WO2015043234A1 - 光伏空调系统 - Google Patents

光伏空调系统 Download PDF

Info

Publication number
WO2015043234A1
WO2015043234A1 PCT/CN2014/079689 CN2014079689W WO2015043234A1 WO 2015043234 A1 WO2015043234 A1 WO 2015043234A1 CN 2014079689 W CN2014079689 W CN 2014079689W WO 2015043234 A1 WO2015043234 A1 WO 2015043234A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
unit
photovoltaic
conditioning system
power
Prior art date
Application number
PCT/CN2014/079689
Other languages
English (en)
French (fr)
Inventor
赵志刚
陈颖
刘怀灿
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US15/024,438 priority Critical patent/US20160231010A1/en
Priority to EP14849007.1A priority patent/EP3051217B1/en
Priority to KR1020167009304A priority patent/KR101854193B1/ko
Priority to JP2016544697A priority patent/JP6234595B2/ja
Priority to ES14849007T priority patent/ES2712624T3/es
Priority to EP18201262.5A priority patent/EP3451483A1/en
Publication of WO2015043234A1 publication Critical patent/WO2015043234A1/zh
Priority to US18/068,361 priority patent/US20230118671A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to the field of power electronics and air conditioning refrigeration technologies, and in particular, to a photovoltaic air conditioning system.
  • BACKGROUND OF THE INVENTION Solar energy as a clean energy source has received increasing attention.
  • technology for using photovoltaics as an energy source for air conditioners has also emerged, and several patents and papers have disclosed related technologies.
  • the Chinese invention patent application CN102705944A discloses a solar inverter air conditioner system, which has an air conditioner frequency converter including an inverter module and a rectification inverter grid-connected module, which realizes power supply to the air conditioner through the photovoltaic battery, and can also be connected to the grid to generate electricity.
  • the photovoltaic air conditioning system in the prior art has a problem of poor applicability, and there are many restrictions on supporting facilities. This is because the grid-connected inverter module required for grid-connected in the prior art is part of the inverter of the air-conditioning unit. Therefore, when grid-connected power generation, the air-conditioning unit must also be powered on, causing energy waste and affecting the life of the air-conditioning unit. And because of the limitation of the capacity of the air conditioner, only the photovoltaic modules with the same power as the air conditioner can be configured. Therefore, the new photovoltaic power generation system can only be used with the air conditioning unit, and the air conditioning system cannot be connected to the existing photovoltaic power station.
  • a photovoltaic air conditioning system includes a photovoltaic cell array, an air conditioning unit, a converter unit, a first DC bus, and a second DC bus.
  • the air conditioning unit further includes a first inverter module for supplying power to the air conditioning unit and serving as a component of the air conditioning unit, wherein a capacity of the first inverter module is configured according to a power of the air conditioning unit; and the converter unit is an independent structure.
  • the first end is connected to the public power grid, and the second end is electrically connected to the first inverter module through the first DC bus.
  • the capacity of the converter unit is configured according to the requirements of the photovoltaic cell array and/or the public grid, and the second DC bus of the photovoltaic cell array is electrically connected to the first DC bus.
  • the air conditioning unit when the output power of the photovoltaic cell array is greater than or equal to the input power required for the operation of the air conditioning unit, the air conditioning unit only relies on the photovoltaic array to supply power; when the output power of the photovoltaic array is less than the operation of the air conditioning unit When the input power is required, the air conditioning unit is powered by the public grid and the photovoltaic array.
  • the converter unit converts the direct current output from the photovoltaic array into alternating current and transmits it to the public power grid.
  • the converter unit comprises a rectifier module and a second inverter module.
  • the converter unit is a four-quadrant converter.
  • the photovoltaic air conditioning system further comprises a photovoltaic junction unit and a power distribution unit disposed between the photovoltaic cell array and the second DC bus, wherein the photovoltaic cell array, the photovoltaic collecting unit, the power distribution unit and the second DC bus are sequentially connected. .
  • the air conditioning unit is a centrifugal chiller unit or a screw chiller unit.
  • the photovoltaic air conditioning system further comprises a converter unit cooling device.
  • the air conditioning unit further includes an evaporator and a first condenser
  • the converter unit cooling device includes a refrigerant pump, a throttle element and a heat exchanger connected in series, and the first end of the refrigerant pump is in communication with the first condenser, The second end is in communication with the throttling element, the first end of the heat exchanger is in communication with the throttling element, and the second end is in communication with the evaporator, and heat exchange with the converter unit is performed by the heat exchanger
  • the converter unit cools down.
  • the converter unit cooling device further includes a one-way valve in parallel with the refrigerant pump, the inlet of the one-way valve is in communication with the first condenser, and the outlet is in communication with the throttle element.
  • the air conditioning system further includes a second condenser connected between the heat exchanger and the evaporator.
  • FIG. 1 is a schematic structural view of a photovoltaic air conditioning system according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a cooling structure of a frequency conversion unit of a photovoltaic air conditioning system according to a second embodiment of the present invention.
  • the photovoltaic air conditioning system includes a photovoltaic cell array 10 , a converter unit 20 , an air conditioning unit 30 , a first DC bus 40 , and a second DC bus 50.
  • the air conditioning unit 30 further includes a first inverter module 31.
  • the first inverter module 31 is a component of the air conditioning unit 30 as part of the air conditioner inverter, and the first inverter module 31 is configured to convert the direct current into alternating current to supply power to the load 32.
  • the load 32 includes at least an inverter compressor of the air conditioning unit, and the capacity of the first inverter module 31 is configured according to the power demand of the air conditioning unit 30.
  • the first inverter module 31 is onboard and installed on the air conditioning unit 30.
  • the photovoltaic cell array 10 is connected to the first DC bus 40 via the second DC bus 50, so that the DC power generated by the PV array 10 directly supplies power to the air conditioning unit 30 via the second DC bus 50 and the first DC bus 40.
  • the converter unit 20 is of a separate structure, one end of which is connected to the public power grid 60 and the other end of which is connected to the first inverter module 31 via the first DC bus 40.
  • the converter unit 20 includes a rectifier module and a second inverter module.
  • the rectifier module 21 is configured to convert the alternating current of the public power grid 60 into direct current to supply power to the air conditioning unit 30, and the second inverter module is used for photovoltaic grid-connected power generation. The resulting DC power is converted to AC power and incorporated into the utility grid 60.
  • the capacity of the converter unit 20 is configured according to the requirements of the photovoltaic array 10 and/or the public grid 60. As a separate structure, the converter unit 20 can be free from the limitations of the air conditioning unit itself, and is also convenient for wiring and installation according to the requirements of photovoltaic power station construction.
  • the main function of the current conversion unit 20 is to achieve maximum power point tracking (MPPT) for the photovoltaic cell array 10; second, to achieve optimal energy configuration, preferential use of photovoltaic power generation, to ensure that the output power of the photovoltaic cell array 10 is preferentially used for the air conditioning unit. 30, the energy is insufficient to be supplemented by the public power grid 60.
  • the converter unit 20 is a four-quadrant converter. When the output power of the photovoltaic cell array 10 is greater than or equal to the input power required for the operation of the air conditioning unit 30, the DC power generated by the photovoltaic array 10 is inverted by the first inverter module 31 into an alternating current power supply for the air conditioning unit.
  • the air conditioning unit 30 only relies on the photovoltaic array 10 to supply power, and does not need to be powered by the public power grid 60, at which time the converter unit 20 does not operate.
  • the output power of the photovoltaic cell array 10 is less than the input power required for the operation of the air conditioning unit 30
  • the DC power generated by the photovoltaic array 10 is supplied to the first inverter module 31 to supply power to the air conditioning unit 30, and the utility power is also changed.
  • the flow unit 20 is rectified and supplied to the first inverter module 31 by DC power, and the air conditioning unit is powered by the public power grid 60 and the photovoltaic battery array 10 to compensate for the shortage of photovoltaic power generation.
  • the converter unit 20 converts some or all of the direct current output from the photovoltaic array into alternating current, and delivers it to the public.
  • the grid 60 realizes grid-connected power generation. Since the converter unit 20 is not attached to the controller of the air conditioning unit 30, it is realized that the photovoltaic array 10 can be connected to the grid when the air conditioning unit 30 is not activated.
  • the photovoltaic air conditioning system of the embodiment further includes a photovoltaic collecting unit and a power distribution unit, and the photovoltaic battery array 10, the photovoltaic collecting unit, the power distribution unit and the second DC bus 50 are sequentially connected.
  • the photovoltaic air conditioning system of the embodiment further includes a DC boosting module, and the DC boosting module is disposed between the power distribution unit and the second DC bus 50.
  • the air conditioning unit 30 is a central air conditioning unit, preferably a centrifugal chiller, a screw chiller or a multi-connected air conditioning unit.
  • the selection of the converter unit 20 can be arbitrarily set according to actual needs, and is not limited by the equipment parameters when the air conditioning unit is shipped, thereby improving The applicability of the air conditioning unit enables the air conditioning unit to be matched with any photovoltaic power station and does not waste power from the photovoltaic power station.
  • Embodiment 2 The photovoltaic air conditioning system provided in Embodiment 2 of the present invention further includes a cooling device of the flow conversion unit 20, which is cooled by air cooling, water cooling, refrigerant cooling, and the like. The air-cooling method is used to cool the converter unit 20 by providing a radiator and a cooling fan.
  • the water-cooling method is used to cool the converter unit 20 by providing a water pump and a water circulation line.
  • the converter unit is cooled by means of refrigerant cooling.
  • the air conditioning unit 30 includes an evaporator 33 connected to a refrigeration cycle system, a first condenser 34, a compressor 35, and a first throttle element.
  • the converter unit cooling device includes a refrigerant pump 61, a second throttle element 62, and a heat exchanger (not shown) which are disposed in series in series.
  • the first end of the refrigerant pump 61 is in communication with the first condenser 34, the second end is in communication with the second throttle element 62, the first end of the heat exchanger is in communication with the second throttle element 62, and the second end is connected to the evaporator 33.
  • the heat exchanger is in contact with the converter unit 20, and the heat exchanger is exchanged with the converter unit 20 to cool the converter unit 20, that is, the heat exchanger functions as a cooler.
  • the second throttle element 62 can be a combination of one or more of a capillary tube, a thermal expansion valve, an electronic expansion valve, or an orifice plate.
  • the heat exchanger is a metal cold plate with a refrigerant flow channel embedded therein, and the metal cold plate is in contact with the flow conversion unit, and the appropriate cooling can be selected according to factors such as the site environment, the shape of the converter unit, and the cooling demand.
  • the type of the device for example, a device that cannot be in contact with heat exchange or has low requirements for cooling, may be a fin-and-tube heat exchanger, a plate-fin heat exchanger or the like as a cooler.
  • the converter unit cooling device further includes a one-way valve 63 that is disposed in parallel with the refrigerant pump 61, the inlet of the one-way valve 63 is in communication with the first condenser 34, and the outlet is in communication with the second throttle element 62.
  • a check valve 63 By providing the check valve 63, it is possible to prevent the refrigerant from flowing back and the refrigerant bypass short circuit, and it is ensured that there is enough refrigerant to cool the inverter.
  • the cooling method of the refrigerant cooling method has a significant cooling effect, and the component selection requirements can be appropriately reduced. After the refrigerant flows through the converter unit, it will absorb a large amount of heat energy.
  • a second condenser 64 is disposed between the heat exchanger and the evaporator 33, and the low-temperature refrigerant flowing out of the second throttle element 62 absorbs heat generated by the converter unit at the cooler to evaporate and become a temperature.
  • the high refrigerant vapor when the refrigerant vapor flows to the second condenser 64, exchanges heat with air or water, condenses heat, turns into liquid refrigerant again, enters the evaporator 33, and returns to the air conditioning unit to complete a cooling cycle.
  • the function of the second condenser 64 is to improve the reliability of the system, so that the cooling system can operate normally for a long time under the shutdown state of the air conditioning unit.
  • the second condenser 64 can also prevent a large amount of thermal energy from entering the evaporator 33, resulting in a decrease in energy efficiency of the air conditioner.
  • the second condenser 64 is generally selected from a finned tube heat exchanger or a plate heat exchanger.
  • a plurality of parallel heat exchange branches may be disposed between the refrigerant pump 61 and the evaporator 33, and each branch is provided with a throttling element and a Or multiple heat exchangers to dissipate heat for each module.
  • the electronic power device can be cooled in the case that the air conditioning unit is turned on and off, and the air conditioning unit in the prior art is not solved.
  • the advantages of the present invention are: It can adapt to various photovoltaic power plants of different capacities, and can seamlessly and efficiently combine photovoltaic power plants with HVAC. At the same time, it realizes the cooling of the electronic power device in the photovoltaic power generation system when the air conditioning unit is not turned on, and improves the reliability of the photovoltaic system while prolonging the life of the air conditioning unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种光伏空调系统,包括光伏电池阵列(10)、空调机组(30)、变流单元(20)、以及直流母线(40、50)。空调机组(30)包括第一逆变模块(31),变流单元(20)连接在公共电网(60)与第一逆变模块(31)之间,变流单元(20)的容量根据光伏电池阵列(10)或公共电网(60)的需求配置。光伏电池阵列(10)发出的直流电以及经变流单元(20)整流后发出的直流电供给第一逆变模块(31),以给空调机组(30)供电。

Description

光伏空调系统 技术领域 本发明涉及电力电子及空调制冷技术领域, 特别涉及一种光伏空调系统。 背景技术 作为清洁能源的太阳能日益受到人们的关注,随着电气技术以及空调技术的发展, 以光伏作为空调器能源的技术也随之出现, 已有多件专利和论文公开相关技术。 如中 国发明专利申请 CN102705944A公开了一种太阳能变频空调系统, 其具有包括逆变模 块和整流逆变并网模块的空调变频器, 实现了通过光伏电池向空调器供电, 并且还可 以并网发电。 但现有技术中的光伏空调系统存在适用性差的问题, 对配套设施的限制较多。 这 是由于现有技术中并网所需的并网逆变模块为空调机组变频器的一部分, 所以当并网 发电时, 空调机组也必须上电, 造成能源浪费, 还影响空调机组的寿命。 并且由于受 空调变频器容量的限制, 只能配置与空调功率相当的光伏电池组件, 所以只能通过新 建光伏发电系统配合空调机组, 而不能将空调系统接入既有光伏电站, 否则受空调变 频器容量的限制, 无法将光伏电站发出的全部电能并网, 将会造成电能的极大浪费。 另外现有技术中, 还存在空调机组停机时, 光伏发电系统中的逆变器、 变流器等 电子功率器件得不到冷却的问题。 发明内容 为了克服现有技术的不足, 本发明实施例提供一种光伏空调系统, 以解决现有技 术中光伏空调系统的适用性差的问题。 本发明实施例提供如下技术方案: 一种光伏空调系统, 包括光伏电池阵列、 空调机组、 变流单元、 第一直流母线、 第二直流母线。 空调机组还包括用于为所述空调机组供电并作为所述空调机组标配件 的第一逆变模块, 第一逆变模块的容量根据所述空调机组的功率配置; 变流单元为独 立结构,其第一端与公共电网连接,第二端通过第一直流母线与第一逆变模块电连接, 变流单元的容量根据光伏电池阵列和 /或公共电网的需求配置,光伏电池阵列第二直流 母线与第一直流母线电连接。 优选地, 当所述光伏电池阵列输出功率大于或等于所述空调机组运行所需的输入 功率时, 所述空调机组仅依靠光伏电池阵列供电; 当所述光伏电池阵列输出功率小于空调机组运行所需的输入功率时, 通过公共电 网和光伏电池阵列联合为空调机组供电。 优选地, 当所述光伏电池阵列输出功率大于空调机组运行所需的输入功率时, 或 当所述空调机组不工作时, 变流单元将光伏电池阵列输出的直流电转化为交流电, 输 送至公共电网。 优选地, 变流单元包括整流模块和第二逆变模块。 优选地, 所述变流单元为四象限变流器。 优选地, 光伏空调系统还包括设置在光伏电池阵列与第二直流母线之间的光伏汇 流单元和配电单元, 所述光伏电池阵列、 光伏汇流单元、 配电单元与第二直流母线顺 次连接。 优选地, 空调机组为离心式冷水空调机组或螺杆式冷水空调机组。 优选地, 光伏空调系统还包括变流单元冷却装置。 优选地, 空调机组还包括蒸发器和第一冷凝器, 变流单元冷却装置包括依次串联 的冷媒泵、 节流元件和换热器, 冷媒泵的第一端与所述第一冷凝器连通, 第二端与节 流元件连通, 所述换热器的第一端与节流元件连通, 第二端与所述蒸发器连通, 通过 所述换热器与所述变流单元换热, 使所述变流单元降温。 优选地, 变流单元冷却装置还包括单向阀, 单向阀与所述冷媒泵并联, 单向阀的 入口与所述第一冷凝器连通, 出口与所述节流元件连通。 优选地, 空调系统还包括第二冷凝器, 第二冷凝器连接于换热器与蒸发器之间。 本发明实施例的有益效果是: 本发明实施例提供的光伏空调系统, 能适应各种不 同容量的光伏电站, 能使光伏电站与暖通空调无缝高效结合。 附图说明 图 1为本发明实施例一的光伏空调系统结构框架示意图; 图 2为本发明实施例二的光伏空调系统变频单元冷却结构示意图。 具体实施方式 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例对 本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明, 并不用于限定本发明。 实施例 1 参照图 1, 为本发明实施例 1 中的光伏空调系统结构框架示意图, 该光伏空调系 统包括光伏电池阵列 10、 变流单元 20、 空调机组 30、 第一直流母线 40和第二直流母 线 50。空调机组 30还包括第一逆变模块 31,第一逆变模块 31作为空调变频器的一部 分属于空调机组 30的标配件, 第一逆变模块 31用于将直流电转化为交流电为负载 32 供电, 负载 32至少包括空调机组的变频压缩机, 第一逆变模块 31的容量根据空调机 组 30的功率需求进行配置。 优选地, 第一逆变模块 31为机载设置, 安装在空调机组 30上。 光伏电池阵列 10通过第二直流母线 50与第一直流母线 40连接,使光伏电池阵列 10产生的直流电经第二直流母线 50和第一直流母线 40直接为空调机组 30供电。 变流单元 20为独立结构, 其一端与公共电网 60连接, 另一端通过第一直流母线 40与第一逆变模块 31连接。变流单元 20包括整流模块和第二逆变模块, 整流模块 21 用于将公共电网 60的交流电转化为直流电为空调机组 30供电, 第二逆变模块用于光 伏并网发电, 将光伏电池阵列 10产生的直流电转化为交流电并入公共电网 60。 变流 单元 20的容量根据光伏电池阵列 10和 /或公共电网 60的需求配置。变流单元 20作为 独立结构可以不受空调机组本身的局限, 也便于按光伏电站建设的要求进行布线和安 装。变流单元 20的主要作用一是实现对光伏电池阵列 10的最大功率点追踪(MPPT); 二是实现能量的优化配置,优先使用光伏发电,保证光伏电池阵列 10输出的功率优先 用于空调机组 30, 能量不足再由公共电网 60补足。 优选的, 变流单元 20为四象限变 流器。 当光伏电池阵列 10的输出功率大于或等于空调机组 30运行所需的输入功率时, 光伏电池阵列 10产生的直流电经第一逆变模块 31逆变为交流电后为空调机组供电, 此时所述空调机组 30仅依靠光伏电池阵列 10供电,无需通过公共电网 60供电,此时 变流单元 20不工作。 当光伏电池阵列 10的输出功率小于空调机组 30运行所需的输入功率时, 在光伏 电池阵列 10产生的直流电输送给第一逆变模块 31为空调机组 30供电的同时,还将市 电经变流单元 20整流为直流电输送给第一逆变模块 31, 通过公共电网 60和光伏电池 阵列 10联合为空调机组供电, 以弥补光伏发电的不足。 当光伏电池阵列 10的输出功率大于空调机组 30运行所需的输入功率时, 或当空 调机组 30不工作时, 变流单元 20将光伏电池阵列输出的部分或全部直流电转化为交 流电, 输送至公共电网 60, 实现并网发电。 由于变流单元 20不依附于空调机组 30的 控制器上, 实现了在空调机组 30不启动的情况下, 光伏电池阵列 10就可以进行并网 发电。 优选地, 本实施例的光伏空调系统还包括光伏汇流单元和配电单元, 光伏电池阵 列 10、 光伏汇流单元、 配电单元和第二直流母线 50顺次连接。 优选地, 本实施例的光伏空调系统还包括直流升压模块, 直流升压模块设置在配 电单元与第二直流母线 50之间。 本实施例中空调机组 30为中央空调机组,优选的为离心式冷水机组、螺杆式冷水 机组或多联式空调机组。 本实施例提供的光伏空调系统, 在保证空调机组可以获得正常供电的同时, 实现 了变流单元 20的选型可以根据实际需求任意设置,不会受到空调机组出厂时设备参数 的限制, 提高了空调机组的适用性, 使得空调机组可以与任意光伏电站匹配, 并且不 会造成光伏电站的电能浪费。 实施例 2 本发明实施例 2提供的光伏空调系统还包括变流单元 20冷却装置,用风冷、水冷、 冷媒冷等冷却方式。 使用风冷的方式则通过设置散热器和散热风扇来使变流单元 20 降温。 使用水冷的方式则通过设置水泵和水循环管路来使变流单元 20降温。 优选地, 采用冷媒冷却的方式对变流单元进行冷却。 如图 2 所示, 空调机组 30 包括连接成制冷循环系统的蒸发器 33、 第一冷凝器 34、 压缩机 35以及第一节流元件 变流单元冷却装置包括依次串联设置的冷媒泵 61、第二节流元件 62和换热器(图 中未示出)。 冷媒泵 61的第一端与第一冷凝器 34连通, 第二端与第二节流元件 62连 通, 换热器的第一端与第二节流元件 62连通, 第二端与蒸发器 33连通, 换热器与变 流单元 20相接触, 通过所述换热器与变流单元 20换热, 使变流单元 20降温, 即所述 换热器起冷却器的作用。第二节流元件 62可以是毛细管、热力膨胀阀、 电子膨胀阀或 节流孔板中的一种或几种的组合。 其中, 换热器为内部嵌有制冷剂流道的金属冷板, 金属冷板与变流单元相接触, 也可以根据现场环境情况、 变流单元的形状、 冷却需求等因素, 选择适当的冷却器类 型, 例如对于不能接触换热或对冷却要求不高的器件, 可选用翅片管式换热器、 板翅 式换热器等作为冷却器。 变流单元冷却装置还包括单向阀 63, 单向阀 63与冷媒泵 61并联设置, 单向阀 63 的入口与第一冷凝器 34连通, 出口与第二节流元件 62连通。 通过设置单向阀 63, 可 以防止冷媒倒流及冷媒旁通短路, 保证有足够的冷媒冷却变频器。 冷媒冷却的冷却方 式的降温效果显著, 元器件选型要求也可适当降低。 冷媒流经变流单元后, 会吸收大量的热能, 若不释放掉, 最终都会累积到空调机 组的冷媒中, 造成停机状态下的空调机组的系统温度和系统压力不断上升。 若冷却系 统在空调机组停机状态下长期工作, 系统温度持续上升, 则会影响对变流单元的冷却 效果, 系统压力不断升高, 则会影响整个制冷循环系统的安全性。 优选地, 在换热器 与蒸发器 33之间设有第二冷凝器 64, 从第二节流元件 62流出的低温冷媒在冷却器处 吸收变流单元散发的热量而蒸发, 变成温度较高的冷媒蒸汽, 冷媒蒸汽流至第二冷凝 器 64时, 与空气或水换热, 放热冷凝, 再次变为液态冷媒, 进入蒸发器 33, 回到空 调机组中, 完成一个冷却循环。 第二冷凝器 64的作用就是提高系统的可靠性,使冷却系统在空调机组停机状态下 可以长期正常运转。此外在空调机组开机工作时,第二冷凝器 64还可以防止大量的热 能进入蒸发器 33中而造成空调能效下降。 第二冷凝器 64—般选用翅片管式换热器或 板式换热器。 当变流单元 20为由多个分立的模块组成时, 则可对应的在冷媒泵 61与蒸发器 33 之间设置多个并联的换热支路, 每条支路上设置有节流元件以及一个或多个换热器, 为各个模块散热。 根据本发明提供的带有变流单元冷却装置的光伏空调系统, 可以实现在空调机组 在开机和不开机的情况都能对电子功率器件进行冷却, 解决了现有技术中空调机组不 开机无法对电子功率器件进行冷却的问题, 实现了在空调机组不开机的情况下实现对 光伏发电系统中电子功率器件的冷却, 提高光伏系统可靠性的同时延长了空调机组的 寿命。 综上所述, 本发明的优点是: 能适应各种不同容量的光伏电站, 能使光伏电站与 暖通空调无缝高效结合。 同时还实现了在空调机组不开机的情况下实现对光伏发电系 统中电子功率器件的冷却, 提高光伏系统可靠性的同时延长了空调机组的寿命。 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并 不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些都属于 本发明的保护范围。 因此, 本发明专利的保护范围应以所附权利要求为准。

Claims

权 利 要 求 书
1. 一种光伏空调系统, 包括光伏电池阵列、 空调机组、变流单元、第一直流母线、 第二直流母线:
所述空调机组, 包括用于为所述空调机组供电的第一逆变模块, 所述变流单元为独立结构的单元, 其第一端与公共电网连接, 第二端通过 所述第一直流母线与所述第一逆变模块电连接,
所述光伏电池阵列, 通过所述第二直流母线与所述第一直流母线电连接。
2. 根据权利要求 1所述的光伏空调系统, 其中, 当所述光伏电池阵列输出功率大于或等于所述空调机组运行所需的输入功 率时, 所述空调机组仅依靠所述光伏电池阵列供电; 当所述光伏电池阵列输出功率小于所述空调机组运行所需的输入功率时, 通过所述公共电网和所述光伏电池阵列联合为所述空调机组供电。
3. 根据权利要求 1所述的光伏空调系统, 其中, 当所述光伏电池阵列输出功率大于所述空调机组运行所需的输入功率时, 或当所述空调机组停止工作时, 所述变流单元将所述光伏电池阵列输出的直流 电转化为交流电, 输送至所述公共电网。
4. 根据权利要求 1所述的光伏空调系统, 其中, 所述变流单元包括整流模块和第二逆变模块。
5. 根据权利要求 4所述的光伏空调系统, 其中, 所述变流单元为四象限变流器。
6. 根据权利要求 1所述的光伏空调系统, 其中, 所述光伏空调系统还包括设置在所述光伏电池阵列与所述第二直流母线之 间的光伏汇流单元和配电单元, 所述光伏电池阵列、 所述光伏汇流单元、 所述 配电单元与所述第二直流母线顺次连接。
7. 根据权利要求 1所述的光伏空调系统, 其中, 所述空调机组为离心式冷水空调机组、 螺杆式冷水空调机组或多联式空调 机组。
8. 根据上述任一项权利要求所述的光伏空调系统, 其中, 还包括变流单元冷却装置。
9. 根据权利要求 8所述的光伏空调系统, 其中, 所述空调机组还包括蒸发器和第一冷凝器,
所述变流单元冷却装置包括依次串联的冷媒泵、 节流元件和换热器, 所述冷媒泵的第一端与所述第一冷凝器连通,第二端与所述节流元件连通, 所述换热器的第一端与所述节流元件连通, 第二端与所述蒸发器连通, 通过所 述换热器与所述变流单元换热, 使所述变流单元降温。
10. 如权利要求 9所述的光伏空调系统, 其中, 所述变流单元冷却装置还包括单向阀, 所述单向阀与所述冷媒泵并联, 所 述单向阀的入口与所述第一冷凝器连通, 出口与所述节流元件连通。
11. 如权利要求 9所述的光伏空调系统, 其中, 所述空调系统还包括第二冷凝器, 所述第二冷凝器连接于所述换热器与所 述蒸发器之间。
12. 根据权利要求 1所述的光伏空调系统, 其中, 所述第一逆变模块设置在所述空调机组变频器, 并且所述第一逆变模块的 容量根据所述空调机组的功率配置, 所述变流单元的容量根据所述光伏电池阵列和 /或所述公共电网的需求配 置。
13. 根据权利要求 1所述的光伏空调系统, 其中, 所述第一逆变模块作为所述空调机组标配件, 并且所述第一逆变模块的容 量根据所述空调机组的功率配置,
所述变流单元的容量根据所述光伏电池阵列和 /或所述公共电网的需求配 置。
PCT/CN2014/079689 2013-09-25 2014-06-11 光伏空调系统 WO2015043234A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/024,438 US20160231010A1 (en) 2013-09-25 2014-06-11 Photovoltaic air conditioning system
EP14849007.1A EP3051217B1 (en) 2013-09-25 2014-06-11 Photovoltaic air conditioning system
KR1020167009304A KR101854193B1 (ko) 2013-09-25 2014-06-11 태양광 에어컨 시스템
JP2016544697A JP6234595B2 (ja) 2013-09-25 2014-06-11 太陽光エアコンシステム
ES14849007T ES2712624T3 (es) 2013-09-25 2014-06-11 Sistema fotovoltaico de acondicionamiento de aire
EP18201262.5A EP3451483A1 (en) 2013-09-25 2014-06-11 Photovoltaic air conditioning system
US18/068,361 US20230118671A1 (en) 2013-09-25 2022-12-19 Photovoltaic air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310442150.3A CN103486682B (zh) 2013-09-25 2013-09-25 光伏空调系统
CN201310442150.3 2013-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/024,438 A-371-Of-International US20160231010A1 (en) 2013-09-25 2014-06-11 Photovoltaic air conditioning system
US18/068,361 Continuation-In-Part US20230118671A1 (en) 2013-09-25 2022-12-19 Photovoltaic air conditioning system

Publications (1)

Publication Number Publication Date
WO2015043234A1 true WO2015043234A1 (zh) 2015-04-02

Family

ID=49827122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079689 WO2015043234A1 (zh) 2013-09-25 2014-06-11 光伏空调系统

Country Status (7)

Country Link
US (1) US20160231010A1 (zh)
EP (2) EP3451483A1 (zh)
JP (1) JP6234595B2 (zh)
KR (1) KR101854193B1 (zh)
CN (1) CN103486682B (zh)
ES (1) ES2712624T3 (zh)
WO (1) WO2015043234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351987A (zh) * 2019-07-15 2019-10-18 珠海格力电器股份有限公司 散热器、控制器、光伏用电设备和散热方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486682B (zh) * 2013-09-25 2021-09-28 珠海格力电器股份有限公司 光伏空调系统
CN105091191B (zh) * 2014-05-07 2018-01-05 珠海格力电器股份有限公司 空调机组负荷的控制方法和装置
CN105262433B (zh) * 2015-10-15 2018-01-19 珠海格力电器股份有限公司 能源网关、家用电器、直流微电网系统及其能源管理方法
CN106385057A (zh) * 2016-09-19 2017-02-08 珠海格力电器股份有限公司 控制装置、控制方法及电器系统
CN106839547A (zh) * 2017-03-16 2017-06-13 珠海格力电器股份有限公司 并网光伏空调散热系统
ES2635647B2 (es) * 2017-04-17 2018-04-24 Ecoforest Geotermia, S.L. Sistema y método de aprovechamiento de excedentes de energía eléctrica procedentes de una instalación con generación eléctrica renovable
US11394205B2 (en) 2017-05-12 2022-07-19 Convert Tech S.R.L. System to energize loads with alternating current in a photovoltaic plant
CN107187292B (zh) * 2017-05-12 2023-05-02 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN107355948B (zh) * 2017-07-19 2020-05-29 珠海格力电器股份有限公司 光伏空调的控制方法和装置
CN108076616B (zh) * 2017-12-27 2023-09-08 珠海格力电器股份有限公司 光伏离心机系统
CN109494788B (zh) 2018-11-08 2020-09-29 珠海格力电器股份有限公司 光伏电器系统及其电压保护值控制方法、装置
CN110213949A (zh) * 2019-07-04 2019-09-06 香江科技股份有限公司 用于5g bbu设备池化散热的机柜及冷却方法
CN110379892A (zh) * 2019-08-05 2019-10-25 常州时创能源科技有限公司 一种太阳能电池片生产用链式设备的上料机构
CN110567139B (zh) 2019-08-30 2021-02-26 珠海格力电器股份有限公司 光伏空调的限频及降频控制方法、装置及光伏空调
CN110690728A (zh) * 2019-10-14 2020-01-14 珠海格力电器股份有限公司 光伏系统及其供电方法
CN110986263B (zh) * 2019-11-18 2020-11-24 珠海格力电器股份有限公司 一种光伏直驱变频空调冷却设备控制系统、方法及应用
CN111447809B (zh) * 2020-05-13 2023-10-24 珠海格力电器股份有限公司 光伏空调、冷却组件及其控制方法
CN114623509A (zh) * 2022-03-15 2022-06-14 青岛海信日立空调系统有限公司 光伏新风除湿一体机
CN114791137B (zh) * 2022-05-30 2023-10-27 青岛海信日立空调系统有限公司 空调管理系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184024A (ja) * 1990-11-13 1992-07-01 Sanyo Electric Co Ltd 換気装置並びに換気装置付きの空調装置
JPH06307733A (ja) * 1993-04-21 1994-11-01 Hitachi Ltd 空調機
JPH07120050A (ja) * 1993-10-27 1995-05-12 Sanyo Electric Co Ltd 空気調和機
JPH07190464A (ja) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd 太陽電池駆動空調機の制御方法
CN1106523A (zh) * 1993-10-19 1995-08-09 三星电子株式会社 空调器的控制设备和控制方法
US20100253148A1 (en) * 2007-12-04 2010-10-07 Ryoji Matsui Electric power supply system
US20100302731A1 (en) * 2009-05-15 2010-12-02 Belikoff Michael A Inverter Cooler
CN102403776A (zh) * 2010-09-19 2012-04-04 珠海格力节能环保制冷技术研究中心有限公司 空调用混合供电系统及混合供电方法
CN102705944A (zh) 2012-06-28 2012-10-03 南车株洲电力机车研究所有限公司 一种太阳能变频空调系统
CN103486682A (zh) * 2013-09-25 2014-01-01 珠海格力电器股份有限公司 光伏空调系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541518Y2 (ja) * 1992-05-19 1997-07-16 三洋電機株式会社 ソーラーエアコン
JPH05328748A (ja) * 1992-05-19 1993-12-10 Sanyo Electric Co Ltd 太陽光発電システム
JP3952545B2 (ja) * 1997-07-24 2007-08-01 株式会社デンソー 車両用空調装置
JP3591304B2 (ja) * 1998-05-25 2004-11-17 株式会社日本自動車部品総合研究所 発熱体冷却装置
US6116040A (en) * 1999-03-15 2000-09-12 Carrier Corporation Apparatus for cooling the power electronics of a refrigeration compressor drive
JP2003116224A (ja) * 2001-10-09 2003-04-18 Canon Inc 太陽光発電システム及びその電力変換装置、並びに該システムの制御方法
JP2004219031A (ja) * 2002-11-22 2004-08-05 Calsonic Kansei Corp 空気調和機
US6925826B2 (en) * 2003-05-05 2005-08-09 Carrier Corporation Modular bus air conditioning system
US8830021B2 (en) * 2004-06-17 2014-09-09 Ctm Magnetics, Inc. High voltage inductor filter apparatus and method of use thereof
WO2008146555A1 (ja) * 2007-05-29 2008-12-04 Daikin Industries, Ltd. ファンモータ装置
CN102480213B (zh) * 2010-11-22 2014-04-09 珠海格力电器股份有限公司 散热装置、包括其的变频器以及变频空调
CN102480167A (zh) * 2010-11-30 2012-05-30 珠海格力节能环保制冷技术研究中心有限公司 空调器及其供电系统
US8466582B2 (en) * 2010-12-03 2013-06-18 Enphase Energy, Inc. Method and apparatus for applying an electric field to a photovoltaic element
JP2012149835A (ja) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd 冷凍機およびその制御方法
US9228750B2 (en) * 2011-01-24 2016-01-05 Rocky Research HVAC/R system with multiple power sources and time-based selection logic
JP2012172917A (ja) * 2011-02-22 2012-09-10 Nippon Soken Inc 冷却装置
US20130043723A1 (en) * 2011-08-19 2013-02-21 Robert Bosch Gmbh Solar synchronized loads for photovoltaic systems
JP5197820B2 (ja) * 2011-09-12 2013-05-15 三菱電機株式会社 冷凍サイクル装置
JP5786615B2 (ja) * 2011-09-30 2015-09-30 ダイキン工業株式会社 自動車用温調システム
JP2013117360A (ja) * 2011-12-05 2013-06-13 Hitachi Appliances Inc 空気調和装置及び方法
CN203744433U (zh) * 2013-09-25 2014-07-30 珠海格力电器股份有限公司 光伏空调系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184024A (ja) * 1990-11-13 1992-07-01 Sanyo Electric Co Ltd 換気装置並びに換気装置付きの空調装置
JPH06307733A (ja) * 1993-04-21 1994-11-01 Hitachi Ltd 空調機
CN1106523A (zh) * 1993-10-19 1995-08-09 三星电子株式会社 空调器的控制设备和控制方法
JPH07120050A (ja) * 1993-10-27 1995-05-12 Sanyo Electric Co Ltd 空気調和機
JPH07190464A (ja) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd 太陽電池駆動空調機の制御方法
US20100253148A1 (en) * 2007-12-04 2010-10-07 Ryoji Matsui Electric power supply system
US20100302731A1 (en) * 2009-05-15 2010-12-02 Belikoff Michael A Inverter Cooler
CN102403776A (zh) * 2010-09-19 2012-04-04 珠海格力节能环保制冷技术研究中心有限公司 空调用混合供电系统及混合供电方法
CN102705944A (zh) 2012-06-28 2012-10-03 南车株洲电力机车研究所有限公司 一种太阳能变频空调系统
CN103486682A (zh) * 2013-09-25 2014-01-01 珠海格力电器股份有限公司 光伏空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351987A (zh) * 2019-07-15 2019-10-18 珠海格力电器股份有限公司 散热器、控制器、光伏用电设备和散热方法
CN110351987B (zh) * 2019-07-15 2024-02-23 珠海格力电器股份有限公司 散热器、控制器、光伏用电设备和散热方法

Also Published As

Publication number Publication date
KR101854193B1 (ko) 2018-05-04
JP2016536971A (ja) 2016-11-24
JP6234595B2 (ja) 2017-11-22
EP3451483A1 (en) 2019-03-06
EP3051217A1 (en) 2016-08-03
US20160231010A1 (en) 2016-08-11
EP3051217A4 (en) 2017-05-17
ES2712624T3 (es) 2019-05-14
EP3051217B1 (en) 2018-11-28
CN103486682A (zh) 2014-01-01
KR20160088288A (ko) 2016-07-25
CN103486682B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2015043234A1 (zh) 光伏空调系统
US10356962B2 (en) Power electronic device cooling system and distributed power generation system
US20100085708A1 (en) High-efficiency, fluid-cooled ups converter
CN101315912B (zh) 一种用于大功率电力半导体器件的复合式冷却方法及装置
CN100453926C (zh) 光伏太阳能热泵多功能一体化系统
CN204612090U (zh) 一种利用压缩机余热进行温差发电的空调机
CN105737439B (zh) 一种利用太阳能和热电过冷装置的空调系统
US20090178421A1 (en) Air conditioning system with multiple power selections
KR20200032345A (ko) Pvt 집열기 연계 태양열 히트펌프 시스템
CN101018029A (zh) 一种利用空调废热发电供自身用电而节电的方法和装置
CN114427758B (zh) 一种太阳能供应系统及其工作方法
US20230118671A1 (en) Photovoltaic air conditioning system
JP2011217590A (ja) 空調システム
CN203744433U (zh) 光伏空调系统
JP3653256B2 (ja) ハイブリッドエネルギーシステム
CN203518304U (zh) 电力电子器件冷却系统及分布式发电系统
CN206420185U (zh) 一种贮能式家用热能系统
CN201152602Y (zh) 具多种电源选择的冷暖气储存装置
CN201159514Y (zh) 具多种电源选择的冷气储存装置
JP3148637U (ja) 複数の電源選択のある冷熱量蓄積装置
CN220250146U (zh) 多功能节能空调系统
CN212209601U (zh) 一种用于应急照明集中电源的安装装置
JP2005147658A (ja) ハイブリッドエネルギーシステム
WO2016127535A1 (zh) 一种太阳能光伏空调系统
CN106705486A (zh) 一种贮能式家用热能系统及其贮能方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15024438

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016544697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009304

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014849007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849007

Country of ref document: EP