WO2015045042A1 - 柱脚構造 - Google Patents

柱脚構造 Download PDF

Info

Publication number
WO2015045042A1
WO2015045042A1 PCT/JP2013/075940 JP2013075940W WO2015045042A1 WO 2015045042 A1 WO2015045042 A1 WO 2015045042A1 JP 2013075940 W JP2013075940 W JP 2013075940W WO 2015045042 A1 WO2015045042 A1 WO 2015045042A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
column base
strength
joint
base structure
Prior art date
Application number
PCT/JP2013/075940
Other languages
English (en)
French (fr)
Inventor
田中 秀宣
望月 久智
功祐 福地
Original Assignee
日立機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立機材株式会社 filed Critical 日立機材株式会社
Priority to US14/346,375 priority Critical patent/US20160222662A1/en
Priority to JP2014501350A priority patent/JP5752846B1/ja
Priority to PCT/JP2013/075940 priority patent/WO2015045042A1/ja
Priority to TW103102250A priority patent/TWI554669B/zh
Publication of WO2015045042A1 publication Critical patent/WO2015045042A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2442Connections with built-in weakness points
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2463Connections to foundations

Definitions

  • a metal fitting arranged above the foundation concrete is joined to a column base fixed to a tip end portion of an anchor bolt protruding upward from the foundation concrete, and a lower end thereof is joined to the upper surface of the metal fitting.
  • the present invention relates to a column base structure including a column member.
  • FIG. 4 to 6 are views referred to for explaining the conventional column base structure 2.
  • FIG. 4 to 6 are views referred to for explaining the conventional column base structure 2.
  • the conventional column base structure 2 includes a column base 5 provided on the foundation concrete 3 and a steel column 4 (the lower end of which is joined to a metal fitting 6 of the column base 5).
  • Column member The column base 5 had a metal joint 6, a mortar 8, an anchor bolt 10, nut members 12 and 14, a washer 16, and a fixing plate 18.
  • a flat joint metal 6 having both front and back surfaces is provided above the foundation concrete 3 via a mortar 8.
  • the joining hardware 6 of the column base 5 is made of metal, and the lower end of the steel column 4 having a length in the vertical direction in the figure is joined to the upper surface 6a (surface) by welding.
  • the welded portion W is not drawn on the front side surface of the steel column 4 in the figure, but the front side surface and the back side surface in FIG. Similar to the two side surfaces adjacent to the surface, the welded portion W is formed. This also applies to other drawings such as FIG. 5 and FIG.
  • the male thread portion formed at the lower end portion of the anchor bolt 10 is loosely inserted into a through hole penetrating in the thickness direction of the fixing plate 18, and on the upper surface side and the lower surface side of the fixing plate 18.
  • the fixing plate 18 is integrally fixed to the lower end portion of the anchor bolt 10 in the foundation concrete 3 by screwing the female screw portion of the nut member 14.
  • the bottom plate portion and the support plate formed in a trapezoidal shape with the center portion of the top surface of the bottom plate portion being higher than the peripheral edge portion.
  • a column base structure using a metal joint different from a simple flat plate shape, in which the lower end of the steel column is joined by welding to the upper surface of the support base see, for example, Patent Document 2.
  • the building structure provided with the conventional column base structure 2 has a central portion between the pair of welded portions W with the joint hardware 6 on both sides of the steel column 4 as shown in FIG.
  • a load that generates a large bending moment M for rotating the steel column 4 around the rotation center O in the clockwise direction is applied, the steel column 4 and the column base 5 of the column base structure 2 Among them, the one with weak proof stress yielded first and plastically deformed.
  • the yield strength of the steel column 4 (including bending strength Mp and axial strength Np, which will be described later) is determined by the design reference strength F2 of the steel column 4, and the greater the design reference strength F2 of the steel column 4, the more the steel frame The proof stress of the pillar 4 was large.
  • the proof stress of the column base 5 (including bending proof Mu and axial proof strength Nu described later) is not determined by the design reference strength F1 of the joint hardware 6, but the strength of the joint hardware 6 and the anchor bolt 10 And the fixing performance of the joint metal 6 with the foundation concrete 3 through the mortar 8, the anchor bolt 10, the nut members 12 and 14, the washer 16 and the fixing plate 18.
  • the conventional column base structure 2 includes a column base structure 2A in which the design reference strength F1 of the metal fitting 6 is greater than or equal to the design reference strength F2 of the steel column 4, and the design reference strength F1 of the metal fitting 6 is the design standard of the steel column 4.
  • the column base structure 2B having a strength smaller than the strength F2, the column base structure 2A has been widely used.
  • the steel column 4 in the conventional column base structure 2 ⁇ / b> A rotates clockwise around the rotation center O at the center between the pair of welded portions W with the metal fitting 6.
  • the welded portion W that connects the metal fittings 6 of the steel column 4 yields instead of yielding. Is bent in the clockwise direction at the portion above the welded portion W, so that there was no possibility that the welded portion W was broken and the joint 6 between the steel column 4 and the column base 5 was separated from each other.
  • the design standard strength F1 of the metal joint 6 is equal to or higher than the design standard strength F2 of the steel column 4.
  • the structural calculation of the building structure provided with the conventional column base structure 2 has been performed by a structural calculation apparatus using a structural calculation program.
  • the structural calculation program is the load data such as the scale and shape of the building structure, the material and dimensions of the beams and pillars that make up the column base structure in the building structure and the upper structure above, the fixed load and the load load.
  • various strength tests, calculation of allowable stress, calculation by the Building Standards Act such as limit strength calculation, etc., and pass / fail judgment are performed continuously, and all the results are obtained. It is displayed and / or printed on the structural calculation device.
  • the conventional structural calculation device has values such as the bending strength Mp and the axial strength Np of the steel column 4 and the bending strength Mu and the axial strength Nu of the column base 5 from the data input by the conventional structural calculation program.
  • the bending strength Mp of the steel column 4 and the bending strength Mu of the column base 5 the smaller one is set as the ultimate bending strength Ms of the column base structure 2, and this ultimate bending strength Ms is a criterion for pass / fail judgment. Used to calculate the structure of building structures.
  • the present invention is such that when a load that generates a bending moment due to an earthquake or the like is applied, the joint between the metal joint and the column member locally yields and the joint breaks. It is an object of the present invention to provide a column base structure that can prevent the manufacturing cost of the joint hardware and the column base structure from being increased.
  • the column base structure is: A metal joint disposed above the foundation concrete includes a column base fixed to an anchor bolt protruding upward from the foundation concrete, and a column member having a lower end joined to the upper surface of the metal joint.
  • a column base structure, The design standard strength of the joint hardware is smaller than the design standard strength of the column member, The bending strength of the column base is calculated by multiplying the bending strength of the column member by a value obtained by dividing the design standard strength of the joint hardware by the design standard strength of the column member, based on the index bending strength of the column member. small, As the load applied to the column base structure increases, the column base portion yields before the column member.
  • the column base structure according to the present invention is
  • the bonding hardware is formed in a plate shape having both front and back surfaces and an equal thickness.
  • the column base structure according to the present invention is
  • the joint hardware has both front and back surfaces, a bottom plate portion formed in a plate shape having an equal thickness, and a support base portion having a height upward from the periphery of the upper surface of the bottom plate portion. And the lower end part of the said column member is joined to the upper surface of this support stand part, It is characterized by the above-mentioned.
  • a metal joint disposed above the foundation concrete includes a column base fixed to an anchor bolt protruding upward from the foundation concrete, and a column member having a lower end joined to the upper surface of the metal joint.
  • a column base structure, The design standard strength of the joint hardware is smaller than the design standard strength of the column member, The bending strength of the column base is calculated by multiplying the bending strength of the column member by a value obtained by dividing the design standard strength of the joint hardware by the design standard strength of the column member, based on the index bending strength of the column member.
  • FIGS. 1 and 2 are views referred to for explaining the column base structure 40 according to the first embodiment of the present invention.
  • the same parts as those of the conventional column base structure 2 will be described with the same reference numerals, and the description of the same structure as the conventional one will be omitted except for a part.
  • the column base structure 40 has a column base 41 provided on the foundation concrete 3 and a lower end of the column base 41 joined to a metal fitting 42 of the column base 41.
  • a steel column 4 (column member) is provided.
  • the column base 41 includes a metal joint 42, a mortar 8, an anchor bolt 10, nut members 12 and 14, a washer 16, and a fixing plate 18.
  • a flat joint metal 42 is provided above the foundation concrete 3 via the mortar 8.
  • the metal joint 42 is made of metal and has square front and back surfaces.
  • the lower end of the steel column 4 is abutted against the upper surface 42a of the metal joint 42 of the column base 41, and they are joined to each other by welding at the weld W.
  • the steel column 4 has a length in the vertical direction in FIG. 1 and is formed in a hollow rectangular tube shape.
  • the upper end portion of the anchor bolt 10 protruding upward from the foundation concrete 3 is inserted into a bolt insertion hole 42b formed in the peripheral edge portion of the joint metal piece 42.
  • the male thread portion formed at the upper end portion of the anchor bolt 10 that protrudes upward from the metal joint 42 passes through the through hole of the washer 16 and is screwed to the female thread portion of the nut member 12. Is fixedly erected on the foundation concrete 3 through the welded portion W, the metal joint 42 of the column base 41 and the mortar 8.
  • the design reference strength F1 ′ of the joint hardware 42 is smaller than the design reference strength F2 of the steel column 4.
  • the bending strength Mu ′ of the column base portion 41 is smaller than the index bending strength Mp ′ of the steel column 4.
  • the bending strength Mu ′ of the column base 41 is the same as the bending strength Mu of the column base 5 in the conventional column base structure 2, the strength of the joining hardware 42, the strength of the anchor bolt 10, and the joining hardware 42.
  • the index bending strength Mp ′ of the steel column 4 is obtained by multiplying the bending strength Mp of the steel column 4 by a value obtained by dividing the design standard strength F1 ′ of the metal joint 42 by the design standard strength F2 of the steel column 4. It is calculated.
  • the column base structure 40 is configured so that the bending strength Mu ′ of the column base 41 is smaller than the index bending strength Mp ′ of the steel column 4 with respect to the steel column 4. 2, when a load that generates a large bending moment M is applied in the clockwise direction around the rotation center O of the central portion between the pair of welded portions W with the joint hardware 42, The welded part 42 yields and plastically deforms without the welded part W connecting the joined metallized 42 yielding locally and the welded part W breaking.
  • the building structure provided with the column base structure 40 according to the present embodiment is subjected to structural calculation by a structural calculation apparatus using a structural calculation program.
  • the structural calculation device used for the building structure including the column base structure 40 is configured to obtain the bending strength Mp and the axial strength Np of the steel column 4 from the data input by the structural calculation program. Is multiplied by a value obtained by dividing the design reference strength F1 ′ of the metal joint 42 by the design reference strength F2 of the steel column 4, and the index bending strength Mp ′, the index shaft strength Np ′ of the steel column 4, and the column base portion 41 are calculated. Values such as the bending strength Mu ′ and the axial strength Nu ′ are calculated.
  • the structural calculation device uses the structural calculation program to determine the ultimate bending strength Ms of the column base structure 40 as the smaller one of the index bending strength Mp ′ of the steel column 4 and the bending strength Mu ′ of the column base 41.
  • the structural calculation of the building structure is performed using the ultimate bending proof stress Ms as a criterion for the pass / fail judgment.
  • the structural calculation is performed with the bending strength Mu ′ of the column base 41 smaller than the index bending strength Mp ′ of the steel column 4 as the ultimate bending strength Ms.
  • the dimensions of each member of the building structure including the structure 40 are determined.
  • the column base structure 40 according to the present embodiment has the bending moment M due to the earthquake shown in FIG. 2 even if the design reference strength F1 ′ of the metal fitting 42 is smaller than the design reference strength F2 of the steel column 4. It is possible to prevent the welded portion W that connects the steel column 4 and the metal joint 42 from yielding locally and breaking the welded portion W when a load that generates the above is applied.
  • the design reference strength F1 ′ of the metal joint 42 can be made smaller than the design reference strength F2 of the steel column 4, it is assumed that a high-strength material having a large design reference strength F2 is used as the material of the steel column 4. However, it is not necessary to use a high-strength material having a large design reference strength F1 ′ as the material of the joint hardware 42.
  • the column base structure 40 according to the present embodiment can prevent an increase in the manufacturing cost of the joint hardware 42 and also prevent an increase in the manufacturing cost of the column base structure 40 using the joint hardware 42. can do.
  • the joint hardware 42 and the steel column 4 it is possible to prevent the joint portion (welded portion W) from yielding locally and breaking the joint portion, and to prevent the manufacturing cost of the joint hardware 42 and the column base structure 40 from being increased. .
  • FIG. 3 is a diagram referred to for explaining the column base structure 70 according to the second exemplary embodiment of the present invention.
  • the column base structure 70 according to the present embodiment includes a bottom plate portion 72a and a support base portion 72d as shown in FIG. 3 instead of the joint hardware 42 in the column base structure 40 according to the first embodiment.
  • the column base structure 40 according to the first embodiment is different from the column base structure 40 according to the first embodiment in that the metal fitting 72 is provided.
  • the metal joint 72 of the column base portion 71 in the present embodiment is made of metal, and as shown in FIG. 3, the bottom plate portion 72a formed in a plate shape having both substantially square front and back surfaces, and its bottom plate
  • the center part of the upper surface 72b of the part 72a is comprised by the support stand part 72d which has height toward the upper direction in the figure from the peripheral part.
  • the lower end portion of the steel column 4 is abutted against the upper surface 72e of the support base portion 72d, and the joint hardware 72 is joined to each other at the weld portion W by welding.
  • the upper end portion of the anchor bolt 10 projecting upward from the foundation concrete 3 is inserted into a bolt insertion hole 72 c formed in the peripheral edge portion of the bottom plate portion 72 a of the joint metal 72.
  • the male screw portion formed at the upper end portion of the anchor bolt 10 that protrudes upward from the peripheral edge portion of the bottom plate portion 72a of the metal fitting 72 passes through the through hole of the washer 16 and is screwed to the female screw portion of the nut member 12. Accordingly, the steel column 4 is erected and fixed on the foundation concrete 3 via the welded portion W, the joint metal 72 of the column base 71 and the mortar 8.
  • the design reference strength of the joint hardware 72 is smaller than the design reference strength F2 of the steel column 4 as in the case of the column base structure 40 according to the first embodiment. Yes.
  • the bending strength Mu ′ of the column base portion 71 is smaller than the index bending strength Mp ′ of the steel column 4.
  • this invention is not limited only to the said embodiment, If it is in the range which can achieve the objective of this invention, various changes are possible about a column base structure.
  • the metal joint 42 has a flat plate shape having both front and back surfaces in a substantially square shape.
  • a square other than the shape may be used.
  • joint hardware 42 may be a flat plate having both a polygonal shape other than a square and a circular front and back. This also applies to the bottom plate portion 72a of the metal joint 72 in the second embodiment.
  • the steel column 4 whose lower end portion is joined to the joining hardware 42 is formed in a rectangular tube shape, but is not limited to this shape.
  • it may be formed in a cylindrical shape.
  • the steel column may be formed in a solid shape.
  • the building structure including the column base structure 40 according to the first embodiment is subjected to structural calculation by a structural calculation apparatus using a structural calculation program, whereby the dimensions and the like of each member are determined.
  • the design reference strength F1 ′ of the metal joint 42 is smaller than the design reference strength F2 of the steel column 4
  • the bending strength Mu ′ of the column base 41 is smaller than the index bending strength Mp ′ of the steel column 4. If so, a structural calculation program or a structural calculation apparatus need not be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

 地震等により曲げモーメントを発生させる荷重が加えられた際に、接合金物と柱部材の接合部が局所的に降伏してその接合部が破断することを防止することができると共に、接合金物や柱脚構造の製造費用の高額化を防止することができる柱脚構造を提供する。 基礎コンクリート3の上方に配置された接合金物42が、基礎コンクリート3から上方に突出したアンカーボルト10に固定された柱脚部41と、接合金物42の上面42aにその下端部が接合された柱部材4とを備えた柱脚構造40であって、接合金物42の設計基準強度F1´は、柱部材4の設計基準強度F2より小さく、柱脚部41の曲げ耐力Mu´は、設計基準強度F1´を設計基準強度F2で除した値を柱部材4の曲げ耐力Mpに乗じて算出された、柱部材4の指標曲げ耐力Mp´より小さく、柱脚構造40に加えられる荷重が増えていくと、柱脚部41は柱部材4よりも先に降伏するようにした。

Description

柱脚構造
 本発明は、基礎コンクリートの上方に配置された接合金物が、基礎コンクリート中から上方に突出したアンカーボルトの先端部に固定された柱脚部と、前記接合金物の上面にその下端部が接合された柱部材とを備えた柱脚構造に関するものである。
 図4から図6は、従来の柱脚構造2について説明するために参照する図である。
 従来の柱脚構造2は、図4に示すように、基礎コンクリート3上に設けられた柱脚部5と、この柱脚部5の接合金物6にその下端部が接合された鉄骨柱4(柱部材)とを備えて構成されていた。柱脚部5は、接合金物6と、モルタル8と、アンカーボルト10と、ナット部材12,14、座金16及び定着板18を有していた。
 従来の柱脚構造2の柱脚部5は、表裏両面を有する平板状の接合金物6が、基礎コンクリート3の上方にモルタル8を介して設けられていた。この柱脚部5の接合金物6は、金属製であり、その上面6a(表面)に、図中上下方向に長さを有する鉄骨柱4の下端部が溶接により接合されていた。
 ここで、図4中においては、説明の便宜上、鉄骨柱4の図中手前側の面に溶接部Wが描かれていないが、この図中手前側の面と裏側の面には、これらの面に隣接する2つの側面と同様に、溶接部Wが形成されている。この点は、図5や図6等の他の図面においても同様とする。
 そして、基礎コンクリート3中からその上方に突出するアンカーボルト10の上端部が、接合金物6の周縁部のボルト挿通孔6b及び座金16の貫通孔を挿通していた。アンカーボルト10の上端部に形成されたオネジ部が、2つのナット部材12のメネジ部にねじ締結されることにより、鉄骨柱4は、その溶接部Wと、柱脚部5の接合金物6及びモルタル8を介して、基礎コンクリート3の上に立設して固定されていた(例えば、特許文献1参照)。
 また、基礎コンクリート3中において、アンカーボルト10の下端部に形成されたオネジ部が、定着板18の厚さ方向に貫通する貫通孔に緩く挿通して、定着板18の上面側及び下面側においてナット部材14のメネジ部にねじ締結することにより、定着板18は、基礎コンクリート3中のアンカーボルト10の下端部に一体的に固定されていた。
 また、他の従来の柱脚構造としては、上記接合金物6の代わりに、底板部と、その底板部上面の中央部がその周縁部より上方に高くなって、台状に形成された支持台部により構成され、その支持台部の上面に鉄骨柱の下端部が溶接により接合された、単なる平板状とは異なる接合金物を用いた柱脚構造があった(例えば、特許文献2参照)。
 この特許文献2に係る他の従来の柱脚構造は、基礎コンクリート中から上方に突出するアンカーボルトの上端部が、接合金物の底板部の周縁部の厚さ方向を貫通するボルト挿通孔に挿通して、アンカーボルトに形成されたオネジ部が、ナット部材のメネジ部にねじ締結することにより、鉄骨柱が、その溶接部と、柱脚部の接合金物及びモルタルを介して、基礎コンクリートの上に立設して固定されていた。
 ところで、前記従来の柱脚構造2(図4参照)を備えた建築構造物は、図5に示すような、鉄骨柱4の両側面の接合金物6との一対の溶接部W間中央部の回転中心Oの周りに時計回り方向に、鉄骨柱4を回転させようとする大きな曲げモーメントMを発生させる荷重が加えられた場合には、柱脚構造2の鉄骨柱4と柱脚部5のうち、耐力の弱い方が先に降伏して塑性変形するようになっていた。
 このような前記従来の柱脚構造2を備えた建築構造物において、柱脚部5を鉄骨柱4より先に降伏して塑性変形させるためには、柱脚部5の曲げモーメントMに対する耐力を鉄骨柱4のその耐力より大きくする必要があった。
 ここで、鉄骨柱4の耐力(後述する曲げ耐力Mpや軸耐力Npを含む)は、鉄骨柱4の設計基準強度F2により定められるものであり、鉄骨柱4の設計基準強度F2が大きいほど鉄骨柱4の耐力は大きくなっていた。
 これに対して、柱脚部5の耐力(後述する曲げ耐力Muや軸耐力Nuを含む)は、接合金物6の設計基準強度F1により定められるものではなく、接合金物6の強度やアンカーボルト10の強度、及び接合金物6の、モルタル8、アンカーボルト10、ナット部材12,14、座金16及び定着板18を介した基礎コンクリート3との定着性能により定められるものであった。
 また、従来の柱脚構造2を、接合金物6の設計基準強度F1が鉄骨柱4の設計基準強度F2以上の柱脚構造2Aと、接合金物6の設計基準強度F1が鉄骨柱4の設計基準強度F2より小さい柱脚構造2Bの2つに区分けすると、従来は柱脚構造2Aの方が広く採用されていた。
 なぜなら、上記従来の柱脚構造2Bにおける鉄骨柱4に対して、図6に示すように、鉄骨柱4の接合金物6との一対の溶接部W間中央部の回転中心Oの周りに時計回り方向に、鉄骨柱4を回転させようとする大きな曲げモーメントMを発生させる荷重が加わった場合には、鉄骨柱4と柱脚部5の接合金物6を繋ぐ溶接部Wが局部的に降伏して、溶接部Wが破断して鉄骨柱4と柱脚部5の接合金物6が互いに離隔してしまうおそれがあった。
 他方、上記従来の柱脚構造2Aにおける鉄骨柱4に対して、図5に示すように、鉄骨柱4の接合金物6との一対の溶接部W間中央部の回転中心Oの周りに時計回り方向に、鉄骨柱4を回転させようとする大きな曲げモーメントMを発生させる荷重が加わった場合には、鉄骨柱4の接合金物6を繋ぐ溶接部Wの方が降伏する代わりに、鉄骨柱4が溶接部Wより上方の部分で時計回り方向に折れ曲がるので、溶接部Wが破断して鉄骨柱4と柱脚部5の接合金物6が互いに離隔するおそれはなかった。
 このため、従来の柱脚構造2は、接合金物6の設計基準強度F1が、鉄骨柱4の設計基準強度F2以上になっていた。
 また、上記従来の柱脚構造2を備えた建築構造物は、構造計算プログラムを用いた構造計算装置によりその構造計算が行なわれていた。
 ここで、構造計算プログラムは、建築構造物の規模や形状、建築構造物における柱脚構造及びその上方の上部構造を構成する梁や柱の材料や寸法、固定荷重・積載荷重などの各種荷重データ等の入力されたデータに基づいて、各種の耐力判定、許容応力度等計算や限界耐力計算等の建築基準法等が定める計算、及びそれらの合否判定を連続して行ない、それらの結果をすべて構造計算装置において表示及び/又は印刷させるものである。
 そして、従来の構造計算装置は、従来の構造計算プログラムにより、入力されたデータから、鉄骨柱4の曲げ耐力Mpや軸耐力Np、柱脚部5の曲げ耐力Muや軸耐力Nuなどの値が算出されて、鉄骨柱4の曲げ耐力Mpと柱脚部5の曲げ耐力Muのうち、その値が小さい方を柱脚構造2の終局曲げ耐力Msとして、この終局曲げ耐力Msを合否判定の基準に用いて建築構造物の構造計算が行なわれていた。
特開2003-232078号公報 特開2003-336266号公報
 近年、鉄骨柱4の高強度化が進み、鉄骨柱4の材料として設計基準強度F2の値が大きい高強度材料が用いられるようになってきた。このため、接合金物6の設計基準強度F1を鉄骨柱4の設計基準強度F2より大きくするためには、接合金物6の材料として設計基準強度F1の値が大きい高強度材料を用いなければならず、接合金物6の製造費用が高額化すると共に、この接合金物6を用いた従来の柱脚構造2の製造費用も高額化するという問題があった。
 そこで本発明は、上記問題点に鑑みて、地震等により曲げモーメントを発生させる荷重が加えられた際に、接合金物と柱部材の接合部が局所的に降伏してその接合部が破断することを防止することができると共に、接合金物や柱脚構造の製造費用の高額化を防止することができる柱脚構造を提供することを課題とするものである。
 上記課題を解決するために、本発明による柱脚構造は、
 基礎コンクリートの上方に配置された接合金物が、前記基礎コンクリートから上方に突出したアンカーボルトに固定された柱脚部と、前記接合金物の上面にその下端部が接合された柱部材とを備えた柱脚構造であって、
 前記接合金物の設計基準強度は、前記柱部材の設計基準強度より小さく、
 前記柱脚部の曲げ耐力は、前記接合金物の設計基準強度を前記柱部材の設計基準強度で除した値を前記柱部材の曲げ耐力に乗じて算出された、前記柱部材の指標曲げ耐力より小さく、
 前記柱脚構造に加えられる荷重が増えていくと、前記柱脚部は前記柱部材よりも先に降伏することを特徴とするものである。
 また、本発明による柱脚構造は、
 前記接合金物は、表裏両面と、均等な厚さを有する板状に形成されたことを特徴とするものである。
 また、本発明による柱脚構造は、
 前記接合金物は、表裏両面と、均等な厚さを有する板状に形成された底板部と、この底板部の上面の周縁部より内側で上方に向かって高さを有する支持台部とを有し、この支持台部の上面に前記柱部材の下端部が接合されたことを特徴とするものである。
 このような本発明の柱脚構造によれば、
 基礎コンクリートの上方に配置された接合金物が、前記基礎コンクリートから上方に突出したアンカーボルトに固定された柱脚部と、前記接合金物の上面にその下端部が接合された柱部材とを備えた柱脚構造であって、
 前記接合金物の設計基準強度は、前記柱部材の設計基準強度より小さく、
 前記柱脚部の曲げ耐力は、前記接合金物の設計基準強度を前記柱部材の設計基準強度で除した値を前記柱部材の曲げ耐力に乗じて算出された、前記柱部材の指標曲げ耐力より小さく、
 前記柱脚構造に加えられる荷重が増えていくと、前記柱脚部は前記柱部材よりも先に降伏することにより、
 地震等により曲げモーメントを発生させる荷重が加えられた際に、接合金物と柱部材の接合部が局所的に降伏してその接合部が破断することを防止することができると共に、接合金物や柱脚構造の製造費用の高額化を防止することができる。
本発明の第1の実施の形態に係る柱脚構造40を示す一部断面側面図である。 図1に示す柱脚構造40において曲げモーメントMを発生させる荷重が加えられた状態を説明するための概念側面図である。 本発明の第2の実施の形態に係る柱脚構造70を示す一部断面側面図である。 従来の柱脚構造2,2A,2Bを示す一部断面側面図である。 図4に示す従来の柱脚構造2Aにおいて曲げモーメントMを発生させる荷重が加えられた状態を説明するための概念側面図である。 図4に示す従来の柱脚構造2Bにおいて曲げモーメントMを発生させる荷重が加えられた状態を説明するための概念側面図である。
 以下、本発明に係る柱脚構造を実施するための形態について、図面に基づいて具体的に説明する。
 図1及び図2は、本発明の第1の実施の形態に係る柱脚構造40について説明するために参照する図である。以下、前記従来の柱脚構造2と同様の部分には同じ符号を付して説明し、従来と同様の構成についての重複する説明は一部を除き省略する。
 本実施の形態に係る柱脚構造40は、図1に示すように、基礎コンクリート3上に設けられた柱脚部41と、この柱脚部41の接合金物42にその下端部が接合された鉄骨柱4(柱部材)とを備えて構成されている。柱脚部41は、接合金物42と、モルタル8と、アンカーボルト10と、ナット部材12,14、座金16及び定着板18を有している。
 本実施の形態に係る柱脚構造40の柱脚部41は、平板状の接合金物42が、基礎コンクリート3の上方にモルタル8を介して設けられている。接合金物42は、金属製で、正方形状の表裏両面を有している。
 この柱脚部41の接合金物42は、その上面42aに鉄骨柱4の下端部が突き当てられて、互いが溶接部Wにおいて溶接により接合されている。鉄骨柱4は、図1中上下方向に長さを有すると共に、中空の角筒状に形成されている。
 そして、基礎コンクリート3中からその上方に突出するアンカーボルト10の上端部が、接合金物42の周縁部に形成されたボルト挿通孔42bに挿通している。
 接合金物42より上方に突出した、アンカーボルト10の上端部に形成されたオネジ部が、座金16の貫通孔を挿通して、ナット部材12のメネジ部にねじ締結されることにより、鉄骨柱4は、その溶接部Wと、柱脚部41の接合金物42及びモルタル8を介して、基礎コンクリート3の上に立設して固定されている。
 本実施の形態に係る柱脚構造40は、接合金物42の設計基準強度F1´が鉄骨柱4の設計基準強度F2よりも小さくなっている。
 そして、本実施の形態に係る柱脚構造40は、その柱脚部41の曲げ耐力Mu´が、鉄骨柱4の指標曲げ耐力Mp´よりも小さくなっている。
 ここで、柱脚部41の曲げ耐力Mu´は、前記従来の柱脚構造2における柱脚部5の曲げ耐力Muと同様に、接合金物42の強度やアンカーボルト10の強度、及び接合金物42の、モルタル8、アンカーボルト10、ナット部材12,14、座金16及び定着板18を介した基礎コンクリート3との定着性能により定められるものである。
 これに対して、鉄骨柱4の指標曲げ耐力Mp´は、接合金物42の設計基準強度F1´を鉄骨柱4の設計基準強度F2で除した値を、鉄骨柱4の曲げ耐力Mpに乗じて算出されるものである。
 このような本実施の形態に係る柱脚構造40は、その柱脚部41の曲げ耐力Mu´を鉄骨柱4の指標曲げ耐力Mp´よりも小さくすることにより、鉄骨柱4に対して、図2に示すように、接合金物42との一対の溶接部W間中央部の回転中心Oの周りに時計回り方向に、大きな曲げモーメントMを発生させる荷重が加わった場合には、鉄骨柱4と接合金物42とを繋ぐ溶接部Wが局部的に降伏して溶接部Wが破断することなく、接合金物42が降伏して塑性変形するようになっている。
 また、本実施の形態に係る柱脚構造40を備えた建築構造物は、構造計算プログラムを用いた構造計算装置によりその構造計算が行なわれるようになっている。
 すなわち、本実施の形態に係る柱脚構造40を備えた建築構造物に用いられる構造計算装置は、構造計算プログラムにより、入力されたデータから、鉄骨柱4の曲げ耐力Mpや軸耐力Np、これらに接合金物42の設計基準強度F1´を鉄骨柱4の設計基準強度F2で除した値を乗じて算出される、鉄骨柱4の指標曲げ耐力Mp´や指標軸耐力Np´、柱脚部41の曲げ耐力Mu´や軸耐力Nu´などの値が算出される。
 そして、上記構造計算装置は、構造計算プログラムにより、鉄骨柱4の指標曲げ耐力Mp´と柱脚部41の曲げ耐力Mu´のうち、その値が小さい方を柱脚構造40の終局曲げ耐力Msとして、この終局曲げ耐力Msを合否判定の基準に用いて建築構造物の構造計算が行なわれるようになっている。
 このような構造計算プログラムを用いた構造計算装置により、鉄骨柱4の指標曲げ耐力Mp´より小さい柱脚部41の曲げ耐力Mu´を、終局曲げ耐力Msとして構造計算が行なわれて、柱脚構造40を備えた建築構造物の各々の部材の寸法などが決定されている。
 したがって、本実施の形態に係る柱脚構造40は、その接合金物42の設計基準強度F1´が鉄骨柱4の設計基準強度F2よりも小さくても、図2に示す前記地震等により曲げモーメントMを発生させる荷重が加えられた際に、鉄骨柱4と接合金物42とを繋ぐ溶接部Wが局部的に降伏して溶接部Wが破断することを防止することができる。
 また、接合金物42の設計基準強度F1´を鉄骨柱4の設計基準強度F2より小さくすることができるので、鉄骨柱4の材料として設計基準強度F2の値が大きい高強度材料が用いられたとしても、接合金物42の材料を設計基準強度F1´の値が大きい高強度材料を用いる必要がない。
 このため、本実施の形態に係る柱脚構造40は、接合金物42の製造費用の高額化を防止することができると共に、接合金物42を用いた柱脚構造40の製造費用の高額化も防止することができる。
 以上に説明したように、本発明の第1の実施の形態に係る柱脚構造40によれば、地震等により曲げモーメントMを発生させる荷重が加えられた際に、接合金物42と鉄骨柱4の接合部(溶接部W)が局所的に降伏してその接合部が破断することを防止することができると共に、接合金物42や柱脚構造40の製造費用の高額化を防止することができる。
 図3は、本発明の第2の実施の形態に係る柱脚構造70について説明するために参照する図である。
 本実施の形態に係る柱脚構造70は、前記第1の実施の形態に係る柱脚構造40における、接合金物42の代わりに、図3に示すような、底板部72aと支持台部72dを有する接合金物72を備えている点において、前記第1の実施の形態に係る柱脚構造40とは異なるものである。
 すなわち、本実施の形態における柱脚部71の接合金物72は、金属製であり、図3に示すように、略正方形状の表裏両面を有する板状に形成された底板部72aと、その底板部72aの上面72bの中央部がその周縁部より図中上方に向かって高さを有する支持台部72dにより構成されている。
 この接合金物72は、その支持台部72dの上面72eに鉄骨柱4の下端部が突き当てられて、互いが溶接部Wにおいて溶接により接合されている。
 そして、基礎コンクリート3中からその上方に突出するアンカーボルト10の上端部が、接合金物72の底板部72aの周縁部に形成されたボルト挿通孔72cに挿通している。
 接合金物72の底板部72aの周縁部より上方に突出した、アンカーボルト10の上端部に形成されたオネジ部が、座金16の貫通孔を挿通して、ナット部材12のメネジ部にねじ締結されることにより、鉄骨柱4は、その溶接部Wと、柱脚部71の接合金物72及びモルタル8を介して、基礎コンクリート3の上に立設して固定されている。
 本実施の形態に係る柱脚構造70は、前記第1の実施の形態に係る柱脚構造40と同様に、接合金物72の設計基準強度が鉄骨柱4の設計基準強度F2よりも小さくなっている。
 そして、本実施の形態に係る柱脚構造70は、その柱脚部71の曲げ耐力Mu´が、鉄骨柱4の指標曲げ耐力Mp´よりも小さくなっている。
 このような本実施の形態に係る柱脚構造70によれば、前記第1の実施の形態に係る柱脚構造40と同様に、地震等により曲げモーメントMを発生させる荷重が加えられた際に、接合金物72と鉄骨柱4の接合部(溶接部W)が局所的に降伏してその接合部が破断することを防止することができると共に、接合金物72に設計基準強度の値が大きい高強度材料を用いる必要がないので、接合金物72やそれを備えた柱脚構造70の製造費用の高額化を防止することができる。
 なお、本発明は、前記実施の形態にのみ限定されるものではなく、本発明の目的を達成することができる範囲内であれば、柱脚構造について種々の変更が可能である。
 例えば、前記第1の実施の形態に係る柱脚構造40においては、接合金物42が略正方形状の表裏両面を有する平板状の場合について説明したが、表裏両面が縦横の長さが異なる、正方形状以外の四角形であっても構わない。
 また、接合金物42は、四角形以外の多角形や円形の表裏両面を有する平板状であっても構わない。この点については、前記第2の実施の形態における接合金物72の底板部72aについても同様である。
 また、前記第1の実施の形態に係る柱脚構造40においては、接合金物42にその下端部が接合される鉄骨柱4は、角筒状に形成されていたが、この形状に限定されず、例えば円筒状に形成されていてもよい。また、鉄骨柱は中実状に形成されていてもよい。
 また、前記第1の実施の形態に係る柱脚構造40を備えた建築構造物は、構造計算プログラムを用いた構造計算装置により構造計算が行なわれることにより、各々の部材の寸法などが決定されていたが、接合金物42の設計基準強度F1´が鉄骨柱4の設計基準強度F2よりも小さく、かつ柱脚部41の曲げ耐力Mu´が鉄骨柱4の指標曲げ耐力Mp´よりも小さくなっていれば、構造計算プログラムや構造計算装置を用いなくてもよい。
 2,2A,2B 柱脚構造
 3 基礎コンクリート
 4 鉄骨柱
 5 柱脚部
 6 接合金物
 6a 上面
 6b ボルト挿通孔
 8 モルタル
 10 アンカーボルト
 12,14 ナット部材
 16 座金
 18 定着板
 40 柱脚構造
 41 柱脚部
 42 接合金物
 42a 上面
 42b ボルト挿通孔
 70 柱脚構造
 71 柱脚部
 72 接合金物
 72a 底板部
 72b 上面
 72c ボルト挿通孔
 72d 支持台部
 72e 上面
 F1 接合金物6の設計基準強度
 F1´ 接合金物42の設計基準強度
 F2 鉄骨柱4の設計基準強度
 M 曲げモーメント
 Mp 鉄骨柱4の曲げ耐力
 Mp´ 鉄骨柱4の指標曲げ耐力
 Mu 柱脚部5の曲げ耐力
 Mu´ 柱脚部41の曲げ耐力
 Np 鉄骨柱4の軸耐力
 Np´ 鉄骨柱4の指標軸耐力
 Nu 柱脚部5の軸耐力
 Nu´ 柱脚部41の軸耐力
 Ms 設計上の終局曲げ耐力
 W 溶接部

Claims (3)

  1.  基礎コンクリートの上方に配置された接合金物が、前記基礎コンクリートから上方に突出したアンカーボルトに固定された柱脚部と、前記接合金物の上面にその下端部が接合された柱部材とを備えた柱脚構造であって、
     前記接合金物の設計基準強度は、前記柱部材の設計基準強度より小さく、
     前記柱脚部の曲げ耐力は、前記接合金物の設計基準強度を前記柱部材の設計基準強度で除した値を前記柱部材の曲げ耐力に乗じて算出された、前記柱部材の指標曲げ耐力より小さく、
     前記柱脚構造に加えられる荷重が増えていくと、前記柱脚部は前記柱部材よりも先に降伏する
     ことを特徴とする柱脚構造。
  2.  前記接合金物は、表裏両面と、均等な厚さを有する板状に形成された
     ことを特徴とする請求項1に記載の柱脚構造。
  3.  前記接合金物は、表裏両面と、均等な厚さを有する板状に形成された底板部と、この底板部の上面の周縁部より内側で上方に向かって高さを有する支持台部とを有し、この支持台部の上面に前記柱部材の下端部が接合された
     ことを特徴とする請求項1に記載の柱脚構造。
PCT/JP2013/075940 2013-09-25 2013-09-25 柱脚構造 WO2015045042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/346,375 US20160222662A1 (en) 2013-09-25 2013-09-25 Column base structure
JP2014501350A JP5752846B1 (ja) 2013-09-25 2013-09-25 柱脚構造
PCT/JP2013/075940 WO2015045042A1 (ja) 2013-09-25 2013-09-25 柱脚構造
TW103102250A TWI554669B (zh) 2013-09-25 2014-01-22 柱腳構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075940 WO2015045042A1 (ja) 2013-09-25 2013-09-25 柱脚構造

Publications (1)

Publication Number Publication Date
WO2015045042A1 true WO2015045042A1 (ja) 2015-04-02

Family

ID=52742249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075940 WO2015045042A1 (ja) 2013-09-25 2013-09-25 柱脚構造

Country Status (4)

Country Link
US (1) US20160222662A1 (ja)
JP (1) JP5752846B1 (ja)
TW (1) TWI554669B (ja)
WO (1) WO2015045042A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172269A (ja) * 2014-03-11 2015-10-01 日鐵住金建材株式会社 冷間ロール成形角形鋼管柱とベースプレートの溶接接合構造
CN115807508A (zh) * 2022-12-13 2023-03-17 济南中鲁建设工程有限公司 建筑钢结构柱脚安装基础施工方法及节点

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487965B2 (en) * 2015-04-03 2016-11-08 Dee Volin Automatic-water-shedding height-adjustable three-dimensionally-adjustable post-base system
DE102015004828A1 (de) * 2015-04-14 2016-10-20 Liebherr-Werk Biberach Gmbh Fundamentverankerung für Arbeitsmaschine
CN204940325U (zh) * 2015-09-09 2016-01-06 广东菲思科金属科技有限公司 铝合金房屋的立柱基座
CN105484381A (zh) * 2015-12-30 2016-04-13 浙江建科减震科技有限公司 一种钢-混凝土组合板约束的板式金属阻尼器
CN109629755A (zh) * 2019-01-25 2019-04-16 北京工业大学 一种附加抗侧剪力墙的震后可恢复功能十字型柱脚节点
CN109629763A (zh) * 2019-01-25 2019-04-16 北京工业大学 一种附加γ形抗侧剪力墙的震后可恢复功能l型件连接柱脚节点
CN109629761A (zh) * 2019-01-25 2019-04-16 北京工业大学 一种附加斜向抗侧brb的震后可恢复功能十字型柱脚节点
CN109629756A (zh) * 2019-01-25 2019-04-16 北京工业大学 一种附加抗侧剪力墙的震后可恢复功能单向铰接柱脚节点
JP7351759B2 (ja) * 2020-01-31 2023-09-27 青木あすなろ建設株式会社 露出柱脚の接合構造
CN112095787A (zh) * 2020-08-28 2020-12-18 中冶(上海)钢结构科技有限公司 埋入式箱型柱及安装方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017740A (ja) * 1998-07-01 2000-01-18 Atsuhide Hashimoto 耐震性能の優れた露出型固定柱脚
JP2004092096A (ja) * 2002-08-30 2004-03-25 Taisei Corp 柱脚部の制震構造
JP2008057323A (ja) * 2007-11-17 2008-03-13 Okabe Co Ltd 鉄骨造露出型柱脚構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017740A (ja) * 1998-07-01 2000-01-18 Atsuhide Hashimoto 耐震性能の優れた露出型固定柱脚
JP2004092096A (ja) * 2002-08-30 2004-03-25 Taisei Corp 柱脚部の制震構造
JP2008057323A (ja) * 2007-11-17 2008-03-13 Okabe Co Ltd 鉄骨造露出型柱脚構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172269A (ja) * 2014-03-11 2015-10-01 日鐵住金建材株式会社 冷間ロール成形角形鋼管柱とベースプレートの溶接接合構造
CN115807508A (zh) * 2022-12-13 2023-03-17 济南中鲁建设工程有限公司 建筑钢结构柱脚安装基础施工方法及节点

Also Published As

Publication number Publication date
US20160222662A1 (en) 2016-08-04
TW201512497A (zh) 2015-04-01
JPWO2015045042A1 (ja) 2017-03-02
JP5752846B1 (ja) 2015-07-22
TWI554669B (zh) 2016-10-21

Similar Documents

Publication Publication Date Title
JP5752846B1 (ja) 柱脚構造
JP5752847B1 (ja) 設計支援プログラム及び構造計算プログラム
WO2015037094A1 (ja) 柱脚構造
JP6417377B2 (ja) 木造建築物の構造躯体の接合構造
JP5701158B2 (ja) ピン接合形式の露出型鉄骨柱接合構造
JP2007239388A (ja) ドーム構築用金具とドーム構築方法
JP2008255658A (ja) 木質ラーメン構造における接合構造
JP2015175216A (ja) 壁柱構造
JP2010281192A (ja) 建築用接合金具、固定金具、及び、固定ピン
JP2017044036A (ja) 制振装置及び制振装置の組み立て方法
JP4949180B2 (ja) 締結具
JP2012255294A (ja) 鉄骨柱接合用アンカー部材
JP5594758B2 (ja) 柱継手構造
JP5385314B2 (ja) 連結構造
KR20130021261A (ko) 사각 패널존을 이용한 모멘트 접합구조
JP5437856B2 (ja) 柱梁接合構造
JP4921071B2 (ja) 柱梁接合金具及び柱梁接合構造
JP2007205162A (ja) 鉄骨梁の開口補強工法
JP6558714B2 (ja) ブレース構造
JP5516247B2 (ja) 鉄骨柱と鉄骨梁との接合構造
JP3192371U (ja) アンカーボルト
JPWO2015140894A1 (ja) 柱構造及びベース部材
JP2019157598A (ja) 鋼板耐震壁及びそれを備えた鋼板耐震壁構造
JP2013113000A (ja) 木部材の接合構造
JP2022057242A (ja) 木質軸部材と建物架構

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014501350

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346375

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894213

Country of ref document: EP

Kind code of ref document: A1