WO2015037967A1 - 이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법 - Google Patents

이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법 Download PDF

Info

Publication number
WO2015037967A1
WO2015037967A1 PCT/KR2014/008621 KR2014008621W WO2015037967A1 WO 2015037967 A1 WO2015037967 A1 WO 2015037967A1 KR 2014008621 W KR2014008621 W KR 2014008621W WO 2015037967 A1 WO2015037967 A1 WO 2015037967A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
water treatment
membrane
ion exchange
formula
Prior art date
Application number
PCT/KR2014/008621
Other languages
English (en)
French (fr)
Inventor
권혜진
정승표
김태형
한중진
신정규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/021,847 priority Critical patent/US10279320B2/en
Priority to CN201480056981.XA priority patent/CN105705221B/zh
Priority to JP2016544288A priority patent/JP6302074B2/ja
Priority to EP14844548.9A priority patent/EP3053641B1/en
Priority claimed from KR1020140122785A external-priority patent/KR101627930B1/ko
Publication of WO2015037967A1 publication Critical patent/WO2015037967A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration

Definitions

  • the present invention relates to a water treatment separation membrane and a method for manufacturing the same, and more particularly, to a water treatment separation membrane and a method for producing the same by forming a polymer layer containing an ion exchange functional group to improve the permeate flow characteristics.
  • Liquid separation is classified into Micro Filtration, Ultra Filtration, Nano Filtration, Reverse Osmosis, Sedimentation, Active Transport and Electrodialysis depending on the pore of the membrane.
  • Water treatment separators developed to date are generally manufactured by a method of forming a support layer and / or an active layer using a polymer material on a support such as a nonwoven fabric.
  • a polymer material for example, polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyether ether ketone, polypropylene, polymethylpentene, polymethyl chloride and polyvinylidene Fluoride etc. are used, and polysulfone is used especially especially.
  • the polymer materials have excellent separation performance and good mechanical strength, but have hydrophobic properties, so that the permeate flow rate has been limited.
  • the present invention is to solve the above problems, to provide a water treatment separation membrane having a high salt removal rate and increased permeate flow rate and a manufacturing method thereof.
  • the invention is a support; And a polymer layer comprising a copolymer containing a hydrophilic repeat unit including an ion exchange functional group and a hydrophobic repeat unit on the support, wherein the polymer layer has an ion exchange capacity (IEC) of 0.02 meq / g to 2.4 meq.
  • IEC ion exchange capacity
  • the ion exchange functional group is preferably at least one selected from the group consisting of -SO 3 M, -CO 3 M and -PO 3 M (wherein M is H, Na or K).
  • the molar ratio of the hydrophilic repeat unit and the hydrophobic repeat unit is preferably 1: 9 to 1: 1.
  • the polymer layer may have a thickness of 0.1 ⁇ m to 200 ⁇ m.
  • the water treatment membrane when passing through the sodium chloride (NaCl) solution of 32,000ppm concentration at 800psi pressure, the initial salt removal rate is more than 97%, the initial permeate flow rate is preferably 38 to 48 gallon / ft 2 ⁇ day.
  • NaCl sodium chloride
  • the present invention provides a water treatment module comprising the water treatment membrane.
  • the present invention comprises the steps of coating the support with a solution containing a solvent and a copolymer containing a hydrophilic repeat unit and a hydrophobic repeat unit comprising an ion exchange functional group; And immersing the coated support in a non-solvent to perform phase transition.
  • the water treatment separation membrane according to the present invention comprises a polymer layer comprising a copolymer containing a hydrophilic repeating unit and an hydrophobic repeating unit including an ion exchange functional group on a support, thereby having a significantly higher permeate flow rate while having a superior salt removal rate.
  • An increased water treatment separator can be provided.
  • the mechanical strength and the separation performance are excellent, but because of the hydrophobicity, there is a limit in improving the permeate flow rate. Accordingly, the inventors of the present invention have been studied to develop a water treatment membrane that can improve the permeation flow rate while excellent in salt removal rate and mechanical strength, and thus, an ion exchange polymer having a specific ion exchange capacity on a support when preparing a water treatment membrane By forming the layer, it was found that the above object can be achieved, and the present invention was completed.
  • the water treatment membrane according to the present invention is a support; And a polymer layer comprising a copolymer containing a hydrophilic repeat unit including an ion exchange functional group and a hydrophobic repeat unit on the support, wherein the polymer layer has an ion exchange capacity (ION EXCHANGE CAPACITY, IEC) of 0.02 meq / g to 2.4 meq / g.
  • ION EXCHANGE CAPACITY, IEC 0.02 meq / g to 2.4 meq / g.
  • any well-known in the art may be used without limitation, for example, it may be a nonwoven fabric.
  • the material of the nonwoven fabric for example, polyester, polycarbonate, microporous polypropylene, polyphenylene ether, polyvinylidene fluoride may be used, but is not necessarily limited thereto.
  • the polymer layer preferably comprises a copolymer containing a hydrophilic repeat unit and a hydrophobic repeat unit including an ion exchange functional group as an ion exchange polymer layer.
  • ion exchange functional groups are defined as ion groups that provide movable relative ions for ion conduction.
  • the ion exchange functional group usable in the present invention may be any one or more selected from the group consisting of -SO 3 M, -CO 3 M and -PO 3 M (wherein M is H, Na or K). More specifically, the ion exchange functional group is -SO 3 H, -SO 3 Na, -SO 3 K, -CO 2 H, -CO 2 Na, -CO 2 K, -PO 3 H, -PO 3 Na or- PO 3 K, particularly preferably -SO 3 H, -SO 3 Na.
  • the ion exchange capacity (ION EXCHANGE CAPACITY, IEC) refers to the equivalent amount of ions that the ion exchange resin or polymer compound 1g can exchange, in the present invention, the number of moles of ion exchange functional groups contained per 1g copolymer ⁇ Ion values can be calculated as
  • the unit of the ion exchange capacity is expressed in meq / g, and the higher the value of the ion exchange capacity means that the ability to exchange ions is greater, and the higher the ion exchange capacity, the higher the hydrophilicity of the polymer compound and the polymer layer. .
  • the polymer layer of the present invention preferably has an ion exchange capacity of about 0.02 meq / g to about 2.4 meq / g, and more preferably about 0.02 meq / g to about 2.0 meq / g. If the ion exchange capacity is less than 0.02 meq / g, the hydrophilicity of the polymer layer is inferior, and there is a fear that the permeate flow rate is lowered at the time of producing the separator.
  • the copolymer preferably includes the hydrophilic repeating unit and the hydrophobic repeating unit in a molar ratio of 1: 9 to 1: 1, and more preferably includes a molar ratio of 1: 5 to 1: 1.
  • a water treatment separation membrane having excellent permeate flow rate and durability can be manufactured.
  • the hydrophilic repeat unit is included in a small amount, the permeation flow rate may be low, and when the hydrophilic repeat unit is included in an excessive amount, phase transition may not be smoothly performed when the polymer layer is formed.
  • the hydrophilic repeating unit including the ion exchange functional group may have a structure represented by the following Chemical Formula 1
  • the hydrophobic repeating unit may have a structure represented by the following Chemical Formula 2.
  • a and B are any one or more selected from the group consisting of the following functional groups, and may be overlapped or cross-selected.
  • E is at least one selected from the group consisting of the following functional groups,
  • R 1 to R 8 are each independently hydrogen or an ion exchange functional group, and more specifically, any one of R 1 to R 8 of A or B may be selected from -SO 3 M, -CO 3 M, or -PO 3 M ( In this case, M may be H, Na or K).
  • F is at least one selected from the group consisting of the following functional groups,
  • R 9 is hydrogen, methyl, —CF 3 or phenyl.
  • the hydrophilic repeating unit may have a structure represented by the following Chemical Formula 3
  • the hydrophobic repeating unit may have a structure represented by the following Chemical Formula 4.
  • G is any one or more selected from the group consisting of the following functional groups,
  • R 5 has an ion exchange functional group that is SO 3 M, —CO 3 M or —PO 3 M, wherein M is H, Na or K.
  • H is at least one selected from the group consisting of the following functional groups.
  • the weight average molecular weight of the copolymer including the repeating unit is preferably about 30,000 to 1,000,000. If the weight average molecular weight is less than 30,000, the durability of the water treatment separation membrane may be degraded. If the weight average molecular weight exceeds 1,000,000, the solvent may be difficult to select.
  • the copolymer containing a hydrophilic repeating unit including the ion exchange functional group is formed using an aromatic compound containing an ion exchange functional group, as shown in the formula (1), the kind is not particularly limited .
  • aromatic compound containing an ion exchange functional group examples include bisphenol monomers or aromatic dihalogen monomers having at least one sulfonic acid group or sulfonate group substituted in the benzene ring, and specifically, hydroquinone Hydroquinonesulfonic acid potassium salt, 2,7-dihydroxynaphthalene-3,6-disulfonic acid disodium salt, 1,7-di 1,7-dihydroxynaphthalene-3-sulfonic acid monosodium salt, 2,3-dihydroxynaphthalene-6-sulfonic acid monosodium salt (2,3-dihydroxynaphthalene-6-sulfonic acid monosodium salt), potassium 5,5'-carnobylbis (2-fluorobenzene sulfonate) and potassium 2,2 '-[9,9- Bis (4-hydroxyphenyl) fluorene] sulfonate (potassium 2,2 '-[9,9-[9-
  • each of the compounds listed above may be obtained through conventional routes in the art, or may be prepared by conventional methods.
  • the potassium 5,5'-carnobylbis (2-fluorobenzene sulfonate) fuming sulfuric acid with 4,4'-difluorobenzophenone and 4,4'-difluorodiphenyl sulfone sulfuric acid) can be prepared by directsulfonation
  • potassium 2,2 '-[9,9-bis (4-hydroxyphenyl) fluorene] sulfonate is 9,9-bis (4-hydroxy Phenyl) fluorene can be prepared by sulfonating with chlorosulfuric acid (ClHSO3).
  • the copolymer as shown in Formula 2, and includes a hydrophobic repeating unit, unlike the hydrophilic repeating unit, it may be formed using an aromatic compound containing no ion exchange functional group. Specifically, 9,9-bis (4-hydroxyphenyl) fluorene (9, 9-bis (4-hydroxyphenyl) fluorene) and the like can be used.
  • the copolymer of the present invention may include an aromatic compound or a brancher, wherein the breaker refers to a compound capable of forming the main chain of the copolymer of the present invention.
  • the specific kind of the aromatic compound or the brancher is not particularly limited.
  • the aromatic compound include bisphenol monomers or aromatic dihalogen monomers, specifically 4,4'-difluorobenzophenone, and bis (4-fluorophenyl).
  • Sulfone bis (4-fluorophenyl) sulfone
  • 2,2-bis (4-hydroxyphenyl) propane (2,2-bis (4-hydroxyphenyl) propane
  • 2,2-bis (4-hydroxyphenyl) Hexafluoropropane (2,2-bis (4-hydroxyphenyl) hexafluoropropane)
  • 4,4'-biphenol (4,4-biphenol)
  • the thickness of the polymer layer formed on the support as described above is preferably about 0.1 ⁇ m to 200 ⁇ m, more preferably about 20 ⁇ m to 100 ⁇ m. If the thickness is less than 0.1 ⁇ m, the mechanical strength may be lowered and the durability of the separator may be lowered. If the thickness is larger than 200 ⁇ m, the permeate flow rate may be lowered.
  • the polymer layer formed on the support of the present invention can serve as a support layer, it can be used as a two-layer water treatment membrane consisting of the support and the polymer layer.
  • an active layer on the polymer layer it can be used as a water treatment separation membrane having a structure having three or more layers.
  • the polyamide layer may be formed by the interfacial polymerization of the amine compound and the acyl halide compound, wherein the amine compound is not limited thereto, for example, m-phenylenediamine, p-phenylenediamine , 1,3,6-benzenetriamine, 4-chloro-1,3-phenylenediamine, 6-chloro-1,3-phenylenediamine, 3-chloro-1,4-phenylene diamine or mixtures thereof Is preferably.
  • the acyl halide compound is an aromatic compound having 2 to 3 carboxylic acid halides, but is not limited thereto, for example, trimezoyl chloride, isophthaloyl chloride, terephthaloyl chloride or a mixture thereof. It is preferable.
  • the polymer layer comprises a polymer layer comprising a copolymer containing a hydrophilic repeat unit and a hydrophobic repeat unit containing an ion exchange functional group as described above, the polymer layer has an ion exchange capacity (IEC) of 0.02 meq
  • IEC ion exchange capacity
  • the initial salt removal rate is 97% or more
  • the initial permeate flow rate is about 38 to 48 gallon / ft 2 ⁇ day, preferably 97.2% or more And 38 to 45 gallon / ft 2 ⁇ day.
  • the water treatment separation membrane including the component may be used as a micro filtration membrane, an ultra filtration membrane, a nano filtration membrane or a reverse osmosis membrane, and particularly preferably as a reverse osmosis membrane.
  • a micro filtration membrane an ultra filtration membrane, a nano filtration membrane or a reverse osmosis membrane, and particularly preferably as a reverse osmosis membrane.
  • the present invention also relates to a water treatment module comprising at least one water treatment separation membrane according to the present invention described above.
  • the specific type of the water treatment module of the present invention is not particularly limited, and examples thereof include a plate & frame module, a tubular module, a hollow & fiber module or a spiral wound module. do.
  • the water treatment module of the present invention includes the water treatment separation membrane of the present invention described above, other configurations and manufacturing methods are not particularly limited, and any general means known in the art may be employed without limitation.
  • the water treatment membrane of the present invention comprises the steps of: 1) coating a support with a solution containing a solvent and a copolymer containing a hydrophilic repeat unit and a hydrophobic repeat unit comprising an ion exchange functional group; And (2) immersing the coated support in a non-solvent to perform phase transition.
  • the solvent is not particularly limited as long as it can dissolve a high molecular compound including the copolymer of the present invention.
  • the solvent methyl acetate, hydrazine, trichloromethane, diiodomethane, trichloroethylene, styrene, 2- Butanone (2-Butanone), Tetrahydrofuran (Cyclohexanone), Acetone (Acetone), Benzonitrile, Isophorone, 2-Ethyl-1-hexanol (2- Ethyl-1-hexanol), Dichloromethane, Dibutyl phthalate, 1,4-Dioxane, 1,2-Dichlorobenzene, 1 1,2-Dichloroethane, 2-Butoxyethanol, 1-Bromonaphthalene, Acetic acid, Epichlorohydrin, Benzaldehyde (Benzaldehyde), Morpholine, Acrylonitrile, Acetophenone, Pyridine, 2-But
  • the method of forming the polymer layer on one surface of the support in step 1 may be performed by a method well known in the art, and the coating method is not particularly limited, but is well known in the art. Method, for example, by dipping, applying, spraying or the like.
  • the coated support is immersed in a non-solvent (step 2). That is, at this time, the exchange between the solvent and the non-solvent including the copolymer occurs to extract a solvent, a separator coated with a polymer on the support is prepared.
  • Non-solvents suitable for the present invention include, but are not limited to, pure liquids including primary distilled water, tertiary distilled water, alcohols, and mixtures thereof.
  • a polymer layer is prepared using a phase change phenomenon (Marcel Mulder, "Basic principles of membrane technology", Published by Kluwer Academic Publishers, Dordrecht, 1996). Specifically, when the support coated with the polymer layer is immersed in a non-solvent coagulation bath filled with non-solvent tertiary distilled water, the solvent in the solution containing the polymer compound including the copolymer is introduced into the non-solvent tertiary distilled water. On the other hand, the polymer compound does not dissolve in the non-solvent, thereby forming a polymer phase and pores.
  • a phase change phenomenon Marcel Mulder, "Basic principles of membrane technology", Published by Kluwer Academic Publishers, Dordrecht, 1996.
  • the method of manufacturing a water treatment separation membrane according to the present invention may further comprise the step of forming an active layer on the polymer layer.
  • the reaction was carried out at 180 ° C. for 20 hours. After the reaction is completed, the mixture is gradually cooled to room temperature. To remove DMSO, the flask containing the synthesized polymer solution is slowly tilted to deposit in methanol. After the deposited polymer was collected and washed several times with water, the washed polymer was heated and dried using a vacuum pump to obtain a copolymer having an ion exchange functional group.
  • the ion exchange capacity of the polymer layer containing the obtained copolymer is as shown in Table 1 below.
  • a polymer layer having an ion exchange capacity of 2.5 meq / g was prepared according to Preparation Example 6, and then a polyamide active layer was formed in the same manner as in Example 1 to prepare a water treatment separation membrane.
  • Initial salt rejection rate and initial permeation flux of the water treatment membranes prepared in Examples 1 to 5 and Comparative Examples 1 to 2 were evaluated in the following manner.
  • the initial salt excretion rate and initial permeate flux were measured while supplying an aqueous sodium chloride solution at 25 ° C. at a concentration of 4500 mL / min at 800 psi pressure at a concentration of 32,000 ppm, respectively.
  • the water treatment membrane cell apparatus used for the membrane evaluation was provided with a flat plate permeation cell, a high pressure pump, a storage tank and a cooling device, and the structure of the flat plate permeation cell was 28 cm 2 in a cross-flow manner.
  • the washed water treatment membrane was installed in the permeation cell, and then preliminarily operated for about 1 hour using tertiary distilled water to stabilize the evaluation equipment. Subsequently, the equipment was operated for about 1 hour until the pressure and permeate flow rate reached normal state by replacing with 32,000ppm aqueous sodium chloride solution, and then the flow rate was calculated by measuring the amount of water permeated for 10 minutes. The salt exclusion rate was calculated by analyzing the salt concentration before and after permeation. The measurement results are shown in [Table 2].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 지지체; 및 상기 지지체 상에 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체를 포함하는 고분자 층을 포함하고, 상기 고분자 층은 이온 교환 용량(IEC)이 0.02 meq/g 내지 2.4 meq/g인 수처리 분리막 및 수처리 모듈에 관한 것으로, 우수한 염제거율 및 투과유량의 특성을 가지고 있는 것을 특징으로 한다.

Description

이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법
본 발명은 수처리 분리막 및 그 제조 방법에 관한 것으로, 보다 상세하게는 이온 교환 작용기를 함유하는 고분자 층을 형성하여 투과유량 특성을 향상시킨 수처리 분리막 및 그 제조 방법에 관한 것이다.
최근 수질환경의 심각한 오염과 물 부족으로 인해 새로운 수자원 공급원을 개발하는 것이 시급한 당면 과제로 대두되고 있다. 수질환경 오염에 대한 연구는 양질의 생활 및 공업용수, 각종 생활하수 및 산업폐수 처리를 목표로 하고 있으며, 에너지 절약의 장점을 지닌 분리막을 이용한 수처리 공정에 대한 관심이 고조되고 있다. 또한, 가속화되고 있는 환경 규제의 강화는 분리막 기술의 활성화를 앞당길 것으로 예상된다. 전통적인 수처리 공정으로는 강화되는 규제에 부합하기 힘드나, 분리막 기술의 경우 우수한 처리효율과 안정적인 처리를 보증하기 때문에 향후 수처리 분야의 주도적인 기술로 자리매김할 것으로 예상된다.
액체분리는 막의 기공에 따라 정밀여과(Micro Filtration), 한외여과(Ultra Filtration), 나노여과(Nano Filtration), 역삼투(Reverse Osmosis), 침석, 능동수송 및 전기투석 등으로 분류된다.
현재까지 개발된 수처리 분리막들은 일반적으로 부직포와 같은 지지체 상에 고분자 재료를 이용하여 지지층 및/또는 활성층 등을 형성하는 방법으로 제조되고 있다. 이때, 상기 고분자 재료로는 예를 들면, 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드 및 폴리비닐리덴플루오라이드 등이 사용되고 있으며, 이 중에서도 특히 폴리설폰이 많이 사용되고 있다.
그러나, 상기 고분자 재료들은 분리 성능이 우수하고 기계적 강도가 좋으나 소수성 성질을 지니고 있어, 투과유량 향상에는 한계가 있었다.
따라서, 수처리 분리막의 투과 유량을 향상시킬 수 있는 새로운 고분자 재료의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 염제거율이 우수하면서도 투과유량을 증가시킨 수처리 분리막 및 이에 대한 제조 방법을 제공하고자 한다.
본 발명의 일 구현예에 따르면, 본 발명은 지지체; 및 상기 지지체 상에 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체를 포함하는 고분자 층을 포함하고, 상기 고분자 층은 이온 교환 용량(IEC)이 0.02 meq/g 내지 2.4 meq/g인 수처리 분리막을 제공한다.
이때, 상기 이온 교환 작용기는 -SO3M, -CO3M 및 -PO3M (이때, 상기 M은 H, Na 또는 K)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다.
상기 친수성 반복 단위 및 소수성 반복 단위의 몰비는 1:9 내지 1:1인 것이 바람직하다.
또한, 상기 고분자 층은 두께가 0.1㎛ 내지 200㎛일 수 있다.
또한, 상기 수처리 분리막은 32,000ppm 농도의 염화나트륨(NaCl)용액을 800psi 압력으로 통과 시, 초기 염제거율이 97% 이상이고, 초기 투과유량이 38 내지 48 gallon/ft2·day인 것이 바람직하다.
한편, 본 발명의 다른 구현예에 따르면, 본 발명은 상기 수처리 분리막을 포함하는 수처리 모듈을 제공한다.
또한, 본 발명의 다른 구현예에 따르면, 본 발명은 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체 및 용매를 포함하는 용액으로 지지체를 코팅하는 단계; 및 상기 코팅한 지지체를 비용매에 담가 상전이를 수행하는 단계를 포함하는 수처리 분리막 제조 방법을 제공한다.
본 발명에 따른 수처리 분리막은 지지체 상에 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체를 포함하는 고분자 층을 포함함으로써, 종래에 비해 우수한 염제거율을 가지면서도 투과유량을 현저히 증가시킨 수처리 분리막을 제공할 수 있다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
상기한 바와 같이 종래 수처리 분리막에서 활성층 및/또는 지지층으로 사용되는 폴리설폰계 고분자의 경우, 기계적 강도와 분리 성능은 우수하나, 소수성을 띄기 때문에 투과유량 향상에 한계가 있었다. 이에 본 발명의 발명자들은 염제거율과 기계적 강도가 우수하면서도 투과유량을 향상시킬 수 있는 수처리 분리막을 개발하기 위해 연구를 거듭한 결과, 수처리 분리막 제조 시 지지체 상에 특정한 이온 교환 용량을 갖는 이온 교환성 고분자 층을 형성함으로써, 상기와 같은 목적을 달성할 수 있음을 알아내고, 본 발명을 완성하였다.
보다 구체적으로는, 본 발명에 따른 수처리 분리막은 지지체; 및 상기 지지체 상에 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체를 포함하는 고분자 층을 포함하고, 상기 고분자 층은 이온 교환 용량(ION EXCHANGE CAPACITY, IEC)이 0.02 meq/g 내지 2.4 meq/g인 것을 특징으로 한다.
이때, 상기 지지체로는, 당해 기술분야에 잘 알려진 것을 제한 없이 사용할 수 있으나, 예를 들면 부직포일 수 있다. 이때, 상기 부직포의 재료로는 예를 들면, 폴리에스테르, 폴리카보네이트, 미공질 폴리프로필렌, 폴리페닐렌 에테르, 폴리 불화 비닐리덴 등이 사용될 수 있으나, 반드시 이에 제한되는 것은 아니다.
다음으로 상기 고분자 층은 이온 교환성 고분자 층으로서, 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체를 포함하는 것이 바람직하다. 본 발명에서 이온 교환 작용기는 이온 전도를 위해 이동 가능한 상대 이온을 제공하는 이온기로 정의된다.
지지체 상에 상기의 이온 교환 작용기를 갖는 고분자 층을 형성하는 경우, 이온 교환 작용기에 의하여, 고분자 층의 친수성이 커지게 되어, 투과유량이 증가하게 된다.
한편, 본 발명에서 사용 가능한 이온 교환 작용기는 -SO3M, -CO3M 및 -PO3M (이때, 상기 M은 H, Na 또는 K)로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다. 보다 구체적으로, 상기 이온 교환 작용기는 -SO3H, -SO3Na, -SO3K, -CO2H, -CO2Na, -CO2K, -PO3H, -PO3Na 또는 -PO3K일 수 있으며, 특히, 바람직하게는 -SO3H, -SO3Na일 수 있다.
한편, 상기 이온 교환 용량(ION EXCHANGE CAPACITY, IEC)이란, 이온 교환 수지 또는 고분자 화합물 1g이 교환할 수 있는 이온의 당량을 나타내는 것으로, 본 발명에서는 공중합체 1g 당 포함된 이온 교환 작용기의 몰 수 × 이온가로 계산될 수 있다.
이온 교환 용량의 단위는 meq/g으로 표시되며, 이온 교환 용량의 수치가 높다는 것은 이온을 교환할 수 있는 역량이 크다는 것을 의미하며, 이온 교환 용량이 커질수록 고분자 화합물 및 고분자 층의 친수성이 증가한다.
한편, 본 발명의 고분자 층은 이온 교환 용량이 0.02 meq/g 내지 2.4 meq/g 정도인 것이 바람직하며, 0.02 meq/g 내지 2.0 meq/g 정도인 것이 보다 바람직하다. 상기 이온 교환 용량이 0.02 meq/g 미만이면, 고분자 층의 친수성이 떨어져서 분리막으로 제조시에 투과 유량이 저하될 우려가 있다. 한편, 2.4 meq/g을 초과하면, 공중합체의 친수성이 지나치게 커져서 물에 대한 용해도가 불필요하게 증가하고, 이에 따라 분리막의 내구성이 저하될 우려가 있으며, 염제거율 및 투과유량이 모두 크게 떨어질 수 있다.
한편, 상기 공중합체는 상기 친수성 반복 단위와 소수성 반복 단위를 1:9 내지 1:1의 몰비 정도로 포함하는 것이 바람직하며 1:5 내지 1:1의 몰비 정도로 포함하는 것이 더욱 바람직하다. 친수성 반복 단위와 소수성 반복단위의 배합비가 상기 수치범위를 만족할 경우, 투과유량과 내구성이 모두 우수한 수처리 분리막을 제조할 수 있다. 친수성 반복단위가 소량으로 포함되면, 투과유량이 낮을 수 있고, 친수성 반복 단위가 과량으로 포함되면, 고분자 층 형성시에 상전이가 원활하게 이루어지지 않을 수 있다.
이때, 상기 이온 교환 작용기를 포함하는 친수성 반복 단위는 하기 화학식 1로 표시되는 구조일 수 있으며, 상기 소수성 반복 단위는 하기 화학식 2로 표시되는 구조일 수 있다.
[화학식1]
Figure PCTKR2014008621-appb-I000001
상기 [화학식1]에서 A 및 B는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며, 중복 또는 교차 선택될 수 있고,
Figure PCTKR2014008621-appb-I000002
Figure PCTKR2014008621-appb-I000003
Figure PCTKR2014008621-appb-I000004
상기 E는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며,
상기 R1 내지 R8은 각각 독립적으로 수소 또는 이온 교환 작용기이며, 보다 구체적으로, 상기 A 또는 B의 R1 내지 R8 중 어느 하나는 -SO3M, -CO3M 또는 -PO3M(이때, 상기 M은 H, Na 또는 K)일 수 있다.
[화학식2]
Figure PCTKR2014008621-appb-I000006
상기 [화학식2]에서 C 및 D는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며, 중복 또는 교차 선택될 수 있고,
Figure PCTKR2014008621-appb-I000007
Figure PCTKR2014008621-appb-I000008
Figure PCTKR2014008621-appb-I000009
상기 F는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이고,
Figure PCTKR2014008621-appb-I000010
상기 R9는 수소, 메틸, -CF3 또는 페닐이다.
또한, 바람직하게는 상기 친수성 반복 단위는 하기 화학식 3으로 표시되는 구조일 수 있으며, 상기 소수성 반복 단위는 하기 화학식 4로 표시되는 구조일 수 있다.
[화학식 3]
Figure PCTKR2014008621-appb-I000011
상기 [화학식 3]에서, G는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며,
Figure PCTKR2014008621-appb-I000012
상기 R5는 SO3M, -CO3M 또는 -PO3M(이때, 상기 M은 H, Na 또는 K)인 이온 교환 작용기를 갖는다.
[화학식 4]
Figure PCTKR2014008621-appb-I000013
상기 [화학식 4]에서, H는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이다.
Figure PCTKR2014008621-appb-I000014
Figure PCTKR2014008621-appb-I000015
Figure PCTKR2014008621-appb-I000016
Figure PCTKR2014008621-appb-I000017
더욱 바람직하게는, 본 발명의 실시예에 따른 공중합체는
Figure PCTKR2014008621-appb-I000018
Figure PCTKR2014008621-appb-I000019
단위를 포함할 수 있다.
또한, 상기 화학식 1 내지 4에서 *은 반복 단위가 연결되는 부위를 의미하며, 상기 위치에 별도의 원자 내지 분자는 존재하지 않는다.
한편, 상기 반복 단위를 포함하는 공중합체의 중량평균분자량은 30,000 내지 1,000,000 정도인 것이 바람직하다. 상기 중량평균분자량이 30,000 미만이면, 수처리 분리막의 내구성이 떨어질 우려가 있고, 1,000,000를 초과하면, 용매의 선택이 어려워질 우려가 있다.
보다 구체적으로, 상기 이온 교환 작용기를 포함하는 친수성 반복 단위를 함유하는 공중합체는 상기 화학식 1에 나타난 바와 같이, 이온 교환 작용기를 포함하는 방향족 화합물을 이용하여 형성되며, 그 종류는 특별히 한정되지는 않는다.
본 발명에서 사용될 수 있는 이온 교환 작용기를 포함하는 방향족 화합물의 예로는, 벤젠 고리에 치환된 하나 이상의 술폰산기 또는 술폰산염기를 가지는 비스페놀계 단량체 또는 방향족 디할로겐계 단량체를 들 수 있고, 구체적으로는 히드로퀴논술폰산 포타슘염(hydroquinonesulfonic acid potassium salt), 2,7-디히드록시나프탈렌-3,6-디술폰산 디소듐염(2,7-dihydroxynaphthalene-3,6-disulfonic acid disodium salt), 1,7-디히드록시나프탈렌-3-술폰산 모노소듐염(1,7-dihydroxynaphthalene-3-sulfonic acid monosodium salt), 2,3-디히드록시나프탈렌-6-술폰산 모노소듐염(2,3-dihydroxynaphthalene-6-sulfonic acid monosodium salt), 포타슘 5,5'-카르노빌비스(2-플루오로벤젠 술포네이트)(potassium 5,5'-carnobylbis(2-fluorobenzene sulfonate)) 및 포타슘 2,2'-[9,9-비스(4-히드록시페닐)플루오렌]술포네이트(potassium 2,2'-[9,9-bis(4-hydroxyphenyl)fluorene]sulfonate) 등을 들 수 있으며, 본 발명에서는 상기 중 일종 또는 이종 이상의 혼합을 사용할 수 있다. 상기 나열된 각 화합물들은 이 분야의 일반적인 경로를 통해 입수하거나, 또는 통상적인 방법으로 제조될 수 있다. 예를 들면, 상기 포타슘 5,5'-카르노빌비스(2-플루오로벤젠 술포네이트)는 4,4'-디플루 오로벤조페논 및 4,4'-디플루오로디페닐 술폰을 발연 황산(fuming sulfuric acid)으로 술폰화(directsulfonation)하여 제조할 수 있으며, 포타슘 2,2'-[9,9-비스(4-하이드록시페닐)플루오렌]술포네이트는 9,9-비스(4-하이드록시페닐)플루오렌을 클로로황산(ClHSO3)으로 술폰화하여 제조할 수 있다.
한편, 상기 공중합체는 상기 화학식 2에 나타난 바와 같이, 소수성 반복 단위를 포함하며, 상기 친수성 반복 단위와 달리, 이온 교환 관능기를 포함하지 않는 방향족 화합물을 이용하여 형성할 수 있다. 구체적으로는 9,9-비스(4-하이드록시페닐)플루오렌(9,9-bis(4-hydroxyphenyl)fluorene)등을 사용할 수 있다.
또한, 본 발명의 공중합체는 방향족계 화합물 또는 브렌쳐를 포함할 수 있으며, 이때, 상기 브레쳐는 본 발명의 공중합체의 주쇄를 이룰 수 있는 화합물을 의미한다. 이 때 상기 방향족계 화합물 또는 브렌쳐의 구체적인 종류는 특별히 한정되지 않는다. 상기 방향족계 화합물의 예로는 비스페놀계 단량체 또는 방향족 디할로겐계 단량체를 들 수 있고, 구체적으로는 4,4'-디플루오로벤조페논(4,4'-difluorobenzophenone), 비스(4-플루오로페닐)술폰(bis(4-fluorophenyl)sulfone), 2,2-비스(4-히드록시페닐)프로판(2,2-bis(4-hydroxyphenyl)propane), 2,2-비스(4-히드록시페닐)헥사플루오로프로판(2,2-bis(4-hydroxyphenyl)hexafluoropropane) 및 4,4'-비페놀(4,4-biphenol)의 일종 또는 이종 이상의 혼합을 들 수 있으나, 이에 제한되는 것은 아니다.
한편, 수처리 분리막에서 상기와 같은 지지체 상에 형성되는 고분자 층의 두께는 0.1㎛ 내지 200㎛ 정도인 것이 바람직하고, 20㎛ 내지 100㎛ 정도인 것이 보다 바람직하다. 상기 두께가 0.1㎛ 미만이면, 기계적 강도가 낮아져 분리막의 내구성이 저하될 우려가 있고, 200㎛을 초과하면, 투과유량이 저하될 우려가 있다.
한편, 본 발명의 지지체 상에 형성된 고분자 층은 지지층의 역할을 할 수 있으며, 지지체 및 고분자 층으로 이루어진 2층 구조의 수처리 분리막으로 사용 가능하다. 뿐만 아니라, 상기 고분자 층 상에 필요에 따라 활성층을 추가 형성함으로써, 3층 이상의 층을 갖는 구조의 수처리 분리막으로 사용할 수도 있다.
예를 들면, 상기 수처리 분리막이 역삼투막으로 사용하게 될 경우, 활성층으로 폴리아미드층을 형성하는 것이 바람직하다. 이때, 상기 폴리아미드층은 아민 화합물과 아실 할라이드 화합물의 계면 중합에 의해 형성될 수 있으며, 이때 상기 아민 화합물은, 이로써 제한되는 것은 아니나, 예를 들면, m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민, 3-클로로-1,4-페닐렌 디아민 또는 이들의 혼합물인 것이 바람직하다. 또한, 상기 아실 할라이드 화합물은 2~3개의 카르복실산 할라이드를 갖는 방향족 화합물로서, 이로써 제한 되는 것은 아니나, 예를 들면, 트리메조일클로라이드, 이소프탈로일클로라이드, 테레프탈로일클로라이드 또는 이들의 혼합물인 것이 바람직하다.
본 발명자의 실험에 따르면, 상기와 같이 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체를 포함하는 고분자 층을 포함하고, 상기 고분자 층은 이온 교환 용량(IEC)이 0.02 meq/g 내지 2.4 meq/g인 본 발명의 분리막의 경우, 하기 표 2에 나타낸 바와 같이, 종래에 비해 염제거율이 우수하면서도 투과유량이 현저하게 향상된 것을 알 수 있다. 보다 구체적으로, 32,000ppm 농도의 염화나트륨(NaCl)용액을 800psi 압력으로 통과 시, 초기 염제거율이 97% 이상, 초기 투과유량이 38 내지 48 gallon/ft2·day 정도이고, 바람직하게는 97.2% 이상 및 38 내지 45 gallon/ft2·day 정도의 성능을 가진다.
한편, 상기 구성요소를 포함한 수처리 분리막은 정밀 여과막(Micro Filtration), 한외 여과막(Ultra Filtration), 나노 여과막(Nano Filtration) 또는 역삼투막(Reverse Osmosis) 등으로 이용될 수 있으며, 특히 바람직하게는 역삼투막으로 이용될 수 있다.
본 발명은 또한, 전술한 본 발명에 따른 수처리 분리막을 어느 하나 이상 포함하는 수처리 모듈에 관한 것이다.
상기 본 발명의 수처리 모듈의 구체적인 종류는 특별히 제한되지 않으며, 그 예에는 판형(plate & frame) 모듈, 관형(tubular) 모듈, 중공사형(Hollow & Fiber) 모듈 또는 나선형(spiral wound) 모듈 등이 포함된다. 또한, 본 발명의 수처리 모듈은 전술한 본 발명의 수처리 분리막을 포함하는 한, 그 외의 기타 구성 및 제조 방법 등은 특별히 한정되지 않고, 이 분야에서 공지된 일반적인 수단을 제한 없이 채용할 수 있다.
다음으로 본 발명의 수처리 분리막의 제조 방법에 대해 설명한다.
보다 구체적으로는, 본 발명의 수처리 분리막은 ① 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체 및 용매를 포함하는 용액으로 지지체를 코팅하는 단계; 및 ②상기 코팅한 지지체를 비용매에 담가 상전이를 수행하는 단계를 포함하는 것을 특징으로 한다.
먼저, ① 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체 및 용매를 포함하는 용액으로 지지체를 코팅하는 단계에서, 상기 공중합체는 앞서 설명한 바와 동일한 내용이므로, 자세한 설명은 생략하기로 한다.
다음으로, 상기 용매는, 본 발명의 공중합체를 비롯한 고분자 화합물을 용해시킬 수 있는 것이면 그 종류가 특별히 한정되지 않는다. 예를 들면, 상기 용매로는, 메틸 아세테이트(Methyl acetate), 하이드라진(Hydrazine), 트리클로로메탄(Trichloromethane), 다이아이오도메탄(Diiodomethane), 트리클로로에틸렌(Trichloroethylene), 스티렌(Styrene), 2-부탄온(2-Butanone), 테트라하이드로퓨란(Tetrahydrofuran), 시클로헥사논(Cyclohexanone), 아세톤(Acetone), 벤조니트릴(Benzonitrile), 이소포론(Isophorone), 2-에틸-1-헥사놀(2-Ethyl-1-hexanol), 디클로로메탄(Dichloromethane), 디부틸 프탈레이트(Dibutyl phthalate), 1,4-디옥산(1,4-Dioxane), 1,2-디클로로벤젠(1,2-Dichlorobenzene), 1,2-디클로로에탄(1,2-Dichloroethane), 2-부톡시에탄올(2-Butoxyethanol), 1-브로모나프탈렌(1-Bromonaphthalene), 아세트산(Acetic acid), 에피클로로히드린(Epichlorohydrin), 벤즈알데히드(Benzaldehyde), 모르폴린(Morpholine), 아크릴로니트릴(Acrylonitrile), 아세토페논(Acetophenone), 피리딘(Pyridine), 2-부탄올(2-Butanol), 시클로헨산올(Cyclohexanol), 아닐린(Aniline), 2-메틸프로필 알코올(2-Methylpropyl alcohol), 3-메틸페놀(3-Methylphenol), N-메틸-2-피롤리딘(N-Methyl-2-pyrrolidine), 1-부탄올(1-Butanol), 브롬(Bromine), 2-에톡시에탄올(2-Ethoxyethanol), 페녹시에탄올(Phenoxyethanol), 2-프로판올(2-Propanol), 벤질 알코올(Benzyl alcohol), 디메틸에탄올아민(Dimethylethanolamine), 2-푸란메탄올(2-Furanmethanol), 아세토니트릴(Acetonitrile), 1-프로판올(1-Propanol), 2-메톡시메탄올(2-Methoxymethanol), 메탄산(Methanoic acid), N,N-디메틸포름아미드(N,N-Dimethylformamide), 니트로메탄(Nitromethane), 에탄올(Ethanol), 디메틸 술폭사이드(Dimethyl sulfoxide), 프로필렌 카보네이트(Propylene carbonate), 1,3-부탄디올(1,3-Butanediol), 디에틸렌 글리콜(Diethylene glycol), 메탄올(Methanol), 1,2-프로판디올(1,2-Propanediol), 2-아미노에탄올(2-Aminoethanol), 에틸렌 글리콜(Ethylene glycol), 에틸렌 카르보네이트(Ethylene carbonate), 디에틸 술페이트(Diethyl sulfate), 니트로에탄(Nitroethane), 알릴 알코올(Allyl alcohol) 또는 γ-부티로락톤(γ-butyrolactone)등이 단독 또는 혼합하여 사용될 수 있다.
한편, 상기 ①단계에서 지지체의 일면에 고분자 층을 형성하는 방법은 당해 기술분야에 잘 알려진 방법에 의해 수행될 수 있으며, 상기 코팅하는 방법으로는 특별히 제한하는 것은 아니나, 당해 기술 분야에 잘 알려진 접촉 방법, 예를 들면, 침지, 도포, 스프레이 등의 방법으로 수행될 수 있다.
상기와 같은 방법을 통해 지지체의 일면 또는 양면에 고분자 층이 코팅되면, 상기 코팅한 지지체를 비용매에 침지시킨다(②단계). 즉, 이때, 상기 공중합체를 포함하는 용매와 비용매 사이의 교류가 일어나게 되어 용매를 추출하는 방법을 통해, 지지체 위에 고분자가 코팅된 분리막이 제조된다.
본 발명에 적합한 비용매로는 1차 증류수, 3차 증류수, 알코올류 등을 포함하는 순수 액체 및 이들의 혼합물을 예로 들 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 ②단계에서는 상전이 현상(Marcel Mulder, "Basic principles of membrane technology", Published by Kluwer Academic Publishers, Dordrecht, 1996)을 이용하여 고분자 층을 제조한다. 구체적으로, 고분자 층이 코팅된 지지체를 비용매인 3차 증류수를 채운 응고조(non-solvent coagulation bath)에 침지시키면, 상기 공중합체를 비롯한 고분자 화합물을 포함하는 용액 내 용매는 비용매인 3차 증류수 내로 용해되어 나오는 반면, 고분자 화합물은 비용매에 용해되어 나오지 않음으로 인해 고분자상과 기공이 형성된다.
즉, 코팅한 지지체의 고분자 화합물을 포함하는 용액이 비용매의 응고조에 침지되어 응고되기 시작하면, 표면의 용매가 응고조 내의 비용매 내로 용해되어 나오고, 그로 인해 표면 용액의 점도가 급격히 증가하면서 겔 상태로 변하게 된다. 이때 비용매가 고분자 용액 내로 침투하는 과정에서 부분적으로 조성 변화가 일어나게 되어 고분자 용액의 안정성이 저하되고, 그 결과 열역학적으로 불안정해지면서 고분자 층의 표면과 내부에서 용매와 비용매의 교환에 의한 상전이가 일어난다.
한편, 본 발명에 따른 수처리 분리막의 제조 방법은, 상기 고분자 층 상에 활성층을 형성하는 단계를 추가로 포함할 수 있다.
이하, 보다 구체적인 실시예를 통해 본 발명을 더 자세히 설명한다.
<제조예 1 ~ 6>
하기의 표 1에 기재되어 있는 몰 함량에 따라, 4-neck 둥근 플라스크 (500mL)에 4,4'-디플루오로벤조페논(4,4-difluorobenzophenone), 하이드로퀴논 술폰산 포타슘염(Hydroquinone sulfonic acid potassium salt), 9,9-비스(히드록시페닐)플루오렌(9,9-bis(hydroxyphenyl)fluorene), 포타슘 카보네이트 (potassium carbonate)을 먼저 투입 후, 다이메틸설폭사이드(Dimethylsulfoxide, 이하 DMSO) 및 벤젠(Benzene)을 투입하였다. 상기 플라스크에 교반기 및 딘스탁 트랩(Dean-Stark trap)을 설치한 후, 4시간 동안 140℃에서 교반시킨다.
4시간 반응 후, 20시간 동안 180℃에서 반응시켰다. 반응 종료 후, 상온까지 서서히 식힌다. DMSO를 제거하기 위해, 합성된 고분자 용액이 들어있는 플라스크를 천천히 기울여서 메탄올에 침적을 잡는다. 침적된 고분자를 수거 후, 물로 여러 번 세척한 후, 세척된 고분자를 가열, 진공펌프를 이용하여 건조시켜 이온 교환 작용기를 갖는 공중합체를 얻었다. 얻어진 공중합체를 포함하는 고분자 층의 이온교환용량은 하기 표 1에 기재된 바와 같다.
<실시예 1 ~ 5>
DMF(N,N-디메틸포름아미드) 용액에 상기 제조예 1 내지 5에 의해 제조된 공중합체를 전체 고형분에 대하여 18중량%를 넣고 80℃ ~ 85℃에서 12시간 이상 녹여 균일한 액상이 얻었다. 이 용액을 폴리에스테르 재질의 95 ~ 100㎛ 두께의 부직포 위에 45 ~ 50㎛ 두께로 캐스팅한다. 그런 다음, 캐스팅된 부직포를 물에 넣어 고분자 층을 형성하였다.
이후, 상기 고분자 층 상에 2중량%의 메타페닐렌디아민, 1중량%의 트리에틸아민 및 2.3중량%의 캄포설포닉 애시드를 포함하는 수용액에 2분 동안 담갔다 꺼낸 후, 상기 과잉의 수용액을 25psi 롤러를 이용하여 제거하고, 상온에서 1분간 건조하였다. 그런 다음, Hexane 용매(Sigma Aldrich 제조)에 0.2부피%의 트리메조일클로로이드(TMC)를 포함하는 유기용액을 상기 코팅된 분리막 표면에 도포함으로써 계면 중합 반응을 시킨 후, 과잉의 유기용액을 제거하기 위하여 60℃ 오븐에서 10분간 건조하였다. 상기 방법으로 얻어진 수처리 분리막을 0.2중량% 탄산나트륨 수용액에서 2시간 이상 침지한 후, 증류수로 다시 1분간 세척하여 폴리아미드 활성층을 갖는 수처리 분리막을 제조하였다.
<비교예 1>
DMF(N,N-디메틸포름아미드) 용액에 18중량%의 폴리설폰 고형분을 넣고 80℃ ~ 85℃에서 12시간 이상 녹여 균일한 액상이 얻었다. 이 용액을 폴리에스테르 재질의 95 ~ 100㎛ 두께의 부직포 위에 45 ~ 50㎛ 두께로 캐스팅한다. 그런 다음, 캐스팅된 부직포를 물에 넣어 다공성 폴리설폰 지지체를 제조하였다. 이후, 실시예 1과 동일한 방법으로 폴리아미드 활성층을 형성하여 수처리 분리막을 제조하였다.
<비교예 2>
상기 제조예 6에 따라 이온 교환 용량이 2.5 meq/g인 고분자 층을 제조한 다음, 실시예 1과 동일한 방법으로 폴리아미드 활성층을 형성하여 수처리 분리막을 제조하였다.
표 1
구분 제조예1 제조예2 제조예3 제조예4 제조예5 제조예6
4,4'-디플루오로벤조페 (mol) 0.1 0.1 0.1 0.1 0.1 0.1
하이드로퀴논 술폰산 포타슘염 (mol) 0.01 0.02 0.03 0.04 0.047 0.095
9,9-비스(히드록시페닐)플루오렌 (mol) 0.09 0.08 0.07 0.06 0.053 0.004
포타슘 카보네이트 (mol) 0.21 0.21 0.21 0.21 0.21 0.21
이온 교환 용량 (meq/g) 0.2 0.4 0.6 0.8 1.0 2.5
<실험예 1 - 초기 염배제율 및 초기 투과유량 측정>
실시예 1 내지 5 및 비교예 1 내지 2에 의해 제조된 수처리 분리막의 초기 염배제율과 초기 투과유량을 다음과 같은 방법으로 평가하였다. 초기 염배제율과 초기 투과유량은 25℃에서 염화나트륨 수용액을 각각 32,000ppm 농도로 800psi 압력에서 4500mL/min의 유량으로 공급하면서 측정하였다. 막 평가에 사용한 수처리 분리막 셀 장치는 평판형 투과셀과 고압펌프, 저장조 및 냉각 장치를 구비하였으며, 평판형 투과 셀의 구조는 크로스-플로우(cross-flow) 방식으로 유효 투과면적은 28cm2이다. 세척한 수처리 분리막을 투과셀에 설치한 다음, 평가 장비의 안정화를 위하여 3차 증류수를 이용하여 1시간 정도 충분히 예비 운전을 실시하였다. 그런 다음, 32,000ppm의 염화나트륨 수용액으로 교체하여 압력과 투과유량이 정상 상태에 이를 때까지 1시간 정도 장비 운전을 실시한 후, 10분간 투과되는 물의 양을 측정하여 유량을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전후 염 농도를 분석하여 염배제율을 계산하였다. 측정 결과는 [표 2]에 나타내었다.
표 2
분류 염제거율 (%) 투과유량 (GFD)
실시예 1 97.2 38.0
실시예 2 97.8 40.0
실시예 3 98.0 44.9
실시예 4 97.9 43.3
실시예 5 97.5 41.8
비교예 1 97.1 35.1
비교예 2 90.5 32.7
[표 2]의 결과를 보면, 실시예 1 내지 5와 같이 제조된 이온 교환 작용기를 함유하는 고분자 층을 포함하는 경우, 기존의 폴리설폰의 지지층을 갖는 비교예 1의 수처리 분리막에 비해 염제거율이 향상되었고 이와 동시에 투과유량이 현저히 향상된 효과가 있음을 알 수 있었다. 또한, 비교예 2와 같이, 이온 교환능력이 2.4 meq/g을 초과하는 경우, 염제거율과 투과유량이 현저히 떨어지는 것을 확인할 수 있었다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (15)

  1. 지지체; 및
    상기 지지체 상에 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체를 포함하는 고분자 층을 포함하고,
    상기 고분자 층은 이온 교환 용량(IEC)이 0.02 meq/g 내지 2.4 meq/g인 수처리 분리막.
  2. 제1항에 있어서,
    상기 이온 교환 작용기는 -SO3M, -CO3M 또는 -PO3M(이때, 상기 M은 H, Na 또는 K)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것인 수처리 분리막.
  3. 제1항에 있어서,
    상기 친수성 반복 단위 및 소수성 반복 단위의 몰비는 1:9 내지 1:1인 수처리 분리막.
  4. 제1항에 있어서,
    상기 친수성 반복 단위는 하기 화학식 1이고, 상기 소수성 반복 단위는 하기 화학식 2인 수처리 분리막.
    [화학식1]
    Figure PCTKR2014008621-appb-I000020
    상기 A 및 B는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며, 중복 또는 교차 선택될 수 있고,
    Figure PCTKR2014008621-appb-I000021
    Figure PCTKR2014008621-appb-I000022
    Figure PCTKR2014008621-appb-I000023
    상기 E는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며,
    Figure PCTKR2014008621-appb-I000024
    상기 A 또는 B의 R1 내지 R8 중 어느 하나는 -SO3M, -CO3M 또는 -PO3M(이때, 상기 M은 H, Na 또는 K)인 이온 교환 작용기를 갖는다.
    [화학식2]
    Figure PCTKR2014008621-appb-I000025
    상기 C 및 D는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며, 중복 또는 교차 선택될 수 있고,
    Figure PCTKR2014008621-appb-I000026
    Figure PCTKR2014008621-appb-I000027
    Figure PCTKR2014008621-appb-I000028
    상기 F는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이고,
    Figure PCTKR2014008621-appb-I000029
    상기 R9는 수소, 메틸, -CF3 또는 페닐이다.
  5. 제1항에 있어서,
    상기 친수성 반복 단위는 하기 화학식 3이고, 상기 소수성 반복 단위는 하기 화학식 4인 수처리 분리막.
    [화학식 3]
    Figure PCTKR2014008621-appb-I000030
    상기 G는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며,
    Figure PCTKR2014008621-appb-I000031
    상기 R5는 SO3M, -CO3M 또는 -PO3M(이때, 상기 M은 H, Na 또는 K)인 이온 교환 작용기를 갖는다.
    [화학식 4]
    Figure PCTKR2014008621-appb-I000032
    상기 H는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이다.
    Figure PCTKR2014008621-appb-I000033
    Figure PCTKR2014008621-appb-I000034
    Figure PCTKR2014008621-appb-I000035
    Figure PCTKR2014008621-appb-I000036
  6. 제1항에 있어서,
    상기 공중합체는 중량평균분자량이 30,000 내지 1,000,000인 수처리 분리막.
  7. 제 1항에 있어서,
    상기 고분자 층은 두께가 0.1㎛ 내지 200㎛인 수처리 분리막.
  8. 제 1항에 있어서,
    상기 수처리 분리막은 32,000ppm 농도의 염화나트륨(NaCl)용액을 800psi 압력으로 통과 시, 초기 염제거율이 97% 이상이고, 초기 투과유량이 38 내지 48 gallon/ft2·day인 수처리 분리막.
  9. 제 1항에 있어서,
    상기 고분자 층 상에 하나 이상의 활성층이 형성된 수처리 분리막.
  10. 제 1 항에 있어서,
    상기 수처리 분리막은 정밀 여과막, 한외 여과막, 나노 여과막 또는 역삼투막인 수처리 분리막.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 수처리 분리막을 포함하는 수처리 모듈.
  12. 이온 교환 작용기를 포함하는 친수성 반복 단위와 소수성 반복 단위를 함유하는 공중합체 및 용매를 포함하는 용액으로 지지체를 코팅하는 단계; 및
    상기 코팅한 지지체를 비용매에 담가 상전이를 수행하는 단계를 포함하는 수처리 분리막 제조 방법.
  13. 제12항에 있어서,
    상기 이온 교환 작용기는 -SO3M, -CO3M 및 -PO3M (이때, 상기 M은 H, Na 또는 K)로 이루어진 군으로부터 선택되는 어느 하나 이상인 수처리 분리막 제조 방법.
  14. 제12항에 있어서,
    상기 공중합체는 하기 화학식 1 및 화학식 2로 표시되는 반복 단위를 함유하는 공중합체인 수처리 분리막 제조 방법.
    [화학식1]
    Figure PCTKR2014008621-appb-I000037
    상기 A 및 B는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며, 중복 또는 교차 선택될 수 있고,
    Figure PCTKR2014008621-appb-I000038
    Figure PCTKR2014008621-appb-I000039
    Figure PCTKR2014008621-appb-I000040
    상기 E는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며,
    Figure PCTKR2014008621-appb-I000041
    상기 A 또는 B의 R1 내지 R8 중 어느 하나는 -SO3M, -CO3M 또는 -PO3M(이때, 상기 M은 H, Na 또는 K)인 이온 교환 작용기를 갖는다.
    [화학식2]
    Figure PCTKR2014008621-appb-I000042
    상기 C 및 D는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이며, 중복 또는 교차 선택될 수 있고,
    Figure PCTKR2014008621-appb-I000043
    Figure PCTKR2014008621-appb-I000044
    Figure PCTKR2014008621-appb-I000045
    상기 F는 하기 작용기들로 이루어진 군으로부터 선택되는 어느 하나 이상이고,
    Figure PCTKR2014008621-appb-I000046
    상기 R9는 수소, 메틸, -CF3 또는 페닐이다.
  15. 제12항에 있어서,
    상기 비용매가 1차 증류수, 3차 증류수, 알코올류 및 이들의 혼합물로 구성된 군으로부터 선택되는 것인 수처리 분리막 제조 방법.
PCT/KR2014/008621 2013-09-16 2014-09-16 이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법 WO2015037967A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/021,847 US10279320B2 (en) 2013-09-16 2014-09-16 Water-treatment separation membrane comprising ionic exchangeable polymer layer and method for forming same
CN201480056981.XA CN105705221B (zh) 2013-09-16 2014-09-16 包含可离子交换聚合物层的水处理分离膜及其形成方法
JP2016544288A JP6302074B2 (ja) 2013-09-16 2014-09-16 イオン交換性高分子層を含む水処理分離膜およびその製造方法
EP14844548.9A EP3053641B1 (en) 2013-09-16 2014-09-16 Water-treatment separation membrane comprising ionic exchange polymer layer and method for forming same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0110865 2013-09-16
KR20130110865 2013-09-16
KR1020140122785A KR101627930B1 (ko) 2013-09-16 2014-09-16 이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법
KR10-2014-0122785 2014-09-16

Publications (1)

Publication Number Publication Date
WO2015037967A1 true WO2015037967A1 (ko) 2015-03-19

Family

ID=52665985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008621 WO2015037967A1 (ko) 2013-09-16 2014-09-16 이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2015037967A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258941B2 (en) * 2001-05-08 2007-08-21 Ube Industries, Ltd. Polymer electrolyte for solid polymer type fuel cell and fuel cell
CN101340002A (zh) * 2008-05-26 2009-01-07 上海应用技术学院 耐水解磺化聚酰亚胺质子交换膜及其制备方法
US20090325028A1 (en) * 2006-08-25 2009-12-31 Sumitomo Chemical Company, Limited Polymer electrolyte membrane, laminate thereof, and their production methods
KR20120044973A (ko) * 2009-06-16 2012-05-08 바스프 에스이 방향족 폴리에테르 술폰 블록 공중합체
KR20120060645A (ko) * 2010-12-02 2012-06-12 현대자동차주식회사 양이온 교환기를 갖는 폴리(아릴렌에테르) 공중합체, 이의 제조 방법 및 이의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258941B2 (en) * 2001-05-08 2007-08-21 Ube Industries, Ltd. Polymer electrolyte for solid polymer type fuel cell and fuel cell
US20090325028A1 (en) * 2006-08-25 2009-12-31 Sumitomo Chemical Company, Limited Polymer electrolyte membrane, laminate thereof, and their production methods
CN101340002A (zh) * 2008-05-26 2009-01-07 上海应用技术学院 耐水解磺化聚酰亚胺质子交换膜及其制备方法
KR20120044973A (ko) * 2009-06-16 2012-05-08 바스프 에스이 방향족 폴리에테르 술폰 블록 공중합체
KR20120060645A (ko) * 2010-12-02 2012-06-12 현대자동차주식회사 양이온 교환기를 갖는 폴리(아릴렌에테르) 공중합체, 이의 제조 방법 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARCEL MULDER: "Basic principles of membrane technology", 1996, KLUWER ACADEMIC PUBLISHERS
See also references of EP3053641A4

Similar Documents

Publication Publication Date Title
WO2013176524A1 (ko) 역삼투 분리막
US7550216B2 (en) Composite solid polymer electrolyte membranes
WO2013176523A1 (ko) 역삼투 분리막 제조방법 및 이에 의해 제조된 역삼투 분리막
US20150298069A1 (en) Polymer resin composition for preparing of microfilter membrane or ultrafilter membrane, preparation method of polymer filter membrane, and polymer filter membrane
US11554351B2 (en) Porous membranes
JPH09136985A (ja) 非対称単一膜用高分子溶液、それを用いる非対称単一膜およびその製造方法
EP0382356B1 (en) Membranes
WO2014204218A2 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2014137049A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
EP3497145B1 (en) Composition comprising aromatic and fluorinated polymers and use thereof
WO2010053297A2 (ko) 고분자 전해질막
WO2013180517A1 (ko) 카보디이미드계 화합물을 포함하는 고투과 역삼투막 및 이를 제조하는 방법
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2018190660A1 (ko) 다공막의 친수화 방법 및 이를 이용한 이온교환막의 제조방법
EP2935420B1 (en) Method for manufacturing sulfone polymer membrane
CN110052178B (zh) 一种高耐受有机溶剂分离膜及其制备方法
WO2017146412A1 (ko) 수처리 분리막용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법
KR101418064B1 (ko) 정밀여과막 또는 한외여과막 제조용 고분자 수지 조성물, 고분자 여과막의 제조 방법 및 고분자 여과막
WO2009157693A2 (ko) 수처리막의 친수화 방법 및 수처리막
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2015037967A1 (ko) 이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법
KR101627930B1 (ko) 이온 교환성 고분자 층을 포함하는 수처리 분리막 및 그 제조 방법
WO2017052256A1 (ko) 수처리 분리막 및 이의 제조방법
US12064731B2 (en) Porous membranes for high pressure filtration
JP7511558B2 (ja) 高圧濾過のための多孔質膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844548

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014844548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15021847

Country of ref document: US

Ref document number: 2014844548

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016544288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE