WO2015041128A1 - 手押し車 - Google Patents

手押し車 Download PDF

Info

Publication number
WO2015041128A1
WO2015041128A1 PCT/JP2014/074036 JP2014074036W WO2015041128A1 WO 2015041128 A1 WO2015041128 A1 WO 2015041128A1 JP 2014074036 W JP2014074036 W JP 2014074036W WO 2015041128 A1 WO2015041128 A1 WO 2015041128A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
wheel
handcart
control mode
main body
Prior art date
Application number
PCT/JP2014/074036
Other languages
English (en)
French (fr)
Inventor
羽根宜孝
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015537881A priority Critical patent/JP5943154B2/ja
Publication of WO2015041128A1 publication Critical patent/WO2015041128A1/ja
Priority to US15/071,806 priority patent/US9474678B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/001Appliances for aiding patients or disabled persons to walk about on steps or stairways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/002Appliances for aiding patients or disabled persons to walk about with attached or incorporated article carrying means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • A61H2003/043Wheeled walking aids for disabled persons with a drive mechanism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1628Pelvis
    • A61H2201/1633Seat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5061Force sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors

Definitions

  • the present invention relates to a wheelbarrow provided with wheels and driving and controlling the wheels.
  • Patent Document 1 discloses a pair of wheels, a drive unit that drives the pair of wheels, a main body unit that is rotatably supported in the pitch direction with respect to the pair of wheels, and a pitch direction with respect to the main body unit.
  • Auxiliary wheel that is rotatably supported by the wheel, a gyro sensor that detects an angular velocity in the pitch direction of the main body, and a support angle encoder that detects a crossing angle formed by the main body and the support.
  • a car is disclosed.
  • a grip portion is provided at an end of the main body portion opposite to the pair of wheels.
  • a user such as an elderly person or a disabled person grasps the grip part from the side opposite to the auxiliary wheel (that is, uses the auxiliary wheel as a front wheel and a pair of wheels as a rear wheel), and moves the walking auxiliary vehicle in the traveling direction on the ground.
  • the walking assistance vehicle assists the user's walking by performing an inverted pendulum control that controls the rotation of the pair of wheels by the drive unit.
  • the user may try to get over the step by lifting only the auxiliary wheel (front wheel) of the walking assistance vehicle from the ground.
  • the rotation of the pair of wheels (rear wheels) is controlled so that the angle change of the main body becomes zero. Therefore, when the user tries to lift only the auxiliary wheel (front wheel) of the walking assistance vehicle from the ground, the pair of wheels (rear wheel) may rotate and the walking assistance vehicle may move unintentionally.
  • an object of the present invention is to provide a wheelbarrow that prevents the wheelbarrow from moving unintentionally when the user tries to lift the front wheel off the ground.
  • the handcart of the present invention includes a first wheel, a main body that is rotatably supported in the pitch direction with respect to the first wheel, and a first drive unit that drives the first wheel. ing. Furthermore, the handcart of the present invention has a support portion that is rotatably supported in the pitch direction with respect to the main body portion or the rotation axis of the first wheel, and a traveling direction of the support portion by the rotation of the first wheel. A second wheel that is rotatably supported by the support unit in front of the first wheel, an angle change detection unit that detects an angle change of an inclination angle in the pitch direction of the main unit, a main unit, and a support unit. And a crossing angle detector for detecting a crossing angle formed by. A grip portion is provided at the other end of the main body.
  • the handcart of the present invention includes a first control mode for controlling the first drive unit so that the angle change in the pitch direction of the main body unit becomes zero based on the output of the crossing angle detection unit, and the angle A control unit having a second control mode for controlling the first drive unit so that an angle change in the pitch direction of the main body unit becomes zero based on an output of the change detection unit; and a first control mode And a switching unit that switches between the second control mode and the second control mode.
  • the user grips the grip part or places a forearm or the like on the grip part and moves the wheelbarrow in the front-rear direction on the ground.
  • the handcart performs inverted pendulum control in the first control mode to assist the user's walking.
  • the control unit switches the control mode from the first control mode to the second control mode.
  • the user rotates the support portion in the pitch direction. Therefore, the second wheel supported by the support portion also rotates in the pitch direction, and the handcart enters a tipping state in which only the second wheel, which is the front wheel, floats from the ground. In this tipping state, the control unit performs inverted pendulum control in the second control mode based on the output of the angle change detection unit, and assists the user's walking.
  • the user moves the wheelbarrow in the traveling direction until the second wheel reaches above the step. Then, after the second wheel reaches above the step, the user holds the grip portion and gets over the first wheel on the step.
  • the crossing angle between the main body and the support that is output from the crossing angle detector changes.
  • the control unit controls the rotation of the first wheel so that the angle change of the main body unit becomes zero based on the output of the angle change detection unit. That is, in the inverted pendulum control in the second control mode, the control unit does not perform the inverted pendulum control based on the output of the intersection angle detection unit.
  • the wheel does not move unintentionally due to the rotation of the first wheel based on the output of the crossing angle detector.
  • the handcart it is possible to prevent the handcart from moving unintentionally when the user tries to lift the second wheel from the ground.
  • control unit In the first control mode, the control unit is configured to control the first drive unit so that the angle change in the pitch direction of the main body unit becomes zero based on the outputs of both the crossing angle detection unit and the angle change detection unit. It is preferable to control.
  • the first control mode in which the inverted pendulum control is performed based on the outputs of both the crossing angle detection unit and the angle change detection unit is the second control in which the inverted pendulum control is performed based on the output of the angle change detection unit. Compared to the mode, it is possible to perform inverted pendulum control with higher accuracy.
  • the switching unit is connected to a main body part in the support part or an end part on the side supported by the rotating shaft of the first wheel.
  • the control unit switches the control mode from the first control mode to the second control mode. Furthermore, when the switching unit is pressed, the rotation shaft of the first wheel in the support unit or the end of the support unit that is not supported by the main body unit rotates in the pitch direction. Therefore, the second wheel provided at the end also rotates in the pitch direction, and the handcart is in a tipping state in which only the second wheel is lifted from the ground.
  • a blocking unit that prevents the support unit from rotating more than a predetermined angle in the pitch direction with respect to the rotation axis of the main body unit or the first wheel.
  • the user rotates the support unit until the second wheel is blocked by the blocking unit, and uses the second wheel supported by the support unit as a lever.
  • the first wheel can be lifted on the step.
  • a second drive unit that actively rotates the support unit in the pitch direction When the control unit is switched to the second control mode by the switching unit, the control unit preferably instructs the second drive unit to rotate the support unit in the pitch direction.
  • the control unit switches the control mode from the first control mode to the second control mode, and rotates the support unit in the pitch direction by the second drive unit. That is, the handcart is in a tipping state in which only the second wheel, which is the front wheel, floats from the ground.
  • the support portion is automatically rotated in the pitch direction by the operation of the switching portion, so that the user convenience is improved.
  • the handcart includes a step detection unit that detects a step, and the switching unit switches between the first control mode and the second control mode based on a detection result of the step detection unit. Also good. In this case, it is possible to automatically switch between the first control mode and the second control mode.
  • FIG. 1 is an external perspective view of a handcart 100 according to a first embodiment of the present invention. It is a side view of the handcart 100 shown in FIG. It is a front view of the handcart 100 shown in FIG. It is a model side view of the handcart 100 shown in FIG. It is a block diagram which shows the hardware constitutions of the handcart 100 shown in FIG. It is a control block diagram which shows the structure of the control part 21 shown in FIG.
  • FIG. 2 is a schematic side view of the handcart 100 when the handcart 100 illustrated in FIG. 1 assists a user U in walking. It is a model side view at the time of the tipping of the handcart 100 shown in FIG. FIG.
  • FIG. 2 is a schematic side view when a front wheel gets over a step S in the handcart 100 shown in FIG. 1. It is a model side view when a rear wheel gets over the level
  • FIG. 2 is a schematic side view when a front wheel and a rear wheel get over a step S in the handcart 100 shown in FIG. 1.
  • It is a model side view of the handcart 200 which is 2nd Embodiment of this invention.
  • It is a model side view of the handcart 300 which is 3rd Embodiment of this invention.
  • FIG. 1 is an external perspective view of a handcart 100 according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the handcart 100 shown in FIG.
  • FIG. 3 is a front view of the handcart 100 shown in FIG.
  • FIG. 4 is a schematic side view of the handcart 100 shown in FIG.
  • the handcart 100 includes a main body 110, a pair of main wheels 111, a support portion 112, an auxiliary wheel 113, a blocking portion 118, a switching lever 119, an inclination angle sensor 20, a gyro sensor 24, and a drive portion. 25 and a rotary encoder 27 for the support part.
  • the wheelbarrow 100 is a walking auxiliary vehicle that assists the walking of users such as the elderly and the disabled.
  • the handcart 100 is used as a stroller or a shopping cart, for example.
  • the main wheel 111 corresponds to the “first wheel” of the present invention.
  • the auxiliary wheel 113 corresponds to the “second wheel” of the present invention.
  • the switching lever 119 corresponds to the “switching unit” of the present invention.
  • the gyro sensor 24 corresponds to the “angle change detection unit” of the present invention.
  • the drive unit 25 corresponds to the “first drive unit” of the present invention.
  • the support rotary encoder 27 corresponds to the “crossing angle detector” of the present invention.
  • the pair of main wheels 111 are attached to the drive shaft so as to face each other and rotate synchronously.
  • One auxiliary wheel 113 is rotatably supported by the support portion 112 in front of the main wheel 111 with respect to the traveling direction P of the handcart 100. Therefore, in the handcart 100, the pair of main wheels 111 are rear wheels, and one auxiliary wheel 113 is a front wheel.
  • the diameter of each main wheel 111 is longer than the diameter of the auxiliary wheel 113.
  • the drive unit 25 is provided on the bottom surface of the support unit 112 and drives the pair of main wheels 111.
  • the pair of main wheels 111 can be individually driven and rotated.
  • the main wheel 111 has shown the example which is two wheels, it is not restricted to two wheels.
  • the auxiliary wheel 113 is also one wheel is shown, but it is not limited to one wheel.
  • the main body 110 is a frame-like member that extends in the vertical direction.
  • a gyro sensor 24 is attached to the main body 110.
  • One end of the main body 110 is supported so as to be rotatable in the pitch direction with respect to the pair of main wheels 111.
  • a cylindrical grip 116 is provided at the other end of the main body 110 opposite to the main wheel 111.
  • the support portion 112 is a plate-like member that extends parallel to the horizontal ground G with respect to the traveling direction P of the handcart 100.
  • An inclination angle sensor 20 is attached to the upper surface of the support portion 112.
  • the support portion 112 is supported so as to be rotatable in the pitch direction with respect to the rotation axis of the pair of main wheels 111.
  • a switching lever 119 for switching between a first control mode and a second control mode which will be described in detail later, is connected to one end of the support portion 112 on the side supported by the main wheel 111.
  • An auxiliary wheel 113 is provided below the other end portion of the support portion 112 on the side not supported by the main wheel 111.
  • both the main wheel 111 and the auxiliary wheel 113 are in contact with the ground G.
  • a support portion rotary encoder 27 and a blocking portion 118 are provided on the bottom surface of the support portion 112.
  • the blocking unit 118 blocks rotation of the support unit 112 by a predetermined angle (for example, 30 degrees) or more in the pitch direction with respect to the rotation axis of the pair of main wheels 111.
  • the support part 112 in this embodiment is supported so that it can rotate in a pitch direction with respect to the rotating shaft of a pair of main wheel 111, it is not restricted to this.
  • the support part 112 at the time of implementation may be supported so as to be rotatable in the pitch direction with respect to the main body part 110.
  • the grip 116 is provided with a user interface (user I / F 28 shown in FIG. 5 described later).
  • the user I / F 28 is provided with a power switch of the handcart 100 and the like.
  • the user grips the grip part 116 from the auxiliary wheel 113 side or places a forearm or the like on the grip part 116 and moves the handcart 100 on the ground G in the front-rear direction.
  • FIG. 5 is a block diagram showing a hardware configuration of the handcart 100 shown in FIG.
  • the handcart 100 includes an inclination angle sensor 20, a control unit 21, a ROM 22, a RAM 23, a gyro sensor 24, a driving unit 25, a main wheel rotary encoder 26, a support unit rotary encoder 27, and a user I / F 28.
  • the control unit 21 is a functional unit that comprehensively controls the handcart 1 and reads out a program stored in the ROM 22 and develops the program in the RAM 23 to realize various operations.
  • the main wheel rotary encoder 26 detects the rotation angle of the main wheel 111 and outputs the detection result to the control unit 21.
  • the control unit 21 differentiates the rotation angle of the main wheel 111 input from the main wheel rotary encoder 26 and calculates the angular velocity of the main wheel 111.
  • the rotary encoder 27 for support part detects the crossing angle which is an angle formed by the main body part 110 and the support part 112 and outputs the detection result to the control part 21.
  • the tilt angle sensor 20 detects the tilt angle of the support part 112 with respect to the vertical direction and outputs it to the control part 21.
  • the gyro sensor 24 detects the angular velocity in the pitch direction of the main body 110 (the rotation direction about the rotation axis of the main wheel 111 in FIG. 1) and outputs the angular velocity to the control unit 21.
  • the present invention is not limited to this, and any other sensor may be used.
  • the gyro sensor 24 is used as a means for detecting a change in the inclination angle of the main body 110 in the pitch direction, but the present invention is not limited thereto.
  • the main body 110 includes an inclination angle sensor (not shown) instead of the gyro sensor 24, the inclination angle velocity of the main body 110 is calculated by differentiating the inclination angle of the main body 110 detected by the inclination angle sensor.
  • an acceleration sensor can be used, and any other sensor may be used.
  • the control unit 21 has a first control mode and a second control mode.
  • the control unit 21 is configured so that the angle change in the pitch direction of the main body 110 becomes zero based on the detection results of the gyro sensor 24 and the support rotary encoder 27, and The main wheel 111 is rotated by the drive unit 25 so that the tilt angle with respect to the vertical direction of the main body 110 becomes a target value (for example, a value close to 0 or 0), and the inverted pendulum control is performed.
  • a target value for example, a value close to 0 or 0
  • the control unit 21 is configured so that the angle change in the pitch direction of the main body 110 becomes zero based on the detection result of the gyro sensor 24 and the inclination angle of the main body 110 with respect to the vertical direction.
  • Inverted pendulum control is performed by rotating the main wheel 111 by the drive unit 25 so that becomes a target value (for example, 0 or a value close to 0).
  • FIG. 6 is a control block diagram showing the configuration of the control unit 21 shown in FIG.
  • the control unit 21 includes a target angular velocity calculation unit 211, a torque command generation unit 212, an inclination estimation unit 213, an inclination angle detection unit 214, and an inclination angular velocity detection unit 216.
  • the tilt angle detection unit 214 calculates the current tilt angle ⁇ 1 of the main body 110 from the intersection angle ⁇ 2 between the main body 110 and the support 112 output from the support rotary encoder 27 ( (See FIG. 4).
  • the support portion 112 is supported by the rotation shaft of the main wheel 111 so as to be parallel to the horizontal ground G. Therefore, when the crossing angle ⁇ 2 is 90 degrees, the inclination angle ⁇ 1 of the main body 110 becomes 0 degrees.
  • the tilt angle detection unit 214 tilts the main body 110 backward with respect to the traveling direction P when the crossing angle ⁇ 2 increases, and moves the main body 110 forward with respect to the traveling direction P when the crossing angle ⁇ 2 decreases. Assuming that it is inclined, the current inclination angle ⁇ 1 of the main body 110 is estimated.
  • the tilt angle detection unit 214 integrates the output value (tilt angular velocity) of the gyro sensor 24 to calculate the current tilt angle ⁇ 1 of the main body 110.
  • the target angular velocity calculation unit 211 sets a preset target inclination angle (here, an inclination angle slightly inclined backward from 0 degrees with respect to the vertical direction) and the current main body calculated by the inclination angle detection unit 214.
  • a difference value between the inclination angle ⁇ 1 of the unit 110 and the inclination angle velocity of the main body 110 is calculated so that the difference value becomes zero.
  • the tilt angular velocity detection unit 216 calculates the tilt angular velocity of the main body 110 based on the output of the gyro sensor 24 in both the first and second control modes.
  • the current angular velocity of the main body 110 is input from the gyro sensor 24, but the present invention is not limited to this.
  • the inclination angular velocity detection unit 216 differentiates the intersection angle ⁇ 2 between the main body part 110 and the support part 112 input from the support part rotary encoder 27 to obtain the current main body part 110.
  • the inclination angular velocity may be calculated.
  • the torque command generation unit 212 inputs a difference value between the inclination angular velocity calculated by the target angular velocity calculation unit 211 and the current inclination angle velocity of the main body 110 calculated by the inclination angular velocity detection unit 216.
  • the applied torque is calculated such that the value becomes zero.
  • the inclination estimation unit 213 calculates an offset torque for compensating the gravitational torque generated by the inclination angle of the ground G according to the inclination angle of the ground G estimated based on the value of the inclination angle sensor 20.
  • control unit 21 adds the offset torque to the applied torque calculated by the torque command generation unit 212 and outputs it to the drive unit 25.
  • the driving unit 25 drives a motor that rotates a shaft attached to the main wheel 111.
  • the drive unit 25 applies the torque input from the control unit 21 to the motor of the main wheel 111 to rotate the main wheel 111.
  • the handcart 100 performs the inverted pendulum control in the first and second control modes, and maintains the state in which the main body 110 faces the vertical direction. Therefore, even when the user grasps the grip portion 116 and pushes the grip portion 116 forward, the main wheel 111 rotates and the support portion 112 also moves forward, and the posture of the main body 110 is kept constant. .
  • the handcart 100 performs inverted pendulum control in the first and second control modes to assist the user in walking.
  • the first control mode in which the inverted pendulum control is performed based on the outputs of both the gyro sensor 24 and the support rotary encoder 27 is the second control mode in which the inverted pendulum control is performed based only on the output of the gyro sensor 24. Compared to the above, it is possible to perform the inverted pendulum control with higher accuracy.
  • FIG. 7 is a schematic side view of the handcart 100 when the handcart 100 shown in FIG. 1 assists the user U in walking.
  • FIG. 8 is a schematic side view of the handcart 100 shown in FIG. 1 at the time of tipping.
  • FIG. 9 is a schematic side view of the wheelbarrow 100 shown in FIG.
  • FIG. 10 is a schematic side view when the rear wheel climbs over the step S in the handcart 100 shown in FIG.
  • FIG. 11 is a schematic side view of the handcart 100 shown in FIG.
  • the pair of main wheels 111 are rear wheels, and one auxiliary wheel 113 is a front wheel.
  • the height of the step S is higher than the radius of the main wheel 111.
  • a large step S may be reached as shown in FIG.
  • the handcart 100 performs the inverted pendulum control of the first control mode based on the outputs of both the gyro sensor 24 and the support rotary encoder 27 to assist the user U in walking.
  • the control unit 21 switches the control mode from the first control mode to the second control mode. Further, when the switching lever 119 is pressed, the other end portion of the support portion 112 on the side not supported by the main wheel 111 rotates in the pitch direction Q as shown in FIG. Therefore, the auxiliary wheel 113 supported by the other end also rotates in the pitch direction Q, and the handcart 100 is in a tipping state in which only the auxiliary wheel 113 that is the front wheel floats from the ground G. In this tipping state, the control unit 21 performs the inverted pendulum control in the second control mode based on the output of only the gyro sensor 24 and assists the user U in walking.
  • the user U moves the handcart 100 in the traveling direction P until the pair of main wheels 111 contacts the step S as shown in FIG.
  • the rotation angle of the support portion 112 is limited to a predetermined angle (for example, 30 degrees) by the blocking portion 118. Therefore, the user U rotates the support portion 112 as much as possible until it is blocked by the blocking portion 118, and uses the auxiliary wheel 113 supported by the support portion 112 as a lever to support the pair of main wheels 111. It can be lifted on the step S.
  • a predetermined angle for example, 30 degrees
  • the control unit 21 switches the control mode from the second control mode to the first control mode.
  • the handcart 100 performs the inverted pendulum control in the first control mode on the step S based on the outputs of both the gyro sensor 24 and the support rotary encoder 27 to assist the user U in walking.
  • the control unit 21 controls the rotation of the pair of main wheels 111 so that the angle change of the main body 110 becomes zero based on the output of the gyro sensor 24 alone. Yes. That is, in the inverted pendulum control in the second control mode, the control unit 21 does not perform the inverted pendulum control based on the output of the support unit rotary encoder 27.
  • the pair of main wheels 111 is rotated based on the output of the support portion rotary encoder 27 and the handcart 100 is not intended. It will not move.
  • the handcart 100 when the user U tries to lift the auxiliary wheel 113 from the ground G, the handcart 100 can be prevented from moving unintentionally.
  • FIG. 12 is a schematic side view of a handcart 200 according to the second embodiment of the present invention.
  • the difference of the handcart 200 of the second embodiment from the handcart 100 of the first embodiment is that a switching wire 219 is provided instead of the switching lever 119.
  • One end of the switching wire 219 is connected to the grip portion 116, and the other end of the switching wire 219 is connected to the other end portion of the support portion 112 that is not supported by the main wheel 111.
  • description is abbreviate
  • the control unit 21 switches the control mode from the first control mode to the second control mode. Furthermore, the other end portion of the support portion 112 on the side not supported by the main wheel 111 is pulled by the switching wire 219 and rotates in the pitch direction. That is, the handcart 200 is in a tipping state in which only the auxiliary wheel 113 that is the front wheel floats from the ground G, and performs inverted pendulum control in the second control mode.
  • FIG. 13 is a schematic side view of a handcart 300 according to the third embodiment of the present invention.
  • the difference between the handcart 300 of the third embodiment and the handcart 100 of the first embodiment is that a drive unit 319 and a changeover switch are provided instead of the changeover lever 119.
  • the drive unit 319 corresponds to the “second drive unit” of the present invention
  • the changeover switch corresponds to the “switching unit” of the present invention.
  • the support unit 112 is provided with a drive unit 319 that actively rotates the support unit 112 in the pitch direction.
  • the user I / F 28 is provided with a changeover switch for switching between the first control mode and the second control mode.
  • control unit 21 When the control unit 21 is switched to the second control mode by the changeover switch, the control unit 21 instructs the drive unit 319 to rotate the support unit 112 in the pitch direction.
  • the control unit 21 switches the control mode from the first control mode to the second control mode, and drives the other end of the support unit 112 on the side not supported by the main wheel 111 in the pitch direction. Rotate by. That is, the handcart 300 is in a tipping state in which only the auxiliary wheel 113 that is the front wheel floats from the ground G, and performs inverted pendulum control in the second control mode.
  • the handcart 300 since the support part 112 is automatically rotated in the pitch direction by the operation of the changeover switch, the user-friendliness is improved.
  • the handcart 300 may also have a configuration in which the user manually shifts to the tipping state like the handcart 100 or the handcart 200.
  • FIG. 14 is an external perspective view of a handcart 100A provided with a level difference detection unit.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 15 is a block diagram showing a configuration of the handcart 100A. Components that are the same as those in FIG. 5 are given the same reference numerals, and descriptions thereof are omitted.
  • the handcart 100 ⁇ / b> A includes a level difference detection unit 29 and an LED lamp 30.
  • the level difference detection unit 29 detects a level difference existing in front of the traveling direction.
  • the level difference detection unit 29 includes a distance measuring sensor such as a laser radar, a millimeter wave radar, or an ultrasonic sensor.
  • the control unit 21 determines that a step exists when the distance from the target detected by the step detection unit 29 is less than a predetermined value (for example, 0.5 m).
  • the level difference detection unit 29 may be an image sensor such as a camera. When detecting a step by image recognition using a camera or the like, it is also possible to measure the distance from the image difference (parallax) between the two cameras to the step. It is also possible to detect a step with a shock sensor. When the shock sensor detects contact with an obstacle, the control unit 21 determines that the auxiliary wheel 113 has touched the step.
  • the control unit 21 When the level difference is detected by the level difference detection unit 29, the control unit 21 turns on or blinks the LED lamp 30, and notifies the user that there is a level difference in the forward direction, thereby urging the transition to the tipping state.
  • the notification is not limited to a visual display such as an LED lamp, but may be a notification that uses a voice such as “There is a step”.
  • the control unit 21 performs an operation of switching the control mode from the first control mode to the second control mode. Thereby, when the user shifts to the tipping state, the main wheel 111 does not rotate and the handcart 100 does not move unintentionally.
  • control unit 21 switches the control mode from the first control mode to the second control mode, and the driving unit 319 performs the control.
  • An operation of floating the auxiliary wheel 113 from the ground G may be performed.
  • the control unit 21 corresponds to the “switching unit” of the present invention.
  • control unit 21 returns to the first control mode when the step detection unit 29 stops detecting the step, for example, when the movement distance of the own device exceeds the distance measured by the distance measuring sensor.
  • the movement distance of the own device can be calculated from the value of the main wheel rotary encoder 26.
  • control unit 21 may return to the first control mode after elapse of a predetermined time, or may return to the first control mode when the tipping by the user is released.

Abstract

 手押し車(100)は、本体部(110)と、一対の主輪(111)と、支持部(112)と、補助輪(113)と、阻止部(118)と、切替レバー(119)と、傾斜角センサ(20)と、ジャイロセンサ(24)と、駆動部(25)と、支持部用ロータリエンコーダ(27)と、を備えている。支持部用ロータリエンコーダ(27)は、本体部(110)と支持部(112)との成す角度である交差角を検知し、検知結果を制御部(21)に出力する。ジャイロセンサ(24)は、本体部(110)のピッチ方向の角速度を検知し、制御部(21)に出力する。制御部(21)は、第1の制御モードにおいてジャイロセンサ(24)および支持部用ロータリエンコーダ(27)の検知結果に基づいて倒立振子制御を行う。制御部(21)は、第2の制御モードにおいてジャイロセンサ(24)の検知結果に基づいて倒立振子制御を行う。

Description

手押し車
 この発明は、車輪を備え、当該車輪を駆動、制御する手押し車に関するものである。
 従来、車輪を駆動、制御して倒立振子制御を行う手押し車が知られている。例えば、特許文献1には、一対の車輪と、一対の車輪を駆動する駆動部と、一対の車輪に対してピッチ方向に回転可能に支持されている本体部と、本体部に対してピッチ方向に回転可能に支持されている補助輪と、本体部のピッチ方向の角速度を検知するジャイロセンサと、本体部と支持部とが成す交差角を検出する支持部角度エンコーダと、を備えた歩行補助車が開示されている。本体部における一対の車輪とは逆側の端には、把持部が設けられている。
 高齢者、身障者等のユーザは、補助輪とは逆側から把持部を握り(即ち、補助輪を前輪に一対の車輪を後輪にして)、当該歩行補助車を地面上で進行方向へ動かす。当該歩行補助車は、駆動部により一対の車輪の回転を制御する倒立振子制御を行うことで、ユーザの歩行を補助している。
国際公開第2012/114597号パンフレット
 例えば進行方向に大きな段差が存在した場合、ユーザは、当該歩行補助車の補助輪(前輪)だけを地面から浮かせて段差を乗り越えようとする可能性がある。
 しかしながら、倒立振子制御では、本体部の角度変化が0になるように一対の車輪(後輪)の回転を制御する。そのため、ユーザが当該歩行補助車の補助輪(前輪)だけを地面から浮かせようとしたとき、一対の車輪(後輪)が回転して歩行補助車が意図せず動いてしまう可能性がある。
 そこで、この発明は、ユーザが前輪を地面から浮かせようとしたときに手押し車が意図せず動くことを防止する手押し車を提供することを目的とする。
 本発明の手押し車は、第1の車輪と、第1の車輪に対してピッチ方向に回転可能に支持されている本体部と、第1の車輪を駆動する第1の駆動部と、を備えている。さらに、本発明の手押し車は、本体部または第1の車輪の回転軸に対してピッチ方向に回転可能に支持されている支持部と、第1の車輪の回転による支持部の進行方向に対して第1の車輪より前方で支持部に回転可能に支持されている第2の車輪と、本体部のピッチ方向の傾斜角の角度変化を検知する角度変化検知部と、本体部と支持部とが成す交差角を検出する交差角検知部と、を備えている。本体部の他端には把持部が設けられる。
 さらに、本発明の手押し車は、交差角検知部の出力に基づいて、本体部のピッチ方向への角度変化が0となるように第1の駆動部を制御する第1の制御モードと、角度変化検知部の出力に基づいて、本体部のピッチ方向への角度変化が0となるように第1の駆動部を制御する第2の制御モードと、を有する制御部と、第1の制御モードと第2の制御モードとを切り替える切替部と、を備えている。
 この構成においてユーザは、把持部を握る、或いは前腕等を把持部に載せ、手押し車を地面上で前後方向へ動かす。手押し車は、第1の制御モードにおいて倒立振子制御を行い、ユーザの歩行を補助する。
 そして、手押し車の第2の車輪だけを地面から浮かせて段差を乗り越えようとする場合、ユーザは、切替部によって第1の制御モードから第2の制御モードに切り替える。これにより、制御部は、制御モードを第1の制御モードから第2の制御モードに切り替える。また、ユーザが支持部をピッチ方向へ回転させる。そのため、支持部に支持されている第2の車輪もピッチ方向へ回転し、手押し車は、前輪である第2の車輪だけが地面から浮いたティッピング状態になる。このティッピング状態において制御部は、角度変化検知部の出力に基づいて第2の制御モードの倒立振子制御を行い、ユーザの歩行を補助する。
 手押し車をティッピング状態にした後、第2の車輪が段差の上方に到達するまで、ユーザは、手押し車を進行方向へ移動する。そして、第2の車輪が段差の上方に到達した後、ユーザは、把持部を持って、第1の車輪を段差上に乗り越えさせる。
 ここで、ユーザが手押し車の第2の車輪だけを地面から浮かせようとしたとき、交差角検知部から出力される本体部と支持部の交差角は変化する。
 しかし、第2の制御モードの倒立振子制御では制御部が、角度変化検知部の出力に基づいて、本体部の角度変化が0になるように第1の車輪の回転を制御している。すなわち、第2の制御モードの倒立振子制御では制御部が、交差角検知部の出力に基づいて倒立振子制御を行っていない。
 そのため、ユーザが手押し車の第2の車輪だけを地面から浮かせようとしたとき、交差角検知部の出力に基づいて第1の車輪が回転して手押し車が意図せず動くことが無くなる。
 したがって、手押し車によれば、ユーザが第2の車輪を地面から浮かせようとしたときに手押し車が意図せず動くことを防止できる。
 また、制御部は、第1の制御モードにおいて、交差角検知部および角度変化検知部の両方の出力に基づいて、本体部のピッチ方向への角度変化が0となるように第1の駆動部を制御する、ことが好ましい。
 この構成において、交差角検知部および角度変化検知部の両方の出力に基づいて倒立振子制御を行う第1の制御モードは、角度変化検知部の出力に基づいて倒立振子制御を行う第2の制御モードに比べて、精度の高い倒立振子制御を行うことができる。
 また、切替部は、支持部における本体部または第1の車輪の回転軸に支持されている側の端部に連結されている、ことが好ましい。
 この構成において、手押し車の第2の車輪だけを地面から浮かせて段差を乗り越えようとする場合、ユーザは、切替部を押下する。これにより、制御部は、制御モードを第1の制御モードから第2の制御モードに切り替える。さらに、切替部が押下することで、支持部における第1の車輪の回転軸または本体部に支持されていない側の端部がピッチ方向へ回転する。そのため、当該端部に設けられている第2の車輪もピッチ方向へ回転し、手押し車は、第2の車輪だけが地面から浮いたティッピング状態になる。
 また、本体部または第1の車輪の回転軸に対するピッチ方向への支持部の所定角度以上の回転を阻止する阻止部を備えることが好ましい。
 この構成においてユーザは、第2の車輪が段差の上方に到達した後、阻止部により阻止されるまで支持部が回転し、その支持部に支持されている第2の車輪をてこの支点にすることで、第1の車輪を段差上に持ち上げることができる。
 また、支持部を能動的にピッチ方向に回転させる第2の駆動部を備え、
 制御部は、切替部によって第2の制御モードに切り替えられたとき、支持部をピッチ方向に回転させるよう第2の駆動部に指示する、ことが好ましい。
 この構成では、手押し車の第2の車輪だけを地面から浮かせて段差を乗り越えようとする場合、ユーザは、切替部を操作する。これにより、制御部は、制御モードを第1の制御モードから第2の制御モードに切り替えるとともに、支持部をピッチ方向へ第2の駆動部によって回転させる。すなわち、手押し車は、前輪である第2の車輪だけが地面から浮いたティッピング状態になる。
 したがって、この構成の手押し車によれば、切替部の操作により支持部が自動的にピッチ方向へ回転するため、ユーザの使い勝手が向上する。
 また、手押し車は、段差を検出する段差検出部を備え、前記切替部は、前記段差検出部の検出結果に基づいて、前記第1の制御モードと前記第2の制御モードとを切り替える態様としてもよい。この場合、自動で第1の制御モードと第2の制御モードとを切り替えることができる。
 この発明によれば、ユーザが第2の車輪を地面から浮かせようとしたときに手押し車が意図せず動くことを防止できる。
本発明の第1実施形態である手押し車100の外観斜視図である。 図1に示す手押し車100の側面図である。 図1に示す手押し車100の正面図である。 図1に示す手押し車100の模式側面図である。 図1に示す手押し車100のハードウェア構成を示すブロック図である。 図5に示す制御部21の構成を示す制御ブロック図である。 図1に示す手押し車100がユーザUの歩行を補助している時の手押し車100の模式側面図である。 図1に示す手押し車100のティッピング時の模式側面図である。 図1に示す手押し車100において前輪が段差Sを乗り越えた時の模式側面図である。 図1に示す手押し車100において後輪が段差Sを乗り越える時の模式側面図である。 図1に示す手押し車100において前輪および後輪が段差Sを乗り越えた時の模式側面図である。 本発明の第2実施形態である手押し車200の模式側面図である。 本発明の第3実施形態である手押し車300の模式側面図である。 手押し車100Aの外観斜視図である。 手押し車100Aのハードウェア構成を示すブロック図である。
 以下、本発明の第1実施形態である手押し車100について説明する。
 図1は、本発明の第1実施形態である手押し車100の外観斜視図である。図2は、図1に示す手押し車100の側面図である。図3は、図1に示す手押し車100の正面図である。図4は、図1に示す手押し車100の模式側面図である。
 手押し車100は、本体部110と、一対の主輪111と、支持部112と、補助輪113と、阻止部118と、切替レバー119と、傾斜角センサ20と、ジャイロセンサ24と、駆動部25と、支持部用ロータリエンコーダ27と、を備えている。
 この実施形態において手押し車100は、高齢者、身障者等のユーザの歩行を補助する歩行補助車である。その他、手押し車100は例えば、ベビーカーやショッピングカートとして利用される。
 なお、主輪111が、本発明の「第1の車輪」に相当する。補助輪113が、本発明の「第2の車輪」に相当する。切替レバー119が、本発明の「切替部」に相当する。また、ジャイロセンサ24が、本発明の「角度変化検知部」に相当する。また、駆動部25が、本発明の「第1の駆動部」に相当する。また、支持部用ロータリエンコーダ27が、本発明の「交差角検知部」に相当する。
 一対の主輪111は、互いに対向するよう駆動軸に取り付けられ、同期して回転する。一つの補助輪113は、手押し車100の進行方向Pに対して主輪111より前方で支持部112に回転可能に支持されている。そのため、手押し車100では、一対の主輪111が後輪であり、一つの補助輪113が前輪である。また、各主輪111の直径は、補助輪113の直径より長い。駆動部25は、支持部112の底面に設けられており、一対の主輪111を駆動する。
 なお、一対の主輪111は、それぞれ個別に駆動させ、回転させることも可能である。また、この実施形態においては、主輪111は2輪である例を示しているが、2輪に限られるものではない。同様に、補助輪113も1輪である例を示しているが、1輪に限られるものではない。
 本体部110は、鉛直方向へ延伸する枠状の部材である。本体部110には、ジャイロセンサ24が取り付けられている。本体部110の一端は、一対の主輪111に対してピッチ方向へ回転可能に支持されている。また、本体部110の主輪111とは逆側の他端には円柱状の把持部116が設けられている。
 支持部112は、手押し車100の進行方向Pに対して、水平な地面Gと平行に延びる板状の部材である。支持部112の上面には傾斜角センサ20が取り付けられている。支持部112は、一対の主輪111の回転軸に対してピッチ方向に回転可能に支持されている。
 支持部112における主輪111に支持されている側の一端部には、詳細を後述する第1の制御モードと第2の制御モードとを切り替える切替レバー119が連結されている。また、支持部112における主輪111に支持されていない側の他端部の下方には、補助輪113が設けられている。これにより、主輪111と補助輪113の両方が地面Gに接するようになっている。
 また、支持部112の底面には、詳細を後述する支持部用ロータリエンコーダ27と、阻止部118と、が設けられている。阻止部118は、一対の主輪111の回転軸に対するピッチ方向への支持部112の所定角度(例えば30度)以上の回転を阻止する。
 なお、本実施形態における支持部112は、一対の主輪111の回転軸に対してピッチ方向に回転可能に支持されているが、これに限るものではない。実施の際の支持部112は、本体部110に対してピッチ方向に回転可能に支持されていてもよい。
 把持部116には、ユーザインタフェース(後述の図5に示すユーザI/F28)が設けられている。ユーザI/F28には、手押し車100の電源スイッチ、等が設けられている。
 以上の構成においてユーザは、補助輪113側から把持部116を握る、或いは前腕等を把持部116に載せ、手押し車100を地面G上で前後方向へ動かす。
 次に、手押し車100の構成および基本動作について説明する。
 図5は、図1に示す手押し車100のハードウェア構成を示すブロック図である。手押し車100は、傾斜角センサ20、制御部21、ROM22、RAM23、ジャイロセンサ24、駆動部25、主輪用ロータリエンコーダ26、支持部用ロータリエンコーダ27、およびユーザI/F28を備えている。
 制御部21は、手押し車1を統括的に制御する機能部であり、ROM22に記憶されているプログラムを読み出し、当該プログラムをRAM23に展開することで種々の動作を実現する。
 主輪用ロータリエンコーダ26は、主輪111の回転角度を検知し、検知結果を制御部21に出力する。制御部21は、主輪用ロータリエンコーダ26から入力される主輪111の回転角度を微分し、主輪111の角速度を算出する。
 支持部用ロータリエンコーダ27は、本体部110と支持部112との成す角度である交差角を検知し、検知結果を制御部21に出力する。
 傾斜角センサ20は、鉛直方向に対する支持部112の傾斜角を検知し、制御部21に出力する。
 ジャイロセンサ24は、本体部110のピッチ方向(図1における主輪111の回転軸を中心とする回転方向)の角速度を検知し、制御部21に出力する。
 なお、本実施形態では、交差角を検知する手段として、支持部用ロータリエンコーダ27を用いる例を示したが、これに限るものではなく、その他どの様なセンサを用いてもよい。
 同様に、本実施形態では、本体部110のピッチ方向の傾斜角の角度変化を検知する手段として、ジャイロセンサ24を用いる例を示したが、これに限るものではない。ジャイロセンサ24の代わりに傾斜角センサ(不図示)を本体部110に備えている場合、当該傾斜角センサで検知した本体部110の傾斜角度を微分して本体部110の傾斜角速度を算出する。また、加速度センサを用いることも可能であるし、その他どの様なセンサを用いてもよい。
 制御部21は、第1の制御モードと第2の制御モードとを有する。
 詳述すると、制御部21は、第1の制御モードにおいて、ジャイロセンサ24および支持部用ロータリエンコーダ27の検知結果に基づいて、本体部110のピッチ方向の角度変化が0となるように、かつ本体部110の鉛直方向に対する傾斜角度が目標値(例えば、0や0に近い値)になるように、駆動部25により主輪111を回転し、倒立振子制御を行う。
 一方、制御部21は、第2の制御モードにおいて、ジャイロセンサ24の検知結果に基づいて、本体部110のピッチ方向の角度変化が0となるように、かつ本体部110の鉛直方向に対する傾斜角度が目標値(例えば、0や0に近い値)になるように、駆動部25により主輪111を回転し、倒立振子制御を行う。
 この倒立振子制御について以下詳述する。
 図6は、図5に示す制御部21の構成を示す制御ブロック図である。
 制御部21は、目標角速度計算部211、トルク指令生成部212、斜度推定部213、傾斜角度検出部214、および傾斜角速度検出部216、を有している。
 傾斜角度検出部214は、第1の制御モードにおいて、支持部用ロータリエンコーダ27から出力された本体部110と支持部112の交差角θ2から、現時点の本体部110の傾斜角度θ1を算出する(図4参照)。
 詳述すると、前述のように、支持部112は、水平な地面Gと平行になるように主輪111の回転軸に支持されている。そのため、交差角θ2が90度である場合に本体部110の傾斜角度θ1が0度になる。傾斜角度検出部214は、交差角θ2が大きくなる場合に本体部110が進行方向Pに対して後方に傾斜し、交差角θ2が小さくなる場合に本体部110が進行方向Pに対して前方に傾斜しているとして、現時点の本体部110の傾斜角度θ1を推定する。
 一方、傾斜角度検出部214は、第2の制御モードにおいて、ジャイロセンサ24の出力値(傾斜角速度)を積分して、現時点の本体部110の傾斜角度θ1を算出する。
 そして、目標角速度計算部211は、予め設定された目標傾斜角度(ここでは、鉛直方向に対して0度より少し後方に傾いた傾斜角度)と、傾斜角度検出部214で算出された現時点の本体部110の傾斜角度θ1と、の差分値を入力し、この差分値が0となるような本体部110の傾斜角速度を算出する。
 傾斜角速度検出部216は、第1、第2の制御モードの両方において、ジャイロセンサ24の出力に基づいて本体部110の傾斜角速度を算出する。
 なお、この実施形態では、現時点の本体部110の傾斜角速度がジャイロセンサ24から入力されているが、これに限るものではない。実施の際、傾斜角速度検出部216は、第1の制御モードに限り、支持部用ロータリエンコーダ27から入力された本体部110と支持部112の交差角θ2を微分して、現時点の本体部110の傾斜角速度を算出してもよい。
 そして、トルク指令生成部212は、目標角速度計算部211で算出された傾斜角速度と、傾斜角速度検出部216で算出された現時点の本体部110の傾斜角速度と、の差分値を入力し、この差分値が0となるような印加トルクを算出する。
 一方、斜度推定部213は、傾斜角センサ20の値に基づいて推定した地面Gの傾斜角に応じて、当該地面Gの傾斜角によって生じる重力トルクを補償するためのオフセットトルクを算出する。
 このようにして、制御部21は、トルク指令生成部212で算出された印加トルクに、オフセットトルクを加算し、駆動部25に出力する。
 駆動部25は、主輪111に取り付けられた軸を回転させるモータを駆動する。駆動部25は、制御部21から入力されたトルクを主輪111のモータに印加し、主輪111を回転させる。
 以上のようにして手押し車100は、第1、第2の制御モードにおいて倒立振子制御を行い、本体部110が鉛直方向を向いている状態を維持する。そのため、ユーザが把持部116を握って把持部116を前方向へ押した場合でも、主輪111が回転して支持部112も前方向へ移動し、本体部110の姿勢は一定に保たれる。
 反対に、ユーザが把持部116を握って把持部116を後方向へ引いた場合でも、主輪111が回転して支持部112も後方向へ移動し、本体部110の姿勢は一定に保たれる。このようにして手押し車100は、第1、第2の制御モードにおいて倒立振子制御を行い、ユーザの歩行を補助する。
 なお、ジャイロセンサ24及び支持部用ロータリエンコーダ27の両方の出力に基づいて倒立振子制御を行う第1の制御モードは、ジャイロセンサ24の出力のみに基づいて倒立振子制御を行う第2の制御モードに比べて、精度の高い倒立振子制御を行うことができる。
 次に、ユーザUが手押し車100の補助輪113だけを地面Gから浮かせて段差Sを乗り越えようとする場面について説明する。
 図7は、図1に示す手押し車100がユーザUの歩行を補助している時の手押し車100の模式側面図である。図8は、図1に示す手押し車100のティッピング時の模式側面図である。図9は、図1に示す手押し車100において前輪が段差Sを乗り越えた時の模式側面図である。図10は、図1に示す手押し車100において後輪が段差Sを乗り越える時の模式側面図である。図11は、図1に示す手押し車100において前輪および後輪が段差Sを乗り越えた時の模式側面図である。
 ここで、前述したように、手押し車100では、一対の主輪111が後輪であり、一つの補助輪113が前輪である。また、本実施形態において段差Sの高さは、主輪111の半径より大きい高さとする。
 ユーザUが第1の制御モードで手押し車100に補助されて進行方向Pへ歩行しているとき、図7に示すように、大きな段差Sに差し掛かる場合がある。このとき、手押し車100は、ジャイロセンサ24及び支持部用ロータリエンコーダ27の両方の出力に基づいて第1の制御モードの倒立振子制御を行い、ユーザUの歩行を補助している。
 手押し車100の補助輪113だけを地面Gから浮かせて段差Sを乗り越えようとする場合、ユーザUは、切替レバー119を踏み、切替レバー119を押下する。これにより、制御部21は、制御モードを第1の制御モードから第2の制御モードに切り替える。さらに、切替レバー119が押下することで、図8に示すように、支持部112における主輪111に支持されていない側の他端部がピッチ方向Qへ回転する。そのため、当該他端部に支持されている補助輪113もピッチ方向Qへ回転し、手押し車100は、前輪である補助輪113だけが地面Gから浮いたティッピング状態になる。このティッピング状態において制御部21は、ジャイロセンサ24のみの出力に基づいて第2の制御モードの倒立振子制御を行い、ユーザUの歩行を補助する。
 手押し車100をティッピング状態にした後、図9に示すように一対の主輪111が段差Sに接触するまで、ユーザUは、手押し車100を進行方向Pへ移動する。
 そして、一対の主輪111が段差Sに接触したとき、ユーザUは、図10に示すようにてこの原理を利用して、一対の主輪111を段差S上に乗り越えさせる。
 詳述すると、支持部112の回転角度は、前述したように、阻止部118により所定角度(例えば30度)の範囲内に制限されている。そのため、ユーザUは、阻止部118により阻止されるまで支持部112が最大限回転し、その支持部112に支持されている補助輪113をてこの支点にすることで、一対の主輪111を段差S上に持ち上げることができる。
 図11に示すように、補助輪113及び一対の主輪111が段差Sを乗り越えた後、ユーザUは、切替レバー119を持ち上げて元の状態に戻し、補助輪113をピッチ方向Rへ回転させる。これにより、手押し車100のティッピング状態が解消され、補助輪113及び一対の主輪111が段差Sの上面に接地する。また、制御部21は、制御モードを第2の制御モードから第1の制御モードに切り替える。
 そのため、手押し車100は、ジャイロセンサ24及び支持部用ロータリエンコーダ27の両方の出力に基づいて第1の制御モードの倒立振子制御を段差S上で行い、ユーザUの歩行を補助する。
 ここで、図8に示すように、ユーザUが手押し車100の補助輪113だけを地面Gから浮かせようとしたとき、支持部用ロータリエンコーダ27から出力される本体部110と支持部112の交差角θ2は変化する。
 しかし、第2の制御モードの倒立振子制御では制御部21が、ジャイロセンサ24のみの出力に基づいて、本体部110の角度変化が0になるように一対の主輪111の回転を制御している。すなわち、第2の制御モードの倒立振子制御では制御部21が、支持部用ロータリエンコーダ27の出力に基づいて、倒立振子制御を行っていない。
 そのため、ユーザUが手押し車100の補助輪113だけを地面Gから浮かせようとしたとき、支持部用ロータリエンコーダ27の出力に基づいて一対の主輪111が回転して手押し車100が意図せず動くことが無くなる。
 したがって、手押し車100によれば、ユーザUが補助輪113を地面Gから浮かせようとしたときに手押し車100が意図せず動くことを防止できる。
 以下、本発明の第2実施形態である手押し車200について説明する。
 図12は、本発明の第2実施形態である手押し車200の模式側面図である。
 第2実施形態の手押し車200が第1実施形態の手押し車100と相違する点は、切替レバー119の代わりに切替ワイヤー219を備える点である。切替ワイヤー219の一端は、把持部116に連結しており、切替ワイヤー219の他端は、支持部112における主輪111に支持されていない側の他端部に連結している。その他の構成については、手押し車100と同じであるため、説明を省略する。
 この実施形態では、手押し車200の補助輪113だけを地面Gから浮かせて段差Sを乗り越えようとする場合、ユーザUは、把持部116側から切替ワイヤー219を手前に引っ張る。これにより、制御部21は、制御モードを第1の制御モードから第2の制御モードに切り替える。さらに、支持部112における主輪111に支持されていない側の他端部が、切替ワイヤー219に引っ張られてピッチ方向へ回転する。すなわち、手押し車200は、前輪である補助輪113だけが地面Gから浮いたティッピング状態になり、第2の制御モードで倒立振子制御を行う。
 したがって、手押し車200によれば、手押し車100と同様の効果を奏する。
 以下、本発明の第3実施形態である手押し車300について説明する。
 図13は、本発明の第3実施形態である手押し車300の模式側面図である。
 第3実施形態の手押し車300が第1実施形態の手押し車100と相違する点は、切替レバー119の代わりに駆動部319及び切替スイッチを備える点である。駆動部319が、本発明の「第2の駆動部」に相当し、切替スイッチが、本発明の「切替部」に相当する。その他の構成については、手押し車100と同じであるため、説明を省略する。
 詳述すると、支持部112には、支持部112を能動的にピッチ方向に回転させる駆動部319が設けられている。
 ユーザI/F28には、第1の制御モードと第2の制御モードとを切り替える切替スイッチが設けられている。
 制御部21は、切替スイッチによって第2の制御モードに切り替えられたとき、支持部112をピッチ方向に回転させるよう駆動部319に指示する。
 そのため、この実施形態では、手押し車300の補助輪113だけを地面Gから浮かせて段差Sを乗り越えようとする場合、ユーザUは、切替スイッチを操作する。これにより、制御部21は、制御モードを第1の制御モードから第2の制御モードに切り替えるとともに、支持部112における主輪111に支持されていない側の他端部をピッチ方向へ駆動部319によって回転させる。すなわち、手押し車300は、前輪である補助輪113だけが地面Gから浮いたティッピング状態になり、第2の制御モードで倒立振子制御を行う。
 したがって、手押し車300によれば、手押し車100と同様の効果を奏する。さらに、手押し車300では、切替スイッチの操作により支持部112が自動的にピッチ方向へ回転するため、ユーザの使い勝手が向上する。
 なお、手押し車300においても、手押し車100または手押し車200のようにユーザが手動でティッピング状態に移行させる構成を備えていてもよい。
 次に、図14は、段差検出部を備えた手押し車100Aの外観斜視図である。図1と共通する構成については同一の符号を付し、説明を省略する。図15は、手押し車100Aの構成を示すブロック図である。図5と共通する構成については同一の符号を付し、説明を省略する。
 手押し車100Aは、段差検出部29およびLEDランプ30を備えている。段差検出部29は、進行方向の前方に存在する段差を検出する。段差検出部29は、具体的には、レーザレーダ、ミリ波レーダ、または超音波センサ等の測距センサからなる。制御部21は、段差検出部29が検出した物標との距離が所定の値(例えば0.5m)未満となった場合に、段差が存在すると判断する。あるいは、段差検出部29は、カメラ等の撮像素子であってもよい。カメラ等による画像認識で段差を検出する場合、2台のカメラの画像差(視差)から段差までの距離を測定することも可能である。また、ショックセンサにより段差を検出することも可能である。制御部21は、ショックセンサが障害物との接触を検知した場合、補助輪113が段差に接触したと判断する。
 制御部21は、段差検出部29により段差を検出した場合、LEDランプ30を点灯または点滅させ、進行方向の前方に段差が存在する旨をユーザに報知することで、ティッピング状態への移行を促す。ただし、報知は、LEDランプ等の視覚的な表示による態様に限らず、「段差があります」等の音声により報知を行う態様であってもよい。
 さらに、制御部21は、段差検出部29により段差を検出した場合、制御モードを第1の制御モードから第2の制御モードに切り替える動作を行う。これにより、ユーザがティッピング状態に移行させるときに、主輪111が回転して手押し車100が意図せず動くことは無い。
 なお、図13に示した手押し車300のように、駆動部319を備えている場合、制御部21は、制御モードを第1の制御モードから第2の制御モードに切り替えるとともに、駆動部319によって補助輪113を地面Gから浮かせる動作を行ってもよい。この場合、制御部21が本発明の「切替部」に相当することになる。
 そして、制御部21は、段差検出部29により段差を検出しなくなった場合、例えば自装置の移動距離が測距センサで測定した距離を超えた場合に第1の制御モードに復帰する。自装置の移動距離は、主輪用ロータリエンコーダ26の値から算出することができる。あるいは、制御部21は、所定時間経過後に第1の制御モードに復帰するか、またはユーザによるティッピングが解除されたときに第1の制御モードに復帰するようにしてもよい。
 最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
20…傾斜角センサ 21…制御部 22…ROM 23…RAM24…ジャイロセンサ 25…駆動部 26…主輪用ロータリエンコーダ 27…支持部用ロータリエンコーダ
28…ユーザインタフェース 29…段差検出部 30…LEDランプ100…手押し車 110…本体部 111…主輪 112…支持部113…補助輪
116…把持部 118…阻止部 119…切替レバー 200…手押し車211…目標角速度計算部 212…トルク指令生成部 213…斜度推定部 214…傾斜角度検出部216…傾斜角速度検出部 219…切替ワイヤー 300…手押し車 319…駆動部
G…地面
S…段差 U…ユーザ

Claims (6)

  1.  第1の車輪と、
     前記第1の車輪に対してピッチ方向に回転可能に支持されている本体部と、
     前記第1の車輪を駆動する第1の駆動部と、を備える手押し車であって、
     前記本体部または前記第1の車輪の回転軸に対してピッチ方向に回転可能に支持されている支持部と、
     前記第1の車輪の回転による前記支持部の進行方向に対して前記第1の車輪より前方で前記支持部に回転可能に支持されている第2の車輪と、
     前記本体部のピッチ方向の傾斜角の角度変化を検知する角度変化検知部と、
     前記本体部と前記支持部とが成す交差角を検出する交差角検知部と、
     前記交差角検知部の出力に基づいて、前記本体部の前記ピッチ方向への角度変化が0となるように前記第1の駆動部を制御する第1の制御モードと、前記角度変化検知部の出力に基づいて、前記本体部の前記ピッチ方向への角度変化が0となるように前記第1の駆動部を制御する第2の制御モードと、を有する制御部と、
     前記第1の制御モードと前記第2の制御モードとを切り替える切替部と、を備えている、ことを特徴とする手押し車。
  2.  前記制御部は、前記第1の制御モードにおいて、前記交差角検知部および前記角度変化検知部の両方の出力に基づいて、前記本体部の前記ピッチ方向への角度変化が0となるように前記第1の駆動部を制御する、ことを特徴とする請求項1に記載の手押し車。
  3.  前記切替部は、前記支持部における前記本体部または前記第1の車輪の回転軸に支持されている側の端部に連結されている、ことを特徴とする請求項1又は2に記載の手押し車。
  4.  前記本体部または前記第1の車輪の回転軸に対するピッチ方向への前記支持部の所定角度以上の回転を阻止する阻止部を備える、ことを特徴とする請求項1から3のいずれか1項に記載の手押し車。
  5.  前記支持部を能動的にピッチ方向に回転させる第2の駆動部を備え、
     前記制御部は、前記切替部によって前記第2の制御モードに切り替えられたとき、前記支持部をピッチ方向に回転させるよう前記第2の駆動部に指示する、ことを特徴とする請求項1から4のいずれか1項に記載の手押し車。
  6.  段差を検出する段差検出部を備え、
     前記切替部は、前記段差検出部の検出結果に基づいて、前記第1の制御モードと前記第2の制御モードとを切り替える請求項1から5のいずれか1項に記載の手押し車。
PCT/JP2014/074036 2013-09-17 2014-09-11 手押し車 WO2015041128A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015537881A JP5943154B2 (ja) 2013-09-17 2014-09-11 手押し車
US15/071,806 US9474678B2 (en) 2013-09-17 2016-03-16 Pushcart

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-191841 2013-09-17
JP2013191841 2013-09-17
JP2014-122423 2014-06-13
JP2014122423 2014-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/071,806 Continuation US9474678B2 (en) 2013-09-17 2016-03-16 Pushcart

Publications (1)

Publication Number Publication Date
WO2015041128A1 true WO2015041128A1 (ja) 2015-03-26

Family

ID=52688778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074036 WO2015041128A1 (ja) 2013-09-17 2014-09-11 手押し車

Country Status (3)

Country Link
US (1) US9474678B2 (ja)
JP (1) JP5943154B2 (ja)
WO (1) WO2015041128A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205322A1 (en) * 2016-02-15 2017-08-16 Nabtesco Corporation Electric vehicle
US10351348B2 (en) 2015-10-08 2019-07-16 Southworth Products Corporation Hand truck device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164300B2 (ja) * 2013-10-11 2017-07-19 株式会社村田製作所 手押し車
WO2015098722A1 (ja) * 2013-12-25 2015-07-02 株式会社村田製作所 手押し車
JP5935964B1 (ja) * 2014-09-03 2016-06-15 株式会社村田製作所 手押し車
JP6697768B2 (ja) * 2016-06-29 2020-05-27 パナソニックIpマネジメント株式会社 歩行支援ロボット及び歩行支援方法
DE102017200155A1 (de) * 2017-01-09 2018-07-12 Ford Motor Company Motorangetriebener Einkaufstrolley

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125221A (ja) * 2008-11-28 2010-06-10 Mitsuba Corp 移動体
WO2012114597A1 (ja) * 2011-02-23 2012-08-30 株式会社村田製作所 歩行補助車

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712706A (en) * 1971-01-04 1973-01-23 American Cyanamid Co Retroreflective surface
US4636077A (en) * 1983-04-15 1987-01-13 Matsushita Electric Industrial Co., Ltd. Aligning exposure method
JPS61111282A (ja) * 1984-11-02 1986-05-29 Murata Mach Ltd ワ−パ−クリ−ルへのパツケ−ジ供給装置
JP6123906B2 (ja) * 2013-10-10 2017-05-10 株式会社村田製作所 手押し車

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125221A (ja) * 2008-11-28 2010-06-10 Mitsuba Corp 移動体
WO2012114597A1 (ja) * 2011-02-23 2012-08-30 株式会社村田製作所 歩行補助車

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351348B2 (en) 2015-10-08 2019-07-16 Southworth Products Corporation Hand truck device
EP3205322A1 (en) * 2016-02-15 2017-08-16 Nabtesco Corporation Electric vehicle
JP2018061819A (ja) * 2016-02-15 2018-04-19 ナブテスコ株式会社 電動車両

Also Published As

Publication number Publication date
US9474678B2 (en) 2016-10-25
JPWO2015041128A1 (ja) 2017-03-02
US20160193103A1 (en) 2016-07-07
JP5943154B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5943154B2 (ja) 手押し車
JP6164300B2 (ja) 手押し車
JP6156504B2 (ja) 手押し車
JP5716873B2 (ja) 移動体
WO2014188726A1 (ja) 電動歩行補助装置、電動歩行補助装置の制御プログラムおよび電動歩行補助装置の制御方法
JP6123906B2 (ja) 手押し車
JP6232873B2 (ja) 手押し車およびプログラム
JP6055020B2 (ja) 歩行補助車
JP5958581B2 (ja) 手押し車
US9724261B2 (en) Handcart
WO2015019982A1 (ja) 手押し車
JP5800110B2 (ja) 手押し車
JP5565487B1 (ja) 手押し車
JP6112276B2 (ja) 手押し車
JP2012224250A (ja) 車輪型移動体
JP5704285B2 (ja) 手押し車
JP5979321B2 (ja) 手押し車
WO2014045955A1 (ja) 手押し車
JP5935965B1 (ja) 手押し車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845536

Country of ref document: EP

Kind code of ref document: A1