WO2015045134A1 - 試薬保持容器、送液装置、試薬吐出方法 - Google Patents

試薬保持容器、送液装置、試薬吐出方法 Download PDF

Info

Publication number
WO2015045134A1
WO2015045134A1 PCT/JP2013/076466 JP2013076466W WO2015045134A1 WO 2015045134 A1 WO2015045134 A1 WO 2015045134A1 JP 2013076466 W JP2013076466 W JP 2013076466W WO 2015045134 A1 WO2015045134 A1 WO 2015045134A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
holding container
reagent holding
container
liquid feeding
Prior art date
Application number
PCT/JP2013/076466
Other languages
English (en)
French (fr)
Inventor
稲波 久雄
長岡 嘉浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/023,192 priority Critical patent/US20160236196A1/en
Priority to PCT/JP2013/076466 priority patent/WO2015045134A1/ja
Priority to JP2015538767A priority patent/JP6192731B2/ja
Publication of WO2015045134A1 publication Critical patent/WO2015045134A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/044Connecting closures to device or container pierceable, e.g. films, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0672Integrated piercing tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/14Means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • B01L2400/0683Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber

Definitions

  • the present invention relates to a reagent holding container for storing a reagent, a liquid feeding device provided with the reagent holding container, and a reagent discharging method from the reagent holding container.
  • Patent Document 1 describes a technique related to a conventional reagent holding container.
  • This document describes a reagent holding container having a deformable upper structure and a perforated bottom structure.
  • the bottom structure is perforated by pushing up the perforating element provided at the bottom of the bottom structure that can be perforated by the plunger, and the deformable top is pressed by the plunger and bent to discharge the internal reagent. Yes.
  • the plunger and the reagent are not brought into contact with each other.
  • Patent Document 2 describes a technique related to a conventional reagent holding container.
  • a reagent is dried and held in a bellows-shaped reagent holding container, and after the dried reagent is dissolved in the sample sent to the reagent holding container, the sample and the reagent are crushed by crushing the bellows-shaped reagent holding container.
  • a method of feeding a mixed solution of is shown.
  • Patent Document 1 it is necessary to deform the upper part of the reagent holding container and to install two plungers for drilling the bottom part on the upper and lower sides of the reagent holding container.
  • the mechanism on the side of the liquid feeding device that performs liquid becomes complicated.
  • the bottom piercing element is installed adjacent to the bottom of the reagent holding container, the bottom may be pierced during storage of the reagent holding container.
  • Patent Document 2 since a reagent is enclosed in a reagent holding container and then heated or vacuum-dried, it costs a lot to create a device. Further, Patent Document 1 and Patent Document 2 do not consider sealing a liquid reagent in a reagent holding container without evaporating it for a long time.
  • an object of the present invention is made in view of such circumstances, and a reagent holding container capable of feeding a held reagent with a simple mechanism and storing the reagent in a stable state for a long period of time. Is to provide.
  • the reagent holding container of the present invention is a reagent holding container composed of a deformable member and a pierceable member, and an external pressing mechanism deforms the deformable member and pierces the pierceable member. Thus, the reagent held inside is discharged.
  • a reagent holding container capable of feeding a held reagent by a simple mechanism and storing the reagent in a stable state for a long period of time.
  • Sectional drawing of the reagent holding container which concerns on 1st embodiment Sectional drawing which shows operation
  • movement of the said reagent holding container Side view of a liquid feeding device provided with the reagent holding container
  • Configuration diagram of a sample processing apparatus using the liquid feeding device Side view showing operation of the sample processing apparatus Side view showing operation of the sample processing apparatus Side view showing operation of the sample processing apparatus Side view showing operation of the sample processing apparatus Side view showing operation of the sample processing apparatus Sectional drawing which shows operation
  • Sectional drawing which shows operation
  • Side view showing the operation of the sample processing apparatus according to the fourth embodiment Side view showing the operation of the sample processing apparatus according to the fourth embodiment
  • the reagent storage container 1 is formed of a container base 10, a container flexible part 11, and a container perforation part 15.
  • the material of the container base 10 is not particularly limited, and resin materials such as polystyrene, polypropylene, polycarbonate, and COP, and metal materials such as aluminum and stainless steel are applicable. From the viewpoint of preventing the evaporation of the reagent, a metal material such as aluminum or stainless steel is preferable, but the same effect can be obtained by depositing a metal on a resin material or attaching a metal foil.
  • the container flexible part 11 is made of natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, nitrile rubber, ethylene propylene rubber, chloroprene rubber, acrylic rubber, urethane rubber, silicone rubber or the like as a flexible deformation material. Can be used. Of these, silicone rubber having both tensile strength and impact resilience is preferred.
  • the container perforation part 15 can be made of an aluminum film or a plastic film such as polypropylene, polyimide, polyester, nylon, polycarbonate, or PET.
  • An aluminum film is preferable because it has both ease of perforation and evaporation prevention, and a plastic film on which a metal such as aluminum is vapor-deposited is more preferable because fragments are not easily produced when perforated.
  • FIG. 2A shows a state in which the reagent storage container 1 is sealed by the container flexible part 11 and the container punching part 15 and the reagent is held inside the reagent storage container 1.
  • the container flexible part 11 is pressed using the plunger 20
  • the container flexible part 11 bends downward as shown in FIG.
  • the plunger 20 is further pushed down, the container perforation portion 15 is broken and the reagent inside the reagent storage container 1 is released to the outside of the reagent storage container 1.
  • the thickness is preferably 1 mm or less, and preferably 0.5 mm or less.
  • 0.1 mm or more is preferable so that the silicone rubber is not broken when the silicone rubber is bent.
  • the container perforation portion 15 is preferably 10 to 50 ⁇ m so that it can be easily broken.
  • the thickness is less than 10 ⁇ m, cracks are easily generated, so that they are easily broken and are not preferable for storing reagents.
  • the sample processing apparatus 30 includes a device mounting unit 50 to which the liquid feeding device 40 is mounted and an upper lid 60 that holds the liquid feeding device 40 and seals the sample processing apparatus 30.
  • An air inlet / outlet described later is provided on the upper surface of the liquid feeding device 40, and air connection parts 61, 62, 63 for allowing air to flow in / out from the inlet / outlet are provided in the upper lid 60.
  • the air connection portions 61, 62, 63 are connected to the air inlet / outlet on the upper surface of the liquid delivery device 40.
  • the high pressure air can be guided into the liquid feeding device.
  • the high pressure air generated by the pump 70 is held in the air chamber 80 and adjusted to a substantially constant pressure by the regulator 90.
  • the air adjusted to a constant pressure in the air chamber 80 is connected to the air connection portions 61, 62, and 63 by piping through valves 101, 102, and 103, respectively.
  • the valves 101, 102, and 103 are controlled by the controller 110 to supply air from the air chamber 80 to the air connection portions 61, 62, and 63, or to release the air from the air connection portions 61, 62, and 63 to the atmosphere, or One of closed is selected.
  • a pressure sensor 120 for measuring the pressure in the air chamber 80 is provided, and the valves 110, 102, and 103 are controlled by the controller 110 in accordance with a signal from the pressure sensor 120.
  • FIG. 3 shows a side view of the liquid delivery device 40.
  • the liquid feeding device 40 includes a sample tank 130, a reagent tank 160, a mixing tank 140, a sample collection tank 150, and a flow path 170.
  • Air inlets (131, 141, 151 in this figure) are installed in the upper part of the sample tank 130, the mixing tank 140, and the sample collection tank 150. Air inlets / outlets 131, 141, 151 are provided at positions where the air connecting portions 61, 62, 63 shown in FIG.
  • the reagent tank 160 is provided with a claw 161 for holding the reagent storage container 1.
  • FIG. 5A shows an initial state, and the sample 132 is injected into the sample tank 130 through the air inlet / outlet 131.
  • the reagent storage container 1 installed in the reagent tank 160 contains a reagent 162.
  • the other mixing tank 140, sampling tank 150, and flow path 170 are filled with air. Valves 101, 102, and 103 (see FIG. 4) are fully closed.
  • FIG. 5B shows a state where the plunger guide 21 (see FIG. 4) is inserted into the reagent tank 160 and the reagent storage container 1 is pressed against the liquid feeding device 40.
  • the plunger guide 21 By holding the plunger guide 21 in this state, the reagent storage container 1 is connected to the liquid feeding device 40 with high airtightness. Thereby, the liquid leakage from the flow path 170 to the reagent tank 160 can be prevented.
  • FIG. 5C shows a state in which the plunger 20 (see FIG. 4) is inserted into the reagent tank 160, the container flexible part 11 of the reagent storage container 1 is bent downward, and the container perforation part 15 is perforated.
  • the flow path 170 immediately below the reagent tank 160 may be recessed as shown in the figure so that the plunger 20 can completely discharge the reagent 162 inside the reagent storage container 1.
  • air inside the flow path 170 escapes to the air inlet / outlet port 141, so that the reagent 162 inside the reagent storage container 1 advances through the flow path 170 toward the mixing tank 140.
  • FIG. 5D shows a state in which the valve 101 is opened, air is supplied from the air inlet / outlet 131 to the sample tank 130, and the sample 132 in the sample tank 130 and the reagent 162 in the flow path 170 are sent to the mixing tank 140.
  • the valve 103 by opening the valve 103 and supplying air from the air inlet / outlet 151 to the sample collection tank 150, it is possible to prevent the sample 132 and the reagent 162 from entering the sample collection tank 150.
  • the sample 132 and the reagent 162 inside the mixing tank 140 are mixed by bubbling.
  • FIG. 5E shows a state in which the valve 102 is opened, air is supplied from the air inlet / outlet 132, and the mixed liquid of the sample 132 and the reagent 162 inside the mixing tank 140 is sent to the sampling tank 150. At this time, it is possible to prevent the sample 132 and the reagent 162 from entering the sample tank 130 by opening the valve 101 and supplying air to the sample tank 130 from the air inlet / outlet 131. Finally, all the valves are fully closed to finish the liquid feeding operation.
  • the plunger has two functions of deforming the flexible material of the reagent holding container and punching the pierceable material of the reagent holding container.
  • the mechanism is simple.
  • the plunger (perforation mechanism), and the flow path are separated from each other in the initial state, there is no possibility that the reagent storage container is perforated during storage of the liquid feeding device, thereby preventing liquid leakage. .
  • FIG. 6 shows another embodiment of the present invention.
  • This example is the same as Example 1 in that the reagent storage container is formed of a container base, a container flexible part, and a container perforation part, but more actively prevents evaporation of the reagent from the container flexible part. This is a difference from the first embodiment.
  • FIG. 6 shows a reagent holding container according to the second embodiment.
  • the reagent storage container 1 is formed of a container base 10, a container flexible part 11, and container punching parts 12 and 15.
  • the materials of the container base 10, the container flexible part 11, and the container perforation parts 12 and 15 are the same as those in Example 1.
  • the feature of the second embodiment is that one surface for sealing the container base 10 has a double structure of the container flexible portion 11 and the container punching portion 12.
  • an aluminum film is most preferable because it has both ease of perforation and prevention of evaporation.
  • the aluminum film of the container perforation part 12 is inactive to the reagent. Therefore, when the reagent corrodes the rubber material of the container flexible portion 11, it can be said that the second embodiment, which is the aluminum film of the container perforated portion, is suitable.
  • the joining of the container base 10 and the container punching part 12 and the joining of the container punching part 12 and the container flexible part 11 can be performed by thermocompression bonding or double-sided tape.
  • FIG. 6A shows a state in which the reagent storage container 1 is sealed by the container flexible part 11, the container punching part 12, and the container punching part 15, and the reagent is held inside the reagent storage container 1.
  • the container flexible portion 11 is pressed using the plunger 20, the container flexible portion 11 bends downward as shown in FIG.
  • the plunger 20 is further pushed down, the container perforation portion 15 is broken and the reagent inside the reagent storage container 1 is released to the outside of the reagent storage container 1.
  • the reagent can be discharged with a single plunger, which is a simple liquid feeding method.
  • the container flexible part and the container perforation part into a double structure, it is possible to have both prevention of reagent evaporation and chemical resistance.
  • FIG. 7 shows another embodiment of the present invention.
  • This example is the same as Example 2 in that one surface for sealing the container base has a double structure of the container flexible part and the container perforation part, but the fragments when the container perforation part is perforated are The difference from the second embodiment is that the configuration does not enter the flow path.
  • FIG. 7 shows a reagent holding container according to the third embodiment.
  • the reagent storage container 1 is formed of a container base 10, a container flexible part 11, and container punching parts 12 and 15.
  • the materials of the container base 10, the container flexible part 11, and the container punching parts 12 and 15 are the same as those in the first and second embodiments.
  • the feature of the third embodiment is that when one surface sealing the container base 10 has a double structure of the container flexible portion 11 and the container punching portion 12, the surface in contact with the container base 10 is the container flexible portion 11. In the point.
  • a rubber material is preferable as described in the first embodiment. Therefore, this embodiment is effective when the reagent stored in the reagent storage container 1 is inactive with respect to the rubber material of the container flexible portion 11.
  • the surface opposite to the surface in contact with the reagent of the container flexible part 11 is vapor-deposited with a metal such as aluminum, so that there is no container perforated part 12 It is also good.
  • FIG. 7A shows a state in which the reagent storage container 1 is sealed by the container flexible part 11, the container punching part 12, and the container punching part 15, and the reagent is held inside the reagent storage container 1.
  • the container flexible part 11 is pressed using the plunger 20
  • the container perforation part 12 is perforated as shown in FIG. 7B, and then the container flexible part 11 is bent downward.
  • the plunger 20 is further pushed down, the container perforation portion 15 is broken and the reagent inside the reagent storage container 1 is released to the outside of the reagent storage container 1.
  • the reagent can be discharged with a single plunger, which can be said to be a simple liquid feeding method.
  • the surface in contact with the container base is a container flexible portion, so that fragments when the container perforated portion is perforated. Is prevented from entering the flow path, and the reagent does not easily remain in the reagent storage container.
  • FIG. 8 shows another embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that the container flexible portion is deformed by a plunger, and the container perforation portion is perforated by a projection on the flow path side (having a flow path inside).
  • FIG. 8 is used to explain how the reagent of Example 4 is fed.
  • FIG. 8A shows an initial state, in which the reagent storage container 1 held in the reagent tank 160 by the claw 161 stores the reagent 162 without touching the reagent tank protrusion 165 provided at the bottom of the reagent tank 160. ing.
  • FIG. 8B shows a state in which the plunger guide 21 (see FIG. 4) is inserted into the reagent tank 160 and the reagent storage container 1 is pressed against the liquid feeding device 40. At this time, the container perforation 15 (see FIG. 2) of the reagent storage container 1 is perforated in the reagent tank protrusion 165. By holding the plunger guide 21 in this state, the reagent storage container 1 is connected to the liquid feeding device 40 with high airtightness. Thereby, the liquid leakage from the flow path 170 to the reagent tank 160 can be prevented.
  • FIG. 8C shows a state where the plunger 20 (see FIG. 4) is inserted into the reagent tank 160 and the container flexible portion 11 (see FIG. 2) of the reagent storage container 1 is bent downward. As a result, the reagent 162 inside the reagent storage container 1 flows out to the flow path 170 via the protruding flow path 166.
  • the point that the deformation of the container flexible portion and the perforation of the container perforating portion are separately performed is different from the first embodiment.
  • the inner diameter of the protruding channel 166 By reducing the inner diameter of the protruding channel 166, the dead volume generated between the reagent storage container 1 and the liquid feeding device 40 can be reduced, and the liquid remaining of the reagent in the reagent storage container 1 can be suppressed. .
  • FIG. 9 shows another embodiment of the present invention. This embodiment is different from the other embodiments in that the container flexible portion is convex upward in the initial state.
  • FIG. 9A shows a state in which the reagent storage container 1 is sealed by the container flexible part 11 and the container punching part 15 and the reagent is held inside the reagent storage container 1.
  • the outer periphery of the container base 10 is pressed against the liquid feeding device 40 by the plunger guide 21 (the liquid feeding device 40 is not shown).
  • the container flexible part 11 is pressed using the plunger 20, the container flexible part 11 bends downward, and when the plunger 20 is further pushed down, the container perforation part 15 is broken and the reagent inside the reagent storage container 1 is removed. Released to the outside of the reagent storage container 1.
  • the container flexible portion and the container perforation portion do not need to be particularly flat.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 長期間安定した状態で試薬を保存し、かつ保持した試薬を簡便に送液可能な試薬保持容器を提供する。可撓性の素材と穿孔可能な素材を有する試薬保持容器において、プランジャが試薬保持容器の可撓性の素材を変形させ、且つ前記試薬保持容器の穿孔可能な素材を穿孔させる二つの機能を兼ね備える。

Description

試薬保持容器、送液装置、試薬吐出方法
 本発明は試薬を保存する試薬保持容器、試薬保持容器を備えた送液装置、および試薬保持容器からの試薬吐出方法に関する。
 従来の試薬保持容器に係る技術として、特許文献1に記載がある。本文献には、変形可能な上部構造と穿孔可能な底部構造を有する試薬保持容器が記載されている。本文献では穿孔可能な底部構造の下部に設けられた穿孔要素をプランジャで押し上げることにより底部構造を穿孔し、かつ変形可能な上部をプランジャで押圧し、撓ませることで内部の試薬を吐出させている。その際、プランジャの汚染を防ぐため、プランジャと試薬を接触させないことが前提となる。
 また、従来の試薬保持容器に係る技術として、特許文献2に記載がある。本文献には、蛇腹形状の試薬保持容器に試薬を乾燥させて保持し、試薬保持容器に送られたサンプルで乾燥試薬を溶解した後に、蛇腹形状の試薬保持容器を潰すことで、サンプルと試薬の混合液を送液する方式が示されている。
特開2013-064725号公報 特開2011-158463号公報
 しかしながら、特許文献1で開示される方式では、試薬保持容器の上部を変形させ、さらに底部を穿孔するための2つのプランジャを試薬保持容器の上側と下側に設置する必要があり、試薬の送液を行う送液装置側の機構が複雑となる。また、試薬保持容器の底部に隣接して底部穿孔要素が設置されているため、試薬保持容器の保管中に底部が穿孔されてしまう可能性がある。また、特許文献2では、試薬を試薬保持容器に封入した後に加熱や真空乾燥させるため、デバイスの作成にコストがかかる。さらに、特許文献1ならびに特許文献2では、液体の試薬を長期間蒸発させることなく試薬保持容器に封止することが考慮されていない。
 そこで、本発明の目的は、このような事情に鑑みてなされたものであり、保持した試薬を簡便な機構で送液可能であり、かつ長期間安定した状態で試薬を保存可能な試薬保持容器を提供することにある。
 本発明の試薬保持容器は、変形可能な部材と穿孔可能な部材より構成される試薬保持容器であって、外部の押圧機構が前記変形可能な部材を変形させ、かつ前記穿孔可能な部材を穿孔することで内部に保持した試薬を吐出する
ことを特徴とする。
 本発明によれば、保持した試薬を簡便な機構で送液可能であり、かつ長期間安定した状態で試薬を保存可能な試薬保持容器を提供することができる。
 上に示した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第一の実施形態に係る試薬保持容器の断面図 前記試薬保持容器の動作を示す断面図 前記試薬保持容器の動作を示す断面図 前記試薬保持容器を備えた送液デバイスの側面図 前記送液デバイスを使用した試料処理装置の構成図 前記試料処理装置の動作を示す側面図 前記試料処理装置の動作を示す側面図 前記試料処理装置の動作を示す側面図 前記試料処理装置の動作を示す側面図 前記試料処理装置の動作を示す側面図 第二の実施形態に係る試薬保持容器の動作を示す断面図 第二の実施形態に係る試薬保持容器の動作を示す断面図 第三の実施形態に係る試薬保持容器の動作を示す断面図 第三の実施形態に係る試薬保持容器の動作を示す断面図 第四の実施形態に係る試料処理装置の動作を示す側面図 第四の実施形態に係る試料処理装置の動作を示す側面図 第四の実施形態に係る試料処理装置の動作を示す側面図 第五の実施形態に係る試薬保持容器の動作を示す断面図 第五の実施形態に係る試薬保持容器の動作を示す断面図
 以下、図面を参照して、本発明の実施の形態を説明する。なお、後述する実施の形態は一例であって、各実施の形態同士の組み合わせ、公知又は周知の技術との組み合わせや置換による他の態様も可能である。
 図1、図2は、第一の実施例である試薬保持容器を示している。図1に示すように、試薬保存容器1は、容器ベース10と容器可撓部11と容器穿孔部15から形成される。
 容器ベース10の素材は特に限定されることはなく、ポリスチレン、ポリプロピレン、ポリカーボネート、COP等の樹脂素材、またアルミニウムやステンレスといった金属素材が適用可能である。試薬の蒸発防止の観点から、アルミニウムやステンレス等の金属素材が好ましいが、樹脂素材に金属を蒸着する、或いは金属箔を貼ることで同様の効果を得ることができる。
 容器可撓部11は、可撓性の変形素材として、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、ニトリルゴム、エチレンプロピレンゴム、クロロプレンゴム、アクリルゴム、ウレタンゴム、シリコーンゴム等を用いることできる。中でも引っ張り強さと反発弾性を兼ね備えたシリコーンゴムが好適である。
 容器穿孔部15は、アルミニウムフィルムや、ポリプロピレン、ポリイミド、ポリエステル、ナイロン、ポリカーボネート、PET等のプラスチックフィルムを用いることができる。アルミニウムフィルムは穿孔の容易さと蒸発防止を兼ね備えるため好ましく、アルミニウム等の金属を蒸着したプラスチックフィルムは、穿孔した際に破片が出にくいためより好ましい。
 容器ベース10と容器可撓部11との接合、および容器ベース10と容器穿孔部15との接合は、熱圧着や、両面テープで行うことができる。
次に、図2を用いて、試薬保存容器1の動作を説明する。図2(A)は、試薬保存容器1が容器可撓部11と容器穿孔部15によって封止され、試薬保存容器1の内部に試薬が保持されている状態である。次に、プランジャ20を用いて容器可撓部11を押圧すると、図2(B)に示されるように容器可撓部11が下方に撓む。さらにプランジャ20を押し下げると、容器穿孔部15が破かれ、試薬保存容器1内部の試薬が試薬保存容器1の外部に放出される。
 このように、容器可撓部11を下方に撓ませて使用するので、例えばシリコーンゴムを使用した場合、厚みは1mm以下が好ましく、0.5mm以下が好適である。一方で、シリコーンゴムを撓ませた時にシリコーンゴムが破けないように、0.1mm以上が好ましい。
 また、容器穿孔部15は容易に破くことができるように、例えばアルミフィルムを使用した場合、10~50μmが好適である。10μm未満とした場合、クラックが入りやすいため破れやすく、試薬の保存には好ましくないためである。
次に、試薬保存容器1を装着した送液デバイスについて説明する。図3は、本発明の送液デバイスを説明する詳細図であり、図4は、該送液デバイスを使用した試料処理装置の構成図を示す。
 先ず、図4に示す試料処理装置の構成について説明する。試料処理装置30は、送液デバイス40が装着されるデバイス装着部50と、送液デバイス40を保持して試料処理装置30を密閉する上蓋60で構成される。
 送液デバイス40の上面には後述の空気出入口が設けてあり、その出入口から空気を流出入させるための空気用接続部61、62、63が上蓋60に設けてある。
 送液デバイス40をデバイス装着部50に装着し、上蓋60をデバイス装着部50に密着させて試料処理装置30を密閉すると、空気用接続部61、62、63が送液デバイス40上面の空気出入口にそれぞれ密着し、高圧の空気を送液デバイス内に導くことができる。ポンプ70で発生した高圧空気は空気室80に保持され、レギュレータ90でほぼ一定の圧力に調整される。空気室80で一定の圧力に調整された空気はバルブ101、102、103を介して空気用接続部61、62、63にそれぞれ配管で接続される。
 バルブ101、102、103はコントローラ110で制御され、空気室80から空気用接続部61、62、63への空気の供給、あるいは空気用接続部61、62、63から大気への開放、あるいは全閉のいずれかが選択される。
 また、必要に応じて、空気室80内の圧力を測定する圧力センサ120が設けてあり、圧力センサ120の信号に応じて、コントローラ110でバルブ101、102、103の制御を行う。
 次に、送液デバイス40の詳細を示す。図3は、送液デバイス40の側面図を示す。
本側面図が示すように、送液デバイス40は、サンプル槽130、試薬槽160、混合槽140、試料採取槽150および流路170から構成される。サンプル槽130、混合槽140、試料採取槽150の上部には空気出入口(本図では、131、141、151)が設置されている。図4に示した空気用接続部61、62、63が密着する位置に、空気出入口131、141、151が設けてある。従って、空気はバルブ101、102、103を介して空気用接続部61、62、63から空気出入口131、141、151へ導入される。また、試薬槽160には試薬保存容器1を保持するためのツメ161が設置されている。
 図5を用いて、送液デバイス40によるサンプルと試薬の混合を説明する。
 図5Aは、初期状態を示しており、サンプル槽130に空気出入口131を介してサンプル132が注入されている。また、試薬槽160に設置された試薬保存容器1には試薬162が内蔵されている。その他の混合槽140、試料採取槽150および流路170には空気が満たされている。バルブ101、102、103(図4参照)は全閉の状態になっている。
 図5Bは、プランジャガイド21(図4参照)が試薬槽160に挿入され、試薬保存容器1が送液デバイス40に押し付けられた状態を示す。プランジャガイド21をこの状態で保持することにより、試薬保存容器1が送液デバイス40に高い気密性をもって接続される。これにより、流路170から試薬槽160への液漏れを防止することができる。
 図5Cは、プランジャ20(図4参照)が試薬槽160に挿入され、試薬保存容器1の容器可撓部11を下方に撓ませ、かつ容器穿孔部15を穿孔した状態を示す。プランジャ20が試薬保存容器1内部の試薬162を完全に吐出させることができるように、試薬槽160直下の流路170を図のように凹ませておいても良い。この時、バルブ102を開にすることで、流路170内部の空気は空気出入口141へ抜けるので、試薬保存容器1内部の試薬162は流路170を混合槽140の方向に進む。
 図5Dは、バルブ101を開にし、空気出入口131からサンプル槽130に空気を供給し、サンプル槽130内部のサンプル132と流路170の試薬162を混合槽140に送液した状態を示す。この時、バルブ103を開にし、空気出入口151から試料採取槽150に空気を供給することで、サンプル132と試薬162が試料採取槽150に回り込むのを防止することができる。空気出入口131乃至空気出入口151から混合槽140に空気を供給することで、混合槽140内部のサンプル132と試薬162がバブリングにより混合される。
 図5Eは、バルブ102を開にし、空気出入口132から空気を供給して混合槽140内部のサンプル132と試薬162の混合液を試料採取槽150に送液した状態を示す。この時、バルブ101を開にし、空気出入口131からサンプル槽130に空気を供給することで、サンプル132と試薬162がサンプル槽130に回り込むのを防止することができる。最後に全てのバルブを全閉にして、送液動作を終了する。
 以上より、本願発明によれば、プランジャが試薬保持容器の可撓性の素材を変形させ、且つ前記試薬保持容器の穿孔可能な素材を穿孔させる二つの機能を兼ね備えることで、送液装置側の機構が簡便となる。また、初期状態において試薬保存容器とプランジャ(穿孔機構)および流路が離れた状態にあるので、送液デバイスの保管中に試薬保存容器が穿孔される恐れが無く液漏れを防止できる特徴を有する。
 図6に本発明の別の実施例を示す。本実施例は、試薬保存容器が容器ベースと容器可撓部と容器穿孔部から形成される点で実施例1と同様であるが、容器可撓部からの試薬の蒸発をより積極的に防止する構成とした点が、実施例1と異なる点である。
 図6は、第2の実施例である試薬保持容器を示している。図6に示すように、試薬保存容器1は、容器ベース10と容器可撓部11と容器穿孔部12および15から形成される。
 容器ベース10と容器可撓部11と容器穿孔部12および15の素材は、実施例1と同様である。実施例2の特徴は、容器ベース10を封止する一方の面を容器可撓部11と容器穿孔部12の2重構造にした点にある。容器穿孔部12の素材としては、実施例1で述べたようにアルミニウムフィルムは穿孔の容易さと蒸発防止を兼ね備えるため、最も好ましい。容器可撓部11に使用するゴム材と比較して、容器穿孔部12のアルミニウムフィルムは試薬に不活性である。よって、試薬が容器可撓部11のゴム材を腐食する場合などに、容器穿孔部のアルミニウムフィルムである第2の実施例は好適であると言える。なお、容器可撓部11に容器穿孔部12を重ねる代わりに、容器可撓部11にアルミニウム等の金属を蒸着することで、容器穿孔部12の無い構成としても良い。
 容器ベース10と容器穿孔部12との接合、および容器穿孔部12と容器可撓部11との接合は、熱圧着や、両面テープで行うことができる。
 図6を用いて、試薬保存容器1の動作を説明する。図6(A)は、試薬保存容器1が容器可撓部11と容器穿孔部12、および容器穿孔部15によって封止され、試薬保存容器1の内部に試薬が保持されている状態である。次に、プランジャ20を用いて容器可撓部11を押圧すると、図6(B)に示されるように容器可撓部11が下方に撓み、容器穿孔部12を穿孔する。さらにプランジャ20を押し下げると、容器穿孔部15が破かれ、試薬保存容器1内部の試薬が試薬保存容器1の外部に放出される。
 このように、基本的な構造は実施例1と同様のため、試薬の吐出は一つのプランジャで可能であり、簡便な送液方法といえる。容器可撓部と容器穿孔部を2重構造にしたことで、試薬の蒸発防止と耐薬品性を兼ね備えることができる。
 図7に本発明の別の実施例を示す。本実施例は、容器ベースを封止する一方の面を容器可撓部と容器穿孔部の2重構造にした点で実施例2と同様であるが、容器穿孔部を穿孔した時の破片が流路に入らない構成とした点が、実施例2と異なる点である。
 図7は、第3の実施例である試薬保持容器を示している。図7に示すように、試薬保存容器1は、容器ベース10と容器可撓部11と容器穿孔部12および15から形成される。
 容器ベース10と容器可撓部11と容器穿孔部12および15の素材は、実施例1およびと実施例2と同様である。実施例3の特徴は、容器ベース10を封止する一方の面を容器可撓部11と容器穿孔部12の2重構造にする際、容器ベース10と接する面を容器可撓部11とした点にある。容器可撓部11の素材としては、実施例1で述べたようにゴム材が好ましい。よって、本実施例は、試薬保存容器1に保存する試薬が容器可撓部11のゴム材に対して不活性である場合に有効である。なお、容器穿孔部12に容器可撓部11を重ねる代わりに、容器可撓部11の試薬と接触する面と反対の面をアルミニウム等の金属で蒸着することにより、容器穿孔部12の無い構成としても良い。
 図7を用いて、試薬保存容器1の動作を説明する。図7(A)は、試薬保存容器1が容器可撓部11と容器穿孔部12、および容器穿孔部15によって封止され、試薬保存容器1の内部に試薬が保持されている状態である。次に、プランジャ20を用いて容器可撓部11を押圧すると、図7(B)に示されるように容器穿孔部12が穿孔され、次に容器可撓部11が下方に撓む。さらにプランジャ20を押し下げると、容器穿孔部15が破かれ、試薬保存容器1内部の試薬が試薬保存容器1の外部に放出される。
 このように、基本的な構造は実施例1乃至実施例2と同様のため、試薬の吐出は一つのプランジャで可能であり、簡便な送液方法といえる。容器ベースを封止する一方の面を容器可撓部と容器穿孔部の2重構造にする際、容器ベースと接する面を容器可撓部としたことで、容器穿孔部を穿孔した時の破片が流路に入ることを防止し、試薬保存容器の内部に試薬が液残りしにくいといった長所を有する。
(穿孔を流路側突起)
 図8に本発明の別の実施例を示す。本実施例は、容器可撓部の変形をプランジャで行い、容器穿孔部の穿孔を流路側の突起(内部に流路を有する)により行う点が、実施例1と異なる点である。
 図8を用いて、実施例4の試薬の送液を説明する。図8Aは、初期状態を示しており、ツメ161で試薬槽160に保持された試薬保存容器1は、試薬槽160の底部に設けられた試薬槽突起165に触れることなく、試薬162を保存している。
 図8Bは、プランジャガイド21(図4参照)が試薬槽160に挿入され、試薬保存容器1が送液デバイス40に押し付けられた状態を示す。この時、試薬保存容器1の容器穿孔部15(図2参照)が試薬槽突起165に穿孔される。プランジャガイド21をこの状態で保持することにより、試薬保存容器1が送液デバイス40に高い気密性をもって接続される。これにより、流路170から試薬槽160への液漏れを防止することができる。
 図8Cは、プランジャ20(図4参照)が試薬槽160に挿入され、試薬保存容器1の容器可撓部11(図2参照)を下方に撓ませた状態を示す。これにより、試薬保存容器1内部の試薬162は突起流路166を介して流路170に流れ出る。
 このように、容器可撓部の変形と容器穿孔部の穿孔を別々に行う点が、実施例1と異なる。突起流路166の内径を小さくすることで、試薬保存容器1と送液デバイス40と間に生じるデッドボリュームを減らすことができ、試薬保存容器1への試薬の液残りを抑制可能な特徴を有する。
 図9に本発明の別の実施例を示す。本実施例は、容器可撓部が初期状態で上に凸である点が、他の実施例と異なる点である。
 図9を用いて、実施例5の試薬保存容器1の動作を説明する。図9(A)は、試薬保存容器1が容器可撓部11と容器穿孔部15によって封止され、試薬保存容器1の内部に試薬が保持されている状態である。次に、プランジャガイド21で容器ベース10の外周部を送液デバイス40に押し付ける(送液デバイス40は図示していない)。次に、プランジャ20を用いて容器可撓部11を押圧すると、容器可撓部11が下方に撓み、さらにプランジャ20を押し下げると、容器穿孔部15が破かれ、試薬保存容器1内部の試薬が試薬保存容器1の外部に放出される。
 このように、プランジャガイドが送液デバイスに押圧可能な部位(本実施例では容器ベース)があれば、容器可撓部や容器穿孔部は特に平面である必要がない。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。
1…試薬保存容器
10…容器ベース
11…容器可撓部
12、15…容器穿孔部
20…プランジャ
21…プランジャガイド
30…試料処理装置
40…送液デバイス
50…デバイス装着部
60…上蓋
61、62、63…空気用接続部
70…ポンプ
80…空気室
90…レギュレータ
101、102、103…バルブ
110…コントローラ
120…圧力センサ
130…サンプル槽
131、141、151…空気出入口
132…サンプル
140…混合槽
150…試料採取槽
160…試薬槽
161…ツメ
162…試薬
165…試薬槽突起
166…突起流路
170…流路

Claims (23)

  1.  変形可能な部材と穿孔可能な部材より構成される試薬保持容器であって、
    外部の押圧機構が前記変形可能な部材を変形させ、かつ前記穿孔可能な部材を穿孔することで内部に保持した試薬を吐出する
    ことを特徴とする試薬保持容器。
  2.  前記変形可能な部材と前記穿孔可能な部材によって挟まれたベース部材を備える
    請求項1に記載の試薬保持容器。
  3.  前記変形可能な部材がシリコーンゴムであることを特徴とする請求項1に記載の試薬保持容器。
  4.  前記シリコーンゴムの厚みが0.1~1.0mmであることを特徴とする請求項3に記載の試薬保持容器。
  5.  前記穿孔可能な部材がアルミニウムフィルムであることを特徴とする請求項1乃至請求項2に記載の試薬保持容器。
  6.  前記アルミニウムフィルムの厚みが10~50μmであることを特徴とする請求項5に記載の試薬保持容器。
  7.  前記穿孔可能な部材は、ポリプロピレン、ポリイミド、ポリエステル、ナイロン、ポリカーボネート、またはPETのいずれかから成るプラスチックフィルムであることを特徴とする請求項1に記載の試薬保持容器。
  8.  上記穿孔可能な部材とは別の第2の穿孔可能な部材を備え、当該第2の穿孔可能な部材が前記変形可能な部材と重なっていることを特徴とする請求項2に記載の試薬保持容器。
  9.  前記変形可能な部材が前記ベース部材に接し、かつ、第2の穿孔可能な部材よりも試薬の収容部側に位置していることを特徴とする請求項8に記載の試薬保持容器。
  10.  前記第2の穿孔可能な部材が前記ベース部材に接し、かつ、前記変形可能な部材よりも試薬の収容部側に位置していることを特徴とする請求項8に記載の試薬保持容器。
  11.  前記変形可能な部材には金属が蒸着されていることを特徴とする請求項1に記載の試薬保持容器。
  12.  前記ベース部材と前記変形可能な部材は、両面テープを用いて接合されていることを特徴とする請求項2に記載の試薬保持容器。
  13.  前記ベース部材と前記穿孔可能な部材は、両面テープを用いて接合されていることを特徴とする請求項2に記載の試薬保持容器。
  14.  前記ベース部材と前記変形可能な部材は、熱圧着により接合されていることを特徴とする請求項2に記載の試薬保持容器。
  15.  前記ベース部材と前記穿孔可能な部材は、熱圧着により接合されていることを特徴とする請求項2に記載の試薬保持容器。
  16.  試薬保持容器、当該試薬保持容器を収容する試薬保持容器収容部、押圧機構、液体流入口、液体流出口、および、液体流入口と液体流出口を繋ぐ流路、を有する、送液装置であって、
     流路の一部と、上記試薬保持容器収容部が繋がっており、
     上記試薬保持容器は変形可能な部材と穿孔可能な部材より構成され、
     上記押圧機構が前記変形可能な部材を変形させ、かつ前記穿孔可能な部材を穿孔することで内部に保持した試薬を吐出することを特徴とする、送液装置。
  17.  請求項16に記載の送液装置であって、
     前記試薬保持容器収容部には試薬保持容器を保持するツメ部を備えていることを特徴とする、送液装置。
  18.  請求項16に記載の送液装置であって、
     上記試薬保持容器収容部は、上記流路との接続部分の断面が狭くなっていることを特徴とする、送液装置。
  19.  請求項16に記載の送液装置であって、
     上記流路は、上記試薬保持容器収容部との接続部分において、上記押圧機構が押す方向へ窪んでいることを特徴とする、送液装置。
  20.  請求項17に記載の送液装置であって、
     上記試薬保持容器収容部は、ツメ部によって保持された試薬保持容器に向かって突き出た穿孔部を有することを特徴とする、送液装置。
  21.  請求項20に記載の送液装置であって、
     上記穿孔部は内部が空洞になっており、当該空洞が上記流路と連通していることを特徴とする、送液装置。
  22.  請求項16に記載の送液装置であって、
     前記押圧機構はプランジャであることを特徴とする、送液装置。
  23.  変形可能な部材と穿孔可能な部材より構成される試薬保持容器からの試薬吐出方法であって、
     外部の押圧機構が前記変形可能な部材を変形させ、かつ前記穿孔可能な部材を穿孔することで内部に保持した試薬を吐出することを特徴とする試薬吐出方法。
PCT/JP2013/076466 2013-09-30 2013-09-30 試薬保持容器、送液装置、試薬吐出方法 WO2015045134A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/023,192 US20160236196A1 (en) 2013-09-30 2013-09-30 Reagent Holding Container, Liquid Delivery Device, Reagent Discharge Method
PCT/JP2013/076466 WO2015045134A1 (ja) 2013-09-30 2013-09-30 試薬保持容器、送液装置、試薬吐出方法
JP2015538767A JP6192731B2 (ja) 2013-09-30 2013-09-30 試薬保持容器、送液装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076466 WO2015045134A1 (ja) 2013-09-30 2013-09-30 試薬保持容器、送液装置、試薬吐出方法

Publications (1)

Publication Number Publication Date
WO2015045134A1 true WO2015045134A1 (ja) 2015-04-02

Family

ID=52742334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076466 WO2015045134A1 (ja) 2013-09-30 2013-09-30 試薬保持容器、送液装置、試薬吐出方法

Country Status (3)

Country Link
US (1) US20160236196A1 (ja)
JP (1) JP6192731B2 (ja)
WO (1) WO2015045134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018534538A (ja) * 2015-09-04 2018-11-22 ライフ テクノロジーズ コーポレーション メソ流体および/またはマイクロ流体プロセス用のデバイスおよび方法
WO2023135991A1 (ja) * 2022-01-11 2023-07-20 Nok株式会社 容器、マイクロ流体デバイス、及びダイアフラムポンプ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206489A1 (de) * 2017-04-18 2018-10-18 Robert Bosch Gmbh Vorrichtung und Verfahren für ein mikrofluidisches System zum Analysieren einer Probe
EP4317975A4 (en) * 2021-03-26 2024-09-25 Fujifilm Corp INSPECTION CARTRIDGE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398871A (ja) * 1989-06-09 1991-04-24 Hideyo Fujii 容器及び添加物用小容器並びにこれらを利用した炭酸飲料
WO2001013127A1 (fr) * 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Cartouche d'analyse et dispositif de regulation d'apport de liquide
JP2004115075A (ja) * 2002-09-27 2004-04-15 Toppan Printing Co Ltd プラスチック製容器
JP2005512071A (ja) * 2001-12-13 2005-04-28 ザ テクノロジー パートナーシップ ピーエルシー 化学的又は生化学的分析用のデバイス
JP2005331366A (ja) * 2004-05-20 2005-12-02 Kajikkusu Trading:Kk 試薬添加シート、試薬密封袋及び試薬添加方法
JP2006308366A (ja) * 2005-04-27 2006-11-09 Hitachi High-Technologies Corp 化学分析装置及び化学分析カートリッジ
JP2007500850A (ja) * 2003-05-29 2007-01-18 バイエル・ヘルスケア・エルエルシー マイクロ流体装置のパッケージング
WO2009035062A1 (ja) * 2007-09-10 2009-03-19 Nec Corporation 試料充填装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155663A (en) * 1977-05-05 1979-05-22 Cerquozzi John H Toothpaste dispensing toothbrush having a squeezable handle
WO1986006488A1 (en) * 1985-04-29 1986-11-06 Hichem Diagnostics, Inc., Dba Bural Technologies Diagnostic test kit
US5595707A (en) * 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
WO1997014630A1 (en) * 1995-10-20 1997-04-24 Pharmacia & Upjohn Company Blister package
US6488665B1 (en) * 1997-04-08 2002-12-03 Allegiance Corporation Antimicrobial alcohol gel pre-operative skin-preparation delivery system
US6475774B1 (en) * 2001-09-18 2002-11-05 Hemant Gupta Reaction plate sealing means
US20030234203A1 (en) * 2002-06-21 2003-12-25 Urban Joseph J. Blister package
DE10344229A1 (de) * 2003-09-24 2005-05-19 Steag Microparts Gmbh Mikrostruktuierte Vorrichtung zum entnehmbaren Speichern von kleinen Flüssigkeitsmengen und Verfahren zum Entnehmen der in dieser Vorrichtung gespeicherten Flüssigkeit
US8852862B2 (en) * 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
WO2006053588A1 (en) * 2004-11-17 2006-05-26 Agilent Technologies, Inc. Supply arrangement with supply reservoir element and fluidic device
EP2487248A1 (en) * 2006-05-10 2012-08-15 The Board of Regents of the University of Texas System Detecting tumor biomarker in oral cancer
US8056748B2 (en) * 2008-01-15 2011-11-15 Fang-Pin Chen Safe device having dual caps for a squeezable container
JP5401542B2 (ja) * 2008-06-19 2014-01-29 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング 流体計量容器
BRPI1008776A2 (pt) * 2009-02-06 2017-05-16 Univ Northwestern embalagem rompível de liquído e usos da mesma
US8470153B2 (en) * 2011-07-22 2013-06-25 Tecan Trading Ag Cartridge and system for manipulating samples in liquid droplets

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398871A (ja) * 1989-06-09 1991-04-24 Hideyo Fujii 容器及び添加物用小容器並びにこれらを利用した炭酸飲料
WO2001013127A1 (fr) * 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Cartouche d'analyse et dispositif de regulation d'apport de liquide
JP2005512071A (ja) * 2001-12-13 2005-04-28 ザ テクノロジー パートナーシップ ピーエルシー 化学的又は生化学的分析用のデバイス
JP2004115075A (ja) * 2002-09-27 2004-04-15 Toppan Printing Co Ltd プラスチック製容器
JP2007500850A (ja) * 2003-05-29 2007-01-18 バイエル・ヘルスケア・エルエルシー マイクロ流体装置のパッケージング
JP2005331366A (ja) * 2004-05-20 2005-12-02 Kajikkusu Trading:Kk 試薬添加シート、試薬密封袋及び試薬添加方法
JP2006308366A (ja) * 2005-04-27 2006-11-09 Hitachi High-Technologies Corp 化学分析装置及び化学分析カートリッジ
WO2009035062A1 (ja) * 2007-09-10 2009-03-19 Nec Corporation 試料充填装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018534538A (ja) * 2015-09-04 2018-11-22 ライフ テクノロジーズ コーポレーション メソ流体および/またはマイクロ流体プロセス用のデバイスおよび方法
WO2023135991A1 (ja) * 2022-01-11 2023-07-20 Nok株式会社 容器、マイクロ流体デバイス、及びダイアフラムポンプ

Also Published As

Publication number Publication date
JPWO2015045134A1 (ja) 2017-03-02
US20160236196A1 (en) 2016-08-18
JP6192731B2 (ja) 2017-09-06

Similar Documents

Publication Publication Date Title
US20060183216A1 (en) Containers for liquid storage and delivery with application to microfluidic devices
JP6192731B2 (ja) 試薬保持容器、送液装置
US20090074626A1 (en) Microstructured device for removable storage of small amounts of liquid and a process for removal of the liquid stored in this device
WO2006079082A2 (en) Containers for liquid storage and delivery with application to microfluidic devices
WO2009035062A1 (ja) 試料充填装置
JP2014502236A (ja) 液体用包装材並びにその使用及び液体をフルイディック組立体に供給する方法
JP2010524788A (ja) 突き刺し可能な蓋
US11857964B2 (en) Flow cell having a housing component
CN113316466B (zh) 雾化装置
CN203958963U (zh) 一种试剂盒组件
EP2074044B1 (en) Container
GB2538846A (en) Storage unit, method for manufacturing a storage unit and method for releasing fluid stored in a storage unit
WO2023087821A1 (zh) 试剂预埋与注样装置、及其注样方法和用途
EP2759837A1 (en) Reagent container
JP2022536771A (ja) 医学的試料の移送および処理のための再密閉隔壁キャップ
JP2018059916A (ja) マイクロ流路チップ
WO2017051448A1 (ja) 生検試料容器
WO2012147636A1 (ja) 試薬容器
JP2009204525A (ja) 反応容器プレート及び反応処理方法
JP4484706B2 (ja) 流体スプレー装置
CN210222045U (zh) 液体包及样本测试卡
JP6654874B2 (ja) 保存容器、流動カートリッジ、および吐出機構
JP2011149801A (ja) 化学反応用カートリッジ
JP2019119499A (ja) 注出ポンプ及び注出ポンプを用いた詰め替え容器
CN112638535B (zh) 带液体包的料筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538767

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15023192

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894065

Country of ref document: EP

Kind code of ref document: A1