WO2015042920A1 - 正交混频装置 - Google Patents

正交混频装置 Download PDF

Info

Publication number
WO2015042920A1
WO2015042920A1 PCT/CN2013/084627 CN2013084627W WO2015042920A1 WO 2015042920 A1 WO2015042920 A1 WO 2015042920A1 CN 2013084627 W CN2013084627 W CN 2013084627W WO 2015042920 A1 WO2015042920 A1 WO 2015042920A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
signal
optical
local oscillation
wavelength
Prior art date
Application number
PCT/CN2013/084627
Other languages
English (en)
French (fr)
Inventor
万文通
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/084627 priority Critical patent/WO2015042920A1/zh
Priority to CN201380002002.8A priority patent/CN104813583B/zh
Publication of WO2015042920A1 publication Critical patent/WO2015042920A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a quadrature mixing device. Background technique
  • Quadrature modulation In the communication system, quadrature modulation is often used to improve the spectrum utilization.
  • Quadrature modulation refers to separately modulating two independent signals with two carrier components with a phase difference of 90°, and corresponding orthogonalization is needed at the receiving end.
  • Demodulation in general, the carrier frequency of the transmitting end and the local oscillator signal of the receiving end need to be consistent to perform homodyne demodulation, and there are also systems in which the two frequencies are inconsistent, that is, heterodyne demodulation.
  • FIG. 1 is a schematic structural diagram of a quadrature mixing device in the prior art.
  • the local oscillator electrical signal is used to divide the input electrical signal into orthogonality by using an orthogonal network (Quadrature Network).
  • the two-way electrical signal that is, the phase difference between the two electrical signals is 90 degrees.
  • the signal is split and one of the signals is phase-shifted by 90 degrees, and the two signals obtained are respectively phased with the two microwave signals in the multiplier. Multiply, multiply and get the Q IF signal and the I IF signal respectively.
  • the above-mentioned orthogonal mixing device is only applicable to the low-frequency local oscillator electrical signal, and in the high-speed microwave communication system, when a high-frequency carrier is required, it is necessary to use a high-frequency local oscillator electrical signal at the receiving end. Frequency conversion processing, existing orthogonal mixing devices cannot be implemented. Summary of the invention
  • Embodiments of the present invention provide a quadrature mixing device that can obtain a high frequency orthogonal local oscillation signal to meet the requirements of frequency conversion processing of a high speed microwave communication system.
  • an embodiment of the present invention provides a quadrature mixing device, including:
  • a local oscillation signal output device a first multiplier and a second multiplier
  • the local oscillation signal output device includes:
  • An optical signal output device configured to output an optical signal including a first wavelength and a second wavelength having a fixed frequency difference, and input the first optical signal including the first wavelength to the first optical coupler And a second optical coupler that inputs a second optical signal including the second wavelength to the first optical coupler and the phase shifter, the fixed frequency difference being the same as a center frequency of the microwave signal; a phase shifter for performing a 90 degree phase shift of the second optical signal to obtain a third optical signal, and inputting the third optical signal to the second optical coupler;
  • the first optical coupler is configured to couple the first optical signal and the second optical signal to obtain a fourth optical signal, and input the fourth optical signal to the first photoelectric conversion diode;
  • the second optical coupler is configured to couple the first optical signal and the third optical signal to obtain a fifth optical signal, and input the fifth optical signal to a second photoelectric conversion diode;
  • the first photoelectric conversion diode is configured to photoelectrically convert the fourth optical signal to obtain a first local oscillation electrical signal, and output the first local oscillation electrical signal;
  • the second photoelectric conversion diode is configured to photoelectrically convert the fifth optical signal to obtain a second local oscillation electrical signal, and output the second local oscillation electrical signal;
  • the first multiplier is configured to multiply the first local oscillating electrical signal and the microwave signal to obtain a first intermediate frequency signal
  • the second multiplier is configured to multiply the second local oscillating electrical signal and the microwave signal to obtain a second intermediate frequency signal.
  • the optical signal output device includes: a laser, configured to output a sixth optical signal
  • a modulator configured to receive the sixth optical signal and modulate the sixth optical signal to obtain a seventh optical signal, where a number of spectral lines in the seventh optical signal is determined by a clock frequency of the modulator Half wave voltage decision;
  • An optical wavelength selection switch configured to receive the seventh optical signal, and selectively output the optical signal including the first wavelength and the second wavelength having a fixed frequency difference according to the seventh optical signal, where the fixed frequency difference is The carrier frequency of the transmitting system is the same.
  • the optical signal output device includes: a first laser and a second laser that are independent of each other;
  • the first laser and the second laser are for outputting the optical signal including a first wavelength and a second wavelength having a fixed frequency difference.
  • the phase shifter in the local oscillating signal output device is further configured to receive control Generating a signal, and performing a 90 degree phase shift on the second optical signal according to the control signal to obtain the third optical signal, the control signal being transmitted by a digital signal processing unit in the microwave receiving system.
  • the orthogonal mixing device outputs an optical signal including two wavelengths having a fixed frequency difference through an optical signal output device in the local oscillation signal output device, and the light including one of the wavelengths is passed through the phase shifter
  • the signal is output after 90-degree phase shift, and two optical signals respectively containing two wavelengths are coupled by an optical coupler to obtain an optical signal, and the phase-shifted optical signal is coupled with another unshifted optical signal to obtain another optical signal.
  • the newly obtained two optical signals are then photoelectrically converted by photoelectric conversion diodes to obtain two orthogonal local oscillating electrical signals.
  • the local oscillating signal output device in the embodiment of the present invention is less affected by the manufacturing process, the characteristics of the electrical device, etc., two orthogonal local oscillating electrical signals of high frequency can be obtained, and the two local oscillating electrical signals are respectively multiplied.
  • the multiplier is multiplied by the microwave signal to finally obtain an orthogonal demodulated signal. Therefore, the orthogonal mixing device provided by the embodiment of the invention can meet the requirements of the frequency conversion processing of the high-speed microwave communication system.
  • FIG. 1 is a schematic structural view of a quadrature mixing device in the prior art
  • Embodiment 1 of a quadrature mixing device according to the present invention
  • Embodiment 3 is a schematic structural view of Embodiment 1 of an optical signal output device in a quadrature mixing device according to the present invention
  • FIG. 4 is a schematic structural view of a second embodiment of an optical signal output device in a quadrature mixing device according to the present invention.
  • FIG. 5 is a schematic structural diagram of a microwave receiving system according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention will be clearly and completely described in conjunction with the accompanying drawings in the embodiments of the present invention. It is a partial embodiment of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
  • the orthogonal mixing device of this embodiment may include: a local oscillation signal output device 20, a first multiplier 21, and a second Multiplier 22.
  • the local oscillation signal output device 20 includes:
  • optical signal output device 11 phase shifter 12, first optical coupler 13, second optical coupler 14, first photoelectric conversion diode 15 and second photoelectric conversion diode 16, wherein optical signal output device 11 is used for output An optical signal including a first wavelength and a second wavelength having a fixed frequency difference, and inputting a first optical signal including the first wavelength to the first optical coupler 13 and the second optical coupler 14 to include the second wavelength
  • the second optical signal is input to the first optical coupler 13 and the phase shifter 12, and the fixed frequency difference is the same as the center frequency of the microwave signal.
  • the phase shifter 12 is configured to perform a 90 degree phase shift of the second optical signal to obtain a third optical signal, and input the third optical signal to the second optical coupler 14 for using the first optical
  • the signal and the second optical signal are coupled to obtain a fourth optical signal, and the fourth optical signal is input to the first photoelectric conversion diode 15, and the second optical coupler 14 is configured to couple the first optical signal and the third optical signal to obtain a fifth
  • the optical signal is input to the second photoelectric conversion diode 16 for photoelectrically converting the fourth optical signal to obtain a first local oscillation electrical signal, and outputting the first local oscillation electrical signal.
  • the second photoelectric conversion diode 16 is configured to photoelectrically convert the fifth optical signal to obtain a second local oscillation electrical signal, and output a second local oscillation electrical signal.
  • the first multiplier 21 is configured to multiply the first local oscillating electrical signal and the microwave signal to obtain a first intermediate frequency signal
  • the second multiplier 22 is configured to multiply the second local oscillating electrical signal and the microwave signal. A second intermediate frequency signal is obtained.
  • the optical signal output device 11 has two implementable manners.
  • FIG. 3 is an embodiment of the optical signal output device in the orthogonal mixing device of the present invention.
  • a schematic diagram of a structure, as shown in FIG. 3, the optical signal output device 11 includes: a laser 110, a modulator 111, and an optical wavelength selective switch 112.
  • the laser 110 is used to output a sixth optical signal
  • the modulator 111 is used to receive the a sixth optical signal and the sixth optical signal Modulation is performed to obtain a seventh optical signal, and the number of spectral lines in the seventh optical signal is determined by the clock frequency and the half-wave voltage of the modulator.
  • the modulator can be a Mach-Zehnder modulator
  • the spectral line in the seventh optical signal is determined according to the amplitude of the input clock signal of MZM and the half-wave voltage of MZM. After the MZM is selected, the input clock can be adjusted. The signal amplitude is used to adjust the number of lines, and the line spacing is consistent with the frequency of the clock.
  • the optical wavelength selection switch 112 is configured to receive the seventh optical signal, and selectively output the optical signal including the first wavelength and the second wavelength having a fixed frequency difference according to the seventh optical signal.
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of an optical signal output apparatus in a quadrature mixing device according to the present invention.
  • the optical signal output apparatus 11 includes: A laser 113 and a second laser 114, the first laser 113 and the second laser 114 are for outputting the optical signal including the first wavelength and the second wavelength having a fixed frequency difference.
  • the phase shifter 12 in the local oscillation signal output device 20 is further configured to receive a control signal, and perform a 90-degree phase shift on the second optical signal according to the control signal to obtain a third optical signal.
  • the control signal is sent by a digital signal processor (DSP) unit in the microwave receiving system.
  • DSP digital signal processor
  • the DSP unit can obtain a phase error signal by calculating a difference between an acute angle value of the constellation coordinate axis after the carrier recovery and a difference of 90 degrees, and output the error signal to control the phase shifter 12 of the mixing device, thereby An accurate phase shift phase of 90 degrees is obtained, which ensures that the phase difference between the first local oscillation signal and the second local oscillation signal is also 90 degrees.
  • FIG. 5 is a schematic structural diagram of a microwave receiving system according to an embodiment of the present invention, as shown in FIG.
  • the frequency mixing unit 51, the acquisition unit 52, and the demodulation unit 53 receive the microwave signal from the antenna, and then pass through a low noise amplifier (LNA) to divide the power into two signals to enter the mixing unit 51.
  • the mixing unit 51 outputs two intermediate frequency signals, that is, a first intermediate frequency signal and a second intermediate frequency signal. After the first intermediate frequency signal and the second intermediate frequency signal are input to the acquisition unit, the filter is filtered by the acquisition unit, and the automatic gain controller is used.
  • LNA low noise amplifier
  • AGC automatic gain controller, abbreviation: AGC
  • AGC automatic gain controller
  • analog-to-digital converter performs digital-to-analog conversion, and the acquired data is obtained, and then the acquisition unit transmits the data to the demodulation unit 53.
  • DSP unit Perform data demodulation and finally get the correct received signal.
  • the DSP unit sends a control signal to the phase shifter 12 in the mixing unit, so that the phase shifter 12 performs a 90-degree phase shift on the second optical signal according to the control signal to obtain a third optical signal.
  • the DSP unit can obtain a phase error signal by calculating a difference between the acute angle value of the constellation coordinate axis after the carrier recovery and a difference of 90 degrees, and output the error signal to control the phase shifter 12 of the mixing unit 51, Thereby, an accurate phase shift phase of 90 degrees is obtained, which ensures that the phase difference between the first local oscillation signal and the second local oscillation signal is also 90 degrees.
  • the orthogonal mixing device outputs an optical signal including two wavelengths having a fixed frequency difference through an optical signal output device in the local oscillation signal output device, and the light including one of the wavelengths is passed through the phase shifter
  • the signal is output after 90-degree phase shift, and two optical signals respectively containing two wavelengths are coupled by an optical coupler to obtain an optical signal, and the phase-shifted optical signal is coupled with another unshifted optical signal to obtain another optical signal.
  • the newly obtained two optical signals are then photoelectrically converted by photoelectric conversion diodes to obtain two orthogonal local oscillating electrical signals.
  • the local oscillating signal output device in the embodiment of the present invention is less affected by the manufacturing process, the characteristics of the electrical device, etc., two orthogonal local oscillating electrical signals of high frequency can be obtained, and the two local oscillating electrical signals are respectively multiplied.
  • the multiplier is multiplied by the microwave signal to finally obtain an orthogonal demodulated signal. Therefore, the orthogonal mixing device provided by the embodiment of the invention can meet the requirements of the frequency conversion processing of the high-speed microwave communication system.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供一种正交混频装置,该正交混频装置包括:本地振荡信号输出装置、第一乘法器和第二乘法器,本发明实施例提供的正交混频装置,受制造工艺、电器件特性等的影响较小,可得到高频的本地振荡电信号,从而可满足高速微波通信系统的变频处理的需求。

Description

正交混频装置
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种正交混频装置。 背景技术
在通信系统中, 为了提高频谱利用率常采用正交调制, 正交调制是指 对具有 90 ° 相差的两个载波分量以两个独立的信号分别进行调制,需要在 接收端进行对应的正交解调, 一般情况下发射端的载波频率与接收端的本 振信号需要保持一致来进行零差解调, 也有两个频率不一致的情况下的系 统, 即外差解调。
图 1为现有技术中的正交混频装置结构示意图, 如图 1所示, 其利用 本振电信号经过一个正交网络(Quadrature Network, 可实现把输入的电信 号等分成具有正交性的两路电信号, 即两路电信号的相位差为 90度) 进 行信号分路并对其中一路信号进行移相 90度, 得到的两路信号分别与乘 法器里的两路微波信号进行相乘, 相乘后分别得到 Q路中频信号和 I路中 频信号。
但是上述的正交混频装置只适用于低频的本振电信号, 而在高速微波 通信系统里, 当需要使用高频载波的情况下, 需要使用高频率范围的本振 电信号在接收端进行变频处理, 现有的正交混频装置无法实现。 发明内容
本发明实施例提供一种正交混频装置, 可得到高频的正交本地振荡信 号, 以满足高速微波通信系统的变频处理的需求。
第一方面, 本发明实施例提供一种正交混频装置, 包括:
本地振荡信号输出装置、 第一乘法器和第二乘法器;
所述本地振荡信号输出装置包括:
光信号输出装置, 用于输出包含具有固定频率差的第一波长和第二波 长的光信号, 并将包含所述第一波长的第一光信号输入至第一光学耦合器 和第二光学耦合器, 将包含所述第二波长的第二光信号输入至所述第一光 学耦合器和相位移相器, 所述固定频率差与微波信号的中心频率相同; 所述相位移相器, 用于将所述第二光信号进行 90度相位移动得到第 三光信号, 并将所述第三光信号输入至第二光学耦合器;
所述第一光学耦合器, 用于将所述第一光信号和第二光信号耦合得到 第四光信号, 并将所述第四光信号输入至第一光电转换二极管;
所述第二光学耦合器, 用于将所述第一光信号和所述第三光信号耦合 得到第五光信号, 并将所述第五光信号输入至第二光电转换二极管;
所述第一光电转换二极管, 用于将所述第四光信号进行光电转换得到 第一本地振荡电信号, 并输出所述第一本地振荡电信号;
所述第二光电转换二极管, 用于将所述第五光信号进行光电转换得到 第二本地振荡电信号, 并输出所述第二本地振荡电信号;
所述第一乘法器, 用于将所述第一本地振荡电信号与所述微波信号相 乘, 得到第一中频信号;
所述第二乘法器, 用于将所述第二本地振荡电信号与所述微波信号相 乘, 得到第二中频信号。
在第一方面的第一种可能的实施方式中, 所述光信号输出装置包括: 激光器, 用于输出第六光信号;
调制器, 用于接收所述第六光信号并对所述第六光信号进行调制, 得 到第七光信号, 所述第七光信号里的谱线的数量由所述调制器的时钟频率 与半波电压决定;
光波长选择开关, 用于接收所述第七光信号, 并根据所述第七光信号 选择输出所述包含具有固定频率差的第一波长和第二波长的光信号, 所述 固定频率差与发射系统的载波频率相同。
结合第一方面, 在第一方面的第二种可能的实施方式中, 所述光信号 输出装置包括: 相互独立的第一激光器和第二激光器;
所述第一激光器和第二激光器用于输出所述包含具有固定频率差的 第一波长和第二波长的光信号。
结合第一方面至第一方面的第二种可能的实施方式中任一项所述的 正交混频装置, 所述本地振荡信号输出装置中的相位移相器还用于接收控 制信号, 并根据所述控制信号将所述第二光信号进行 90度相位移动得到 所述第三光信号, 所述控制信号是由微波接收系统中的数字信号处理单元 发送的。
本发明实施例提供的正交混频装置, 通过本地振荡信号输出装置中的 光信号输出装置输出包含具有固定频率差的两个波长的光信号, 通过相位 移相器对包含其中一波长的光信号进行 90度相位移动后输出, 经光学耦 合器将分别包含两个波长的两个光信号耦合得到一光信号, 将移相后的光 信号与另一未移相的光信号耦合得到另一光信号。新得到的两路光信号再 经光电转换二极管分别进行光电转换后得到两路正交的本地振荡电信号。 由于本发明实施例中的本地振荡信号输出装置受制造工艺、 电器件特性等 的影响较小, 能得到高频的两路正交的本地振荡电信号, 该两路本地振荡 电信号分别经乘法器与微波信号相乘, 最终得到正交的解调信号。 因此, 本发明实施例提供的正交混频装置, 可满足高速微波通信系统的变频处理 的需求。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为现有技术中的正交混频装置结构示意图;
图 2为本发明正交混频装置实施例一的结构示意图;
图 3为本发明正交混频装置中的光信号输出装置实施例一的结构示意 图;
图 4为本发明正交混频装置中的光信号输出装置实施例二的结构示意 图;
图 5为本发明实施例微波接收系统的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明正交混频装置实施例一的结构示意图, 如图 2所示, 本 实施例的正交混频装置可以包括: 本地振荡信号输出装置 20、第一乘法器 21和第二乘法器 22。 其中, 本地振荡信号输出装置 20包括:
光信号输出装置 11、 相位移相器 12、 第一光学耦合器 13、 第二光学 耦合器 14、 第一光电转换二极管 15和第二光电转换二极管 16, 其中, 光 信号输出装置 11 用于输出包含具有固定频率差的第一波长和第二波长的 光信号, 并将包含第一波长的第一光信号输入至第一光学耦合器 13 和第 二光学耦合器 14, 将包含第二波长的第二光信号输入至第一光学耦合器 13 和相位移相器 12, 固定频率差与微波信号的中心频率相同。 相位移相 器 12用于将第二光信号进行 90度相位移动得到第三光信号, 并将第三光 信号输入至第二光学耦合器 14, 第一光学耦合器 13用于将第一光信号和 第二光信号耦合得到第四光信号, 并将第四光信号输入至第一光电转换二 极管 15, 第二光学耦合器 14用于将第一光信号和第三光信号耦合得到第 五光信号, 并将第五光信号输入至第二光电转换二极管 16, 第一光电转换 二极管 15用于将第四光信号进行光电转换得到第一本地振荡电信号, 并 输出第一本地振荡电信号。 第二光电转换二极管 16用于将第五光信号进 行光电转换得到第二本地振荡电信号, 并输出第二本地振荡电信号。
第一乘法器 21 用于将所述第一本地振荡电信号与微波信号相乘, 得 到第一中频信号, 第二乘法器 22用于将所述第二本地振荡电信号与微波 信号相乘, 得到第二中频信号。
其中, 在本发明实施例中, 光信号输出装置 11有两种可实施的方式, 在第一种可实施的方式中, 图 3为本发明正交混频装置中的光信号输出装 置实施例一的结构示意图, 如图 3所示, 光信号输出装置 11包括: 激光 器 110、 调制器 111和光波长选择开关 112, 具体地, 激光器 110用于输 出第六光信号, 调制器 111用于接收所述第六光信号并对所述第六光信号 进行调制, 得到第七光信号, 所述第七光信号里的谱线的数量由所述调制 器的时钟频率与半波电压决定。 例如调制器可以是马赫曾德尔调制器
( Mach-Zehnder modulator , 简称: MZM ) , 第七光信号里的谱线多少是 根据 MZM的输入时钟信号幅度大小与 MZM的半波电压大小共同决定, 即选定了 MZM后, 可以调节输入时钟的信号幅度来调节谱线的多少, 谱 线的间距与时钟的频率一致。光波长选择开关 112用于接收所述第七光信 号, 并根据所述第七光信号选择输出所述包含具有固定频率差的第一波长 和第二波长的光信号。
在第二种可实施的方式中, 图 4为本发明正交混频装置中的光信号输 出装置实施例二的结构示意图, 如图 4所示, 光信号输出装置 11包括: 相互独立的第一激光器 113和第二激光器 114, 第一激光器 113和第二激 光器 114用于输出所述包含具有固定频率差的第一波长和第二波长的光信 号。
进一步地, 在上述实施例中, 本地振荡信号输出装置 20 中的相位移 相器 12还用于接收控制信号, 并根据所述控制信号将第二光信号进行 90 度相位移动得到第三光信号, 所述控制信号是由微波接收系统中的数字信 号处理( digital signal processor , 简称: DSP )单元发送的。 具体地, DSP 单元可以通过计算载波恢复后的星座图坐标轴的锐角角度值与 90度的差 值来得到一个相位误差信号且输出这个误差信号来控制混频装置的相位 移相器 12, 从而得到精确的 9 0度相位移相, 这样保证了第一本地振荡信 号和第二本地振荡信号的相位差也为 90度。
本发明实施例描述的正交混频装置可用于微波通信系统中, 可作为微 波接收系统的混频单元部分, 图 5为本发明实施例微波接收系统的结构示 意图, 如图 5所示, 主要包括混频单元 51、 采集单元 52和解调单元 53, 微波信号从天线接收下来后, 经过低噪声放大器 (low noise amplifier , 简称: LNA ) 后功率等分成两路信号分别进入混频单元 51, 经混频单元 51输出两路中频信号, 即第一中频信号和第二中频信号, 第一中频信号和 第二中频信号输入到采集单元后, 经采集单元中的滤波器滤波、 自动增益 控制器 (automatic gain controller , 简称: AGC ) 放大、 模数转换器进行 数模转换, 得到采集的数据, 接着采集单元把数据传递到解调单元 53 ( DSP单元) 进行数据解调, 最后得到正确的接收信号。 其中, DSP单元 向混频单元中的相位移向器 12发送控制信号, 使相位移向器 12根据控制 信号将第二光信号进行 90度相位移动得到第三光信号。 具体地, DSP单 元可以通过计算载波恢复后的星座图坐标轴的锐角角度值与 90度的差值 来得到一个相位误差信号且输出这个误差信号来控制混频单元 51 的相位 移相器 12, 从而得到精确的 9 0度相位移相, 这样保证了第一本地振荡信 号和第二本地振荡信号的相位差也为 90度。
本发明实施例提供的正交混频装置, 通过本地振荡信号输出装置中的 光信号输出装置输出包含具有固定频率差的两个波长的光信号, 通过相位 移相器对包含其中一波长的光信号进行 90度相位移动后输出, 经光学耦 合器将分别包含两个波长的两个光信号耦合得到一光信号, 将移相后的光 信号与另一未移相的光信号耦合得到另一光信号。新得到的两路光信号再 经光电转换二极管分别进行光电转换后得到两路正交的本地振荡电信号。 由于本发明实施例中的本地振荡信号输出装置受制造工艺、 电器件特性等 的影响较小, 能得到高频的两路正交的本地振荡电信号, 该两路本地振荡 电信号分别经乘法器与微波信号相乘, 最终得到正交的解调信号。 因此, 本发明实施例提供的正交混频装置, 可满足高速微波通信系统的变频处理 的需求。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM , 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种正交混频装置, 其特征在于, 包括: 本地振荡信号输出装置、 第一乘法器和第二乘法器;
所述本地振荡信号输出装置包括:
光信号输出装置, 用于输出包含具有固定频率差的第一波长和第二波 长的光信号, 并将包含所述第一波长的第一光信号输入至第一光学耦合器 和第二光学耦合器, 将包含所述第二波长的第二光信号输入至所述第一光 学耦合器和相位移相器, 所述固定频率差与微波信号的中心频率相同; 所述相位移相器, 用于将所述第二光信号进行 90度相位移动得到第 三光信号, 并将所述第三光信号输入至第二光学耦合器;
所述第一光学耦合器, 用于将所述第一光信号和第二光信号耦合得到 第四光信号, 并将所述第四光信号输入至第一光电转换二极管;
所述第二光学耦合器, 用于将所述第一光信号和所述第三光信号耦合 得到第五光信号, 并将所述第五光信号输入至第二光电转换二极管;
所述第一光电转换二极管, 用于将所述第四光信号进行光电转换得到 第一本地振荡电信号, 并输出所述第一本地振荡电信号;
所述第二光电转换二极管, 用于将所述第五光信号进行光电转换得到 第二本地振荡电信号, 并输出所述第二本地振荡电信号;
所述第一乘法器, 用于将所述第一本地振荡电信号与所述微波信号相 乘, 得到第一中频信号;
所述第二乘法器, 用于将所述第二本地振荡电信号与所述微波信号相 乘, 得到第二中频信号。
2、 根据权利要求 1 所述的正交混频装置, 其特征在于, 所述光信号 输出装置包括:
激光器, 用于输出第六光信号;
调制器, 用于接收所述第六光信号并对所述第六光信号进行调制, 得 到第七光信号, 所述第七光信号里的谱线的数量由所述调制器的时钟频率 与半波电压决定;
光波长选择开关, 用于接收所述第七光信号, 并根据所述第七光信号 选择输出所述包含具有固定频率差的第一波长和第二波长的光信号。
3、 根据权利要求 1 所述的正交混频装置, 其特征在于, 所述光信号 输出装置包括: 相互独立的第一激光器和第二激光器;
所述第一激光器和第二激光器用于输出所述包含具有固定频率差的 第一波长和第二波长的光信号。
4、 根据权利要求 1~3任一项所述的正交混频装置, 其特征在于, 所 述本地振荡信号输出装置中的相位移相器还用于接收控制信号, 并根据所 述控制信号将所述第二光信号进行 90度相位移动得到所述第三光信号, 所述控制信号是由微波接收系统中的数字信号处理单元发送的。
PCT/CN2013/084627 2013-09-29 2013-09-29 正交混频装置 WO2015042920A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/084627 WO2015042920A1 (zh) 2013-09-29 2013-09-29 正交混频装置
CN201380002002.8A CN104813583B (zh) 2013-09-29 2013-09-29 正交混频装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084627 WO2015042920A1 (zh) 2013-09-29 2013-09-29 正交混频装置

Publications (1)

Publication Number Publication Date
WO2015042920A1 true WO2015042920A1 (zh) 2015-04-02

Family

ID=52741853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084627 WO2015042920A1 (zh) 2013-09-29 2013-09-29 正交混频装置

Country Status (2)

Country Link
CN (1) CN104813583B (zh)
WO (1) WO2015042920A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422037B (zh) * 2022-01-27 2023-06-20 中国科学院半导体研究所 一种光电融合的变频方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347203A (zh) * 2000-09-29 2002-05-01 松下电器产业株式会社 调谐器
KR20060005593A (ko) * 2004-07-13 2006-01-18 삼성전자주식회사 쿼드러처 신호를 이용한 레이더 시스템
CN102111223A (zh) * 2010-11-11 2011-06-29 宁波安陆通信科技有限公司 一种双波段射频光传输模块
CN102571207A (zh) * 2010-10-29 2012-07-11 中兴通讯(美国)公司 用于光学无线架构的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60320117T2 (de) * 2003-12-10 2008-09-11 Telefonaktiebolaget Lm Ericsson (Publ) Mischervorrichtung
US7653372B2 (en) * 2006-12-29 2010-01-26 Mediatek Singapore Pte Ltd Communication device, mixer and method thereof
JP2010062619A (ja) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 周波数変調信号発生方法及び発生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347203A (zh) * 2000-09-29 2002-05-01 松下电器产业株式会社 调谐器
KR20060005593A (ko) * 2004-07-13 2006-01-18 삼성전자주식회사 쿼드러처 신호를 이용한 레이더 시스템
CN102571207A (zh) * 2010-10-29 2012-07-11 中兴通讯(美国)公司 用于光学无线架构的方法和装置
CN102111223A (zh) * 2010-11-11 2011-06-29 宁波安陆通信科技有限公司 一种双波段射频光传输模块

Also Published As

Publication number Publication date
CN104813583B (zh) 2017-06-20
CN104813583A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
US8761600B2 (en) In-band supervisory data modulation
JP4770998B2 (ja) 光ホモダイン受信機の同期回路及び光ホモダイン受信機
CN104333422A (zh) 一种微波光子混频方法及多功能微波光子混频器
WO2011107055A2 (zh) 基于微波光子技术的信号接收装置和信号接收方法
CN110572215B (zh) 光子辅助射频信号接收方法、装置及同时同频全双工系统
TW201301787A (zh) 振幅調變訊號之光學接收器及訊號處理方法
US20130130632A1 (en) Signal generator circuit and radio transmission and reception device including the same
JP2008113411A (ja) 直接変換構造のデジタルクワドラチャ送受信器で不整合を補償する方法及び装置
JP6318309B2 (ja) 超低位相ノイズ発振器のための振幅ノイズ低減システム及び方法
JP4141973B2 (ja) 直交変調器および直交復調器の誤差補償装置
WO2016174805A1 (ja) 無線アクセスシステム及びその制御方法
CN110808787B (zh) 一种全光镜频抑制混频装置及方法
CN104485893A (zh) 宽带电信号混频器及方法
JP4821912B2 (ja) 光ホモダイン受信機の同期回路及び光ホモダイン受信機
WO2015042920A1 (zh) 正交混频装置
JP2020137109A (ja) 偏波スキューの推定装置及び方法
JP2017175326A (ja) デジタルコヒーレント受信装置、光空間通信システム及びそのドップラーシフト捕捉方法
CN111726164B (zh) 一种面向短波或超短波宽带传输的相干微波光子链路
CN114244279A (zh) 微波光子双正交镜频抑制混频方法及装置
JP6464888B2 (ja) 直交信号生成器及び光電圧制御発振器、並びに、直交信号生成方法及び光電圧制御発振方法
JP2014072682A (ja) 光位相同期ループ回路
Cao et al. Bandpass sampling based digital coherent receiver with free-running local oscillator laser for phase-modulated radio-over-fiber links
JP2013183171A (ja) 光位相同期ループ装置
JP5579656B2 (ja) 光通信システム及び光送信器
JP5692439B1 (ja) 光位相同期ループ回路及び光位相同期方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894373

Country of ref document: EP

Kind code of ref document: A1