WO2015037968A1 - 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법 - Google Patents

광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법 Download PDF

Info

Publication number
WO2015037968A1
WO2015037968A1 PCT/KR2014/008626 KR2014008626W WO2015037968A1 WO 2015037968 A1 WO2015037968 A1 WO 2015037968A1 KR 2014008626 W KR2014008626 W KR 2014008626W WO 2015037968 A1 WO2015037968 A1 WO 2015037968A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polymer
axis
scattering sheet
light scattering
Prior art date
Application number
PCT/KR2014/008626
Other languages
English (en)
French (fr)
Inventor
우승아
박영환
박성경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/915,878 priority Critical patent/US9945991B2/en
Priority to EP14844544.8A priority patent/EP3048461B1/en
Priority to JP2016529729A priority patent/JP6209280B2/ja
Priority to CN201480051130.6A priority patent/CN105556349B/zh
Publication of WO2015037968A1 publication Critical patent/WO2015037968A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/108Materials and properties semiconductor quantum wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/952Display

Definitions

  • the present specification provides a light scattering sheet, an electronic device including the same, and a method of manufacturing the same.
  • Quantum dots are semiconductor nanoparticles.
  • a nanometer-sized quantum dot emits light when electrons in an unstable state descend from the conduction band to the valence band. Smaller particles of the quantum dot generate light of a shorter wavelength, and larger particles generate light of a longer wavelength. Therefore, by adjusting the size of the quantum dot to represent the visible light of the desired wavelength, it is also possible to implement a variety of colors at the same time by using quantum dots of different sizes.
  • the color reproduction is good and the brightness is also attracting attention as the next generation light source.
  • the present specification is to provide a light scattering sheet, an electronic device including the same and a method of manufacturing the same.
  • a light scattering sheet comprising a light conversion layer
  • the light conversion layer is a polymer including a crystal portion; And particles including quantum dots dispersed in the crystal part of the polymer, the longest length of which is in the X axis, a direction perpendicular to the plane of the X axis in the Y axis, and a thickness direction in the X and Y axes.
  • the particle size is 0.1 ⁇ m or more and 50 ⁇ m or less in the X axis, 0.1 ⁇ m or more and 50 ⁇ m or less in the Y axis, and 0.1 ⁇ m or more and 50 ⁇ m or less in the Z axis.
  • the present disclosure provides an electronic device including the light scattering sheet.
  • the present specification provides a lighting device including the electronic device.
  • the present disclosure provides a display device including the electronic device.
  • Particles in one embodiment of the present specification have the advantage of scattering light while converting the wavelength of incident light to generate wavelength converted light.
  • One embodiment of the present specification has the advantage that the particles including the quantum dots are uniformly distributed.
  • FIG. 1 illustrates a polymer including crystal parts arranged in a long stretched polymer chain.
  • Figure 2 shows a lamella structure (lamella) consisting of a folded chain of polymer chains repeatedly (folded chain).
  • FIG. 3 illustrates a polymer including a crystal part of a lamellar structure.
  • FIG. 4 is a cross-sectional view of a liquid crystal display device having a light scattering sheet according to an exemplary embodiment of the present specification.
  • Example 5 is a fluorescence microscope measurement results of the light scattering sheet prepared in Example 1 and Comparative Example 1.
  • Example 6 is a graph showing the light emission intensity of the light scattering sheet prepared in Example 1 and Comparative Example 1.
  • SEM 7 is a scanning electron microscope (SEM) measurement result of the particles prepared in Preparation Examples 1 to 5.
  • a light scattering sheet comprising a light conversion layer
  • the light conversion layer is a polymer including a crystal portion; And particles including quantum dots dispersed in the crystal part of the polymer, the longest length of which is in the X axis, a direction perpendicular to the plane of the X axis in the Y axis, and a thickness direction in the X and Y axes.
  • the particle size is 0.1 ⁇ m or more and 50 ⁇ m or less in the X axis, 0.1 ⁇ m or more and 50 ⁇ m or less in the Y axis, and 0.1 ⁇ m or more and 50 ⁇ m or less in the Z axis.
  • the shape of the particles may be particles having a curved surface, and may be, for example, spherical, elliptical, disc shaped, or the like. Specifically, the shape of the particles may be oval or disc shaped.
  • the length of the X axis of the particles may be longer than the length of the Y axis.
  • the length of the X axis of the particle may be longer than the length of the Z axis.
  • the length of the X axis of the particles may be longer than the length of the Y axis, and may be longer than the length of the Z axis.
  • the length of the X axis of the particles may be 1 ⁇ m or more and 20 ⁇ m or less.
  • the Y-axis length of the particles may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • Z-axis length of the particles may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the particle size may be 1 ⁇ m or more and 20 ⁇ m or less on the X axis, 0.1 ⁇ m or more and 10 ⁇ m or less on the Y axis, and 0.1 ⁇ m or more and 10 ⁇ m or less on the Z axis.
  • the particle size is 1 ⁇ m or more and 20 ⁇ m or less on the X axis, 0.1 ⁇ m or more and 10 ⁇ m or less on the Y axis, 0.1 ⁇ m or more and 10 ⁇ m or less on the Z axis, and the length of the X axis of the particle is longer than the length of the Y axis. , May be longer than the length of the Z axis.
  • the particles are prepared by dissolving a polymer including crystals in which the chains are regularly arranged in a solvent to increase the distance of the polymer chain, and infiltrating and cooling the quantum dots between the polymer chains that have been widened to narrow the distance of the polymer chain. , Means particles in which the quantum dots are uniformly dispersed between the polymer chains forming the crystal part.
  • the crystallinity of the recrystallized polymer may be 50% or more. Since the polymer coexists with the crystal part and the amorphous part, there is an advantage that the quantum dots are uniformly dispersed in the particles as a result of using a polymer having 50% or more of the crystal part of the recrystallized polymer.
  • the crystallinity of the recrystallized polymer may be 70% or more.
  • the crystal part and the amorphous part coexist, but at this time, the amorphous part corresponds to the part connecting one crystal part and the other crystal part, and most of them are dispersed in the crystal part.
  • the quantum dots are uniformly dispersed in the particle. It has the advantage of being.
  • the particles may scatter light while generating wavelength conversion light by converting the wavelength of incident light.
  • light scattering may occur due to the size of the particles themselves, and light scattering may occur due to a difference in refractive index between the polymer cured by the curable resin in the light scattering sheet, the polymer constituting the particles, and the quantum dots. .
  • the particles can scatter light while converting the wavelength of the incident light to generate wavelength converted light, there is an advantage of maintaining a certain light efficiency without having to provide an additional light scattering layer or adding light scattering particles. have.
  • the quantum efficiency of the light conversion layer may be 0.05 or more and 0.95 or less.
  • the thickness of the light conversion layer may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the quantum dot is dispersed between the polymer chain of the crystal part. Accordingly, due to the affinity between the quantum dots, the aggregation phenomenon is reduced, the size of the quantum dots present in the particles is small, there is an advantage that it is uniformly distributed.
  • the size of the quantum dots distributed in the particles may be 1 nm or more and 10 nm or less. In this case, there is an advantage of generating a stronger light in a narrower wavelength band than the phosphor.
  • the content of the quantum dots may be 1 wt% or more and 45 wt% based on the total weight of the particles.
  • the content of the particles may be 0.1 wt% or more and 60 wt% based on the total weight of the light scattering sheet.
  • the light conversion layer may include two or more light conversion layers, and each of the two or more light conversion layers may convert wavelengths of incident light into different wavelengths.
  • the light conversion layer may generate white light by converting the wavelength of the incident light.
  • the light conversion layer includes two light conversion layers, and the light conversion layer comprises: a first light conversion sheet converting the wavelength of blue light to generate red light; And a second light conversion sheet converting the wavelength of the blue light to generate the green light.
  • Another embodiment of the present specification has an advantage that the device including the light scattering sheet in which the quantum dots are uniformly dispersed minimizes direct heat transfer during driving and emits light with low energy.
  • Quantum dots in the light scattering sheet of the present specification has the advantage that is well packed by the chain of the polymer crystal portion.
  • Quantum dots in the light scattering sheet of the present specification has the advantage of being stable to changes in the external environment. Specifically, there is a stable advantage such as changes in temperature, contact with moisture or oxygen.
  • Quantum dots in the light scattering sheet of the present specification has the advantage of being stably dispersed because it is wrapped in the chain of the polymer crystal portion.
  • the light scattering sheet may further include a barrier film provided on at least one surface of both surfaces.
  • the present specification provides an electronic device including the light scattering sheet.
  • the electronic device may be a plasma display panel (PDP), a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a thin film transistor.
  • the liquid crystal display device may be any one of a liquid crystal display (LCD-TFT) and a cathode ray tube (CRT).
  • the present disclosure provides a display device including the electronic device.
  • the display device may include a backlight unit and a pixel unit, and the electronic device may be included in at least one of the backlight unit and the pixel unit.
  • the present specification provides a lighting device including the electronic device.
  • the lighting device may be a white lighting device or a colored lighting device.
  • the light emission color of the electronic device of the present disclosure may be adjusted to be included in the lighting device according to the required lighting color.
  • the present specification provides a light scattering sheet for a liquid crystal display device.
  • the present specification provides a liquid crystal display device including a light scattering sheet.
  • the liquid crystal display device may include a light source, a reflection plate, and a light guide plate, and may further include a light scattering sheet for a liquid crystal display device of the present specification provided on the light guide plate.
  • the liquid crystal display 600 includes a light source 610, a reflecting plate 608, and a light guide plate 606, and includes the light for the liquid crystal display device of the present disclosure provided on the light guide plate 606. Scattering sheet 604 may be further included.
  • the liquid crystal display device includes a light source, a reflecting plate, a light guide plate, and a brightness enhancement film, and further includes a light scattering sheet for a liquid crystal display device of the present disclosure provided between the light guide plate and the brightness enhancement film. can do.
  • the liquid crystal display device includes a light source, a reflecting plate, a light guide plate, a diffusion plate, and a brightness enhancement film, and light scattering for the liquid crystal display device of the present disclosure provided between the diffusion plate and the brightness enhancement film.
  • the sheet may further include.
  • the liquid crystal display device includes a reflecting plate, a light guide plate, a diffusion plate, and a brightness enhancement film using a blue light emitting diode (LED), and is provided between the diffusion plate and the brightness enhancement film.
  • the light scattering sheet for liquid crystal display devices may further be included.
  • the method for producing a light scattering sheet of the present specification includes the steps of 1) preparing a mixed solution of a polymer and a solvent including a crystal part.
  • a polymer includes a crystal part in which polymer chains are regularly arranged and an amorphous part in which polymer chains are irregularly arranged.
  • the crystal part of the polymer has a fairly regular molecular arrangement and shows a clear crystal structure by X-ray diffraction.
  • the crystal part of the polymer means a part in which polymer chains are regularly arranged, and the shape thereof may be arranged in various forms according to interactions between polymer chains, environmental conditions in which crystals are formed, stretching degree, and the like.
  • the polymer chains are elongated and regularly arranged, or as shown in FIG. 2, the lamellars (lamella) composed of folded chains repeatedly folded as shown in FIG.
  • the same layered structure can be formed.
  • the type of the polymer is not particularly limited as long as it includes a crystal part.
  • a polyvinyl chloride polymer, a polystyrene polymer, a polyolefin polymer, a nylon polymer, an acrylic polymer, a phenol polymer, a melamine polymer, a silicone polymer It may be a single polymer of one of polyimide-based, polyamide-based, polyurethane-based, polyester-based, polycarbonate-based polymer, or a copolymer of at least two or more of the polymers.
  • the polyvinyl chloride-based polymer, polyethylene-based polymer, polypropylene-based polymer, nylon-based polymer, polyacrylonitrile-based polymer may be a single polymer or at least two or more copolymers of the above polymers.
  • the polymer is rarely entirely crystallized like a metal, and in most cases, a crystal part and an amorphous part coexist as shown in FIGS. 1 and 3.
  • the ratio (percentage) of the crystal part based on the entire polymer may be expressed by the crystallinity of the polymer.
  • the polymer may be a crystalline polymer having more crystal parts than the amorphous part.
  • the higher the crystallinity of the polymer is higher. This is because the more crystal parts of the polymer, the more the quantum dots can be evenly distributed by infiltrating the quantum dots between the polymer chains of the crystal parts of the polymer.
  • the crystallinity of the polymer may be 50% or more. Since the polymer coexists with the crystal part and the amorphous part, there is an advantage that the quantum dots are uniformly dispersed in the particles as a result of using the polymer having 50% or more of the crystal part of the polymer.
  • the polymer may have a curable reactor.
  • the polymer may have a reactor that can be thermally cured or photocured in the curing step of step 5) to be described later.
  • the curable reactor is not particularly limited as long as it can be cured through thermosetting or photocuring.
  • the curable reactor is a reactor including multiple bonds such as an acrylate group, a vinyl group, or a ring bond such as an epoxy. It may be a reactor.
  • the polymer may have a hydrophilic reactor.
  • the hydrophilic reactor of the polymer interacts with the quantum dots penetrated between the polymer chains of the crystal part to help the quantum dots be stably disposed between the polymer chains of the crystal part.
  • the quantum dots are hydrophilic, the quantum dots approached between the polymer chains of the crystal part interact with the hydrophilic reactor of the polymer so that they can be located without escaping between the polymer chains.
  • the interaction between the quantum dots and the hydrophilic reactor of the polymer may form chemical bonds such as covalent bonds, coordination bonds, ionic bonds, hydrogen bonds, polar bonds, and the like depending on the hydrophilic reactor.
  • the hydrophilic reactor of the polymer may have a hydrophilic reactor itself, or may add a hydrophilic reactor through treatment such as acid treatment.
  • the hydrophilic reactor refers to a reactor having high affinity with water, and in general, may be a hydrogen bond or a highly polar reactor.
  • the solvent may be used may be used in the art, it is not particularly limited.
  • Method for producing a light scattering sheet of the present specification includes the step of 2) heating the mixture to a temperature at which the polymer is dissolved in a solvent.
  • the dissolution temperature of the polymer means the temperature at which the polymer is completely dissolved in the solvent to form the polymer solution.
  • the dissolution temperature of the polymer means that the purity of the crystal part is increased by completely decomposing the structure of the existing polymer and forming new crystals again. Therefore, the interaction between polymer and solvent occurs more than the interaction between polymers.
  • step 2) since the interaction between the polymer and the solvent occurs more by raising the mixed solution above the melting temperature of the polymer, the quantum dots added in step 3) between the polymer chains of the crystal part may penetrate between the polymer chains. Can be.
  • a polymer having a dissolution temperature of the polymer may be 70 ° C. or more and 180 ° C. or less. Since the stress in the quantum dot increases as the temperature increases, there is an advantage that can maintain the thermal stability of the quantum dot by using a polymer having a relatively low polymer melting temperature.
  • the method for producing a light scattering sheet of the present specification includes the steps of: 3) adding particles of the quantum dots to the mixed solution and cooling the mixed solution to produce particles in which the polymer is recrystallized.
  • a quantum dot may be added to the mixed liquid just before cooling the mixed liquid. This is to prevent the aggregation of the quantum dots by affinity between the quantum dots before penetrating between the polymer chains having a hydrophobicity as a whole to mix well with the polymer chain.
  • the quantum dots When the quantum dots are added to the mixed liquid, the quantum dots may be added while stirring the mixed liquid. This is to prevent aggregation by the affinity between the quantum dots and to minimize stress in the quantum dots through heat treatment.
  • recrystallized particles of the polymer When recrystallized particles of the polymer are produced by cooling the mixed solution, crystals of the polymer are generated while the quantum dots are evenly dispersed between the polymer chains and the chains.
  • the recrystallized particles of the polymer are particles recrystallized in a state in which quantum dots are dispersed between the polymer chains of the crystal part of the polymer.
  • the recrystallized polymer may be a crystalline polymer having more crystal parts than the amorphous part.
  • the higher the crystallinity of the recrystallized polymer is preferably higher. This is because the more crystal parts of the polymer, the more the quantum dots can be evenly distributed by infiltrating the quantum dots between the polymer chains of the crystal parts of the polymer.
  • the crystallinity of the recrystallized polymer may be 50% or more. Since the polymer coexists with the crystal part and the amorphous part, there is an advantage that the quantum dots are uniformly dispersed in the particles as a result of using the polymer having 50% or more of the crystal part of the polymer.
  • the crystallinity of the recrystallized polymer may be 70% or more.
  • the crystal part and the amorphous part coexist, but at this time, the amorphous part corresponds to the part connecting one crystal part and the other crystal part, and most of them are dispersed in the crystal part.
  • the quantum dots are uniformly dispersed in the particle. It has the advantage of being.
  • the weight ratio of the polymer and the quantum dots in the mixed solution of step 3) may be 100: 1 or more and 100: 90 or less. More specifically, it may be 100: 1 or more and 100: 50 or less.
  • the quantum dot refers to a semiconductor nanocrystal capable of converting the wavelength of incident light into another wavelength.
  • the type of the quantum dot is not particularly limited as long as it can convert the wavelength of the incident light into another wavelength, and may use a quantum dot common in the art.
  • the quantum dots include Si-based nanocrystals, II-VI compound semiconductor nanocrystals, II-V compound semiconductor nanocrystals, III-V compound semiconductor nanocrystals, I-III-VI compound semiconductor nanocrystals, It may be a Group I-III-V compound semiconductor nanocrystal or a Group IV-VI compound semiconductor nanocrystal.
  • the group II-VI compound semiconductor nanocrystals are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeT, CdZn CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeSe, HgZnSeSe, HgZnSeSe, HgZnSeSe, HgZnSeSe
  • III-V compound semiconductor nanocrystals are GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNPs, GaInNAs, GaInPAs, InAlNPs, InAlNAs, and InAlPAs.
  • the group IV-VI compound semiconductor nanocrystal is any one of lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), tin sulfide (SnS), tin selenide (SnSe), and tin telluride (SnTe). Can be.
  • PbS lead sulfide
  • PbSe lead selenide
  • PbTe lead telluride
  • SnS tin sulfide
  • SnSe tin selenide
  • SnTe tin telluride
  • the group II-V compound semiconductor nanocrystals are any one of zinc phosphide (Zn3P2), zinc arsenide (Zn3As2), cadmium phosphide (Cd3P2), cadmium arsenide (Cd3As2), cadmium nitride (Cd3N2), and zinc nitride (Zn3N2). Can be.
  • the I-III-V-based compound semiconductor nanocrystal may be any one of CuInSe 2 and Cu (In, Ga) Se 2 .
  • the size of the particles to be recrystallized in accordance with the cooling rate and the stirring speed in the step 3 is determined
  • step 3 the faster the cooling rate and the stirring rate, the smaller the particle size is generated. This is because the time for the polymer to be recrystallized is relatively small.
  • step 3 the slower the cooling rate and the stirring rate, the larger the size of the particles. This is because the polymer has a relatively long time for the particles to be recrystallized.
  • the stirring speed of step 3) may be 50 rpm or more and 1000 rpm or less.
  • the difference between the final temperature elevated in step 2) and the final cooling temperature (recrystallization temperature) in step 3) may be 20 ° C. or more and 150 ° C. or less.
  • the difference between the elevated final temperature of step 2) and the final cooling temperature (recrystallization temperature) of step 3) may be 20 ° C. or more and 50 ° C. or less.
  • the cooling rate of step 3) may be 1 ° C./min or more and 180 ° C./min or less.
  • the method of cooling the mixed solution may use a method generally used in the art.
  • the container containing the mixed solution may be indirectly cooled by putting it in another container containing a solvent such as water. Can be.
  • the particles produced in step 3) are particles having a curved surface, and have, for example, a spherical shape, an ellipse, and a disc shape.
  • the direction of the longest length is defined as the X axis
  • the direction perpendicular to the plane direction of the X axis is the Y axis
  • the direction perpendicular to the X axis and the Y axis in the thickness direction is defined as the Z axis.
  • the size of the particles formed in step 3) may be 0.1 ⁇ m or more and 50 ⁇ m or less on the X axis.
  • the direction of the longest length is defined as the X axis
  • the direction perpendicular to the plane direction of the X axis is Y axis
  • the direction perpendicular to the X axis and Y axis in the thickness direction is defined as Z axis.
  • the size of the particles formed in step 3) may be 0.1 ⁇ m or more and 50 ⁇ m or less on the Y axis.
  • the direction of the longest length is defined as the X axis
  • the direction perpendicular to the plane direction of the X axis is the Y axis
  • the direction perpendicular to the X axis and the Y axis in the thickness direction is defined as the Z axis.
  • the size of the particles formed in step 3) may be 0.1 ⁇ m or more and 50 ⁇ m or less in the Z-axis.
  • An exemplary embodiment of the present specification may further include washing the particles after the step 3).
  • the method for washing the formed particles is not particularly limited, and a general method in the art may be used.
  • the step of separating the particles formed from the solvent using a centrifuge to wash the particles from the solvent and redispersing again in a fresh solvent is not particularly limited, and a general method in the art.
  • An exemplary embodiment of the present specification may further include sonicating the particles after the step 3).
  • the manufacturing method of the light scattering sheet of the present specification includes the steps of 4) preparing a light scattering sheet using the composition comprising the particles formed in step 3).
  • the content of the particles based on the total weight of the composition may be 0.1% by weight or more and 60% by weight or less.
  • the composition of step 4) may further include at least one of a photoinitiator, a curable resin, and a solvent.
  • the photoinitiator is not limited as long as it can be initiated by light, it can be used that is generally used in the art.
  • the curable resin is not particularly limited as long as it can be cured by a radical initiated by a photoinitiator, and those generally used in the art may be used.
  • the curable resin may be an acrylate resin or a vinyl resin.
  • the solvent is not particularly limited, and those solvents generally used in the art may be used.
  • the composition may further include a photoinitiator and a curable resin without a solvent or a solvent to increase the thickness of the coating.
  • the content of the photoinitiator may be 0.1 wt% or more and 5 wt% or less based on the total weight of the composition.
  • the content of the curable resin based on the total weight of the composition may be 10% by weight or more and 99% by weight or less.
  • the content of the solvent based on the total weight of the composition may be 0 wt% or more and 50 wt% or less.
  • An exemplary embodiment of the present specification may further include sonicating a composition including the particles after step 4).
  • the method is not particularly limited, but for example, the light scattering sheet may be prepared by applying and curing the composition on a substrate.
  • the method of coating on the substrate is not particularly limited as long as it can be applied on a substrate with a uniform thickness, and a method generally used in the art may be used. For example, it may be bar coating, sputtering, or the like.
  • the material of the substrate is not particularly limited, but may be, for example, a plastic substrate, a glass substrate, a silicon substrate, or the like.
  • the method of curing the composition applied on the substrate may be photocurable or thermosetting, preferably, but not limited to photocuring.
  • the thickness of the light scattering sheet prepared in step 4) may be 0.1 ⁇ m or more and 500 ⁇ m or less.
  • the light scattering sheet manufactured in step 4) may be a wavelength changing sheet including two or more kinds of quantum dots, or a wavelength changing sheet including one kind of quantum dots.
  • the light scattering sheet manufactured in step 4) may be a wavelength changing sheet including one kind of quantum dots.
  • the maximum peak wavelength of the light converted by the light scattering sheet prepared in step 4) may be 400 nm or more and 800 nm or less.
  • the peak wavelength refers to a wavelength at which the intensity of the emission wavelength of the quantum dot is maximum.
  • the maximum peak wavelength of the light converted by the light scattering sheet prepared in step 4) may be 580 nm or more and 700 nm or less. Light at this time represents red light.
  • the maximum peak wavelength of the light converted by the light scattering sheet prepared in step 4) may be 500 nm or more and 560 nm or less. Light at this time represents green light.
  • the maximum peak wavelength of the light converted by the light scattering sheet prepared in step 4) may be 420 nm or more and 480 nm or less. Light at this time represents blue light.
  • the method may further include removing the substrate.
  • the method of manufacturing a light scattering sheet of the present specification further includes stacking two or more light scattering sheets prepared in step 4).
  • the method of laminating the two or more light scattering sheets is not particularly limited, and a method generally used in the art may be used.
  • an adhesive layer may be formed and laminated between the two or more light scattering sheets.
  • At least one light scattering sheet may be laminated by repeating one or more steps of applying and curing the composition on the prepared light scattering sheet.
  • the two or more light scattering sheets may be placed in order and bonded by applying heat.
  • each of the two or more light scattering sheets may convert wavelengths of incident light into different wavelengths.
  • each light scattering sheet of the two or more light scattering sheets may include the same quantum dot. That is, the individual light scattering sheet may include one kind of quantum dot.
  • the two or more light scattering sheets may generate white light by converting the wavelength of incident light.
  • the light scattering sheet may include two layers of light scattering sheets.
  • the light scattering sheet includes two layers of light scattering sheets, and the light scattering sheet comprises: a first light scattering sheet converting wavelengths of blue light to generate red light; And a second light scattering sheet converting the wavelength of blue light to generate green light.
  • the light scattering sheet may further include the step of removing the substrate after laminating.
  • polyethylene wax 50 mg was subdivided into a 20 ml vial bottle, 5 g toluene was added, and the solution was heated to 90 ° C. As soon as the solution reached 90 ° C., 120 ⁇ l of a standard concentration of 25 mg / ml toluene CdSe / ZnS red light quantum dot solution was injected. Put the vial into a water bath at room temperature where the vial was pre-set and stir for 1 minute (200 rpm), then remove the vial from the water bath and leave it for 4 minutes in the air. Pull out.
  • TMPTA trimethylolpropane triacrylate
  • Photoinitiators were used with 0.018 g of IRG184 and 0.018 g of D-1173. In this case, 0.318 g of the particles prepared in Preparation Example 4 were used as the particles including the quantum dots.
  • sonication was performed for 35 minutes to increase the dispersibility of the particles. Thereafter, the composition was applied to a polyethylene terephthalate (PET) film and then coated with a bar to prepare a light scattering sheet having a light conversion layer.
  • PET polyethylene terephthalate
  • the solvent in the light conversion layer was placed in an oven at 60 ° C. for 2 minutes to completely evaporate, and then the light conversion layer was cured in a UV curing machine (1000mJ / cm 2 ).
  • Example 2 It is the same as Example 1 except that 1.8 g of 9-ethylene glycol diacrylate (9-EGDA) was used instead of TMPTA as the photocurable resin.
  • 9-EGDA 9-ethylene glycol diacrylate
  • TMPTA trimethylolpropane triacrylate
  • 720 ⁇ l of a CdSe / ZnS red light quantum dot (0.018 g) solution was added to prepare a composition, and sonication was performed for 35 minutes to increase dispersibility of the quantum dot. Thereafter, the composition was applied to a polyethylene terephthalate (PET) film and then bar coated to prepare a light scattering sheet including a light conversion layer. After putting the solvent in the light scattering sheet for 2 minutes to completely evaporate, the light scattering sheet was cured in a UV curing machine (1000mJ / cm 2 ).
  • PET polyethylene terephthalate
  • the particle size and thickness gradually increased in proportion to the water bath temperature (recrystallization temperature).
  • the particles of Preparation Examples 3 to 5 controlled to have particles having a thickness of 0.7 ⁇ m or more on the Z axis.
  • the particles of Preparation Example 3 having the water bath temperature adjusted to 40 ° C. had a size of 3.2 ⁇ m on the X-axis, 2 ⁇ m on the Y-axis, and 0.7 ⁇ m on the Z-axis.
  • the particles had a size of 4.0 ⁇ m on the X axis, 2.3 ⁇ m on the Y axis, and 1.4 ⁇ m on the Z axis.
  • Z-axis was observed to have a size of 2.1 ⁇ m.
  • the transmission electron microscope was measured to observe the quantum dots dispersed in the polyethylene of Preparation Example 1, which is shown in FIG. 8. This shows that the quantum dots are well dispersed throughout the polyethylene without being aggregated.
  • Example 1 The light scattering sheets prepared in Example 1 and Comparative Example 1 were observed by fluorescence microscopy of the particle distribution and aggregation state, and the results are shown in FIG. 5.
  • Comparative Example 1 it can be seen that the dispersion of the quantum dots in the light scattering sheet is more uneven than in Example 1, where the quantum dots in the light scattering sheet are agglomerated to form very large agglomerates, and only the portion where the quantum dots are located shows red light. You can see that.
  • Example 1 unlike Comparative Example 1, when the quantum dots in the polyethylene particles were uniformly dispersed, the light scattering sheet was uniformly dispersed throughout the light scattering sheet without aggregation of the quantum dots, and the red light was scattered by the evenly dispersed quantum dots. It can be seen that the light scattering sheet appears as a whole.
  • FIG. 6 is a graph illustrating photoluminescence intensities of the light scattering sheets prepared in Example 1 and Comparative Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

본 발명은 광변환층을포함하는광산란시트에 있어서, 상기 변환층은결정부를포함하는고 분자; 상기 고분자의 결정부에 분산된 양자점을포함하는 입자를포함하며, 가장긴 길이의 방향을 X축, 상기 X축의 면방항으로수직인 방항을 Y축, 두께방항으로상기 X축및 Y축에 수직인 방항 을 Z축으로 정의할때, 상기 입자의 크기는상기 X축으로 O. lum 이상 50 um 이하이고, 상기 Y축으로 O. lum 이상 50 um 이하이며, 상기 Z축으로 O. lum 이상 50 um 이하인 것을 특 징으로하는광산란시트를제공한다. 본 명세서는 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법을 제공한다.

Description

광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법
본 출원은 2013년 09월 16일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0111443호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법을 제공한다.
양자점(QD:Quantum Dot)은 반도체 나노입자이다. 나노미터 크기의 양자점은 불안정한 상태의 전자가 전도대에서 가전자대로 내려오면서 발광하는데, 양자점의 입자가 작을수록 짧은 파장의 빛이 발생하고, 입자가 클수록 긴 파장의 빛을 발생한다. 따라서 양자점의 크기를 조절하면 원하는 파장의 가시광선을 표현하고, 여러 크기의 양자점을 이용하여 다양한 색을 동시에 구현할 수도 있다.
양자점의 크기를 제어하여 원하는 천연색을 구현할 수 있으며, 색재현율이 좋고 휘도 또한 양호하여 차세대 광원으로 주목받고 있다.
본 명세서는 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법을 제공하고자 한다.
본 명세서는 광 변환층을 포함하는 광 산란 시트에 있어서, 상기 광 변환층은 결정부를 포함하는 고분자; 및 상기 고분자의 결정부에 분산된 양자점을 포함하는 입자를 포함하며, 가장 긴 길이의 방향을 X축, 상기 X축의 면방향으로 수직인 방향을 Y축, 두께방향으로 상기 X축 및 Y축에 수직인 방향을 Z축으로 정의할 때, 상기 입자의 크기는 X축으로 0.1 μm 이상 50 μm 이하이고, Y축으로 0.1 μm 이상 50 μm 이하 이며, Z축으로 0.1 μm 이상 50 μm 이하인 것인 광 산란 시트를 제공한다.
또한, 본 명세서는 상기 광 산란 시트를 포함하는 전자 소자를 제공한다.
또한, 본 명세서는 상기 전자 소자를 포함하는 조명 장치를 제공한다.
또한, 본 명세서는 상기 전자 소자를 포함하는 디스플레이 장치를 제공한다.
본 명세서의 하나의 실시상태의 입자는 입사된 빛의 파장을 변환하여 파장변환광을 발생시키면서 빛을 산란시키는 장점이 있다.
본 명세서의 하나의 실시상태는 양자점을 포함하는 입자가 균일하게 분포되어 있는 장점이 있다.
도 1은 고분자 사슬이 길게 늘어져 규칙적으로 배열된 결정부를 포함하는 고분자를 도시한 것이다.
도 2는 고분자 사슬이 반복하여 접혀진 사슬(folded chain)로 이루어진 라멜라(lamella) 구조를 도시한 것이다.
도 3은 라멜라 구조의 결정부를 포함하는 고분자를 도시한 것이다.
도 4는 본 명세서의 일 실시상태 따른 광 산란 시트가 구비된 액정 표시 장치의 단면도이다.
도 5은 실시예 1과 비교예 1에서 제조된 광 산란 시트에 대한 형광현미경 측정결과이다.
도 6은 실시예 1과 비교예 1에서 제조한 광 산란 시트의 광발광 세기를 나타낸 그래프이다.
도 7은 제조예 1 내지 5에서 제조된 입자의 주사전자현미경(SEM) 측정결과이다.
도 8는 제조예 1에서 제조된 입자의 투과전자현미경 측정결과이다.
[부호의 설명]
600: 액정 표시 장치
601: 휘도향상필름
602: 광 산란 시트
604: 광 산란 시트
606: 도광판
608: 반사판
610: 광원
620: 상부 배리어 필름
622: 하부 배리어 필름
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서는 광 변환층을 포함하는 광 산란 시트에 있어서, 상기 광 변환층은 결정부를 포함하는 고분자; 및 상기 고분자의 결정부에 분산된 양자점을 포함하는 입자를 포함하며, 가장 긴 길이의 방향을 X축, 상기 X축의 면방향으로 수직인 방향을 Y축, 두께방향으로 상기 X축 및 Y축에 수직인 방향을 Z축으로 정의할 때, 상기 입자의 크기는 X축으로 0.1 μm 이상 50 μm 이하이고, Y축으로 0.1 μm 이상 50 μm 이하이며, Z축으로 0.1 μm 이상 50 μm 이하인 것인 광 산란 시트를 제공한다.
상기 입자의 형태는 표면이 곡선인 입자일 수 있으며, 예를 들면, 구형, 타원형, 원반형 등과 같은 형태일 수 있다. 구체적으로, 상기 입자의 형태는 타원형 또는 원반형일 수 있다.
상기 입자의 X축의 길이가 Y축의 길이보다 길 수 있다.
상기 입자의 X축의 길이가 Z축의 길이보다 길 수 있다.
상기 입자의 X축의 길이가 Y축의 길이보다 길고, Z축의 길이보다 길 수 있다.
상기 입자의 X축의 길이는 1 μm 이상 20 μm 이하일 수 있다.
상기 입자의 Y축의 길이는 0.1 μm 이상 10 μm 이하일 수 있다.
상기 입자의 Z축의 길이는 0.1 μm 이상 10 μm 이하일 수 있다.
상기 입자의 크기는 X축으로 1 μm 이상 20 μm 이하이고, Y축으로 0.1 μm 이상 10 μm 이하이며, Z축으로 0.1 μm 이상 10 μm 이하일 수 있다.
상기 입자의 크기는 X축으로 1 μm 이상 20 μm 이하이고, Y축으로 0.1 μm 이상 10 μm 이하이며, Z축으로 0.1 μm 이상 10 μm 이하이며, 상기 입자의 X축의 길이가 Y축의 길이보다 길고, Z축의 길이보다 길 수 있다.
상기 입자는, 사슬이 규칙적으로 배열된 결정부를 포함하는 고분자를 용매에 용해시켜 상기 고분자 사슬의 거리를 늘리고, 넓어진 고분자 사슬 사이에 양자점을 침투시키고 냉각시켜 고분자 사슬의 거리가 좁아지는 재결정 과정을 통해, 결정부를 이루는 고분자 사슬 사이에 양자점이 균일하게 분산되는 입자를 의미한다.
본 명세서의 일 실시상태에서, 상기 재결정된 고분자의 결정화도는 50% 이상일 수 있다. 고분자는 결정부와 비결정부가 공존하므로, 재결정된 고분자의 결정부가 50% 이상인 고분자를 사용하여 결과적으로 입자 내에서 양자점이 균일하게 분산되는 장점이 있다.
본 명세서의 일 실시상태에서, 상기 재결정된 고분자의 결정화도는 70% 이상일 수 있다. 고분자는 결정부와 비결정부가 공존하나, 이때의 비결정부는 하나의 결정부와 다른 하나의 결정부를 연결하는 부분에 해당하여 대부분이 결정부에 분산되어 있으므로 결과적으로 입자 내에서 양자점이 균일하게 분산되는 장점이 있다.
본 명세서에서, 상기 입자는 입사된 빛의 파장을 변환하여 파장변환광을 발생시키면서 빛을 산란시킬 수 있다. 구체적으로, 상기 입자 자체의 크기로 인해 빛의 산란이 일어날 수 있고, 광 산란 시트 내에 경화성 수지가 경화된 고분자와 상기 입자를 구성하는 고분자 및 양자점과의 굴절률 차이로 인해 빛의 산란이 일어날 수 있다.
본 명세서에서, 상기 입자는 입사된 빛의 파장을 변환하여 파장변환광을 발생시키면서 빛을 산란시킬 수 있기 때문에, 추가의 광산란층을 구비하거나 광산란입자를 추가하지 않아도 일정 이상의 광효율을 유지하는 장점이 있다.
본 명세서의 일 실시상태에서, 상기 광 변환층의 양자효율은 0.05 이상 0.95 이하일 수 있다.
본 명세서의 일 실시상태에서, 상기 광 변환층의 두께는 10 μm 이상 500 μm 이하일 수 있다.
상기 양자점은 상기 결정부의 고분자 사슬 사이에 분산된다. 이에 따라, 양자점끼리의 친화력으로 인해 뭉치는 현상이 줄어들어 입자내에 존재하는 양자점의 크기가 작으며, 균일하게 분포되는 장점이 있다.
본 명세서의 일 실시상태에서, 상기 입자 내에 분포된 양자점의 크기는 1 nm 이상 10 nm 이하일 수 있다. 이 경우 형광체에 비해 강한 빛을 좁은 파장대에서 발생시키는 장점이 있다.
본 명세서의 일 실시상태에서, 입자의 전체 중량을 기준으로 양자점의 함량은 1 중량% 이상 45 중량%일 수 있다.
본 명세서의 일 실시상태에서, 광 산란 시트의 전체 중량을 기준으로 입자의 함량은 0.1 중량% 이상 60 중량%일 수 있다.
상기 광 변환층은 2 이상의 광 변환층을 포함하고, 상기 2 이상의 광 변환층은 각각 입사된 빛의 파장을 서로 다른 파장으로 변환시킬 수 있다.
상기 광 변환층은 입사된 빛의 파장을 변환하여 백색광을 발생시킬 수 있다.
상기 광 변환층은 2 층의 광 변환층을 포함하고, 상기 광 변환층은 청색광의 파장을 변환하여 적색광을 발생시키는 제1 광 변환 시트; 및 청색광의 파장을 변환하여 녹색광을 발생시키는 제2 광 변환 시트를 포함할 수 있다.
본 명세서의 또 하나의 실시상태는 양자점이 균일하게 분산된 광 산란 시트를 포함하는 소자는 구동시 직접적인 열 전달을 최소화하고 적은 에너지로 발광하는 장점이 있다.
본 명세서의 광 산란 시트 내의 양자점은 고분자 결정부의 사슬에 의해서 잘 패킹되어 있는 장점이 있다.
본 명세서의 광 산란 시트 내의 양자점은 외부환경의 변화에 안정적인 장점이 있다. 구체적으로 온도의 변화, 수분 또는 산소의 접촉 등에 안정적인 장점이 있다.
본 명세서의 광 산란 시트 내의 양자점은 고분자 결정부의 사슬에 감싸져 있기 때문에 안정적으로 분산되어 있는 장점이 있다.
본 명세서의 일 실시상태에서, 상기 광 산란 시트의 양면 중 적어도 일면에 구비된 배리어 필름을 더 포함할 수 있다.
본 명세서는 광 산란 시트를 포함하는 전자 소자를 제공한다.
상기 전자 소자는 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 발광 다이오드(Light Emitting Diode, LED), 유기 발광 소자(Organic Light Emitting Diode, OLED), 액정 표시 장치(Liquid Crystal Display, LCD), 박막 트랜지스터 액정 표시 장치(Thin FIlm Transistor- Liquid Crystal Display, LCD-TFT) 및 음극선관(Cathode Ray Tube, CRT) 중 어느 하나일 수 있다.
또한, 본 명세서는 상기 전자 소자를 포함하는 디스플레이 장치를 제공한다.
상기 디스플레이 장치는 백라이트 유닛과 화소부를 포함하며, 본 명세서의 전자 소자는 상기 백라이트 유닛과 화소부 중 적어도 하나에 포함될 수 있다.
또한, 본 명세서는 상기 전자 소자를 포함하는 조명 장치를 제공한다.
상기 조명 장치는 백색의 조명 장치이거나 유색의 조명 장치일 수 있다. 이때, 요구되는 조명 색에 따라 본 명세서의 전자 소자의 발광색을 조절하여 조명 장치에 포함될 수 있다.
또한, 본 명세서에서는 액정 표시 장치용 광 산란 시트를 제공한다.
본 명세서는 광 산란 시트를 포함하는 액정 표시 장치를 제공한다.
상기 액정 표시 장치는 광원, 반사판 및 도광판을 포함하며, 상기 도광판 상에 구비된 본 명세서의 액정 표시 장치용 광 산란 시트를 더 포함할 수 있다.
도 4에 도시된 바와 같이, 액정 표시 장치(600)는 광원(610), 반사판(608) 및 도광판(606)을 포함하며, 상기 도광판(606) 상에 구비된 본 명세서의 액정 표시 장치용 광 산란 시트(604)를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 액정 표시 장치는 광원, 반사판, 도광판 및 휘도향상필름을 포함하며, 상기 도광판과 휘도향상필름 사이에 구비된 본 명세서의 액정 표시 장치용 광 산란 시트를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 액정 표시 장치는 광원, 반사판, 도광판, 확산판 및 휘도향상필름을 포함하며, 상기 확산판과 휘도향상필름 사이에 구비된 본 명세서의 액정 표시 장치용 광 산란 시트를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 액정 표시 장치는 청색 발광 다이오드(LED)를 이용하여 반사판, 도광판, 확산판 및 휘도향상필름을 포함하며, 상기 확산판과 휘도향상필름 사이에 구비된 본 명세서의 액정 표시 장치용 광 산란 시트를 더 포함할 수 있다.
상기 액정 표시 장치에 액정 표시 장치용 광 산란 시트를 적용하는 경우에는 색 재현율 및 휘도가 증가하는 장점이 있다.
본 명세서는 1) 결정부를 포함하는 고분자와 용매의 혼합액을 제조하는 단계;
2) 상기 고분자가 용매에 용해되는 온도로 상기 혼합액을 승온하는 단계;
3) 상기 혼합액에 양자점을 첨가한 후 상기 혼합액을 냉각함으로써 상기 고분자가 재결정된 입자를 생성하는 단계; 및
4) 상기 3) 단계에서 형성된 입자를 포함하는 조성물을 이용하여 광 산란 시트를 제조하는 단계를 포함하는 것인 광 산란 시트의 제조방법을 제공한다.
본 명세서의 광 산란 시트의 제조방법은 1) 결정부를 포함하는 고분자와 용매의 혼합액을 제조하는 단계를 포함한다.
일반적으로 고분자는 고분자 사슬이 규칙적으로 배열된 결정부와 고분자 사슬이 불규칙적으로 배열된 비결정부를 포함하고 있다. 상기 고분자의 결정부는 상당히 규칙적인 분자 배열을 갖고 있으며 X선 회절에 의하여 명확한 결정구조를 나타낸다.
상기 고분자의 결정부는 고분자 사슬이 규칙적으로 배열된 부분을 의미하며 그 형태는 고분자 사슬 간의 상호작용, 결정이 형성된 환경조건, 연신 정도 등에 따라서 다양한 형태로 배열될 수 있으며, 이를 한정하지 않는다.
예를 들면, 도 1의 (b) 또는 (c) 와 같이 고분자 사슬이 길게 늘어져 규칙적으로 배열하거나 도 2에 도시된 바와 같이 고분자 사슬이 반복하여 접혀진 사슬(folded chain)으로 이루어진 라멜라(lamella)와 같은 층상구조를 형성할 수 있다.
상기 고분자의 종류는 결정부를 포함한다면 특별히 한정하지 않으나, 예를 들면, 폴리염화비닐계 고분자, 폴리스티렌계 고분자, 폴리올레핀계 고분자, 나일론계 고분자, 아크릴계 고분자, 페놀계 고분자, 멜라민계 고분자, 실리콘계 고분자, 폴리이미드계, 폴리아미드계, 폴리우레탄계, 폴리에스터계, 폴리카보네이트계 고분자 중 하나의 단일 고분자이거나, 상기 고분자들 중 적어도 2 이상의 공중합체일 수 있다.
구체적으로, 폴리염화비닐계 고분자, 폴리에틸렌계 고분자, 폴리프로필렌계 고분자, 나일론계 고분자, 폴리아크릴로 니트릴계 고분자 중 하나의 단일 고분자이거나, 상기 고분자들 중 적어도 2 이상의 공중합체일 수 있다.
고분자는 금속과 같이 전체가 결정인 경우는 적으며 대부분 도 1 및 도 3에 도시된 바와 같이 결정부와 비결정부가 공존한다. 이때, 고분자 전체를 기준으로 결정부의 비율(백분율)을 고분자의 결정화도로 표현할 수 있다.
본 명세서의 일 실시상태에서, 상기 고분자는 결정부가 비결정부보다 상대적으로 많은 결정성 고분자일 수 있다.
본 명세서의 일 실시상태에서, 상기 고분자의 결정화도는 높으면 높을수록 바람직하다. 고분자의 결정부가 많을수록 상기 고분자의 결정부의 고분자 사슬 사이에 양자점을 침투시켜 양자점을 더 고르게 분포시킬 수 있기 때문이다.
본 명세서의 일 실시상태에서, 상기 고분자의 결정화도는 50% 이상일 수 있다. 고분자는 결정부와 비결정부가 공존하므로, 고분자의 결정부가 50% 이상인 고분자를 사용하여 결과적으로 입자 내에서 양자점이 균일하게 분산되는 장점이 있다.
본 명세서의 일 실시상태에서, 상기 고분자는 경화성 반응기를 가질 수 있다. 상기 고분자는 후술할 5) 단계의 경화단계에서 열경화 또는 광경화될 수 있는 반응기를 가질 수 있다.
상기 경화성 반응기는 열경화 또는 광경화를 통해 경화될 수 있다면 특별히 한정하지 않으나, 예를 들면 상기 경화성 반응기는 아크릴레이트기, 비닐기 등과 같은 다중결합을 포함하는 반응기이거나, 에폭시 등과 같은 고리결합을 포함하는 반응기일 수 있다.
본 명세서의 일 실시상태에서, 상기 고분자는 친수성 반응기를 가질 수 있다. 상기 고분자의 친수성 반응기는 결정부의 고분자 사슬 사이에 침투된 양자점과 상호작용하여 양자점이 안정적으로 결정부의 고분자 사슬 사이에 배치되도록 도와준다. 구체적으로, 양자점은 친수성을 띠기 때문에 결정부의 고분자 사슬 사이에 접근한 양자점이 고분자의 친수성 반응기와 상호작용하여 고분자 사슬 사이를 빠져나가지 않고 자리잡을 수 있도록 작용한다. 이때, 양자점과 고분자의 친수성 반응기의 상호작용은 친수성 반응기에 따라 공유결합, 배위결합, 이온결합, 수소결합, 극성결합 등과 같은 화학결합을 형성할 수 있다.
상기 고분자의 친수성 반응기는 고분자 자체가 친수성 반응기를 갖고 있거나, 산처리 등과 같은 처리를 통해 친수성 반응기를 추가할 수 있다.
상기 친수성 반응기는 물과의 친화력이 높은 반응기를 의미하며, 일반적으로 수소결합이 가능하거나 극성이 높은 반응기 등일 수 있다. 예를 들면, -OH, -COOH, -O-, -CO-, -NH2, -CONH2, -PO3H2, -SH, -SO3H, -SO2H, -NO2, 및 -O(CH2CH2O)nH (이때, n은 1~5의 정수) 등일 수 있다.
상기 용매는 당 기술분야에서 사용될 수 있는 것을 사용할 수 있으며, 특별히 한정하지 않는다.
본 명세서의 광 산란 시트의 제조방법은 2) 상기 고분자가 용매에 용해되는 온도로 상기 혼합액을 승온하는 단계를 포함한다.
상기 고분자의 용해 온도는 용매에 고분자가 완전히 녹아 고분자용액이 형성되는 온도를 의미하며, 기존의 고분자의 구조를 완전히 분해시킨 후 다시 새로운 결정을 형성시켜 결정부분의 순도를 높이는 것을 의미한다. 그러므로 고분자끼리의 상호작용 보다 고분자와 용매사이의 상호작용이 더 크게 일어난다.
상기 2) 단계에서, 상기 혼합액을 고분자의 용해온도 이상으로 승온하여 고분자와 용매사이의 상호작용이 더 크게 일어나므로, 결정부의 고분자 사슬 사이에 3) 단계에서 첨가되는 양자점이 고분자 사슬 사이에 침투할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 고분자의 용해온도가 70 ℃ 이상 180 ℃ 이하인 고분자를 사용할 수 있다. 양자점 내 스트레스는 온도가 증가할수록 높아지므로, 상대적으로 고분자 용해온도가 낮은 고분자를 사용함으로써 양자점의 열적 안정성을 유지 할 수 있는 장점이 있다.
본 명세서의 광 산란 시트의 제조방법은 3) 상기 혼합액에 양자점을 첨가한 후 상기 혼합액을 냉각함으로써 상기 고분자가 재결정된 입자를 생성하는 단계를 포함한다.
상기 3) 단계에서 상기 혼합액을 냉각하기 바로 직전에 상기 혼합액에 양자점을 첨가할 수 있다. 이는 전체적으로 소수성을 띠는 고분자 사슬 사이에 침투하기 전에 양자점끼리의 친화력에 의해 응집되는 것을 방지하여 고분자 사슬과 양자점이 잘 혼합되기 위함이다.
상기 혼합액에 양자점을 첨가할 때, 상기 혼합액을 교반하면서 양자점을 첨가할 수 있다. 이는 양자점끼리의 친화력에 의해 응집되는 것을 방지하고 열처리를 통한 양자점 내 스트레스를 최소화하기 위함이다.
상기 혼합액을 냉각함으로써 상기 고분자의 재결정된 입자가 생성될 때, 양자점이 고르게 분산된 상태에서 고분자 사슬과 사슬 사이가 좁아지면서 고분자의 결정이 생성된다. 이때, 상기 고분자의 재결정된 입자는 고분자의 결정부의 고분자 사슬 사이에 양자점이 분산된 상태로 재결정된 입자이다.
본 명세서의 일 실시상태에서, 상기 재결정된 고분자는 결정부가 비결정부보다 상대적으로 많은 결정성 고분자일 수 있다.
본 명세서의 일 실시상태에서, 상기 재결정된 고분자의 결정화도는 높으면 높을수록 바람직하다. 고분자의 결정부가 많을수록 상기 고분자의 결정부의 고분자 사슬 사이에 양자점을 침투시켜 양자점을 더 고르게 분포시킬 수 있기 때문이다.
본 명세서의 일 실시상태에서, 상기 재결정된 고분자의 결정화도는 50% 이상일 수 있다. 고분자는 결정부와 비결정부가 공존하므로, 고분자의 결정부가 50% 이상인 고분자를 사용하여 결과적으로 입자 내에서 양자점이 균일하게 분산되는 장점이 있다.
본 명세서의 일 실시상태에서, 상기 재결정된 고분자의 결정화도는 70% 이상일 수 있다. 고분자는 결정부와 비결정부가 공존하나, 이때의 비결정부는 하나의 결정부와 다른 하나의 결정부를 연결하는 부분에 해당하여 대부분이 결정부에 분산되어 있으므로 결과적으로 입자 내에서 양자점이 균일하게 분산되는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 3) 단계의 혼합액 중 상기 고분자와 양자점의 중량비는 100 : 1 이상 100 : 90 이하일 수 있다. 더 구체적으로 100: 1 이상 100 : 50 이하일 수 있다.
상기 양자점은 입사된 빛의 파장을 다른 파장으로 변환시킬 수 있는 반도체 나노결정을 말한다.
상기 양자점의 종류는 입사된 빛의 파장을 다른 파장으로 변환시킬 수 있다면 특별히 한정하지 않으며, 당 기술분야에서 일반적인 양자점을 이용할 수 있다. 예를 들면, 상기 양자점은 Si계 나노결정, II-VI족계 화합물 반도체 나노결정, II-V족계 화합물 반도체 나노결정, III-V족계 화합물 반도체 나노결정, I-III-VI족계 화합물 반도체 나노결정, I-III-V족계 화합물 반도체 나노결정 또는 IV-VI족계 화합물 반도체 나노결정일 수 있다.
상기 II-VI족계 화합물 반도체 나노결정은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe 및 HgZnSTe 중 어느 하나일 수 있다.
상기 III-V족계 화합물 반도체 나노결정은 GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, 및 InAlPAs 중 어느 하나일 수 있다.
상기 IV-VI족계 화합물 반도체 나노결정은 황화납(PbS), 셀렌화납(PbSe), 텔루르화납(PbTe), 황화주석(SnS), 셀렌화주석(SnSe) 및 텔루르화주석(SnTe) 중 어느 하나일 수 있다.
상기 II-V족계 화합물 반도체 나노결정은 인화아연(Zn3P2), 비소화아연(Zn3As2), 인화카드뮴(Cd3P2), 비소화카드뮴(Cd3As2), 질화카드뮴(Cd3N2) 및 질화아연(Zn3N2) 중 어느 하나일 수 있다.
상기 I-III-V족계 화합물 반도체 나노결정은 CuInSe2 및 Cu(In,Ga)Se2 중 어느 하나일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 3) 단계에서 냉각속도 및 교반속도에 따라 재결정되는 입자의 크기가 결정된다.
상기 3) 단계에서 냉각속도 및 교반속도가 빠를수록 입자의 크기가 작게 생성이 된다. 이는 고분자가 재결정된 입자가 커질 수 있는 시간이 상대적으로 적기 때문이다.
상기 3) 단계에서 냉각속도 및 교반속도가 늦을수록 입자의 크기가 크게 생성이 된다. 이는 고분자가 재결정된 입자가 커질 수 있는 시간이 상대적으로 많기 때문이다.
상대적으로 최종 냉각온도가 낮아 온도 차이가 크면 이에 대한 냉각속도가 빠르게 되고, 반대로 최종 냉각온도가 높아 온도 차이가 적으면 이에 대한 냉각속도가 느리게 된다.
본 명세서의 일 실시상태에 있어서, 상기 3) 단계의 교반속도는 50 rpm 이상 1000 rpm 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2) 단계의 승온된 최종 온도와 3) 단계의 최종 냉각 온도(재결정 온도)의 차이는 20 ℃ 이상 150 ℃ 이하일 수 있다. 구체적으로, 상기 2) 단계의 승온된 최종 온도와 3) 단계의 최종 냉각 온도(재결정 온도)의 차이는 20 ℃ 이상 50 ℃ 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 3) 단계의 냉각속도는 1 ℃/min 이상 180 ℃/min 이하일 수 있다.
상기 3) 단계에서 상기 혼합액을 냉각하는 방법은 당 기술분야에서 일반으로 사용하는 방법을 이용할 수 있으며, 예를 들면, 상기 혼합액이 담긴 용기를 물과 같은 용매가 담긴 다른 용기에 넣어 간접적으로 냉각할 수 있다.
상기 3) 단계에서 생성된 입자의 형태는 표면이 곡선인 입자이며, 예를 들면, 구형, 타원형, 원반형 등과 같은 형태를 갖는다.
본 명세서의 일 실시상태에 있어서, 가장 긴 길이의 방향을 X축, 상기 X축의 면방향으로 수직인 방향을 Y축, 두께방향으로 상기 X축 및 Y축에 수직인 방향을 Z축으로 정의할 때, 상기 3) 단계에서 형성된 입자의 크기는 X축으로 0.1 μm 이상 50 μm 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 가장 긴 길이의 방향을 X축, 상기 X축의 면방향으로 수직인 방향을 Y축, 두께방향으로 상기 X축 및 Y축에 수직인 방향을 Z축으로 정의할 때, 상기 3) 단계에서 형성된 입자의 크기는 Y축으로 0.1 μm 이상 50 μm 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 가장 긴 길이의 방향을 X축, 상기 X축의 면방향으로 수직인 방향을 Y축, 두께방향으로 상기 X축 및 Y축에 수직인 방향을 Z축으로 정의할 때, 상기 3) 단계에서 형성된 입자의 크기는 Z축으로 0.1 μm 이상 50 μm 이하일 수 있다.
본 명세서의 일 실시상태는 상기 3) 단계 후 상기 입자를 세척하는 단계를 더 포함할 수 있다.
여기서, 형성된 입자를 세척하는 방법은 특별히 한정하지 않으나, 당 기술분야에서 일반적인 방법을 사용할 수 있다. 예를 들면, 상기 입자를 세척하기 위해 원심분리기를 이용하여 형성된 입자를 용매로부터 분리하고 새로운 용매에 다시 재분산시키는 단계를 반복할 수 있다.
본 명세서의 일 실시상태는 상기 3) 단계 후 상기 입자를 소니케이션(sonication)하는 단계를 더 포함할 수 있다.
본 명세서의 광 산란 시트의 제조방법은 4) 상기 3) 단계에서 형성된 입자를 포함하는 조성물을 이용하여 광 산란 시트를 제조하는 단계를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 조성물 전체 중량을 기준으로 상기 입자의 함량은 0.1 중량% 이상 60 중량% 이하일 수 있다.
상기 4) 단계의 조성물은 광개시제, 경화성 수지 및 용매 중 적어도 하나를 더 포함할 수 있다.
상기 광개시제는 빛에 의해서 개시될 수 있다면 그 종류를 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 것을 이용할 수 있다.
상기 경화성 수지는 광개시제에 의해 개시된 라디칼에 의해 경화될 수 있다면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 것을 이용할 수 있다.
예를 들면, 상기 경화성 수지는 아크릴레이트계 수지 또는 비닐계 수지일 수 있다.
상기 용매는 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 것을 이용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 조성물은 코팅의 두께를 증가하기 위해 용매의 함량을 줄이거나 용매없이 광개시제 및 경화성 수지를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 조성물 전체 중량을 기준으로 상기 광개시제의 함량은 0.1 중량% 이상 5 중량% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 조성물 전체 중량을 기준으로 상기 경화성 수지의 함량은 10 중량% 이상 99중량% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 조성물 전체 중량을 기준으로 상기 용매의 함량은 0 중량% 이상 50 중량% 이하일 수 있다.
본 명세서의 일 실시상태는 상기 4) 단계 후 상기 입자를 포함한 조성물을 소니케이션(sonication)하는 단계를 더 포함할 수 있다.
본 명세서에서 조성물을 이용하여 광 산란 시트를 제조할 수 있다면, 그 방법은 특별히 한정하지 않으나, 예를 들면, 기판 상에 상기 조성물을 도포하고 경화하여 광 산란 시트를 제조할 수 있다.
상기 기판 상에 도포하는 방법은 기판 상에 균일한 두께로 도포할 수 있다면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 방법을 이용할 수 있다. 예를 들면, 바 코팅, 스퍼터링 등일 수 있다.
상기 기판의 재료는 특별히 한정하지 않으나, 예를 들면, 플라스틱 기판, 유리 기판, 실리콘 기판 등일 수 있다.
상기 기판 상에 도포된 조성물을 경화하는 방법은 광경화 또는 열경화할 수 있으며, 비제한적으로 광경화하는 것이 바람직하다.
상기 4) 단계에서 제조된 광 산란 시트의 두께는 0.1 ㎛ 이상 500 ㎛ 이하일 수 있다.
상기 4) 단계에서 제조된 광 산란 시트는 2종 이상의 양자점을 포함하는 파장 변화 시트이거나, 1종의 양자점을 포함하는 파장 변화 시트일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 4) 단계에서 제조된 광 산란 시트는 1종의 양자점을 포함하는 파장 변화 시트일 수 있다.
상기 4) 단계에서 제조된 광 산란 시트에 의해서 변환된 빛의 최대 피크 파장은 400 nm 이상 800 nm 이하일 수 있다. 이때, 상기 피크 파장은 양자점의 발광 파장의 강도가 최대인 파장을 의미한다.
상기 4) 단계에서 제조된 광 산란 시트에 의해서 변환된 빛의 최대 피크 파장은 580 nm 이상 700 nm 이하일 수 있다. 이때의 빛은 적색광을 나타낸다.
상기 4) 단계에서 제조된 광 산란 시트에 의해서 변환된 빛의 최대 피크 파장은 500 nm 이상 560 nm 이하일 수 있다. 이때의 빛은 녹색광을 나타낸다.
상기 4) 단계에서 제조된 광 산란 시트에 의해서 변환된 빛의 최대 피크 파장은 420 nm 이상 480 nm 이하일 수 있다. 이때의 빛은 청색광을 나타낸다.
본 명세서의 일 실시상태에 있어서, 상기 4) 단계에서 광 산란 시트를 제조한 후 상기 기판을 제거하는 단계를 더 포함할 수 있다.
본 명세서의 광 산란 시트의 제조방법은 상기 4) 단계에서 제조된 광 산란 시트를 2 이상 적층하는 단계를 더 포함한다.
상기 2 이상의 광 산란 시트를 적층하는 방법은 특별히 제한하지 않으며, 당 기술분야에서 일반적으로 사용하는 방법을 이용할 수 있다.
예를 들면, 상기 2 이상의 광 산란 시트 사이에 접착층을 형성하여 적층할 수 있다. 제조된 광 산란 시트 상에 조성물을 도포 및 경화하는 단계를 1 이상 반복하여 2 이상의 광 산란 시트를 적층할 수 있다. 상기 2 이상의 광 산란 시트를 순서대로 올려놓고 열을 가하여 접착할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 광 산란 시트는 각각 입사된 빛의 파장을 서로 다른 파장으로 변환시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 광 산란 시트 중 각각의 광 산란 시트는 동일한 양자점을 포함할 수 있다. 즉, 개별적인 광 산란 시트는 1종의 양자점을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 광 산란 시트는 입사된 빛의 파장을 변환하여 백색광을 발생시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 광 산란 시트는 2 층의 광 산란 시트를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 광 산란 시트는 2 층의 광 산란 시트를 포함하고, 상기 광 산란 시트는 청색광의 파장을 변환하여 적색광을 발생시키는 제1 광 산란 시트; 및 청색광의 파장을 변환하여 녹색광을 발생시키는 제2 광 산란 시트를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 광 산란 시트를 2 이상 적층한 후 상기 기판을 제거하는 단계를 더 포함할 수 있다.
이하의 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 명세서를 예시하기 위한 것이며, 본 명세서의 범위가 이들에 의하여 한정되는 것은 아니다.
[제조예 1]
고분자의 결정부에 분산된 양자점을 포함하는 입자의 제조
20ml 바이알병에 폴리에틸렌 왁스 50 mg를 소분하고 5 g 톨루엔을 첨가한 다음, 용액을 90℃까지 가열했다. 상기 용액이 90℃에 도달하자마자 적정 농도(standard: 25 mg / ml toluene) CdSe/ZnS 적색광 양자점 용액을 120 ㎕ 주입했다. 바이알병을 미리 온도를 설정해 둔 상온의 물중탕(water bath)에 바이알병을 넣고 1분 동안 교반(200 rpm)한 후 바이알병을 물중탕에서 꺼내어 공기 중에 4분 동안 방치하고 바이알병에서 스터링바를 빼낸다. 완전히 식을 때까지 방치한 후 바이알병의 용액의 20 g을 모아서 코니컬 튜브(conical tube) 에 분주하여 세척을 위해 원심분리(3000 rpm, 5 min) 했다. 원심분리 후에 상등액은 버리고 침전된 마이크로캡슐에 톨루엔을 첨가하여 20g의 용액을 만들고 볼텍싱(vortexing)으로 재분산했다. 위와 같은 세척 과정을 세 차례 반복하여 미반응 물질은 완전히 제거해준다.
[제조예 2]
재결정온도인 물중탕의 온도를 25℃로 변경한 것 이외에는 제조예 1과 동일하다.
[제조예 3]
재결정온도인 물중탕의 온도를 40℃로 변경한 것 이외에는 제조예 1과 동일하다.
[제조예 4]
재결정온도인 물중탕의 온도를 50℃로 변경한 것 이외에는 제조예 1과 동일하다.
[제조예 5]
재결정온도인 물중탕의 온도를 60℃로 변경한 것 이외에는 제조예 1과 동일하다.
[제조예 6]
120 ㎕의 적색광 양자점 용액 대신 적정 농도(standard: 25 mg / ml toluene) CdSe/ZnS 녹색광 양자점 용액 120 ㎕를 주입한 것을 제외하고 제조예 4와 동일하다.
[제조예 7]
120 ㎕의 적색광 양자점 용액 대신 240 ㎕의 적색광 양자점 용액(CdSe/ZnS 25 mg / ml toluene)을 주입한 것을 제외하고 제조예 4와 동일하다.
[제조예 8]
120 ㎕의 적색광 양자점 용액 대신 240 ㎕의 녹색광 양자점 용액(CdSe/ZnS 25 mg / ml toluene)을 주입한 것을 제외하고 제조예 4와 동일하다.
[제조예 9]
120 ㎕의 적색광 양자점 용액 대신 360 ㎕의 적색광 양자점 용액(CdSe/ZnS 25 mg / ml toluene)을 주입한 것을 제외하고 제조예 4와 동일하다.
[제조예 10]
120 ㎕의 적색광 양자점 용액 대신 360 ㎕의 녹색광 양자점 용액(CdSe/ZnS 25 mg / ml toluene)을 주입한 것을 제외하고 제조예 4와 동일하다.
[실시예 1]
광 산란 시트 제조
광 변환층 형성 시 트리메틸올프로판 트리아크릴레이트(trimethylolpropane triacrylate, TMPTA) 1.8 g을 광 경화 수지로 이용했다. 광개시제는 IRG184 0.018 g 및 D-1173 0.018 g을 이용하였다. 이때, 양자점을 포함하는 입자는 제조예 4에서 제조된 입자 0.318 g을 사용했다. 상기 광 경화 수지, 광개시제 및 양자점을 포함하는 입자를 혼합하여 조성물을 제조한 후 상기 입자의 분산성을 높이기 위해서 35분간 소니케이션(sonication)을 하였다. 그 후, 상기 조성물을 폴리에틸렌테레프탈레이트(PET) 필름에 도포한 후 바(bar)코팅하여 광 변환층이 형성된 광 산란 시트를 제조하였다. 광 변환층에 존재하는 용매가 완전히 증발되도록 60℃ 오븐에 2분간 넣은 후 UV 경화기(1000mJ/cm2)에서 광 변환층을 경화시켰다.
[실시예 2]
광 경화 수지로 TMPTA 대신 6-[[1-oxo-6-[(1-oxo-2-propen-1-yl)oxy]hexyl]oxy]-,1,1'-[oxybis[2,2-bis[[[1-oxo-6-[[1-oxo-6-[(1-oxo-2-propen-1-yl)oxy]hexyl]oxy]hexyl]oxy]methyl]-3,1-propanediyl]]ester(DPCA-120) 1.8 g을 사용한 것을 제외하고 실시예 1과 동일하다.
[실시예 3]
광 경화 수지로 TMPTA 대신 9-ethylene glycol diacrylate(9-EGDA) 1.8 g을 사용한 것을 제외하고 실시예 1과 동일하다.
[비교예 1]
광 변환층 형성 시 트리메틸올프로판 트리아크릴레이트(trimethylolpropane triacrylate, TMPTA) 1.8 g을 광 경화 수지로 이용하였고, 광개시제는 IRG184 0.018 g 및 D-1173 0.018 g을 이용하였다.
이때, CdSe/ZnS 적색광 양자점(0.018 g) 용액 720 ㎕를 첨가하여 조성물을 제조한 후 상기 양자점의 분산성을 높이기 위해서 35분간 소니케이션(sonication)을 하였다. 그 후, 상기 조성물을 폴리에틸렌테레프탈레이트(PET) 필름에 도포한 후 바(bar)코팅하여 광 변환층을 포함하는 광 산란 시트를 제조하였다. 광 산란 시트에 존재하는 잔여 용매가 완전히 증발되도록 60℃ 오븐에 2분간 넣은 후, UV 경화기(1000mJ/cm2)에서 광 산란 시트를 경화시켰다.
[실험예 1]
고분자의 결정부에 분산된 양자점을 포함하는 입자의 주사전자현미경(SEM) 측정
제조예 1 내지 5에서 제조된 입자의 재경결 형태를 보기 위해 주사전자현미경(SEM)을 측정했다. 그 결과는 도 7에 나타냈으며, 왼쪽 상단의 온도는 입자의 제조시 재결정온도를 표시한 것이다.
도 7에 도시된 입자들의 형태 및 크기를 살펴보면, 재결정 온도변화에 따라 폴리에틸렌입자의 크기 및 두께를 조절할 수 있음을 알 수 있다.
입자의 크기와 두께가 물중탕온도(재결정온도)에 비례하여 점차적으로 증가함을 확인하였다. 구체적으로, 물중탕 온도를 각각 상온과 25 ℃로 조절한 제조예 1 및 2의 입자는 입자의 크기가 다양하며 두께가 매우 얇아 판형의 입자가 형성됨을 알 수 있으며, 물중탕 온도를 40 ℃이상으로 조절된 제조예 3 내지 5의 입자는 Z축으로 0.7 ㎛이상의 두께를 가지는 입자가 형성된 것을 확인하였다.
물중탕 온도를 40 ℃로 조절한 제조예 3의 입자는 X축으로 3.2 ㎛, Y축으로 2 ㎛, Z축으로 0.7 ㎛인 크기를 가지며, 물중탕 온도를 50 ℃로 조절한 제조예 4의 입자는 X축으로 4.0㎛, Y축으로 2.3 ㎛, Z축으로 1.4 ㎛인 크기를 가지고, 물중탕 온도를 60 ℃로 조절한 제조예 5의 입자는 X축으로 5.3 ㎛, Y축으로 2.7 ㎛, Z축으로 2.1 ㎛인 크기를 갖는 것을 관찰할 수 있었다.
[실험예 2]
고분자의 결정부에 분산된 양자점을 포함하는 입자의 투과전자현미경(TEM) 측정
제조예 1의 폴리에틸렌 내에 분산되어 있는 양자점을 관찰하기 위해 투과전자현미경을 측정했으며, 이를 도 8에 도시했다. 이를 통하여 양자점이 폴리에틸렌 내 응집되지 않고 전체적으로 잘 분산되었음을 알 수 있다.
[실험예 3]
형광현미경 관찰
실시예 1과 비교예 1에서 제조된 광 산란 시트를 형광현미경으로 입자의 분포 및 응집상태를 관찰했으며, 그 결과를 도 5에 도시했다.
비교예 1의 경우, 광 산란 시트 내 양자점의 분산이 실시예 1보다 고르지 못함을 알 수 있으며, 광 산란 시트 내 양자점들이 응집되어 입자가 매우 큰 덩어리로 형성되고 양자점이 위치된 부분만 적색광을 나타내는 것을 확인할 수 있다.
실시예 1의 경우, 비교예 1과 다르게 폴리에틸렌 입자 내 양자점을 균일하게 분산시켰을 경우 광 산란 시트 내부에 양자점의 응집없이 전체적으로 골고루 잘 분산되어있는 것을 관찰으며, 고르게 분산된 양자점에 의해 산란되어 적색광이 광 산란 시트 전체적으로 나타나는 것을 확인할 수 있다.
[실험예 4]
광 산란 시트의 광발광 세기
실시예 1과 비교예 1에서 제조된 광 산란 시트의 광발광 세기를 측정한 그래프를 도 6에 도시했다.
상기 도 6에 도시된 그래프에 따르면, 같은 양의 적색광 양자점을 함유하고 있음에도 폴리에틸렌 입자로 양자점을 캡슐화한 경우 양자효율과 흡광도가 증가하여 전체적으로 광발광 세기가 높은 것을 확인할 수 있다. 이러한 결과는 양자점을 함유하는 폴리에틸렌 입자가 산란효과를 나타내는 것으로 보인다.

Claims (14)

  1. 광 변환층을 포함하는 광 산란 시트에 있어서,
    상기 광 변환층은 결정부를 포함하는 고분자; 및 상기 고분자의 결정부에 분산된 양자점을 포함하는 입자를 포함하며,
    가장 긴 길이의 방향을 X축, 상기 X축의 면방향으로 수직인 방향을 Y축, 두께방향으로 상기 X축 및 Y축에 수직인 방향을 Z축으로 정의할 때, 상기 입자의 크기는 X축으로 0.1 μm 이상 50 μm 이하이고, Y축으로 0.1 μm 이상 50 μm 이하이며, Z축으로 0.1 μm 이상 50 μm 이하인 것인 광 산란 시트.
  2. 청구항 1에 있어서, 상기 입자는 입사된 빛의 파장을 변환하여 파장변환광을 발생시키면서 빛을 산란시키는 것인 광 산란 시트.
  3. 청구항 1에 있어서, 상기 광 변환층의 광 효율은 양자효율은 0.05 이상 0.95 이하인 것인 광 산란 시트.
  4. 청구항 1에 있어서, 상기 광 변환층의 두께는 0.1 ㎛ 이상 500 ㎛ 이하인 것인 광 산란 시트.
  5. 청구항 1에 있어서, 상기 양자점은 상기 결정부의 고분자 사슬 사이에 분산된 것인 광 산란 시트.
  6. 청구항 1에 있어서, 상기 양자점의 크기는 1 nm 이상 10 nm 이하인 것인 광 산란 시트.
  7. 청구항 1에 있어서, 상기 고분자의 결정화도는 50% 이상인 것인 광 산란 시트.
  8. 청구항 1에 있어서, 상기 광 변환층은 2 이상의 광 변환층을 포함하고,
    상기 2 이상의 광 변환층은 각각 입사된 빛의 파장을 서로 다른 파장으로 변환시킬 수 있는 것인 광 산란 시트.
  9. 청구항 1에 있어서, 상기 광 변환층은 입사된 빛의 파장을 변환하여 백색광을 발생시키는 것인 광 산란 시트.
  10. 청구항 1에 있어서, 상기 광 변환층은 2 층의 광 변환층을 포함하고,
    상기 광 변환층은 청색광의 파장을 변환하여 적색광을 발생시키는 제1 광 변환 시트; 및 청색광의 파장을 변환하여 녹색광을 발생시키는 제2 광 변환 시트를 포함하는 것인 광 산란 시트.
  11. 청구항 1에 있어서, 상기 광 변환 시트의 양면 중 적어도 일면에 구비된 배리어 필름을 더 포함하는 것인 광 산란 시트.
  12. 청구항 1 내지 11 중 어느 한 항의 광 산란 시트를 포함하는 전자 소자.
  13. 청구항 12의 전자 소자를 포함하는 조명 장치.
  14. 청구항 12의 전자 소자를 포함하는 디스플레이 장치.
PCT/KR2014/008626 2013-09-16 2014-09-16 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법 WO2015037968A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/915,878 US9945991B2 (en) 2013-09-16 2014-09-16 Light-scattering sheet, electronic device comprising same, and method for producing same
EP14844544.8A EP3048461B1 (en) 2013-09-16 2014-09-16 Method of manufacturing a light-scattering sheet
JP2016529729A JP6209280B2 (ja) 2013-09-16 2014-09-16 光散乱シート、これを含む電子素子およびその製造方法
CN201480051130.6A CN105556349B (zh) 2013-09-16 2014-09-16 光散射片、包括该光散射片的电子器件以及制备该光散射片的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0111443 2013-09-16
KR20130111443 2013-09-16

Publications (1)

Publication Number Publication Date
WO2015037968A1 true WO2015037968A1 (ko) 2015-03-19

Family

ID=52665986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008626 WO2015037968A1 (ko) 2013-09-16 2014-09-16 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법

Country Status (6)

Country Link
US (1) US9945991B2 (ko)
EP (1) EP3048461B1 (ko)
JP (1) JP6209280B2 (ko)
KR (1) KR20150032217A (ko)
CN (1) CN105556349B (ko)
WO (1) WO2015037968A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197587A1 (zh) * 2015-06-09 2016-12-15 瑞仪光电(苏州)有限公司 背光模块及显示设备
US20210403809A1 (en) * 2018-11-20 2021-12-30 Suzhou Xingshuo Nanotech Co., Ltd. Method for Preparing Fluorescent Nanomaterial-polymer Composite, and Light Emitting Device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213098B1 (ko) * 2014-04-25 2021-02-08 엘지디스플레이 주식회사 표시장치 및 그 제조 방법
KR101999979B1 (ko) * 2015-09-23 2019-07-15 주식회사 엘지화학 파장 변환 입자 복합체 및 이를 포함하는 광학 필름
CN106873228A (zh) * 2015-12-11 2017-06-20 中华映管股份有限公司 半穿透半反射式液晶显示面板
KR102034463B1 (ko) * 2015-12-23 2019-10-21 주식회사 엘지화학 파장 변환 입자 복합체 및 이를 포함하는 광학 필름
KR102444923B1 (ko) 2019-01-16 2022-09-19 주식회사 엘지화학 광 산란 필름의 제조 방법
CN111665585A (zh) * 2019-03-08 2020-09-15 苏州星烁纳米科技有限公司 量子点偏光片及显示设备
CN112226232B (zh) * 2020-10-16 2023-01-06 广东广腾达科技有限公司 一种改性量子点、量子点母粒、量子点扩散板及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060056834A (ko) * 2004-11-22 2006-05-25 (주)케이디티 백라이트 장치용 광 여기 확산시트, 이를 이용한액정표시용 백라이트 장치
KR20100047841A (ko) * 2007-07-18 2010-05-10 큐디 비젼, 인크. 고체 조명에 유용한 양자점-기반 광 시트
KR20120018490A (ko) * 2010-08-23 2012-03-05 한국과학기술원 양자점 광 변환층을 이용한 백색광 led 백라이트 유닛
KR20120091460A (ko) * 2009-12-21 2012-08-17 오스람 옵토 세미컨덕터스 게엠베하 복사 방출 반도체 소자
KR20120113191A (ko) * 2011-03-31 2012-10-12 한양대학교 산학협력단 광결정 구조체, 이를 포함하는 발광 다이오드 및 이의 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215122A (en) 1988-02-12 1989-09-13 Philips Electronic Associated A method of forming a quantum dot structure
KR920003390B1 (ko) 1989-09-23 1992-04-30 한국전기통신공사 일반교환회선용 화상정보 전송장치 및 방법
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
KR20110057239A (ko) * 2008-09-16 2011-05-31 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 고분자 파장 변환 소자
GB0821122D0 (en) * 2008-11-19 2008-12-24 Nanoco Technologies Ltd Semiconductor nanoparticle - based light emitting devices and associated materials and methods
KR101865888B1 (ko) 2009-09-09 2018-06-08 삼성전자주식회사 나노입자들을 포함하는 입자, 그의 용도, 및 방법
GB0916699D0 (en) 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
EP3839335A1 (en) * 2010-11-10 2021-06-23 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
KR20120085103A (ko) * 2011-01-21 2012-07-31 엘지이노텍 주식회사 표시장치 및 광 변환 부재의 제조방법
EP2487218A1 (en) * 2011-02-09 2012-08-15 Koninklijke Philips Electronics N.V. Polymeric matrix with organic phosphor and manufactory thereof
GB201109065D0 (en) * 2011-05-31 2011-07-13 Nanoco Technologies Ltd Semiconductor nanoparticle-containing materials and light emitting devices incorporating the same
KR101971123B1 (ko) * 2012-08-23 2019-04-23 삼성디스플레이 주식회사 나노 형광체 시트 및 백라이트 장치
KR102151638B1 (ko) * 2013-06-11 2020-09-04 삼성디스플레이 주식회사 퀀텀 로드 시트, 백라이트 유닛, 표시 장치 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060056834A (ko) * 2004-11-22 2006-05-25 (주)케이디티 백라이트 장치용 광 여기 확산시트, 이를 이용한액정표시용 백라이트 장치
KR20100047841A (ko) * 2007-07-18 2010-05-10 큐디 비젼, 인크. 고체 조명에 유용한 양자점-기반 광 시트
KR20120091460A (ko) * 2009-12-21 2012-08-17 오스람 옵토 세미컨덕터스 게엠베하 복사 방출 반도체 소자
KR20120018490A (ko) * 2010-08-23 2012-03-05 한국과학기술원 양자점 광 변환층을 이용한 백색광 led 백라이트 유닛
KR20120113191A (ko) * 2011-03-31 2012-10-12 한양대학교 산학협력단 광결정 구조체, 이를 포함하는 발광 다이오드 및 이의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197587A1 (zh) * 2015-06-09 2016-12-15 瑞仪光电(苏州)有限公司 背光模块及显示设备
US9958593B2 (en) 2015-06-09 2018-05-01 Radiant Opto-Electronics (Suzhou) Co. Ltd. Backlight module and display device including the same
US20210403809A1 (en) * 2018-11-20 2021-12-30 Suzhou Xingshuo Nanotech Co., Ltd. Method for Preparing Fluorescent Nanomaterial-polymer Composite, and Light Emitting Device
US11873437B2 (en) * 2018-11-20 2024-01-16 Suzhou Xingshuo Nanotech Co., Ltd. Method for preparing fluorescent nanomaterial-polymer composite, and light emitting device

Also Published As

Publication number Publication date
US20160195647A1 (en) 2016-07-07
EP3048461B1 (en) 2023-07-19
JP6209280B2 (ja) 2017-10-04
CN105556349A (zh) 2016-05-04
US9945991B2 (en) 2018-04-17
JP2016536640A (ja) 2016-11-24
EP3048461A1 (en) 2016-07-27
CN105556349B (zh) 2018-03-13
KR20150032217A (ko) 2015-03-25
EP3048461A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2015037968A1 (ko) 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법
EP2392852B1 (en) Light source module using quantum dots, and illumination apparatus
WO2015178590A1 (ko) 양자점 필름, 이를 포함하는 표시장치, 및 양자점 필름의 제조방법
WO2013009007A2 (en) Optical member, display device having the same and method of fabricating the same
CN104819404A (zh) 背光组件以及包括该背光组件的显示装置
TWI421433B (zh) 使用量子點之光源模組,運用該光源模組之背光單元,顯示設備,及照明設備
WO2016186280A1 (ko) 광학 필름, 이의 제조 방법 및 상기 광학 필름을 포함하는 백라이트 유닛 및 소자
JP7125723B2 (ja) 量子ドットを含む有機発光表示装置
WO2021020695A2 (ko) 하이브리드 파장변환체, 이의 제조방법 및 이를 포함하는 발광장치
WO2022075534A1 (ko) 표시패널 및 그 제조방법
WO2023287098A1 (ko) 잉크젯 프린팅용 전자수송층 조성물 및 그 제조방법
WO2021137360A1 (ko) 색변환 부재 및 이를 포함하는 표시 장치
CN108445672A (zh) 量子点液晶显示面板及制作方法
KR20160117083A (ko) 양자점을 포함하는 광학 시트
WO2016080817A1 (ko) 유기발광장치
US9823409B2 (en) Photoluminescent layered composite, backlight unit, and display device including the composite
WO2021251560A1 (ko) 표시장치 및 이의 제조 방법
WO2021201340A1 (ko) 표시패널 및 그 제조방법
WO2018093090A1 (ko) 감광성 수지 조성물, 컬러필터 및 화상표시장치
WO2023287101A1 (ko) 양자점 복합 입자 및 그 제조방법
KR20150032218A (ko) 파장 변환 시트 적층체, 이를 포함하는 전자 소자 및 이의 제조방법
WO2022039335A1 (ko) 반도체 나노입자 및 이를 포함한 전자 장치
WO2017111401A1 (ko) 광 변환 부재 및 이를 포함하는 표시장치 및 발광소자 패키지
WO2024158188A1 (ko) 발광 소자, 발광 소자 제조 방법, 및 발광 소자를 포함하는 표시 장치
WO2021215576A1 (ko) 그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051130.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529729

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014844544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14915878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE