WO2016127535A1 - 一种太阳能光伏空调系统 - Google Patents

一种太阳能光伏空调系统 Download PDF

Info

Publication number
WO2016127535A1
WO2016127535A1 PCT/CN2015/081650 CN2015081650W WO2016127535A1 WO 2016127535 A1 WO2016127535 A1 WO 2016127535A1 CN 2015081650 W CN2015081650 W CN 2015081650W WO 2016127535 A1 WO2016127535 A1 WO 2016127535A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
power
condenser
cold
evaporator
Prior art date
Application number
PCT/CN2015/081650
Other languages
English (en)
French (fr)
Inventor
李士龙
Original Assignee
李士龙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李士龙 filed Critical 李士龙
Publication of WO2016127535A1 publication Critical patent/WO2016127535A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity

Definitions

  • the utility model relates to the technical field of solar energy, in particular to a solar photovoltaic air conditioning system.
  • the existing solar photovoltaic vapor compression refrigeration system uses an inverter, and the DC power outputted by the solar photovoltaic panel is first boosted and inverted into an alternating current through an inverter, and then the alternating current is used to drive the alternating current compressor. Produce heat and cold.
  • the price of the inverter is expensive, which increases the manufacturing cost of the system.
  • the solar photovoltaic power source and the commercial power need to be docked to mix and drive the compressor.
  • An ordinary solar water heater is a device that collects the energy of sunlight by using a flat type collector, a vacuum glass tube collector, and the like, thereby warming the cold water.
  • this solar water heater cannot produce cold water while making hot water.
  • solar energy itself is an inexhaustible clean energy, when it is most needed on a cloudy day, ordinary solar water heaters Hot water cannot be obtained due to insufficient sunlight.
  • the object of the present invention is to provide a solar photovoltaic air conditioning system that not only can fully utilize solar energy, but also has higher cooling and heating efficiency.
  • a solar photovoltaic air conditioning system a plurality of sets of cooling and heating machine subsystems, each set of cooling and heating machine subsystems comprising a small power DC brushless permanent magnet motor, a condenser, an electronic expansion valve, and an evaporator, the low power DC brushless
  • the magneto, the condenser, the electronic expansion valve, and the evaporator are connected by a pipeline to form a circuit for circulating a refrigerant
  • the photovoltaic DC power system is used for supplying power to the cooling and heating subsystem, and the controller and the controller are rectified at one end.
  • the device is connected with the photovoltaic DC power system, and the other end is connected in parallel with a plurality of sets of cooling and heating subsystems.
  • the controller controls the corresponding number of the cooling and heating subsystems according to the output power of the photovoltaic DC power supply system, so that the low-power DC of the cooling and heating subsystem is not Brush the permanent magnet motor to start or stop.
  • the photovoltaic DC power supply system is formed by connecting a plurality of solar battery modules in series and in parallel according to load requirements.
  • a heating coil is coupled between the electronic expansion valve and the DC brushless permanent magnet motor through a three-way reversing valve, and the heating coil is placed in the hot water tank.
  • the insulated hot water tank and the electronic expansion valve, and the condenser and the electronic expansion valve are respectively disposed to control the pipeline between the heat preservation hot water tank and the electronic expansion valve, and the condenser and the electronic expansion valve.
  • a temperature sensor can be arranged on the insulated hot water tank, and the temperature sensor is connected to the controller.
  • the evaporator is an air-cooled evaporator or a water-cooled evaporator; when the evaporator is a water-cooled evaporator, the cooling coil of the water-cooled evaporator is placed in a cold storage tank.
  • the water outlet of the cold storage tank is connected with a water pump, and the water outlet of the water pump is connected with a cold air sheet or a fan coil, and the water outlet of the cold air sheet or the fan coil is connected with the water inlet of the cold storage box.
  • a circulation loop for the flow of cold water is formed.
  • the condenser is an air-cooled condenser or a water-cooled condenser; when the condenser is a water-cooled condenser, the heating coil of the water-cooled condenser is placed in the heat storage tank.
  • the heat storage box is provided with a temperature sensor, and the temperature sensor is connected to the controller.
  • the utility model has the advantages that: a plurality of sets of cooling and heating machine subsystems with small power DC brushless permanent magnet motors are provided, and the photovoltaic DC power supply system is connected with multiple sets of cooling and heat engine subsystems through one controller.
  • the controller can control the corresponding number of the heat and cold engine subsystem according to the power outputted by the photovoltaic direct current power system, and start or stop the DC brushless permanent magnet motor of the cold heat engine subsystem, so when the light intensity is weak (such as In the case of cloudy, rainy, morning or evening, the output power of the photovoltaic DC power system is relatively small, but the minimum operating power of the small power compressor is relatively small, so it is easy to meet at least one low power DC.
  • the minimum operating power of the permanent magnet motor is brushed.
  • the controller starts the corresponding number of DC brushless permanent magnet motors according to the output power of the photovoltaic DC power system (for example, when the output power of the photovoltaic DC power system is greater than one low power)
  • the controller starts a DC brushless permanent magnet motor to operate when the photovoltaic
  • the controller activates the corresponding two DC brushless permanent magnet motors, and so on, to obtain the cooling capacity or
  • the heat obviously increases the utilization rate of the photovoltaic DC power system and the DC brushless permanent magnet motor, prolongs the daily working time of the DC brushless permanent magnet motor, and makes full use of solar energy; when the sunlight is sufficient, the photovoltaic DC power system
  • the output power is distributed to multiple sets by the controller
  • the heat and cold engine subsystem enables each low-power DC brushless permanent magnet motor to operate
  • the DC braking power generated by the brushless permanent magnet motor is correspondingly generated and the energy consumed by its operation.
  • the power ratio can be more than 4 times, and the power ratio of the heat generated by the DC brushless permanent magnet motor and the energy consumed by the operation is more than 5 times.
  • the present invention The heat and cold unit has higher utilization rate of solar energy and can better meet the purpose of energy saving.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIGS. 2 and 3 are schematic views of an embodiment of the present invention.
  • the solar photovoltaic air conditioner cold and heat unit of the present invention comprises a plurality of sets of cooling and heat engine subsystems 10, each of which comprises a low power DC brushless permanent magnet motor 3, a condenser 5, and an electron.
  • the expansion valve 4, and the evaporator 6, the low-power DC brushless permanent magnet motor 3, the condenser 5, the electronic expansion valve 4, and the evaporator 6 are connected by a pipeline to form a circuit for circulating a refrigerant;
  • DC power system 1, for powering the heat and cold engine subsystem 10 photovoltaic power system 1 is composed of a plurality of solar cell modules connected in series and in parallel according to the requirements of the load; one end of the controller 2 is connected with the photovoltaic DC power supply system, and the other end is connected in parallel with a plurality of sets of the heat and cold engine subsystem 10, and the controller 2 is based on the photovoltaic DC power supply system.
  • the maximum output power of the power system 1 and the power of each set of the heat and cold engine subsystem 10 are set (as shown in Figure 1 for the two sets of the heat and cold engine subsystem 10).
  • the light intensity is weak (for example, in cloudy weather, rainy weather, morning or evening)
  • the minimum operating power of the low power compressor 3 is relatively small.
  • the controller 2 starts a corresponding number of DC brushless permanent magnet motors 3 according to the power output of the photovoltaic DC power system (for example)
  • the controller starts a DC brushless permanent magnet motor operation, when the output power of the photovoltaic DC power system is greater than two
  • the controller starts the corresponding two DC brushless permanent magnet motors, and so on, to obtain the cooling capacity or heat, which obviously improves the photovoltaic DC power system.
  • the photovoltaic DC power system 1 distributes the output power to the plurality of sets of the heat and cold engine subsystem 10 through the controller 2, so that each of the low-power DC brushless permanent magnet motors 3 can be operated at a lower speed.
  • the ratio of the cooling capacity generated by the DC brushless permanent magnet motor 3 to the energy consumed by its operation can reach more than 4 times, and the DC brushless permanent magnet
  • the power ratio of the heat generated by the motor 3 to the work and the energy consumed by the operation is more than 5 times.
  • the heat and heat unit of the present invention has higher utilization rate of solar energy and can better meet the purpose of energy conservation.
  • the motor of the DC brushless permanent magnet motor 3 can adopt a DC brushless permanent magnet motor or a DC brushed permanent magnet motor, but the life of the carbon brush of the DC brushed permanent magnet motor is short, and the frequency of replacement is changed. Higher, and the replacement operation is more troublesome. For this reason, the motor of the DC brushless permanent magnet motor can be preferentially selected as the DC brushless permanent magnet motor; in addition, in order to reduce the minimum operating power of the DC brushless permanent magnet motor 3, the DC brushless permanent
  • the pump body of the magneto is a rotary compression pump.
  • the controller 2 can be electrically connected to an AC power source (not shown) through a rectifying device (not shown), so that when the photovoltaic power module of the photovoltaic DC power system is insufficient, or there is no light at night, the AC can be exchanged.
  • the power source first rectifies the alternating current outputted by the alternating current power source (such as the commercial power) into direct current through the rectifying device, and then supplies it to the controller 2 for the controller 2 to drive the cold heat engine subsystem 10.
  • Embodiment 1 The condenser 5 may be an air-cooled condenser or a water-cooled condenser; the evaporator 6 may be an air-cooled evaporator or a water-cooled evaporator, as shown in FIG. It is the case where the air-cooled condenser and the evaporator 6 are air-cooled evaporators. As shown in FIG. 2, the evaporator 6 is a water-cooled evaporator, and the condenser 5 is an air-cooled condenser.
  • the cooling coil of the water-cooled evaporator is placed in the cold storage tank 20 (the cooling coils of the respective water-cooled evaporators can be separately They can be placed in different cold storage tanks, or they can be placed in the same cold storage tank in whole or in part. As shown in Fig.
  • liquids in the cold storage tank 20 can be Cooling down
  • the cooling coil can be a copper tube, It can also be a stainless steel tube, and the cooled water can be directly used as cold water for daily use; it can also be pumped out by the water pump 30 and the cooling capacity of the fan coil 40 can be dissipated into the indoor air that needs to be cooled, and the water pump 30 is separately cooled by the pipeline.
  • the water inlet and the water outlet of the tank 20 are connected to form a circulation circuit for the water supply flow; of course, the water pump 30 can also be taken out and sent to the indoor air that needs to be cooled by a cold air sheet (not shown).
  • the water inlet of 30 is connected with the water outlet of the cold storage tank 20, and the water inlet and the water outlet of the cold air sheet are respectively connected with the water outlet of the water pump and the water inlet of the cold storage tank, and the cold air sheet is prior art, and is no longer here.
  • the specific structure is described in detail, and when the cold air sheet cools the indoor air, the temperature difference between the cold air sheet and the indoor air causes the outer surface of the cold air sheet to form condensation water and drip to wet the ground, and for this reason, the cold air sheet can be used.
  • a water basin (not shown) is placed underneath to hold the condensation water dripping from the cold air sheet.
  • a temperature sensor (not shown) may be disposed on the cold storage tank 20, and the temperature sensor is electrically connected to the controller.
  • the controller 2 makes the corresponding cold.
  • the DC brushless permanent magnet motor 3 of the heat engine subsystem 10 stops working, and the solar energy can be more fully utilized in this way, and the amount of cold stored in the liquid of the cold storage tank 20 when the sunlight is sufficient can be when the light intensity is extremely weak (eg, At night, rainy days, etc., the water supply fan coil is taken out by the water pump to dissipate its cooling capacity into the indoor air, without the need to drive the heat pump system through the mains to obtain the cooling capacity as in the prior art. Obviously, a large amount of energy can be saved.
  • the amount of cooling that is blown out by the fan coil 40 or emitted by the cold air sheet is cooler, unlike the cold air blown out by the air-cooled evaporator, which makes it difficult for people with weak constitution to adapt.
  • the condenser 5 is a water-cooled condenser
  • the heating coil can be placed in the heat storage tank, and the water heated by the heating coil can be directly used as domestic hot water, or can be heated by a fan coil or a radiator. Blown or scattered It is sent to an indoor environment that needs to be warmed up.
  • the refrigerant flowing through the DC brushless permanent magnet motor 3 can be set to flow forward in the cold heat engine subsystem 10.
  • the condenser 5 and the evaporator 6, or the reverse flow through the condenser 5 and the evaporator 6, are returned to the four-way switching valve 71 of the compressor 3, and the switching of the flow direction is through the switching on the four-way switching valve 71.
  • the valve is realized, wherein the forward flow direction of the refrigerant is: compressor 3 ⁇ four-way reversing valve 71 ⁇ condenser 5 ⁇ electronic expansion valve 4 ⁇ evaporator 6 ⁇ four-way reversing valve 71 ⁇ compressor 3
  • the reverse flow direction of the refrigerant is: compressor 3 ⁇ four-way reversing valve 71 ⁇ evaporator 6 ⁇ electronic expansion valve 4 ⁇ condenser 5 ⁇ four-way reversing valve 71 ⁇ compressor 3.
  • the condenser 5 can be generated by the heat generated when the refrigerant flows in the forward direction, and the evaporator 6 is cooled by the forward flow of the refrigerant. The amount becomes heat.
  • Embodiment 2 As shown in FIG. 4 and FIG. 5, in order to better utilize solar energy, a heating coil 8 is coupled between the electronic expansion valve 4 and the DC brushless permanent magnet motor 3 through a three-way switching valve 72.
  • the heating coil 8 may be a copper tube or a stainless steel tube.
  • the heating coil 8 is placed in the thermal hot water tank 50 to heat the water therein, and the heated water can be directly used as domestic water.
  • the thermal insulation hot water tank 50 and the electronic expansion valve 4, and the condenser 5 and the electronic expansion valve 4 are respectively disposed between the thermal insulation hot water tank 50 and the electronic expansion valve 4, and between the condenser 5 and the electronic expansion valve 4.
  • a one-way valve 91, 92 for opening and closing of the pipeline, a temperature sensor may be disposed on the hot water tank 50, the temperature sensor is electrically connected to the controller 2, and when the temperature sensor detects the hot water of the tank When the temperature of the liquid in the tank 50 reaches the set value (the set value is generally 50-60 ° C, in many cases 55 ° C), The controller 2 activates the three-way switching valve 72 to switch the refrigerant from the heating coil flowing into the hot water tank 50 to the condenser 5, and the hot water tank and the electronic expansion valve 4 are operated by the check valve 91. In the same manner, the three-way switching valve 72 can also be controlled by the controller 2 so that the refrigerant does not flow through the condenser 5.
  • the condenser 5 may be a water-cooled condenser or a wind condenser.
  • the evaporator may be a water-cooled evaporator or an air-cooled evaporator. As shown in FIG. 4, the evaporator 6 is a water-cooled evaporator.
  • the condenser 5 is an air-cooled condenser, the cooling coil of the water-cooled evaporator is placed in the cold storage tank 20, and the liquid (such as water) of the cold storage tank 20 can be cooled, and the cooled water can be directly used as a living thing.
  • the cold water can also be taken out by the water pump 30 and dissipated by the fan coil 40 to the indoor air that needs to be cooled.
  • the water pump 30 communicates with the water inlet and the water outlet of the cold storage tank through the pipeline to form a circulation for liquid flow.
  • the circuit can also be pumped out by the water pump 30 and radiated by the cold air sheet to the indoor air that needs to be cooled.
  • the water inlet of the water pump is connected with the water outlet of the cold storage box, and the water inlet and the water outlet of the cold air sheet are respectively.
  • the water outlet of the water pump is connected to the water inlet of the cold storage tank, and when the cold air sheet cools the indoor air, the temperature difference between the cold air sheet and the indoor air causes condensation water to form on the outer surface of the cold air sheet and drip to wet the ground.
  • Sheng basin may be placed (not shown) below the sheet of cold air to the cold air from the accommodating sheet dripping condensation water.
  • the heating coil of the water-cooled condenser is placed in the heat storage tank 60, and the liquid of the heat storage tank 60 can be If heated, the heated water can be directly used as hot water for daily use, or it can be pumped out by a water pump and radiated by a fan coil or a radiator (not shown) to the indoor air to be heated.
  • the water pump communicates with the water inlet and the water outlet of the heat storage tank through the pipeline to form a circulation loop of the water supply flow.
  • the utility model has the advantages of simple structure, convenient use, stable angle during production, short adjustment time, high efficiency, high production speed and high product precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种太阳能光伏空调系统,包括:多套冷热机子系统(10)和控制器(2),每套冷热机子系统(10)包括小功率直流无刷永磁电机(3)、冷凝器(5)、电子膨胀阀(4)以及蒸发器(6),彼此通过管路连接形成制冷剂循环回路;光伏直流电源系统(1),用于对冷热机子系统(10)供电;控制器(2)的一端与光伏直流电源系统(1)连接,另一端并联有多套冷热机子系统(10),控制器(2)根据光伏直流电源系统(1)输出的功率来控制对应数量的冷热机子系统(10),使冷热机子系统(10)的小功率直流无刷永磁电机(3)启动或停机。

Description

一种太阳能光伏空调系统 技术领域
本实用新型涉及太阳能技术领域,尤其涉及一种太阳能光伏空调系统。
背景技术
现有的太阳能光伏蒸气压缩式制冷系统均使用了逆变器,工作时需要通过逆变器将太阳能光伏板输出的直流电先进行升压、逆变成交流电,然后以交流电去驱动交流压缩机以制取热量和冷量。而逆变器的价格昂贵,增加了系统的制作成本,另外,当太阳光强度不足时,还需要将太阳能光伏电源和市电对接去混合驱动压缩机。
普通的太阳能热水器是利用平板式集热器、真空玻璃管集热器等收集太阳光的能量,从而将冷水加温的装置。但此太阳能热水器不能在制取热水的同时制取冷水,另外,尽管太阳能本身是取之不尽、用之不竭的清洁能源,但在阴天最需要热水的时候,普通太阳能热水器却由于阳光强度不足而无法取得热水。
发明内容
针对现有技术中存在的不足,本实用新型的目的是在于提供一种太阳能光伏空调系统,其不仅能够更充分利用太阳能,且制冷、制热效率更高。
为实现上述目的,本实用新型通过以下技术方案予以实现:
一种太阳能光伏空调系统,多套冷热机子系统,每套冷热机子系统包括小功率直流无刷永磁电机、冷凝器、电子膨胀阀、以及蒸发器,所述的小功率直流无刷永磁电机、冷凝器、电子膨胀阀、以及蒸发器通过管路连接形成一个供制冷剂循环流动的回路,光伏直流电源系统,用于对冷热机子系统供电,控制器,控制器的一端通过整流设备与光伏直流电源系统连接,另一端并联有多套冷热机子系统,控制器根据光伏直流电源系统输出的功率来控制对应数量的冷热机子系统,使该冷热机子系统的小功率直流无刷永磁电机启动或停机。
进一步的,所述的光伏直流电源系统由多个太阳能电池组件按照负载的要求串联和并联连接而成。
进一步的,所述的电子膨胀阀和直流无刷永磁电机之间通过三通换向阀耦合有加热盘管,加热盘管置于保温热水箱内。
进一步的,所述的保温热水箱和电子膨胀阀、以及冷凝器与电子膨胀阀之间分别设置用以控制保温热水箱和电子膨胀阀、以及冷凝器和电子膨胀阀之间的管道通与断的单向阀,保温热水箱上可设置温度传感器,该温度传感器与控制器相连。
进一步的,所述的蒸发器为风冷蒸发器或水冷蒸发器;当蒸发器为水冷蒸发器时,水冷蒸发器的制冷盘管置于蓄冷箱内。
进一步的,所述的蓄冷箱的出水口通连有水泵,水泵的出水口通连有冷气片或者风机盘管,冷气片或者风机盘管的出水口则与蓄冷箱的进水口连通, 形成供冷水流动的循环回路。
进一步的,所述的冷凝器为风冷冷凝器或水冷冷凝器;当冷凝器为水冷冷凝器时,水冷冷凝器的加热盘管置于蓄热箱中。
进一步的,所述的蓄热箱上设有温度传感器,该温度传感器与控制器相连。
综上所述,本实用新型的优点是:由于设置有多套具有小功率直流无刷永磁电机的冷热机子系统,并通过一个控制器将光伏直流电源系统与多套冷热机子系统连接,该控制器可根据光伏直流电源系统输出的功率来控制对应数量的冷热机子系统、使该冷热机子系统的直流无刷永磁电机启动或者停机,因此,当光照强度较弱时(如,阴天、雨天、早晨或者傍晚等情况下),该光伏直流电源系统输出的功率虽然相对较小,但小功率压缩机的最小运行功率相对更小,所以很容易满足至少一个小功率直流无刷永磁电机的最小运行功率,此时,控制器根据光伏直流电源系统输出的功率,启动相应数量的直流无刷永磁电机运行(例如,当光伏直流电源系统输出的功率大于一台小功率直流无刷永磁电机的最小运行功率时,控制器启动一台直流无刷永磁电机运行,当光伏直流电源系统输出的功率大于两台直流无刷永磁电机的最小运行功率之和时,控制器就启动相应的两台直流无刷永磁电机运行,以此类推),以制取冷量或热量,显然提高了光伏直流电源系统以及直流无刷永磁电机的使用率,延长直流无刷永磁电机每天的工作时间,更为充分地利用太阳能;而当阳光充足时,光伏直流电源系统则通过控制器将输出的功率分配给多套 冷热机子系统,使每台小功率直流无刷永磁电机均可处于较低转速运转,在这种运行状态下,直流无刷永磁电机做功所相应产生的制冷量与其运行所消耗的能量的功率比能达到4倍以上,直流无刷永磁电机做功所相应产生的制热量与其运行所消耗的能量的功率比则在5倍以上,显然,与现有技术相比,本发明所述的冷热机组对太阳能的利用率更高,更能满足节能的目的。
附图说明
图1是本实用新型的结构示意图;
图2、图3是本实用新型一种实施方式的示意图;
图4、图5是本实用新型另一种实施方式的示意图。
图中,1、光伏直流电源系统,2、控制器,3、直流无刷永磁电机,4、电子膨胀阀,5、冷凝器,6、蒸发器,71、四通换向阀,72、三通换向阀,8、加热盘管,91、单向阀,92、单向阀,10、冷热机子系统,20、蓄冷箱,30、水泵,40、风机盘管,50、保温热水箱,60、蓄热箱。
具体实施方式
下面将结合附图以及具体实施方式对本实用新型作进一步的说明:
如图1所示,本发明所述的太阳能光伏空调冷热机组,包括多套冷热机子系统10,每套冷热机子系统10包括小功率直流无刷永磁电机3、冷凝器5、电子膨胀阀4、以及蒸发器6,所述的小功率直流无刷永磁电机3、冷凝器5、电子膨胀阀4、以及蒸发器6通过管路连接形成一个供制冷剂循环流动的回路;光伏直流电源系统1,用于对冷热机子系统10供电,光伏直流电源系统 1由多个太阳能电池组件按照负载的要求串联和并联连接而成;控制器2的一端与光伏直流电源系统连接,另一端并联有多套冷热机子系统10,控制器2根据光伏直流电源系统1输出的功率来控制对应数量的冷热机子系统10,使该冷热机子系统10的小功率直流无刷永磁电机3启动或停机,所述的冷热机子系统10的数量可根据光伏直流电源系统1的最大输出功率以及每套冷热机子系统10的功率来设定(如图1所示为两套冷热机子系统10的情况)。当光照强度较弱时(如,阴天、雨天、早晨或者傍晚等情况下),该光伏直流电源系统1输出的功率虽然相对较小,但小功率压缩机3的最小运行功率相对更小,所以很容易满足至少一台小功率直流无刷永磁电机3的最小运行功率,此时,控制器2根据光伏直流电源系统输出的功率,启动相应数量的直流无刷永磁电机3运行(例如,当光伏直流电源系统输出的功率大于一台小功率直流无刷永磁电机的最小运行功率时,控制器启动一台直流无刷永磁电机运行,当光伏直流电源系统输出的功率大于两台直流无刷永磁电机的最小运行功率之和时,控制器就启动相应的两台直流无刷永磁电机运行,以此类推),以制取冷量或热量,显然提高了光伏直流电源系统1以及直流无刷永磁电机3的使用率,延长直流无刷永磁电机每天的工作时间,更为充分地利用太阳能;而当阳光充足时,光伏直流电源系统1则通过控制器2将输出的功率分配给多套冷热机子系统10,使每台小功率直流无刷永磁电机3均可处于较低转速运转,在这种运行状态下,直流无刷永磁电机3做功所相应产生的制冷量与其运行所消耗的能量的功率比能达到4倍以上,直流无刷永磁 电机3做功所相应产生的制热量与其运行所消耗的能量的功率比则在5倍以上,显然,本发明所述的冷热机组对太阳能的利用率更高,更能满足节能的目的。
所述的直流无刷永磁电机3的电机可采用直流无刷永磁电机,也可以采用直流有刷永磁电机,但由于直流有刷永磁电机的炭刷的使用寿命较短,更换频率较高,并且更换操作较为麻烦,为此,直流无刷永磁电机的电机可优先选用直流无刷永磁电机;另外,为降低直流无刷永磁电机3的最小运行功率,直流无刷永磁电机的泵体可采用旋转式压缩泵。
所述的控制器2可通过整流设备(图中未表示)与交流电源(图中未表示)电连接,这样,当光伏直流电源系统的太阳能光伏组件不足、或者夜晚无光照时,可将交流电源作为补充电源,先通过整流设备将交流电源(如市电)输出的交流电整流成直流电,再输送给控制器2,以供控制器2来驱动冷热机子系统10。
实施例1:所述的冷凝器5可以为风冷冷凝器,也可以为水冷冷凝器;蒸发器6可以为风冷蒸发器,也可以为水冷蒸发器,如图1所示是冷凝器5为风冷冷凝器、蒸发器6为风冷蒸发器的情况。如图2所示是蒸发器6为水冷蒸发器,冷凝器5为风冷冷凝器的情况,该水冷蒸发器的制冷盘管置于蓄冷箱20内(各个水冷蒸发器的制冷盘管可分别置于不同的蓄冷箱内,也可全部或部分置同一蓄冷箱内,如图2所示为多个制冷盘管置于同一蓄冷箱内的情形),可对蓄冷箱20内的液体(如水)进行降温,该制冷盘管可以为铜管, 也可以为不锈钢管,经降温的水可直接作为生活用冷水;也可以由水泵30抽出并由风机盘管40将其冷量散发到需要降温的室内空气中,该水泵30通过管道分别与蓄冷箱20的进水口以及出水口连通,形成供水流动的循环回路;当然,还可以由水泵30抽出并通过冷气片(图中未表示)将其冷量散发到需要降温的室内空气中,该水泵30的进水口与蓄冷箱20的出水口通连,冷气片的进水口和出水口则分别与水泵的出水口和蓄冷箱的进水口连通,所述的冷气片为现有技术,这里不再对其具体结构进行赘述,而由于冷气片对室内空气降温时,冷气片和室内空气的温度差会使冷气片外表面形成凝露水并滴落而弄湿地面,为此,可在冷气片的下方放置盛水盆(图中未表示),以盛放从冷气片上滴落的凝露水。蓄冷箱20上可设置温度传感器(图中未表示),该温度传感器与控制器电连接,当温度传感器检测到的蓄冷箱20内的液体温度达到设定值时,控制器2使相应的冷热机子系统10的直流无刷永磁电机3停止工作,采用此种方式能够更充分的利用太阳能,阳光充足时储存在蓄冷箱20的液体中的冷量可以在光照强度极弱的时候(如夜晚,雨天等)时由水泵抽出供风机盘管将其冷量散发到室内空气中,而无需像现有技术一般需通过市电来驱动热泵系统以制取冷量,显然,可节省大量能源,另外,通过风机盘管40吹散出来或者通过冷气片散发出来的冷量更为凉爽,而不像风冷蒸发器直接吹出来的冷气那般剌冷而使体质较弱的人难以适应。同理,当冷凝器5为水冷冷凝器时,其加热盘管可置蓄热箱中,经加热盘管加热的水直接可作为生活热水,也可通过风机盘管或者暖气片将其热量吹散或者散 发到需要升温的室内环境中。
如图3所示,为了使太阳能光伏空调冷热机组满足不同的需求并节省系统制作成本,可在冷热机子系统10上设置可使直流无刷永磁电机3流出的制冷剂正向流经冷凝器5和蒸发器6、或者反向流经冷凝器5和蒸发器6后回流到压缩机3的四通换向阀71,其流动方向的切换是通过四通换向阀71上的切换阀门来实现的,其中,制冷剂的正向流动方向是:压缩机3→四通换向阀71→冷凝器5→电子膨胀阀4→蒸发器6→四通换向阀71→压缩机3;制冷剂的反向流动方向则是:压缩机3→四通换向阀71→蒸发器6→电子膨胀阀4→冷凝器5→四通换向阀71→压缩机3。通过四通换向阀71使制冷剂反向循环流动后,冷凝器5可由制冷剂正向流动时的产生热量变成产生冷量,而蒸发器6则由制冷剂正向流动时的产生冷量变成产生热量。
实施例2:如图4、图5所示,为更好地利用太阳能,所述的电子膨胀阀4和直流无刷永磁电机3之间通过三通换向阀72耦合有加热盘管8,该加热盘管8可以为铜管,也可以为不锈钢管,加热盘管8置于保温热水箱50内,可对其内的水进行加热,经加热的水可直接作为生活用水使用,保温热水箱50和电子膨胀阀4、以及冷凝器5与电子膨胀阀4之间分别设置用以控制保温热水箱50和电子膨胀阀4、以及冷凝器5和电子膨胀阀4之间的管路通与断的单向阀91、92,保温热水箱50上可设置温度传感器(图中未表示),该温度传感器与控制器2电连接,当该温度传感器检测到保箱热水箱50内的液体温度达到设定值时(该设定值一般为50-60℃,较多情况下为55℃), 控制器2启动三通换向阀72,使制冷剂由流向保温热水箱50内的加热盘管切换为流向冷凝器5,并由单向阀91将保温热水箱和电子膨胀阀4之间的管路切断;同理,也可以通过控制器2控制三通换向阀72,以使制冷剂不流经冷凝器5。所述的冷凝器5可以为水冷冷凝器,也可以为风冷凝器,蒸发器可以为水冷蒸发器,也可以为风冷蒸发器,如图4所示,是蒸发器6为水冷蒸发器,冷凝器5为风冷冷凝器的情况,该水冷蒸凝器的降温盘管置于蓄冷箱20内,可对蓄冷箱20的液体(如水)进行降温,经降温的水可直接作为生活用的冷水,也可以由水泵30抽出并由风机盘管40将其冷量散发到需要降温的室内空气中,该水泵30通过管道分别与蓄冷箱的进水口以及出水口连通,形成供液体流动的循环回路;还可以由水泵30抽出并通过冷气片将其冷量散发到需要降温的室内空气中,该水泵的进水口与蓄冷箱的出水口通连,冷气片的进水口和出水口则分别与水泵的出水口和蓄冷箱的进水口连通,而由于冷气片对室内空气降温时,冷气片和室内空气的温度差会使冷气片外表面形成凝露水并滴落而弄湿地面,为此,可在冷气片的下方放置盛水盆(图中未表示),以盛放从冷气片上滴落的凝露水。如图5所示,是蒸发器6为风冷蒸发器,冷凝器5为水冷冷凝器的情况,水冷冷凝器的加热盘管置于蓄热箱60中,可对蓄热箱60的液体(如水)进行加热,经加热的水可直接作为生活用的热水,也可以由水泵抽出并由风机盘管或者暖气片(图中未表示)将其热量散发到需要升温的室内空气中,该水泵通过管道分别与蓄热箱的进水口以及出水口连通,形成供水流动的循环回路。
由此可见,本实用新型不仅结构简单,使用方便,生产时角度稳定,调机时间短,效率高,且生产速度块,产品精度高。
对于本领域的技术人员来说,可根据以上技术方案以及构思,做出其他各种相应的改变以及变形,而所有的这些改变和变形都应该属于本实用新型权利要求的保护范围之内。

Claims (8)

  1. 一种太阳能光伏空调系统,其特征在于,包括:
    多套冷热机子系统,每套冷热机子系统包括小功率直流无刷永磁电机、冷凝器、电子膨胀阀、以及蒸发器,所述的小功率直流无刷永磁电机、冷凝器、电子膨胀阀、以及蒸发器通过管路连接形成一个供制冷剂循环流动的回路;
    光伏直流电源系统,用于对冷热机子系统供电;
    控制器,控制器的一端通过整流设备与光伏直流电源系统连接,另一端并联有多套冷热机子系统,控制器根据光伏直流电源系统输出的功率来控制对应数量的冷热机子系统,使该冷热机子系统的小功率直流无刷永磁电机启动或停机。
  2. 根据权利要求1所述的一种太阳能光伏空调系统,其特征在于:所述的光伏直流电源系统由多个太阳能电池组件按照负载的要求串联和并联连接而成。
  3. 根据权利要求1所述的一种太阳能光伏空调系统,其特征在于:所述的电子膨胀阀和直流无刷永磁电机之间通过三通换向阀耦合有加热盘管,加热盘管置于保温热水箱内。
  4. 根据权利要求3所述的一种太阳能光伏空调系统,其特征在于:所述的保温热水箱和电子膨胀阀、以及冷凝器与电子膨胀阀之间分别设置用以控制保温热水箱和电子膨胀阀、以及冷凝器和电子膨胀阀之间的管道通与断的 单向阀,保温热水箱上设置温度传感器,该温度传感器与控制器相连。
  5. 根据权利要求4所述的一种太阳能光伏空调系统,其特征在于:所述的蒸发器为风冷蒸发器或水冷蒸发器;当蒸发器为水冷蒸发器时,水冷蒸发器的制冷盘管置于蓄冷箱内。
  6. 根据权利要求5所述的一种太阳能光伏空调系统,其特征在于:所述的蓄冷箱的出水口通连有水泵,水泵的出水口通连有冷气片或者风机盘管,冷气片或者风机盘管的出水口则与蓄冷箱的进水口连通,形成供冷水流动的循环回路。
  7. 根据权利要求6所述的一种太阳能光伏空调系统,其特征在于:所述的冷凝器为风冷冷凝器或水冷冷凝器;当冷凝器为水冷冷凝器时,水冷冷凝器的加热盘管置于蓄热箱中。
  8. 根据权利要求7所述的一种太阳能光伏空调系统,其特征在于:所述的蓄热箱上设有温度传感器,该温度传感器与控制器相连。
PCT/CN2015/081650 2015-02-13 2015-08-05 一种太阳能光伏空调系统 WO2016127535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520109129.6U CN204555140U (zh) 2015-02-13 2015-02-13 一种太阳能光伏空调系统
CN201520109129.6 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016127535A1 true WO2016127535A1 (zh) 2016-08-18

Family

ID=53830243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081650 WO2016127535A1 (zh) 2015-02-13 2015-08-05 一种太阳能光伏空调系统

Country Status (2)

Country Link
CN (1) CN204555140U (zh)
WO (1) WO2016127535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748965A (zh) * 2019-11-14 2020-02-04 珠海格力电器股份有限公司 空调系统及空调系统控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560218A (en) * 1993-11-26 1996-10-01 Samsung Electronics Co., Ltd. Control apparatus and method for an air conditioner
CN102374689A (zh) * 2011-09-30 2012-03-14 广州西河冷热设备工程有限公司 太阳能光伏空调冷热机组
CN202229460U (zh) * 2011-09-30 2012-05-23 广州西河冷热设备工程有限公司 太阳能光伏空调冷热机组
CN103633724A (zh) * 2012-08-23 2014-03-12 傅耀贤 太阳能空调供电系统
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560218A (en) * 1993-11-26 1996-10-01 Samsung Electronics Co., Ltd. Control apparatus and method for an air conditioner
CN102374689A (zh) * 2011-09-30 2012-03-14 广州西河冷热设备工程有限公司 太阳能光伏空调冷热机组
CN202229460U (zh) * 2011-09-30 2012-05-23 广州西河冷热设备工程有限公司 太阳能光伏空调冷热机组
CN103633724A (zh) * 2012-08-23 2014-03-12 傅耀贤 太阳能空调供电系统
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748965A (zh) * 2019-11-14 2020-02-04 珠海格力电器股份有限公司 空调系统及空调系统控制方法
CN110748965B (zh) * 2019-11-14 2023-11-24 珠海格力电器股份有限公司 空调系统及空调系统控制方法

Also Published As

Publication number Publication date
CN204555140U (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2013044590A1 (zh) 太阳能光伏空调冷热机组
CN204373270U (zh) 光伏空调热泵热水器
CN205351809U (zh) 一种住宅用冷暖循环系统
JP2016536971A (ja) 太陽光エアコンシステム
CN109114804A (zh) 太阳能光伏-市电联合驱动的光伏光热一体化双源热泵热水系统及其运行方法
CN203375584U (zh) 冷热量储存式太阳能空调装置
CN104716665A (zh) 一种太阳能光伏发电及集热循环一体化系统
CN104833027A (zh) 综合利用太阳能光热和光电技术的家用直流变频空调系统
CN217604223U (zh) 光伏驱动热泵储能制冷采暖系统
CN103225861A (zh) 冷热量储存式太阳能空调装置
CN207797291U (zh) 微型室内制冷制热温度调节器
CN109764436B (zh) 一种平抑间歇能源短期波动的热泵储能系统
WO2016127535A1 (zh) 一种太阳能光伏空调系统
CN108571827A (zh) 一种热泵热水器供电系统及其控制方法
JP2021071216A (ja) 太陽光発電を利用した熱源貯蔵システム
CN102914082B (zh) 夏季用空调与太阳能热水器一体化装置
CN202229460U (zh) 太阳能光伏空调冷热机组
CN115540018A (zh) 光伏光热复合双源热泵的家庭热电冷联供系统及功能方法
CN204612028U (zh) 一种空调系统
CN109681952B (zh) 光伏光热混合热泵系统
CN107525266A (zh) 蒸发器组件、热水器及热水器的控制方法
CN2570707Y (zh) 太阳能半导体空调器
CN203336779U (zh) 新型高效能源阶梯使用闭式循环中央空调系统
CN203454314U (zh) 太阳能空调与风冷模块联合系统
CN203629119U (zh) 一种绿色节能的冷热组合箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15881696

Country of ref document: EP

Kind code of ref document: A1