WO2015043174A1 - 一种柔性锂二次电池及其制备方法 - Google Patents

一种柔性锂二次电池及其制备方法 Download PDF

Info

Publication number
WO2015043174A1
WO2015043174A1 PCT/CN2014/076156 CN2014076156W WO2015043174A1 WO 2015043174 A1 WO2015043174 A1 WO 2015043174A1 CN 2014076156 W CN2014076156 W CN 2014076156W WO 2015043174 A1 WO2015043174 A1 WO 2015043174A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
active material
lithium secondary
secondary battery
array
Prior art date
Application number
PCT/CN2014/076156
Other languages
English (en)
French (fr)
Inventor
王平华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015043174A1 publication Critical patent/WO2015043174A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of flexible energy storage devices, and more particularly to a flexible lithium secondary battery and a method of fabricating the same. Background technique
  • Flexible energy storage device is composed of flexible electrode, electrolyte and flexible packaging material.
  • the development of flexible electrode is the key to its development.
  • the existing commercial lithium secondary battery mainly uses lithium cobaltate, lithium manganate and iron phosphate.
  • Lithium, graphite and other active substances, these active materials are rigid particles, so it is difficult to obtain good overall flexibility of the electrode formed by the overall coating of these active materials, and there is a peeling of the rigid active material particles during the bending process.
  • the problem of shedding which limits the application of these active materials in flexible energy storage devices. Summary of the invention
  • the first aspect of the present invention provides a flexible lithium secondary battery for solving the problem that the conventional lithium secondary battery does not have flexibility, and the rigid active material particles are peeled off and detached during the bending process. And the existing conventional lithium secondary battery thickness cannot meet the problem of flexible electronic products.
  • an embodiment of the present invention provides a flexible lithium secondary battery including a flexible battery case and a battery body located in the flexible battery case, and an electrolyte poured in the flexible battery case, the battery
  • the body includes one or more electrode units stacked in series, the plurality of electrode units being connected by a tab, the electrode unit comprising a positive electrode sheet, a flexible separator and a negative electrode sheet which are sequentially stacked, the positive electrode sheet including a positive electrode current collector And a plurality of positive electrode active material layers disposed on the positive electrode current collector, the negative electrode sheets including a negative electrode current collector and a plurality of negative electrode active material layers disposed on the negative electrode current collector, the positive electrode sheets And the negative electrode sheet has corresponding array gap gaps, wherein the corresponding array gap gap is used for bending the two-dimensional plane in the flexible lithium secondary battery, and the width of the array gap vacancy is 5 mm to 50 mm. .
  • the present invention arranges the positive electrode active material layer and the negative electrode active material layer in an array on the positive electrode or the negative electrode current collector, so that the positive electrode sheet and the negative electrode sheet have corresponding array gap gaps, so that the electrodes can pass through each Correspondingly arranged array gap vacancies are used to bend the plane in a two-dimensional direction, that is, the corresponding array gap gap is bent as a bending portion; since the array gap vacancies have no electrode active material, the existing conventional lithium two can be effectively solved.
  • the positive electrode active material layer and the negative electrode active material layer have a square shape. with.
  • the array of the positive electrode active material layers and the array of the negative electrode active material layers have the same width of the array gap vacancies in both the lateral and longitudinal directions.
  • the array of the positive electrode active material layer and the negative electrode active material layer has an array gap vacancy width of 20 mm in both the lateral direction and the longitudinal direction.
  • the battery body comprises 1 to 10 electrode units.
  • the flexible membrane is a porous insulating polymer membrane having a thickness of 10 to 50 ⁇ m.
  • the flexible separator is a polyolefin separator, a polyvinyl alcohol separator, a polyvinyl chloride separator, a polytetrafluoroethylene separator, a polystyrene separator, a polyvinylphenol separator, a polydecyl methacrylate separator, and a polyimide.
  • Diaphragm or polyethylene terephthalate separator is a polyolefin separator, a polyvinyl alcohol separator, a polyvinyl chloride separator, a polytetrafluoroethylene separator, a polystyrene separator, a polyvinylphenol separator, a polydecyl methacrylate separator, and a polyimide.
  • Diaphragm or polyethylene terephthalate separator Diaphragm or polyethylene terephthalate separator.
  • the cathode current collector and the anode current collector are metal foil current collectors, and the thickness is
  • the positive active material layer comprises a positive active material capable of intercalating/deintercalating lithium ions, a binder, and a conductive agent
  • the negative active material layer comprising a negative active material capable of intercalating/deintercalating lithium ions, and bonding Agent and conductive agent.
  • the flexible battery casing is made of an aluminum-plastic composite film.
  • the flexible lithium secondary battery provided by the first aspect of the present invention can bend the plane in a two-dimensional direction through the corresponding gap gaps arranged on the positive electrode sheet and the negative electrode sheet, and the overall flexibility of the battery is good, the battery energy density is high, and the battery thickness , small size and quality, suitable for flexible electronic products.
  • an embodiment of the present invention provides a method for preparing a flexible lithium secondary battery, comprising the following steps:
  • the positive electrode slurry is coated on the positive electrode current collector in an array structure, and baked to obtain a positive electrode.
  • a positive electrode sheet comprising a plurality of positive electrode active material layers disposed on the positive electrode current collector
  • the negative electrode slurry is coated on the negative electrode current collector in an array structure, and baked to obtain a negative electrode a negative electrode sheet comprising a plurality of anode active material layers disposed on the anode current collector; the anode sheets having array gap vacancies corresponding to the positive electrode sheets; and a width of the array gap vacancies 5mm ⁇ 50mm;
  • the positive electrode sheet, the flexible separator, and the negative electrode sheet are sequentially stacked, and the array gaps on the positive electrode sheet and the negative electrode sheet are aligned to obtain an electrode unit; and one or more of the electrode units are selected to be combined by stacking to obtain a battery.
  • the main body, the obtained battery body is placed in a flexible battery case, and an electrolyte is added, sealed, and evacuated to obtain a flexible lithium secondary battery.
  • the preparation method of the flexible lithium secondary battery provided by the second aspect of the embodiment of the invention is simple in operation, low in production cost, and easy to realize industrial production.
  • the positive electrode active material layer and the negative electrode active material layer are arrayed on the positive electrode or the negative electrode current collector, so that the positive electrode plate and the negative electrode plate have corresponding arrays.
  • the gap is vacant, so that the electrode can be bent in the plane two-dimensional direction through the corresponding array gap vacancies, that is, the corresponding array gap vacancy is bent as a bending portion; since the array gap vacancies have no electrode active material, Therefore, the problem that the active active material particles of the conventional lithium secondary battery electrode active material coating structure are peeled off and peeled off when the electrode is bent can be effectively solved;
  • the plurality of electrode units are arranged by stacking, which can be controlled not only by the control
  • the number of stacks of flexible electrode units controls the overall flexibility of the flexible lithium secondary battery, and greatly reduces the thickness and volume of the flexible lithium secondary battery itself, so that it can better match the use of the flexible electronic product, the embodiment of the present invention
  • the flexible lithium secondary battery provided by the first aspect has good
  • the utility model has the advantages that the energy density of the pool is high, the thickness, the volume and the mass of the battery are small, and the battery is suitable for the flexible electronic product.
  • the preparation method of the flexible lithium secondary battery provided by the second aspect of the invention is simple in operation, low in production cost, and easy to realize industrial production. .
  • the advantages of the embodiments of the present invention will be set forth in part in the description which follows.
  • FIG. 1 is an overall physical diagram of a flexible lithium secondary battery provided by the present invention.
  • FIG. 2 is a schematic view showing the flexible display of a flexible lithium secondary battery provided by the present invention.
  • FIG. 3 is a schematic structural view of a positive electrode of a flexible lithium secondary battery of the embodiment.
  • FIG. 4 is a cross-sectional view showing an electrode unit of a flexible lithium secondary battery of the present embodiment.
  • a first aspect of the present invention provides a flexible lithium secondary battery for solving the problem that the conventional lithium secondary battery does not have flexibility, and the rigid active material particles are peeled off and peeled off during the bending process, and the existing The thickness of a conventional lithium secondary battery cannot satisfy the problem of a flexible electronic product.
  • an embodiment of the present invention provides a flexible lithium secondary battery including a flexible battery case and a battery body located in the flexible battery case, and an electrolyte poured in the flexible battery case, the battery
  • the body includes one or more electrode units stacked in series, the plurality of electrode units being connected by a tab, the electrode unit comprising a positive electrode sheet, a flexible separator and a negative electrode sheet which are sequentially stacked, the positive electrode sheet including a positive electrode current collector And a plurality of positive electrode active material layers disposed on the positive electrode current collector, the negative electrode sheets including a negative electrode current collector and a plurality of negative electrode active material layers disposed on the negative electrode current collector, the positive electrode sheets And the negative electrode sheet has corresponding array gap gaps, wherein the corresponding array gap gap is used for bending the two-dimensional plane in the flexible lithium secondary battery, and the width of the array gap vacancy is 5 mm to 50 mm.
  • the present invention arranges the positive electrode active material layer and the negative electrode active material layer in an array on the positive electrode or the negative electrode current collector, so that the positive electrode sheet and the negative electrode sheet have corresponding array gap gaps, so that the electrodes can pass through each Correspondingly arranged array gap vacancies are used to bend the plane in a two-dimensional direction, that is, the corresponding array gap gap is bent as a bending portion; since the array gap vacancies have no electrode active material, the existing conventional lithium two can be effectively solved.
  • the positive electrode active material layer and the negative electrode active material layer have a square shape.
  • the positive electrode active material layer and the negative electrode active material layer may also be in the form of a circle, a triangle or the like. The same way. That is, the parameters such as the shape, the number of the positive electrode active material layer and the negative electrode active material layer, and the array gap vacancy width are the same.
  • the anode active material layer and the positive electrode active material layer may be arranged in an array manner, that is, the positive electrode active material layer and the negative electrode active material layer are disposed in different shapes, different numbers, and different array gap vacancy widths. Wait.
  • the array of the positive electrode active material layer and the array of the negative electrode active material layer have the same width of the array gap vacancies in both the lateral direction and the longitudinal direction.
  • the array gaps of the array of positive electrode active material layers and the array of negative electrode active material layers may be set to different widths in both the lateral and longitudinal directions.
  • the array gap of the positive electrode active material layer and the negative electrode active material layer has a width of 20 mm in both the lateral direction and the longitudinal direction.
  • the battery body comprises 1 to 10 electrode units. Since multiple electrode units are stacked By combining the modes, the overall flexibility of the flexible lithium secondary battery can be controlled by controlling the number of stacked layers of the flexible electrode unit, and the number of stacked electrode units can be reasonably controlled to enable the flexible lithium secondary battery to have good overall bending performance and the battery after bending High electrical performance.
  • the flexible membrane is a porous insulating polymer membrane having a thickness of 10 ⁇ m to 50 ⁇ m.
  • the flexible separator is a polyolefin separator, a polyvinyl alcohol separator, a polyvinyl chloride separator, a polytetrafluoroethylene separator, a polystyrene separator, a polyvinylphenol separator, a polydecyl methacrylate separator, and a polyimide. Diaphragm or polyethylene terephthalate separator.
  • the flexible separator has a thickness of 25 ⁇ m.
  • the cathode current collector and the anode current collector are metal foil current collectors, and the thickness is
  • the metal foil current collector includes a copper foil, an aluminum foil, or the like.
  • the positive electrode current collector is preferably an aluminum foil, and the thickness is preferably 12 ⁇ m.
  • the negative electrode current collector is preferably a copper foil, and the thickness is preferably 9 ⁇ m.
  • the positive active material layer comprises a positive active material capable of intercalating/deintercalating lithium ions, a binder, and a conductive agent
  • the negative active material layer comprising a negative active material capable of intercalating/deintercalating lithium ions, and bonding Agent and conductive agent.
  • the positive electrode active material capable of intercalating/deintercalating lithium ions may be a transition metal oxide lithium salt, a lithium phosphate salt, a lithium vanadate salt or the like, and the negative electrode active material capable of intercalating/deintercalating lithium ions may be graphite or titanium.
  • Lithium acid salt, silicon and silicon-based composite materials, tin and tin-based composite materials, metal oxides, and the like can use a conventional lithium secondary battery electrode active material to make the lithium secondary battery flexible while maintaining high energy density.
  • the binder may be any one which can bond the active material and the conductive agent particles together, and a known binder substance such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) may be used. Sodium carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), and the like.
  • the conductive agent can improve activity as long as it A material having a conductive property on the surface of the material may be used, and a known conductive agent such as conductive graphite, carbon black, carbon fiber, carbon nanotube, graphene, metal fine powder or the like may be used.
  • the selection of the electrolytic solution is not particularly limited, and any known electrolytic solution may be used.
  • the material of the flexible battery case is an aluminum-plastic composite film.
  • the material of the flexible battery casing may also be selected from other flexible outer casing materials.
  • the flexible lithium secondary battery provided by the first aspect of the present invention can bend the plane in a two-dimensional direction through the corresponding gap gaps arranged on the positive electrode sheet and the negative electrode sheet, and the overall flexibility of the battery is good, the battery energy density is high, and the battery thickness , small size and quality, suitable for flexible electronic products.
  • an embodiment of the present invention provides a method for preparing a flexible lithium secondary battery, comprising the following steps:
  • the positive electrode slurry is coated on the positive electrode current collector in an array structure, and after baking and tableting, a positive electrode sheet is obtained, and the positive electrode sheet includes a plurality of positive electrode active material layers disposed on the positive electrode current collector in an array;
  • the anode slurry is coated on the anode current collector in an array structure, and after baking and tableting, a negative electrode sheet is obtained, and the anode sheet includes a plurality of anode active material layers disposed on the anode current collector in an array manner;
  • the negative electrode sheet has an array gap vacancy corresponding to the positive electrode sheet; the width of the array gap vacancy is 5 mm to 50 mm;
  • the positive electrode sheet, the flexible separator, and the negative electrode sheet are sequentially stacked, and the array gaps on the positive electrode sheet and the negative electrode sheet are aligned to obtain an electrode unit; and one or more of the electrode units are selected to be combined by stacking to obtain a battery.
  • the main body, the obtained battery body is placed in a flexible battery case, and an electrolyte is added, sealed, and evacuated to obtain a flexible lithium secondary battery.
  • the composition of the positive electrode slurry and the negative electrode slurry is a common existing composition.
  • the positive electrode slurry is prepared in the following manner: The positive electrode active material, the binder and the conductive agent are dispersed in an organic solvent in a weight ratio of 80 to 99: 1-10: 0-10, and stirred to form a positive electrode slurry.
  • the anode slurry is prepared as follows: The material, the binder and the conductive agent are dispersed in an organic solvent in a weight ratio of 80 to 99: 1 to 10: 0 to 10, and stirred to form a negative electrode slurry.
  • the coating operation is carried out by a coating apparatus, and a known coating method such as spray coating, extrusion coating, transfer coating or the like can be used.
  • the positive electrode active material layer and the negative electrode active material layer have a square shape. with.
  • the array of the positive electrode active material layers and the array of the negative electrode active material layers have the same width of the array gap vacancies in both the lateral and longitudinal directions.
  • the array of the positive electrode active material layer and the negative electrode active material layer has an array gap vacancy width of 20 mm in both the lateral direction and the longitudinal direction.
  • 1 to 10 electrode units are selected to be combined by stacking.
  • the flexible membrane is a porous insulating polymer membrane having a thickness of 10 to 50 ⁇ m.
  • the flexible separator is a polyolefin separator, a polyvinyl alcohol separator, a polyvinyl chloride separator, a polytetrafluoroethylene separator, a polystyrene separator, a polyvinylphenol separator, a polydecyl methacrylate separator, and a polyimide.
  • Diaphragm or polyethylene terephthalate separator is a polyolefin separator, a polyvinyl alcohol separator, a polyvinyl chloride separator, a polytetrafluoroethylene separator, a polystyrene separator, a polyvinylphenol separator, a polydecyl methacrylate separator, and a polyimide.
  • Diaphragm or polyethylene terephthalate separator Diaphragm or polyethylene terephthalate separator.
  • the flexible membrane has a thickness of 25 ⁇ m.
  • the cathode current collector and the anode current collector are metal foil current collectors having a thickness of 5 to 30 ⁇ m.
  • the metal foil current collector includes a copper foil, an aluminum foil, or the like.
  • the positive electrode current collector is preferably an aluminum foil, and the thickness is preferably 12 ⁇ m.
  • the negative electrode current collector is preferably a copper foil, and the thickness is preferably 9 ⁇ m.
  • the positive active material layer comprises a positive active material capable of intercalating/deintercalating lithium ions, a binder, and a conductive agent
  • the negative active material layer comprising a negative active material capable of intercalating/deintercalating lithium ions, Binder and conductive agent.
  • the positive electrode active material capable of intercalating/deintercalating lithium ions may be a transition metal oxide lithium salt, a lithium phosphate salt, a lithium vanadate salt or the like, and the negative electrode active material capable of intercalating/deintercalating lithium ions may be graphite or titanium.
  • Lithium acid salt, silicon and silicon-based composite materials, tin and tin-based composite materials, metal oxides, and the like can use a conventional lithium secondary battery electrode active material to make the lithium secondary battery flexible while maintaining high energy density.
  • the binder may be any one which can bond the active material and the conductive agent particles together, and a known binder substance such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) may be used. Sodium carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), and the like.
  • the conductive agent may be any one which can improve the surface conductivity of the active material, and a known conductive agent such as conductive graphite, carbon black, carbon fiber, carbon nanotube, graphene, metal fine powder or the like can be used.
  • the selection of the electrolytic solution is not particularly limited, and any known electrolytic solution may be used.
  • the flexible battery casing is made of an aluminum-plastic composite film.
  • the preparation method of the flexible lithium secondary battery provided by the second aspect of the embodiment of the invention is simple in operation, low in production cost, and easy to realize industrial production.
  • the following embodiments of the present invention preferably have a capacity design of a 100 mAh lithium secondary battery as a flexible battery design prototype, and the selected lithium secondary battery is a soft-packed polymer battery known in the art, as shown in FIG. 2 is a schematic view showing the flexible display of a flexible lithium secondary battery according to an embodiment of the present invention.
  • a preparation method of a flexible lithium secondary battery comprising the following steps:
  • FIG. 3 is a schematic structural view of a positive electrode of a flexible lithium secondary battery of the present embodiment.
  • 1 is an aluminum foil current collector
  • 2 is a positive electrode active material layer
  • 3 is an array gap vacancy.
  • the positive electrode active material layer 2 has a square shape; the array of the positive electrode active material layer 2 has an array gap vacancy 3 width of 20 mm in the z-axis direction (lateral direction) and the B-axis direction (longitudinal direction).
  • the structure of the negative electrode of the flexible lithium secondary battery in this embodiment is identical to that of the above positive electrode.
  • FIG. 4 is a cross-sectional view showing an electrode unit of a flexible lithium secondary battery of the present embodiment.
  • 10 is a positive electrode sheet
  • 30 is a flexible separator
  • 20 is a negative electrode sheet.
  • the flexible membrane 30 is a PP/PE/PP polyolefin separator. Membrane.
  • a preparation method of a flexible lithium secondary battery comprising the following steps:
  • a preparation method of a flexible lithium secondary battery comprising the following steps:
  • This embodiment differs from the third embodiment only in that a polyvinyl chloride PVC separator having a thickness of 25 ⁇ m is used as the flexible separator.
  • This embodiment differs from the third embodiment only in that a polyvinyl chloride PVC separator having a thickness of 50 ⁇ m is used as the flexible separator.
  • the effect embodiment is to strongly support the beneficial effects of the embodiment of the present invention, and provides an effect implementation, for example, Used to evaluate the performance of the products provided by the embodiments of the present invention.
  • the flexible lithium secondary batteries obtained in Example 1 and Example 2 were subjected to electrical property tests before and after flexible bending.
  • Record the discharge capacity C2 after the battery is bent, and calculate the capacity retention rate Rl (R1 C2/C1).
  • Table 1 is the electrical property test result before and after bending of the lithium cobaltate/graphite flexible lithium secondary battery of Example 1
  • Table 2 is the lithium iron phosphate/graphite of Example 2.
  • test results of Table 1 show that: in the first embodiment of the present invention, a flexible lithium secondary battery using an array electrode of lithium cobaltate as a positive electrode active material has excellent discharge capacity and battery cycle life after the battery is integrally bent.
  • test results of Table 2 show that: in the second embodiment of the present invention, a flexible lithium secondary battery using an array electrode of lithium iron phosphate as a positive electrode active material and a flexible battery lithium as a positive electrode active material in the first embodiment After the bending, the discharge capacity of the battery is slightly reduced. However, due to the superior cycle performance of the lithium iron phosphate material, the cycle performance after the battery is bent is superior to the result in the first embodiment.
  • Table 3 shows the use of a thickness of 25 ⁇ PP/PE/PP polyolefin separator, a thickness of 50 ⁇ PP/PE/PP polyolefin separator, a thickness of 25 ⁇ polyvinyl chloride PVC separator, and a thickness of 50 ⁇ polyvinyl chloride PVC diaphragm.
  • the results in Table 3 show that: the type and thickness of flexible separator have great influence on the bending performance of flexible lithium secondary battery.
  • the performance of PP/PE/PP battery with polyolefin separator is better than that of PVC, and the thickness is 50 ⁇ .
  • the performance of the flexible diaphragm battery is better than the thickness of 25 ⁇ m; however, it is considered that as the thickness of the flexible membrane increases, the overall thickness of the battery increases and the volume energy density decreases, so the thickness of the flexible membrane is preferably 25 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种柔性锂二次电池,包括柔性电池外壳和位于柔性电池外壳内的电池主体,以及电解液,电池主体包括一个或多个顺序叠放的电极单元,所述电极单元包括顺序叠放的正极片、柔性隔膜和负极片,正极片包括正极集流体和多个阵列式设置在正极集流体上的正极活性材料层,负极片包括负极集流体和多个阵列式设置在负极集流体上的负极活性材料层,正极片和负极片具有对应设置的阵列间隙空位,所述对应设置的阵列间隙空位用于柔性锂二次电池进行平面二维方向的弯折,阵列间隙空位的宽度为5mm~50mm。该柔性锂二次电池整体柔韧性良好,能量密度高,电池厚度、体积和质量小,适用于柔性电子产品。本发明还提供了该柔性锂二次电池的制备方法。

Description

一种柔性锂二次电池及其制备方法 本申请要求于 2013 年 9 月 25 日提交中国专利局的申请号为 201310440218.4, 其发明名称为 "一种柔性锂二次电池及其制备方法" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及柔性储能器件领域, 特别是涉及一种柔性锂二次电池及其制备 方法。 背景技术
为了满足人们对电子产品小型化日益增长的需求,柔性的可穿戴的便携电子 产品成为了未来的发展趋势, 比如电子纸、 可卷绕的显示屏、 电子标签和柔性 传感器等。 但当前作为供电装置传统的储能器件一般都使用刚性的封装, 很难 进行弯折, 已不能满足未来在柔性电子产品中的应用。 因此, 亟需能够与柔性 电子产品配合的柔性储能器件以提供所需能量存储装置。
柔性储能器件是由柔性电极、 电解液和柔性封装材料等组成,其中柔性电极 的开发是其研制的关键; 现有的商品化锂二次电池主要使用钴酸锂、 锰酸锂、 磷酸铁锂、 石墨等活性物质, 这些活性物质均为刚性颗粒, 因此釆用这些活性 物质整体涂覆形成的电极都很难获得良好的整体柔韧性, 且在弯折过程中存在 刚性活性物质颗粒剥离、 脱落的问题, 从而限制了这些活性物质在柔性储能器 件中的应用。 发明内容
有鉴于此,本发明实施例第一方面提供了一种柔性锂二次电池,用以解决现 有传统锂二次电池不具有柔性, 在弯折过程中存在刚性活性物质颗粒剥离、 脱 落的问题, 以及现有传统锂二次电池厚度不能满足柔性电子产品的问题。
第一方面, 本发明实施例提供了一种柔性锂二次电池, 包括柔性电池外壳 和位于所述柔性电池外壳内的电池主体, 以及灌注于所述柔性电池外壳内的电 解液, 所述电池主体包括一个或多个顺序叠放的电极单元, 所述多个电极单元 通过极耳连接, 所述电极单元包括顺序叠放的正极片、 柔性隔膜和负极片, 所 述正极片包括正极集流体和多个阵列式设置在所述正极集流体上的正极活性材 料层, 所述负极片包括负极集流体和多个阵列式设置在所述负极集流体上的负 极活性材料层, 所述正极片和所述负极片具有对应设置的阵列间隙空位, 所述 对应设置的阵列间隙空位用于所述柔性锂二次电池进行平面二维方向的弯折, 所述阵列间隙空位的宽度为 5mm~50mm。
与现有技术相比, 本发明将正极活性材料层和负极活性材料层阵列式设置 在正极或负极集流体上, 使得正极片与负极片上具有对应设置的阵列间隙空位, 从而使电极可以通过各对应设置的阵列间隙空位进行平面二维方向的弯折, 即 以对应设置的阵列间隙空位为弯折部进行弯折; 由于阵列间隙空位并无电极活 性材料, 从而可有效解决现有传统锂二次电池电极活性物质整体涂覆结构在电 极弯折时引起的刚性活性物质颗粒剥离、 脱落的问题; 此外, 本发明柔性锂二 次电池的多个电极单元通过堆叠方式设置, 不仅可以通过控制柔性电极单元的 堆叠数来控制柔性锂二次电池的整体柔性, 而且极大地缩小了柔性锂二次电池 本身的厚度, 使其能更好地配合柔性电子产品的使用。
优选地, 所述正极活性材料层和所述负极活性材料层呈方形。 同。
优选地, 所述正极活性材料层的阵列和所述负极活性材料层的阵列在横向 和纵向两个方向上的阵列间隙空位的宽度相等。
优选地, 所述正极活性材料层和所述负极活性材料层的阵列在横向和纵向 两个方向上的阵列间隙空位的宽度均为 20mm。
优选地, 所述电池主体包括 1~10个电极单元。
优选地, 所述柔性隔膜为多孔绝缘聚合物隔膜, 厚度为 10~50μπι。
优选地, 所述柔性隔膜为聚烯烃隔膜、 聚乙烯醇隔膜、 聚氯乙烯隔膜、 聚 四氟乙烯隔膜、 聚苯乙烯隔膜、 聚乙烯苯酚隔膜、 聚曱基丙烯酸曱酯隔膜、 聚 酰亚胺隔膜或聚对苯二曱酸乙二醇酯隔膜。
优选地, 所述正极集流体和所述负极集流体为金属箔集流体, 厚度为
5~50μπι。
优选地, 所述正极活性材料层包含可嵌入 /脱嵌锂离子的正极活性材料、 粘 结剂和导电剂, 所述负极活性材料层包含可嵌入 /脱嵌锂离子的负极活性材料、 粘结剂和导电剂。
优选地, 所述柔性电池外壳的材质为铝塑复合膜。
本发明实施例第一方面提供的柔性锂二次电池,可通过正极片和负极片上对 应设置的阵列间隙空位进行平面二维方向的弯折, 电池整体柔韧性良好, 电池 能量密度高, 电池厚度、 体积和质量小, 适用于柔性电子产品。
第二方面, 本发明实施例提供了一种柔性锂二次电池的制备方法, 包括以 下步骤:
将正极浆料按阵列式结构在正极集流体上涂覆, 经烘烤、 压片后得到正极 片, 所述正极片包括多个阵列式设置在所述正极集流体上的正极活性材料层; 将负极浆料按阵列式结构在负极集流体上涂覆, 经烘烤、 压片后得到负极 片, 所述负极片包括多个阵列式设置在所述负极集流体上的负极活性材料层; 所述负极片具有与所述正极片对应设置的阵列间隙空位; 所述阵列间隙空位的 笕度为 5mm~50mm;
将正极片、 柔性隔膜、 负极片顺序叠放, 并对齐所述正极片和所述负极片 上的阵列间隙空位, 即得到电极单元; 选取一个或多个所述电极单元通过堆叠 方式组合, 得到电池主体, 将所得电池主体置于柔性电池外壳中, 并添加电解 液, 密封, 抽真空, 得到柔性锂二次电池。
本发明实施例第二方面提供的一种柔性锂二次电池的制备方法, 操作简单, 制作成本低, 易实现工业化生产。
综上, 本发明实施例第一方面提供的柔性锂二次电池, 将正极活性材料层 和负极活性材料层阵列式设置在正极或负极集流体上, 使得正极片与负极片上 具有对应设置的阵列间隙空位, 从而使电极可以通过各对应设置的阵列间隙空 位进行平面二维方向的弯折, 即以对应设置的阵列间隙空位为弯折部进行弯折; 由于阵列间隙空位并无电极活性材料, 从而可有效解决现有传统锂二次电池电 极活性物质整体涂覆结构在电极弯折时引起的刚性活性物质颗粒剥离、 脱落的 问题; 此外, 多个电极单元通过堆叠方式设置, 不仅可以通过控制柔性电极单 元的堆叠数来控制柔性锂二次电池的整体柔性, 而且极大地缩小了柔性锂二次 电池本身的厚度和体积, 使其能更好地配合柔性电子产品的使用, 本发明实施 例第一方面提供的柔性锂二次电池整体柔韧性良好, 电池能量密度高, 电池厚 度、 体积和质量小, 适用于柔性电子产品; 本发明实施例第二方面提供的一种 柔性锂二次电池的制备方法, 操作简单, 制作成本低, 易实现工业化生产。 本发明实施例的优点将会在下面的说明书中部分阐明,一部分根据说明书是 显而易见的, 或者可以通过本发明实施例的实施而获知。
附图说明
图 1为本发明提供的柔性锂二次电池的整体实物图;
图 2为本发明提供的柔性锂二次电池的柔性展示示意图;
图 3为本实施例柔性锂二次电池的正极的结构示意图;
图 4为本实施例柔性锂二次电池的电极单元的剖面图。
具体实施方式
以下所述是本发明实施例的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明实施例原理的前提下, 还可以做出若干改 进和润饰, 这些改进和润饰也视为本发明实施例的保护范围。
本发明实施例第一方面提供了一种柔性锂二次电池,用以解决现有传统锂二 次电池不具有柔性, 在弯折过程中存在刚性活性物质颗粒剥离、 脱落的问题, 以及现有传统锂二次电池厚度不能满足柔性电子产品的问题。
第一方面, 本发明实施例提供了一种柔性锂二次电池, 包括柔性电池外壳 和位于所述柔性电池外壳内的电池主体, 以及灌注于所述柔性电池外壳内的电 解液, 所述电池主体包括一个或多个顺序叠放的电极单元, 所述多个电极单元 通过极耳连接, 所述电极单元包括顺序叠放的正极片、 柔性隔膜和负极片, 所 述正极片包括正极集流体和多个阵列式设置在所述正极集流体上的正极活性材 料层, 所述负极片包括负极集流体和多个阵列式设置在所述负极集流体上的负 极活性材料层, 所述正极片和所述负极片具有对应设置的阵列间隙空位, 所述 对应设置的阵列间隙空位用于所述柔性锂二次电池进行平面二维方向的弯折, 所述阵列间隙空位的宽度为 5mm~50mm。 与现有技术相比, 本发明将正极活性材料层和负极活性材料层阵列式设置 在正极或负极集流体上, 使得正极片与负极片上具有对应设置的阵列间隙空位, 从而使电极可以通过各对应设置的阵列间隙空位进行平面二维方向的弯折, 即 以对应设置的阵列间隙空位为弯折部进行弯折; 由于阵列间隙空位并无电极活 性材料, 从而可有效解决现有传统锂二次电池电极活性物质整体涂覆结构在电 极弯折时引起的刚性活性物质颗粒剥离、 脱落的问题; 此外, 本发明柔性锂二 次电池的多个电极单元通过堆叠方式设置, 不仅可以通过控制柔性电极单元的 堆叠数来控制柔性锂二次电池的整体柔性, 而且极大地缩小了柔性锂二次电池 本身的厚度, 使其能更好地配合柔性电子产品的使用。
本实施方式中, 所述正极活性材料层和所述负极活性材料层呈方形。 在其 他实施方式中, 正极活性材料层和负极活性材料层也可呈圓形、 三角形等。 方式相同。 即正极活性材料层和负极活性材料层的形状、 个数、 以及阵列间隙 空位宽度等参数均相同。 在其他实施方式中, 负极活性材料层与正极活性材料 层的阵列式设置方式也可以不同, 即正极活性材料层和负极活性材料层设置成 不同的形状、 不同个数、 不同的阵列间隙空位宽度等。
本实施方式中, 所述正极活性材料层的阵列和所述负极活性材料层的阵列 在横向和纵向两个方向上的阵列间隙空位的宽度相等。 在其他实施方式中, 正 极活性材料层的阵列和负极活性材料层的阵列在横向和纵向两个方向上的阵列 间隙空位也可设置成不同的宽度。
本实施方式中, 所述正极活性材料层和所述负极活性材料层的阵列在横向 和纵向两个方向上的阵列间隙空位的宽度均为 20mm。
优选地, 所述电池主体包括 1~10个电极单元。 由于多个电极单元通过堆叠 方式组合, 因此可以通过控制柔性电极单元的堆叠数来控制柔性锂二次电池的 整体柔性, 合理控制堆叠电极单元数可使柔性锂二次电池具备良好的整体弯折 性能以及电池在弯折后具备高的电性能。
优选地, 所述柔性隔膜为多孔绝缘聚合物隔膜, 厚度为 10μπι~50μπι。 优选地, 所述柔性隔膜为聚烯烃隔膜、 聚乙烯醇隔膜、 聚氯乙烯隔膜、 聚 四氟乙烯隔膜、 聚苯乙烯隔膜、 聚乙烯苯酚隔膜、 聚曱基丙烯酸曱酯隔膜、 聚 酰亚胺隔膜或聚对苯二曱酸乙二醇酯隔膜。
本实施方式中, 所述柔性隔膜的厚度为 25μπι。
优选地, 所述正极集流体和所述负极集流体为金属箔集流体, 厚度为
5μπι~30μπι。
所述金属箔集流体包括铜箔、 铝箔等。 本实施方式中, 所述正极集流体优 选为铝箔, 厚度优选 12μπι。 所述负极集流体优选为铜箔, 厚度优选 9μπι。
优选地, 所述正极活性材料层包含可嵌入 /脱嵌锂离子的正极活性材料、 粘 结剂和导电剂, 所述负极活性材料层包含可嵌入 /脱嵌锂离子的负极活性材料、 粘结剂和导电剂。
所述可嵌入 /脱嵌锂离子的正极活性材料可以为过渡金属氧化物锂盐、 磷酸 锂盐、 钒酸锂盐等, 所述可嵌入 /脱嵌锂离子的负极活性材料可以为石墨、 钛酸 锂盐、 硅及硅基复合材料、 锡及锡基复合材料、 金属氧化物等。 相比现有柔性 的太阳能电池、 有机物电池, 本发明柔性锂二次电池釆用传统锂二次电池电极 活性材料, 可以使锂二次电池具备柔性的同时仍保持高能量密度。
所述粘结剂只要是可以将活性材料和导电剂颗粒粘结在一起的物质即可, 可以使用公知的粘结剂物质, 如聚偏氟乙烯( PVDF )、 聚四氟乙烯( PTFE )、 羧 曱基纤维素钠(CMC )、 丁苯橡胶 ( SBR )等。 所述导电剂只要是可以改善活性 材料表面导电性能的物质即可, 可以使用公知的导电剂, 如导电石墨类、 碳黑 类、 碳纤维、 碳纳米管、 石墨烯、 金属微粉等。 所述电解液的选择不作特殊限 定, 现有公知的电解液均可。
本实施方式中, 所述柔性电池外壳的材质为铝塑复合膜。 在其他实施方式 中, 柔性电池外壳的材质也可选择其他的柔性外壳材料。
本发明实施例第一方面提供的柔性锂二次电池,可通过正极片和负极片上对 应设置的阵列间隙空位进行平面二维方向的弯折, 电池整体柔韧性良好, 电池 能量密度高, 电池厚度、 体积和质量小, 适用于柔性电子产品。
第二方面, 本发明实施例提供了一种柔性锂二次电池的制备方法, 包括以 下步骤:
将正极浆料按阵列式结构在正极集流体上涂覆, 经烘烤、 压片后得到正极 片, 所述正极片包括多个阵列式设置在所述正极集流体上的正极活性材料层; 将负极浆料按阵列式结构在负极集流体上涂覆, 经烘烤、 压片后得到负极 片, 所述负极片包括多个阵列式设置在所述负极集流体上的负极活性材料层; 所述负极片具有与所述正极片对应设置的阵列间隙空位; 所述阵列间隙空位的 笕度为 5mm~50mm;
将正极片、 柔性隔膜、 负极片顺序叠放, 并对齐所述正极片和所述负极片 上的阵列间隙空位, 即得到电极单元; 选取一个或多个所述电极单元通过堆叠 方式组合, 得到电池主体, 将所得电池主体置于柔性电池外壳中, 并添加电解 液, 密封, 抽真空, 得到柔性锂二次电池。
正极浆料和负极浆料的组成为普通现有组成。在本实施方式中,正极浆料按 下述方式制备: 将正极活性材料、 粘结剂和导电剂按重量比 80~99: 1-10: 0-10 分散于有机溶剂中, 搅拌形成正极浆料; 负极浆料按下述方式制备: 将负极活 性材料、 粘结剂和导电剂按重量比 80~99: 1~10: 0~10分散于有机溶剂中, 搅拌 形成负极浆料。
所述涂覆操作是通过涂覆设备完成, 可以使用公知的涂覆方法, 如喷涂、挤 压涂布、 转移涂布等。
优选地, 所述正极活性材料层和所述负极活性材料层呈方形。 同。
优选地, 所述正极活性材料层的阵列和所述负极活性材料层的阵列在横向 和纵向两个方向上的阵列间隙空位的宽度相等。
优选地, 所述正极活性材料层和所述负极活性材料层的阵列在横向和纵向 两个方向上的阵列间隙空位的宽度均为 20mm。
优选地, 选取 1~10个电极单元通过堆叠方式组合。
优选地, 所述柔性隔膜为多孔绝缘聚合物隔膜, 厚度为 10~50μπι。
优选地, 所述柔性隔膜为聚烯烃隔膜、 聚乙烯醇隔膜、 聚氯乙烯隔膜、 聚 四氟乙烯隔膜、 聚苯乙烯隔膜、 聚乙烯苯酚隔膜、 聚曱基丙烯酸曱酯隔膜、 聚 酰亚胺隔膜或聚对苯二曱酸乙二醇酯隔膜。
更优选地, 所述柔性隔膜的厚度为 25μπι。
优选地, 所述正极集流体和所述负极集流体为金属箔集流体, 厚度为 5~30μπι。
所述金属箔集流体包括铜箔、 铝箔等。 所述正极集流体优选为铝箔, 厚度 优选 12μπι。 所述负极集流体优选为铜箔, 厚度优选 9μπι。
优选地, 所述正极活性材料层包含可嵌入 /脱嵌锂离子的正极活性材料、 粘 结剂和导电剂, 所述负极活性材料层包含可嵌入 /脱嵌锂离子的负极活性材料、 粘结剂和导电剂。
所述可嵌入 /脱嵌锂离子的正极活性材料可以为过渡金属氧化物锂盐、 磷酸 锂盐、 钒酸锂盐等, 所述可嵌入 /脱嵌锂离子的负极活性材料可以为石墨、 钛酸 锂盐、 硅及硅基复合材料、 锡及锡基复合材料、 金属氧化物等。 相比现有柔性 的太阳能电池、 有机物电池, 本发明柔性锂二次电池釆用传统锂二次电池电极 活性材料, 可以使锂二次电池具备柔性的同时仍保持高能量密度。
所述粘结剂只要是可以将活性材料和导电剂颗粒粘结在一起的物质即可, 可以使用公知的粘结剂物质, 如聚偏氟乙烯(PVDF )、 聚四氟乙烯(PTFE )、 羧 曱基纤维素钠(CMC )、 丁苯橡胶 ( SBR )等。 所述导电剂只要是可以改善活性 材料表面导电性能的物质即可, 可以使用公知的导电剂, 如导电石墨类、 碳黑 类、 碳纤维、 碳纳米管、 石墨烯、 金属微粉等。 所述电解液的选择不作特殊限 定, 现有公知的电解液均可。
优选地, 所述柔性电池外壳的材质为铝塑复合膜。
本发明实施例第二方面提供的一种柔性锂二次电池的制备方法, 操作简单, 制作成本低, 易实现工业化生产。
下面分多个实施例对本发明实施例进行进一步的说明。 本发明实施例不限 定于以下的具体实施例。 在不变主权利的范围内, 可以适当的进行变更实施。
本发明下述实施例优选容量设计为 lOOOmAh锂二次电池作为柔性电池设计 原型, 所选锂二次电池为行业公知的软包聚合物电池, 如图 1所示。 图 2为本 发明实施例提供的柔性锂二次电池的柔性展示示意图。
实施例一
一种柔性锂二次电池的制备方法, 包括以下步骤:
( 1 )将钴酸锂、 粘结剂 PVDF和导电炭黑按重量比 96:2:2混合, 加入一定 量的有机溶剂氮曱基吡咯烷酮, 釆用行星高速分散机进行分散得到正极浆料, 将所得正极浆料按阵列式结构喷涂在铝箔集流体上, 形成多个阵列式设置在铝 箔集流体上的正极活性材料层, 再经烘烤、 压片后得到正极片;
( 2 )将人造石墨、 粘结剂 PVDF、 导电炭黑按重量比 95:3:2混合, 加入一 定量的有机溶剂氮曱基吡咯烷酮, 釆用行星高速分散机进行分散得到负极浆料, 将所得负极浆料按阵列式结构喷涂在铜箔集流体上, 形成多个阵列式设置在铜 箔集流体上的负极活性材料层, 再经烘烤、 压片后得到负极片; 材料层与正极活性材料层呈方形; 正极活性材料层和负极活性材料层的阵列间 隙空位的宽度为 20mm;
( 3 )将上述所得正极片、 厚度为 25μπι的 ΡΡ/ΡΕ/ΡΡ聚烯烃隔膜、 负极片顺 序叠放, 并对齐正极活性材料层和负极活性材料层以及正极活性材料层和负极 活性材料层的阵列间隙空位, 即得到电极单元;
( 4 )选取 5上述电极单元通过堆叠方式组合, 得到电池主体, 将所得电池 主体置于铝塑复合膜材质的柔性电池外壳中, 并添加电解液, 密封, 抽真空, 得到柔性锂二次电池。
图 3为本实施例柔性锂二次电池的正极的结构示意图。 其中, 1为铝箔集流 体, 2为正极活性材料层, 3为阵列间隙空位。 本实施例中, 正极活性材料层 2 呈方形; 正极活性材料层 2的阵列在 Α轴方向 (横向)与 B轴方向 (纵向)上 的阵列间隙空位 3的宽度均为 20mm。本实施例中柔性锂二次电池的负极的结构 与上述正极的结构完全相同。
图 4为本实施例柔性锂二次电池的电极单元的剖面图。 其中, 10为正极片、 30为柔性隔膜、 20为负极片。 本实施例中, 柔性隔膜 30为 PP/PE/PP聚烯烃隔 膜。
实施例二
一种柔性锂二次电池的制备方法, 包括以下步骤:
( 1 )将磷酸铁锂、 粘结剂 PVDF和导电炭黑按重量比 96:2:2混合, 加入一 定量的有机溶剂氮曱基吡咯烷酮, 釆用行星高速分散机进行分散得到正极浆料, 将所得正极浆料按阵列式结构喷涂在铝箔集流体上, 形成多个阵列式设置在铝 箔集流体上的正极活性材料层, 再经烘烤、 压片后得到正极片;
( 2 )将人造石墨、 粘结剂 PVDF、 导电炭黑按重量比 95:3:2混合, 加入一 定量的有机溶剂氮曱基吡咯烷酮, 釆用行星高速分散机进行分散得到负极浆料, 将所得负极浆料按阵列式结构喷涂在铜箔集流体上, 形成多个阵列式设置在铜 箔集流体上的负极活性材料层, 再经烘烤、 压片后得到负极片; 层与正极活性材料层呈方形; 正极活性材料层和负极活性材料层的阵列间隙空 位的宽度均为 20mm;
( 3 )将上述所得正极片、 厚度为 25μπι的 ΡΡ/ΡΕ/ΡΡ聚烯烃隔膜、 负极片按 顺序依次叠加, 并对齐正极活性材料层和负极活性材料层以及正极活性材料层 和负极活性材料层的阵列间隙空位, 即得到电极单元;
( 4 )选取多个上述电极单元通过堆叠方式组合, 得到电池主体, 将所得电 池主体置于铝塑复合膜材质的柔性电池外壳中, 并添加电解液, 密封, 抽真空, 得到柔性锂二次电池。
实施例三
一种柔性锂二次电池的制备方法, 包括以下步骤:
( 1 )将钴酸锂、 粘结剂 PVDF和导电炭黑按重量比 96:2:2混合, 加入一定 量的有机溶剂氮曱基吡咯烷酮, 釆用行星高速分散机进行分散得到正极浆料, 将所得正极浆料按阵列式结构喷涂在铝箔集流体上, 形成多个阵列式设置在铝 箔集流体上的正极活性材料层, 再经烘烤、 压片后得到正极片;
( 2 )将人造石墨、 粘结剂 PVDF、 导电炭黑按重量比 95:3:2混合, 加入一 定量的有机溶剂氮曱基吡咯烷酮, 釆用行星高速分散机进行分散得到负极浆料, 将所得负极浆料按阵列式结构喷涂在铜箔集流体上, 形成多个阵列式设置在铜 箔集流体上的负极活性材料层, 再经烘烤、 压片后得到负极片; 层与正极活性材料层呈方形; 正极活性材料层和负极活性材料层的阵列间隙空 位的宽度为 20mm;
( 3 )将上述所得正极片、 厚度为 50μπι的 ΡΡ/ΡΕ/ΡΡ聚烯烃隔膜、 负极片按 顺序依次叠加, 并对齐正极活性材料层和负极活性材料层以及正极活性材料层 和负极活性材料层的阵列间隙空位, 即得到电极单元;
( 4 )选取多个上述电极单元通过堆叠方式组合, 得到电池主体, 将所得电 池主体置于铝塑复合膜材质的柔性电池外壳中, 并添加电解液, 密封, 抽真空, 得到柔性锂二次电池。
实施例四
本实施例与实施例三的区别仅在于, 釆用厚度为 25μπι的聚氯乙烯 PVC隔 膜作为柔性隔膜。
实施例五
本实施例与实施例三的区别仅在于, 釆用厚度为 50μπι的聚氯乙烯 PVC隔 膜作为柔性隔膜。
效果实施例 为有力支持本发明实施例的有益效果, 提供效果实施例如下, 用以评测本发明实施例提供的产品的性能。
1、 将实施例一和实施例二所得柔性锂二次电池进行柔性弯折前后的电性能 测试。 首先记录柔性锂二次电池弯折前放电容量 Cl, 然后对该柔性锂二次电池 进行柔性弯折(弯折弧度为 10~20。, 弯折次数分别为 20次, 50次, 100次), 记录 电池弯折后放电容量 C2, 并计算容量保持率 Rl ( R1=C2/C1 ); 对于弯折后电池 继续釆用 0.2C电流进行循环测试,记录其 100次循环后电池容量 C3,计算容量 保持率 R2= ( C3/C1 )。 结果如表 1和表 2所示, 其中, 表 1为实施例一的钴酸 锂 /石墨柔性锂二次电池弯折前后的电性能测试结果, 表 2为实施例二的磷酸铁 锂 /石墨柔性锂二次电池弯折前后的电性能测试结果。
表 1
Figure imgf000016_0001
表 1 的测试结果表明: 本发明实施例一釆用钴酸锂作为正极活性材料的阵 列式电极的柔性锂二次电池在电池整体弯折后仍具有优良的放电容量和电池循 环寿命。
表 2
电池弯折 弯折前放电容量 C1 弯折后容量保持率 Rl 100次循环容量保持率 R2 次数 mAh % %
0次 994.1 103.2% 99.1%
20次 1015.9 98.8% 98.7% 50次 1004.5 96.7% 95.2%
100次 1007.8 94.1% 93.7%
表 2 的测试结果表明: 本发明实施例二釆用磷酸铁锂作为正极活性材料的 阵列式电极的柔性锂二次电池与实施例一中钴酸锂作为正极活性材料的柔性电 池锂二次对比, 弯折后电池放电容量略有降低, 但由于磷酸铁锂材料自身优越 的循环性能, 电池弯折后的循环性能优于实施例一中的结果。
2、 将实施例三 ~实施例五所得柔性锂二次电池进行柔性弯折前后的电性能 测试。 首先记录柔性锂二次电池弯折前放电容量 Cl, 然后对该柔性锂二次电池 进行柔性弯折 100次(弯折弧度为 10~20。), 记录电池弯折后放电容量 C2, 并 计算容量保持率 Rl ( R1=C2/C1 ); 对于弯折后电池继续釆用 0.2C电流进行循环 测试, 记录其 100次循环后电池容量 C3, 计算容量保持率 R2= ( C3/C1 )。 结果 如表 3 所示, 表 3 为分别釆用厚度 25μπι PP/PE/PP聚烯烃隔膜、 厚度 50μπι PP/PE/PP聚烯烃隔膜、厚度 25μπι聚氯乙烯 PVC隔膜、厚度 50μπι聚氯乙烯 PVC 隔膜作为柔性隔膜的实施例一、 实施例三、 实施例四和实施例五的柔性锂二次 电池弯折前后的电性能测试结果。
表 3
Figure imgf000017_0001
表 3的结果表明: 柔性隔膜的类别、厚度对柔性锂二次电池的弯折性能影响 很大, 釆用聚烯烃隔膜 PP/PE/PP电池性能优于聚氯乙烯 PVC, 釆用厚度 50μπι 柔性隔膜电池性能优于厚度 25μπι; 但同时考虑随柔性隔膜的厚度增加会导致电 池整体厚度增大而使体积能量密度降低, 因此柔性隔膜厚度优选 25μπι。

Claims

权 利 要 求
1、 一种柔性锂二次电池, 包括柔性电池外壳和位于所述柔性电池外壳内的 电池主体, 以及灌注于所述柔性电池外壳内的电解液, 其特征在于, 所述电池 主体包括一个或多个顺序叠放的电极单元, 所述电极单元包括顺序叠放的正极 片、 柔性隔膜和负极片, 所述正极片包括正极集流体和阵列式设置在所述正极 集流体上的多个正极活性材料层, 所述负极片包括负极集流体和阵列式设置在 所述负极集流体上的多个负极活性材料层, 所述正极片和所述负极片具有对应 设置的阵列间隙空位, 所述对应设置的阵列间隙空位用于所述柔性锂二次电池 进行平面二维方向的弯折, 所述阵列间隙空位的宽度为 5mm~50mm。
2、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述正极活性材料 层和所述负极活性材料层呈方形。
3、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述负极活性材料 层与所述正极活性材料层的阵列式设置方式相同。
4、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述正极活性材料 层的阵列和所述负极活性材料层的阵列在横向和纵向两个方向上的阵列间隙空 位的宽度相等。
5、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述电池主体包括 1~10个电极单元。
6、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述柔性隔膜为多 孔绝缘聚合物隔膜, 厚度为 ΙΟμπ!〜 50μπι。
7、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述正极集流体和 所述负极集流体为金属箔集流体, 厚度为 5μπι~50μπι。
8、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述正极活性材料 层包含可嵌入 /脱嵌锂离子的正极活性材料、 粘结剂和导电剂, 所述负极活性材 料层包含可嵌入 /脱嵌锂离子的负极活性材料、 粘结剂和导电剂。
9、 如权利要求 1所述的柔性锂二次电池, 其特征在于, 所述柔性电池外壳 的材质为铝塑复合膜。
10、 一种柔性锂二次电池的制备方法, 其特征在于, 包括以下步骤: 将正极浆料按阵列式结构在正极集流体上涂覆, 经烘烤、 压片后得到正极 片, 所述正极片包括多个阵列式设置在所述正极集流体上的正极活性材料层; 将负极浆料按阵列式结构在负极集流体上涂覆, 经烘烤、 压片后得到负极 片, 所述负极片包括多个阵列式设置在所述负极集流体上的负极活性材料层; 所述负极片具有与所述正极片对应设置的阵列间隙空位; 所述阵列间隙空位的 笕度为 5mm~50mm;
将正极片、 柔性隔膜、 负极片顺序叠放, 并对齐所述正极片和所述负极片 上的阵列间隙空位, 即得到电极单元; 选取一个或多个所述电极单元通过堆叠 方式组合, 得到电池主体, 将所得电池主体置于柔性电池外壳中, 并添加电解 液, 密封, 抽真空, 得到柔性锂二次电池。
PCT/CN2014/076156 2013-09-25 2014-04-24 一种柔性锂二次电池及其制备方法 WO2015043174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310440218.4 2013-09-25
CN201310440218.4A CN104466229A (zh) 2013-09-25 2013-09-25 一种柔性锂二次电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2015043174A1 true WO2015043174A1 (zh) 2015-04-02

Family

ID=52741943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076156 WO2015043174A1 (zh) 2013-09-25 2014-04-24 一种柔性锂二次电池及其制备方法

Country Status (2)

Country Link
CN (1) CN104466229A (zh)
WO (1) WO2015043174A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107237547A (zh) * 2017-06-19 2017-10-10 深圳光柔科技有限公司 一种自供能源帐篷
CN109585905A (zh) * 2018-12-24 2019-04-05 广东维都利新能源有限公司 一种弧形软包装锂电池及其制作方法
CN109713376A (zh) * 2019-02-15 2019-05-03 柔电(武汉)科技有限公司 柔性电池及其制备方法
CN110661035A (zh) * 2018-06-29 2020-01-07 成都市银隆新能源有限公司 一种单体电芯、柔性电池组及其制备方法
CN111384362A (zh) * 2018-12-28 2020-07-07 北京好风光储能技术有限公司 电极片生产设备、生产线及电极片加工方法
CN111952533A (zh) * 2020-07-29 2020-11-17 江西省倍特力新能源有限责任公司 一种功率型电池负极的制作装置
CN113437411A (zh) * 2021-06-17 2021-09-24 上海大学 一种鳞状叠片式可弯曲柔性电池及其制造方法
CN113646918A (zh) * 2020-02-07 2021-11-12 株式会社Lg新能源 包括使用激光的清洁步骤的电极制造方法、通过该方法制造的电极、以及包括该电极的二次电池
CN113809470A (zh) * 2020-09-14 2021-12-17 上海恩捷新材料科技有限公司 一种储能器件用的电池膜及其制备工艺、系统与储能器件
CN114243027A (zh) * 2021-12-17 2022-03-25 广东工业大学 一种钠离子电池负极集流体及其制备方法和钠离子电池
CN114335646A (zh) * 2021-12-28 2022-04-12 大连融科储能技术发展有限公司 一种全钒液流电池折角式电堆结构
CN115810759A (zh) * 2022-10-17 2023-03-17 宁德时代新能源科技股份有限公司 柔性复合集流体及其制备方法、极片和电池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795532A (zh) * 2015-04-27 2015-07-22 刘强 电极、包含该电极的蓄电装置及蓄电装置制备方法
CN205863273U (zh) * 2016-04-16 2017-01-04 佛山市欣源电子股份有限公司 一种安全性能高的柔性电池
FR3053842B1 (fr) * 2016-07-07 2020-02-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Accumulateur electrochimique metal-ion, a capacite elevee et dont la souplesse permet une grande conformabilite
CN107240671A (zh) * 2017-04-07 2017-10-10 深圳市优特利电源有限公司 柔性电极和柔性电芯
CN107240700A (zh) * 2017-04-07 2017-10-10 深圳市优特利电源有限公司 柔性锂离子电池及其制备方法和电子产品
CN107403952A (zh) * 2017-07-26 2017-11-28 成都特隆美储能技术有限公司 快注液高浸润长寿命锂电池及制造方法和模具
WO2019045552A1 (ko) 2017-09-04 2019-03-07 주식회사 엘지화학 플렉시블 전지의 제조방법 및 이로부터 제조된 플렉시블 전지
CN108346831A (zh) * 2018-01-04 2018-07-31 湖南立方新能源科技有限责任公司 一种电极结构及含有该电极结构的锂离子电池
CN108598559A (zh) * 2018-07-24 2018-09-28 安普瑞斯(无锡)有限公司 一种柔性锂离子电池
CN109449493A (zh) * 2018-11-02 2019-03-08 深圳市浩然电池有限公司 一种可弯曲穿戴式锂离子电池
CN109616696B (zh) * 2018-11-22 2021-07-13 浙江工业大学 一种柔性可折叠全固态电池及其制造方法
CN112768776B (zh) * 2019-10-21 2022-06-24 鹏鼎控股(深圳)股份有限公司 柔性电池组件及其制造方法
CN111129577B (zh) * 2019-12-27 2023-08-29 Oppo广东移动通信有限公司 柔性电芯与电子设备
CN111682267B (zh) * 2020-05-14 2023-01-31 南方科技大学 柔性锂离子电池及其制备方法
CN113707836B (zh) * 2020-05-22 2023-09-01 松山湖材料实验室 柔性电池及其斑马纹状电极和制作方法
CN114094194B (zh) * 2020-08-25 2024-05-07 比亚迪股份有限公司 极芯制备方法及装置
CN112133953B (zh) * 2020-10-23 2023-07-04 京东方科技集团股份有限公司 一种柔性电池、柔性显示设备
CN113258175B (zh) * 2021-04-28 2023-06-16 山东金品能源有限公司 一种电池储能模组
CN113437348B (zh) * 2021-07-01 2022-11-04 上海大学 一种双向可弯曲柔性电池及制造方法
CN113782806A (zh) * 2021-09-08 2021-12-10 维沃移动通信有限公司 电池和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274955A (zh) * 1999-05-19 2000-11-29 日本电气株式会社 非水电解液二次电池
JP2005011660A (ja) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd 二次電池用電極及びその製造方法並びにこれを用いた二次電池
CN201387909Y (zh) * 2009-03-10 2010-01-20 深圳市迪凯特电池科技有限公司 一种方型铝壳锂离子电池电芯结构
CN101807683A (zh) * 2010-04-28 2010-08-18 常州市宙纳新能源科技有限公司 一种锂离子电容电池的正负极片及其两种极片的制作方法
CN202495542U (zh) * 2011-12-23 2012-10-17 深圳市比亚迪锂电池有限公司 一种锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274955A (zh) * 1999-05-19 2000-11-29 日本电气株式会社 非水电解液二次电池
JP2005011660A (ja) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd 二次電池用電極及びその製造方法並びにこれを用いた二次電池
CN201387909Y (zh) * 2009-03-10 2010-01-20 深圳市迪凯特电池科技有限公司 一种方型铝壳锂离子电池电芯结构
CN101807683A (zh) * 2010-04-28 2010-08-18 常州市宙纳新能源科技有限公司 一种锂离子电容电池的正负极片及其两种极片的制作方法
CN202495542U (zh) * 2011-12-23 2012-10-17 深圳市比亚迪锂电池有限公司 一种锂离子电池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107237547A (zh) * 2017-06-19 2017-10-10 深圳光柔科技有限公司 一种自供能源帐篷
CN110661035A (zh) * 2018-06-29 2020-01-07 成都市银隆新能源有限公司 一种单体电芯、柔性电池组及其制备方法
CN109585905A (zh) * 2018-12-24 2019-04-05 广东维都利新能源有限公司 一种弧形软包装锂电池及其制作方法
CN111384362A (zh) * 2018-12-28 2020-07-07 北京好风光储能技术有限公司 电极片生产设备、生产线及电极片加工方法
CN109713376A (zh) * 2019-02-15 2019-05-03 柔电(武汉)科技有限公司 柔性电池及其制备方法
CN113646918A (zh) * 2020-02-07 2021-11-12 株式会社Lg新能源 包括使用激光的清洁步骤的电极制造方法、通过该方法制造的电极、以及包括该电极的二次电池
CN111952533A (zh) * 2020-07-29 2020-11-17 江西省倍特力新能源有限责任公司 一种功率型电池负极的制作装置
CN113809470A (zh) * 2020-09-14 2021-12-17 上海恩捷新材料科技有限公司 一种储能器件用的电池膜及其制备工艺、系统与储能器件
CN113437411A (zh) * 2021-06-17 2021-09-24 上海大学 一种鳞状叠片式可弯曲柔性电池及其制造方法
CN114243027A (zh) * 2021-12-17 2022-03-25 广东工业大学 一种钠离子电池负极集流体及其制备方法和钠离子电池
CN114243027B (zh) * 2021-12-17 2024-02-13 广东工业大学 一种钠离子电池负极集流体及其制备方法和钠离子电池
CN114335646A (zh) * 2021-12-28 2022-04-12 大连融科储能技术发展有限公司 一种全钒液流电池折角式电堆结构
CN114335646B (zh) * 2021-12-28 2024-04-16 大连融科储能技术发展有限公司 一种全钒液流电池折角式电堆结构
CN115810759A (zh) * 2022-10-17 2023-03-17 宁德时代新能源科技股份有限公司 柔性复合集流体及其制备方法、极片和电池

Also Published As

Publication number Publication date
CN104466229A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2015043174A1 (zh) 一种柔性锂二次电池及其制备方法
WO2020177623A1 (zh) 负极片、二次电池及其装置
TWI536649B (zh) 鋰離子電池
CN103053055B (zh) 电气设备
TWI416785B (zh) 用於可充電電池之矽陽極
JP5413368B2 (ja) 電気化学素子用電極の製造方法
JP7036125B2 (ja) リチウムイオン二次電池およびその製造方法
CN104681857A (zh) 一种可折叠锂离子电池及其制作方法
CN105958124B (zh) 一种锂离子电池及其制备方法
WO2022267529A1 (zh) 正极活性材料、电化学装置与电子设备
CN111129428A (zh) 一种多层正极片电极结构及其制备方法、正负极电池结构
CN108604667A (zh) 包括电极保护层的用于二次电池的电极
CN114899410B (zh) 集流体及其制作方法
CN112542572A (zh) 一种新型锂离子电池正极极片及其制备方法和用途
CN114156602A (zh) 具有多涂层的固态电解质隔膜及制备方法和应用
CN115461909A (zh) 一种电化学装置及包含该电化学装置的电子装置
JP2013145761A (ja) 電気化学素子用電極の製造方法
CN107799799A (zh) 电池包
JP5293539B2 (ja) 支持体付電極活物質シート及び電気化学素子用電極の製造方法
CN109599550A (zh) 一种全固态锂离子电池的制作工艺
WO2020238226A1 (zh) 一种电池及电池组
WO2021045629A1 (en) Method for pre-lithiating a lithium-ion capacitor
US11652241B2 (en) Battery manufacturing method
CN106229543A (zh) 一种钛酸锂电池及制作方法
WO2022143262A1 (zh) 储能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849369

Country of ref document: EP

Kind code of ref document: A1