased by PTFE in the solid state. Suppressed, stick-slip is suppressed in sliding with the mating material, and when used above the temperature at which PTFE melts and softens and elasticity is manifested by its viscosity, the viscosity of the FEP is further reduced by further melting.
  • the composition ratio of PTFE, FEP and h-BN in the solid lubricant is a composition point of PTFE 25% by mass, FEP 15% by mass and h-BN 60% by mass, PTFE 12% by mass, FEP28 in the ternary composition diagram.
  • composition point of mass% and h-BN 60 mass% Composition point of mass% and h-BN 60 mass%, composition point of PTFE 10 mass%, FEP 40 mass% and h-BN 50 mass%, PTFE 20 mass%, FEP 40 mass% and h-BN 40 mass%, PTFE 38 Numerical values corresponding to the composition point defined as mass%, FEP 22 mass% and h-BN 40 mass%, and the region bounded by hexagons with the composition points as PTFE 35 mass%, FEP 15 mass% and h-BN 50 mass% as vertices And even more preferably 25% PTFE, 25% FEP and h- N50 is a mass%.
  • the solid lubricant may contain 20% by mass or less of alumina hydrate, preferably 0.05 to 10% by mass, and more preferably 0.05 to 10% by mass.
  • alumina hydrate itself does not exhibit any lubricity, but improves the adherence of the solid lubricant to the partially convex spherical surface of the spherical base and forms a strong outer layer.
  • Alumina hydrate is a compound represented by the composition formula Al 2 O 3 .nH 2 O (where 0 ⁇ n ⁇ 3), and in this composition formula, n is usually 0 (zero). The number is more than less than 3, preferably 0.5 to 2, more preferably about 0.7 to 1.5. Examples of the alumina hydrate include boehmite (Al 2 O 3 .H 2 O) and diaspore.
  • alumina monohydrate such as (aluminum hydroxide oxide), gibbsite (Al 2 O 3 ⁇ 3H 2 O) and bayerite (Al 2 O 3 ⁇ 3H 2 O) , such as Alumina trihydrate, pseudo boehmite and the like can be mentioned, and at least one of them is preferably used.
  • the solid lubricant may not be fired, but may be fired at a temperature equal to or higher than the melting point of FEP.
  • the heat-resistant material contains compressed expanded graphite, and in addition to expanded graphite, 0.1 to 16.0 masses of phosphate as an oxidation inhibitor. %, Or 0.05 to 5% by weight of phosphorus pentoxide, or 0.1 to 16.0% by weight of phosphate and 0.05 to 5.0% by weight of phosphorus pentoxide.
  • the heat-resistant material containing at least one of phosphate and phosphorus pentoxide as an oxidation inhibitor and expanded graphite can improve the heat resistance and oxidation consumption resistance of the ball-shaped seal body itself, and the ball-shaped seal body It can be used in the high temperature range.
  • the wire mesh as a reinforcing material used for the ball-band shaped substrate includes, for example, a woven wire mesh and a braided wire mesh obtained by weaving or knitting metal fine wires.
  • the fine metal wire forming the wire mesh may have a wire diameter of 0.15 to 0.32 mm.
  • the plain woven wire mesh as a reinforcing material used for the outer layer has a plurality of vertical lines and horizontal lines woven in a lattice shape, and has a square mesh surrounded by both.
  • the vertical lines and horizontal lines preferably have a wire diameter of 0.15 to 0.28 mm, and such plain weave wire mesh is adjacent to adjacent vertical lines forming a square mesh.
  • One intersection group located on one of the pair of diagonal lines connecting to each other is arranged in the width direction, the other intersection group located on the other diagonal line is arranged in the longitudinal direction, and both ends thereof are directed in the same oblique direction. It may be formed in a parallelogram shape in plan view so as to have an oblique side.
  • the reinforcing material in sliding friction with the mating material, can attack the mating material to reduce the induction of abrasive friction as much as possible, thereby reducing the roughening caused by damage to the mating material surface.
  • a ball-shaped seal body and a method for manufacturing the same that can prevent the deterioration of the sealing performance as much as possible and can prevent the generation of frictional noise as much as possible.
  • FIG. 1 is a longitudinal sectional explanatory view of a preferred example of an embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional explanatory view of the example shown in FIG.
  • FIG. 3 is an external explanatory view of the example shown in FIG.
  • FIG. 4 is an explanatory diagram of a method for forming a reinforcing material for a spherical band substrate in the manufacturing process of the example shown in FIG.
  • FIG. 5 is a perspective explanatory view of the heat-resistant material in the manufacturing process of the example shown in FIG.
  • FIG. 6 is an explanatory plan view of a reinforcing material wire mesh in the manufacturing process of the example shown in FIG. 1.
  • FIG. 1 is a longitudinal sectional explanatory view of a preferred example of an embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional explanatory view of the example shown in FIG.
  • FIG. 3 is an external explanatory view of the example shown in FIG.
  • FIG. 7 is a perspective explanatory view of a polymer in the manufacturing process of the example shown in FIG.
  • FIG. 8 is an explanatory plan view of the cylindrical base material in the manufacturing process of the example shown in FIG.
  • FIG. 9 is a longitudinal sectional view of the cylindrical base material shown in FIG.
  • FIG. 10 is an explanatory view of a plain woven wire mesh in the manufacturing process of the example shown in FIG. 1, (a) is an explanatory plan view thereof, and (b) is an explanatory side view thereof.
  • FIG. 11 is an explanatory plan view of a reinforcing material for an outer layer made of the plain weave wire mesh shown in FIG. 12 is a perspective explanatory view of a heat-resistant material for the outer layer in the manufacturing process of the example shown in FIG. FIG.
  • FIG. 13 is a perspective explanatory view showing a manufacturing process of the outer layer forming member in the manufacturing process of the example shown in FIG.
  • FIG. 14 is an explanatory diagram of a method of forming the outer layer forming member in the manufacturing process of the example shown in FIG.
  • FIG. 15 is an explanatory plan view of the outer layer forming member in the manufacturing process of the example shown in FIG.
  • FIG. 16 is a cross-sectional explanatory view of a heat-resistant material for an outer layer provided with a solid lubricant coating layer in the manufacturing process of an example of another embodiment of the present invention.
  • FIG. 17 is a perspective explanatory view showing a manufacturing process of the outer layer forming member in the manufacturing process of the example shown in FIG.
  • FIG. 18 is an explanatory diagram of a method for forming an outer layer forming member in the manufacturing process of the example shown in FIG.
  • FIG. 19 is an explanatory plan view of the outer layer forming member in the manufacturing process of the example shown in FIG.
  • FIG. 20 is an explanatory plan view of a preliminary cylindrical molded body in the manufacturing process of the example shown in FIGS. 1 and 16.
  • FIG. 21 is an external explanatory view of the preliminary cylindrical molded body shown in FIG.
  • FIG. 22 is a cross-sectional explanatory view showing a state where a preliminary cylindrical molded body is inserted into a mold in the manufacturing process of the example shown in FIGS. 1 and 16.
  • FIG. 23 is a partially enlarged cross-sectional explanatory view of a preferred example of another embodiment of the present invention.
  • FIG. 24 is a partially enlarged cross-sectional explanatory view of a preferred example of still another embodiment of the present invention.
  • FIG. 25 is a ternary composition explanatory diagram regarding the composition ratio of the solid lubricant in the spherical belt-shaped sealing body of the present invention.
  • FIG. 26 is an explanatory plan view of a reinforcing material made of plain weave wire mesh in the outer layer forming member in Example 1 to Example 10.
  • FIG. 27 is an explanatory plan view of a reinforcing material made of a strip-shaped wire mesh (braided wire mesh) in the composite sheet material in Comparative Example 1 and Comparative Example 2.
  • FIG. 28 is an explanatory plan view of a reinforcing material made of plain weave wire mesh in the outer layer forming member in Comparative Example 3.
  • FIG. 29 is a longitudinal cross-sectional explanatory view of an exhaust pipe spherical joint incorporating a preferred example of the ball-shaped seal body of the present invention.
  • FIG. 30 is an explanatory diagram of the exhaust system of the engine.
  • a constituent material in a preferable example of the spherical belt-shaped sealing body of the present invention and a manufacturing method of the example will be described.
  • the above-mentioned acid-treated graphite powder is heated (expanded) at a temperature of 950 to 1200 ° C. for 1 to 10 seconds to generate decomposition gas, and expanded between the graphite layers by the gas pressure (expansion magnification). 240 to 300 times).
  • the expanded graphite particles are supplied to a double roller apparatus adjusted to a desired roll gap and roll-molded to produce an expanded graphite sheet having a desired thickness. This expanded graphite sheet is used as a heat resistant material I.
  • expanded graphite particles were expanded by expanding the graphite layer by the gas pressure (expansion magnification 240 to 300). Times).
  • water in the structural formula is released from the primary aluminum phosphate.
  • the expanded graphite particles are supplied to a double roller apparatus adjusted to a desired roll gap and roll-molded to produce an expanded graphite sheet having a desired thickness. This expanded graphite sheet is used as a heat-resistant material II.
  • the heat-resistant material II thus prepared contains expanded aluminum phosphate in a proportion of 0.1 to 16% by mass in expanded graphite.
  • the expanded graphite containing the phosphate improves the heat resistance of the expanded graphite itself and imparts an oxidation inhibiting action, so that it can be used in a high temperature region exceeding 600 ° C. to 600 ° C., for example.
  • As the phosphate in addition to primary aluminum phosphate, secondary lithium phosphate (Li 2 HPO 4 ), primary calcium phosphate [Ca (H 2 PO 4 ) 2 ], secondary calcium phosphate (CaHPO 4 ), second Aluminum phosphate [Al 2 (HPO 4 ) 3 ] can be used.
  • expanded graphite particles were expanded by expanding the graphite layer by the gas pressure (expansion magnification 240 to 300). Times).
  • water in the structural formula is eliminated with primary aluminum phosphate, and dehydration reaction occurs with orthophosphoric acid to produce phosphorus pentoxide.
  • the expanded graphite particles are supplied to a double roller apparatus adjusted to a desired roll gap and roll-molded to produce an expanded graphite sheet having a desired thickness. This expanded graphite sheet is used as a heat-resistant material III.
  • expanded graphite contains 0.1 to 16% by mass of primary aluminum phosphate and 0.05 to 5% by mass of phosphorus pentoxide.
  • This expanded graphite containing phosphate and phosphorus pentoxide improves the heat resistance of the expanded graphite itself and imparts an oxidation inhibiting action, so that it can be used in a high temperature range, for example, 600 ° C. to over 600 ° C. To do.
  • phosphoric acid in addition to the above orthophosphoric acid, metaphosphoric acid (HPO 3 ), polyphosphoric acid and the like can be used.
  • the expanded graphite sheets of the heat-resistant materials I, II and III preferably have a density of about 1.0 to 1.15 Mg / m 3 and a thickness of about 0.3 to 0.6 mm.
  • ⁇ Reinforcing material for spherical belt-shaped substrate examples include austenitic SUS304, SUS310S, SUS316, ferritic SUS430 and the like, iron wire (JISG3532) or galvanized steel wire (JISG3547), or copper-based copper.
  • a wire mesh such as a wire mesh or a braided wire mesh may be used.
  • fine metal wires with a wire diameter in the range of 0.15 to 0.32 mm specifically, fine metal wires of 0.15 mm, 0.17 mm, 0.20 mm, 0.28 mm, or 0.32 mm are used.
  • a wire mesh or a woven wire mesh comprising a plain weave wire mesh 17 shown in FIG. 10 is preferably used.
  • the reinforcing material for the outer layer is similar to the reinforcing material for the spherical belt-shaped substrate, and is made of stainless steel such as austenitic SUS304, SUS310S, SUS316, ferrite SUS430, iron wire (JISG3532) or galvanized steel wire (JISG3547).
  • stainless steel such as austenitic SUS304, SUS310S, SUS316, ferrite SUS430, iron wire (JISG3532) or galvanized steel wire (JISG3547).
  • iron wire JISG3532
  • galvanized steel wire JISG3547
  • the reinforcing material for the outer layer uses a reinforcing material made of plain woven wire mesh 17 shown in FIGS. 10 and 26, and as shown in FIG.
  • a plurality of vertical lines 14 and a plurality of horizontal lines 15 are formed in a quadrilateral shape and woven in a lattice shape, and adjacent vertical lines 14 and adjacent horizontal lines 15 forming a square mesh 16 are formed.
  • One intersection group 19a and 19d located on one of the pair of diagonal lines connecting the intersection is arranged in the width direction X, and the other intersection group 19b and 19c located on the other diagonal is in the longitudinal direction Y.
  • An arranged plain weave wire mesh 17 is preferably used.
  • composition ratio of the solid lubricant containing PTFE, FEP and h-BN is preferably the content (mass%) of the PTFE, FEP and h-BN with respect to the composition ratio (mass%) of FIG.
  • composition point E PTFE 12 mass%, FEP 28 mass% and h-BN 60 mass% with PTFE 25 mass%, FEP 15 mass% and h-BN 60 mass% Composition point F, PTFE 10 mass%, FEP 40 mass% and h-BN 50 mass% Composition point G, PTFE 20 mass%, FEP 40 mass% and h-BN 40 mass% Composition point H, PTFE 38 mass%, FEP 22 mass% And within the numerical range corresponding to the region Q bounded by the hexagon 52 having the composition point J as the apex with the composition point J as h-BN 40 mass% and PTFE 35 mass%, FEP 15 mass% and h-BN 50 mass%. It is in.
  • this solid lubricant is made of PTFE powder having an average particle size of 0.01 to 1 ⁇ m, FEP powder having an average particle size of 0.01 to 1 ⁇ m, and h-BN having an average particle size of 0.1 to 20 ⁇ m. Used in the form of an aqueous dispersion comprising powder, surfactant and water.
  • the content ratio of PTFE powder, FEP powder and h-BN powder exhibiting excellent lubricity particularly in a high temperature region is preferably bounded by a square 51 in the ternary composition diagram shown in FIG.
  • a square 51 in the ternary composition diagram shown in FIG. In the numerical range corresponding to the region to be attached, more preferably in the numerical range corresponding to the region bounded by the hexagon 52 in the ternary composition diagram, and even more preferably, PTFE. 25% by mass of powder, 25% by mass of FEP powder and 50% by mass of h-BN powder.
  • aqueous dispersion in which, for example, 4% by mass of a surfactant and 57% by mass of water are mixed with 39% by mass of the solid lubricant powder including PTFE powder, FEP powder and h-BN powder having such a content ratio.
  • the content of water in the aqueous dispersion may be increased or decreased depending on the mode of application of the aqueous dispersion to the expanded graphite sheet by means of roller coating, brush coating, spraying or the like.
  • the surfactant contained in the aqueous dispersion may be any surfactant that can uniformly disperse the solid lubricant powder in water.
  • anionic surface activity such as sodium alkyl sulfate, sodium alkyl ether sulfate, triethanolamine alkyl sulfate, triethanolamine alkyl ether sulfate, ammonium alkyl sulfate, ammonium alkyl ether sulfate, sodium alkyl ether phosphate, sodium fluoroalkylcarboxylate, etc.
  • cationic surfactants such as alkyl ammonium salts and alkyl benzyl ammonium salts; addition of polyoxyethylene alkyl ether, polyoxyethylene phenyl ether, polyoxyethylene alkyl ester, propylene glycol-propylene oxide copolymer, perfluoroalkyl ethylene oxide With 2-ethylhexanol ethylene oxide
  • Nonionic surfactants such things; alkyl betaine, alkylamido betaine, amphoteric surfactants such as imidazolium betaine.
  • anionic and nonionic surfactants are preferred.
  • a particularly preferable surfactant is a nonionic surfactant having an oxyethylene chain with a small amount of thermal decomposition.
  • the surfactant content is, for example, 4% by mass with respect to 39% by mass of the solid lubricant powder. If the surfactant content is too small, the dispersion of the solid lubricant powder is not achieved. If it is not uniform and the content of the surfactant is too large, the decomposition residue of the surfactant due to baking increases and coloring occurs, and the heat resistance, non-adhesiveness and the like decrease.
  • An aqueous dispersion containing PTFE powder, FEP powder, h-BN powder, surfactant and water is further used in the solid lubricant powder in place of part of the content of h-BN powder.
  • the powder may be contained in a proportion of 20% by mass or less, preferably 0.05 to 10% by mass, more preferably 0.05 to 5% by mass.
  • PTFE powder, FEP powder, h-BN powder, aqueous dispersion containing surfactant and water or PTFE powder, FEP powder, h-BN powder, alumina hydrate powder, aqueous dispersion containing surfactant and water John may further contain a water-soluble organic solvent.
  • water-soluble organic solvent examples include alcohol solvents such as methanol, ethanol, butanol, isopropyl alcohol and glycerin, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ether solvents such as methyl cellosolve, cellosolve and butyl cellosolve, Examples thereof include glycol solvents such as ethylene glycol, propylene glycol, triethylene glycol and tetraethylene glycol, amide solvents such as dimethylformamide and dimethylacetamide, and lactam solvents such as N-methyl-2-pyrrolidone.
  • alcohol solvents such as methanol, ethanol, butanol, isopropyl alcohol and glycerin
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • ether solvents such as methyl cellosolve, cellosolve and butyl cell
  • the content of the water-soluble organic solvent is 0.5 to 50% by mass, preferably 1 to 30% by mass, based on the total amount of water.
  • the water-soluble organic solvent has a function of wetting the PTFE powder and the FEP powder, and forms a uniform mixture with the h-BN powder.
  • PTFE powder having an average particle diameter of 0.01 to 1 ⁇ m
  • FEP powder having an average particle diameter of 0.01 to 1 ⁇ m
  • h-BN powder having an average particle diameter of 0.1 to 20 ⁇ m and shown in FIG.
  • An aqueous dispersion comprising 39% by mass of the powder for solid lubricant of the above (1) containing 20% by mass or less of Japanese powder, 4% by mass of a surfactant and 57% by mass of water; (3) An aqueous dispersion containing 0.1 to 22.5% by mass of a water-soluble organic solvent in addition to the aqueous dispersion of (1) above, (4) For the aqueous dispersion of (2), any of aqueous dispersions containing 0.1 to 22.5% by mass of a water-soluble organic solvent is used.
  • the aqueous dispersion is composed of the adjacent vertical lines 14 and the adjacent horizontal lines forming one side of the parallelogram-shaped expanded graphite sheet 21 shown in FIG. 12 or the rectangular mesh 16 shown in FIG.
  • One intersection group 19a and 19d located on one of the pair of diagonal lines connecting the intersection is arranged in the width direction X, and the other intersection group 19b and 19c located on the other diagonal is in the longitudinal direction Y.
  • a coating layer 28 of solid lubricant is formed on one surface of the outer layer forming member 27. After drying, the solid lubricant coating layer 28 is (T) to (T + 150 ° C.), preferably (T + 5 ° C.) to (T + 135 ° C.), more preferably in a heating furnace with respect to a melting point T of 245 ° C.
  • a cylindrical braided wire mesh 1 of reference 2) is passed between the rollers 2 and 3 to produce a belt-like wire mesh 4 having a predetermined width d1, and a reinforcing material for a spherical belt-like substrate obtained by cutting the belt-like wire mesh 4 into a predetermined length L;
  • a strip-shaped wire mesh 5 is prepared.
  • the expanded graphite sheet 6 (made of one of the heat-resistant material I, the heat-resistant material II, and the heat-resistant material III) is prepared.
  • the heat-resistant material made of expanded graphite of the expanded graphite sheet 6 is entirely exposed on the annular end surface 40 on the large diameter side of the partially convex spherical surface 39. Accordingly, as shown in FIG. 7, the maximum is (0.10 to 0.80) ⁇ d1 mm from one edge 7 in the width direction of the wire mesh 5 which becomes the annular end surface 40 on the large diameter side of the partially convex spherical surface 39.
  • the expanded graphite sheet 6 has a protruding amount ⁇ 1 larger than the protruding amount ⁇ 2 from the other end 8 in the width direction of the wire mesh 5 which becomes the annular end surface 41 (see FIG. 1) on the small diameter side of the partially convex spherical surface 39. Protrudes in the width direction, and the expanded graphite sheet 6 for the spherical belt-like substrate protrudes from the one end edge 9 in the length direction of the wire mesh 5 in the length direction by a maximum of (0.30 to 1.70) ⁇ Lmm.
  • the polymer 12 is wound so that the expanded graphite sheet 6 is spiraled and the expanded graphite sheet 6 is increased once, and the expanded graphite is formed on both the inner peripheral side and the outer peripheral side.
  • a cylindrical base material 13 with the sheet 6 exposed is formed.
  • (2.70 ⁇ L) mm having a length l is prepared in advance.
  • the cylindrical base material 13 as shown in FIG.
  • the expanded graphite sheet 6 protrudes from the one edge 7 of the wire mesh 5 by ⁇ 1 in the width direction on one edge side in the width direction.
  • ⁇ 1 in the width direction on one edge side in the width direction.
  • ⁇ 2 protrudes from the other edge 8 of the wire mesh 5 in the width direction.
  • a plain weave wire mesh 17 is prepared. Using a plain weave wire mesh 17, adjacent vertical lines 14 and adjacent horizontal lines 15 are woven in a lattice shape so as to form a square mesh 16 having both ends composed of oblique sides 18 inclined in the same direction, One intersection group 19a located on one diagonal line of a pair of diagonal lines connecting the intersections at each mesh 16 in the intersection groups 19a, 19b, 19c and 19d of the adjacent vertical lines 14 and adjacent horizontal lines 15. And 19d are arranged in the width direction X and the other intersection groups 19b and 19c are arranged in the longitudinal direction Y and have a length (l ⁇ L + ⁇ ) between both ends, as shown in FIG. A plain weave wire mesh 17 is prepared.
  • An aqueous dispersion comprising 39% by mass of powder for solid lubricant (1), 4% by mass of surfactant and 57% by mass of water, containing 20% by mass or less of Japanese powder, (3) An aqueous dispersion containing 0.1 to 22.5% by mass of a water-soluble organic solvent in the aqueous dispersion of (1) above, and (4) Further aqueous soluble in the aqueous dispersion of (2) above.
  • An aqueous dispersion containing 0.1 to 22.5% by mass of an organic solvent Prepare one of them.
  • the expanded graphite sheet 21 is sandwiched between two plain woven wire meshes 17 with the hypotenuses 18 and 20 being matched, and then, as shown in FIG.
  • the plain weave wire mesh 17 is pressed by a pair of rollers 22 and 23, and as shown in FIG. 15, the mesh 16 of the plain weave wire mesh 17 is a flat shape in which expanded graphite sheet 21 is filled with expanded graphite, and adjacent vertical lines 14 and a horizontal mesh 15 surrounded by adjacent horizontal lines 15 and intersection groups 19a, 19b, 19c, and 19d at the intersections 19a, 19b, 19c, and 19d of the vertical lines 14 and the horizontal lines 15, respectively.
  • intersection group 19a and 19d located on one of the pair of diagonal lines connecting the intersections 19d and 19d are arranged in the width direction X, and the other intersection group 19b and 19 located on the other diagonal line.
  • the outer layer forming member 27 having a parallelogram shape in plan view is formed.
  • the aqueous dispersions (1) to (4) are brush-coated on one surface of each of the four outer-layer expanded graphite sheets 21 formed in a parallelogram shape in plan view. This is applied by means of roller coating, spraying, etc., and dried at a temperature of 100 ° C. to form a coating layer 28 of solid lubricant. As shown in FIG. 17, the outer layer provided with the coating layer 28 of solid lubricant Each of the expanded graphite sheets 21 for use is sandwiched between the two plain weave wire meshes 17 so that the hypotenuses 18 and 20 are aligned with each other, and then, as shown in FIG. 18, the expanded graphite sheet 21 and the two plain weave wire meshes 17.
  • the mesh 16 of the plain weave wire mesh 17 is filled with the expanded graphite of the expanded graphite sheet 21 and the solid lubricant of the coating layer 28, Adjacent to adjacent vertical lines 14
  • Each of the intersection groups 19a, 19b, 19c and 19d at each mesh 16 in the intersection groups 19a, 19b, 19c and 19d of the vertical line 14 and the horizontal line 15 has a square mesh 16 surrounded by the horizontal line 15.
  • intersection group 19a and 19d located on one of the pair of diagonal lines connecting the two is arranged in the width direction X, and the other intersection group 19b and 19c located on the other diagonal line is arranged in the longitudinal direction Y
  • the surface 24 of the plain weave wire mesh 17 and the surface 25a of the solid lubricant filled in the mesh 16 of the plain weave wire mesh 17 are exposed and parallel four sides in plan view having both ends composed of the oblique sides 26 and 26 inclined in the same oblique direction.
  • the outer layer forming member 27a having a shape is formed.
  • Each of the aqueous dispersions (1) to (4) is brush-coated, roller-coated, sprayed, etc. on one surface of each of the four parallelogram-shaped outer layer forming members 27 obtained in the first method.
  • the solid lubricant coating layer 28 is formed by drying at a temperature of 100 ° C. and covering the surface of the expanded graphite sheet 21 and the surface of the plain weave wire mesh 17.
  • An outer layer forming member (not shown) having a parallelogram shape in a plan view and exposed is formed.
  • the gap ⁇ 1 between the pair of rollers 22 and 23 is suitably about 0.4 to 0.6 mm.
  • the outer layer forming member 27 obtained in this way is one surface thereof, and the outer layer forming member 27a is the one surface where the surface 25a of the solid lubricant and the surface 24 of the plain weave wire mesh 17 are exposed or an outer layer forming member (not shown).
  • the exposed surface of the coating layer 28 of the solid lubricant is arranged on the outer peripheral surface of the cylindrical base material 13 and slightly between the hypotenuses 26 and 26 at both ends in the circumferential direction.
  • a pre-cylindrical molded body 29 wound with a gap is formed.
  • the inner wall includes a cylindrical wall surface 30, a partially concave spherical wall surface 31 continuous to the cylindrical wall surface 30, and a through hole 32 continuous to the partially concave spherical wall surface 31.
  • a hollow core 33 is hollowed by inserting a stepped core 33 into the through hole 32.
  • a mold 36 shown in FIG. 22 in which a cylindrical portion 34 and a spherical hollow portion 35 continuous with the hollow cylindrical portion 34 are formed is prepared, and a preliminary cylindrical molded body 29 is inserted into the stepped core 33 of the mold 36.
  • a pre-cylindrical molded body 29 disposed in the hollow cylindrical portion 34 and the spherical belt-shaped hollow portion 35 of the mold 36 is compression-molded in the axial direction Z at a pressure of 98 to 294 N / mm 2 (1 to 3 ton / cm 2 ), As shown in FIGS. 1 to 3 and FIGS. 23 and 24, a through hole 37 defined by a cylindrical inner surface 38 is provided at the center, and the cylindrical inner surface 38, the partially convex spherical surface 39, and the partially convex spherical surface 39 are formed.
  • a spherical belt-like sealing body comprising a spherical belt-like base body 42 defined by the annular end surfaces 40 and 41 on the large-diameter side and the small-diameter side, and an outer layer 43 formed integrally with the partially convex spherical surface 39 of the spherical belt-like base body 42. 44 is produced.
  • the mesh of the metal mesh 5 and the mesh of the metal mesh 5 is filled and integrated with the metal mesh 5.
  • the spherical band-shaped substrate 42 provided with the expanded graphite sheet 6 is formed such that the expanded graphite sheet 6 and the wire mesh 5 are compressed and entangled with each other to have structural integrity, and the outer layer 43 has a rectangular shape.
  • One of a group of intersecting points 19a and 19d located on one of the pair of diagonal lines connecting the intersecting points of the adjacent vertical lines 14 and the adjacent horizontal lines 15 forming the mesh 16 is arranged in the axial direction Z.
  • the crossing point groups 19b and 19c located on the other diagonal line of the pair of diagonal lines are composed of a plain woven wire mesh 17 arranged in the circumferential direction R and compressed, and the plain woven wire mesh 17 of this reinforcing material In mesh 16
  • a heat-resistant material containing expanded graphite that is packed and compressed together with the reinforcing material and mixed with the reinforcing material, and the outer surface 45 of the outer layer 43 has a heat-resistant material containing the expanded graphite sheet 21.
  • a surface 46 of the reinforcing material made of plain woven wire mesh 17 in which the intersection groups 19a and 19d are arranged in the axial direction Z and the intersection groups 19b and 19c are arranged in the circumferential direction R, respectively, are exposed and smooth.
  • a surface 48 is formed, and the surface 47 at the intersection groups 19a and 19d and 19b and 19c is preferably 10 to 65%, more preferably 15 to 60% with respect to the entire outer surface 45 of the outer layer 43. The area ratio is exposed.
  • the expansion of the metal mesh 5 and the mesh of the metal mesh 5 is filled and integrated with the metal mesh 5.
  • the spherical base 42 having the graphite sheet 6 is formed such that the expanded graphite sheet 6 and the wire mesh 5 are compressed and entangled with each other to have structural integrity, and the outer layer 43 has a square mesh.
  • the intersection group 19b and 19c located on the other diagonal line of the pair of diagonal lines is composed of a plain woven wire mesh 17 arranged in the circumferential direction R and is compressed, and the mesh of the plain woven wire mesh 17 of the reinforcing material 16
  • the outer surface 45 of the outer layer 43 includes a surface 49 made of a solid lubricant and an expanded graphite and a solid lubricant which are filled and compressed together with the reinforcing material and mixed and integrated with the reinforcing material.
  • a smooth surface 50 in which the intersection points 19a and 19d are arranged in the axial direction Z and the surface 47 of the reinforcing material composed of the plain woven wire mesh 17 in which the intersection points 19b and 19c are arranged in the circumferential direction R are mixed and exposed.
  • the area 47 of the intersection groups 19a and 19b and 19b and 19c is preferably 10 to 65%, more preferably 15 to 60% of the entire outer surface 45 of the outer layer 43. Is exposed.
  • the mesh of the metal mesh 5 and the mesh of the metal mesh 5 is filled and integrated with the metal mesh 5 as shown in FIG.
  • the spherical band-shaped substrate 42 provided with the expanded graphite sheet 6 is formed such that the expanded graphite sheet 6 and the wire mesh 5 are compressed and entangled with each other to have structural integrity, and the outer layer 43 has a rectangular shape.
  • One of a group of intersecting points 19a and 19d located on one of the pair of diagonal lines connecting the intersecting points of the adjacent vertical lines 14 and the adjacent horizontal lines 15 forming the mesh 16 is arranged in the axial direction Z.
  • the intersecting point groups 19b and 19c located on the other diagonal line of the pair of diagonal lines are composed of the plain weave wire mesh 17 arranged in the circumferential direction R and compressed, and the plain weave wire mesh 17 of the reinforcement material Mesh 16
  • the outer surface 45 of 43 is a smooth surface 54 with the surface 53 of the solid lubricant exposed.
  • the polymer base 12 is wound in a spiral shape with the wire mesh 5 made of the belt-like wire mesh 4 inside.
  • the ball-shaped seal body 44 in which the reinforcing material made of the wire mesh 5 is exposed on the cylindrical inner surface 38 of the ball-shaped base 42 can be produced.
  • the flange 200 stands on the outer peripheral surface of the upstream exhaust pipe 100 connected to the engine side, leaving the pipe end portion 101.
  • a spherical band-shaped seal body 44 is fitted to the tube end portion 101 at a cylindrical inner surface 38 that defines the through hole 37, and the spherical band-shaped seal body 44 is flanged 200 on the large-diameter annular end surface 40. Is connected to the upstream exhaust pipe 100 and connected to the muffler side, and is connected to the concave spherical surface portion 302 and the concave spherical surface portion 302.
  • the enlarged diameter portion 301 integrally provided with the flange portion 303 is fixed, and the inner surface 304 of the concave spherical surface portion 302 is a smooth surface 48, 50 or the outer surface 45 of the outer layer 43 of the ball-shaped seal body 44. It is in sliding contact with the 54.
  • a pair of bolts 400 having one end fixed to the flange 200 and the other end inserted through the flange portion 303 of the enlarged diameter portion 301 and the enormous head and flange portion of the bolt 400.
  • a spring force is always applied to the downstream side exhaust pipe 300 in the direction of the upstream side exhaust pipe 100 by the pair of coil springs 500 arranged between 303.
  • the exhaust pipe spherical joint has a smooth surface 48, 50 or 54 as a sliding surface of the outer layer 43 of the ball-shaped seal body 44 and a downstream side against a relative angular displacement occurring in the upper and downstream exhaust pipes 100, 300. This is allowed by sliding contact with the inner surface 304 of the concave spherical portion 302 of the enlarged diameter portion 301 formed at the end of the side exhaust pipe 300.
  • Example 1 Using a single austenitic stainless steel wire (SUS304) with a wire diameter of 0.28 mm as a thin metal wire, a cylindrical braided wire net having a mesh width of 4 mm and a width of 5 mm is produced, and this is placed between a pair of rollers. A belt-like wire mesh was made to pass through, and this was made a wire mesh as a reinforcing material for a spherical belt-like substrate. As the heat-resistant material, an expanded graphite sheet (heat-resistant material I) having a density of 1.12 Mg / m 3 and a thickness of 0.38 mm was used.
  • SUS304 single austenitic stainless steel wire
  • I expanded graphite sheet having a density of 1.12 Mg / m 3 and a thickness of 0.38 mm was used.
  • both end portions in the width direction of the expanded graphite sheet protrude (extrude) in the width direction of the wire net for the spherical base.
  • An expanded graphite sheet for the outer layer having a parallelogram shape in plan view and having the same shape as the reinforcing material for the outer layer was prepared using the same expanded graphite sheet as the expanded graphite sheet.
  • Such an expanded graphite sheet for the outer layer is inserted between the two plain outer wire meshes for the outer layer so that each side is matched, and then the expanded graphite sheet for the outer layer and the two plain weave metal meshes are paired with a pair of rollers. Pressurized, flattened with a plain woven wire mesh filled with expanded graphite, the surface of the plain woven wire mesh and the surface of the expanded graphite filled with the mesh of the plain woven wire mesh are exposed and both ends are oriented in the same oblique direction.
  • An outer layer forming member having a parallelogram shape in plan view having an oblique side was formed.
  • the outer layer forming member is placed on the outer peripheral surface of the cylindrical base material, and the outer surface of the cylindrical base material is exposed between the plain weave wire mesh surface and the expanded graphite surface.
  • the outer layer forming member was wound while maintaining a slight gap in the circumferential direction to prepare a preliminary cylindrical molded body.
  • the preliminary cylindrical molded body After inserting the preliminary cylindrical molded body into the stepped core of the mold and placing the preliminary cylindrical molded body in the hollow portion of the mold, the preliminary cylindrical molded body was axially moved to 294 N / mm 2 (3 ton / cm 2 ) And a spherically shaped base defined by a cylindrical inner surface, a partially convex spherical surface, and a large-diameter and small-diameter annular end surface of the partially convex spherical surface, and a partially convex spherical shape of the spherically shaped substrate.
  • a spherical belt-like seal body provided with an outer layer integrally formed on the surface was obtained.
  • the spherical belt-shaped substrate is formed such that a heat-resistant material containing expanded graphite and a reinforcing material made of a wire mesh are compressed and intertwined with each other, and the outer layer is formed.
  • the expanded graphite for the outer layer and the reinforcing material made of plain woven wire mesh are compressed, and the expanded graphite for the outer layer is filled into the mesh of the reinforcing material, and the reinforcing material and the heat-resistant material are mixed and integrated.
  • One of the outer surfaces is located on one of a pair of diagonal lines connecting the intersections of the surface of the heat-resistant material made of expanded graphite and the adjacent vertical lines forming the rectangular mesh and the adjacent horizontal lines are formed as a smooth surface that is exposed in a mixed manner with a surface of a reinforcing material made of plain woven wire mesh in which the other intersection group located on the other diagonal line is arranged in the circumferential direction.
  • On the outer surface of the outer layer there is a plain woven wire mesh for the outer layer.
  • the surface of the reinforcing member made had with 41% area ratio with respect to the whole of the outer surface is exposed in the outer surface.
  • Example 2 Using a plain woven wire mesh having a square mesh having a mesh width of 2.0 mm in length and 2.0 mm in width woven using the same fine metal wires as in Example 1, the outer layer similar to that in Example 1 is used for the outer layer.
  • a reinforcing material was produced, and an outer layer forming member having a parallelogram shape in plan view was formed from the reinforcing material for the outer layer and the expanded graphite sheet for the outer layer similar to Example 1 in the same manner as in Example 1.
  • a spherical belt-like sealing body similar to that in Example 1 was obtained in the same manner as in Example 1. In the obtained spherical belt-shaped sealing body, the surface of the plain woven wire mesh was exposed on the outer surface of the outer layer with an area ratio of 34% with respect to the entire outer surface.
  • Example 3 As the heat-resistant material for the outer layer, an expanded graphite sheet (heat-resistant material I) having a density of 0.5 Mg / m 3 and a thickness of 1.00 mm is used, and has the same shape as the reinforcing material for the outer layer similar to Example 1.
  • An expanded graphite sheet for an outer layer having a parallelogram shape in plan view is produced, and the parallelogram shape in plan view is obtained in the same manner as in Example 1 from the expanded graphite sheet for outer layer and the reinforcing material for outer layer similar to Example 1.
  • the outer layer forming member was formed, and the same spherical belt-like sealing body as in Example 1 was obtained in the same manner as in Example 1. In the obtained spherical belt-shaped sealing body, the surface of the plain woven wire mesh was exposed on the outer surface of the outer layer with an area ratio of 32% with respect to the entire outer surface.
  • Example 4 Using a plain woven wire mesh having a square mesh having a mesh width of 2.5 mm and a width of 2.5 mm woven using the same fine metal wire as in Example 1, the outer layer similar to that in Example 1 is used for the outer layer. A reinforcing material is produced, and the outer layer having a parallelogram shape in plan view is formed from the reinforcing material for the outer layer similar to that of Example 1 and the expanded graphite sheet for the outer layer similar to that of Example 3 in the same manner as in Example 1. A member was formed, and a spherical belt-like sealing body similar to that in Example 1 was obtained in the same manner as in Example 1 below. In the obtained spherical belt-shaped sealing body, the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface with an area ratio of 27% with respect to the entire outer surface. .
  • Example 5 Using a plain woven wire mesh having a square mesh having a mesh width of 3.0 mm and a width of 3.0 mm woven using the same fine metal wires as in Example 1, the outer layer similar to that in Example 1 is used for the outer layer.
  • a reinforcing material is prepared, and an outer layer forming member having a parallelogram shape in plan view is formed from the reinforcing material for the outer layer similar to Example 1 and the expanded graphite sheet similar to Example 1 in the same manner as in Example 1.
  • the same spherical belt-like sealing body as in Example 1 was obtained in the same manner as in Example 1.
  • the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 25% with respect to the entire outer surface. .
  • Example 6 Using a plain woven wire mesh woven with a square mesh having a mesh width of 1.5 mm and a width of 1.5 mm using the same austenitic stainless steel wire as in Example 1 having a wire diameter of 0.32 mm as a thin metal wire Then, a reinforcing material for the outer layer similar to that of Example 1 is produced, and an outer layer having a parallelogram shape in plan view is formed from the reinforcing material for the outer layer and the expanded graphite sheet similar to that of Example 1 in the same manner as in Example 1. A member was formed, and a spherical belt-like sealing body similar to that in Example 1 was obtained in the same manner as in Example 1 below. In the obtained spherical belt-shaped sealing body, the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 45% with respect to the entire outer surface. .
  • Example 7 Using the same austenitic stainless steel wire as in Example 6 and a plain woven wire mesh woven with a square mesh having a mesh width of 2.0 mm in length and 2.0 mm in width, the same for the outer layer as in Example 1 A planar parallelogram-shaped reinforcing material is produced in the same manner as in Example 1 from the outer layer reinforcing material and an expanded graphite sheet for the parallelogram-like outer layer in planar view similar to Example 1. A parallelogram-shaped outer layer forming member was formed, and a spherical belt-like sealing body similar to that in Example 1 was obtained in the same manner as in Example 1 below. In the obtained spherical belt-shaped sealing body, the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface with an area ratio of 39% with respect to the entire outer surface. .
  • Example 8 Using the same austenitic stainless steel wire as in Example 6 and using a plain woven wire mesh woven with a square mesh having a mesh width of 2.5 mm and a width of 2.5 mm, the outer layer is the same as in Example 1. And forming an outer layer forming member having a parallelogram shape in plan view in the same manner as in Example 1 from the reinforcing material for outer layer and the expanded graphite sheet for outer layer similar to Example 1.
  • the same spherical belt-like sealing body as in Example 1 was obtained.
  • the surface of the reinforcing material composed of a plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 31% with respect to the entire outer surface. .
  • Example 9 Using the same austenitic stainless steel wire as in Example 6 and a plain woven wire mesh woven with a square mesh having a mesh width of 3.0 mm and a width of 3.0 mm, the outer layer is the same as in Example 1. And forming an outer layer forming member having a parallelogram shape in plan view in the same manner as in Example 1 from the reinforcing material for outer layer and the expanded graphite sheet for outer layer similar to Example 1.
  • the same spherical belt-like sealing body as in Example 1 was obtained.
  • the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 25% with respect to the entire outer surface. .
  • Example 10 Using a plain woven wire mesh woven with a square mesh having a mesh width of 1.5 mm and a width of 1.5 mm using the same austenitic stainless steel wire as in Example 1 having a wire diameter of 0.15 mm as a thin metal wire. Then, a reinforcing material for the outer layer similar to that in Example 1 was produced, and the parallelogram shape in plan view was obtained in the same manner as in Example 1 from the reinforcing material for such outer layer and the expanded graphite sheet for outer layer similar to that in Example 1. The outer layer forming member was formed, and the same spherical belt-like sealing body as in Example 1 was obtained in the same manner as in Example 1. In the obtained spherical belt-shaped sealing body, the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 25% with respect to the entire outer surface. .
  • Example 11 Similar to Example 1 produced using a plain weave wire mesh woven with a square mesh having a mesh width of 2.0 mm and a width of 2.0 mm using the same austenitic stainless steel wire as in Example 10.
  • An outer layer forming member having a parallelogram shape in plan view is formed from the reinforcing material for the outer layer and the expanded graphite sheet for the outer layer similar to that in Example 1 in the same manner as in Example 1.
  • the same method as in Example 1 is used.
  • a spherical belt-like seal body similar to that of Example 1 was obtained.
  • the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface with an area ratio of 21% with respect to the entire outer surface. .
  • Example 12 Similar to Example 1 formed using a plain weave wire mesh woven with a square mesh having a mesh width of 2.5 mm and a width of 2.5 mm using the same austenitic stainless steel wire as in Example 10.
  • An outer layer forming member having a parallelogram shape in plan view is formed from the reinforcing material for the outer layer and the expanded graphite sheet similar to that of the first embodiment in the same manner as in the first embodiment.
  • the same spherical belt-like seal body was obtained.
  • the surface of the reinforcing material made of a plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 18% with respect to the entire outer surface. .
  • Example 13 Using the same austenitic stainless steel wire as in Example 10 and using a plain woven wire mesh woven with a square mesh having a mesh width of 3.0 mm and a width of 3.0 mm, the same outer layer as in Example 1
  • an outer layer forming member having a parallelogram shape in plan view is formed from the reinforcing material for outer layer and the expanded graphite sheet similar to that of Example 1, and hereinafter, Examples 1 was obtained in the same manner as in Example 1.
  • the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 15% with respect to the entire outer surface. .
  • Example 14 Using a plain woven wire mesh woven with a square mesh having a mesh width of 2.0 mm and a width of 2.0 mm using the same austenitic stainless steel wire as in Example 1 having a wire diameter of 0.42 mm as the metal thin wire. Then, a reinforcing material for the outer layer similar to that in Example 1 was produced, and the parallelogram shape in plan view was obtained in the same manner as in Example 1 from the reinforcing material for such outer layer and the expanded graphite sheet for outer layer similar to that in Example 1. The outer layer forming member was formed, and the same spherical belt-like sealing body as in Example 1 was obtained in the same manner as in Example 1. In the obtained spherical belt-shaped sealing body, the surface of the reinforcing material made of plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 45% with respect to the entire outer surface. .
  • Example 15 Using a plain woven wire mesh woven with a square mesh having a mesh width of 1.5 mm and a width of 1.5 mm using the same austenitic stainless steel wire as in Example 1 having a wire diameter of 0.50 mm as a thin metal wire. Then, a reinforcing material for the outer layer similar to that in Example 1 was produced, and the parallelogram shape in plan view was obtained in the same manner as in Example 1 from the reinforcing material for such outer layer and the expanded graphite sheet for outer layer similar to that in Example 1. The outer layer forming member was formed, and the same spherical belt-like sealing body as in Example 1 was obtained in the same manner as in Example 1. In the obtained spherical belt-shaped sealing body, the surface of the reinforcing material composed of a plain woven wire mesh for the outer layer was exposed on the outer surface at an area ratio of 60% with respect to the entire outer surface. .
  • the outer layer is compressed with the expanded graphite for the outer layer and the reinforcing material made of plain woven wire mesh, and the expanded graphite for the outer layer is filled in the reinforcing material mesh
  • the outer surface of the outer layer is formed of a pair of diagonal lines connecting the intersections of the heat-resistant material made of expanded graphite and the adjacent vertical lines and the adjacent horizontal lines of the square mesh.
  • One intersection group located on one diagonal line is arranged in the axial direction
  • Example 16 An interface with 39% by mass of a lubricating composition powder containing 25% by mass of PTFE powder having an average particle size of 0.20 ⁇ m, 15% by mass of FEP powder having an average particle size of 0.15 ⁇ m, and 60% by mass of h-BN powder having an average particle size of 8 ⁇ m
  • an aqueous dispersion (PTFE 9.75% by mass, FEP 5.85% by mass, and h-BN 23.4% by mass) comprising 4% by mass of polyoxyethylene alkyl ether (nonionic surfactant) and 57% by mass of water 4% by weight of a nonionic surfactant and 57% by weight of water) are applied to one surface of an expanded graphite sheet for an outer layer similar to that of Example 1, dried at a temperature of 100 ° C., and dried with PTFE, FEP and A coating layer of a solid lubricant (25% by mass of PTFE, 15% by mass of FEP and 60% by mass of h-BN) made of a
  • the outer layer forming member is formed, and the outer layer forming member is formed on the outer peripheral surface of the cylindrical base material in the same manner as in Example 1 with the surface exposed by mixing the plain weave wire mesh surface and the solid lubricant surface facing outside.
  • a pre-cylindrical molded body was produced by winding, and a spherical belt-shaped sealing body was obtained in the same manner as in Example 1 below.
  • the expanded graphite for outer layer and the reinforcing material made of plain woven wire mesh are compressed, and the expanded graphite and PTFE are 25% by mass, FEP 15% by mass and h-BN 60% by mass.
  • % Of the expanded graphite and the solid lubricant are mixed and integrated, and the outer surface of the outer layer has a reinforcing material made of a plain woven wire mesh for the outer layer. It was exposed on the outer surface with an area ratio of 36% with respect to the whole.
  • Example 17 39% by mass of powder for solid lubricant containing 12% by mass of PTFE powder having an average particle size of 0.20 ⁇ m, 28% by mass of FEP powder having an average particle size of 0.15 ⁇ m and 60% by mass of h-BN powder having an average particle size of 8 ⁇ m; Aqueous dispersion (PTFE 4.68% by mass, FEP 10.92% by mass and h-BN 23.4% by mass) comprising 4% by mass of polyoxyethylene alkyl ether (nonionic surfactant) and 57% by mass of water as a surfactant.
  • PTFE 4.68% by mass, FEP 10.92% by mass and h-BN 23.4% by mass
  • Example 3 %, Nonionic surfactant 4% by mass, water 57% by mass) on one surface of the expanded graphite sheet for the outer layer as in Example 3, and in the same manner as in Example 16, PTFE, FEP And a coating layer of a solid lubricant (PTFE 12 mass%, FEP 28 mass% and h-BN 60 mass%) comprising a lubricating composition of h-BN, and an outer layer provided with such a coating layer
  • PTFE 12 mass%, FEP 28 mass% and h-BN 60 mass% comprising a lubricating composition of h-BN, and an outer layer provided with such a coating layer
  • the parallelogram in plan view was obtained from the expanded graphite sheet of Example 2 and the reinforcing material having a parallelogram shape in plan view for the outer layer produced using a plain weave wire mesh having the same square mesh as in Example 2.
  • the outer layer is a solid containing expanded graphite and 12% by mass of PTFE, 28% by mass of FFE and 60% by mass of h-BN in which the expanded graphite for the outer layer and the plain woven wire mesh are compressed. Filled with lubricant, the expanded graphite and solid lubricant are mixed and integrated.
  • the surface of the reinforcing material composed of a plain woven wire mesh for the outer layer is relative to the entire outer surface of the outer layer. It was exposed on the outer surface of the outer layer with an area ratio of 32%.
  • Example 18 39% by mass of powder for solid lubricant containing 10% by mass of PTFE powder having an average particle size of 0.20 ⁇ m, 40% by mass of FEP powder having an average particle size of 0.15 ⁇ m and 50% by mass of h-BN powder having an average particle size of 8 ⁇ m;
  • a surfactant an aqueous dispersion (PTFE 3.9% by mass, FEP 15.6% by mass, and h-BN 19.5% by mass) comprising 4% by mass of polyoxyethylene alkyl ether (nonionic surfactant) and 57% by mass of water.
  • Example 14 %, Nonionic surfactant 4 mass%, water 57 mass%) on one surface of the expanded graphite sheet for the outer layer as in Example 4, and coated with PTFE, FEP in the same manner as in Example 16.
  • a coating layer of a solid lubricant (PTFE 10 mass%, FEP 40 mass% and h-BN 50 mass%) comprising a lubricating composition of h-BN, and for an outer layer provided with such a coating layer
  • a parallelogram shape in plan view is obtained from the reinforcing material for the outer layer similar to that of Example 1 manufactured using the tension graphite sheet and the plain woven wire mesh having the same square mesh as in Example 4.
  • the outer layer forming member was formed, and a spherical belt-like sealing body was obtained in the same manner as in Example 16.
  • the outer layer is a solid containing compressed graphite and PTFE 10% by mass, FEP 40% by mass and h-BN 50% by mass in which the expanded graphite for the outer layer and the plain woven wire mesh are compressed. Filled with lubricant, the expanded graphite and solid lubricant are mixed and integrated.
  • the surface of the reinforcing material composed of a plain woven wire mesh for the outer layer is relative to the entire outer surface of the outer layer. It was exposed on the outer surface of the outer layer with an area ratio of 25%.
  • Example 19 39% by mass of powder for solid lubricant containing 20% by mass of PTFE powder having an average particle size of 0.20 ⁇ m, 40% by mass of FEP powder having an average particle size of 0.15 ⁇ m and 40% by mass of h-BN powder having an average particle size of 8 ⁇ m; Aqueous dispersion (PTFE 7.8 mass%, FEP 15.6 mass%, and h-BN 15.6 mass) comprising 4 mass% of polyoxyethylene alkyl ether (nonionic surfactant) and 57 mass% of water as a surfactant.
  • PTFE 7.8 mass%, FEP 15.6 mass%, and h-BN 15.6 mass Aqueous dispersion comprising 4 mass% of polyoxyethylene alkyl ether (nonionic surfactant) and 57 mass% of water as a surfactant.
  • Example 7 %, Nonionic surfactant 4% by mass, water 57% by mass
  • PTFE, FEP And a coating layer of a solid lubricant (PTFE 20% by mass, FEP 40% by mass and h-BN 40% by mass) comprising a lubricating composition of h-BN, and for an outer layer provided with such a coating layer
  • PTFE 20% by mass, FEP 40% by mass and h-BN 40% by mass comprising a lubricating composition of h-BN, and for an outer layer provided with such a coating layer
  • the outer layer forming member was formed, and a spherical belt-like sealing body was obtained in the same manner as in Example 16.
  • the outer layer is a solid containing expanded graphite and plain woven wire mesh compressed for outer layer, and the plain woven wire mesh has expanded graphite and PTFE 20 mass%, FEP 40 mass% and h-BN 40 mass%. Filled with lubricant, the expanded graphite and solid lubricant are mixed and integrated.
  • the surface of the reinforcing material composed of a plain woven wire mesh for the outer layer is relative to the entire outer surface of the outer layer. It was exposed on the outer surface of the outer layer with an area ratio of 42%.
  • Example 20 39% by mass of powder for solid lubricant containing 38% by mass of PTFE powder having an average particle size of 0.20 ⁇ m, 22% by mass of FEP powder having an average particle size of 0.15 ⁇ m and 40% by mass of h-BN powder having an average particle size of 8 ⁇ m;
  • a surfactant an aqueous dispersion (PTFE 14.82% by mass, FEP 8.58% by mass, and h-BN 15.6% by mass) comprising 4% by mass of polyoxyethylene alkyl ether (nonionic surfactant) and 57% by mass of water.
  • Example 1 %, Nonionic surfactant 4% by mass, water 57% by mass) on one surface of the expanded graphite sheet for the outer layer as in Example 1, and PTFE, FEP and Forming a coating layer of solid lubricant (38% by mass of PTFE, 22% by mass of FEP and 40% by mass of h-BN) comprising a lubricating composition of h-BN, and for an outer layer provided with such a coating layer From the expanded graphite sheet and the reinforcing material for the outer layer similar to Example 1 manufactured using the plain woven wire mesh having the same square mesh as in Example 11, the parallelogram shape in plan view was the same as in Example 1.
  • the outer layer forming member was formed, and a spherical belt-like sealing body was obtained in the same manner as in Example 16.
  • the outer layer is a solid containing expanded graphite and 38% by mass of PTFE, 22% by mass of FFE, and 40% by mass of h-BN in which the expanded graphite for the outer layer and the plain woven wire mesh are compressed. Filled with lubricant, the expanded graphite and solid lubricant are mixed and integrated.
  • the surface of the reinforcing material composed of a plain woven wire mesh for the outer layer is relative to the entire outer surface of the outer layer. The area ratio of 22% was exposed on the outer surface of the outer layer.
  • Example 21 39% by mass of powder for solid lubricant containing 35% by mass of PTFE powder having an average particle size of 0.20 ⁇ m, 15% by mass of FEP powder having an average particle size of 0.15 ⁇ m and 50% by mass of h-BN powder having an average particle size of 8 ⁇ m; Aqueous dispersion (PTFE 13.65% by mass, FEP 5.85% by mass and h-BN 19.5% by mass) comprising 4% by mass of polyoxyethylene alkyl ether (nonionic surfactant) and 57% by mass of water as a surfactant.
  • Example 1 %, Nonionic surfactant 4% by mass, water 57% by mass) on one surface of the expanded graphite sheet for the outer layer as in Example 1, and PTFE, FEP and Forming a coating layer of a solid lubricant (PTFE 35% by mass, FEP 15% by mass and h-BN 50% by mass) comprising a lubricating composition of h-BN, and for an outer layer provided with such a coating layer
  • PTFE 35% by mass, FEP 15% by mass and h-BN 50% by mass comprising a lubricating composition of h-BN
  • the outer layer forming member was formed, and a spherical belt-like sealing body was obtained in the same manner as in Example 16.
  • the outer layer is a solid containing expanded graphite and 35% by mass of PTFE, 15% by mass of FFE, and 50% by mass of h-BN in which the expanded graphite for the outer layer and the plain woven wire mesh are compressed. Filled with a lubricant, the expanded graphite and the solid lubricant are mixed and integrated.
  • the one intersection group is arranged in the axial direction, and the other intersection group is arranged in the circumferential direction.
  • the surface of the reinforcing material comprising the arranged plain woven wire mesh for the outer layer was exposed on the outer surface of the outer layer with an area ratio of 32% with respect to the entire outer surface of the outer layer.
  • Example 22 23% by mass of PTFE powder having an average particle size of 0.20 ⁇ m, 23% by mass of FEP powder having an average particle size of 0.15 ⁇ m, 47% by mass of h-BN powder having an average particle size of 8 ⁇ m, and boehmite (Al 2 O 3 as hydrated alumina)
  • An aqueous solution comprising 39% by mass of powder for solid lubricant containing 7% by mass of H 2 O), 4% by mass of polyoxyethylene alkyl ether (nonionic surfactant) as a surfactant and 57% by mass of water
  • a dispersion PTFE 8.97% by mass, FEP 8.97% by mass, h-BN 18.33% by mass, boehmite 2.73% by mass, nonionic surfactant 4% by mass, water 57% by mass
  • Example 1 Using the same expanded graphite sheet, one surface of the expanded graphite sheet for the outer layer similar to that in Example 1 was roller-coated, and in the same
  • Example 16 Forming a coating layer of solid lubricant (23% by mass of PTFE, 23% by mass of FEP, 47% by mass of h-BN and 7% by mass of bomato) comprising a lubricating composition, and an expanded graphite sheet for an outer layer provided with such a coating layer
  • An outer layer forming member having a parallelogram shape in plan view was obtained in the same manner as in Example 1 from the reinforcing material for outer layer similar to that in Example 1 produced using a plain weave wire mesh having the same square mesh as in Example 2. Thereafter, a spherical belt-like sealing body was obtained in the same manner as in Example 16.
  • the outer layer was expanded with expanded graphite and plain woven wire mesh for the outer layer, and expanded graphite and PTFE 23% by mass, FEP 23% by mass, h-BN 47% by mass and Boemat 7
  • the expanded lubricant and the solid lubricant are mixed and integrated with a solid lubricant containing mass%, and the outer surface of the outer layer is a surface of a reinforcing material made of a plain woven wire mesh for the outer layer. It was exposed on the outer surface of the outer layer with an area ratio of 35% with respect to the whole.
  • Example 23 PTFE powder 22% by mass with an average particle size of 0.20 ⁇ m, 22% by mass of FEP powder with an average particle size of 0.15 ⁇ m, 53% by mass of h-BN powder with an average particle size of 8 ⁇ m, and 3% by mass of boehmite powder as alumina hydrate.
  • Aqueous dispersion (PTFE 8.58% by mass, FEP8) comprising 39% by mass of powder for solid lubricant, 4% by mass of polyoxyethylene alkyl ether (nonionic surfactant) as a surfactant and 57% by mass of water 58 mass%, h-BN 20.67 mass%, boehmite 1.17 mass%, nonionic surfactant 4 mass%, water 57 mass%)
  • a solid lubricant (PTFE 22 mass%, FEP 22 mass%) comprising a lubricating composition of PTFE, FEP and h-BN in the same manner as in Example 16 h-BN 53% by mass and boehmite 3% by mass), and using an expanded graphite sheet for the outer layer provided with such a coating layer and a plain woven wire mesh having a square mesh similar to Example 2.
  • An outer layer forming member having a parallelogram shape in plan view is formed from the manufactured reinforcing material for the outer layer similar to that in Example 1 in the same manner as in Example 1.
  • a spherical belt-like sealing body is formed in the same manner as in Example 16. Obtained.
  • the outer layer was expanded with expanded graphite and plain woven wire mesh for the outer layer, and expanded graphite and PTFE 22% by mass, FEP 22% by mass, h-BN 53% by mass and boehmite 3
  • the expanded lubricant and the solid lubricant are mixed and integrated with a solid lubricant containing mass%, and the outer surface of the outer layer is a surface of a reinforcing material made of a plain woven wire mesh for the outer layer. It was exposed on the outer surface of the outer layer with an area ratio of 34% with respect to the whole of the above.
  • Example 24 The same plane as in Example 1 using a reinforcing material for the outer layer similar to that in Example 1 and an expanded graphite sheet similar to that in Example 1 using a plain weave wire mesh having a square mesh similar to that in Example 2.
  • An expanded graphite sheet for an outer layer having a parallelogram view shape is produced, and an outer layer forming member material having a parallelogram shape for a plan view view using the plain woven wire mesh for the outer layer and the expanded graphite sheet for the outer layer in the same manner as in Example 1. Formed.
  • the surface of the reinforcing material made of plain woven wire mesh was exposed on the surface of the outer layer forming member at an area ratio of 24%.
  • Example 16 An aqueous dispersion similar to Example 16 (PTFE 9.75 mass%, FEP 5.85 mass% and h-BN 23.4 mass%, nonionic surfactant 4 mass%, water 57 mass%) was prepared, and plain weave
  • the outer layer forming member material having a parallelogram shape in a plan view in which the aqueous dispersion is roller-coated on one surface of the outer layer forming member material exposed at a surface ratio of 24% of the reinforcing material made of a wire mesh at a temperature of 100 ° C.
  • An outer layer forming member provided with such a solid lubricant coating layer is wound on the outer peripheral surface of the cylindrical base material in the same manner as in Example 1 with the solid lubricant coating layer on the outside to produce a preliminary cylindrical molded body.
  • the outer layer is one intersection point located on one diagonal line of a pair of diagonal lines connecting the intersection points of adjacent vertical lines and adjacent horizontal lines forming a square mesh.
  • a group of plains arranged in the axial direction, and the other intersections located on the other diagonal line are made of plain weave wire mesh arranged in the circumferential direction and compressed, and the mesh of the plain weave wire mesh of this reinforcement material It is equipped with a heat-resistant material containing expanded graphite that is filled and compressed and integrated with the reinforcing material, and a solid lubricant that covers these reinforcing material and heat-resistant material.
  • the surface of the agent is a smooth surface exposed.
  • Example 25 An aqueous dispersion similar to Example 16 (PTFE 9.75 mass%, FEP 5.85 mass% and h-BN 23.4 mass%, nonionic surfactant 4 mass%, water 57 mass%) was prepared.
  • the aqueous dispersion is roller-coated on one surface of a heat-resistant material made of an expanded graphite sheet for an outer layer having a parallelogram shape in plan view similar to that of Example 2 manufactured using the expanded graphite sheet similar to Example 1.
  • the solid lubricant coating layer thus formed was dried at a temperature of 100 ° C. and then baked in a heating furnace at a temperature of 340 ° C. for 20 minutes.
  • Example 2 The expanded graphite sheet provided with such a solid lubricant fired coating layer was prepared as Example 2. Each side was sandwiched between two plain quadrilateral wire meshes in a plan view in parallel with the two outer layers similar to Example 1 manufactured using a plain weave wire mesh woven with a similar square mesh. Thereafter, the expanded graphite sheet and the two plain weave wire meshes are pressed with a pair of rollers, and the plain weave wire mesh is filled with expanded graphite and a fired solid lubricant.
  • An outer layer forming member having a parallelogram shape in plan view in which the surface of the fired solid lubricant filled in the mesh is exposed is formed, and the surface of the plain woven wire mesh and the surface of the fired solid lubricant are exposed in the outer layer forming member.
  • a pre-cylindrical molded body was produced by winding the outer surface of the cylindrical base material in the same manner as in Example 1 with the surface facing outside, and a spherical belt-shaped sealing body was obtained in the same manner as in Example 1 below.
  • the outer layer is a fired solid lubricant containing expanded graphite and a plain woven wire mesh compressed to contain expanded graphite and 25% by mass of PTFE, 15% by mass of FEP and 60% by mass of h-BN.
  • the expanded graphite and the fired solid lubricant are mixed and integrated so that the surface of the reinforcing material made of plain woven wire mesh is 32% of the entire outer surface of the outer layer. It was exposed with an area ratio.
  • Example 26 Aqueous dispersion similar to Example 23 (PTFE 8.58% by mass, FEP 8.58% by mass, h-BN 20.67% by mass, boehmite 1.17% by mass, nonionic surfactant 4% by mass, water 57% by mass) %) Of the expanded graphite sheet for outer layer having a parallelogram shape in plan view similar to that in Example 1 produced by using the expanded graphite sheet similar to that in Example 1 and having one surface coated with a roller. After drying at a temperature of 340 ° C.
  • Example 1 in which an expanded graphite sheet for an outer layer provided with a layer was formed, and the expanded graphite sheet for the outer layer was produced using a plain woven wire mesh having a square mesh similar to Example 2. After sandwiching the same two sides between the same two sides of a plain parallel wire mesh for the outer layer in plan view, the expanded graphite sheet for the outer layer and the two plain weave wire meshes are pressed with a pair of rollers.
  • An outer layer forming member having a shape is formed, and the outer layer forming member is formed with a surface of a reinforcing material made of plain woven wire mesh and a surface made of a fired solid lubricant mixed and exposed, and the outer peripheral surface of the cylindrical base material. Then, a preliminary cylindrical molded body wound with a slight gap in the circumferential direction between the hypotenuses at both ends was prepared, and a spherical belt-shaped sealing body was obtained in the same manner as in Example 1 below.
  • the expanded graphite and plain woven wire mesh were compressed, and the expanded graphite and PTFE were 22% by mass, FEP 22% by mass, h-BN 53% by mass and boehmite 3% by mass.
  • the expanded graphite and the calcined solid lubricant are mixed and integrated, and the surface of the reinforcing material made of plain weave wire mesh is formed on the entire outer surface of the outer layer. It was exposed with an area ratio of 31%.
  • the outer surface of the outer layer is adjacent to the surface made of the solid lubricant and the adjacent vertical lines forming the square mesh.
  • the surface of the reinforcing material made of plain woven wire mesh is a smooth surface exposed in a mixed manner.
  • the outer surface of the outer layer was fired in the obtained spherical belt-shaped sealing body.
  • intersection point group located on one of the pair of diagonal lines connecting the intersections of the surface made of the solid lubricant and the adjacent vertical lines and the adjacent horizontal lines forming a square mesh is the axial direction
  • the other intersection located on the other diagonal Group is a smooth surface that faces and is exposed in a mixed reinforcement consisting of plain weave wire mesh arranged in the circumferential direction.
  • Comparative Example 1 A heat-resistant material composed of an expanded graphite sheet similar to that in Example 1 was separately prepared, and a solid lubricant composed of 85% by mass of h-BN powder and 15% by mass of alumina powder was solidified on one surface of the heat-resistant material.
  • a coating layer of solid lubricant (h-BN 85 mass% and alumina 15 mass%) was formed on one surface of the heat-resistant material.
  • a pre-cylindrical molded body is produced by winding this composite sheet material with the surface where the coating layer of the solid lubricant and the metal mesh are mixed outward.
  • a spherical band-shaped substrate formed by compression molding in the same manner as in Example 1 and defined by the cylindrical inner surface, the partially convex spherical surface, and the large-diameter and small-diameter annular end surfaces of the partially convex spherical surface;
  • a ball-shaped seal body having an outer layer integrally formed on the convex spherical surface was obtained.
  • the outer layer is a solid lubricating material containing expanded graphite and PTFE 60% by mass, h-BN 34% by mass and alumina 6% by mass in which the expanded graphite and the braided metal mesh are compressed.
  • the expanded graphite and the solid lubricant are mixed and integrated, and the outer surface of the outer layer is formed from the smooth surface of the sliding layer in which the reinforcing material made of the wire mesh and the solid lubricant of the coating layer are mixed.
  • a reinforcing material made of a wire mesh was exposed on the outer surface of the outer layer with an area ratio of 47.7% with respect to the entire outer surface of the outer layer.
  • Comparative Example 2 A heat-resistant material composed of an expanded graphite sheet similar to that in Example 1 was separately prepared, and 100 parts by mass of a solid lubricant composed of 85% by mass of h-BN powder and 15% by mass of alumina powder was formed on one surface of the heat-resistant material.
  • a lubricant coating layer (34% by mass of h-BN, 60% by mass of PTFE, and 6% by mass of alumina) was formed.
  • Example 2 After forming a cylindrical braided wire mesh having a mesh width of 3.5 mm and a width of 2.5 mm using an austenitic stainless steel wire (SUS304) having a wire diameter of 0.28 mm as in Example 1.
  • a belt-shaped wire mesh produced by passing between the rollers is prepared, a heat-resistant material provided with the coating layer is inserted into the belt-shaped wire mesh, and these are integrated by passing between the rollers.
  • a pre-cylindrical molded body is produced by winding the composite sheet material around the outer peripheral surface of the cylindrical base material with the surface where the coating layer of the solid lubricant and the wire mesh are mixed outward.
  • a spherically shaped base defined by a cylindrical inner surface, a partially convex spherical surface, a large-diameter side and a small-diameter annular end surface of the partially convex spherical surface, and a partially convex spherical surface of the spherically-shaped substrate.
  • a spherical belt-like sealing body provided with an outer layer integrally formed on the surface.
  • a spherical band-shaped reinforcing material made of compressed wire mesh and a sphere made of expanded graphite which is packed together with the reinforcing material mesh and is compressed integrally with the reinforcing material.
  • the outer layer surface is a smooth surface of a sliding layer in which a reinforcing material and a solid lubricant are mixed, and the outer surface of the outer layer is a reinforcement made of a wire mesh. The material was exposed with an area ratio of 51.8% with respect to the entire surface of the outer layer.
  • Comparative Example 3 A heat-resistant material composed of an expanded graphite sheet similar to that in Example 1 was separately prepared, and a coating layer of solid lubricant similar to Comparative Example 2 (h-BN 34 mass%, PTFE 60 mass%, and alumina was formed on one surface of the heat-resistant material. 6% by mass).
  • the reinforcing material for the rectangular outer layer was produced using the horizontal lines in parallel with the longitudinal direction.
  • a rectangular heat-resistant material for the outer layer was produced using a heat-resistant material made of an expanded graphite sheet similar to Example 1.
  • the expanded graphite sheet provided with the coating layer of the solid lubricant is inserted between the reinforcing materials made of two plain weave wire meshes with each side being matched, and then the expanded graphite sheet and the reinforcing material made of two plain weave wire meshes
  • a rectangular outer layer is formed in which a flat weave wire mesh is filled with expanded graphite and a solid lubricant, and a square mesh is arranged in parallel in the width direction and the longitudinal direction.
  • a member was prepared.
  • the area ratio at which the surface of the reinforcing material made of plain woven wire mesh was exposed was 25%.
  • the outer layer forming member is wound around the outer peripheral surface of the cylindrical member with the surface of the reinforcing material made of plain woven wire mesh and the surface made of solid lubricant mixed and exposed to produce a preliminary cylindrical molded body did.
  • a spherical base defined by the cylindrical inner surface, the partially convex spherical surface, and the large-diameter side and small-diameter annular end surfaces of the partially convex spherical surface, and a portion of the spherical base A ball-shaped seal body having an outer layer integrally formed on the convex spherical surface was obtained.
  • the outer layer is a solid lubricating material containing expanded graphite and PTFE 60% by mass, h-BN 34% by mass and alumina 6% by mass in which the expanded graphite and the plain weave metal mesh are compressed.
  • the expanded graphite and the solid lubricant are mixed and integrated, and the outer surface of the outer layer is the surface made of the solid lubricant, and the vertical lines forming the mesh are in the width direction, and the mesh is also the same.
  • the horizontal line group to be formed is a smooth surface exposed by mixing with the surface of the reinforcing material made of plain woven wire mesh arranged in the circumferential direction, and the vertical line group is in the width direction on the outer surface of the outer layer.
  • the surface of the reinforcing material made of plain woven wire mesh in which horizontal line groups are arranged in the circumferential direction was exposed with an area ratio of 35%.
  • Example 2 to Example 26 and Comparative Example 1 to Comparative Example 3 the cylindrical base material similar to Example 1 manufactured in the same manner as in Example 1 is used as the cylindrical base material.
  • the spherical belt-shaped substrate was formed so that the expanded graphite and the wire mesh were mutually compressed and entangled with each other in the same manner as in Example 1. .
  • ⁇ Test method> 29 the upstream side exhaust pipe 100 of the exhaust pipe joint shown in FIG. 29 is fixed, and high temperature gas is circulated through the upstream side exhaust pipe 100 to raise the surface temperature of the counterpart material (diameter enlarged portion 301 shown in FIG. 29) to 300 ° C.
  • the downstream side exhaust pipe 300 is subjected to a swinging motion with an amplitude of ⁇ 2 ° at an excitation frequency of 25 Hz for 42 hours (excitation frequency: 374 times).
  • the temperature is lowered to room temperature (rocking test).
  • the surface temperature of the counterpart material is raised to 500 ° C.
  • ⁇ Test method> After performing a rocking test under the conditions of the rocking test, the temperature of the mating member was raised to 500 ° C while continuing rocking motion of ⁇ 2 ° at an excitation frequency of 5 Hz at room temperature. (1) Before starting the test, (2) After 250,000 swings, (3) After 500,000 swings, and (4) 1 million swings The amount of gas leakage at the time of reaching was measured.
  • ⁇ Measurement method of gas leakage> The opening of the exhaust pipe 100 on the upstream side of the exhaust pipe joint shown in FIG. 29 is closed, and dry air is introduced from the downstream side of the exhaust pipe 200 at a pressure of 49 kPa (0.5 kgf / cm 2).
  • the amount of gas leakage from the end face 40 and the flange portion 200 erected on the upstream side exhaust pipe 100) is measured with a flow meter (1) before the start of the test, and (2) the number of oscillations reaches 250,000 times.
  • the amount of gas leakage was measured when (3) the number of oscillations reached 500,000 times and (4) the number of oscillations reached 1 million times.
  • Tables 1 to 6 show the above test results, and Tables 7 to 12 show the friction differences for Example 7, Example 4, Example 7, Example 8, Example 16, Example 23, and Comparative Example 3.
  • the test progress and test results of sound are shown.
  • the determination level of frictional noise was performed according to the following criteria.
  • ⁇ Friction noise judgment level> Symbol: 0 No friction noise was generated. Symbol: 0.5 Friction noise can be confirmed on the sound collecting pipe. Symbol: Generation of frictional noise can be confirmed at a position about 0.2 m away from the sliding portion of the exhaust pipe spherical joint. Symbol: 1.5 Generation of abnormal noise can be confirmed at a position about 0.5 m away from the sliding portion of the exhaust pipe spherical joint. Symbol: 2 Generation
  • the spherical band-shaped sealing body of Examples 1 to 26 is comparative example 1 in terms of roughening the surface of the counterpart material, evaluating the occurrence of frictional noise, and the amount of gas leakage. It turns out that it is superior to the spherical belt-shaped sealing body which consists of thru
  • the surface of the mating member is exposed to the outer surface of the outer layer of the spherical belt-shaped sealing body made of Comparative Example 3 in spite of the same plain woven wire mesh as that of the spherical belt-shaped sealing body of Examples 1 to 26 being exposed.
  • the increase in the surface roughness is that the adjacent vertical line groups forming the rectangular mesh of the plain weave wire mesh are arranged along the axial direction, and the adjacent horizontal line groups are arranged along the circumferential direction.
  • the surface of the mating material is presumed to be due to sliding in direct contact with the vertical line group and horizontal line group of the plain woven wire mesh always in the sliding direction.
  • the spherical belt-shaped sealing body of the present invention it is possible to eliminate a large lump-like lump in the intersection group, and in the sliding friction with the counterpart material, the mesh intersection point and the counterpart material surface
  • the induction of the abrasive wear during the period can be reduced as much as possible, the roughening due to the damage of the surface of the counterpart material can be reduced, and the deterioration of the sealing performance can be prevented as much as possible.
  • a preliminary cylindrical molded body is created by winding an outer layer forming member with a gap between the oblique sides of the end face in the longitudinal direction on the outer peripheral surface of the cylindrical base material, Since the outer layer forming member is sometimes compressed while being stretched in the circumferential direction, the gap between both ends of the outer layer forming member can be eliminated, and the end of the outer layer forming member is at least partially convex spherical on the spherical base Thus, the outer layer forming member can be prevented from being peeled off from the spherical band-shaped substrate starting from the end.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Gasket Seals (AREA)
  • Exhaust Silencers (AREA)
  • Joints Allowing Movement (AREA)
  • Lubricants (AREA)

Abstract

 球帯状シール体44において、外層43の外表面45は、膨張黒鉛シート21を含む耐熱材の面46と、交点群19a及び19dが軸方向Zに、交点群19b及び19cが円周方向Rに夫々配列された平織金網17からなる補強材の面47とが混在して露出した平滑な面48となっており、交点群19a及び19d並びに19b及び19cでの面47は、外層43の外表面45の全体に対して10~65%の面積割合をもって露出している。 

Description

球帯状シール体
 本発明は、自動車排気管の球面管継手に使用される球帯状シール体に関する。
 自動車エンジンの排気通路の一例を示す図30において、自動車用エンジンの各気筒(図示せず)で発生した排気ガスは、排気マニホールド触媒コンバータ600にまとめられ、排気管601及び排気管602を通じてサブマフラ603に送られ、更に排気管604及び排気管605を介してマフラ(消音器)606へと送られ、マフラ606を通じて大気中に放出される。
 これら排気管601、602、604及び605並びにサブマフラ603及びマフラ606等の排気系部材は、エンジンのロール挙動及び振動等により繰返し応力を受ける。特に高速回転で高出力エンジンの場合は、排気系部材に加わる応力はかなり大きなものとなり、排気系部材に疲労破壊を招来する虞があり、またエンジン振動が排気系部材を共振させ、室内静粛性を悪化させる場合もある。このような問題を解決するために、排気マニホールド触媒コンバータ600と排気管601との連結部607及び排気管604と排気管605との連結部608を排気管球面継手又は蛇腹式継手等の振動吸収機構によって可動連結することにより、自動車エンジンのロール挙動及び振動等により排気系部材に繰返し受ける応力が吸収され、当該排気系部材の疲労破壊等が防止されると共にエンジンの振動が排気系部材を共振させ車室内の静粛性を悪化させるという問題も解決されるという利点を有する。
特開昭54-76759号公報 特開昭58-34230号公報 特開平6-123362号公報
 上記した振動吸収機構の一例としての特許文献1に記載された排気管継手及び該排気管継手に使用されるシール体は、蛇腹式継手と比較して製造コストの低減を図り得て、しかも耐久性に優れているという利点を有するが、このシール体は、膨張黒鉛からなる耐熱材と金網からなる補強材とを圧縮して補強材の金網の網目に耐熱材を充填し、当該耐熱材と補強材とを混在一体化してなるために、耐熱材に対して補強材の占める割合、耐熱材及び補強材の圧縮の程度等によりシール体自体を介する排気ガスの漏出の問題に加えて、相手材と摺動自在に接触する部分凸球面状面の表面とでの耐熱材の存在による摩擦異音の発生の問題を具有しており、例えば耐熱材に対して補強材が占める割合が大きく、耐熱材に対する加圧の程度が低いと、補強材の周りに生じる微小通路(隙間)に対する耐熱材による封止の程度が減少して初期漏洩を惹起する上に、高温下における耐熱材の酸化消耗等により早期の排気ガスの漏出の虞があり、また、部分凸球面状面での補強材に対する耐熱材の露出割合が極めて大きいと、スティックスリップ現象を惹起して当該スティックスリップ現象に起因する摩擦異音の発生の原因となる虞がある。
 上記シール体の欠点を解消するものとして、特許文献2に記載されたシール体は、その摺動面(部分凸球面状面の外表面)が変形して絡み合った金網からなる補強材と補強材の金網の網目に充填保持された固体潤滑剤とが混在一体化された平滑な面に形成されていることから、特許文献1に記載されたシール体の相手材に摺動自在に接触する部分凸球面状面の外表面での耐熱材の存在による摩擦異音の発生という欠点を極力回避させることができるという利点を有するものの、やはりシール体の本来的に具有する排気ガスの漏出の問題は依然として解決されない。
 特許文献3に記載されたシール体は、特許文献2に記載されたシール体と同様、その摺動面である部分凸球面状面の表面が変形して絡み合った金網からなる補強材と補強材の金網の網目に充填保持された固体潤滑剤とが混在一体化された平滑な面に形成されており、特に固体潤滑剤に窒化硼素を含有することから、特許文献2に記載されたシール体よりも高温領域での摺動特性に優れており、また相手材との摺動においても摩擦異音の発生がないという利点を有するものであるが、シール体に、例えばアイドリング時や信号待ち等に生じる微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合、相手材との摺動摩擦によって補強材が相手材表面を攻撃し、アブレッシブ摩耗(ざらつき摩耗)を誘発して相手材表面を削り取るような損傷を与えて相手材表面を粗面化し、シール性を著しく低下させる虞や、摩擦異音を発生する虞がある。
 本発明者らは、上記実情に鑑み鋭意検討した結果、相手材との摺動摩擦面となる球帯状シール体の部分凸球面状の外表面に着目し、この外表面で露出した金網からなる補強材と相手材の凹球面部との摺動摩擦面を観察したところ、補強材を形成する編組金網の相隣り合うループの交点が恰も大きな瘤のような塊となり、これが相手材との摺動摩擦において相手材表面を損傷させるものである、との知見を得た。
 本発明は、上記知見に基づきなされたものであり、その目的とするところは、相手材との摺動摩擦において、相手材表面を損傷させたり、粗面化させたりすることを極力防止し得、シール性の低下及び摩擦異音の発生を極力防止し得る球帯状シール体を提供することにある。
 排気管継手に用いられる本発明の球帯状シール体は、円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面によって規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えており、球帯状基体は、金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されている耐熱材とを具備しており、外層は、方形状の網目を形成する相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列されている一方、当該一対の対角線のうちの他方の対角線上に位置する他方の交点群が円周方向に配列された平織金網からなると共に圧縮された補強材を少なくとも具備している。
 本発明の球帯状シール体によれば、外層は、方形状の網目を形成する相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列されている一方、当該一対の対角線のうちの他方の対角線上に位置する他方の交点群が円周方向に配列された平織金網からなると共に圧縮された補強材を少なくとも具備しているために、交点群での大きな瘤のような塊をなくし得て、相手材との摺動摩擦において、当該網目の交点群と相手材表面との間のアブレッシブ摩耗の誘発を極力減少させることができ、相手材表面の損傷に起因する粗面化を減少させてシール性の低下を極力防止することができる上に、外層の外表面が順次摩耗した場合においても、斯かる大きな瘤にような塊と相手材表面との間の摺動は回避されるので、摩擦異音の発生を極力防止することができる。
 本発明の球帯状シール体において、外層は、補強材の平織金網の網目に充填されていると共に当該補強材と混在一体化された耐熱材を具備していてもよく、斯かる場合には、外層の外表面は、耐熱材の面と、補強材の面とが混在して露出した平滑な面となっていてもよく、また、外層は、補強材の平織金網の網目に充填されていると共に当該補強材と混在一体化された耐熱材及び固体潤滑剤を具備していてもよく、斯かる場合には、外層の外表面は、固体潤滑剤の面と、補強材の面とが混在して露出した平滑な面となっていてもよい。
 外層の外表面が耐熱材の面と補強材の面とが混在して露出した平滑な面となっていると、本発明の球帯状シール体は、相手材とは、耐熱材の面と、平織金網からなる補強材の面とで摺動するので、初期摩耗を前提としないでも、アブレッシブ摩耗の誘発及び摩擦異音の発生を回避でき、過剰な耐熱材の被膜が相手材表面に過度に被着形成された際には、当該露出した補強材による過度の被膜を掻き取る作用により、相手材表面には、適度の被膜を介しての摺動摩擦となることから摩擦異音の発生を極力防止でき、また、外層の外表面が固体潤滑剤の面と補強材の平織金網における一方及び他方の交点群での面とが混在して露出した平滑な面となっていると、上記に加えて、固体潤滑剤の面により初期の摩擦抵抗を低減して円滑な摺動を行わせることができる。
 上記効果をより発揮させるために、本発明の球帯状シール体においては、補強材の平織金網の面は、外層の外表面の全体に対して、好ましくは、10~65%、より好ましくは、15~60%の面積割合をもって外層の外表面で露出していてもよい。
 即ち、補強材の平織金網の面が外層の外表面の全体に対して10~65%の面積割合をもって外層の外表面で露出していると、相手材との摺動摩擦において、露出した補強材による過度の被膜を掻き取る作用により、相手材表面との間のアブレッシブ摩耗の誘発を極力減少させることができ、相手材表面の損傷に起因する粗面化を減少させてシール性の低下を極力防止することができる。
 また、本発明の球帯状シール体においては、外層は、補強材の平織金網の網目に充填されていると共に当該補強材と混在一体化された耐熱材と、これら耐熱材及び補強材を覆った固体潤滑剤とを具備しており、外層の外表面は、固体潤滑剤の面が露出した平滑な面となっていてもよく、斯かる球帯状シール体によれば、初期の摩擦抵抗をより低減して円滑な摺動を行わせることができる。
 本発明の球帯状シール体の好ましい例において、固体潤滑剤は、四フッ化エチレン樹脂(以下、PTFEと略称する。)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(以下、FEPと略称する。)及び六方晶窒化硼素(以下、「h-BN」と略称する。)を含んでいてもよい。
 固体潤滑剤の組成割合は、好ましい例では、PTFE、FEP及びh-BNの三元系組成図において、PTFE10質量%、FEP10質量%及びh-BN80質量%とする組成点、PTFE10質量%、FEP45質量%及びh-BN45質量%とする組成点、PTFE45質量%、FEP45質量%及びh-BN10質量%とする組成点並びにPTFE40質量%、FEP10質量%及びh-BN50質量%とする組成点を頂点とする四角形で境界付けられる領域内に相当する数値範囲内にある。
 固体潤滑剤の組成割合が三元系組成図において四個の組成点を頂点とする四角形で境界付けられる領域内に相当する数値範囲内にある本発明の球帯状シール体の好ましい例によれば、相手材表面を損傷させる虞がなく、特に、固体潤滑剤が互いに融点の異なるPTFE及びFEPに加えてh-BNを含むために、自励振動の軽減を図り得ると共に摩擦異音の発生を防止することができる上に、高温領域において優れた摺動性を得ることができる。
 即ち、斯かる例によれば、FEPが溶融軟化してその粘度により弾性が発現する一方、PTFEが溶融しないで固体状態にある温度領域での使用では、固体状態にあるPTFEによりFEPの弾性が抑止されて、相手材との摺動においてスティックスリップが抑えられ、PTFEが溶融軟化してその粘度により弾性が発現する温度以上での使用では、FEPの更なる溶融によりその粘度が大幅に低減して潤滑性の増大を招来して、PTFEの粘度による弾性が抑止されて、同様に、相手材との摺動においてスティックスリップが抑えられ、而して、PTFE及びFEPの夫々が溶融しない低温領域からPTFE及びFEPの夫々が溶融する高温領域までの使用で、PTFEとFEPとの相乗効果により自励振動の軽減を図り得ると共に摩擦異音の発生を防止することができる上に、PTFE、FEP及びh-BNの夫々の潤滑性、特に、h-BNの高温での潤滑性により高温でも相手材と低摩擦抵抗をもって滑らかに摺動できてかつ膨張黒鉛及び平織金網からなる外層用の補強材との協働で安定したシール特性を発揮できる。
 固体潤滑剤におけるPTFE、FEP及びh-BNの組成割合は、より好ましくは、三元系組成図において、PTFE25質量%、FEP15質量%及びh-BN60質量%とする組成点、PTFE12質量%、FEP28質量%及びh-BN60質量%とする組成点、PTFE10質量%、FEP40質量%及びh-BN50質量%とする組成点、PTFE20質量%、FEP40質量%及びh-BN40質量%とする組成点、PTFE38質量%、FEP22質量%及びh-BN40質量%とする組成点並びにPTFE35質量%、FEP15質量%及びh-BN50質量%とする組成点を頂点とする六角形で境界付けられる領域内に相当する数値範囲内にあり、更により好ましくは、PTFE25質量%、FEP25質量%及びh-BN50質量%である。
 また、本発明では、固体潤滑剤は、アルミナ水和物を20質量%以下、好ましくは0.05~10質量%以下、更に好ましくは0.05~10質量%の割合で含有してもよく、斯かるアルミナ水和物は、それ自体は何らの潤滑性を示すものではないが、球帯状基体の部分凸球面状面への固体潤滑剤の被着性を改善し、強固な外層の形成に効果を発揮すると共に六方晶窒化硼素の板状結晶の層間の滑りを助長して六方晶窒化硼素の潤滑性を引出す役割を発揮する効果を有する。
 アルミナ水和物は、組成式Al・nHO(組成式中、0<n<3)で表される化合物であり、本組成式において、nは、通常、0(零)を超えて3未満の数、好ましくは0.5~2、更に好ましくは0.7~1.5程度であり、アルミナ水和物としては、例えばベーマイト(Al・HO)やダイアスポア(Al・HO)等のアルミナ一水和物(水酸化酸化アルミニウム)、ギブサイト(Al・3HO)やバイヤライト(Al・3HO)等のアルミナ三水和物、擬ベーマイト等が挙げられ、これらの少なくとも一つが使用されて好適である。
 本発明では、固体潤滑剤は、焼成されていなくてもよいが、FEPの融点以上の温度で焼成されていてもよい。
 本発明の球帯状シール体において、好ましい例では、耐熱材は、圧縮された膨張黒鉛を含んでおり、また、膨張黒鉛に加えて、酸化抑制剤としての燐酸塩0.1~16.0質量%若しくは五酸化燐を0.05~5質量%又は燐酸塩0.1~16.0質量%及び五酸化燐0.05~5.0質量%を含んでいてもよい。
 酸化抑制剤としての燐酸塩及び五酸化燐のうちの少なくとも一方と膨張黒鉛とを含む耐熱材は、球帯状シール体自体の耐熱性及び耐酸化消耗性を向上させることができ、球帯状シール体の高温領域での使用を可能とする。
 本発明の球帯状シール体において、球帯状基体に使用される補強材としての金網は、例えば、金属細線を織ったり編んだりして得られる織組金網及び編組金網からなり、織組金網及び編組金網を形成する金属細線は、0.15~0.32mmの線径を有しているとよい。
 本発明の球帯状シール体において、外層に使用される補強材としての平織金網は、複数本の縦線及び横線が格子状に織られ、両者に囲まれた方形状の網目を有しており、その縦線及び横線は、好ましくは、0.15~0.28mmの線径を有しており、斯かる平織金網は、方形状の網目を形成する相隣り合う縦線と相隣り合う横線とを結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が幅方向に、他方の対角線上に位置する他方の交点群が長手方向に配列すると共に両端が同じ斜方向に向いた斜辺を有するように平面視平行四辺形状に形成されているとよい。
 本発明によれば、相手材との摺動摩擦においては、補強材が相手材を攻撃してアブレッシブ摩擦の誘発を極力減少させることができ、相手材表面の損傷に起因する粗面化を減少させてシール性の低下を極力防止すると共に、摩擦異音の発生を極力防止することができる球帯状シール体及びその製造方法を提供することができる。
図1は、本発明の実施の形態の好ましい例の縦断面説明図である。 図2は、図1に示す例の一部拡大断面説明図である。 図3は、図1に示す例の外観説明図である。 図4は、図1に示す例の製造工程における球帯状基体用の補強材の形成方法の説明図である。 図5は、図1に示す例の製造工程における耐熱材の斜視説明図である。 図6は、図1に示す例の製造工程における補強材の金網の平面説明図である。 図7は、図1に示す例の製造工程における重合体の斜視説明図である。 図8は、図1に示す例の製造工程における筒状母材の平面説明図である。 図9は、図8に示す筒状母材の縦断面説明図である。 図10は、図1に示す例の製造工程における平織金網の説明図であり、(a)は、その平面説明図であり、(b)は、その側面説明図である。 図11は、図10に示す平織金網からなる外層用の補強材の平面説明図である。 図12は、図1に示す例の製造工程における外層用の耐熱材の斜視説明図である。 図13は、図1に示す例の製造工程における外層形成部材の製造過程を示す斜視説明図である。 図14は、図1に示す例の製造工程における外層形成部材の形成方法の説明図である。 図15は、図1に示す例の製造工程における外層形成部材の平面説明図である。 図16は、本発明の他の実施の形態の例のの製造工程における固体潤滑剤の被覆層を備えた外層用の耐熱材の断面説明図である。 図17は、図16に示す例の製造工程における外層形成部材の製造過程を示す斜視説明図である。 図18は、図16に示す例の製造工程における外層形成部材の形成方法の説明図である。 図19は、図16に示す例の製造工程における外層形成部材の平面説明図である。 図20は、図1及び図16に示す例の製造工程における予備円筒成形体の平面説明図である。 図21は、図20に示す予備円筒成形体の外観説明図である。 図22は、図1及び図16に示す例の製造工程における金型中に予備円筒成形体を挿入した状態を示す断面説明図である。 図23は、本発明の他の実施の形態の好ましい例の一部拡大断面説明図である。 図24は、本発明の更に他の実施の形態の好ましい例の一部拡大断面説明図である。 図25は、本発明の球帯状シール体における固体潤滑剤の組成割合に関する三元系組成説明図である。 図26は、実施例1から実施例10における外層形成部材中の平織金網からなる補強材の平面説明図である。 図27は、比較例1及び比較例2における複合シート材中の帯状金網(編組金網)からなる補強材の平面説明図である。 図28は、比較例3における外層形成部材中の平織金網からなる補強材の平面説明図である。 図29は、本発明の球帯状シール体の好ましい例を組込んだ排気管球面継手の縦断面説明図である。 図30は、エンジンの排気系の説明図である。
 次に、本発明及びその実施の形態を、図に示す好ましい実施例に基づいて更に詳細に説明する。なお、本発明はこれらの実施例に何等限定されないのである。
 本発明の球帯状シール体の好ましい例における構成材料及びその例の製造方法について説明する。
 <耐熱材I及びその製造方法について>
 濃度98%の濃硫酸を撹拌しながら、酸化剤として過酸化水素の60%水溶液を加え、これを反応液とする。この反応液を冷却して10℃の温度に保持し、該反応液に粒度30~80メッシュの鱗片状天然黒鉛粉末を添加して30分間反応を行う。反応後、吸引濾過して酸処理黒鉛粉末を分離し、該酸処理黒鉛粉末を水で10分間撹拌して吸引濾過するという洗浄作業を2回繰返し、酸処理黒鉛粉末から硫酸分を充分除去する。ついで、硫酸分を充分除去した酸処理黒鉛粉末を110℃の温度に保持した乾燥炉で3時間乾燥し、これを酸処理黒鉛粉末とする。
 上記酸処理黒鉛粉末を、950~1200℃の温度で1~10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240~300倍)を形成する。この膨張黒鉛粒子を所望のロール隙間に調整した双ローラ装置に供給してロール成形し、所望の厚さの膨張黒鉛シートを作製し、この膨張黒鉛シートを耐熱材Iとする。
 <耐熱材II及びその製造方法について>
 上記酸処理黒鉛粉末と同様の方法で得た酸処理黒鉛粉末を撹拌しながら、該酸処理黒鉛粉末に燐酸塩として濃度50%の第一燐酸アルミニウム〔Al(HPO〕水溶液をメタノールで希釈した溶液を噴霧状に配合し、均一に撹拌して湿潤性を有する混合物を作製する。この湿潤性を有する混合物を、120℃の温度に保持した乾燥炉で2時間乾燥する。ついで、これを950~1200℃の温度で1~10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240~300倍)を形成する。この膨張処理工程において、第一燐酸アルミニウムでは構造式中の水が脱離する。この膨張黒鉛粒子を所望のロール隙間に調整した双ローラ装置に供給してロール成形し、所望の厚さの膨張黒鉛シートを作製し、この膨張黒鉛シートを耐熱材IIとする。
 このようにして作製された耐熱材IIには、膨張黒鉛に第一燐酸アルミニウムが0.1~16質量%の割合で含有されている。この燐酸塩を含有した膨張黒鉛は、膨張黒鉛自体の耐熱性が向上されると共に酸化抑制作用が付与されるため、例えば600℃ないし600℃を超える高温領域での使用を可能とする。燐酸塩としては、第一燐酸アルミニウムの他に、第二燐酸リチウム(LiHPO)、第一燐酸カルシウム〔Ca(HPO〕、第二燐酸カルシウム(CaHPO)、第二燐酸アルミニウム〔Al(HPO〕を使用することができる。
 <耐熱材III及びその製造方法について>
 上記と同様の方法で得た酸処理黒鉛粉末を撹拌しながら、該酸処理黒鉛粉末に燐酸塩として濃度50%の第一燐酸アルミニウム水溶液と燐酸として濃度84%のオルト燐酸(HPO)水溶液をメタノールで希釈した溶液を噴霧状に配合し、均一に撹拌して湿潤性を有する混合物を作製する。この湿潤性を有する混合物を、120℃の温度に保持した乾燥炉で2時間乾燥する。ついで、これを950~1200℃の温度で1~10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240~300倍)を形成する。この膨張処理工程において、第一燐酸アルミニウムでは構造式中の水が脱離し、オルト燐酸では脱水反応を生じて五酸化燐を生成する。この膨張黒鉛粒子を所望のロール隙間に調整した双ローラ装置に供給してロール成形し、所望の厚さの膨張黒鉛シートを作製し、この膨張黒鉛シートを耐熱材IIIとする。
 このようにして作製された耐熱材IIIには、膨張黒鉛に第一燐酸アルミニウムが0.1~16質量%及び五酸化燐が0.05~5質量%の割合で含有されている。この燐酸塩及び五酸化燐を含有した膨張黒鉛は、膨張黒鉛自体の耐熱性が向上されると共に酸化抑制作用が付与されるため、例えば600℃ないし600℃を超える高温領域での使用を可能とする。燐酸としては、上記オルト燐酸の他に、メタ燐酸(HPO)、ポリ燐酸等を使用することができる。
 耐熱材I、II及びIIIの膨張黒鉛シートは、1.0~1.15Mg/m程度の密度で、0.3~0.6mm程度の厚さを有しているとよい。
 <球帯状基体用の補強材について>
 球帯状基体用の補強材には、鉄系としてオーステナイト系のSUS304、SUS310S、SUS316、フェライト系のSUS430等のステンレス鋼線、鉄線(JISG3532)もしくは亜鉛メッキ鋼線(JISG3547)又は銅系として銅-ニッケル合金(白銅)線、銅-ニッケル-亜鉛合金(洋白)線、黄銅線、ベリリウム銅線からなる金属細線を一本又は二本以上使用して織ったり、編んだりして形成される織組金網又は編組金網等の金網が使用されるとよい。
 金網には、線径が0.15~0.32mmの範囲の金属細線が、具体的には、0.15mm、0.17mm、0.20mm、0.28mm又は0.32mmの金属細線が使用されて好適であり、該線径の金属細線で形成された球帯状基体用の金網の網目の目幅は、縦幅M=4~6mm、横幅N=3~5mm程度の図6に示す編組金網又は図10に示す平織金網17からなる織組金網が使用されて好適である。
 <外層用の補強材について>
 外層用の補強材は、球帯状基体用の補強材と同様、鉄系としてオーステナイト系のSUS304、SUS310S、SUS316、フェライト系のSUS430等のステンレス鋼線、鉄線(JISG3532)もしくは亜鉛メッキ鋼線(JISG3547)又は銅系として銅-ニッケル合金(白銅)線、銅-ニッケル-亜鉛合金(洋白)線、黄銅線、ベリリウム銅線からなる線径が0.05~0.28mmの金属細線を使用して織った網目の目幅が縦幅M=2.0~3.5mm、横幅N=2.0~3.5mm程度の図10に示す平織金網17が使用されて好適である。特に、外層用の補強材は、図10及び図26に示す平織金網17からなる補強材を使用して、図11に示すように、同じ斜方向に向いた斜辺18を両端に有する平面視平行四辺形状に形成されていると共に複数本の縦線14と複数本の横線15とが格子状に織られ、方形状の網目16を形成する相隣り合う縦線14と相隣り合う横線15との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群19a及び19dが幅方向Xに配列され、他方の対角線上に位置する他方の交点群19b及び19cが長手方向Yに配列された平織金網17が使用されて好適である。
 <固体潤滑剤について>
 PTFE、FEP及びh-BNを含む固体潤滑剤の組成割合は、好ましくは、PTFE、FEP及びh-BNの組成割合(質量%)に関する図25の紙面右側斜辺がPTFEの含有量(質量%)を、底辺がFEPの含有量(質量%)を、そして、紙面左側斜辺がh-BNの含有量(質量%)を夫々示す正三角形の三元系組成図において、PTFE10質量%、FEP10質量%及びh-BN80質量%とする組成点A、PTFE10質量%、FEP45質量%及びh-BN45質量%とする組成点B、PTFE45質量%、FEP45質量%及びh-BN10質量%とする組成点C並びにPTFE40質量%、FEP10質量%及びh-BN50質量%とする組成点Dを頂点とする四角形51で境界付けられる領域P内に相当する数値範囲内にあり、より好ましくは、図25に示す三元系組成図において、PTFE25質量%、FEP15質量%及びh-BN60質量%とする組成点E、PTFE12質量%、FEP28質量%及びh-BN60質量%とする組成点F、PTFE10質量%、FEP40質量%及びh-BN50質量%とする組成点G、PTFE20質量%、FEP40質量%及びh-BN40質量%とする組成点H、PTFE38質量%、FEP22質量%及びh-BN40質量%とする組成点J並びにPTFE35質量%、FEP15質量%及びh-BN50質量%とする組成点Kを頂点とする六角形52で境界付けられる領域Q内に相当する数値範囲内にある。
 この固体潤滑剤は、製造過程においては、平均粒子径が0.01~1μmのPTFE粉末と平均粒子径が0.01~1μmのFEP粉末と平均粒子径が0.1~20μmのh-BN粉末と界面活性剤と水とからなる水性ディスパージョンの形態で使用される。
 水性ディスパージョン中において、PTFE粉末、FEP粉末及び特に高温領域において優れた潤滑性を発揮するh-BN粉末の含有割合は、好ましくは、図25に示す三元系組成図において、四角形51で境界付けられるの領域内に相当する数値範囲内にあり、より好ましくは、同三元系組成図において、六角形52で境界付けられる領域内に相当する数値範囲内にあり、更により好ましくは、PTFE粉末25質量%、FEP粉末25質量%及びh-BN粉末50質量%である。
 斯かる含有割合からなるPTFE粉末、FEP粉末及びh-BN粉末を含む固体潤滑剤粉末39質量%に対して、例えば、界面活性剤4質量%と水57質量%とが混合された水性ディスパージョンが用いられるが、水性ディスパージョン中の水の含有量は、ローラ塗り、刷毛塗り、スプレー等の手段による水性ディスパージョンの膨張黒鉛シートへの適用の態様に応じて増減してもよい。
 水性ディスパージョン中に含有される界面活性剤は、固体潤滑剤粉末を水に均一に分散させ得るものであればよく、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤のいずれも使用できる。例えば、ナトリウムアルキルサルフェート、ナトリウムアルキルエーテルサルフェート、トリエタノールアミンアルキルサルフェート、トリエタノールアミンアルキルエーテルサルフェート、アンモニウムアルキルサルフェート、アンモニウムアルキルエーテルサルフェート、アルキルエーテルリン酸ナトリウム、フルオロアルキルカルボン酸ナトリウム等のアニオン性界面活性剤;アルキルアンモニウム塩、アルキルベンジルアンモニウム塩等のカチオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンアルキルエステル、プロピレングリコール-プロピレンオキシド共重合体、パーフルオロアルキルエチレンオキシド付加物、2-エチルヘキサノールエチレンオキシド付加物等の非イオン性界面活性剤;アルキルアミノ酢酸ベタイン、アルキルアミド酢酸ベタイン、イミダゾリウムベタイン等の両性界面活性剤等が挙げられる。特に、アニオン性、非イオン性界面活性剤が好ましい。特に好ましい界面活性剤は、熱分解残量の少ないオキシエチレン鎖を有する非イオン性界面活性剤である。
 水性ディスパージョンにおいて、界面活性剤の含有量は、例えば、固体潤滑剤粉末39質量%に対して4質量%であるが、界面活性剤の含有量が少なすぎると、固体潤滑剤粉末の分散が均一にならず、また、界面活性剤の含有量が多すぎると、焼成による界面活性剤の分解残渣が多くなり着色が生ずるほか、耐熱性、非粘着性等が低下する。
 PTFE粉末、FEP粉末、h-BN粉末、界面活性剤及び水を含有した水性ディスパージョンは、更に、固体潤滑剤粉末において、h-BN粉末の含有量の一部に代えて、アルミナ水和物粉末を20質量%以下の割合で、好ましくは0.05~10質量%、より好ましくは0.05~5質量%の割合で含有していてもよい。
 PTFE粉末、FEP粉末、h-BN粉末、界面活性剤及び水を含有した水性ディスパージョン又はPTFE粉末、FEP粉末、h-BN粉末、アルミナ水和物粉末、界面活性剤及び水を含有した水性ディスパージョンには、更に水溶性有機溶剤が含有されてもよい。水溶性有機溶剤としては、例えば、メタノール、エタノール、ブタノール、イソプロピルアルコール、グリセリン等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メチルセロソルブ、セロソルブ、ブチルセロソルブ等のエーテル系溶剤、エチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール等のグリコール系溶剤、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶剤、N-メチル-2-ピロリドン等のラクタム系溶剤が挙げられる。水溶性有機溶剤の含有量は、全水量の0.5~50質量%、好ましくは1~30質量%である。水溶性有機溶剤は、PTFE粉末及びFEP粉末を濡らす働きを有し、h-BN粉末との均一な混合物を形成させるもので、乾燥時には蒸発するので悪影響を及ぼすことはない。
 固体潤滑剤用粉末の水性ディスパージョンとしては、
 (1)平均粒子径が0.01~1μmのPTFE粉末、平均粒子径が0.01~1μmのFEP粉末及び平均粒子径が0.1~20μmのh-BN粉末からなると共に図25に示す三元系組成図において四角形51で境界付けられる領域P内に相当する数値範囲内にある組成割合をもった固体潤滑剤用粉末39質量%と、界面活性剤4質量%と水57質量%とからなる水性ディスパージョン、
 (2)上記(1)の組成割合をもった固体潤滑剤用粉末において、h-BN粉末の含有量45質量%以上を確保して当該h-BN粉末含有量の一部に代えてアルミナ水和物粉末20質量%以下を含有した上記(1)の固体潤滑剤用粉末39質量%と界面活性剤4質量%と水57質量%とからなる水性ディスパージョン、
 (3)上記(1)の水性ディスパージョンに、更に水溶性有機溶剤を0.1~22.5質量%含有した水性ディスパージョン、
 (4)上記(2)の水性ディスパージョンに、更に水溶性有機溶剤を0.1~22.5質量%含有した水性ディスパージョンのいずれかが使用される。
 水性ディスパージョンは、図12に示す平面視平行四辺形状の膨張黒鉛シート21の一方の表面に又は図15に示す方形状の網目16を形成する相隣り合う縦線14と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群19a及び19dが幅方向Xに配列され、他方の対角線上に位置する他方の交点群19b及び19cが長手方向Yに配列された平織金網17の表面24と平織金網17の網目16に充填された膨張黒鉛の表面25とが露出した平面視平行四辺形状の外層形成部材27の一方の表面にローラ塗り、刷毛塗り、スプレー等の手段で適用される。この水性ディスパージョンの乾燥後には、膨張黒鉛シート21の一方の表面に又は平織金網17の表面24と平織金網17の網目16に充填された膨張黒鉛の表面25とが露出した平面視平行四辺形状の外層形成部材27の一方の表面に固体潤滑剤の被覆層28が形成される。乾燥後において、固体潤滑剤の被覆層28は、加熱炉において、245℃の融点Tに対して、(T)~(T+150℃)、好ましくは(T+5℃)~(T+135℃)、更に好ましくは(T+10℃)~(T+125℃)の範囲内の温度で10~30分間焼成されてもよく、この固体潤滑剤の被覆層の焼成により、膨張黒鉛シート21の一方の表面又は外層形成部材27の一方の表面に固体潤滑剤の焼成被覆層が形成される。
 次に、上記した構成材料からなる球帯状シール体の製造方法について、図面に基づき説明する。
 (第一工程)
 図4に示すように、線径0.15~0.32mmの金属細線を円筒状に編んで形成した網目の目幅が縦幅M=4~6mm、横幅N=3~5mm程度(図6参照)の円筒状の編組金網1をローラ2及び3間に通して所定の幅d1の帯状金網4を作製し、帯状金網4を所定の長さLに切断した球帯状基体用の補強材となる短冊状の金網5を準備する。
 (第二工程)
 図5に示すように、金網5の幅d1に対して(1.10×d1)mmから(2.10×d1)mmの幅d2を有すると共に金網5の長さLに対して(1.30×L)mmから(2.70×L)mmの長さlを有すると共に、密度が1.0~1.5Mg/m、好ましくは1.0~1.2Mg/mの短冊状の球帯状基体用の膨張黒鉛シート6(耐熱材I、耐熱材II及び耐熱材IIIのうちの一つからなる)を準備する。
 (第三工程)
 球帯状シール体44(図1及び図2参照)において、部分凸球面状面39の大径側の環状端面40に全体的に膨張黒鉛シート6の膨張黒鉛からなる耐熱材が露出するようにすべく、図7に示すように、部分凸球面状面39の大径側の環状端面40となる金網5の幅方向の一方の端縁7から最大で(0.10~0.80)×d1mmであって部分凸球面状面39の小径側の環状端面41(図1参照)となる金網5の幅方向の他方の端縁8からのはみ出し量δ2よりも多いはみ出し量δ1をもって膨張黒鉛シート6が幅方向にはみ出させ、球帯状基体用の膨張黒鉛シート6を金網5の長さ方向の一方の端縁9から最大で(0.30~1.70)×Lmmだけ長さ方向にはみ出させ、金網5の長さ方向の他方の端縁10と端縁10に対応する膨張黒鉛シート6の長さ方向の端縁11とを合致させて球帯状基体用の膨張黒鉛シート6と球帯状基体用の金網5とを互いに重ね合わせた重合体12を得る。
 (第四工程)
 図8に示すように、膨張黒鉛シート6を内側にしてうず巻き状であって膨張黒鉛シート6が1回多くなるように重合体12を捲回して、内周側及び外周側の両方に膨張黒鉛シート6が露出した筒状母材13を形成する。膨張黒鉛シート6としては、筒状母材13における膨張黒鉛シート6の巻き回数が金網5の巻き回数よりも多くなるように、金網5の長さLに対して(1.30×L)mmから(2.70×L)mmの長さlを有したものを予め準備する。筒状母材13において、図9に示すように、筒状母材13において、膨張黒鉛シート6は、幅方向の一方の端縁側において金網5の一方の端縁7から幅方向にδ1だけはみ出しており、膨張黒鉛シート6の幅方向の他方の端縁側において、金網5の他方の端縁8から幅方向にδ2だけはみ出している。
 (第五工程)
 複数本の縦線14及び横線15が格子状に織られていると共に相隣り合う縦線14同士と相隣り合う横線15同士とに囲まれた方形状の網目16が形成された図10に示す平織金網17を準備する。平織金網17を用いて、同じ方向に傾いた斜辺18からなる両端を有すると共に方形状の網目16を形成するように相隣り合う縦線14と相隣り合う横線15とが格子状に織られ、相隣り合う縦線14と相隣り合う横線15との交点群19a、19b、19c及び19dにおいて各網目16での交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群19a及び19dが幅方向Xに配列され、他方の交点群19b及び19cが長手方向Yに配列された両端間の長さ(l-L+Δ)を有する図11に示すような平面視平行四辺形状の外層用の平織金網17を準備する。
 (第六工程)
 同じ方向に傾いた斜辺20からなる両端を有すると共に平面視平行四辺形状の平織金網17と同形であって膨張黒鉛シート6と同様である図12に示すような外層用の耐熱材となる平面視平行四辺形状の膨張黒鉛シート21を準備する。
 (第七工程)
 水性ディスパージョンとして、
 (1)平均粒子径が0.01~1μmのPTFE粉末、平均粒子径が0.01~1μmのFEP粉末及び平均粒子径が0.1~20μmのh-BN粉末からなると共に図25に示す三元系組成図において四角形51で境界付けられる領域P内に相当する数値範囲内にある組成割合をもった固体潤滑剤用粉末39質量%と、界面活性剤4質量%と水57質量%とからなる水性ディスパージョン、
 (2)上記(1)の組成割合をもった固体潤滑剤用粉末において、h-BN粉末の含有量45質量%以上を確保して当該h-BN粉末含有量の一部に代えてアルミナ水和物粉末20質量%以下を含有した(1)の固体潤滑剤用粉末39質量%と界面活性剤4質量%と水57質量%とからなる水性ディスパージョン、
 (3)上記(1)の水性ディスパージョンに、更に水溶性有機溶剤を0.1~22.5質量%含有した水性ディスパージョン及び
 (4)上記(2)の水性ディスパージョンに、更に水溶性有機溶剤を0.1~22.5質量%含有した水性ディスパージョン、
のうちのいずれかを準備する。
 (第八工程)
 <第一の方法> 
 図13に示すように、膨張黒鉛シート21を、二枚の平織金網17間に、斜辺18及び20を夫々合致させて挟み込んだ後、図14に示すように、膨張黒鉛シート21及び二枚の平織金網17を一対のローラ22及び23で加圧して、図15に示すように、平織金網17の網目16に膨張黒鉛シート21の膨張黒鉛を充填した扁平状であって、相隣り合う縦線14と相隣り合う横線15とに囲まれた方形状の網目16を有すると共に縦線14と横線15との交点群19a、19b、19c及び19dにおいて各網目16での交点群19a、19b、19c及び19dの各交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群19a及び19dが幅方向Xに配列され、他方の対角線上に位置する他方の交点群19b及び19cが長手方向Yに配列された平織金網17の表面24と平織金網17の網目16に充填された膨張黒鉛シート21の表面25とが露出すると共に両端が同じ斜方向に傾いた斜辺26及び26を有した平面視平行四辺形状の外層形成部材27を形成する。
 <第二の方法>
 図16に示すように、平面視平行四辺形状に形成された四枚の外層用の膨張黒鉛シート21の夫々の一方の表面に、水性ディスパージョン(1)から(4)の夫々を刷毛塗り、ローラ塗り、スプレー等の手段で適用し、これを100℃の温度で乾燥させて固体潤滑剤の被覆層28を形成し、図17に示すように、固体潤滑剤の被覆層28を備えた外層用の膨張黒鉛シート21の夫々を、二枚の平織金網17間に、斜辺18及び20を夫々合致させて挟み込んだ後、図18に示すように、膨張黒鉛シート21及び二枚の平織金網17を一対のローラ22及び23で加圧して、図19に示すように、平織金網17の網目16に膨張黒鉛シート21の膨張黒鉛及び被覆層28の固体潤滑剤を充填した扁平状であって、相隣り合う縦線14と相隣り合う横線15とに囲まれた方形状の網目16を有すると共に縦線14と横線15との交点群19a、19b、19c及び19dにおいて各網目16での交点群19a、19b、19c及び19dの各交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群19a及び19dが幅方向Xに配列され、他方の対角線上に位置する他方の交点群19b及び19cが長手方向Yに配列された平織金網17の表面24と平織金網17の網目16に充填された固体潤滑剤の表面25aとが露出すると共に同じ斜方向に傾いた斜辺26及び26からなる両端を有した平面視平行四辺形状の外層形成部材27aを形成する。
 <第三の方法>
 第一の方法で得られた四枚の平面視平行四辺形状の外層形成部材27の夫々の一方の表面に、水性ディスパージョン(1)から(4)の夫々を刷毛塗り、ローラ塗り、スプレー等の手段で適用し、これを100℃の温度で乾燥させて固体潤滑剤の被覆層28を形成し、膨張黒鉛シート21の表面と平織金網17の表面とを覆って固体潤滑剤の被覆層28が露出した平面視平行四辺形状の外層形成部材(図示せず)を形成する。
 第一、第二及び第三の方法において、一対のローラ22及び23間の隙間Δ1は、0.4~0.6mm程度が適当である。
 (第九工程)
 このようにして得た外層形成部材27をその一方の表面を、外層形成部材27aを固体潤滑剤の表面25aと平織金網17の表面24とが露出した一方の表面を又は図示しない外層形成部材を固体潤滑剤の被覆層28の露出面を夫々、図20及び図21に示すように、外側にして筒状母材13の外周面に、その両端の斜辺26及び26間に円周方向の若干の隙間をもって捲回した予備円筒成形体29を形成する。
 (第十工程)
 内面に円筒壁面30と円筒壁面30に連なる部分凹球面状壁面31と部分凹球面状壁面31に連なる貫通孔32とを備え、貫通孔32に段付きコア33を嵌挿することによって内部に中空円筒部34と中空円筒部34に連なる球帯状中空部35とが形成された図22に示す金型36を準備し、金型36の段付きコア33に予備円筒成形体29を挿入する。
 金型36の中空円筒部34及び球帯状中空部35に配された予備円筒成形体29を軸方向Zに98~294N/mm(1~3トン/cm)の圧力で圧縮成形し、図1から図3並びに図23及び図24に示すような、中央部に円筒内面38により規定された貫通孔37を有すると共に円筒内面38と部分凸球面状面39と部分凸球面状面39の大径側及び小径側の環状端面40及び41とにより規定された球帯状基体42と、球帯状基体42の部分凸球面状面39に一体に形成された外層43とを備えた球帯状シール体44を作製する。
 この圧縮成形により、第一の方法での球帯状シール体44においては、図2及び図3に示すように、金網5と金網5の網目を充填し、かつ金網5と混在一体化されている膨張黒鉛シート6とを具備した球帯状基体42は、膨張黒鉛シート6と金網5とが互いに圧縮され、互いに絡み合って構造的一体性を有するように形成されており、外層43は、方形状の網目16を形成する相隣り合う縦線14と相隣り合う横線15との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する交点群19a及び19dが軸方向Zに配列されている一方、当該一対の対角線のうちの他方の対角線上に位置する交点群19b及び19cが円周方向Rに配列された平織金網17からなると共に圧縮された補強材と、この補強材の平織金網17の網目16に充填されていると共に当該補強材と共に圧縮されて当該補強材と混在一体化された膨張黒鉛を含む耐熱材とを具備しており、外層43の外表面45は、膨張黒鉛シート21を含む耐熱材の面46と、交点群19a及び19dが軸方向Zに、交点群19b及び19cが円周方向Rに夫々配列された平織金網17からなる補強材の面47とが混在して露出した平滑な面48となっており、交点群19a及び19d並びに19b及び19cでの面47は、外層43の外表面45の全体に対して、好ましくは、10~65%、より好ましくは、15~60%の面積割合をもって露出している。
 また、この圧縮成形により、第二の方法での球帯状シール体44においては、図23に示すように、金網5と金網5の網目を充填し、かつ金網5と混在一体化されている膨張黒鉛シート6とを具備した球帯状基体42は、膨張黒鉛シート6と金網5とが互いに圧縮され、互いに絡み合って構造的一体性を有するように形成されており、外層43は、方形状の網目16を形成する相隣り合う縦線14と相隣り合う横線15との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する交点群19a及び19dが軸方向Zに配列されている一方、当該一対の対角線のうちの他方の対角線上に位置する交点群19b及び19cが円周方向Rに配列された平織金網17からなると共に圧縮された補強材と、当該補強材の平織金網17の網目16に充填されていると共に当該補強材と共に圧縮されて当該補強材と混在一体化された膨張黒鉛及び固体潤滑剤とを具備しており、外層43の外表面45は、固体潤滑剤からなる面49と、交点群19a及び19dが軸方向Zに配列され、交点群19b及び19cが円周方向Rに配列された平織金網17からなる補強材の面47とが混在して露出した平滑な面50となっており、交点群19a及び19b並びに19b及び19cでの面47は、外層43の外表面45の全体に対して、好ましくは、10~65%、より好ましくは、15~60%の面積割合をもって露出している。
 更に、この圧縮成形により、第三の方法での球帯状シール体44においては、、図24に示すように、金網5と金網5の網目を充填し、かつ金網5と混在一体化されている膨張黒鉛シート6とを具備した球帯状基体42は、膨張黒鉛シート6と金網5とが互いに圧縮され、互いに絡み合って構造的一体性を有するように形成されており、外層43は、方形状の網目16を形成する相隣り合う縦線14と相隣り合う横線15との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する交点群19a及び19dが軸方向Zに配列されている一方、当該一対の対角線のうちの他方の対角線上に位置する交点群19b及び19cが円周方向Rに配列された平織金網17からなると共に圧縮された補強材と、当該補強材の平織金網17の網目16に充填されていると共に当該補強材と混在一体化された膨張黒鉛と、これら混在一体化された膨張黒鉛の面46及び平織金網17の面47を覆った固体潤滑剤とを具備しており、外層43の外表面45は、固体潤滑剤の面53が露出した平滑な面54となっいる。
 第四工程において、重合体12を、膨張黒鉛シート6を内側にしてうず巻き状に捲回する代わりに、帯状金網4からなる金網5を内側にしてうず巻き状に捲回して筒状母材13を形成すると、球帯状基体42の円筒内面38において金網5からなる補強材が露出する球帯状シール体44を作製することができる。
 球帯状シール体44が組込まれて使用された図29に示す排気管球面継手において、エンジン側に連結された上流側排気管100の外周面には、管端部101を残してフランジ200が立設されており、管端部101には、球帯状シール体44が貫通孔37を規定する円筒内面38において嵌合されており、大径側の環状端面40において球帯状シール体44がフランジ200に当接されて着座せしめられており、上流側排気管100と対峙して配されていると共にマフラ側に連結された下流側排気管300には、凹球面部302と凹球面部302に連接されたフランジ部303とを一体に備えた径拡大部301が固着されており、凹球面部302の内面304が球帯状シール体44の外層43の外表面45における平滑な面48、50又は54に摺接されている。
 図29に示す排気管球面継手において、一端がフランジ200に固定され、他端が径拡大部301のフランジ部303を挿通して配された一対のボルト400とボルト400の膨大頭部及びフランジ部303の間に配された一対のコイルばね500とにより、下流側排気管300には、常時、上流側排気管100方向にバネ力が付勢されている。そして、排気管球面継手は、上、下流側排気管100、300に生じる相対角変位に対しては、球帯状シール体44の外層43のすべり面としての平滑な面48、50又は54と下流側排気管300の端部に形成された径拡大部301の凹球面部302の内面304との摺接でこれを許容するようになっている。
 次に、本発明を実施例に基づき詳細に説明する。なお、本発明はこれら実施例に何等限定されない。
 実施例1
 金属細線として線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦4mm、横5mmの円筒状の編組金網を作製し、これを一対のローラ間に通して帯状金網とし、これを球帯状基体用の補強材となる金網とした。耐熱材として、密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シート(耐熱材I)を使用した。膨張黒鉛シートをうず巻き状に一周分捲回したのち、膨張黒鉛シートの内側に球帯状基体用の金網を重ね合わせ、うず巻き状に捲回して最外周に膨張黒鉛シートを位置させた筒状母材を作製した。この筒状母材においては、膨張黒鉛シートの幅方向の両端部はそれぞれ球帯状基体用の金網の幅方向に突出(はみ出し)している。
 上記と同様の線径0.28mmの金属細線を使用して目幅が縦1.5mm、横1.5mmの方形状の網目をもって織られた平織金網を用いて、両端が同じ方向に向いた斜辺を有すると共に、相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が幅方向に配列され、他方の対角線上に位置する他方の交点群が長手方向に配列された平面視平行四辺形状の図26に示す平織金網からなる外層用の補強材を作製した。
 前記膨張黒鉛シートと同様の膨張黒鉛シートを使用して外層用の補強材と同一の形状を有する平面視平行四辺形状の外層用の膨張黒鉛シートを作製した。
 斯かる外層用の膨張黒鉛シートを、二枚の外層用の平織金網間に、各辺を夫々合致させて挿入した後、当該外層用の膨張黒鉛シート及び二枚の平織金網を一対のローラで加圧して、平織金網の網目に膨張黒鉛を充填した扁平状であって、平織金網の表面と平織金網の網目に充填された膨張黒鉛の表面とが露出すると共に両端が同じ斜方向に向いた斜辺を有した平面視平行四辺形状の外層形成部材を形成した。
 筒状母材の外周面に外層形成部材を、表面に平織金網の面と膨張黒鉛の面とが混在して露出した面を外側にして筒状母材の外周面に、両端の斜辺間に円周方向に若干の隙間を保持して外層形成部材を捲回し、予備円筒成形体を作製した。
 予備円筒成形体を金型の段付きコアに挿入し、該予備円筒成形体を金型の中空部に配置した後、該予備円筒成形体を軸方向に294N/mm(3トン/cm)の圧力で圧縮成形し、円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、球帯状基体の部分凸球面状面に一体に形成された外層とを備えた球帯状シール体を得た。
 得られた球帯状シール体において、球帯状基体は、膨張黒鉛を含む耐熱材と金網からなる補強材とが互いに圧縮され、互いに絡み合って構造的一体性を有するように形成されており、外層は、外層用の膨張黒鉛と平織金網からなる補強材とが圧縮されて補強材の網目に、外層用の膨張黒鉛が充填されて当該補強材と耐熱材とが混在一体化されてなり、外層の外表面は、膨張黒鉛からなる耐熱材の面と、方形状の網目を形成する相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列され、他方の対角線上に位置する他方の交点群が円周方向に配列された平織金網からなる補強材の面とが混在して露出した平滑な面となっており、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して41%の面積割合をもって当該外表面で露出していた。
 実施例2
 実施例1と同様の金属細線を使用して織られた目幅が縦2.0mm、横2.0mmの方形状の網目をもった平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、平織金網の面が当該外表面の全体に対して34%の面積割合をもって露出していた。
 実施例3
 外層用の耐熱材として、密度0.5Mg/m、厚さ1.00mmの膨張黒鉛シート(耐熱材I)を使用して実施例1と同様の外層用の補強材と同一な形状を有する平面視平行四辺形状の外層用の膨張黒鉛シートを作製し、斯かる外層用の膨張黒鉛シートと実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、平織金網の面が当該外表面の全体に対して32%の面積割合をもって当該外表面で露出していた。
 実施例4
 実施例1と同様の金属細線を使用して織られた目幅が縦2.5mm、横2.5mmの方形状の網目をもった平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる実施例1と同様の外層用の補強材と、実施例3と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して27%の面積割合をもって当該外表面で露出していた。
 実施例5
 実施例1と同様の金属細線を使用して織られた目幅が縦3.0mm、横3.0mmの方形状の網目をもった平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる実施例1と同様の外層用の補強材と実施例1と同様の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して25%の面積割合をもって当該外表面で露出していた。
 実施例6
 金属細線として線径0.32mmの実施例1と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦1.5mm、横1.5mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して45%の面積割合をもって当該外表面で露出していた。
 実施例7
 実施例6と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦2.0mm、横2.0mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の平面視平行四辺形状の補強材を作製し、斯かる外層用の補強材と実施例1と同様の平面視平行四辺形状の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して39%の面積割合をもって当該外表面で露出していた。
 実施例8
 実施例6と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦2.5mm、横2.5mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して31%の面積割合をもって当該外表面で露出していた。
 実施例9
 実施例6と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦3.0mm、横3.0mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して25%の面積割合をもって当該外表面で露出していた。
 実施例10
 金属細線として線径0.15mmの実施例1と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦1.5mm、横1.5mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して25%の面積割合をもって当該外表面で露出していた。
 実施例11
 実施例10と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦2.0mm、横2.0mmの方形状の網目をもって織られた平織金網を用いて作製された実施例1と同様の外層用の補強材と実施例1と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して21%の面積割合をもって当該外表面で露出していた。
 実施例12
 実施例10と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦2.5mm、横2.5mmの方形状の網目をもって織られた平織金網を用いて形成された実施例1と同様の外層用の補強材と実施例1と同様の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して18%の面積割合をもって当該外表面で露出していた。
 実施例13
 実施例10と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦3.0mm、横3.0mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して15%の面積割合をもって当該外表面で露出していた。
 実施例14
 金属細線として線径0.42mmの実施例1と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦2.0mm、横2.0mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して45%の面積割合をもって当該外表面で露出していた。
 実施例15
 金属細線として線径0.50mmの実施例1と同様のオーステナイト系ステンレス鋼線を使用して目幅が縦1.5mm、横1.5mmの方形状の網目をもって織られた平織金網を用いて、実施例1と同様の外層用の補強材を作製し、斯かる外層用の補強材と実施例1と同様の外層用の膨張黒鉛シートとから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例1と同様の方法で実施例1と同様の球帯状シール体を得た。得られた球帯状シール体において、外層の外表面には、外層用の平織金網からなる補強材の面が当該外表面の全体に対して60%の面積割合をもって当該外表面で露出していた。
 以上の実施例2から15では、外層は、外層用の膨張黒鉛と平織金網からなる補強材とが圧縮されて補強材の網目に外層用の膨張黒鉛が充填されて当該補強材と耐熱材とが混在一体化されてなり、外層の外表面は、膨張黒鉛からなる耐熱材の面と、方形状の網目の相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列され、他方の対角線上に位置する他方の交点群が円周方向に配列された外層用の平織金網からなる補強材の面とが混在して露出した平滑な面となっている。
 実施例16
 平均粒径0.20μmのPTFE粉末25質量%、平均粒径0.15μmのFEP粉末15質量%及び平均粒径8μmのh-BN粉末60質量%を含有する潤滑組成物粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE9.75質量%、FEP5.85質量%及びh-BN23.4質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例1と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、100℃の温度で乾燥してPTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE25質量%、FEP15質量%及びh-BN60質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例2と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、この外層形成部材を、平織金網の面と固体潤滑剤の面とが混在して露出した面を外側にして筒状母材の外周面に実施例1と同様に捲回して予備円筒成形体を作製し、以下、実施例1と同様の方法で球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網からなる補強材とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE25質量%、FEP15質量%及びh-BN60質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、外層用の平織金網からなる補強材の面が外層の外表面の全体に対して36%の面積割合をもって当該外表面で露出していた。
 実施例17
 平均粒径0.20μmのPTFE粉末12質量%、平均粒径0.15μmのFEP粉末28質量%及び平均粒径8μmのh-BN粉末60質量%を含有する固体潤滑剤用粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE4.68質量%、FEP10.92質量%及びh-BN23.4質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例3と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、実施例16と同様にして、PTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE12質量%、FEP28質量%及びh-BN60質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例2と同様の方形状の網目をもった平織金網を用いて作製された外層用の平面視平行四辺形状の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例16と同様にして球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE12質量%、FEP28質量%及びh-BN60質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、外層用の平織金網からなる補強材の面が外層の外表面の全体に対して32%の面積割合をもって当該外層の外表面で露出していた。
 実施例18
 平均粒径0.20μmのPTFE粉末10質量%、平均粒径0.15μmのFEP粉末40質量%及び平均粒径8μmのh-BN粉末50質量%を含有する固体潤滑剤用粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE3.9質量%、FEP15.6質量%及びh-BN19.5質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例4と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、実施例16と同様にして、PTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE10質量%、FEP40質量%及びh-BN50質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例4と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例16と同様にして球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE10質量%、FEP40質量%及びh-BN50質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、外層用の平織金網からなる補強材の面が外層の外表面の全体に対して25%の面積割合をもって当該外層の外表面で露出していた。
 実施例19
 平均粒径0.20μmのPTFE粉末20質量%、平均粒径0.15μmのFEP粉末40質量%及び平均粒径8μmのh-BN粉末40質量%を含有する固体潤滑剤用粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE7.8質量%、FEP15.6質量%及びh-BN15.6質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例1と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、実施例16と同様にして、PTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE20質量%、FEP40質量%及びh-BN40質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例7と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例16と同様にして球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE20質量%、FEP40質量%及びh-BN40質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、外層用の平織金網からなる補強材の面が外層の外表面の全体に対して42%の面積割合をもって当該外層の外表面で露出していた。
 実施例20
 平均粒径0.20μmのPTFE粉末38質量%、平均粒径0.15μmのFEP粉末22質量%及び平均粒径8μmのh-BN粉末40質量%を含有する固体潤滑剤用粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE14.82質量%、FEP8.58質量%及びh-BN15.6質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例1と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、実施例16と同様にしてPTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE38質量%、FEP22質量%及びh-BN40質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例11と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例16と同様にして球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE38質量%、FEP22質量%及びh-BN40質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、外層用の平織金網からなる補強材の面が外層の外表面の全体に対して22%の面積割合をもって当該外層の外表面で露出していた。
 実施例21
 平均粒径0.20μmのPTFE粉末35質量%、平均粒径0.15μmのFEP粉末15質量%及び平均粒径8μmのh-BN粉末50質量%を含有する固体潤滑剤用粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE13.65質量%、FEP5.85質量%及びh-BN19.5質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例1と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、実施例16と同様にしてPTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE35質量%、FEP15質量%及びh-BN50質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例2と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例16と同様にして球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE35質量%、FEP15質量%及びh-BN50質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、該一方の交点群が軸方向に配列され、他方の交点群が円周方向に配列された外層用の平織金網からなる補強材の面が外層の外表面の全体に対して32%の面積割合をもって当該外層の外表面で露出していた。
 実施例22
 平均粒径0.20μmのPTFE粉末23質量%、平均粒径0.15μmのFEP粉末23質量%、平均粒径8μmのh-BN粉末47質量%及びアルミナ水和物としてベーマイト(Al・HO)粉末7質量%を含有する固体潤滑剤用粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE8.97質量%、FEP8.97質量%、h-BN18.33質量%、ベーマイト2.73質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例1と同様の膨張黒鉛シートを使用して実施例1と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、実施例16と同様にしてPTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE23質量%、FEP23質量%、h-BN47質量%及びベーマト7質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例2と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例16と同様にして球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE23質量%、FEP23質量%、h-BN47質量%及びベーマト7質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、外層用の平織金網からなる補強材の面が外層の外表面の全体に対して35%の面積割合をもって当該外層の外表面で露出していた。
 実施例23
 平均粒径0.20μmのPTFE粉末22質量%、平均粒径0.15μmのFEP粉末22質量%、平均粒径8μmのh-BN粉末53質量%及びアルミナ水和物としてベーマイト粉末3質量%を含有する固体潤滑剤用粉末39質量%と界面活性剤としてポリオキシエチレンアルキルエーテル(非イオン性界面活性剤)4質量%と水57質量%とからなる水性ディスパージョン(PTFE8.58質量%、FEP8.58質量%、h-BN20.67質量%、ベーマイト1.17質量%、非イオン性界面活性剤4質量%、水57質量%)を実施例1と同様の外層用の膨張黒鉛シートの一方の表面にローラ塗りし、実施例16と同様にしてPTFE、FEP及びh-BNの潤滑組成物からなる固体潤滑剤(PTFE22質量%、FEP22質量%、h-BN53質量%及びベーマイト3質量%)の被覆層を形成し、斯かる被覆層を備えた外層用の膨張黒鉛シートと実施例2と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の外層用の補強材とから実施例1と同様にして平面視平行四辺形状の外層形成部材を形成し、以下、実施例16と同様にして球帯状シール体を得た。得られた球帯状シール体において、外層は、外層用の膨張黒鉛と平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE22質量%、FEP22質量%、h-BN53質量%及びベーマイト3質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面には、外層用の平織金網からなる補強材の面が外層の外表面の全体に対して34%の面積割合をもって当該外層の外表面で露出していた。
 実施例24
 実施例2と同様の方形状の網目をもった平織金網を用いて実施例1と同様の外層用の補強材と実施例1と同様の膨張黒鉛シートを使用して実施例1と同様の平面視平行四辺形状の外層用の膨張黒鉛シートとを作製し、これら外層用の平織金網と外層用の膨張黒鉛シートとを用いて実施例1と同様にして平面視平行四辺形状の外層形成部材素材を形成した。この外層形成部材素材の表面において、平織金網からなる補強材の面が24%の面積割合で当該外層形成部材の表面で露出していた。実施例16と同様の水性ディスパージョン(PTFE9.75質量%、FEP5.85質量%及びh-BN23.4質量%、非イオン性界面活性剤4質量%、水57質量%)を作製し、平織金網からなる補強材の面が24%の面積割合で露出した外層形成部材素材の一方の表面にこの水性ディスパージョンがローラ塗りされた平面視平行四辺形状の外層形成部材素材を100℃の温度で乾燥して、PTFE、FEP及びh-BNの固体潤滑剤(PTFE25質量%、FEP15質量%及びh-BN60質量%)の被覆層を備えた平面視平行四辺形状の外層形成部材を形成し、斯かる固体潤滑剤の被覆層を備えた外層形成部材を、当該固体潤滑剤の被覆層を外側にして、筒状母材の外周面に実施例1と同様に捲回して予備円筒成形体を作製し、以下、実施例1と同様の方法で球帯状シール体を得た。得られた球帯状シール体において、外層は、方形状の網目を形成する相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列され、他方の一方の対角線上に位置する他方の交点群が円周方向に配列された平織金網からなると共に圧縮された補強材と、この補強材の平織金網の網目に充填されていると共に圧縮されて補強材と混在一体化された膨張黒鉛を含む耐熱材と、これら補強材及び耐熱材を覆った固体潤滑剤とを備えており、外層の外表面は、固体潤滑剤の面が露出した平滑な面となっている。
 実施例25
 実施例16と同様の水性ディスパージョン(PTFE9.75質量%、FEP5.85質量%及びh-BN23.4質量%、非イオン性界面活性剤4質量%、水57質量%)を作製し、この水性ディスパージョンを、実施例1と同様の膨張黒鉛シートを使用して作製された実施例2と同様の平面視平行四辺形状の外層用の膨張黒鉛シートからなる耐熱材の一方の表面にローラ塗りして形成した固体潤滑剤の被覆層を100℃の温度で乾燥した後、加熱炉において340℃の温度で20分間焼成し、該外層用の耐熱材の一方の表面にPTFE25質量%、FEP15質量%及びh-BN60質量%を含む固体潤滑剤の焼成被覆層を形成した外層用の膨張黒鉛シートを作製し、斯かる固体潤滑剤の焼成被覆層を備えた膨張黒鉛シートを、実施例2と同様の方形状の網目をもって織られた平織金網を用いて作製された実施例1と同様の外層用の二枚の平面視平行四辺形状の平織金網間に、各辺をそれぞれ合致させて挟み込んだ後、当該膨張黒鉛シート及び二枚の平織金網を一対のローラで加圧して、平織金網の網目に膨張黒鉛及び焼成固体潤滑剤を充填した扁平状であって、平織金網の面と平織金網の網目に充填された焼成固体潤滑剤の面とが露出した平面視平行四辺形状の外層形成部材を形成し、斯かる外層形成部材を、平織金網の面と焼成固体潤滑剤の面とが露出した面を外側にして筒状母材の外周面に実施例1と同様に捲回して予備円筒成形体を作製し、以下、実施例1と同様の方法で球帯状シール体を得た。得られた球帯状シール体において、外層は、膨張黒鉛と、平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE25質量%、FEP15質量%及びh-BN60質量%を含む焼成固体潤滑剤が充填されて当該膨張黒鉛と焼成固体潤滑剤とが混在一体化されてなり、外層の外表面には、平織金網からなる補強材の面が外層の外表面の全体に対して32%の面積割合をもって露出していた。
 実施例26
 実施例23と同様の水性ディスパージョン(PTFE8.58質量%、FEP8.58質量%、h-BN20.67質量%、ベーマイト1.17質量%、非イオン性界面活性剤4質量%、水57質量%)が一方の表面にローラ塗りされていると共に実施例1と同様の膨張黒鉛シートを使用して作製された実施例1と同様の平面視平行四辺形状の外層用の膨張黒鉛シートを100℃の温度で乾燥した後、加熱炉において340℃の温度で20分間焼成し、一方の表面にPTFE22質量%、FEP22質量%、h-BN53質量%及びベーマイト3質量%を含む固体潤滑剤の焼成被覆層を備えた外層用の膨張黒鉛シートを形成し、斯かる外層用の膨張黒鉛シートを、実施例2と同様の方形状の網目をもった平織金網を用いて作製された実施例1と同様の二枚の外層用の平面視平行四辺形状の平織金網間に、各辺をそれぞれ合致させて挟み込んだ後、当該外層用の膨張黒鉛シート及び二枚の平織金網を一対のローラで加圧して、平織金網の網目に膨張黒鉛及び焼成固体潤滑剤を充填した扁平状であって、平織金網の面と平織金網の網目に充填された焼成固体潤滑剤の面とが露出した平面視平行四辺形状の外層形成部材を形成し、この外層形成部材を、平織金網からなる補強材の面と焼成固体潤滑剤からなる面とが混在して露出した面を外側にして筒状母材の外周面に、その両端の斜辺間に円周方向の若干の隙間をもって捲回した予備円筒成形体を作製し、以下、実施例1と同様の方法で球帯状シール体を得た。得られた球帯状シール体において、外層は、膨張黒鉛と、平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE22質量%、FEP22質量%、h-BN53質量%及びベーマイト3質量%を含む焼成固体潤滑剤が充填されて当該膨張黒鉛と焼成固体潤滑剤とが混在一体化されてなり、外層の外表面には、平織金網からなる補強材の面が外層の外表面の全体に対して31%の面積割合をもって露出していた。
 以上の実施例16から23の夫々では、得られた球帯状シール体において、外層の外表面は、固体潤滑剤からなる面と、方形状の網目を形成する相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列され、他方の対角線上に位置する他方の交点群が円周方向に配列された外層用の平織金網からなる補強材の面とが混在して露出した平滑な面となっており、実施例25及び26の夫々では、得られた球帯状シール体において、外層の外表面は、焼成固体潤滑剤からなる面と、方形状の網目を形成する相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列され、他方の対角線上に位置する他方の交点群が円周方向に配列された平織金網からなる補強材の面とが混在して露出した平滑な面となっている。
 比較例1
 実施例1と同様の膨張黒鉛シートからなる耐熱材を別途準備し、該耐熱材の一方の表面にh-BN粉末85質量%とアルミナ粉末15質量%とからなる固体潤滑剤を固形分として30重量%分散含有した水性ディスパージョン(h-BN25.5質量%、アルミナ4.5質量%、水分70質量%)をローラ塗りし、100℃の温度で乾燥させるという被覆操作を3回繰返し、該耐熱材の一方の表面に固体潤滑剤の被覆層(h-BN85質量%及びアルミナ15質量%)を形成した。
 線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を使用して網目の目幅が縦3.5mm、横2.5mmの円筒状の編組金網を形成したのち、これをローラ間に通して作製した帯状金網を準備し、該帯状金網内に前記被覆層を備えた耐熱材を挿入すると共にこれらをローラ間に通して一体化し、一方の面に固体潤滑剤と金網とが混在した複合シート材を作製した。この複合シート材において、補強材の表面が複合シート材の一方の表面の耐熱材の面と共に露出する面積割合は43.4%であった。
 筒状母材の外周面に、この複合シート材を固体潤滑剤の被覆層と金網とが混在した面を外側にして捲回した予備円筒成形体を作製し、この予備円筒成形体を前記実施例1と同様の方法で圧縮成形し、円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を得た。
 得られた球帯状シール体において、外層は、膨張黒鉛と、編組金網とが圧縮されて編組金網の網目に、膨張黒鉛及びPTFE60質量%、h-BN34質量%及びアルミナ6質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面は、金網からなる補強材と被覆層の固体潤滑剤とが混在したすべり層の平滑な面からなっていると共に、外層の外表面には、金網からなる補強材が外層の外表面の全体に対して47.7%の面積割合をもって露出していた。
 比較例2
 実施例1と同様の膨張黒鉛シートからなる耐熱材を別途準備し、該耐熱材の一方の表面にh-BN粉末85質量%とアルミナ粉末15質量%とからなる固体潤滑剤を100質量部とし、これにPTFE粉末を150質量部を分散含有した固体潤滑剤(h-BN34質量%、PTFE60質量%及びアルミナ6質量%)を固形分として30重量%分散含有した水性ディスパージョン(h-BN10.2質量%、PTFE18質量%、アルミナ1.8質量%、水分70質量%)をローラ塗りし、100℃の温度で乾燥させるという被覆操作を3回繰返し、該耐熱シート材の一方の表面に固体潤滑剤の被覆層(h-BN34質量%、PTFE60質量%及びアルミナ6質量%)を形成した。
 実施例1と同様の線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を使用して網目の目幅が縦3.5mm、横2.5mmの円筒状の編組金網を形成したのち、これをローラ間に通して作製した帯状金網を準備し、該帯状金網内に前記被覆層を備えた耐熱材を挿入すると共にこれらをローラ間に通して一体化し、一方の面に固体潤滑剤と金網とが混在した複合シート材を作製した。この複合シート材において、補強材の表面が複合シート材の一方の表面の耐熱材の表面と共に露出する面積割合は43.2%であった。
 筒状母材の外周面に、この複合シート材を固体潤滑剤の被覆層と金網とが混在した面を外側にして巻き付けて予備円筒成形体を作製し、この予備円筒成形体を実施例1と同様の方法で圧縮成形し、円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を得た。
 得られた球帯状シール体において、圧縮された金網からなる球帯状用の補強材と、この補強材の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる球帯状基体用の耐熱材とを有しており、外層の表面は、補強材と固体潤滑剤とが混在したすべり層の平滑な面からなっていると共に外層の外表面には、金網からなる補強材が外層の表面の全体に対して51.8%の面積割合をもって露出していた。
 比較例1及び比較例2における複合シート材の補強材には、図27に示すようにして編組金網が使用された。
 比較例3
 実施例1と同様の膨張黒鉛シートからなる耐熱材を別途準備し、該耐熱材の一方の表面に比較例2と同様の固体潤滑剤の被覆層(h-BN34質量%、PTFE60質量%及びアルミナ6質量%)を形成した。
 実施例1と同様の金属細線を使用して織られた目幅が縦2.0mm、横2.0mmの方形状の網目を形成する平織金網を、図28に示すように、縦線が幅方向に、横線が長手方向にそれぞれ平行になるように用いて、長方形状の外層用の補強材を作製した。
 実施例1と同様の膨張黒鉛シートからなる耐熱材を使用して長方形状の外層用の耐熱材を作製した。
 斯かる膨張黒鉛シートの一方の表面に、比較例2と同様の固体潤滑剤からなる水性ディスパージョンを被覆し、h-BN34質量%、PTFE60質量%及びアルミナ6質量%を含む固体潤滑剤の被覆層を備えた膨張黒鉛シートを作成した。この固体潤滑剤の被覆層を備えた膨張黒鉛シートを、二枚の平織金網からなる補強材間に各辺を合致させて挿入した後、該膨張黒鉛シート及び二枚の平織金網からなる補強材を一対のローラで加圧して、平織金網の網目に膨張黒鉛及び固体潤滑剤を充填した扁平状であって、方形状の網目が幅方向及び長手方向に平行に配置された長方形状の外層形成部材を作製した。外層形成部材中において平織金網からなる補強材の表面が露出する面積割合は25%であった。
 前記外層形成部材を、平織金網からなる補強材の面と固体潤滑剤からなる面とが混在して露出した面を外側にして前記筒状部材の外周面に捲回して予備円筒成形体を作製した。
 以下、実施例1と同様の方法で、円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を得た。
 得られた球帯状シール体において、外層は、膨張黒鉛と、平織金網とが圧縮されて平織金網の網目に、膨張黒鉛及びPTFE60質量%、h-BN34質量%及びアルミナ6質量%を含む固体潤滑剤が充填されて当該膨張黒鉛と固体潤滑剤とが混在一体化されてなり、外層の外表面は、固体潤滑剤からなる表面と、網目を形成する縦線群が幅方向に、同じく網目を形成する横線群が円周方向に夫々配列された平織金網からなる補強材の表面とが混在して露出した平滑な面となっており、外層の外表面には、縦線群が幅方向に、横線群が円周方向に夫々配列された平織金網からなる補強材の表面が35%の面積割合をもって露出していた。
 以上の実施例2から実施例26及び比較例1から比較例3においては、筒状母材には、実施例1と同様にして作製された実施例1と同様の筒状母材が用いられており、得られた各球帯状シール体において、球帯状基体は、実施例1と同様に、膨張黒鉛と金網とが互いに圧縮され、互いに絡み合って構造的一体性を有するように形成されていた。
 次に、上記した実施例1から実施例26及び比較例1から比較例3で得た球帯状シール体を図29に示す排気管継手に組込み、揺動試験により相手材の表面の表面粗さの変化、摩擦異音発生の有無及びガス漏れ量(l/min)について試験した。
 <揺動試験の試験条件>
 温度(図29に示す径拡大部301の表面の温度) 300℃ 
 振幅(揺動角) ±2° 
 加振周波数 25Hz
 加振時間 42Hr
 コイルバネによるセット荷重 650N
 加振回数 374万回
 相手材材質(図29に示す径拡大部301の材質) SUS304
 <摩擦異音の有無の試験条件>
 温度(図29に示す径拡大部301の表面の温度) 室温(RT=25℃)~500℃ 
 加振周波数 25Hz
 摺動距離(振幅) ±0.05~±2.05mm
 加振時間 40分間(1サイクル)
 コイルバネによるセット荷重 650N
 <試験方法>
 図29に示す排気管継手の上流側排気管100を固定すると共に上流側排気管100に高温ガスを流通して相手材(図29に示す径拡大部301)の表面温度を300℃まで昇温し、相手材の表面温度が300℃に到達した時点で、下流側排気管300を25Hzの加振周波数で±2°の振幅で揺動運動を42時間(加振回数374回)行った後、一旦温度を室温まで降下させる(揺動試験)。引き続き、10分間で相手材の表面温度を500℃に昇温し、相手材の表面温度が500℃に到達した時点で、周波数25Hz、振幅±0.05mmの条件で10分間加振する。次いで、相手材の表面温度を500℃から室温まで降下させながら振幅を±0.05mmから±2.05mmの範囲で変化させ、当該振幅での摩擦異音の有無の測定を行った(摩擦異音の有無の試験)。
 <ガス漏れ量の試験条件>
 コイルバネによる押圧力(スプリングセットフォース):650N
 揺動角度:±2° 
 加振周波数(揺動速度):5Hz
 温度(図29に示す径拡大部301):室温(RT=25℃)~500℃ 
 揺動回数:100万回
 相手材(図29に示す径拡大部301の材質):SUS304
 <試験方法>
 前記揺動試験の試験条件により揺動試験を行った後、室温において5Hzの加振周波数で±2°の揺動運動を継続しながら相手材表面の温度を500℃まで昇温し、その温度を保持した状態で揺動運動を継続し、(1)試験開始前、(2)揺動回数25万回後、(3)揺動回数50万回後及び(4)揺動回数100万回に到達した時点でのガス漏れ量について測定した。
 <ガス漏れ量の測定方法>
 図29に示す排気管継手の上流側排気管100の開口部を閉塞し、下流側排気管200側から、49kPa(0.5kgf/cm2)の圧力で乾燥空気を流入し、継手部分(球帯状シール体44の外層の外表面45と凹球面部302の内面304との摺接部、球帯状シール体44の円筒内面38と上流側排気管100の管端部101との嵌合部及び環状端面40と上流側排気管100に立設されたフランジ部200との当接部)からのガス漏れ量を流量計にて、(1)試験開始前、(2)揺動回数25万回到達時、(3)揺動回数50万回到達時及び(4)揺動回数100万回到達時のガス漏れ量を測定した。
 表1から表6は上記試験結果を示し、表7から表12は、実施例7、実施例4、実施例7、実施例8、実施例16、実施例23及び比較例3についての摩擦異音の試験経過及び試験結果を示す。なお、摩擦異音の判定レベルは、次の基準で行った。
 <摩擦異音の判定レベル>
 記号:0   摩擦異音の発生なし。
 記号:0.5 集音パイプで摩擦異音の発生を確認できる。
 記号:1   排気管球面継手の摺動部位から約0.2m離れた位置で摩擦異音の発生を確認できる。
 記号:1.5 排気管球面継手の摺動部位から約0.5m離れた位置で摩擦異音の発生を確認できる。
 記号:2   排気管球面継手の摺動部位から約1m離れた位置で摩擦異音の発生を確認できる。
 記号:2.5 排気管球面継手の摺動部位から約2m離れた位置で摩擦異音の発生を確認できる。
 記号:3   排気管球面継手の摺動部位から約3m離れた位置で摩擦異音の発生を確認できる。
 記号:3.5 排気管球面継手の摺動部位から約5m離れた位置で摩擦異音の発生を確認できる。
 記号:4   排気管球面継手の摺動部位から約10m離れた位置で摩擦異音の発生を確認できる。
 記号:4.5 排気管球面継手の摺動部位から約15m離れた位置で摩擦異音の発生を確認できる。
 記号:5   排気管球面継手の摺動部位から約20m離れた位置で摩擦異音の発生を確認できる。
 以上の判定レベルの総合判定において、記号:0から記号:2.5までを摩擦異音の発生なし(合格)と判定し、記号:3から記号:5までを摩擦異音の発生あり(不合格)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1ないし表12に示す試験結果から、実施例1ないし実施例26からなる球帯状シール体は、相手材表面の粗面化、摩擦異音の発生の評価及びガス漏れ量において、比較例1ないし比較例3からなる球帯状シール体よりも優れていることが分かる。そして、比較例3からなる球帯状シール体の外層の外表面には、実施例1ないし実施例26からなる球帯状シール体と同様の平織金網が露出しているにも係わらず、相手材表面の粗面化が増大したのは、平織金網の方形状の網目を形成する相隣り合う縦線群が軸方向に沿って配置され、相隣り合う横線群が円周方向に沿って配置されており、相手材表面とはこれら平織金網の縦線群及び横線群と摺動方向に常時直接的に接触して摺動することによるものと推察される。
 以上説明したように、本発明の球帯状シール体によれば、交点群での大きな瘤のような塊をなくし得て、相手材との摺動摩擦において、当該網目の交点群と相手材表面との間のアブレッシブ摩耗の誘発を極力減少させることができ、相手材表面の損傷に起因する粗面化を減少させてシール性の低下を極力防止することができる。
 また、外層の外表面に露出した平織金網からなる補強材が摩耗した場合においても、その下層に位置する平織金網からなる補強材との摩擦摺動に移行し、相手材とは常時、膨張黒鉛を含む耐熱材の表面と平織金網からなる補強材の表面とが混在して露出した面で摺動して、相手材と膨張黒鉛を含む耐熱材のみとの摺動は回避されるので、摩擦異音の発生を極力防止することができる。
 本発明の球帯状シール体の製造方法の例においては、筒状母材の外周面に長手方向の端面の斜辺間に隙間をもって外層形成部材を捲回して予備円筒成形体を作成し、圧縮成形時に外層形成部材を円周方向に伸長させつつ圧縮するので、外層形成部材の両端部間の隙間を消失させることができる上に当該外層形成部材の端部を球帯状基体の少なくとも部分凸球面状面に圧着することができ、而して、外層形成部材が該端部を起点として球帯状基体から剥離されることを防ぎ得る。
 1 編組金網
 4 帯状金網
 5 金網
 6 膨張黒鉛シート
 12 重合体
 14 縦線
 15 横線
 16 網目
 17 平織金網
 18 斜辺
 19a、19b、19c、19d 交点
 21 膨張黒鉛シート
 27、27a 外層形成部材
 28 被覆層
 29 予備円筒成形体
 36 金型
 38 円筒内面
 39 部分凸球面状面
 40、41 環状端面
 42 球帯状基体
 44 球帯状シール体

Claims (14)

  1.  排気管継手に用いられる球帯状シール体であって、円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面によって規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えており、球帯状基体は、金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されている耐熱材とを具備しており、外層は、方形状の網目を形成する相隣り合う縦線と相隣り合う横線との交点を結ぶ一対の対角線のうちの一方の対角線上に位置する一方の交点群が軸方向に配列されている一方、当該一対の対角線のうちの他方の対角線上に位置する他方の交点群が円周方向に配列された平織金網からなると共に圧縮された補強材を少なくとも具備している球帯状シール体。
  2.  外層は、補強材の平織金網の網目に充填されていると共に当該補強材と混在一体化された耐熱材を具備しており、外層の外表面は、耐熱材の面と、補強材の面とが混在して露出した平滑な面となっている請求項1に記載の球帯状シール体。
  3.  外層は、補強材の平織金網の網目に充填されていると共に当該補強材と混在一体化された耐熱材及び固体潤滑剤を具備しており、外層の外表面は、固体潤滑剤の面と、補強材の面とが混在して露出した平滑な面となっている請求項1に記載の球帯状シール体。
  4.  平織金網からなる補強材の面は、外層の外表面の全体に対して10~65%の面積割合をもって外層の外表面で露出している請求項1から3のいずれか一項に記載の球帯状シール体。
  5.  外層は、補強材の平織金網の網目に充填されていると共に当該補強材と混在一体化された耐熱材と、これら耐熱材及び補強材を覆った固体潤滑剤とを具備しており、外層の外表面は、固体潤滑剤の面が露出した平滑な面となっている請求項1に記載の球帯状シール体。
  6.  固体潤滑剤は、四フッ化エチレン樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体及び六方晶窒化硼素を含む請求項3又は5に記載の球帯状シール体。
  7.  四フッ化エチレン樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体及び六方晶窒化硼素の固体潤滑剤での組成割合は、四フッ化エチレン樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体及び六方晶窒化硼素の三元系組成図において、四フッ化エチレン樹脂10質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体10質量%及び六方晶窒化硼素80質量%とする組成点、四フッ化エチレン樹脂10質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体45質量%及び六方晶窒化硼素45質量%とする組成点、四フッ化エチレン樹脂45質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体45質量%及び六方晶窒化硼素10質量%とする組成点並びに四フッ化エチレン樹脂40質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体10質量%及び六方晶窒化硼素50質量%とする組成点を頂点とする四角形で境界付けられる領域内に相当する数値範囲内にある請求項6に記載の球帯状シール体。
  8.  四フッ化エチレン樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体及び六方晶窒化硼素の固体潤滑剤での組成割合は、四フッ化エチレン樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体及び六方晶窒化硼素の三元系組成図において、四フッ化エチレン樹脂25質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体15質量%及び六方晶窒化硼素60質量%とする組成点、四フッ化エチレン樹脂12質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体28質量%及び六方晶窒化硼素60質量%とする組成点、四フッ化エチレン樹脂10質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体40質量%及び六方晶窒化硼素50質量%とする組成点、四フッ化エチレン樹脂20質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体40質量%及び六方晶窒化硼素40質量%とする組成点、四フッ化エチレン樹脂38質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体22質量%及び六方晶窒化硼素40質量%とする組成点並びに四フッ化エチレン樹脂35質量%、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体15質量%及び六方晶窒化硼素50質量%とする組成点を頂点とする六角形で境界付けられる領域内に相当する数値範囲内にある請求項6又は7に記載の球帯状シール体。
  9.  固体潤滑剤は、アルミナ水和物を20質量%以下の割合で更に含有する請求項7又は8に記載の球帯状シール体。
  10.  固体潤滑剤は、未焼成である請求項3及び5から9のいずれか一項に記載の球帯状シール体。
  11.  固体潤滑剤は、焼成されている請求項3及び5から9のいずれか一項に記載の球帯状シール体。
  12.  耐熱材は、圧縮された膨張黒鉛を含んでいる請求項1から11のいずれか一項に記載の球帯状シール体。
  13.  耐熱材は、燐酸塩を0.1~16質量%の割合で含有する請求項1から12のいずれか一項に記載の球帯状シール体。
  14.  耐熱材は、五酸化燐を0.05~5質量%の割合で含有する請求項1から13のいずれか一項に記載の球帯状シール体。
     
PCT/JP2014/004765 2013-09-27 2014-09-17 球帯状シール体 WO2015045327A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-202800 2013-09-27
JP2013202800A JP6314398B2 (ja) 2013-09-27 2013-09-27 球帯状シール体

Publications (1)

Publication Number Publication Date
WO2015045327A1 true WO2015045327A1 (ja) 2015-04-02

Family

ID=52742500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004765 WO2015045327A1 (ja) 2013-09-27 2014-09-17 球帯状シール体

Country Status (2)

Country Link
JP (1) JP6314398B2 (ja)
WO (1) WO2015045327A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343692B1 (ja) * 2017-01-25 2018-06-13 石川ガスケット株式会社 ガスケット及びその製造方法
JP6343699B1 (ja) * 2017-04-19 2018-06-13 石川ガスケット株式会社 ガスケット及びその製造方法
CN108300547A (zh) * 2018-02-10 2018-07-20 陈毅忠 一种改性膨胀石墨植物基润滑膏的制备方法
US10844957B2 (en) 2018-04-18 2020-11-24 Ishikawa Gasket Co., Ltd. Gasket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263944A (ja) * 1992-03-17 1993-10-12 Oiles Ind Co Ltd 球帯状シール体及びその製造方法
JPH09257039A (ja) * 1996-03-22 1997-09-30 Oiles Ind Co Ltd 摺動部材用組成物および該組成物からなる摺動部材ならびに球帯状シール体
JP2001099325A (ja) * 1999-09-28 2001-04-10 Oiles Ind Co Ltd 球帯状シール体ならびにその製造方法
WO2009072295A1 (ja) * 2007-12-05 2009-06-11 Oiles Corporation 球帯状シール体及びその製造方法
WO2012042712A1 (ja) * 2010-09-28 2012-04-05 オイレス工業株式会社 球帯状シール体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263944A (ja) * 1992-03-17 1993-10-12 Oiles Ind Co Ltd 球帯状シール体及びその製造方法
JPH09257039A (ja) * 1996-03-22 1997-09-30 Oiles Ind Co Ltd 摺動部材用組成物および該組成物からなる摺動部材ならびに球帯状シール体
JP2001099325A (ja) * 1999-09-28 2001-04-10 Oiles Ind Co Ltd 球帯状シール体ならびにその製造方法
WO2009072295A1 (ja) * 2007-12-05 2009-06-11 Oiles Corporation 球帯状シール体及びその製造方法
WO2012042712A1 (ja) * 2010-09-28 2012-04-05 オイレス工業株式会社 球帯状シール体及びその製造方法

Also Published As

Publication number Publication date
JP6314398B2 (ja) 2018-04-25
JP2015068405A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
JP5972991B2 (ja) 球帯状シール体及びその製造方法
JP5347971B2 (ja) 球帯状シール体及びその製造方法
JP5771945B2 (ja) 球帯状シール体
WO2015045327A1 (ja) 球帯状シール体
WO2012042712A1 (ja) 球帯状シール体及びその製造方法
WO2013084467A1 (ja) 球帯状シール体及びその製造方法
JP5691772B2 (ja) 球帯状シール体及びその製造方法
JP6003062B2 (ja) 排気管球面継手
WO2015146015A1 (ja) 球帯状シール体
JP6071676B2 (ja) 球帯状シール体
TWI543889B (zh) 球帶狀密封體
JP6337462B2 (ja) 球帯状シール体
JP5724315B2 (ja) 球帯状シール体
JP5978989B2 (ja) 球帯状シール体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850088

Country of ref document: EP

Kind code of ref document: A1