WO2013084467A1 - 球帯状シール体及びその製造方法 - Google Patents

球帯状シール体及びその製造方法 Download PDF

Info

Publication number
WO2013084467A1
WO2013084467A1 PCT/JP2012/007746 JP2012007746W WO2013084467A1 WO 2013084467 A1 WO2013084467 A1 WO 2013084467A1 JP 2012007746 W JP2012007746 W JP 2012007746W WO 2013084467 A1 WO2013084467 A1 WO 2013084467A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
expanded graphite
outer layer
cylindrical
wire mesh
Prior art date
Application number
PCT/JP2012/007746
Other languages
English (en)
French (fr)
Inventor
宮下 磨
佐藤 栄治
晃一 石田
俊和 高砂
聡 松永
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Priority to BR112014012317-9A priority Critical patent/BR112014012317B1/pt
Priority to US14/363,534 priority patent/US9016694B2/en
Priority to CN201280068745.0A priority patent/CN104081104B/zh
Priority to EP12854861.7A priority patent/EP2789890B1/en
Priority to CA2856267A priority patent/CA2856267C/en
Priority to IN3914CHN2014 priority patent/IN2014CN03914A/en
Publication of WO2013084467A1 publication Critical patent/WO2013084467A1/ja
Priority to US14/669,186 priority patent/US9182060B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • F16L23/18Flanged joints characterised by the sealing means the sealing means being rings
    • F16L23/22Flanged joints characterised by the sealing means the sealing means being rings made exclusively of a material other than metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1827Sealings specially adapted for exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/062Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces characterised by the geometry of the seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/064Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces the packing combining the sealing function with other functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • F16J15/0812Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment with a braided or knitted body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/02Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction
    • F16L27/04Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces
    • F16L27/053Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces held in place by bolts passing through flanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/02Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction
    • F16L27/04Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces
    • F16L27/06Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces with special sealing means between the engaging surfaces
    • F16L27/073Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly spherical engaging surfaces with special sealing means between the engaging surfaces one of the cooperating surfaces forming the sealing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling

Definitions

  • the present invention relates to a ball-shaped seal body used for a spherical joint of an automobile exhaust pipe and a manufacturing method thereof.
  • FIG. 21 which shows an example of the exhaust passage of the automobile engine
  • the exhaust gas of the automobile engine is collected in the exhaust manifold catalytic converter 600 in the exhaust cylinder catalytic converter 600, and the exhaust pipe 601 and
  • the exhaust gas that has been sent to the sub muffler 603 through the exhaust pipe 602 and passed through the sub muffler 603 is further sent to the muffler (silencer) 606 through the exhaust pipe 604 and the exhaust pipe 605, and is released into the atmosphere through this muffler 606. Is done.
  • exhaust pipes 601 and 602, 604 and 605, and the exhaust system members such as the sub muffler 603 and the muffler 606 are repeatedly subjected to stress due to the roll behavior and vibration of the engine.
  • the stress applied to the exhaust system member is considerably large. Therefore, this large stress may cause fatigue damage to the exhaust system member, and engine vibration may cause the exhaust system member to resonate and deteriorate indoor silence.
  • the connecting portion 607 between the exhaust manifold catalytic converter 600 and the exhaust pipe 601 and the connecting portion 608 between the exhaust pipe 604 and the exhaust pipe 605 are made of an exhaust pipe spherical joint or a bellows type exhaust pipe joint.
  • Examples of the vibration absorbing mechanism described above include an exhaust pipe joint described in Patent Document 1 and an exhaust seal used for the joint.
  • the exhaust seal described in Patent Document 1 has heat resistance, excellent compatibility with the counterpart material, and has the advantage that the impact strength is remarkably improved.
  • friction under dry friction conditions There is a disadvantage that frictional noise is often generated.
  • Disadvantages of this exhaust seal are that the difference between the coefficient of static friction and the coefficient of dynamic friction of the heat-resistant material (expanded graphite, etc.) that forms the exhaust seal is large, and the friction resistance against the sliding speed of the exhaust seal made of this heat-resistant material is negative. This is considered to be due to the resistance.
  • Patent Document 2 As a solution to the drawbacks of the exhaust seal, there is a ball-shaped seal body described in Patent Document 2.
  • 22 and 23 described in Patent Document 2 includes a cylindrical inner surface 701, a partially convex spherical surface 702, and annular end surfaces 703 on the large diameter side and the small diameter side of the partially convex spherical surface 702. And 704, and an outer layer 706 formed integrally with the ball-shaped substrate 705.
  • the ball-shaped substrate 705 includes a reinforcing material 707 made of a wire mesh, and a wire mesh of the reinforcing material 707.
  • the outer layer 706 is made of a metal mesh and is compressed and reinforced with a heat-resistant material 708 containing expanded graphite that is filled and mixed with the reinforcing material 707 and compressed.
  • the metal mesh of the material 709 is filled and is tightly crimped to the reinforcing material 709 and is flush with the surface 710 made of the reinforcing material 709 and together with the surface 710, the outer intermediate surface 71.
  • a base layer 714 formed integrally with the partially convex spherical surface 702, and a base layer 714 integrated with the base layer 714 at the outer intermediate surface 711.
  • a sliding layer 715 of the lubricating composition formed on the outer layer 706, and the outer layer intermediate surface 711 of the base layer 714 formed of the reinforcing material 709 and the heat-resistant material 713 in the outer layer 706 is provided with the reinforcing material 709.
  • the surface 710 is dotted with an area ratio of 5 to 35%
  • the surface roughness of the outer layer intermediate surface 711 is 5 to 30 ⁇ m in terms of arithmetic average roughness Ra
  • the surface 716 of the outer layer 706 exposed to the outside is It consists of a smooth surface 717 of the sliding layer 715.
  • the surface 710 of the reinforcing material 709 in the outer layer intermediate surface 711 of the base layer 714 is dotted with an area ratio of 5 to 35%, and the slip layer 715 of the lubricating composition is formed on the outer layer intermediate surface 711.
  • the surface 716 of the outer layer 706 that is integrally formed and exposed to the outside is formed from the smooth surface 717 of the sliding layer 715. Therefore, in sliding friction with the counterpart material, the outer layer is formed on the surface of the counterpart material.
  • the ball-shaped seal body 700 described in Patent Document 2 has the above-mentioned advantages.
  • the ball-shaped seal body 700 has, for example, a minute rocking motion generated during idling or waiting for a signal or an excessively large axial direction.
  • the sliding layer 715 of the outer layer 706 disappears due to sliding friction with the counterpart material, and the surface 710 of the reinforcing material 709 and the surface 710 of the reinforcing material 709 are flush with the heat resistant material 713.
  • the reinforcing material 709 of the outer layer intermediate surface 711 may be worn away.
  • a partially convex spherical surface of a spherical belt-like sealing body including an outer layer that becomes a sliding friction surface with a counterpart material, a reinforcing material made of a wire mesh, and a lubricating composition
  • a solid lubricant made of a material and a heat-resistant material containing expanded graphite, and the heat-resistant material and the solid lubricant are compressed and filled in a mesh of a reinforcing mesh,
  • the outer layer with the area occupied by the reinforcing material on the outer surface formed on a smooth hybrid surface that is exposed by mixing with the solid lubricant surface is 30-60%.
  • the ball-shaped seal body which is densely layered in the radial direction on the partially convex spherical surface of the base, is a smooth surface where the surface of the heat-resistant material and the surface of the reinforcing material are always exposed in sliding friction with the mating material. It will cause sliding friction on the hybrid surface, and it will be loaded on each of the heat-resistant material and the reinforcing material. As a result of reducing the load, even when a minute rocking motion or excessive axial input is continuously applied for a long time, the generation of abnormal frictional noise can be prevented as much as possible without damaging the mating material. And gained knowledge.
  • the present invention has been made on the basis of the above knowledge, and an object of the present invention is to provide a spherical belt-like sealing body capable of preventing the occurrence of abnormal frictional noise as much as possible in sliding friction with a counterpart material and a method for manufacturing the same. is there.
  • a spherical belt-shaped sealing body used for a spherical joint of an exhaust pipe includes a spherical inner surface defined by a cylindrical inner surface, a partially convex spherical surface, an annular end surface on the large-diameter side and a small-diameter side of the partially convex spherical surface, and the spherical belt-shaped substrate.
  • An outer layer integrally formed on the partially convex spherical surface, and the spherical band-shaped substrate has a mesh width of a mesh knitted using a fine metal wire having a wire diameter of 0.28 to 0.32 mm.
  • a reinforcing material for a spherical belt-shaped substrate made of a compressed braided wire mesh of 4 to 6 mm and a width of 3 to 5 mm, and a braided wire mesh of this reinforcing material are filled and mixed together with the reinforcing material and compressed.
  • a heat resistant material for a spherical belt-shaped substrate containing the expanded graphite, and the outer layer has a mesh width of 1 in the length of the mesh knitted using a fine metal wire having a wire diameter of 0.10 to 0.20 mm.
  • outer layer consisting of compressed braided wire mesh of 0-3.0mm, width 0.5-2.5mm
  • the heat-resistant material for the outer layer and the solid lubricant are compressed to form a reinforcing material for the outer layer.
  • the braided wire mesh is filled, and the reinforcing material is densely layered radially on the partially convex spherical surface of the spherical base, and the outer surface of the outer layer is a surface made of a reinforcing material for the outer layer. It is formed on a smooth hybrid surface that is exposed by mixing with a surface made of a solid lubricant, and the area occupied by the outer layer reinforcing material on the outer surface of the outer layer is 30 to 60%. It is characterized by that.
  • the outer layer serving as the sliding friction surface with the mating member has a mesh width of 1 in the length of the mesh knitted using fine metal wires having a wire diameter of 0.10 to 0.20 mm.
  • the outer layer heat-resistant material and the solid lubricant are compressed and filled in the braided wire mesh of the outer layer reinforcing material, and the outer layer reinforcing material has a diameter on the partially convex spherical surface of the spherical belt-shaped substrate.
  • the outer surface of the outer layer is formed into a smooth mixed surface in which the surface made of the reinforcing material for the outer layer and the surface made of the solid lubricant are exposed and mixed.
  • the mating material is filled with the surface of the reinforcing material located in the lower layer and the mesh of the reinforcing mesh As a result of the transition to sliding friction with the mixed surface mixed with the surface of the heat-resistant material, the load applied to each of the heat-resistant material and the reinforcing material for the outer layer is reduced. Even when input is continuously applied for a long period of time, it is extremely unlikely to cause damage such as sliding friction marks on the surface of the counterpart material, and it is possible to prevent roughening of the counterpart material surface due to damage as much as possible. Further, it is possible to prevent the deterioration of the sealing performance between the partially convex spherical surface of the outer layer and the mating member as much as possible and to prevent the generation of abnormal frictional noise as much as possible.
  • the cylindrical inner surface is an exposed surface made of a braided metal mesh of a reinforcing material for a spherical belt-shaped substrate, even if it is an exposed surface made of expanded graphite as a heat-resistant material for the spherical belt-shaped substrate. Alternatively, it may be an exposed surface in which these are mixed.
  • the cylindrical inner peripheral surface extends from the annular end on the large diameter side to the annular end on the large diameter side.
  • the cylindrical surface is connected to the annular end on the small diameter side of the spherical base at one end thereof.
  • the frustoconical surface is connected to the other end portion of the cylindrical surface at the annular end portion on the small diameter side, and on the one end portion of the enlarged cylindrical surface at the annular end portion on the large diameter side.
  • the diameter-enlarged cylindrical surface connected to each other may be connected to the annular end on the larger diameter side of the spherical belt-like base at the other end and may be formed with the same diameter between the both ends.
  • the inner circumferential surface of the cylinder has a cylindrical surface having a predetermined width, a truncated conical surface having a predetermined width, and an enlarged cylindrical surface having a predetermined width.
  • the surface diameter corresponds to the outer diameter of the exhaust pipe
  • the spherical base is strongly compressed and compressed between the frustoconical surface having a predetermined width and the cylindrical surface having a predetermined width by the exhaust pipe inserted into the spherical belt-shaped seal body.
  • each heat-resistant material for the spherical belt-shaped substrate and the outer layer may contain 1.0 to 16.0% by mass of phosphate as an oxidation inhibitor in addition to expanded graphite. Further, it may further contain 0.05 to 5.0% by mass of phosphoric acid.
  • the heat-resistant material containing phosphate or phosphate and phosphoric acid as an oxidation inhibitor can improve the heat resistance and oxidation resistance of the ball-shaped seal body itself, and can be used in a high-temperature region of the ball-shaped seal body. Preferably possible.
  • the lubricating composition contains 23 to 57% by mass of hexagonal boron nitride, 5 to 15% by mass of alumina hydrate, and 33 to 67% by mass of ethylene tetrafluoride resin. preferable.
  • the outer surface of the outer layer is composed of a surface made of a braided wire mesh for the outer layer, 23 to 57% by mass of hexagonal boron nitride, 5 to 15% by mass of alumina hydrate, and ethylene tetrafluoride resin. Since it is formed on a smooth mixed surface mixed with a surface made of solid lubricant containing 33 to 67% by mass, the solid lubricant can be prevented from falling off from the outer surface of the outer layer, as a result. Since the material slides on a smooth surface where the solid lubricant and the reinforcing material for the outer layer are mixed for a long period of time, the generation of abnormal frictional noise can be prevented as much as possible.
  • the spherical inner surface defined by the cylindrical inner surface, the partially convex spherical surface, and the annular end surfaces on the large diameter side and the small diameter side of the partially convex spherical surface, and the partially convex spherical surface of the spherical belt substrate are integrally formed.
  • the manufacturing method of the spherical belt-shaped sealing body of the present invention that includes an outer layer and is used for an exhaust pipe joint includes (a) a step of preparing an expanded graphite sheet made of expanded graphite, and (b) a wire diameter of 0.28.
  • the mesh width knitted using a fine metal wire having a wire diameter of 0.10 to 0.20 mm is 1.0 to 3.0 mm in length and 0.5 to 2.5 mm in width
  • the multilayer sheet is inserted between two layers of the cylindrical braided wire mesh, and the cylindrical braided wire mesh with the multilayer sheet inserted between the two layers is pressed in the thickness direction of the multilayer sheet to form a cylindrical shape.
  • the flat braided wire mesh is made of a flat braided wire mesh and expanded graphite of another expanded graphite sheet of a multilayer sheet and a solid lubricant of a coating layer formed on one surface of the expanded graphite sheet.
  • Formed on one side of another expanded graphite sheet Forming an outer layer forming member in which the area occupied by the flat braided wire mesh is 30 to 60% on the outer surface mixed with the solid lubricant surface; and (f) the cylindrical shape
  • a pre-cylindrical molded body is formed by winding the outer surface layer forming member on the outer peripheral surface of the base material with the outer surface of the outer surface layer forming member mixed with the surface made of a strip-shaped braided wire mesh and the surface made of a solid lubricant facing outside.
  • a cylindrical inner wall surface, a partially concave spherical wall surface connected to the cylindrical inner wall surface, and a through hole, and a hollow core portion and a hollow space are formed by fitting a stepped core into the through hole.
  • a mold in which a spherical band-shaped hollow portion connected to the cylindrical portion is formed and the stepped core are prepared, the preliminary cylindrical molded body is inserted into the outer peripheral surface of the core of the stepped core, and the stepped core is inserted into the mold. Insert the pre-cylindrical molded body into the core and insert it into the through hole.
  • the spherical band-shaped substrate has a mesh width of 4 to 6 mm in length and 3 in width and is knitted using fine metal wires having a wire diameter of 0.28 to 0.32 mm.
  • a reinforcing material for a spherical belt-shaped substrate made of a compressed braided wire mesh of ⁇ 5 mm, and a braided wire mesh mesh of the reinforcing material, filled with the reinforcing material and including compressed expanded graphite
  • a heat-resistant material for a spherical belt-shaped substrate, and the outer layer has a mesh width of 1.0 to 3.0 mm in length, which is woven using fine metal wires having a wire diameter of 0.10 to 0.20 mm,
  • the outer layer includes a reinforcing material for an outer layer made of a compressed braided wire mesh having a width of 0.5 to 2.5 mm, a solid lubricant made of a lubricating composition, and a heat-resistant material for the outer layer containing expanded graphit
  • the heat-resistant material and solid lubricant for use are compressed and filled in the braided wire mesh of the reinforcing material for the outer layer.
  • the outer layer reinforcing material is densely layered radially on the partially convex spherical surface of the spherical base, and the outer surface of the outer layer includes a surface made of the outer layer reinforcing material and a surface made of a solid lubricant. Are formed on a smooth mixed surface exposed, and the area occupied by the outer layer reinforcing material on the outer surface of the outer layer is 30 to 60%.
  • a multilayer sheet in which a coating layer of a solid lubricant is formed on one surface of another expanded graphite sheet is formed from a metal having a wire diameter of 0.10 to 0.20 mm.
  • the cylindrical braided metal mesh inserted between the layers is pressed in the thickness direction of the multilayer sheet to form the cylindrical braided metal mesh into a flat braided metal mesh, and the expanded graphite of another expanded graphite sheet of the multilayer sheet and the Filling a flat braided wire mesh with the solid lubricant of the coating layer formed on one surface of the expanded graphite sheet, the expanded graphite of the other expanded graphite sheet, the solid lubricant of the coating layer, and the expanded graphite And a flat braided wire mesh mixed with a solid lubricant.
  • the outer layer formed on the partially convex spherical surface of the spherical belt-shaped substrate by the outer layer forming member has the reinforcing material for the outer layer densely stacked in the radial direction of the partially convex spherical surface of the spherical belt-shaped substrate.
  • the mating material is the surface of the next layer and the reinforcing material
  • the load applied to each of the heat-resistant material and the reinforcing material for the outer layer is reduced, resulting in minute oscillation
  • damage to the mating material surface, such as sliding friction marks is extremely low, and the mating material surface becomes rough due to the damage.
  • the outer surface of the partially convex spherical surface and the mating material It is possible to prevent the occurrence of abnormal frictional noise along with a reduction in sealability can be prevented as much as possible as much as possible.
  • the hollow cylindrical portion inside the mold and the pre-cylindrical molded body arranged in the spherical belt-shaped hollow portion are punched at a pressure of 1 to 3 ton / cm 2 in the core axial direction.
  • a spherical belt-like sealing body provided with an outer layer integrally formed on the partially convex spherical surface can be obtained.
  • a polymer is formed by superposing the belt-shaped braided wire net on the expanded graphite sheet, and then the polymer. Forming a cylindrical base material by winding in a cylindrical shape so that the braided wire mesh is exposed on the inner peripheral side and the expanded graphite sheet is exposed on the outer peripheral side, and the same as the first manufacturing method hereinafter Forming a pre-cylindrical molded body by the method.
  • the second manufacturing method of the ball-shaped seal body of the present invention is a bottomed cylindrical shape having a bottom at one end and an opening at the other end, and is an outer peripheral surface on the opening side.
  • a stepped core having a cap with a frustoconical surface that gradually increases in diameter from the other end is removably crowned on one end, and a cylindrical wall surface, a partially concave spherical wall surface connected to the cylindrical wall surface, and a through-hole
  • a pre-cylindrical molded body arranged in the hollow cylindrical portion and the spherical hollow portion of the mold is compression-molded at a pressure of 1 to 3 ton / cm 2 in the core axial direction by a punch.
  • a cylindrical inner surface having a through-hole in the portion, a truncated conical surface continuous to the cylindrical surface, and an enlarged cylindrical inner surface continuous to the truncated conical surface, a partially convex spherical surface, and a partially convex spherical surface It is possible to obtain a spherical belt-shaped sealing body including a spherical belt-shaped substrate defined by the annular end surface on the radial side and the small-diameter side, and an outer layer integrally formed on the partially convex spherical surface of the spherical belt-shaped substrate.
  • each expanded graphite sheet may contain 1.0 to 16% by mass of a phosphate salt as an oxidation inhibitor in addition to expanded graphite. May be contained in an amount of 0.5 to 5.0% by mass.
  • the coating layer on one surface of another expanded graphite sheet as an outer layer is made of alumina sol having a hydrogen ion concentration (pH) of 2 to 3 in which alumina hydrate particles are dispersed and contained in water containing an acid as a dispersion medium.
  • An aqueous dispersion containing 30 to 50% by mass of a lubricating composition containing 30% by mass as a solid content may be applied to the one surface by means such as brushing, roller coating or spraying.
  • the outer layer has a mesh width of 1.0 to 3.0 mm in length and 0.5 to 2.5 mm in width, which is knitted using fine metal wires having a wire diameter of 0.10 to 0.20 mm.
  • the outer layer reinforcing material made of the braided wire mesh, the solid lubricant made of the lubricating composition, and the outer layer heat-resistant material containing expanded graphite are compressed and filled in the braided wire mesh of the outer layer reinforcing material.
  • the outer layer reinforcing material is densely layered radially on the partially convex spherical surface of the spherical base, and the outer surface of the outer layer is composed of a surface made of the outer layer reinforcing material and a solid lubricant.
  • the surface is formed on a smooth mixed surface that is exposed and mixed, and the area occupied by the outer layer reinforcing material on the outer surface of the outer layer is 30 to 60%.
  • the load applied to each of the heat-resistant material and reinforcing material for the outer layer is reduced, resulting in a minute swinging motion.
  • FIG. 1 is a cross-sectional explanatory view of an example of an embodiment of a ball-shaped seal body of the present invention.
  • FIG. 2 is a partially enlarged schematic view of the spherical belt-like sealing body shown in FIG.
  • FIG. 3 is a schematic cross-sectional explanatory view of another embodiment of the ball-shaped seal body of the present invention.
  • FIG. 4 is a perspective explanatory view of a braided wire mesh in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 5 is a perspective explanatory view of the expanded graphite sheet in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 6 is an explanatory plan view of a mesh of a braided wire mesh in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 7 is a perspective explanatory view of a polymer in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 8 is an explanatory plan view of a cylindrical base material in the manufacturing process of the ball-shaped seal body of the present invention.
  • 9 is a cross-sectional explanatory view taken along line IX-IX of the cylindrical base material shown in FIG.
  • FIG. 10 is a cross-sectional explanatory view of a multilayer sheet provided with a coating layer in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 11 is an explanatory diagram of a manufacturing process of the outer layer forming member in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 12 is a cross-sectional explanatory view of the manufacturing process of the outer layer forming member in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 13 is a cross-sectional explanatory view of the outer layer forming member in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 14 is a plan explanatory view with a photograph of the outer layer forming member in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
  • FIG. 15 is an explanatory plan view of a pre-cylindrical molded body in the manufacturing process of the ball-shaped seal body of the present invention.
  • 16 is a cross-sectional explanatory view taken along line XVI-XVI of the preliminary cylindrical molded body shown in FIG.
  • FIG. 17 is a cross-sectional explanatory view showing a state in which a pre-cylindrical molded body is disposed inside a mold in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
  • FIG. 18 is a cross-sectional explanatory view of another form of the mold in the manufacturing process of the ball-shaped seal body of the present invention.
  • FIG. 19 is a cross-sectional explanatory view showing a state in which a preliminary cylindrical molded body is arranged inside the mold shown in FIG.
  • FIG. 20 is a cross-sectional explanatory view of an exhaust pipe spherical joint incorporating the ball-shaped seal body of the present invention.
  • FIG. 21 is an explanatory diagram of an exhaust system of an automobile engine.
  • FIG. 22 is a cross-sectional explanatory view showing a conventional spherical belt-like seal body.
  • FIG. 23 is a partially enlarged cross-sectional explanatory view of the ball-shaped seal body shown in FIG.
  • the above-mentioned acid-treated graphite powder is heated (expanded) at a temperature of 960 to 1200 ° C. for 1 to 10 seconds to generate cracked gas, and expanded between the graphite layers by the gas pressure (expansion magnification). 240 to 300 times).
  • the expanded graphite particles are supplied to a twin roll apparatus adjusted to a desired roll gap and roll-formed to produce an expanded graphite sheet I having a desired thickness.
  • the acid-treated graphite powder While stirring the acid-treated graphite powder obtained by the same method as the above-mentioned acid-treated graphite powder, the acid-treated graphite powder has a phosphate concentration of, for example, 50% concentration of primary aluminum phosphate [Al (H 2 PO 4 ) 3 ].
  • a solution obtained by diluting an aqueous solution with methanol is blended in a spray form, and stirred uniformly to prepare a wettable mixture.
  • the wettable mixture is dried for a predetermined time in a drying oven. Next, the dried mixture was heated (expanded) at a temperature of 950 to 1200 ° C.
  • the acid-treated graphite powder While stirring the acid-treated graphite powder obtained in the same manner as the above-mentioned acid-treated graphite powder, the acid-treated graphite powder is used as a phosphate, for example, a first aluminum phosphate aqueous solution having a concentration of 50%, and as phosphoric acid, for example, a concentration of 84%.
  • a solution obtained by diluting an aqueous solution of orthophosphoric acid (H 3 PO 4 ) with methanol is added in the form of a spray and stirred uniformly to prepare a wettable mixture.
  • the wettable mixture is dried for a predetermined time in a drying oven.
  • the dried mixture was heated (expanded) at a temperature of 950 to 1200 ° C. for 1 to 10 seconds to generate decomposition gas, and expanded between the graphite layers by the gas pressure (expansion magnification 240). ⁇ 300 times).
  • this expansion treatment step water in the structural formula of primary aluminum phosphate is eliminated, and orthophosphoric acid generates a dehydration reaction to generate phosphorus pentoxide.
  • the expanded graphite particles are supplied to a twin roll apparatus adjusted to a desired roll gap and roll-formed to produce an expanded graphite sheet III having a desired thickness.
  • the expanded graphite sheet II thus produced preferably contains 1.0 to 16.0% by mass of primary aluminum phosphate, and the expanded graphite sheet III contains 1. It is preferable to contain 0 to 16.0% by mass and 0.05 to 5.0% by mass of phosphorus pentoxide.
  • the expanded graphite containing phosphate or phosphate and phosphorus pentoxide improves the heat resistance of the expanded graphite itself and imparts an oxidation inhibiting action. For example, it is used in a high temperature range exceeding 600 ° C. to 600 ° C. Is possible.
  • the phosphate in addition to the primary aluminum phosphate, primary lithium phosphate (LiH 2 PO 4 ), secondary lithium phosphate (Li 2 H 2 PO 4 ), primary calcium phosphate [Ca (H 2 PO 4 ) 2 ], dicalcium phosphate (CaHPO 4 ), dibasic aluminum phosphate [Al 2 (HPO 4 ) 3 ] and the like can be used.
  • the phosphoric acid in addition to the orthophosphoric acid, metaphosphoric acid ( HPO 3 ), polyphosphoric acid and the like can be used.
  • the density is preferably 1.0 to 1.5 Mg / m 3 , more preferably 1.0 to 1.2 Mg / m 3 .
  • the thickness is preferably 0.30 to 0.60 mm.
  • the braided wire mesh is preferably made of austenitic SUS304, SUS310S, SUS316, ferritic SUS430 or the like, Fe wire (JISG3532) or Zn-plated Fe wire (JISG3547), or Cu-Ni as Cu system. It is formed by knitting one or more fine metal wires made of an alloy (white copper) wire, a Cu—Ni—Zn alloy (white wire) wire, a brass wire, or a beryllium copper wire.
  • a fine metal wire having a wire diameter of 0.28 to 0.32 mm is preferably used, and the mesh width of the braided wire mesh formed by the fine metal wire having the wire diameter shown in FIG. Is preferably about 4 to 6 mm in length and about 3 to 5 mm in width. Further, a fine metal wire having a wire diameter of 0.10 to 0.20 mm is preferably used for the braided wire mesh for the outer layer, and the mesh width of the braided wire mesh formed by the fine metal wire having the wire diameter shown in FIG. Is preferably about 1.0 to 3.0 mm in length and 0.5 to 2.5 mm in width.
  • the solid lubricant was hexagonal boron nitride (hereinafter abbreviated as “h-BN”) 23 to 57% by mass, alumina hydrate 5 to 15% by mass, and tetrafluoroethylene resin (hereinafter abbreviated as “PTFE”).
  • h-BN hexagonal boron nitride
  • PTFE tetrafluoroethylene resin
  • Lubricating compositions containing from 33 to 67% by weight can be given as preferred examples.
  • this solid lubricant is obtained by adding h-BN and PTFE to an alumina sol having alumina ion hydrate particles dispersed and contained in water containing an acid as a dispersion medium and having a hydrogen ion concentration (pH) of 2 to 3.
  • the h-BN powder and PTFE powder forming the aqueous dispersion are preferably as fine as possible, and preferably have an average particle size of 10 ⁇ m or less, more preferably an average particle size of 0.5 ⁇ m or less. A fine powder is used.
  • the acid contained in water as a dispersion medium for alumina sol in the aqueous dispersion acts as a peptizer for stabilizing the alumina sol.
  • the acid include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and amidosulfuric acid, and nitric acid is particularly preferable.
  • the alumina hydrate forming the alumina sol in the aqueous dispersion is a compound represented by the composition formula Al 2 O 3 .nH 2 O (0 ⁇ n ⁇ 3 in the composition formula).
  • n is usually a number exceeding 0 (zero) and less than 3, preferably about 0.5 to 2, more preferably about 0.7 to 1.5.
  • the alumina hydrate for example, boehmite (Al 2 O 3 ⁇ nH 2 O) and diaspore (Al 2 O 3 ⁇ H 2 O) alumina monohydrate (aluminum hydroxide oxide) such as, gibbsite (Al 2 O 3 ⁇ 3H 2 O) and bayerite (Al 2 O 3 ⁇ 3H 2 O) alumina trihydrate, such as pseudoboehmite, and the like.
  • boehmite Al 2 O 3 ⁇ nH 2 O
  • diaspore Al 2 O 3 ⁇ H 2 O
  • alumina monohydrate aluminum hydroxide oxide
  • gibbsite Al 2 O 3 ⁇ 3H 2 O
  • bayerite Al 2 O 3 ⁇ 3H 2 O
  • the mesh width formed by knitting metal thin wires having a wire diameter of 0.28 to 0.32 mm into a cylindrical shape has a length of about 4 to 6 mm and a width of about 3 to 5 mm (FIG. 6).
  • the cylindrical braided wire mesh 1 is pressed between the rollers 2 and 3 to produce a belt-like braided wire mesh 4 having a predetermined width D, and the braided wire mesh 4 is cut into a predetermined length L.
  • a braided wire mesh 5 is prepared.
  • the width d of the braided metal mesh 5 is 1.10 ⁇ D to 2.1 ⁇ D and the length L of the braided metal mesh 1 is 1. Having a length l of 30 ⁇ L to 2.7 ⁇ L, a density of preferably 1.0 to 1.5 Mg / m 3 , more preferably 1.0 to 1.2 Mg / m 3 and a thickness of Preferably, an expanded graphite sheet 6 (comprising one of expanded graphite sheet I, expanded graphite sheet II and expanded graphite sheet III) of 0.30 to 0.60 mm is prepared.
  • the expanded graphite sheet 6 is entirely expanded on the large-diameter-side annular end surface 36 and the small-diameter-side annular end surface 37 of the partially convex spherical surface 35.
  • 0.1 ⁇ D from one edge 7 in the width direction of the braided wire mesh 5 that becomes the annular end surface 36 on the large diameter side of the partially convex spherical surface 35.
  • Braided wire mesh in which the expanded graphite sheet 6 protrudes in the width direction by 0.3 ⁇ D and the protrusion amount ⁇ 1 of the expanded graphite sheet 6 in the width direction from the edge 7 becomes the annular end surface 37 on the small diameter side of the partially convex spherical surface 35. 5 is larger than the protruding amount ⁇ 2 from the other end edge 8 in the width direction, and is expanded by 1.3 ⁇ L to 2.7 ⁇ L from one end edge 9 of the braided wire net 5 in the length direction.
  • the graphite sheet 6 protrudes in the length direction and the other end in the length direction of the braided wire mesh 5 10 and longitudinal edges 11 of the expanded graphite sheet 6 which correspond to the edge 10 is matched to obtain the expanded graphite sheet 6 and the polymer 12 with a knitted metal wire net 5 superimposed to each other.
  • the polymer 12 is spirally wound around a cylindrical cored bar (not shown) with the braided wire mesh 5 inside, and the expanded graphite sheet 6 is increased once.
  • the tubular base material 13 is formed in which the braided wire mesh 5 is exposed on the inner peripheral side and the expanded graphite sheet 6 is exposed on the outer peripheral side.
  • the expanded graphite sheet 6 is from 1.3 ⁇ L to the length L of the braided metal mesh 5 so that the number of windings of the expanded graphite sheet 6 in the tubular base material 13 is larger than the number of windings of the braided metal mesh 5. Those having a length l of 2.7 ⁇ L are prepared in advance.
  • the tubular base material 13 as shown in FIG.
  • the expanded graphite sheet 6 protrudes from the one end edge 7 of the braided wire mesh 5 by ⁇ 1 in the width direction on one end edge side in the width direction.
  • ⁇ 2 protrudes from the other edge 8 of the braided wire mesh 5 in the width direction.
  • An aqueous dispersion comprising a lubricating composition containing h-BN of 23 to 57% by mass, PTFE of 33 to 67% by mass and alumina hydrate of 5 to 15% by mass of 30 to 50% by mass as a solid content.
  • An expanded graphite sheet 6 similar to the expanded graphite sheet 6 was prepared separately, and on one surface 14 of the expanded graphite sheet 6, h-BN 23-57 mass%, PTFE 33-67 mass%, and alumina hydrate 5-15 mass%
  • An aqueous dispersion containing 30 to 50% by weight of a lubricating composition containing as a solid content is applied by means of brushing, roller coating, spraying, or the like, and dried to obtain a solid lubricant comprising the lubricating composition.
  • a multilayer sheet 16 (see FIG. 10) on which the coating layer 15 is formed is produced.
  • the mesh width obtained by continuously knitting fine metal wires having a wire diameter of 0.10 to 0.20 mm with a knitting machine (not shown) has a vertical width of 1.0 to 3.0 mm and a horizontal width of 0.
  • a length (width) smaller than the length of the diameter (inner diameter) of the braided wire mesh 17 was formed between two layers inside the cylindrical braided wire mesh 17 for outer layers of 5 to 2.5 mm (see FIG. 6).
  • a multilayer sheet 16 provided with a coating layer 15 of solid lubricant is continuously inserted (see FIG. 11), and a braided wire mesh 17 into which the multilayer sheet 16 is inserted has a pair of smooth outer peripheral surfaces from the insertion start end.
  • the sheet is supplied to the gap ⁇ 1 between the cylindrical rollers 18 and 19 and pressed in the thickness direction of the multilayer sheet 16 (see FIGS. 11, 12 and 13), and the multilayer sheet 16 and the braid are formed on the flat braided wire mesh 20.
  • the expanded graphite sheet 6 of the multilayer sheet 16 integrated with the wire mesh 20 and the mesh of the braided wire mesh 20 The expanded graphite and the solid lubricant of the coating layer 15 covering the surface 14 of the expanded graphite sheet 6 are filled, and a part of the braided wire mesh 20 is exposed together with the surface 22 of the coating layer 15 made of the solid lubricant on the outer surface 21.
  • the multilayer sheet 16 and the braided metal mesh 20 are pressure-bonded to each other so that other portions of the braided metal mesh 20 are embedded in the solid lubricant of the coating layer 15 and the expanded graphite of the expanded graphite sheet 6.
  • the occupying area ratio of the surface 23 made of the braided wire mesh 20 is 30 to 60%, and the outer layer forming member 24 (exposed on the outer surface 21 is a mixture of the surface 23 made of the braided wire mesh 20 and the surface 22 made of solid lubricant). (See FIG. 13).
  • the occupation area ratio of the surface 23 formed of the braided wire mesh 20 on the outer surface 21 may be determined as follows. Referring to FIG. 14 showing a plane (plan photograph) of outer layer forming member 24, (the number of half the number of meshes in the circumferential direction of cylindrical braided wire mesh 20) ⁇ (measurement range of outer layer forming member 24) (Number of meshes having the longitudinal mesh width L ′ of the braided wire mesh 20 existing in the length L and the width D) ⁇ (the braided wire mesh 20 forming one mesh having the mesh width L ′)
  • the number of meshes in the circumferential direction of the braided wire mesh 20 is 56
  • the length L of the measurement range of the outer layer forming member 24 is 20 mm
  • the width D of the measurement range of the outer layer forming member 24 is 39 mm
  • one mesh of the braided metal mesh 20 When the mesh width L ′ in the vertical direction is 2.01 mm, the length of the fine metal wire forming the one mesh is 6.43 mm, and the diameter of the fine metal wire is 0.15 mm, the measurement area S0 is 780 mm.
  • the occupied area ratio of the surface 23 made of the braided wire mesh 20 on the outer surface 21 is 34.4%.
  • the lengths of the fine metal wires forming one mesh having the mesh width L ′ and the mesh width L ′ in the longitudinal direction of the braided wire mesh 20 in the outer layer forming member 24 are respectively microscopic.
  • the occupation area ratio may be determined from the arithmetic average value of the occupation area ratio of each measurement range obtained by measurement with a scope and calculation from the measured value.
  • the occupation area ratio of the surface 23 made of the braided wire mesh 20 on the outer surface 21 is set to 30 to 60%, preferably 30 to 45%.
  • the surface 23 made of the braided wire mesh 20 is worn out, and the occupation area ratio of the surface 23 made of the braided wire mesh 20 gradually increases according to the amount of wear, but the surface made of the braided wire mesh 20 exposed on the outer surface 21. If the occupied area ratio of 23 is 30 to 60%, the load applied to each of the expanded graphite sheet 6 and the braided wire mesh 20 in the sliding friction with the counterpart material is reduced. Even when excessive input in the direction is continuously applied for a long period of time, it is possible to prevent the occurrence of abnormal frictional noise as much as possible without damaging the counterpart material.
  • the gap ⁇ 1 between the cylindrical rollers 18 and 19 in the sixth step is preferably set in the range of 0.35 to 0.60 mm.
  • the cylindrical inner wall surface 26, a partially concave spherical wall surface 27 continuous with the cylindrical inner wall surface 26, and a through hole 28 defined by a small-diameter cylindrical inner wall surface 28a continuous with the partially concave spherical wall surface 27 are provided.
  • a mold 32 as shown in FIG. 17 is prepared in which a hollow cylindrical portion 30 and a spherical belt-shaped hollow portion 31 connected to the hollow cylindrical portion 30 are formed by fitting a stepped core 29 into the hole 28.
  • the preliminary cylindrical molded body 25 is inserted into the attached core 29.
  • the pre-cylindrical molded body 25 disposed in the hollow cylindrical portion 30 and the spherical belt-shaped hollow portion 31 of the mold 32 is compression-molded at a pressure of 98 to 294 N / mm 2 (1 to 3 ton / cm 2 ) in the core axial direction.
  • a spherical belt-shaped sealing body 40 including a prescribed spherical belt-shaped substrate 38 and an outer layer 39 integrally formed on the partially convex spherical surface 35 of the spherical belt-shaped substrate 38 is produced.
  • the spherical belt-shaped base body 38 has a mesh width of 4 to 4 mm in length knitted using fine metal wires having a wire diameter of 0.28 to 0.32 mm.
  • a reinforcing material for a sphere-shaped base body composed of a compressed braided wire mesh 5 having a width of about 6 mm and a width of about 3 to 4 mm, and a mesh of the braided wire mesh 5 of this reinforcing material are filled and integrated with the braided wire mesh 5 of this reinforcing material.
  • Heat-resistant material for the outer layer made of expanded graphite sheet 6 containing
  • the expanded graphite of the expanded lubricant sheet 6 of the solid lubricant and the heat resistant material for the outer layer is filled in the mesh of the braided wire mesh 17 of the compressed reinforcing material for the outer layer, and the compressed reinforcing material for the outer layer is a ball.
  • the outer surface 41 of the outer layer 39 is densely overlaid on the partially convex spherical surface 35 of the belt-like substrate 38 in the radial direction.
  • the outer surface 41 is composed of a surface 23 composed of a braided wire mesh 17 of a reinforcing material for the outer layer and a surface 22 composed of a solid lubricant.
  • a bottomed cylindrical shape having a bottom 29a at one end and an opening 29b at the other end, and gradually expands from the other end to the outer peripheral surface on the opening 29b side.
  • a stepped core 29 is prepared in which a cap 29d having a truncated conical surface portion 29c is detachably crowned at one end.
  • a cylindrical inner wall surface 26, a partially concave spherical wall surface 27 continuous with the cylindrical inner wall surface 26, and a through hole 28 defined by a small-diameter cylindrical inner wall surface 28 a continuous with the partially concave spherical wall surface 27 are provided.
  • a mold 32a as shown in FIG.
  • the pre-cylindrical molded body 25 disposed in the hollow cylindrical portion 30 and the spherical belt-shaped hollow portion 31 of the mold 32a is compressed by a punch P at a pressure of 98 to 294 N / mm 2 (1 to 3 tons / cm 2 ) in the core axis direction.
  • a punch P at a pressure of 98 to 294 N / mm 2 (1 to 3 tons / cm 2 ) in the core axis direction.
  • a cylinder having a through-hole 33 at the center and a cylindrical surface 34a, a truncated conical surface 34b continuous with the cylindrical surface 34a, and an enlarged cylindrical inner surface 34c continuous with the truncated conical surface 34b.
  • a spherical base 38 defined by the inner surface 34, the partially convex spherical surface 35, and the annular end surfaces 36 and 37 on the large diameter side and the small diameter side of the partial convex spherical surface 35, and the partially convex spherical surface of the spherical band base 38.
  • a spherical belt-shaped sealing body 40a having an outer layer 39 formed integrally with the outer surface 35 is produced.
  • the spherical belt-shaped substrate 38 has a mesh width of 4 to 4 mm in length knitted using fine metal wires having a wire diameter of 0.28 to 0.32 mm.
  • a reinforcing material for a sphere-shaped base body composed of a compressed braided wire mesh 5 having a width of about 6 mm and a width of about 3 to 4 mm, and a mesh of the braided wire mesh 5 of this reinforcing material are filled and integrated with the braided wire mesh 5 of this reinforcing material.
  • a heat resistant material for the outer layer comprising the expanded graphite sheet 6 and The expanded graphite of the expanded lubricant sheet 6 of the solid lubricant and the heat-resistant material for the outer layer is filled in the mesh of the braided wire mesh 17 of the compressed reinforcing material for the outer layer, and the reinforcing material for the outer layer is a spherical base
  • the outer surface 41 of the outer layer 39 includes a surface 23 made of a braided wire mesh 17 and a surface 22 made of a solid lubricant.
  • the area occupied by the surface 23 formed of the braided wire mesh 17 of the reinforcing material for the outer layer on the outer surface 41 of the outer layer 39 is 30 to 60%.
  • the cylindrical inner surface 34 that defines 33 includes a cylindrical surface 34a having a predetermined width in a direction from the annular end surface 37 on the small diameter side to the annular end surface 36 on the large diameter side of the spherical band-shaped substrate 38, and an end portion of the cylindrical surface 34a.
  • the diameter of the truncated cone surface 34b has a predetermined width in the direction from the end portion of the cylindrical surface 34a toward the large-diameter annular end surface 36, and the large diameter side from the end portion of the truncated cone surface 34b.
  • an enlarged cylindrical inner surface 34c having a predetermined width in a direction toward the annular end surface 36 and having a diameter corresponding to the outer diameter of the pipe end portion 101 (see FIG. 20) of the exhaust pipe 100.
  • the reinforcing member made of a compressed wire mesh of the spherical base 38 becomes a surface exposed to the outside, and the cylindrical surface 34a is formed with the same diameter between both ends thereof, and has a spherical shape at one end thereof.
  • the truncated conical surface 34b is connected to the other end portion of the cylindrical surface 34a at the end portion on the small diameter side, while the end portion on the large diameter side thereof is connected to the annular end surface 37 on the small diameter side of the base body 38.
  • the heat-resistant material made of expanded graphite of the expanded graphite sheet 6 is exposed to the outside by compressing, bending and extending the portion protruding in the width direction from the braided wire mesh 5 (portion ⁇ 2 and ⁇ 1). is doing.
  • the spherical belt-like seal bodies 40 and 40a are used by being incorporated in the exhaust pipe spherical joint shown in FIG. That is, in the exhaust pipe spherical joint shown in FIG. 20, a flange portion integrally formed with the upstream exhaust pipe 100 leaving the pipe end 101 on the outer peripheral surface of the upstream exhaust pipe 100 connected to the engine side.
  • a flange 200 including 102 is erected, and a ball-shaped seal body 40 is fitted to the tube end portion 101 at a cylindrical inner surface 34 that defines the through-hole 33, and a ball is formed at the annular end surface 36 on the large-diameter side.
  • the belt-like seal body 40 is seated in contact with the flange portion 102 of the flange 200, and is disposed opposite to the upstream exhaust pipe 100 and connected to the muffler side.
  • the enlarged diameter portion 301 integrally including the concave spherical portion 302 and the flange portion 303 connected to the concave spherical portion 302 is fixed, and the inner surface 304 of the concave spherical portion 302 is fixed to the spherical belt-shaped seal body 40.
  • slidably contact with the surface 23 and smooth hybrid surface 42 and the surface 22 are mixed consisting of a solid lubricant consisting of braided metal wire net 17 of the reinforcing member in the outer surface 41 of layer 39.
  • the downstream exhaust pipe 300 is always biased with a spring force in the direction of the upstream exhaust pipe 100.
  • the exhaust pipe spherical joint has a smooth hybrid surface 42 as the sliding surface of the outer layer 39 of the spherical belt-shaped seal body 40 and the downstream exhaust pipe with respect to the relative angular displacement generated in the upper and downstream exhaust pipes 100 and 300. It is configured to allow this by sliding contact with the inner surface 304 of the concave spherical portion 302 of the enlarged diameter portion 301 formed at the end of 300.
  • Example 1 Using a single austenitic stainless steel wire (SUS304) with a wire diameter of 0.28 mm as a thin metal wire, a cylindrical braided wire mesh having a mesh width of 5 mm and a width of 4 mm is produced, and this is placed between a pair of rollers.
  • a belt-shaped braided wire mesh is prepared as a reinforcing material for the spherical belt-shaped substrate, and this belt-shaped braided wire mesh and an expanded graphite sheet I having a density of 1.12 Mg / m 3 and a thickness of 0.38 mm are overlapped to form a polymer.
  • the belt-shaped braided wire mesh is arranged on the inside, and the polymer is spirally wound so that the belt-shaped braided wire mesh is 5 times and the expanded graphite sheet I is 6 times.
  • a cylindrical base material in which I was arranged was produced. In this cylindrical base material, both ends of the expanded graphite sheet I in the width direction protrude (extrude) in the width direction of the band-shaped braided wire mesh.
  • alumina water is used as water as a dispersion medium containing nitric acid that acts as a peptizer.
  • An alumina sol having a hydrogen ion concentration (pH) of 2 containing boehmite (alumina monohydrate: Al 2 O 3 .H 2 0) dispersed as a Japanese product was prepared, and h-BN and PTFE were dispersed and contained in the alumina sol.
  • aqueous dispersion containing 50% by mass of a lubricating composition containing 45.0% by mass of h-BN, 50.0% by mass of PTFE and 5.0% by mass of boehmite as a solid content. 0.5% by mass, PTFE 25.0% by mass and boehmite 2.5% by mass) on one surface of the expanded graphite sheet I, dried and dried.
  • a coating layer (h-BN 45.0% by mass, PTFE 50.0% by mass and boehmite 5.0% by mass) made of a lubricant composition is formed on one surface of expanded graphite sheet I, and expanded graphite sheet I And a multilayer sheet comprising a coating layer of a solid lubricant covering one surface of the expanded graphite sheet I.
  • the reinforcing material for the outer layer having a mesh width of 2.01 mm in length and 0.70 mm in width (measured with a microscope)
  • a cylindrical braided wire mesh is continuously knitted, and the multilayer sheet is continuously inserted between two layers inside the cylindrical braided wire mesh, and the multilayer sheet is inserted from the insertion start end of the multilayer sheet.
  • a cylindrical braided wire mesh inserted between two layers is supplied to the gap between a pair of cylindrical rollers and pressed in the thickness direction of the multilayer sheet to transform the cylindrical braided wire mesh into a flat braided wire mesh.
  • the multilayer sheet and the flat braided metal mesh are filled with the expanded graphite of the expanded graphite sheet I of the multilayer sheet in the mesh of the braided metal mesh, and a part of the braided metal mesh and the multilayer sheet are coated on the outer surface.
  • the layer of solid lubricant is exposed together and knitted
  • the other part of the wire mesh is pressure-bonded and integrated so as to be embedded in the coating layer of the multilayer sheet and the expanded graphite sheet, and the occupation area ratio of the surface composed of the braided wire mesh on the outer surface is 34.5%
  • An outer layer forming member was produced in which a surface made of a braided wire mesh and a surface made of a solid lubricant of the coating layer were mixed and exposed on the outer surface.
  • the outer layer forming member was wound on the outer peripheral surface of the cylindrical base material with the surface on which the solid lubricant was exposed facing outward to produce a preliminary cylindrical molded body.
  • the preliminary cylindrical molded body was inserted into a stepped core of a mold shown in FIG. 17, and the preliminary cylindrical molded body was disposed in a hollow portion inside the mold.
  • a pre-cylindrical molded body placed in the hollow part of the mold is compression-molded at a pressure of 294 N / mm 2 (3 ton / cm 2 ) in the core axial direction, a through hole is defined in the central part, and reinforcement for a spherical band-shaped substrate
  • a spherical belt-shaped substrate defined by a cylindrical inner surface comprising an exposed surface from which a band-shaped braided wire mesh as a material is exposed, a partially convex spherical surface, and an annular end surface on the large diameter side and the small diameter side of the partial convex spherical surface;
  • a spherical belt-shaped sealing body having an outer layer integrally formed on a spherical surface was produced.
  • the spherical belt-shaped substrate is a spherical belt-shaped substrate composed of a compressed braided wire mesh having a mesh width of 5 mm in length and 4 mm in width knitted using a thin metal wire having a wire diameter of 0.28 mm. And a heat-resistant material containing expanded graphite that is mixed and integrated with the braided wire mesh of the reinforcing material and compressed, and has an outer layer.
  • the reinforcing material for the outer layer has a diameter on the partially convex spherical surface of the spherical base.
  • the outer surface of the outer layer is formed into a smooth hybrid surface in which a surface made of a reinforcing material for the outer layer and a surface made of a solid lubricant are exposed and mixed.
  • the area occupied by the outer layer reinforcing material on the outer surface is 34.5%.
  • Example 2 A cylindrical base material was produced in the same manner as in Example 1. In this cylindrical base material, both end portions in the width direction of the expanded graphite sheet I protrude (extrude) in the width direction of the band-shaped braided wire mesh that serves as a reinforcing material for the spherical band base.
  • Example 2 The same aqueous dispersion as in Example 1 was roller-coated on one surface of the expanded graphite sheet I and dried to form a solid lubricant coating layer (h-BN 45.0% by mass, PTFE 50.0% by mass and boehmite 5.0% by mass) are formed on one surface of the expanded graphite sheet I, and an expanded graphite sheet I and a coating layer of a solid lubricant covering one surface of the expanded graphite sheet I;
  • a multilayer sheet consisting of
  • a cylindrical braided wire mesh as a reinforcing material, and continuously inserting the multilayer sheet between two layers inside the cylindrical braided wire mesh, from the insertion start end of the multilayer sheet.
  • the cylindrical braided wire mesh inserted with the multilayer sheet is supplied to the gap between a pair of cylindrical rollers and pressed in the thickness direction of the multilayer sheet to transform the cylindrical braided wire mesh into a flat braided wire mesh.
  • the expanded sheet of the multilayered sheet and the braided metal mesh are filled with expanded graphite I of the expanded sheet I of the multilayered sheet and the outer surface of the expanded graphite sheet I of the multilayered sheet and the part of the braided metal mesh is filled on the outer surface.
  • the expanded graphite is exposed together and the other part of the braided wire mesh Are bonded to each other so as to be embedded in the covering layer of the multilayer sheet and the expanded graphite sheet I, integrated, and the area occupied by the braided wire mesh on the outer surface is 42.1% and the braided on the outer surface
  • An outer layer forming member was produced in which a surface made of a metal mesh and a surface made of a solid lubricant were mixed and exposed.
  • the outer layer forming member is wound on the outer peripheral surface of the cylindrical base material with the surface on which the solid lubricant is exposed facing outward to prepare a preliminary cylindrical molded body, and the center is formed in the same manner as in Example 1 below.
  • a through hole is defined in the part and is defined by a cylindrical inner surface formed of an exposed surface from which a band-shaped braided wire mesh as a reinforcing material for a spherical belt-shaped substrate is exposed, and annular end surfaces on the large-diameter side and small-diameter side of the partially convex spherical surface.
  • a spherical belt-shaped sealing body including a spherical belt-shaped substrate and an outer layer integrally formed on the partially convex spherical surface of the spherical belt-shaped substrate was produced.
  • the spherical belt-shaped substrate is a spherical belt-shaped substrate composed of a compressed braided wire mesh having a mesh width of 5 mm in length and 4 mm in width knitted using a thin metal wire having a wire diameter of 0.28 mm. And a heat-resistant material containing expanded graphite that is mixed and integrated with the braided wire mesh of the reinforcing material and compressed, and has an outer layer.
  • the reinforcing material for the outer layer has a diameter on the partially convex spherical surface of the spherical base.
  • the outer surface of the outer layer is formed into a smooth hybrid surface in which a surface made of a reinforcing material for the outer layer and a surface made of a solid lubricant are exposed and mixed.
  • the occupied area ratio of the surface made of the reinforcing material for the outer layer on the outer surface is 42.1%.
  • Example 3 the expanded graphite sheet as each heat-resistant material had a density of 1.12 Mg / m 3 and a thickness of 0 containing 1.0 mass% phosphorus pentoxide, 4.0 mass% primary aluminum phosphate and expanded graphite.
  • a spherical belt-like sealing body was produced in the same manner as in Example 2 and in the same manner as in Example 1 except that the .38 mm expanded graphite sheet III was used.
  • the spherical belt-shaped substrate is a spherical belt-shaped substrate composed of a compressed braided wire mesh having a mesh width of 5 mm in length and 4 mm in width knitted using a thin metal wire having a wire diameter of 0.28 mm.
  • 4.0 mass% of primary aluminum phosphate, phosphorous pentoxide 1 which is packed together with the reinforcing material of the reinforcing material and the braided wire mesh of the reinforcing material and is mixed and integrated with the braided wire mesh of the reinforcing material.
  • the outer layer has a mesh width of 1.24 mm in length and 0.64 mm in width, which is knitted using a fine metal wire having a wire diameter of 0.15 mm.
  • a reinforcing material for outer layer made of compressed braided wire mesh, a solid lubricant made of a lubricating composition, 4.0% by weight of primary aluminum phosphate, 1.0% by weight of phosphorus pentoxide and expanded graphite
  • a heat-resistant material, a compressed solid lubricant and The heat-resistant material for the outer layer is filled in the mesh of the braided wire mesh of the reinforcing material for the outer layer, and the reinforcing material for the outer layer is densely layered in the radial direction on the partial convex spherical surface of the spherical base,
  • the outer surface of the outer layer is formed as a smooth mixed surface in which the surface made of the reinforcing material for the outer layer and the surface made of the solid lubricant are exposed and mixed, and the outer
  • Comparative Example 1 (equivalent to Example 3 of Patent Document 1) Using a single austenitic stainless steel wire (SUS304) with a wire diameter of 0.28 mm as a thin metal wire, a cylindrical braided wire mesh having a mesh width of 5 mm and a width of 4 mm is produced, and this is placed between a pair of rollers. A band-shaped braided wire mesh was passed through, and this was used as a reinforcing material for a spherical band-shaped substrate.
  • SUS304 single austenitic stainless steel wire
  • a band-shaped braided wire mesh was passed through, and this was used as a reinforcing material for a spherical band-shaped substrate.
  • An expanded graphite sheet I having a density of 1.12 Mg / m 3 and a thickness of 0.38 mm is used as an expanded graphite sheet serving as a heat-resistant material for a spherical band-shaped substrate, and the expanded graphite sheet I and the strip-shaped braided metal mesh are overlapped.
  • a polymer is formed together, and a belt-shaped braided wire mesh is arranged on the inner side, and the polymer is spirally wound on the outermost periphery so that the belt-shaped braided wire mesh is 5 times and the expanded graphite sheet I is 6 times.
  • a cylindrical base material provided with the expanded graphite sheet I was produced. In this cylindrical base material, both end portions in the width direction of the expanded graphite sheet I protrude (extrude) in the width direction of the band-shaped braided wire mesh that serves as a reinforcing material for the spherical band base.
  • an expanded graphite sheet I having a density of 0.3 Mg / m 3 and a thickness of 1.35 mm was used.
  • a cylindrical braided wire mesh having a mesh width of 3.5 mm in length and 2.5 mm in width is obtained by continuously knitting austenitic stainless steel wire (SUS304) having a wire diameter of 0.15 mm.
  • SUS304 austenitic stainless steel wire
  • the wire mesh is supplied to a gap (gap ⁇ 1 is 0.5 mm) between the cylindrical roller and a roller having a plurality of annular grooves along the outer peripheral surface along the axial direction, and the thickness direction of the expanded graphite sheet I
  • the expanded graphite sheet I is supplied to a gap between another pair of cylindrical rollers (gap ⁇ 2 is 0.45 mm), and the expanded graphite of the expanded graphite sheet I is applied to a flattened braided wire mesh.
  • the expanded graphite sheet and the braided wire mesh are pressure-bonded to each other so that the braided mesh is embedded, so that the surface of the expanded graphite sheet I and the surface made of the braided wire mesh are flush with each other and the surface made of the braided wire mesh is expanded on the outer surface.
  • a lubricating composition As a lubricating composition, the same aqueous dispersion as in Example 1 (h-BN 45.0 mass%, PTFE 50.0 mass%, boehmite 5.0 mass% lubricating composition containing 50 mass% dispersed as a solid content) The aqueous dispersion is applied to the surface of the composite sheet that has been pressed by the roller having the annular groove, and dried to one surface of the composite sheet. A multilayer sheet for an outer layer on which a coating layer (h-BN 45.0% by mass, PTFE 50.0% by mass and boehmite 5.0% by mass) made of a lubricant composition was prepared.
  • a coating layer h-BN 45.0% by mass, PTFE 50.0% by mass and boehmite 5.0% by mass
  • a multi-layer sheet for the outer layer is wound on the outer peripheral surface of the cylindrical base material with the coating layer facing outward to produce a preliminary cylindrical molded body, and thereafter penetrates through the central portion in the same manner as in Example 1
  • the spherical inner surface defined by the cylindrical inner surface defining the hole, the partially convex spherical surface, the annular end surfaces on the large diameter side and the small diameter side of the partially convex spherical surface, and the partially convex spherical surface of the spherical band substrate A spherical belt-shaped seal body including the formed outer layer was produced.
  • the spherical belt-shaped substrate has a mesh width of a knitted mesh using a heat-resistant material for a spherical belt-shaped substrate containing compressed expanded graphite and a fine metal wire having a wire diameter of 0.28 mm.
  • Reinforcement for a spherical belt-shaped substrate which is composed of a compressed braided wire mesh of 5 mm in length and 4 mm in width and is intertwined with a compressed expanded graphite sheet I of a heat-resistant material for the spherical band-shaped substrate and has structural integrity with the expanded graphite sheet I
  • the outer layer is made of a braided wire mesh having a mesh width of 3.5 mm length and 2.5 mm width knitted using a fine metal wire with a compressed wire diameter of 0.15 mm.
  • a reinforcing material a heat-resistant material made of an expanded graphite sheet I that is filled and compressed into a braided wire mesh of the reinforcing material, and a solid lubricant of the coating layer, and a smooth outer layer, It is made of a solid lubricant for the coating layer (see FIGS. 22 and 22). Reference 3). *
  • Comparative Example 2 (equivalent to Example 11 of Patent Document 2) A belt-shaped braided wire net similar to that of Comparative Example 1 was used as a reinforcing material for a spherical belt-shaped substrate.
  • An expanded graphite sheet serving as a heat-resistant material for a spherical belt-shaped substrate has a density of 1.12 Mg / m 3 and a thickness of 0.38 mm containing 1.0% by mass of phosphorus pentoxide, 4.0% by mass of primary aluminum phosphate and expanded graphite.
  • the expanded graphite sheet III was used, a polymer of the expanded graphite sheet III and a strip-shaped braided wire mesh was wound in a spiral shape, and the expanded graphite sheet III was disposed on the outermost periphery to produce a cylindrical base material.
  • both end portions in the width direction of the expanded graphite sheet III protrude (extrude) in the width direction of the belt-like wire mesh that serves as a reinforcing material for the spherical belt-like substrate.
  • an expanded graphite sheet III having a density of 0.3 Mg / m 3 and a thickness of 1.35 mm containing phosphorus pentoxide 1.0 mass%, primary aluminum phosphate 4.0 mass% and expanded graphite is used. It was.
  • a cylinder having a mesh width of 3.5 mm in length and 2.5 mm in width obtained by continuously knitting an austenitic stainless steel wire (SUS304) having a wire diameter of 0.15 mm as in Comparative Example 1
  • SUS304 austenitic stainless steel wire
  • the expanded graphite sheet III as an outer layer heat-resistant material is continuously inserted into the inner surface of the cylindrical braided wire mesh, and the outer layer as a heat-resistant material for the outer layer in the same manner as in Example 1 below.
  • the expanded graphite sheet III has a surface composed of 1.0% by mass of phosphorus pentoxide, primary aluminum phosphate and expanded graphite, and the expanded graphite sheet III has a surface composed of 1.0% by mass of phosphorus pentoxide, primary aluminum phosphate and expanded graphite.
  • a multi-layer sheet for the outer layer is wound around the outer peripheral surface of the cylindrical base material with the covering layer facing outward to prepare a pre-cylindrical molded body.
  • a through hole is formed in the central portion.
  • a spherical inner surface defined by a cylindrical inner surface, a partially convex spherical surface, a spherical surface base defined by the large-diameter and small-diameter annular end surfaces of the partial convex spherical surface, and a partially convex spherical surface of the spherical belt-shaped substrate.
  • a spherical belt-like sealing body provided with the outer layer was produced.
  • the spherical belt-shaped substrate includes a heat-resistant material composed of a compressed expanded graphite sheet III containing 1.0% by mass of phosphorus pentoxide, 4.0% by mass of primary aluminum phosphate and expanded graphite, Spherical band-shaped substrate comprising a braided wire mesh having a mesh width of 5 mm in length and 4 mm in width knitted using a fine metal wire having a wire diameter of 0.28 mm and entangled with a compressed expanded graphite sheet III.
  • the outer layer is made of a braided wire mesh having a mesh width of 3.5 mm length and 2.5 mm width knitted using a fine metal wire having a compressed wire diameter of 0.15 mm.
  • a reinforcing material for the outer layer a heat-resistant material made of the expanded graphite sheet III which is filled and compressed with a braided wire mesh of the reinforcing material, and a solid lubricant for the coating layer, and is formed smoothly.
  • the outer surface of the outer layer is the coating layer It is made up of solid lubricant.
  • ⁇ Test method and measurement method> At room temperature (25 ° C.), after performing 45,000 cycles of ⁇ 3 ° rocking motion at 12 Hz with a vibration frequency of 12 Hz, the ambient temperature was raised to 500 ° C. while continuing the rocking motion (temperature rising) When the temperature reaches 500 ° C., 115,000 swing motions are performed, and the ambient temperature is lowered to room temperature while continuing the swing motion (while the temperature is being lowered) The total number of oscillations of 250,000 times is 1 cycle, and 8 cycles (2,000,000 times) are performed.
  • the evaluation of the presence or absence of the occurrence of abnormal frictional sound is (1) 500,000 swings, (2) 1 million swings, (3) 1.5 million swings, and (4) 2 million swings. At the time, the next judgment level was performed.
  • ⁇ Test method> The temperature is raised to 500 ° C. while continuing a rocking motion of ⁇ 3 ° at an excitation frequency of 1.6 Hz at room temperature, and the rocking motion is continued while maintaining that temperature. And it measured about the amount of gas leaks at the time of reaching 2 million times.
  • the amount of gas leakage from the annular end surface 36 on the large diameter side of the spherical belt-shaped substrate 38 of the belt-shaped sealing body 40 and the flange portion 102 standing on the upstream exhaust pipe 100) is measured with a flow meter (1 )
  • the amount of gas leakage in the stationary neutral state and the excited state after the initial test (before start), (2) 1 million swings, and (3) 2 million swings were measured.
  • Table 1 shows the test results.
  • the outer layer surface state after 2 million oscillations of the ball-shaped seal body of Examples 1 to 3 is worn out by the reinforcing material composed of the outermost braided wire mesh.
  • the outer layer of the ball-shaped seal body made of Comparative Example 1 and Comparative Example 2 was worn out by the outermost braided wire mesh with the number of oscillations of 1.25 million times.
  • the heat-resistant material containing expanded graphite located in the lower layer was exposed.
  • the wear amount * in Table 1 is the wear amount at the end of the 1.25 million swings.
  • the outer layer has a mesh width of 1.0 to 3 mm in length, which is knitted using fine metal wires having a wire diameter of 0.10 to 0.20 mm. It is provided with a reinforcing material for outer layers made of compressed braided wire mesh of 0 mm and width of 0.5 to 2.5 mm, a solid lubricant made of a lubricating composition, and a heat resistant material for outer layers containing expanded graphite.
  • the outer layer heat-resistant material and the solid lubricant are compressed and filled into the mesh of the braided wire mesh of the outer layer reinforcing material, and the outer layer reinforcing material is radially applied to the partially convex spherical surface of the spherical belt-shaped substrate. Therefore, even if the outermost reinforcing material is worn away or lost due to sliding friction with the mating material, the mating material is the surface of the reinforcing material located in the lower layer and the wire mesh of the reinforcing material.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gasket Seals (AREA)
  • Joints Allowing Movement (AREA)
  • Exhaust Silencers (AREA)
  • Joints With Pressure Members (AREA)
  • Flanged Joints, Insulating Joints, And Other Joints (AREA)

Abstract

【解決手段】球帯状シール体40は、中央部に貫通孔33を規定する円筒内面34、部分凸球面状面35並びに部分凸球面状面35の大径側及び小径側の環状端面36及び37により規定された球帯状基体38と、球帯状基体38の部分凸球面状面35に一体的に形成された外層39とを備えている。 

Description

球帯状シール体及びその製造方法
 本発明は、自動車排気管の球面継手に使用される球帯状シール体及びその製造方法に関する。
 自動車用エンジンの排気ガスは、自動車エンジンの排気通路の一例を示す図21において、エンジンの各気筒(図示せず)で発生した排気ガスは、排気マニホールド触媒コンバータ600にまとめられ、排気管601及び排気管602を通じてサブマフラ603に送られ、このサブマフラ603を通過した排気ガスは、更に排気管604及び排気管605を介してマフラ(消音器)606へと送られ、このマフラ606を通じて大気中に放出される。
 これら排気管601及び602並びに604及び605や、サブマフラ603及びマフラ606等の排気系部材にあっては、エンジンのロール挙動及び振動等により繰返し応力を受ける。とくに高速回転で高出力エンジンの場合は、排気系部材に加わる応力はかなり大きなものとなる。したがって、この大きな応力は、排気系部材に疲労破壊を招く虞があり、またエンジン振動が排気系部材を共振させ、室内静粛性を悪化させる場合もある。このような問題を解決するために、排気マニホールド触媒コンバータ600と排気管601との連結部607及び排気管604と排気管605との連結部608を排気管球面継手又は蛇腹式排気管継手等の振動吸収機構によって可動連結することにより、自動車エンジンのロール挙動及び振動等により排気系部材に繰返し受ける応力が吸収され、当該排気系部材の疲労破壊等が防止されると共にエンジンの振動が排気系部材を共振させ車室内の静粛性を悪化させるという問題も解決されるという利点を有する。
特開昭54-76759号公報 国際公開第2009/078165号
 上記した振動吸収機構の一例として、特許文献1に記載された排気管継手及び該継手に使用される排気シールが挙げられる。この特許文献1に記載された排気シールは、耐熱性を有し、相手材とのなじみ性に優れ、また衝撃強度も著しく改善されているという利点を有する反面、乾燥摩擦条件下の摩擦においては往々にして摩擦異音を発生するという欠点がある。この排気シールの欠点は、該排気シールを形成する耐熱材料(膨張黒鉛等)の静止摩擦係数と動摩擦係数との差が大きいこと及びこの耐熱材料からなる排気シールのすべり速度に対する摩擦抵抗が負性抵抗を示すこと等に起因するものと考えられる。
 上記排気シールの欠点を解決するものとして、特許文献2に記載された球帯状シール体がある。この特許文献2に記載された図22及び図23に示す球帯状シール体700は、円筒内面701、部分凸球面状面702並びに部分凸球面状面702の大径側及び小径側の環状端面703及び704により規定された球帯状基体705と、球帯状基体705に一体に形成された外層706とを備えており、球帯状基体705は、金網からなる補強材707と、補強材707の金網の網目を充填し、かつ補強材707と混在一体化されていると共に圧縮された膨張黒鉛を含む耐熱材708とを具備しており、外層706は、金網からなると共に圧縮された補強材709及び補強材709の金網の網目を充填し、かつ補強材709に密に圧着されていると共に当該補強材709からなる面710と面一であって当該面710と共に外層中間面711を形成する面712を有して圧縮された膨張黒鉛からなる耐熱材713を含み、かつ部分凸球面状面702に一体的に形成された基層714と、外層中間面711で基層714に一体的に被着形成されている潤滑組成物のすべり層715とを具備しており、外層706における補強材709と耐熱材713とで形成された基層714の外層中間面711には、補強材709の面710が5~35%の面積割合をもって点在しており、外層中間面711の表面粗さは、算術平均粗さRaで5~30μmであり、外部に露出する外層706の表面716は、すべり層715の平滑な面717からなっている。
 球帯状シール体700では、基層714の外層中間面711における補強材709の面710が5~35%の面積割合をもって点在しており、外層中間面711には潤滑組成物のすべり層715が一体的に被着形成されており、外部に露出する外層706の表面716は、すべり層715の平滑な面717から形成されているので、相手材との摺動摩擦においては、相手材表面に外層706の補強材709が局部的に摩擦することを回避できる結果、相手材表面の摺動摩擦による損傷や粗面化を極力防止することができるので、シール性の低下を防止でき、また相手材表面に形成された過度の潤滑被膜を掻き取る作用により、相手材表面に形成された適度の潤滑被膜を介しての摺動摩擦となることから異常摩擦音の発生を極力防止できる。
 特許文献2に記載された球帯状シール体700は、上記利点を有するものであるが、球帯状シール体700に、例えばアイドリング時や信号待ち等に生じる微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合、相手材との摺動摩擦によって外層706のすべり層715が消失し、補強材709の面710と補強材709の面710と面一の耐熱材713の面712とからなる外層中間面711に摺動摩擦が移行することによって、外層中間面711の補強材709が摩滅する虞がある。外層中間面711の補強材709が摩滅すると、外層中間面711の耐熱材713との摺動摩擦に移行し、前記特許文献1に記載された排気シールと同様、相手材との摺動摩擦面が耐熱材713のみの露出面からなり、前記特許文献1に記載された排気シールの欠点と同様の欠点である異常摩擦音を発生する虞がある。
 本発明者らは、上記実情に鑑み鋭意検討した結果、相手材との摺動摩擦面となる外層を含む球帯状シール体の部分凸球面状面に着目し、金網からなる補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む耐熱材とを具備しており、耐熱材及び固体潤滑剤は、圧縮されて補強材の金網の網目に充填されており、補強材からなる面と固体潤滑剤からなる面とが混在して露出した平滑な混成面に形成されている外表面での補強材からなる面の占有面積率が30~60%とされた外層が補強材を球帯状基体の部分凸球面状面に径方向に密に重層されてなる球帯状シール体は、相手材との摺動摩擦において、常に耐熱材の表面と補強材の表面とが混在して露出した平滑な混成面で摺動摩擦することになり、耐熱材及び補強材の夫々に負荷される荷重が低減される結果、微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合においても、相手材を損傷させることなく異常摩擦音の発生を極力防止することができるとの知見を得た。
 本発明は上記知見に基づきなされたものであり、その目的とするところは、相手材との摺動摩擦において、異常摩擦音の発生を極力防止し得る球帯状シール体及びその製造方法を提供することにある。
 排気管球面継手に用いられる球帯状シール体は、円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えており、球帯状基体は、線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつ当該補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、外層用の耐熱材及び固体潤滑剤は、圧縮されて外層用の補強材の編組金網の網目に充填されており、補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在して露出した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は、30~60%であることを特徴とする。
 本発明の球帯状シール体によれば、相手材との摺動摩擦面となる外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、外層用の耐熱材及び固体潤滑剤は、圧縮されて外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが露出して混在した平滑な混成面に形成されており、外層の外表面での該外層用の補強材からなる面の占有面積率が30~60%であるので、相手材との摺動摩擦において、外層用の耐熱材及び補強材の夫々に負荷される荷重が低減される結果、微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合においても、相手材を損傷させることなく異常摩擦音の発生を極力防止することができる。
 また、外層が相手材との摺動摩擦によって最外層の補強材が摩滅、消失しても、相手材とはその下層に位置する補強材からなる面と該補強材の金網の網目に充填された耐熱材の面とが混在した混成面との摺動摩擦に移行し、外層用の耐熱材及び補強材の夫々に負荷される荷重が低減される結果、微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合においても、相手材表面に摺動摩擦痕等の損傷を生じさせることが極めて少なく、損傷に起因する相手材表面の粗面化を極力防止でき、結果として、外層の部分凸球面状面と相手材との間のシール性の低下を極力防止できると共に異常摩擦音の発生を極力防止することができる。
 本発明の球帯状シール体において、その円筒内面は、球帯状基体用の耐熱材の膨張黒鉛からなる露出面であっても、球帯状基体用の補強材の編組金網からなる露出面であってもよく、これらが混在する露出面からなっていてもよい。
 円筒内面に補強材の編組金網が露出した露出面を備えた球帯状シール体にあっては、その円筒内周面は、球帯状基体の小径側の環状端部から大径側の環状端部に向かう方向において所定の幅を有していると共に両端部の間で同じ径を有している円筒面と、該円筒面の端部から球帯状基体の大径側の環状端部に向かうに連れて漸次拡径すると共に該円筒面の端部から球帯状基体の大径側の環状端部に向かう方向において所定の幅を有した截頭円錐面と、該截頭円錐面の大径側の環状端部から球帯状基体の大径側の環状端部に向かう方向において所定の幅を有していると共に一方の排気管の管端部の外径に相当する径をもった拡径円筒面とを有していてもよく、この場合、円筒面は、その一方の端部で球帯状基体の小径側の環状端部に連接しており、截頭円錐面は、その小径側の環状端部で該円筒面の他方の端部に連接している一方、その大径側の環状端部で拡径円筒面の一方の端部に連接しており、拡径円筒面は、その他方の端部で球帯状基体の大径側の環状端部に連接していると共にその両端部の間で同じ径をもって形成されていてもよい。
 斯かる球帯状シール体によれば、円筒内周面は、所定の幅の円筒面と所定の幅の截頭円錐面と所定の幅の拡径円筒面とを有しており、拡径円筒面の径が排気管の外径に相当すると、球帯状シール体に挿入される排気管によって所定の幅の截頭円錐面と所定の幅の円筒面とにおいて球帯状基体が強圧、圧縮されるので、該円筒内周面と排気管の外面との間により強固な固定が生じ、結果として球帯状シール体は排気管の外面により強固に固定される。したがって、球帯状シール体の排気管回りの回転は確実に防止され、球帯状シール体の球帯状基体の大径側の環状端面と該環状端面が当接する排気管の外周面に形成されたフランジとの間での摺動に起因する摩擦異常音の発生はない。
 本発明の球帯状シール体において、球帯状基体用及び外層用の各耐熱材は、膨張黒鉛に加えて、酸化抑制剤としての燐酸塩を1.0~16.0質量%含んでいてもよく、またこれに更に燐酸を0.05~5.0質量%含んでいてもよい。
 酸化抑制剤としての燐酸塩又は燐酸塩及び燐酸とを含む耐熱材は、球帯状シール体自体の耐熱性及び耐酸化消耗性を向上させることができ、球帯状シール体の高温領域での使用を好ましく可能とする。
 本発明の球帯状シール体において、潤滑組成物は、六方晶窒化硼素23~57質量%、アルミナ水和物5~15質量%及び四ふっ化エチレン樹脂33~67質量%を含んでいるのが好ましい。
 斯かる球帯状シール体によれば、外層の外表面は、外層用の編組金網からなる面と六方晶窒化硼素23~57質量%、アルミナ水和物5~15質量%及び四ふっ化エチレン樹脂33~67質量%を含む固体潤滑剤からなる面とが混在した平滑な混成面に形成されることになるので、該固体潤滑剤の外層の外表面からの脱落を回避し得、結果として相手材とは長期にわたって固体潤滑剤と外層用の補強材との混在した平滑な面で摺動するので、異常摩擦音の発生を極力防止することができる。
 円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えていると共に排気管継手に用いられる本発明の球帯状シール体の製造方法は、(a)膨張黒鉛からなる膨張黒鉛シートを準備する工程と、(b)線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの帯状の編組金網を準備する工程と、(c)帯状の編組金網を膨張黒鉛シートに重ね合わせて重合体を形成した後、この重合体を円筒状に捲回して筒状母材を形成する工程と、(d)膨張黒鉛からなる別の膨張黒鉛シートを準備し、該別の膨張黒鉛シートの一方の表面に固体潤滑剤の被覆層を形成して複層シートを形成する工程と、(e)線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの円筒状の編組金網の二つの層間に前記複層シートを挿入し、当該複層シートを二つの層間に挿入した円筒状の編組金網を当該複層シートの厚さ方向に加圧して円筒状の編組金網を扁平状の編組金網にすると共に複層シートの別の膨張黒鉛シートの膨張黒鉛と当該膨張黒鉛シートの一方の表面に形成された被覆層の固体潤滑剤とを扁平状の編組金網に充填して当該別の膨張黒鉛シートの膨張黒鉛と当該被覆層の固体潤滑剤と当該膨張黒鉛及び固体潤滑剤に混在一体化された扁平状の編組金網とからなると共に当該扁平状の編組金網からなる面と別の膨張黒鉛シートの一方の面に形成された被覆層の固体潤滑剤からなる面とが混在した外表面での当該扁平状の編組金網からなる面の占有面積率が30~60%である外層形成部材を形成する工程と、(f)前記筒状母材の外周面に前記外面層形成部材を当該外面層形成部材の帯状の編組金網からなる面と固体潤滑剤からなる面とが混在した外表面を外側にして捲回して予備円筒成形体を形成する工程と、(g)円筒内壁面、円筒内壁面に連なる部分凹球面状壁面及び貫通孔を備えていると共に該貫通孔に段付きコアを嵌挿することによって内部に中空円筒部と中空円筒部に連なる球帯状中空部とが形成される金型と該段付きコアとを準備し、該予備円筒成形体を段付きコアのコア外周面に挿入し、該段付きコアを金型の貫通孔に嵌挿すると共に該金型の内部において予備円筒成形体をコア軸方向に圧縮成形する工程とを具備しており、球帯状基体は、線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつ当該補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、外層用の耐熱材及び固体潤滑剤は、圧縮されて外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在して露出した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は、30~60%であることを特徴とする。
 本発明の球帯状シール体の製造方法によれば、別の膨張黒鉛シートの一方の表面に固体潤滑剤の被覆層を形成した複層シートを、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの円筒状の編組金網の二つの層間に挿入すると共に当該複層シートを二つの層間に挿入した円筒状の編組金網を当該複層シートの厚さ方向に加圧して円筒状の編組金網を扁平状の編組金網にすると共に複層シートの別の膨張黒鉛シートの膨張黒鉛と当該膨張黒鉛シートの一方の表面に形成された被覆層の固体潤滑剤とを扁平状の編組金網に充填して、当該別の膨張黒鉛シートの膨張黒鉛と当該被覆層の固体潤滑剤と当該膨張黒鉛及び固体潤滑剤に混在一体化された扁平状の編組金網とからなると共に当該扁平状の編組金網からなる面と別の膨張黒鉛シートの一方の面に形成された被覆層の固体潤滑剤からなる面とが混在した外表面での当該扁平状の編組金網からなる面の占有面積率が30~60%である外層形成部材を形成する。
 この外層形成部材により球帯状基体の部分凸球面状面に形成された外層は、外層用の補強材が球帯状基体の部分凸球面状面の径方向に密に重層されているので、本発明の製造方法による球帯状シール体では、外層が相手材との摺動摩擦によって最外層の補強材が摩滅、消失しても、相手材とは次の層の補強材からなる面と該補強材の金網の網目に充填された耐熱材の面とが混在した混成面との摺動摩擦に移行し、外層用の耐熱材及び補強材の夫々に負荷される荷重が低減される結果、微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合においても、相手材表面に摺動摩擦痕等の損傷を生じさせることが極めて少なく、損傷に起因する相手材表面の粗面化を極力防止でき、結果として、外層の部分凸球面状面と相手材との間のシール性の低下を極力防止できると共に異常摩擦音の発生を極力防止することができる。
 本発明の球帯状シール体の製造方法において、金型の内部の中空円筒部及び球帯状中空部に配された予備円筒成形体をパンチによりコア軸方向に1~3トン/cmの圧力で圧縮成形することにより、中央部に貫通孔を有すると共に円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を得ることができる。
 本発明の球帯状シール体の第二の製造方法は、前記第一の製造方法における(c)工程で、帯状の編組金網を膨張黒鉛シートに重ね合わせて重合体を形成した後、この重合体を内周側に編組金網が露出する一方、外周側に膨張黒鉛シートが露出するように円筒状に捲回して筒状母材を形成する工程と、以下、前記第一の製造方法と同様の方法で予備円筒成形体を形成する工程を具備している。
 また、本発明の球帯状シール体の第二の製造方法は、一方の端部に底部を有すると共に他方の端部に開口部を有する有底円筒状であって、該開口部側の外周面に他方の端部から漸次拡径する截頭円錐面部を備えたキャップを一方の端部に着脱自在に被冠した段付きコアを準備し、円筒壁面、円筒壁面に連なる部分凹球面壁面及び貫通孔とを備えていると共に該貫通孔に前記段付きコアを嵌挿することによって内部に中空円筒部と中空円筒部に連なる球帯状中空部とが形成される金型を準備し、段付きコアのキャップの外周面に予備円筒成形体を挿入し、該段付きコアを金型の貫通孔に嵌挿すると共に該金型の内部において予備円筒成形体をコア軸方向に圧縮成形する工程を具備している。
 第二の製造方法において、金型の中空円筒部及び球帯状中空部に配された予備円筒成形体をパンチによりコア軸方向に1~3トン/cmの圧力で圧縮成形することにより、中央部に貫通孔を有すると共に円筒面、該円筒面に連なる截頭円錐面及び該截頭円錐面に連なる拡径円筒内面を備えた円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を得ることができる。
 本発明の球帯状シール体の製造方法において、各膨張黒鉛シートは、膨張黒鉛に加えて、酸化抑制剤としての燐酸塩を1.0~16質量%含んでいてもよく、またこれらに更に燐酸を0.5~5.0質量%含んでいてもよい。
 外層となる別の膨張黒鉛シートの一方の表面の被覆層は、分散媒としての酸を含有する水にアルミナ水和物粒子を分散含有した水素イオン濃度(pH)が2~3を呈するアルミナゾルに、六方晶窒化硼素及び四ふっ化エチレン樹脂を分散含有した水性ディスパージョンであって、六方晶窒化硼素23~57質量%と四ふっ化エチレン樹脂33~67質量%及びアルミナ水和物5~15質量%とを含む潤滑組成物を固形分として30~50質量%分散含有した水性ディスパージョンを当該一方の表面に刷毛塗り、ローラ塗りあるいはスプレー等の手段で適用して形成されてもよい。
 本発明によれば、外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とが圧縮されて外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが露出して混在した平滑な混成面に形成されており、外層の外表面での該外層用の補強材からなる面の占有面積率が30~60%であるので、相手材との摺動摩擦において、外層用の耐熱材及び補強材の夫々に負荷される荷重が低減される結果、微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合においても、相手材を損傷させることなく異常摩擦音の発生を極力防止することができる球帯状シール体及びその製造方法を提供することができる。
図1は、本発明の球帯状シール体の実施の形態の一例の断面説明図である。 図2は、図1に示す球帯状シール体の部分拡大模式図である。 図3は、本発明の球帯状シール体の他の実施の形態の断面模式説明図である。 図4は、本発明の球帯状シール体の製造工程における編組金網の斜視説明図である。 図5は、本発明の球帯状シール体の製造工程における膨張黒鉛シートの斜視説明図である。 図6は、本発明の球帯状シール体の製造工程における編組金網の網目の平面説明図である。 図7は、本発明の球帯状シール体の製造工程における重合体の斜視説明図である。 図8は、本発明の球帯状シール体の製造工程における筒状母材の平面説明図である。 図9は、図8に示す筒状母材のIX-IX線矢視断面説明図である。 図10は、本発明の球帯状シール体の製造工程における被覆層を備えた複層シートの断面説明図である。 図11は、本発明の球帯状シール体の製造工程における外層形成部材の製造工程の説明図である。 図12は、本発明の球帯状シール体の製造工程における外層形成部材の製造工程の断面説明図である。 図13は、本発明の球帯状シール体の製造工程における外層形成部材の断面説明図である。 図14は、本発明の球帯状シール体の製造工程における外層形成部材の写真での平面説明図である。 図15は、本発明の球帯状シール体の製造工程における予備円筒成形体の平面説明図である。 図16は、図15に示す予備円筒成形体のXVI-XVI線矢視断面説明図である。 図17は、本発明の球帯状シール体の製造工程における金型の内部に予備円筒成形体を配置した状態の断面説明図である。 図18は、本発明の球帯状シール体の製造工程における他の形態の金型の断面説明図である。 図19は、本発明の球帯状シール体の製造工程における図18に示す金型の内部に予備円筒成形体を配置した状態の断面説明図である。 図20は、本発明の球帯状シール体を組込んだ排気管球面継手の断面説明図である。 図21は、自動車エンジンの排気系の説明図である。 図22は、従来の球帯状シール体を示す断面説明図である。 図23は、図22に示す球帯状シール体の一部拡大断面説明図である。
 次に本発明を、図に示す実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれらの例に何等限定されない。
 本発明の球帯状シール体における構成材料及び球帯状シール体の製造方法について説明する。
 <膨張黒鉛シートI及びその製造方法>
 濃度98%の濃硫酸を撹拌しながら、酸化剤として過酸化水素の60%水溶液を加え、これを反応液とする。この反応液を冷却して10℃の温度に保持し、該反応液に粒度30~80メッシュの鱗片状天然黒鉛粉末を添加して所定時間反応を行う。反応後、吸引濾過して酸処理黒鉛粉末を分離し、該酸処理黒鉛粉末を水で撹拌して吸引濾過するという作業を2回繰り返し、酸処理黒鉛粉末から硫酸分を充分除去する。ついで、硫酸分を充分除去した酸処理黒鉛粉末を乾燥炉で所定時間乾燥し、これを酸処理黒鉛粉末とする。
 上記酸処理黒鉛粉末を、960~1200℃の温度で1~10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240~300倍)を形成する。この膨張黒鉛粒子を所望のロール隙間に調整した双ロール装置に供給してロール成形し、所望の厚さの膨張黒鉛シートIを作製する。
 <膨張黒鉛シートII及びその製造方法>
 上記酸処理黒鉛粉末と同様の方法で得た酸処理黒鉛粉末を撹拌しながら、該酸処理黒鉛粉末に燐酸塩として、例えば濃度50%の第一燐酸アルミニウム〔Al(HPO〕水溶液をメタノールで希釈した溶液を噴霧状に配合し、均一に撹拌して湿潤性を有する混合物を作製する。この湿潤性を有する混合物を乾燥炉で所定時間乾燥する。ついで、乾燥した混合物を950~1200℃の温度で1~10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240~300倍)を形成する。この膨張処理工程において、第一燐酸アルミニウムは構造式中の水が脱離する。この膨張黒鉛粒子を所望のロール隙間に調整した双ロール装置に供給してロール成形し、所望の厚さの膨張黒鉛シートIIを作製する。
 <膨張黒鉛シートIII及びその製造方法>
 上記酸処理黒鉛粉末と同様の方法で得た酸処理黒鉛粉末を撹拌しながら、該酸処理黒鉛粉末に燐酸塩として、例えば濃度50%の第一燐酸アルミニウム水溶液と、燐酸として、例えば濃度84%のオルト燐酸(HPO)水溶液をメタノールで希釈した溶液を噴霧状に配合し、均一に撹拌して湿潤性を有する混合物を作製する。この湿潤性を有する混合物を乾燥炉で所定時間乾燥する。ついで、乾燥した混合物を950~1200℃の温度で1~10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240~300倍)を形成する。この膨張処理工程において、第一燐酸アルミニウムは構造式中の水が脱離し、オルト燐酸は脱水反応を生じて五酸化燐を生成する。この膨張黒鉛粒子を所望のロール隙間に調整した双ロール装置に供給してロール成形し、所望の厚さの膨張黒鉛シートIIIを作製する。
 このようにして作製された膨張黒鉛シートIIには、第一燐酸アルミニウムが1.0~16.0質量%含有されているのが好ましく、膨張黒鉛シートIIIには、第一燐酸アルミニウムが1.0~16.0質量%及び五酸化燐0.05~5.0質量%含有されているのが好ましい。この燐酸塩又は燐酸塩及び五酸化燐を含有した膨張黒鉛は、膨張黒鉛自体の耐熱性が向上されると共に酸化抑制作用が付与されるため、例えば600℃ないし600℃を超える高温領域での使用を可能とする。ここで、燐酸塩としては、上記第一燐酸アルミニウムの他に、第一燐酸リチウム(LiHPO)、第二燐酸リチウム(LiPO)、第一燐酸カルシウム〔Ca(HPO〕、第二燐酸カルシウム(CaHPO)、第二燐酸アルミニウム〔Al(HPO〕等を使用することができ、燐酸としては、上記オルト燐酸の他に、メタ燐酸(HPO)、ポリ燐酸等を使用することができる。
 上記膨張黒鉛シートI、膨張黒鉛シートII及び膨張黒鉛シートIIIにおいて、その密度は、好ましくは1.0~1.5Mg/m、より好ましくは1.0~1.2Mg/mで、その厚さは、0.30~0.60mmであることが好適である。
 <編組金網について>
 編組金網は、好適には、Fe系としてオーステナイト系のSUS304、SUS310S、SUS316、フェライト系のSUS430等のステンレス鋼線、Fe線(JISG3532)もしくはZnメッキFe線(JISG3547)又はCu系としてCu-Ni合金(白銅)線、Cu-Ni-Zn合金(洋白)線、黄銅線、ベリリウム銅線からなる金属細線を一本又は二本以上を使用して編んで形成される。
 球帯状基体用の編組金網には、線径が0.28~0.32mmの金属細線が好適に使用され、該線径の金属細線で形成された編組金網の網目の図6に示す目幅は、好適には、縦4~6mm、横3~5mm程度である。また、外層用の編組金網には、線径が0.10~0.20mmの金属細線が好適に使用され、該線径の金属細線で形成された編組金網の網目の図6に示す目幅は、好適には、縦1.0~3.0mm、横0.5~2.5mm程度である。
 <固体潤滑剤について>
 固体潤滑剤は、六方晶窒化硼素(以下「h-BN」と略称する)23~57質量%、アルミナ水和物5~15質量%及び四ふっ化エチレン樹脂(以下「PTFE」と略称する)33~67質量%を含む潤滑組成物を好ましい例として示し得る。
 この固体潤滑剤は、製造工程においては、分散媒としての酸を含有する水にアルミナ水和物粒子を分散含有した水素イオン濃度(pH)が2~3を呈するアルミナゾルに、h-BN及びPTFEを分散含有した水性ディスパージョンであって、h-BN23~57質量%とPTFE33~67質量%及びアルミナ水和物5~15質量%とを含む潤滑組成物を固形分として30~50質量%分散含有した水性ディスパージョンの形態で使用される。水性ディスパージョンを形成するh-BN粉末及びPTFE粉末は、可及的に微粉末であることが好ましく、これらには、好ましくは平均粒径10μm以下、さらに好ましくは平均粒径0.5μm以下の微粉末が使用される。
 水性ディスパージョンにおけるアルミナゾルの分散媒としての水に含有される酸は、アルミナゾルを安定化させるための解膠剤として作用するものである。そして、酸としては、塩酸、硝酸、硫酸、アミド硫酸等の無機酸が挙げられるが、特に硝酸が好ましい。
 水性ディスパージョンにおけるアルミナゾルを形成するアルミナ水和物は、組成式Al・nHO(組成式中、0<n<3)で表わされる化合物である。該化合物において、nは、通常、0(零)を超えて3未満の数、好ましくは0.5~2、さらに好ましくは0.7~1.5程度である。アルミナ水和物としては、例えばベーマイト(Al・nHO)やダイアスポア(Al・HO)等のアルミナ一水和物(水酸化酸化アルミニウム)、ギブサイト(Al・3HO)やバイヤライト(Al・3HO)等のアルミナ三水和物、擬ベーマイト等が挙げられる。
 次に、上記した構成材料からなる球帯状シール体の製造方法について、図面に基づき説明する。
 <第一の製造方法>
 (第一工程)図4に示すように、線径0.28~0.32mmの金属細線を円筒状に編んで形成した網目の目幅が縦4~6mm、横3~5mm程度(図6参照)の円筒状の編組金網1をローラ2及び3間に通して加圧し、所定の幅Dの帯状の編組金網4を作製し、編組金網4を所定の長さLに切断した球帯状基体用の編組金網5を準備する。
 (第二工程)図5に示すように、編組金網5の幅Dに対して1.10×Dから2.1×Dの幅dを有すると共に編組金網5の長さLに対して1.30×Lから2.7×Lの長さlを有し、密度が好ましくは1.0~1.5Mg/m、より好ましくは1.0~1.2Mg/mで、厚さが好ましくは0.30~0.60mmの膨張黒鉛シート6(膨張黒鉛シートI、膨張黒鉛シートII及び膨張黒鉛シートIIIのうちの一つからなる)を準備する。
 (第三工程)製造した球帯状シール体40(図1参照)において、部分凸球面状面35の大径側の環状端面36及び小径側の環状端面37に全体的に膨張黒鉛シート6の膨張黒鉛が露出するようにすべく、図7に示すように、部分凸球面状面35の大径側の環状端面36となる編組金網5の幅方向の一方の端縁7から0.1×Dから0.3×Dだけ膨張黒鉛シート6が幅方向にはみ出すと共に端縁7から膨張黒鉛シート6の幅方向のはみ出し量δ1が部分凸球面状面35の小径側の環状端面37となる編組金網5の幅方向の他方の端縁8からのはみ出し量δ2よりも多くなるようにし、また編組金網5の長さ方向の一方の端縁9から1.3×Lから2.7×Lだけ膨張黒鉛シート6が長さ方向にはみ出すと共に編組金網5の長さ方向の他方の端縁10と当該端縁10に対応する膨張黒鉛シート6の長さ方向の端縁11を合致させて当該膨張黒鉛シート6と編組金網5とを互いに重ね合わせた重合体12を得る。
 (第四工程)重合体12を、図8に示すように、円筒状の芯金(図示せず)の回りに編組金網5を内側にしてうず巻き状であって膨張黒鉛シート6が1回多くなるように捲回して、内周側に編組金網5が露出し、外周側に膨張黒鉛シート6が露出した筒状母材13を形成する。膨張黒鉛シート6としては、筒状母材13における膨張黒鉛シート6の巻き回数が編組金網5の巻き回数よりも多くなるように、編組金網5の長さLに対して1.3×Lから2.7×Lの長さlを有したものが予め準備される。筒状母材13において、図9に示すように、膨張黒鉛シート6は、幅方向の一方の端縁側において編組金網5の一方の端縁7から幅方向にδ1だけはみ出しており、また膨張黒鉛シート6の幅方向の他方の端縁側において編組金網5の他方の端縁8から幅方向にδ2だけはみ出している。
 (第五工程)
 <外層形成部材及びその製造方法>
 解膠剤として作用する硝酸を含有した分散媒としての水にアルミナ水和物粒子を分散含有した水素イオン濃度(pH)が2~3を呈するアルミナゾルに、h-BN及びPTFEを分散含有した水性ディスパージョンであって、h-BN23~57質量%とPTFE33~67質量%及びアルミナ水和物5~15質量%とを含む潤滑組成物を固形分として30~50質量%分散含有した水性ディスパージョンを準備する。
 膨張黒鉛シート6と同様の膨張黒鉛シート6を別途準備し、膨張黒鉛シート6の一方の表面14に、h-BN23~57質量%とPTFE33~67質量%及びアルミナ水和物5~15質量%とを含む潤滑組成物を固形分として30~50質量%分散含有した水性ディスパージョンを刷毛塗り、ローラ塗りあるいはスプレー等の手段で適用し、これを乾燥させて潤滑組成物からなる固体潤滑剤の被覆層15を形成した複層シート16(図10参照)を作製する。
 (第六工程)線径が0.10~0.20mmの金属細線を編み機(図示せず)で連続的に編んで得られる網目の目幅が縦1.0~3.0mm、横0.5~2.5mm(図6参照)の外層用の円筒状の編組金網17の内部である二つの層間に、編組金網17の直径(内径)の長さよりも小さい長さ(幅)に形成した固体潤滑剤の被覆層15を備えた複層シート16を連続的に挿入(図11参照)し、複層シート16を挿入した編組金網17をその挿入開始端から平滑な外周面を有する一対の円筒ローラ18及び19間の隙間Δ1に供給して複層シート16の厚さ方向に加圧(図11、図12及び図13参照)して扁平状の編組金網20に複層シート16と編組金網20とを一体化し、編組金網20の網目に複層シート16の膨張黒鉛シート6の膨張黒鉛と膨張黒鉛シート6の表面14を被覆した被覆層15の固体潤滑剤とを充填して、外表面21で編組金網20の一部が被覆層15の固体潤滑剤からなる面22と共に露出し、編組金網20の他の部分が被覆層15の固体潤滑剤及び膨張黒鉛シート6の膨張黒鉛に埋設するように複層シート16と編組金網20とを互いに圧着して、外表面21での編組金網20からなる面23の占有面積率が30~60%であると共に外表面21に編組金網20からなる面23と固体潤滑剤からなる面22とが混在して露出した外層形成部材24(図13参照)を作製する。
 ここで、外表面21での編組金網20からなる面23の占有面積率は、次のようにして決定するとよい。外層形成部材24の平面(平面写真)を示す図14を参照して、(円筒状の編組金網20の周方向の網目の数の2分の1の数)×(外層形成部材24の測定範囲(長さL及び幅D)の中に存在する編組金網20の縦方向の目幅L´をもった網目の数)×(当該目幅L´をもった一つの網目を形成する編組金網20の金属細線の長さ)×(当該金属細線の直径)から測定範囲の面積(長さL×幅D=S0)中の金属細線部分の面積S1を算出し、この金属細線部分の面積S1の測定範囲の面積(長さL×幅D=S0)中に占める割合(S1/S0×100)を面22の占有面積率とする。例えば、編組金網20の周方向の網目の数が56個、外層形成部材24の測定範囲の長さLが20mm、外層形成部材24の測定範囲の幅Dが39mm、編組金網20の一つの網目の縦方向の目幅L´が2.01mm、当該一つの網目を形成する金属細線の長さが6.43mm、当該金属細線の直径を0.15mmとすると、測定範囲の面積S0は、780mm(=20mm×39mm)となり、測定範囲内の金属細線部分の面積は、56/2×(20/2.01)×6.43×0.15=28×9.95×6.43×0.15=268.7mmとなり、この金属細線部分の面積の単位面積中に占める割合は268.7/780×100=34.4%となる。したがって、この外層形成部材24においては、外表面21での編組金網20からなる面23の占有面積率は34.4%となる。なお、外表面21の複数の測定範囲において、外層形成部材24における編組金網20の縦方向の目幅L´及び目幅L´をもった一つの網目を形成する金属細線の長さをそれぞれマイクロスコープにて測定し、測定された値から計算により得られた各測定範囲の占有面積率の算術平均値から占有面積率を決定するとよい。
 外層形成部材24において、外表面21での編組金網20からなる面23の占有面積率を30~60%、好ましくは30~45%とすることは、相手材との摺動摩擦によって外表面21で露出した編組金網20からなる面23に摩耗が生じ、摩耗量に応じて編組金網20からなる面23の占有面積率が漸次増加していくが、外表面21で露出する編組金網20からなる面23の占有面積率が30~60%であれば、相手材との摺動摩擦において、膨張黒鉛シート6及び編組金網20の夫々に負荷される荷重が低減される結果、微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合においても、相手材を損傷させることなく異常摩擦音の発生を極力防止することができるという効果をもたらす。
 第六工程における円筒ローラ18及び19との間の隙間Δ1は、0.35~0.60mmの範囲に設定されるのが好ましい。
 (第七工程)このようにして得た外層形成部材24を、固体潤滑剤が露出する面22を外側にして前記筒状母材13の外周面に巻き付け、予備円筒成形体25を作製する(図15参照)。
 (第八工程)円筒内壁面26と円筒内壁面26に連なる部分凹球面状壁面27と部分凹球面状壁面27に連なる小径円筒内壁面28aで規定された貫通孔28とを備えていると共に貫通孔28に段付きコア29を嵌挿することによって内部に中空円筒部30と中空円筒部30に連なる球帯状中空部31とが形成される図17に示すような金型32を準備し、段付きコア29に予備円筒成形体25を挿入する。
 金型32の中空円筒部30及び球帯状中空部31に配された予備円筒成形体25をコア軸方向に98~294N/mm(1~3トン/cm)の圧力で圧縮成形し、図1及び図2に示すような、中央部に貫通孔33を規定する円筒内面34、部分凸球面状面35並びに部分凸球面状面35の大径側及び小径側の環状端面36及び37により規定された球帯状基体38と、球帯状基体38の部分凸球面状面35に一体的に形成された外層39とを備えた球帯状シール体40を作製する。
 球帯状シール体40において、図1及び図2に示すように、球帯状基体38は、線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~4mm程度の圧縮された編組金網5からなる球帯状基体用の補強材と、この補強材の編組金網5の網目を充填し、かつこの補強材の編組金網5と混在一体化されていると共に圧縮された膨張黒鉛シート6の膨張黒鉛を含む耐熱材とを具備しており、外層39は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mm程度の圧縮された編組金網17からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む膨張黒鉛シート6からなる外層用の耐熱材とを具備しており、圧縮された固体潤滑剤及び外層用の耐熱材の膨張黒鉛シート6の膨張黒鉛は、圧縮された外層用の補強材の編組金網17の網目に充填されており、圧縮された外層用の補強材は、球帯状基体38の部分凸球面状面35に径方向に密に重層されており、外層39の外表面41は、外層用の補強材の編組金網17からなる面23と固体潤滑剤からなる面22とが混在して露出した平滑な混成面42に形成されており、外層39の外表面41での外層用の補強材の編組金網17からなる面23の占有面積率は、30~60%である。
 <第二の製造方法>
 前記第一工程から第七工程まで同じ。
 (第八工程) 一方の端部に底部29aを有すると共に他方の端部に開口部29bを有する有底円筒状であって、開口部29b側の外周面に他方の端部から漸次拡径する截頭円錐面部29cを備えたキャップ29dを一方の端部に着脱自在に被冠した段付きコア29を準備する。円筒内壁面26と円筒内壁面26に連なる部分凹球面壁面27と部分凹球面壁面27に連なる小径円筒内壁面28aで規定された貫通孔28とを備えていると共に貫通孔28に前記段付きコア29を嵌挿することによって内部に中空円筒部30と中空円筒部30に連なる球帯状中空部31とが形成される図18に示すような金型32aを準備し、段付きコア29のキャップ29dの外周面に図19に示すように予備円筒成形体25を挿入する。
 金型32aの中空円筒部30及び球帯状中空部31に配された予備円筒成形体25をパンチPによりコア軸方向に98~294N/mm(1~3トン/cm)の圧力で圧縮成形し、図3に示すような、中央部に貫通孔33を有すると共に円筒面34a、円筒面34aに連なる截頭円錐面34b及び截頭円錐面34bに連なる拡径円筒内面34cを備えた円筒内面34と部分凸球面状面35と部分凸球面状面35の大径側及び小径側の環状端面36及び37とにより規定された球帯状基体38と、球帯状基体38の部分凸球面状面35に一体的に形成された外層39とを備えた球帯状シール体40aを作製する。
 球帯状シール体40aにおいて、図2及び図3に示すように、球帯状基体38は、線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~4mm程度の圧縮された編組金網5からなる球帯状基体用の補強材と、この補強材の編組金網5の網目を充填し、かつこの補強材の編組金網5と混在一体化されていると共に圧縮された膨張黒鉛シート6の膨張黒鉛を含む耐熱材とを具備しており、外層39は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mm程度の圧縮された編組金網17からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む膨張黒鉛シート6からなる外層用の耐熱材とを具備しており、圧縮された固体潤滑剤及び外層用の耐熱材の膨張黒鉛シート6の膨張黒鉛は、圧縮された外層用の補強材の編組金網17の網目に充填されており、外層用の補強材は、球帯状基体38の部分凸球面状面35に径方向に密に重層されており、外層39の外表面41は、外層用の補強材の編組金網17からなる面23と固体潤滑剤からなる面22とが露出して混在した混成面42に形成されており、外層39の外表面41での外層用の補強材の編組金網17からなる面23の占有面積率は、30~60%であり、貫通孔33を規定する円筒内面34は、球帯状基体38の小径側の環状端面37から大径側の環状端面36に向かう方向において所定の幅を有した円筒面34aと、円筒面34aの端部から球帯状基体38の大径側の環状端面36に向かうに連れて漸次拡径すると共に円筒面34aの端部から大径側の環状端面36に向かう方向において所定の幅を有した截頭円錐面34bと、截頭円錐面34bの端部から大径側の環状端面36に向かう方向において所定の幅を有していると共に排気管100の管端部101(図20参照)の外径に相当する径をもった拡径円筒内面34cとを具備しており、球帯状基体38の圧縮された金網からなる補強材が外部に露出した面となり、円筒面34aは、その両端部の間で同じ径をもって形成されていると共にその一方の端部で球帯状基体38の小径側の環状端面37に連接しており、截頭円錐面34bは、その小径側の端部で円筒面34aの他方の端部に連接している一方、その大径側の端部で拡径円筒内面34cの一方の端部に連接しており、拡径円筒内面34cは、その他方の端部で球帯状基体38の大径側の環状端面36に連接していると共にその両端部の間で同じ径をもって形成されており、環状端面36及び37には、膨張黒鉛シート6において編組金網5から幅方向にはみ出した部分(δ2及びδ1の部分)が圧縮されて曲折されかつ展延された膨張黒鉛シート6の膨張黒鉛からなる耐熱材が外部に露出している。
 球帯状シール体40及び40aは、図20に示す排気管球面継手に組込まれて使用される。すなわち、図20に示す排気管球面継手において、エンジン側に連結された上流側排気管100の外周面には、管端部101を残して上流側排気管100に一体的に形成されたフランジ部102を含むフランジ200が立設されており、管端部101には、球帯状シール体40が貫通孔33を規定する円筒内面34において嵌合されており、大径側の環状端面36において球帯状シール体40がフランジ200のフランジ部102に当接されて着座せしめられており、上流側排気管100と対峙して配されていると共にマフラ側に連結された下流側排気管300には、凹球面部302と凹球面部302に連接されたフランジ部303とを一体的に備えた径拡大部301が固着されており、凹球面部302の内面304が球帯状シール体40の外層39の外表面41における補強材の編組金網17からなる面23と固体潤滑剤からなる面22とが混在した平滑な混成面42に摺動自在に接している。
 図20に示す排気管球面継手において、一端がフランジ200に固定されていると共に他端が径拡大部301のフランジ部303を挿通して配された一対のボルト400とボルト400の膨大頭部及びフランジ部303との間に夫々配された一対のコイルばね500とにより、下流側排気管300には、常時、上流側排気管100方向にばね力が付勢されている。そして、排気管球面継手は、上、下流側排気管100、300に生じる相対角変位に対しては、球帯状シール体40の外層39のすべり面としての平滑な混成面42と下流側排気管300の端部に形成された径拡大部301の凹球面部302の内面304との摺接でこれを許容するように構成されている。
 実施例1
 金属細線として線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦5mm、横4mmの円筒状の編組金網を作製し、これを一対のローラ間に通して球帯状基体用の補強材としての帯状の編組金網を準備し、この帯状の編組金網と密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シートIとを重ね合わせて重合体を形成し、内側に該帯状の編組金網を配置して、帯状の編組金網が5回、膨張黒鉛シートIが6回となるように重合体をうず巻き状に捲回して最外周に膨張黒鉛シートIを配置した筒状母材を作製した。この筒状母材においては、膨張黒鉛シートIの幅方向の両端部はそれぞれ帯状の編組金網の幅方向に突出(はみ出し)している。
 前記膨張黒鉛シートIと同様の密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シートIを別途準備する一方、解膠剤として作用する硝酸を含有した分散媒としての水にアルミナ水和物としてベーマイト(アルミナ一水和物:Al・H0)を分散含有した水素イオン濃度(pH)が2を呈するアルミナゾルを準備し、このアルミナゾルにh-BN及びPTFEを分散含有した水性ディスパージョンであって、h-BN45.0質量%とPTFE50.0質量%及びベーマイト5.0質量%を含む潤滑組成物を固形分として50質量%分散含有した水性ディスパージョン(h-BN22.5質量%、PTFE25.0質量%及びベーマイト2.5質量%)を、該膨張黒鉛シートIの一方の表面にローラ塗りし、乾燥して該潤滑組成物からなる固体潤滑剤の被覆層(h-BN45.0質量%、PTFE50.0質量%及びベーマイト5.0質量%)を膨張黒鉛シートIの一方の表面に形成し、膨張黒鉛シートIとこの膨張黒鉛シートIの一方の表面を被覆した固体潤滑剤の被覆層とからなる複層シートを作製した。
 金属細線として線径0.15mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦2.01mm、横0.70mm(マイクロスコープにて測定)の外層用の補強材としての円筒状の編組金網を連続的に編むと共に該円筒状の編組金網の内部の二つの層間に該複層シートを連続的に挿入し、該複層シートの挿入開始端から該複層シートを二つの層間に挿入した円筒状の編組金網を、一対の円筒ローラ間の隙間に供給して該複層シートの厚さ方向に加圧して円筒状の編組金網を扁平状の編組金網に変形し、複層シートと当該扁平状の編組金網とを、該編組金網の網目に複層シートの膨張黒鉛シートIの膨張黒鉛を充填すると共に外表面に編組金網の一部と複層シートの被覆層の固体潤滑剤とが共に露出し、編組金網の他の部分が複層シートの被覆層及び膨張黒鉛シートに埋設するように互いに圧着して、一体化し、外表面での編組金網からなる面の占有面積率が34.5%であると共に外表面に編組金網からなる面と被覆層の固体潤滑剤からなる面とが混在して露出した外層形成部材を作製した。
 前記筒状母材の外周面に該外層形成部材を、その固体潤滑剤が露出した側の面を外側にして捲回し、予備円筒成形体を作製した。
 この予備円筒成形体を図17に示す金型の段付きコアに挿入し、該予備円筒成形体を金型の内部の中空部に配置した。
 金型の中空部に配した予備円筒成形体をコア軸方向に294N/mm(3トン/cm)の圧力で圧縮成形し、中央部に貫通孔を規定すると共に球帯状基体用の補強材としての帯状の編組金網が露出した露出面からなる円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を作製した。
 得られた球帯状シール体において、球帯状基体は、線径が0.28mmの金属細線を用いて編まれた網目の目幅が縦5mm、横4mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつこの補強材の編組金網と混在一体化されていると共に圧縮された膨張黒鉛を含む耐熱材とを具備しており、外層は、線径が0.15mmの金属細線を用いて編まれた網目の目幅が縦2.01mm、横0.70mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、圧縮された固体潤滑剤及び外層用の耐熱材は、外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが露出して混在した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は、34.5%である。
 実施例2
 前記実施例1と同様にして筒状母材を作製した。この筒状母材においては、膨張黒鉛シートIの幅方向の両端部はそれぞれ球帯状基体用の補強材となる帯状の編組金網の幅方向に突出(はみ出し)している。
 前記実施例1と同様の水性ディスパージョンを、該膨張黒鉛シートIの一方の表面にローラ塗りし、乾燥して該潤滑組成物からなる固体潤滑剤の被覆層(h-BN45.0質量%、PTFE50.0質量%及びベーマイト5.0質量%)を膨張黒鉛シートIの一方の表面に形成し、膨張黒鉛シートIとこの膨張黒鉛シートIの一方の表面を被覆した固体潤滑剤の被覆層とからなる複層シートを作製した。
 金属細線として前記実施例1と同様の線径0.15mmのオーステナイト系ステンレス鋼線を一本使用して網目の目幅が縦1.24mm、横0.64mm(マイクロスコープにて測定)の外層用の補強材としての円筒状の編組金網を連続的に編むと共に該円筒状の編組金網の内部の二つの層間に該複層シートを連続的に挿入し、該複層シートの挿入開始端から該複層シートを挿入した円筒状の編組金網を、一対の円筒ローラ間の隙間に供給して該複層シートの厚さ方向に加圧して円筒状の編組金網を扁平状の編組金網に変形し、複層シートと当該編組金網とを、該編組金網の網目に複層シートの膨張黒鉛Iの膨張黒鉛を充填すると共に外表面に編組金網の一部と複層シートの膨張黒鉛シートIの膨張黒鉛とが共に露出し、編組金網の他の部分が複層シートの被覆層及び膨張黒鉛シートIに埋設するように互いに圧着して、一体化し、外表面での編組金網からなる面の占有面積率が42.1%であると共に外表面に編組金網からなる面と固体潤滑剤からなる面とが混在して露出した外層形成部材を作製した。
 前記筒状母材の外周面に該外層形成部材を、その固体潤滑剤が露出した側の面を外側にして捲回し、予備円筒成形体を作製し、以下実施例1と同様の方法で中央部に貫通孔を規定すると共に球帯状基体用の補強材としての帯状の編組金網が露出した露出面からなる円筒内面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を作製した。
 得られた球帯状シール体において、球帯状基体は、線径が0.28mmの金属細線を用いて編まれた網目の目幅が縦5mm、横4mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつこの補強材の編組金網と混在一体化されていると共に圧縮された膨張黒鉛を含む耐熱材とを具備しており、外層は、線径が0.15mmの金属細線を用いて編まれた網目の目幅が縦1.24mm、横0.64mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、圧縮された固体潤滑剤及び外層用の耐熱材は、外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが露出して混在した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は42.1%である。
 実施例3
 前記実施例2において、各耐熱材としての膨張黒鉛シートに、五酸化燐1.0質量%、第一燐酸アルミニウム4.0質量%及び膨張黒鉛を含む密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シートIIIを使用した以外は前記実施例2と同様の構成材料及び実施例1と同様の方法で球帯状シール体を作製した。
 得られた球帯状シール体において、球帯状基体は、線径が0.28mmの金属細線を用いて編まれた網目の目幅が縦5mm、横4mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつこの補強材の編組金網と混在一体化されていると共に圧縮された第一燐酸アルミニウム4.0質量%、五酸化燐1.0質量%及び膨張黒鉛を含む耐熱材とを具備しており、外層は、線径が0.15mmの金属細線を用いて編まれた網目の目幅が縦1.24mm、横0.64mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、第一燐酸アルミニウム4.0質量%、五酸化燐1.0質量%及び膨張黒鉛を含む外層用の耐熱材とを具備しており、圧縮された固体潤滑剤及び外層用の耐熱材は、外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが露出して混在した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は42.1%である。
 比較例1(特許文献1の実施例3相当)
 金属細線として線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦5mm、横4mmの円筒状の編組金網を作製し、これを一対のローラ間に通して帯状の編組金網とし、これを球帯状基体用の補強材とした。球帯状基体用の耐熱材となる膨張黒鉛シートに、密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シートIを使用し、この膨張黒鉛シートIと該帯状の編組金網とを重ね合わせて重合体を形成し、内側に帯状の編組金網を配置して、帯状の編組金網が5回、膨張黒鉛シートIが6回となるように重合体をうず巻き状に捲回して最外周に膨張黒鉛シートIを配した筒状母材を作製した。この筒状母材においては、膨張黒鉛シートIの幅方向の両端部はそれぞれ球帯状基体用の補強材となる帯状の編組金網の幅方向に突出(はみ出し)している。
 外層用の耐熱材として、密度0.3Mg/m、厚さ1.35mmの膨張黒鉛シートIを使用した。外層用の補強材として、線径0.15mmのオーステナイト系ステンレス鋼線(SUS304)を連続的に編んだ網目の目幅が縦3.5mm、横2.5mmの円筒状の編組金網を使用し、該円筒状の編組金網の内面に外層用の耐熱材となる膨張黒鉛シートIを連続的に挿入し、該膨張黒鉛シートIの挿入開始端から該膨張黒鉛シートIを挿入した円筒状の編組金網を、円筒ローラと外周面に軸方向に沿って複数個の環状凹溝を有するローラとの隙間(隙間Δ1は0.5mmとした。)に供給して該膨張黒鉛シートIの厚さ方向に加圧し、さらに別の一対の円筒ローラ間の隙間(隙間Δ2は0.45mmとした。)に供給し、加圧して扁平状にされた編組金網の網目に膨張黒鉛シートIの膨張黒鉛を密に充填すると共に該膨張黒鉛シートI中に編組金網が埋設するように膨張黒鉛シートと編組金網とを互いに圧着して、膨張黒鉛シートIの面と編組金網からなる面とを面一にすると共に外表面で該編組金網からなる面と膨張黒鉛シートIの膨張黒鉛からなる面とが点在して露出した外層用の複合シートを作製した。
 潤滑組成物として、前記実施例1と同様の水性ディスパージョン(h-BN45.0質量%とPTFE50.0質量%及びベーマイト5.0質量%を含む潤滑組成物を固形分として50質量%分散含有した水性ディスパージョン)を使用し、この水性ディスパージョンを、該複合シートの前記環状凹溝を有するローラによって加圧された側の表面にローラ塗りし、乾燥して該複合シートの一方の表面に潤滑組成物からなる固体潤滑剤の被覆層(h-BN45.0質量%とPTFE50.0質量%及びベーマイト5.0質量%)を形成した外層用の複層シートを作製した。
 前記筒状母材の外周面に該外層用の複層シートをその被覆層を外側にして捲回し、予備円筒成形体を作製し、以下前記実施例1と同様の方法で、中央部に貫通孔を規定する円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を作製した。
 得られた球帯状シール体において、球帯状基体は、圧縮された膨張黒鉛を含む球帯状基体用の耐熱材と、線径が0.28mmの金属細線を用いて編まれた網目の目幅が縦5mm、横4mmの圧縮された編組金網からなると共に球帯状基体用の耐熱材の圧縮された膨張黒鉛シートIに絡み合って当該膨張黒鉛シートIと構造的一体性を有する球帯状基体用の補強材とを具備しており、外層は、圧縮された線径が0.15mmの金属細線を用いて編まれた網目の目幅が縦3.5mm、横2.5mmの編組金網からなる外層用の補強材と、該補強材の編組金網の網目に充填されていると共に圧縮された膨張黒鉛シートIからなる耐熱材と、被覆層の固体潤滑剤とを具備しており、平滑な外層は、被覆層の固体潤滑剤からなっている(図22及び図23参照)。 
 比較例2(特許文献2の実施例11相当)
 球帯状基体用の補強材として前記比較例1と同様の帯状の編組金網を使用した。球帯状基体用の耐熱材となる膨張黒鉛シートに、五酸化燐1.0質量%、第一燐酸アルミニウム4.0質量%及び膨張黒鉛を含む密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シートIIIを使用し、この膨張黒鉛シートIIIと帯状の編組金網との重合体をうず巻き状に捲回して最外周に該膨張黒鉛シートIIIを配して筒状母材を作製した。この筒状母材においては、膨張黒鉛シートIIIの幅方向の両端部はそれぞれ球帯状基体用の補強材となる帯状金網の幅方向に突出(はみ出し)している。
 外層用の耐熱材として、五酸化燐1.0質量%、第一燐酸アルミニウム4.0質量%及び膨張黒鉛を含む密度0.3Mg/m、厚さ1.35mmの膨張黒鉛シートIIIを用いた。外層用の補強材として、前記比較例1と同様の線径0.15mmのオーステナイト系ステンレス鋼線(SUS304)を連続的に編んだ網目の目幅が縦3.5mm、横2.5mmの円筒状の編組金網を使用し、該円筒状編組金網の内面に外層用の耐熱材としての膨張黒鉛シートIIIを連続的に挿入し、以下実施例1と同様の方法で外層用の耐熱材としての膨張黒鉛シートIIIの五酸化燐1.0質量%、第一燐酸アルミニウム及び膨張黒鉛からなる面と膨張黒鉛シートIIIの五酸化燐1.0質量%、第一燐酸アルミニウム及び膨張黒鉛からなる面とが点在して露出した外層用の複合シートを作製した。
 前記比較例1と同様にして、外層用の複合シートの一方の表面に固体潤滑剤の被覆層(h-BN45.0質量%とPTFE50.0質量%及びベーマイト5.0質量%)を形成した外層用の複層シートを作製した。
 前記筒状母材の外周面に該外層用の複層シートをその被覆層を外側にして捲回し、予備円筒成形体を作製し、以下前記実施例1と同様にして、中央部に貫通孔を規定する円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を作製した。
 得られた球帯状シール体において、球帯状基体は、五酸化燐1.0質量%、第一燐酸アルミニウム4.0質量%及び膨張黒鉛を含む圧縮された膨張黒鉛シートIIIからなる耐熱材と、線径が0.28mmの金属細線を用いて編まれた網目の目幅が縦5mm、横4mmの編組金網からなると共に圧縮された膨張黒鉛シートIIIに絡み合って構造的一体性を有する球帯状基体用の補強材とを有しており、外層は、圧縮された線径が0.15mmの金属細線を用いて編まれた網目の目幅が縦3.5mm、横2.5mmの編組金網からなる外層用の補強材と、該補強材の編組金網の網目を充填すると共に圧縮された膨張黒鉛シートIIIからなる耐熱材と、被覆層の固体潤滑剤とを具備しており、平滑に形成されている外層の外表面は、被覆層の固体潤滑剤からなっている。
 次に、上記実施例1ないし実施例3及び比較例1ないし比較例2で得た球帯状シール体を図20に示す排気管球面継手に組込み、異常摩擦音の発生の有無及びガス漏れ量(l/min)及び摩耗量について試験した結果を説明する。
 <異常摩擦音の発生の有無の試験条件>
 コイルばねによる押圧力(スプリングセットフォース):1177N
 揺動角度:±3°
 加振周波数:12Hz
 温度(図20に示す凹球面部302の外表面温度):室温(25℃)~500℃
 試験回数:8サイクル(200万回)
 相手材(図20に示す径拡大部301の材質):SUS304
 <試験方法と測定方法>
 室温(25℃)において12Hzの加振周波数で±3°の揺動運動を1回として45,000回行ったのち、該揺動運動を継続しながら雰囲気温度を500℃まで昇温(昇温中の揺動回数45,000回)し、500℃の温度に到達した時点で115,000回の揺動運動を行い、ついで該揺動運動を継続しながら雰囲気温度を室温まで降温(降温中の揺動回数45,000回)するという全揺動回数250,000回を1サイクルとして8サイクル(2,000,000回)行う。
 異常摩擦音の発生の有無の評価は、上記の(1)揺動回数50万回、(2)揺動回数100万回、(3)揺動回数150万回、(4)揺動回数200万回の時点で、次の判定レベルにて行った。
 <異常摩擦音の判定レベル>
 記号:0    異常摩擦音の発生なし。
 記号:0.5  集音パイプで異常摩擦音の発生を確認できる。
 記号:1    排気管球面継手の摺動部位から約0.2m離れた位置で異常摩擦音の発生を確認できる。
 記号:1.5  排気管球面継手の摺動部位から約0.5m離れた位置で異常摩擦音の発生を確認できる。
 記号:2    排気管球面継手の摺動部位から約1m離れた位置で異常摩擦音の発生を確認できる。
 記号:2.5  排気管球面継手の摺動部位から約2m離れた位置で異常摩擦音の発生を確認できる。
 記号:3    排気管球面継手の摺動部位から約3m離れた位置で異常摩擦音の発生を確認できる。
 記号:3.5  排気管球面継手の摺動部位から約5m離れた位置で異常摩擦音の発生を確認できる。
 記号:4    排気管球面継手の摺動部位から約10m離れた位置で異常摩擦音の発生を確認できる。
 記号:4.5  排気管球面継手の摺動部位から約15m離れた位置で異常摩擦音の発生を確認できる。
 記号:5    排気管球面継手の摺動部位から約20m離れた位置で異常摩擦音の発生を確認できる。
 以上の判定レベルの総合判定において、記号:0から記号:2.5までを異常摩擦音の発生なし(合格)と判定し、記号:3から記号:5までを異常摩擦音の発生あり(不合格)とした。
 また、上記試験条件における試験回数200万回終了後の各実施例1ないし実施例3及び比較例1ないし比較例2からなる球帯状シール体の外層の摩耗量を測定した。
 <ガス漏れ量の試験条件>
 コイルばねによる押圧力(スプリングセットフォース):588N
 揺動角度:±3°
 加振周波数(揺動速度):1.6Hz
 温度(図20に示す凹球面部302の外表面温度):室温(25℃)~500℃
 揺動回数:200万回
 相手材(図20に示す径拡大部301の材質):SUS304
 <試験方法>
 室温において1.6Hzの加振周波数で±3°の揺動運動を継続しながら温度500℃まで昇温し、その温度を保持した状態で揺動運動を継続し、揺動回数が100万回及び200万回に到達した時点でのガス漏れ量について測定した。
 <ガス漏れ量の測定方法>
 図20に示す排気管球面継手の上流側排気管100の開口部を閉塞し、下流側排気管300側から、49kPa(0.5kgf/cm)の圧力で乾燥空気を流入し、継手部分(球帯状シール体40の外表面41と径拡大部301の内面304との摺接部、球帯状シール体40の円筒内面34と上流側排気管100の管端部101との嵌合部及び球帯状シール体40の球帯状基体38の大径側の環状端面36と上流側排気管100に立設されたフランジ部102との当接部)からのガス漏れ量を流量計にて、(1)試験初期(開始前)、(2)揺動回数100万回及び(3)揺動回数200万回後の静止中立状態及び加振状態でのガス漏れ量を測定した。
 表1は上記試験結果を示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1の摩耗量において、実施例1ないし実施例3からなる球帯状シール体の揺動回数200万回後の外層の表面状態は、最外層の編組金網からなる補強材が摩滅し、その下層に位置する補強材が露出していたのに対し、比較例1及び比較例2からなる球帯状シール体の外層は、揺動回数125万回で最外層の編組金網からなる補強材が摩滅し、その下層に位置する膨張黒鉛を含む耐熱材が露出していた。表1中の摩耗量の*印は、揺動回数125万回終了時点の摩耗量である。
 表1に示す試験結果から、実施例1ないし実施例3からなる球帯状シール体は、異常摩擦音の評価において、比較例1及び比較例2からなる球帯状シール体よりも優れていることがわかる。比較例1及び比較例2の球帯状シール体に異常摩擦音が発生したのは、表1に示す摩耗量の試験結果から、揺動回数125万回終了後において、摺動摩擦面は膨張黒鉛を含む耐熱材のみが露出した面となっており、相手材とはこの露出した耐熱材との摺動に移行したためと推察される。
 以上のように、本発明の球帯状シール体によれば、外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、外層用の耐熱材及び固体潤滑剤は、圧縮されて外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されているので、相手材との摺動摩擦によって最外層の補強材が摩滅、消失しても、相手材とはその下層に位置する補強材からなる面と該補強材の金網の網目に充填された耐熱材の面とが混在した混成面との摺動摩擦に移行し、外層用の耐熱材及び補強材の夫々に負荷される荷重が低減される結果、微小な揺動運動や軸方向の過大な入力が長期間連続して負荷された場合においても、相手材表面に摺動摩擦痕等の損傷を生じさせることが極めて少なく、損傷に起因する相手材表面の粗面化を極力防止でき、結果として、外層の部分凸球面状面と相手材との間のシール性の低下を極力防止できると共に異常摩擦音の発生を極力防止することができる球帯状シール体及びその製造方法を提供することができる。
 1、4、5、17、20 編組金網
 6 膨張黒鉛シート
 12 重合体
 13 筒状母材
 15 被覆層
 16 複層シート
 21、41 外表面
 24 外層形成部材
 25 予備円筒成形体
 32 金型
 34 円筒内面
 35 部分凸球面状面
 39 外層
 40 球帯状シール体
 

Claims (12)

  1.  円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えていると共に排気管継手に用いられる球帯状シール体であって、球帯状基体は、線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつ当該補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、外層用の耐熱材及び固体潤滑剤は、圧縮されて外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在して露出した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は、30~60%であることを特徴とする球帯状シール体。
  2.  円筒内面は、球帯状基体用の耐熱材の膨張黒鉛の露出面からなる請求項1に記載の球帯状シール体。
  3.  円筒内面は、球帯状基体用の補強材の編組金網の露出面からなる請求項1又は2に記載の球帯状シール体。
  4.  円筒内面は、球帯状基体の小径側の環状端部から大径側の環状端部に向かう方向において所定の幅を有していると共に両端部の間で同じ径を有している円筒面と、該円筒面の端部から球帯状基体の大径側の環状端部に向かうに連れて漸次拡径すると共に該円筒面の端部から球帯状基体の大径側の環状端部に向かう方向において所定の幅を有した截頭円錐面と、該截頭円錐面の大径側の環状端部から球帯状基体の大径側の環状端部に向かう方向において所定の幅を有していると共に一方の排気管の管端部の外径に相当する径をもった拡径円筒面とを有しており、円筒面は、その一方の端部で球帯状基体の小径側の環状端部に連接しており、截頭円錐面は、その小径側の環状端部で該円筒面の他方の端部に連接している一方、その大径側の環状端部で拡径円筒面の一方の端部に連接しており、拡径円筒面は、その他方の端部で球帯状基体の大径側の環状端部に連接していると共にその両端部の間で同じ径をもって形成されている請求項3に記載の球帯状シール体。
  5.  潤滑組成物は、六方晶窒化硼素23~57質量%、アルミナ水和物5~15質量%及び四ふっ化エチレン樹脂33~67質量%を含んでいる請求項1から4のいずれか一項に記載の球帯状シール体。
  6.  球帯状基体用及び外層用の耐熱材の夫々は、燐酸塩1.0~16.0質量%を更に含んでいる請求項1から5のいずれか一項に記載の球帯状シール体。
  7.  球帯状基体用及び外層用の耐熱材の夫々は、更に燐酸0.05~5.0質量%含んでいる請求項6に記載の球帯状シール体。
  8.  円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えていると共に排気管継手に用いられる球帯状シール体の製造方法であって、
    (a)膨張黒鉛からなる膨張黒鉛シートを準備する工程と、
    (b)線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの帯状の編組金網を準備する工程と、
    (c)帯状の編組金網を膨張黒鉛シートに重ね合わせて重合体を形成した後、この重合体を円筒状に捲回して筒状母材を形成する工程と、
    (d)膨張黒鉛からなる別の膨張黒鉛シートを準備し、該別の膨張黒鉛シートの一方の表面に固体潤滑剤の被覆層を形成して複層シートを形成する工程と、
    (e)線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの円筒状の編組金網の二つの層間に前記複層シートを挿入し、当該複層シートを二つの層間に挿入した円筒状の編組金網を当該複層シートの厚さ方向に加圧して円筒状の編組金網を扁平状の編組金網にすると共に複層シートの別の膨張黒鉛シートの膨張黒鉛と当該膨張黒鉛シートの一方の表面に形成された被覆層の固体潤滑剤とを扁平状の編組金網の網目に充填して当該別の膨張黒鉛シートの膨張黒鉛と当該被覆層の固体潤滑剤と当該膨張黒鉛及び固体潤滑剤に混在一体化された扁平状の編組金網とからなると共に当該扁平状の編組金網からなる面と別の膨張黒鉛シートの一方の面に形成された被覆層の固体潤滑剤からなる面とが混在した外表面での当該扁平状の編組金網からなる面の占有面積率が30~60%である外面層形成部材を形成する工程と、
    (f)前記筒状母材の外周面に前記外面層形成部材を当該外面層形成部材の帯状の編組金網からなる面と固体潤滑剤からなる面とが混在した外表面を外側にして捲回して予備円筒成形体を形成する工程と、
    (g)円筒内壁面、当該円筒内壁面に連なる部分凹球面状壁面及び貫通孔を備えていると共に該貫通孔に段付きコアを嵌挿することによって内部に中空円筒部と中空円筒部に連なる球帯状中空部とが形成される金型と該段付きコアとを準備し、該予備円筒成形体を段付きコアのコア外周面に挿入し、該段付きコアを金型の貫通孔に嵌挿すると共に該金型の内部において予備円筒成形体をコア軸方向に圧縮成形する工程とを具備しており、
    球帯状基体は、線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつ当該補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、外層用の耐熱材及び固体潤滑剤は、圧縮されて外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在して露出した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は、30~60%であることを特徴とする球帯状シール体の製造方法。
  9.  円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えていると共に排気管継手に用いられる球帯状シール体の製造方法であって、
    (a)膨張黒鉛からなる膨張黒鉛シートを準備する工程と、
    (b)線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの帯状の編組金網を準備する工程と、
    (c)帯状の編組金網を膨張黒鉛シートに重ね合わせて重合体を形成した後、この重合体を内周側に編組金網が露出する一方、外周側に膨張黒鉛シートが露出するように円筒状に捲回して筒状母材を形成する工程と、
    (d)膨張黒鉛からなる別の膨張黒鉛シートを準備し、該別の膨張黒鉛シートの一方の表面に固体潤滑剤の被覆層を形成して複層シートを形成する工程と、
    (e)複層シートを、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの円筒状の編組金網の二つの層間に挿入すると共に当該複層シートを二つの層間に挿入した円筒状の編組金網を当該複層シートの厚さ方向に加圧して円筒状の編組金網を扁平状の編組金網にすると共に複層シートの別の膨張黒鉛シートの膨張黒鉛と当該膨張黒鉛シートの一方の表面に形成された被覆層の固体潤滑剤とを扁平状の編組金網の網目に充填し、かつ当該別の膨張黒鉛シートの膨張黒鉛と当該被覆層の固体潤滑剤と当該膨張黒鉛及び固体潤滑剤に混在一体化された扁平状の編組金網とからなると共に当該扁平状の編組金網からなる面と別の膨張黒鉛シートの一方の面に形成された被覆層の固体潤滑剤からなる面とが混在した外表面での当該扁平状の編組金網からなる面の占有面積率が30~60%である外面層形成部材を形成する工程と、(f)前記筒状母材の外周面に前記外面層形成部材を当該外面層形成部材の帯状の編組金網からなる面と固体潤滑剤からなる面とが混在した外表面を外側にして捲回し、予備円筒成形体を形成する工程と、
    (g)一方の端部に底部を有すると共に他方の端部に開口部を有する有底円筒状であって、該開口部側の外周面に他方の端部から漸次拡径する截頭円錐面部を備えたキャップを一方の端部に着脱自在に被冠した段付きコアと、円筒壁面、該円筒壁面に連なる部分凹球面壁面及び貫通孔を備えていると共に該貫通孔に前記段付きコアを嵌挿することによって内部に中空円筒部と中空円筒部に連なる球帯状中空部とが形成される金型とを準備し、段付きコアのキャップの外周面に予備円筒成形体を挿入し、該段付きコアを金型の貫通孔に嵌挿すると共に該金型の内部において予備円筒成形体をコア軸方向に圧縮成形する工程とを具備しており、
    中央部に貫通孔を有すると共に円筒面、該円筒面に連なる截頭円錐面及び該截頭円錐面に連なる拡径円筒内面を備えた円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体は、線径が0.28~0.32mmの金属細線を用いて編まれた網目の目幅が縦4~6mm、横3~5mmの圧縮された編組金網からなる球帯状基体用の補強材と、この補強材の編組金網の網目を充填し、かつ当該補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、外層は、線径が0.10~0.20mmの金属細線を用いて編まれた網目の目幅が縦1.0~3.0mm、横0.5~2.5mmの圧縮された編組金網からなる外層用の補強材と、潤滑組成物からなる固体潤滑剤と、膨張黒鉛を含む外層用の耐熱材とを具備しており、外層用の耐熱材及び固体潤滑剤は、圧縮されて外層用の補強材の編組金網の網目に充填されており、外層用の補強材は、球帯状基体の部分凸球面状面に径方向に密に重層されており、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在して露出した平滑な混成面に形成されており、該外層の外表面での外層用の補強材からなる面の占有面積率は、30~60%であることを特徴とする球帯状シール体の製造方法。
  10.  分散媒としての酸を含有する水にアルミナ水和物粒子を分散含有した水素イオン濃度(pH)が2~3を呈するアルミナゾルに、六方晶窒化硼素粉末及び四ふっ化エチレン樹脂粉末を分散含有した水性ディスパージョンであって、六方晶窒化硼素粉末23~57質量%と四ふっ化エチレン樹脂粉末33~67質量%及びアルミナ水和物5~15質量%とを含む潤滑組成物を固形分として30~50質量%分散含有した水性ディスパージョンを別の膨張黒鉛シートの一方の表面に固体潤滑剤の該被覆層を形成して該複層シートを形成する請求項8又は9に記載の球帯状シール体の製造方法。
  11.  各膨張黒鉛シートは、膨張黒鉛に加えて、燐酸塩1.0~16.0質量%を含んでいる請求項8から10のいずれか一項に記載の球帯状シール体の製造方法。
  12.  各膨張黒鉛シートは、更に燐酸0.05~5.0質量%含んでいる請求項11に記載の球帯状シール体の製造方法。
PCT/JP2012/007746 2011-12-09 2012-12-03 球帯状シール体及びその製造方法 WO2013084467A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112014012317-9A BR112014012317B1 (pt) 2011-12-09 2012-12-03 Membro de vedação anular esférico e método de fabricação do mesmo
US14/363,534 US9016694B2 (en) 2011-12-09 2012-12-03 Spherical annular seal member and method of manufacturing the same
CN201280068745.0A CN104081104B (zh) 2011-12-09 2012-12-03 球形环密封件
EP12854861.7A EP2789890B1 (en) 2011-12-09 2012-12-03 Spherical band-shaped seal body and production method therefor
CA2856267A CA2856267C (en) 2011-12-09 2012-12-03 Spherical annular seal member and method of manufacturing the same
IN3914CHN2014 IN2014CN03914A (ja) 2011-12-09 2012-12-03
US14/669,186 US9182060B2 (en) 2011-12-09 2015-03-26 Spherical annular seal member and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270519 2011-12-09
JP2011270519A JP5807532B2 (ja) 2011-12-09 2011-12-09 球帯状シール体及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/363,534 A-371-Of-International US9016694B2 (en) 2011-12-09 2012-12-03 Spherical annular seal member and method of manufacturing the same
US14/669,186 Continuation US9182060B2 (en) 2011-12-09 2015-03-26 Spherical annular seal member and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013084467A1 true WO2013084467A1 (ja) 2013-06-13

Family

ID=48573858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007746 WO2013084467A1 (ja) 2011-12-09 2012-12-03 球帯状シール体及びその製造方法

Country Status (8)

Country Link
US (2) US9016694B2 (ja)
EP (1) EP2789890B1 (ja)
JP (1) JP5807532B2 (ja)
CN (1) CN104081104B (ja)
BR (1) BR112014012317B1 (ja)
CA (1) CA2856267C (ja)
IN (1) IN2014CN03914A (ja)
WO (1) WO2013084467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160084100A1 (en) * 2013-09-13 2016-03-24 United Technologies Corporation System and apparatus for seal retention and protection

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502570B (en) * 2012-05-31 2018-08-22 Ford Global Tech Llc A sealed assembly and a motor vehicle utilising same
JP5972991B2 (ja) * 2012-10-16 2016-08-17 オイレス工業株式会社 球帯状シール体及びその製造方法
WO2015116399A1 (en) * 2014-01-28 2015-08-06 United Technologies Corporation Flexible cavity seal for gas turbine engines
US10295060B2 (en) * 2015-06-25 2019-05-21 Evolution Engineering Inc. Method for sealing a gap sub assembly
US11236551B2 (en) * 2015-10-19 2022-02-01 Reelwell, A.S. Wired pipe and method for making
DE102016211214A1 (de) 2016-06-23 2017-12-28 Trumpf Laser- Und Systemtechnik Gmbh Bauzylinder-Anordnung für eine Maschine zur schichtweisen Fertigung dreidimensionaler Objekte, mit Fasermetalldichtung
US10598082B2 (en) * 2018-08-25 2020-03-24 Garrett Transportation I Inc. Turbine wastegate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476759A (en) 1977-11-30 1979-06-19 Metex Corp Exhaust seal
JP2003097718A (ja) * 2001-09-21 2003-04-03 Oiles Ind Co Ltd 球帯状シール体及びその製造方法
WO2009072295A1 (ja) * 2007-12-05 2009-06-11 Oiles Corporation 球帯状シール体及びその製造方法
WO2009078165A1 (ja) 2007-12-17 2009-06-25 Oiles Corporation 球帯状シール体及びその製造方法
WO2012140868A1 (ja) * 2011-04-13 2012-10-18 オイレス工業株式会社 球帯状シール体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139179B2 (ja) * 1992-10-12 2001-02-26 オイレス工業株式会社 球帯状シール体
US5451064A (en) * 1992-12-22 1995-09-19 Ucar Carbon Technology Corporation Exhaust seal ring
JP4617521B2 (ja) * 1999-09-28 2011-01-26 オイレス工業株式会社 球帯状シール体ならびにその製造方法
JP5120995B2 (ja) * 2004-07-12 2013-01-16 本田技研工業株式会社 球帯状シール体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476759A (en) 1977-11-30 1979-06-19 Metex Corp Exhaust seal
JP2003097718A (ja) * 2001-09-21 2003-04-03 Oiles Ind Co Ltd 球帯状シール体及びその製造方法
WO2009072295A1 (ja) * 2007-12-05 2009-06-11 Oiles Corporation 球帯状シール体及びその製造方法
WO2009078165A1 (ja) 2007-12-17 2009-06-25 Oiles Corporation 球帯状シール体及びその製造方法
WO2012140868A1 (ja) * 2011-04-13 2012-10-18 オイレス工業株式会社 球帯状シール体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789890A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160084100A1 (en) * 2013-09-13 2016-03-24 United Technologies Corporation System and apparatus for seal retention and protection

Also Published As

Publication number Publication date
CN104081104B (zh) 2016-03-30
US20140361496A1 (en) 2014-12-11
BR112014012317B1 (pt) 2020-12-15
IN2014CN03914A (ja) 2015-07-03
EP2789890A1 (en) 2014-10-15
US9182060B2 (en) 2015-11-10
JP2013122276A (ja) 2013-06-20
EP2789890A4 (en) 2015-10-07
BR112014012317A2 (pt) 2017-05-30
CN104081104A (zh) 2014-10-01
CA2856267C (en) 2016-07-05
US20150198276A1 (en) 2015-07-16
EP2789890B1 (en) 2017-06-14
JP5807532B2 (ja) 2015-11-10
CA2856267A1 (en) 2013-06-13
US9016694B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
JP5807532B2 (ja) 球帯状シール体及びその製造方法
JP5533990B2 (ja) 球帯状シール体及びその製造方法
JP5347971B2 (ja) 球帯状シール体及びその製造方法
JP5691772B2 (ja) 球帯状シール体及びその製造方法
WO2014061184A1 (ja) 球帯状シール体及びその製造方法
JP6003062B2 (ja) 排気管球面継手
KR101687738B1 (ko) 구띠형 시일체
JP2016020742A (ja) 球帯状シール体及びその製造方法
JP5724315B2 (ja) 球帯状シール体
KR101679258B1 (ko) 구띠형 시일체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280068745.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854861

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012854861

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2856267

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14363534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014012317

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014012317

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140521