WO2015037751A1 - 하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치 - Google Patents

하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치 Download PDF

Info

Publication number
WO2015037751A1
WO2015037751A1 PCT/KR2013/008174 KR2013008174W WO2015037751A1 WO 2015037751 A1 WO2015037751 A1 WO 2015037751A1 KR 2013008174 W KR2013008174 W KR 2013008174W WO 2015037751 A1 WO2015037751 A1 WO 2015037751A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
accelerator pedal
electric motor
speed
acceleration
Prior art date
Application number
PCT/KR2013/008174
Other languages
English (en)
French (fr)
Inventor
김종철
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to EP20155334.4A priority Critical patent/EP3680139B1/en
Priority to EP13893665.3A priority patent/EP3045363B1/en
Priority to US14/917,999 priority patent/US9656573B2/en
Priority to PCT/KR2013/008174 priority patent/WO2015037751A1/ko
Priority to CN201380080832.2A priority patent/CN105705393B/zh
Publication of WO2015037751A1 publication Critical patent/WO2015037751A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • B60W2510/082Speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • B60W2710/082Speed change rate
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator

Definitions

  • the present invention relates to a method for controlling a hybrid work machine and a hybrid work machine controlled thereby.
  • the present invention relates to a sensory control method for precisely controlling acceleration and deceleration of work and travel of a hybrid work machine, and a hybrid work machine for efficiently generating regenerative energy using such a method.
  • Korean Patent Laid-Open Publication No. 10-2008-0054531 relates to a wheel loader driving device, which includes an acceleration pedal having a first hall sensor and a second hall sensor below each of which generate a signal for advancing and moving the equipment. And an equipment controller which receives signals from the first hall sensor and the second hall sensor of the accelerator pedal and generates a signal for each situation in consideration of the current speed and state of the accelerator pedal, and receives the signal from the equipment controller. And an engine fuel injection control controller capable of controlling the speed by adjusting the fuel injection amount, and a forward and backward running control device which receives a signal from the equipment controller and selects forward and backward of the equipment according to the value thereof.
  • the equipment controller proposes an invention that can control the vehicle speed of the equipment according to the speed and time when the sudden driving direction changes.
  • No. 10-2008-0054531 allows driving by selecting forward and backward using only the accelerator pedal, but does not describe precise control existing between the accelerator pedal and actual driving.
  • the wheel loader has various working modes. All of these work modes include driving work.
  • the accelerator pedal amount of the operator is to determine the speed soon.
  • a work such as loading a truck to a dump truck, a load carry, or the like requires a fine accelerator work due to low speed travel.
  • fine work at low speed it had a disadvantage that can only rely on the feeling of skilled workers. Accordingly, since the worker requires very high attention when the repetitive fine driving work is performed, the worker may easily feel fatigue and thus may cause a safety accident.
  • the conventional mechanical brake used at the time of deceleration has a disadvantage in that the energy consumption efficiency is poor because the kinetic energy of the equipment is consumed by heat such as a brake disc.
  • the present invention is to improve the sensory control system of the hybrid work machine to solve the conventional problems as described above, which is different from the conventional hydraulic work machine by using an electric motor in each axis according to the application of the electric motor to the drive system of the hybrid work machine. Can be controlled.
  • According to the present invention has a fine pedal feeling by increasing the sensitivity during acceleration and deceleration through the mapping of the speed command and the accelerator command of the electric motor used in the drive system, which has the advantage of enhancing the convenience and stability of the operator during fine work do.
  • by adjusting the speed gradient at the time of acceleration and deceleration it is possible to increase the sensibility and control the speed of the reducer as well as to maximize the amount of regenerative energy. This further increases the effectiveness of the hybrid, maximizing energy efficiency.
  • the present invention relates to a sensory control system of a hybrid work machine.
  • the accelerator pedal command is the same as the speed command. That is, the speed of the equipment can be determined according to the amount of pedaling (hereinafter referred to as the accelerator command), which is an important factor in the acceleration and deceleration sensitivity of the equipment.
  • the present invention provides a hybrid work machine driven by at least one of an electric motor driven by an engine and an energy storage device for storing regenerative energy, the motor drive for driving the electric motor, the accelerator pedal command And a control unit configured to detect an acceleration sensor, and a control unit configured to map an accelerator pedal command to a speed command during a low speed driving operation, and to control the driving unit through a motor drive, wherein the control unit controls acceleration and deceleration of the electric motor according to the mapped speed command.
  • the present invention provides a hybrid work machine that controls and generates regenerative energy according to the deceleration of the electric motor.
  • High efficiency hybrid work machines can be provided to consumers.
  • FIG. 1 is a conceptual diagram of a hybrid working machine system according to an embodiment of the present invention.
  • Figure 2 is a block diagram showing a schematic structure of a hybrid work machine according to an embodiment of the present invention.
  • FIG 3 is a graph showing that an operation amount of an accelerator pedal detected by an acceleration sensor is mapped to an accelerator pedal command according to an embodiment of the present invention.
  • FIG. 4 is a graph showing that an accelerator pedal command is mapped to a speed command according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a command implementation in accordance with one embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic structure of a hybrid work machine according to an embodiment of the present invention.
  • the working machine of the present invention uses a hybrid system as a power source.
  • the driving mechanism of the hybrid system is as follows.
  • the generator 20 generates electric energy by driving the engine 10, and the produced electric energy drives an electric motor to perform work or travel.
  • the regenerative energy is generated by the regenerative braking of the electric motor when driving or decelerating the work machine.
  • the regenerative energy generated in this way is stored in the energy storage system (ESS), and the regenerative energy stored in the energy storage device. Is used for subsequent work or travel of the work machine.
  • ESS energy storage system
  • the energy flow of such a hybrid system can vary depending on the conditions of the subsystem. For example, the electrical energy generated by a generator can be transferred directly to an electric motor, stored in an energy storage device and then to the electric motor if necessary. It may be delivered.
  • the regenerative energy means that the regenerative brake temporarily accumulates the kinetic energy that the vehicle has while driving in another form of energy at the time of deceleration, and reuses it at the start and acceleration.
  • Energy types accumulated as regenerative energy include flywheel kinetic energy and accumulator accumulator energy.
  • a driving motor for driving such as a vehicle or a construction machine is used, and a driving driving motor operates as a generator during deceleration during driving or work, and the system that accumulates the generated power in the energy storage device is mainstream. To achieve.
  • the regenerative energy of a hybrid system used in an automobile is described as an electric motor of a vehicle, which is also used as a generator, and outputs an auxiliary power to the engine.
  • the braking of the vehicle is performed by the rotational resistance of the motor.
  • the existing hybrid technology is difficult to decelerate all of the momentary kinetic energy generated when the sudden brake is applied to the rotation of the motor, so that the disc brake of the vehicle intervenes during the sudden brake to provide a stronger braking force.
  • Significant energy loss occurs at this point, and ultimately, the degree of energy loss depends on how smoothly the braking occurs. Because of this principle, most existing hybrid cars require braking slowly, but most of them can be used to charge the vehicle's kinetic energy. If a vehicle brakes with a hydraulic brake (disc brake) most of the braking energy will be lost as heat through the disc brake and the regenerative energy charged to the electric motor will be extremely limited.
  • the brake pedal for decelerating the vehicle is mainly used as the regenerative brake.
  • the brake pedal of an automobile is used as a regenerative brake
  • the automobile brake requires a deceleration of up to about 1G. Therefore, in the regenerative brake, it has been described above that the hydraulic brake may be used together to generate a strong braking force because of limitations in the ability of the motor, the inverter, or the secondary battery.
  • the energy storage device may be charged by the motor even when driving downhill, and the charged energy is driven by the recharged electricity when the uphill climbs to save energy. As a result, the generation of regenerative energy by regenerative braking can improve the overall fuel economy of the vehicle and extend the life of brake components.
  • the present invention proposes a hybrid work machine in which a driver uses regenerative braking using an accelerator pedal (Excel pedal) instead of a brake pedal and generates regenerative energy at this time.
  • the accelerator pedal is used to control the driving torque when the vehicle is driving
  • the accelerator pedal can be operated like a regenerative brake by making the pedal stepped loosely or completely not while driving. This is similar to the principle of generating a deceleration force such as an engine brake of an internal combustion engine vehicle.
  • the method of using the engine brake of a conventional internal combustion engine car as a regenerative brake does not require a new sensor or an actuator for adjusting the hydraulic brake in order to operate the regenerative brake.
  • the braking force regenerative brake
  • the acceleration of the vehicle varies depending on how much the driver presses the accelerator pedal, and as the acceleration can be adjusted according to the slope of the acceleration, inversely, the deceleration can also be adjusted according to the release of the accelerator pedal. This means that the brake force varies depending on the deceleration slope (the amount of operation of the accelerator pedal).
  • the working machine or the vehicle according to the present invention adjusts the sensitivity of the accelerator pedal to increase the precision of vehicle operation during low speed driving and low speed operation, and to increase the amount of regenerative energy by using the accelerator pedal as a regenerative brake. Suggest.
  • FIG. 1 is a conceptual diagram of a hybrid working machine system according to an embodiment of the present invention.
  • the hybrid work machine system includes an engine 10, a generator 20, motor drives 30a and 30b, electric motors 40a and 40b, an energy storage device 50, and a traveling unit 80. And a pump 90, a hydraulic circuit 91, and a lift cylinder 92.
  • One working machine includes a plurality of hydraulic circuits 91, a pump 90, an electric motor 40a, and a motor drive 30a for operating the plurality of lift cylinders 92, and a plurality of traveling units 80.
  • the driving unit 80 is responsible for moving, stopping, turning, etc. of the work machine.
  • the driving unit 80 may be a wheel for a vehicle, a caterpillar, or the like.
  • the driving unit 80 may be driven by an electric motor and the electric motor 40b is controlled by the motor drive 30b.
  • the motor drive (or motor driver) is a component including a power conversion function for driving an electric motor and a control device for controlling the speed and torque of the motor and precisely controlling the rotation speed of the motor.
  • Motor drive is a kind of module to control the motor by receiving various sensor values related to the movement of the motor.
  • the motor drive controls the drive such as forward rotation, reverse rotation, acceleration, deceleration, and stop.
  • the operation is performed by the movement of the lift cylinder 92, the lift cylinder 92 is driven in accordance with the movement of the hydraulic circuit (91).
  • the hydraulic circuit 91 is operated by the hydraulic pressure supplied by the electric motor 40a by operating the pump 90, and the electric motor 40a is operated by the motor drive 30a.
  • FIG 3 is a graph showing that an operation amount of an accelerator pedal detected by an acceleration sensor is mapped to an acceleration command according to an embodiment of the present invention.
  • the acceleration sensor 70 detects an accelerator pedal command transmitted by the driver to the accelerator pedal.
  • the reason for converting (mapping) the acceleration pedal command without using the value input to the acceleration sensor as it is is because the minimum value and the maximum value of the accelerator pedal sensor include an error depending on the sensor.
  • the linear section of the sensor may be different depending on the sensor type, if there is no correction for this, all programs need to be modified for each sensor. This decreases the versatility of the equipment, and in order to solve this problem, as shown in FIG. 3, the minimum and maximum values for which the linearity of the sensor is guaranteed are set, and the accelerator pedal command is set to 0 to 100% based on the values.
  • this is an exemplary case and may be set through an external device such as a dashboard of a working machine or a notebook so that the user may set the driving environment and working conditions.
  • FIG. 3 exemplarily shows how an accelerator pedal command is detected from an acceleration sensor. If the driver's command detected by the acceleration sensor 70 is lower than the minimum value (Min. Acceleration) point, the accelerator pedal command is set to 0, and the driver's command detected by the acceleration sensor 70 is the minimum value (Min. Acceleration) point. Acceleration pedal command is formed with a certain slope when it is larger and lower than the Max. Acceleration point, and accelerator pedal command when the driver's command detected by the acceleration sensor 70 is higher than the Max. Acceleration point. Is kept constant. This is only one embodiment in which the accelerator pedal command is sensed, and the minimum and maximum values input to the acceleration sensor may be variously set according to the driving conditions and the working environment. In addition, although the slope of the accelerator pedal command has been described linearly in FIG. 3, the slope of the accelerator pedal command may be nonlinear.
  • FIG. 4 is a graph showing that an accelerator pedal command is mapped to a speed command according to an embodiment of the present invention.
  • the control unit 60 is a component that maps the accelerator pedal command to the speed command during the low-speed driving operation, and makes it possible to control the driving unit 80 through the motor drive 30.
  • the controller 60 may be a microcomputer, an ECU, an electronic controller, an integrated circuit, or the like.
  • the controller 60 receives the accelerator pedal command from the acceleration sensor 70 and maps the velocity pedal command.
  • the magnitude of the speed command is determined in proportion to the magnitude of the accelerator pedal command.
  • the mapping of the accelerator pedal command and the speed command is an important factor in determining the pedal feel and affects the operator's driving texture and work precision.
  • the speed command should be increased or decreased with a constant slope rather than being instantaneously increased accordingly. This is an important factor in the vehicle's sensibility of acceleration and deceleration.
  • the accelerator pedal command and the speed command can be linearly mapped. This is a general mapping of the accelerator pedal command and the speed command to 1: 1, and the speed command also increases in proportion to the increase of the accelerator pedal command.
  • the accelerator pedal command and the speed command can be mapped non-linearly.
  • the accelerator pedal command and the speed command may be mapped to a two-stage curve.
  • the mapping may be set nonlinearly by providing one or more inflection points between the maximum value and the minimum value.
  • the mapping of the accelerator pedal command and the speed command is composed of two stages by placing one inflection point (coordinates: TH_X, TH_Y) during mapping.
  • the accelerator pedal command is gently mapped to the speed command, which can increase the precision of the machine in low speed and low speed operation.
  • the regenerative braking of the electric motor operates more efficiently in low-speed driving and low-speed operation, so that regenerative energy can be generated more efficiently.
  • the working machine of the present invention can adjust the regenerative energy generated during deceleration using the set speed gradient while the control unit controls the acceleration and deceleration of the electric motor according to the mapped speed command. That is, when using the electric braking according to the present invention, the braking force can be set differently for each mode by changing the speed command decreasing slope for each braking mode. Therefore, substituting this into the law of acceleration means that regenerative energy can be adjusted.
  • the regenerative energy generated at this time is stored in the energy storage device, and the stored regenerative energy may be used for subsequent driving or work.
  • the creep speed represents the lowest speed of the electric motor at the time TH_0 when the accelerator pedal command is recognized. This allows you to adjust the vehicle's minimum speed.
  • the speed command may also be set to the maximum speed.
  • the time at which the accelerator pedal command is recognized (TH_0), the creep speed and the maximum speed may be variously set according to the driving conditions and the working environment.
  • FIG. 5 is a block diagram of a command implementation in accordance with one embodiment of the present invention.
  • the block diagram of the command implementation shown in FIG. 5 exemplarily shows how the speed of the work machine can be changed through the acceleration command, so that the work machine according to the invention can adjust the acceleration and deceleration.
  • the accelerator pedal command is inputted by the acceleration sensor, the accelerator pedal command is mapped to the speed command by the controller, and the mapped speed command makes it possible to compare (determin) the current speed with the sign. (S10).
  • step S10 If the sign of the speed command and the current speed is different in step (S10), the speed of the work machine is reduced (S50) . If the sign of the speed command and the current speed is the same, it is determined whether to speed up or slow down the speed of the work machine. The determination proceeds to step S20.
  • step S20 If the speed command is less than zero in step S20, the process proceeds to step S30, and in step S30, the acceleration command is calculated. At this time, the acceleration command is calculated as follows.
  • step S20 If the speed command is equal to or greater than zero in step S20, the process proceeds to step S31, where the acceleration command is calculated as follows.
  • the working machine according to the present invention can be accelerated or decelerated by the above flow, and the speed is increased by the set slope when the speed command increases the speed, and decreases by the set slope on the contrary.
  • the accelerator pedal is the same as the regenerative brake, so when the work machine loosens the accelerator pedal during driving or work, the speed decreases with the set slope, that is, the brake is applied, and the motor regenerates. Energy is generated.
  • the present invention is particularly easy to control the speed in low speed travel and low speed operation, and because the regenerative braking of the electric motor operates more efficiently, it is possible to generate regenerative energy more efficiently.
  • Such a hybrid working machine can be driven by the following method corresponding to the device.
  • the hybrid work machine is driven by at least one of an electric motor driven by an engine and an energy storage device for storing regenerative energy, and the acceleration sensor detects an accelerator pedal command, and the control unit accelerates the pedal during low speed driving. Mapping a command to a speed command; controlling the acceleration and deceleration of the electric motor according to the mapped speed command; and generating regenerative energy according to the deceleration of the electric motor.
  • the present invention through the acceleration and deceleration control of the electric motor used in the drive system of the hybrid working machine to increase the convenience and safety for fine work at low speed and at the same time maximize the regenerative energy generated during deceleration in the hybrid system energy High efficiency hybrid work machine can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

본 발명은 전기 모터가 엔진에 의해 구동되는 발전기 및 회생에너지를 저장하는 에너지 저장장치 중 어느 하나 이상에 의해 구동되는 하이브리드 작업 기계에 있어서, 상기 전기모터를 구동하기 위한 모터드라이브, 가속 페달 지령을 감지하는 가속 센서 및 저속주행 작업시 가속 페달 지령을 속도 지령에 맵핑시키며, 모터드라이브를 통해 주행유닛을 제어 가능한 제어부를 포함하며, 상기 제어부는 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하며, 상기 전기모터의 감속에 따라 회생에너지를 발생시키는 하이브리드 작업기계에 관한 발명이다.

Description

하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치
본 발명은 하이브리드 작업기계의 제어방법 및 그에 의해 제어되는 하이브리드 작업 기계에 관한 것이다.
구체적으로는 하이브리드 작업 기계의 작업 및 주행의 가감속을 정밀하게 제어하는 감각성 제어방법 및 그러한 방법을 이용하여 효율적으로 회생에너지를 발생시키는 하이브리드 작업 기계에 관한 것이다.
한국특허공개 제10-2008-0054531호는 휠로더 주행장치에 관한 것으로, 이 주행장치는 장비를 전후진시키기 위한 신호를 발생시키는 제1 홀센서와 제2 홀센서가 그 하부에 각각 구비된 가속페달과, 이 가속페달의 제1 홀센서와 제2 홀센서의 신호를 입력받아 현재 장비의 속도와 상태를 고려하여 각각의 상황에 맞도록 신호를 발생시키는 장비 콘트롤러와, 이 장비 콘트롤러의 신호를 받아 연료분사량을 조절하여 속도를 제어할 수 있도록 된 엔진 연료분사제어 콘트롤러 및, 상기 장비 콘트롤러의 신호를 받아 그 값에 따라 장비의 전진과 후진을 선택하는 전후진 주행제어장치를 포함하여 구성된다. 또한, 상기 장비 콘트롤러는 급작스러운 주행방향 변경시 그 속도와 시간에 따라 장비의 차량 속도를 제어할 수 있도록 된 발명을 제시하고 있다.
제10-2008-0054531호의 발명은 가속페달만을 이용하여 전진 및 후진을 선택하여 주행할 수 있도록 하고 있는데 다만 가속페달과 실제 주행 사이의 존재하는 정밀한 제어에 대해서는 기재하지 못하고 있다.
종래의 작업기계 중 예를 들어, 휠로더는 여러가지 작업 모드를 가지고 있다. 이 작업 모드는 모두 주행 작업을 포함하고 있다. 특히 주행 작업시에는 작업자의 액셀 페달량이 곧 속도를 결정하게 되어 있다. 예를 들면, 덤프트럭으로의 상차 작업과 로드 캐리등의 작업은 저속 주행에 따른 미세한 액셀 작업이 요구된다. 하지만 저속시에 미세작업을 수행할 때, 숙련된 작업자의 느낌에 의존할 수 밖에 없는 단점을 가지고 있었다. 이에 따라, 반복적인 미세 주행 작업을 할 경우 작업자는 매우 높은 주의력을 요하므로 작업자가 쉽게 피로를 느끼게 되고 이로 인한 안전사고가 유발될 수 있다. 또한, 종래의 장비에서는 감속시에 사용되는 종래의 기계식 브레이크는 장비의 운동에너지를 브레이크 디스크 등의 열로 소비하여 에너지 소비 효율이 나쁘다는 단점이 존재하였다.
종래의 엔진을 이용한 건설기계, 작업기계는 상기와 같은 문제점이 존재하였으나, 최근 기계분야에 하이브리드 시스템을 적용되기 시작하였고, 연비 개선 등을 위한 개발이 이루어지고 있다. 하이브리드 시스템에서는 구동에 사용하고 있는 전기 모터를 발전기로 제어함으로써 장비의 운동에너지를 전기에너지로 변환하여 에너지 저장장치에 충전하고 이렇게 에너지 저장장치(Energy Storage System, ESS)에 충전된 에너지를 이후 작업 또는 주행에 다시 사용하도록 구성된다. 다만, 이러한 하이브리드 시스템은 연비를 향상시킬 수 있으나, 모터의 구동특성은 엔진의 구동특성과 다르므로 저속에서 미세 작업시 정교함이 감소될 수 있고, 종래 하이브리드 시스템은 제동 동작에서 미리 셋팅되고 고정된 브레이크력을 사용하여 회생에너지를 발생시키므로 작업기계의 감속을 통해 발생되는 회생에너지의 양이 제한적이었다.
위와 같은 종래의 문제점을 해결하고자 본 발명은 하이브리드 작업기계의 감각성 제어 시스템을 개선한 것으로 이는 종래의 유압식 작업기계와 달리 하이브리드 작업기계의 구동 시스템에 전기 모터를 적용함에 따라 각 축을 전기 모터를 사용하여 제어할 수 있음으로 가능해 진다. 본 발명에 의하면 구동 시스템에 사용되는 전기 모터의 속도 지령과 액셀 지령의 매핑을 통하여 가감속시의 감각성을 높임으로서 미세한 페달감을 가지게 되며 이는 미세 작업시에 작업자의 편의성 및 안정도를 높이는 장점을 가지게 된다. 또한 가감속시의 속도기울기를 조정함에 따라 감각성을 높이는 동시에 감속기 브레이크력 또한 같이 조절이 가능함에 따라 회생에너지를 양을 극대화할 수 있는 장점 또한 가질 수 있다. 이는 하이브리드의 효과를 더욱 증대시키므로 에너지 효율을 극대화할 수 있다.
본 발명은 하이브리드 작업기계의 감각성 제어 시스템에 대한 것으로 전기 모터와 드라이브를 주행 시스템으로 사용하는 하이브리드 작업기계의 경우 액셀 페달 지령은 속도 지령과 동일하다. 즉, 페달을 밟는 양(이하 액셀 지령)에 따라 장비 속도의 크기가 결정할 수 있으며 이는 장비의 가감속 감각성에 중요한 요소로 작용한다. 따라서 본 발명은 전기 모터가 엔진에 의해 구동되는 발전기 및 회생에너지를 저장하는 에너지 저장장치 중 어느 하나 이상에 의해 구동되는 하이브리드 작업 기계에 있어서, 상기 전기모터를 구동하기 위한 모터드라이브, 가속 페달 지령을 감지하는 가속 센서, 및 저속주행 작업시 가속 페달 지령을 속도 지령에 맵핑시키며, 모터드라이브를 통해 주행유닛을 제어 가능한 제어부를 포함하며, 상기 제어부는 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하며, 상기 전기모터의 감속에 따라 회생에너지를 발생시키는 하이브리드 작업기계를 제시한다.
본 발명에 의하면, 하이브리드 작업기계의 구동 시스템에 사용되는 전기 모터의 가감속 제어를 통하여 저속시 미세 작업에 대한 편의성과 안전성을 높임과 동시에 하이브리드 시스템에서 감속시 발생하는 회생에너지를 기존보다 최대화하여 에너지 효율이 높은 하이브리드 작업기계를 소비자에게 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 하이브리드 작업기계 시스템 개념도.
도 2는 본 발명의 일 실시예에 따른 하이브리드 작업기계의 모식적 구조를 나타낸 블록도.
도 3은 본 발명의 일 실시예에 따라 가속센서가 감지하는 가속페달의 조작량이 가속 페달 지령에 맵핑되는 것을 나타내는 그래프.
도 4은 본 발명의 일 실시예에 따라 가속 페달 지령이 속도지령에 맵핑되는것을 나타내는 그래프.
도 5는 본 발명의 일 실시예에 따른 지령(command) 구현의 블록 다이어그램.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적법하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 하이브리드 작업기계의 모식적 구조를 나타낸 블록도이다.
본 발명의 작업 기계는 하이브리드 시스템을 동력원으로 사용한다. 하이브리드 시스템의 구동 메커니즘은 다음과 같다. 엔진(10) 구동에 의해 발전기(20)가 전기에너지를 생산하고, 생산된 전기에너지는 전기모터를 구동하여 작업 또는 주행을 수행한다. 이때 작업기계의 주행 또는 작업 중 감속시 전기모터의 회생제동에 의해 회생에너지가 발생하며, 이렇게 발생된 회생에너지는 에너지 저장장치(ESS, Energy Storage System)에 저장되며, 에너지 저장장치에 저장된 회생에너지는 작업기계의 이후 작업 또는 주행에 이용된다. 이러한 하이브리드 시스템의 에너지 흐름은 서브시스템의 조건에 따라 변할 수 있는데, 예를 들어, 발전기에서 발생된 전기에너지는 직접 전기모터로 전달될 수도 있고, 에너지 저장장치에 저장되어 있다가 필요시 전기모터로 전달될 수도 있다.
회생에너지는 회생브레이크를 이용하여 자동차가 주행 시에 가지고 있는 운동에너지를 감속 시에 다른 형태의 에너지형태로 일시 축적하였다가, 발진, 가속 시에 재이용하는 것을 의미한다.
회생에너지로 축적되는 에너지 형태로는 플라이휠의 운동에너지나 어큐뮬레이터의 축압에너지 등이 있다. 일반적으로는 차량이나 건설기계 등의 주행용 구동모터를 이용하며, 주행 중 또는 작업 중 감속 시에 주행용 구동 모터가 발전기로 동작하게 되어 이 때 발생되는 전력을 에너지 저장 장치에 축적하는 시스템이 주류를 이루고 있다.
자동차 등에 이용되는 하이브리드 시스템을 예로 들어 회생에너지에 대해 설명하자면, 자동차의 전기모터는 발전기로도 이용되며 엔진을 보조하는 출력을 내는데 제동시 구동축과 연계되어 이 모터를 회전시키도록 하여 전기를 발생시키고, 이때 모터의 회전저항에 의해 자동차의 제동이 이루어지게 된다. 그러나 현존하는 하이브리드 기술로는 급브레이크를 밟을때 발생되는 순간적인 많은 운동에너지를 모두 모터의 회전으로 감속시키는데는 무리가 있기 때문에 급브레이크시 자동차의 디스크브레이크가 개입하여 더욱 강한 제동력을 제공하게 된다. 이 부분에서 상당한 에너지 손실이 일어나며 결국 브레이킹이 얼마나 부드럽게 일어나느냐에 따라 에너지 손실의 정도가 달라진다. 이러한 원리 때문에 현존하는 대부분의 하이브리드 자동차는 브레이킹을 서서히 해야지만 차량의 운동에너지를 배터리 충전하는데 대부분 사용할 수 있게 된다. 만약 차량이 유압식 브레이크(디스크 브레이크)를 이용하여 급제동을 하는 경우 대부분의 제동 에너지는 디스크 브레이크를 통해 열로 손실될 것이며 전기모터에 충전되는 회생에너지는 극히 제한될 것이다.
상기 설명한대로 차량의 감속시에 회생에너지가 발생하게 되므로 차량 감속을 위한 브레이크 페달이 주로 회생 브레이크로 이용되게 된다. 자동차의 브레이크 페달이 회생브레이크로 이용될 경우, 자동차 브레이크는 최대 1G 정도의 감속도를 필요로 한다. 따라서, 회생브레이크에서는 모터, 인버터 또는 이차전지 등의 능력에 한계가 있기 때문에 강력한 제동력을 발생시키기 위하여 유압브레이크를 함께 보조적으로 사용하기도 한다는 점이 위에서 설명되었다. 브레이킹 뿐 아니라 내리막 주행을 할때도 모터에 의해 에너지 저장 장치에 충전이 이루어질 수 있고, 이렇게 충전된 에너지는 오르막을 올라갈때 다시 충전된 전기로 모터가 구동되어 에너지를 절약할 수 있게 된다. 결국 회생 제동에 의한 회생에너지 발생은 차량의 전반적인 연비를 향상시키며 브레이크 부품의 수명을 연장시킬 수 있다.
본 발명은 운전자가 브레이크 페달이 아닌 가속 페달(엑셀 페달)을 이용하여 차량을 회생 제동시키고 이 때 회생 에너지 발생시켜 이용하는 하이브리드 작업기계를 제안한다. 가속 페달은 차량의 주행 시에 주행 토크를 제어하기 위하여 사용되고 있으나, 가속 페달을 주행 중에 느슨하게 밟거나 완전히 밟지 않는 상태를 만들어 회생 브레이크처럼 작동시킬수 있다는 점이 주목되어야 한다. 이는 내연기관 자동차의 엔진브레이크와 같은 감속력을 발생시키는 원리와 같다. 다만 기존의 내연기관 자동차의 엔진브레이크를 회생브레이크로 이용하는 방식은 회생브레이크를 작동시키기 위하여 센서나 유압브레이크 조정용의 액추에이터 등을 새롭게 필요로 하지 않기 때문에 기존의 단순한 구조를 유지할 수 있지만, 전기모터에 커다란 제동력(회생브레이크)을 설정할 수 없어 브레이킹 시 발생하는 에너지의 회수율을 높일 수 없다는 단점이 있었다.
운전자가 가속페달을 밟는 정도에 따라 차량의 가속도가 달라지고 이러한 가속도의 기울기에 따라 가속도를 조절할 수 있듯이, 이를 역으로 생각하면 가속페달을 떼는 정도에 따라 감속도 또한 조절이 가능하게 된다. 이는 곧 감속 기울기에 따라(가속 페달을 조작하는 양에 따라) 브레이크력이 달라진다는 것을 의미한다.
본 발명에 따른 작업기계 또는 작업차량은 가속페달의 민감도를 조절하여 저속주행 및 저속작업시 차량 조작의 정밀도를 높이고, 가속페달을 회생브레이크처럼 사용하여 회생에너지의 발생량을 증가시킬 수 있는 장치와 방법을 제안한다.
도 1은 본 발명의 일 실시예에 따른 하이브리드 작업기계 시스템 개념도이다.
도 1에 도시한 것과 같이 하이브리드 작업기계 시스템은 엔진(10), 발전기(20), 모터드라이브(30a, 30b), 전기모터(40a, 40b), 에너지 저장장치(50), 주행유닛(80), 펌프(90), 유압회로(91), 리프트 실린더(92)를 포함하여 이루어진다. 하나의 작업기계는 복수의 리프트 실린더(92)를 작동시키기 위해 복수의 유압회로(91), 펌프(90), 전기모터(40a), 모터드라이브(30a)를 구비하며, 복수의 주행유닛(80)을 구동시키기 위해 복수의 전기모터(40b)와 모터드라이브(30b)를 구비한다.
주행유닛(80)은 작업기계의 이동, 정지, 방향전환 등을 담당하며 이러한 주행유닛은 차량용 바퀴, 캐터필러 등이 될 수 있다. 주행유닛(80)은 전기모터에 의해 구동될 수 있으며 전기모터(40b)는 모터드라이브(30b)에 의해 제어된다. 모터드라이브(혹은 모터드라이버)는 전기모터를 구동하기 위한 전력 변환 기능 및 모터의 속도 및 토크를 제어하기 위한 제어장치를 포함하는 구성요소이며 모터의 회전속도 등을 정밀하게 제어하는 역할을 수행한다. 모터드라이브는 모터의 움직임과 관련된 각종 센서값을 입력받아 모터를 제어하는 일종의 모듈이며 모터를 정회전, 역회전, 가속, 감속, 정지 등의 구동을 제어한다.
리프트 실린더(92)의 움직임에 의해 작업이 수행되며, 상기 리프트 실린더(92)는 유압회로(91)의 움직임에 따라 구동된다. 유압회로(91)는 전기모터(40a)가 펌프(90)를 작동시켜 공급하는 유압에 의해 작동되며 전기모터(40a)는 모터드라이브(30a)에 의해서 작동된다.
도 3은 본 발명의 일 실시예에 따라 가속센서가 감지하는 가속페달의 조작량이 가속지령에 맵핑되는 것을 나타내는 그래프이다.
가속 센서(70)는 운전자가 가속 페달에 전달하는 가속 페달 지령을 감지한다. 도 3에서 나타낸 것과 같이 가속 센서에 입력되는 값을 그대로 이용하지 않고, 가속 페달 지령으로 변환(맵핑)하는 이유는 가속 페달 센서 값의 최소값과 최대값이 센서에 따라 오차를 포함하고 있기 때문이다. 또한, 센서의 선형적인 구간은 센서 종류에 따라 모두 다를 수 있기 때문에, 이에 대한 보정이 없다면 각 센서에 따라 프로그램이 모두 수정될 필요가 있다. 이는 장비의 범용성을 떨어뜨리므로, 이를 해결하기 위해 도 3과 같이 센서의 선형성이 보장되어지는 최소값과 최대값을 설정하여 그 값을 기준으로 가속 페달 지령을 0~100%로 설정한다. 다만 이는 예시적인 경우이며 사용자가 주행 환경과 작업 조건에 맞추어 설정할 수 있도록 작업기계의 계기판 또는 노트북과 같은 외부기기를 통해 설정될 수 있다.
도 3은 가속 센서로부터 가속 페달 지령이 어떻게 감지되는지를 예시적으로 보여준다. 가속 센서(70)가 감지하는 운전자의 명령이 최소값(Min. Acceleration) 지점보다 낮은 경우 가속 페달 지령은 0으로 설정되며, 가속 센서(70)가 감지하는 운전자의 명령이 최소값(Min. Acceleration) 지점보다 커지고 최대값(Max. Acceleration) 지점보다 낮은 경우 가속 페달 지령은 일정한 기울기를 가지고 형성되며, 가속 센서(70)가 감지하는 운전자의 명령이 최대값(Max. Acceleration) 지점보다 높은 경우 가속 페달 지령은 일정한 값으로 유지된다. 이는 가속 페달 지령이 감지되는 하나의 실시예일 뿐이며, 가속센서에 입력되는 최소값 및 최대값은 주행 조건 및 작업 환경에 따라 다양하게 설정될 수 있다. 또한 도 3에서는 가속 페달 지령의 기울기가 선형으로 설명되었으나 가속 페달 지령의 기울기는 비선형으로도 형성될 수 있다.
도 4은 본 발명의 일 실시예에 따라 가속 페달 지령이 속도지령에 맵핑되는것을 나타내는 그래프이다.
*제어부(60)는 저속주행 작업시 가속 페달 지령을 속도 지령에 맵핑시키며, 모터드라이브(30)를 통해 주행유닛(80)을 제어 가능하게 하는 구성요소이다. 제어부(60)는 마이컴, ECU, 전자컨트롤러, 집적회로 등이 될 수 있다. 제어부(60)는 가속센서(70)로부터 가속 페달 지령을 수신하여 속도 지령에 맵핑한다.
일반적으로 가속 페달 지령의 크기에 비례하여 속도 지령의 크기가 결정된다. 가속 페달 지령과 속도 지령을 어떤 식으로 매핑하느냐는 페달감을 결정하는 중요한 요소로 작용하며 작업자의 주행 질감 및 작업 정밀도에 영향을 미친다.
가속 페달 지령이 순간적으로 증가하였을 때, 속도 지령을 그에 따라 순간적으로 증가시키는 것이 아니라, 일정 기울기를 가지고 증감시켜야 한다. 이것은 차량의 가감속 감각성(sensibility of acceleration and deceleration)에 중요한 요소로 작용한다.
첫번째로, 가속 페달 지령과 속도 지령은 선형적으로 맵핑될 수 있다. 이는 일반적으로 가속 페달 지령과 속도 지령을 1:1로 맵핑하는 것으로서, 가속 페달 지령의 증가에 비례하여 속도 지령도 증가하게 된다.
두번째로는, 가속 페달 지령과 속도 지령은 비선형적으로 맵핑될 수 있다. 예를 들어, 도 4에서와 같이, 가속 페달 지령과 속도 지령을 2단 커브로 맵핑할 수 있다. 위에서 서술한 바와 같이 저속 작업시 운전자에게 미세한 페달감이 요구되므로 가속 페달 지령의 증가량에 비해 속도 지령의 증가량을 둔감하게 함으로써 저속에서의 미세 작업에서 편의성을 높이기 위함이다. 이러한, 설정이 가능하도록 하기 위해 최대값과 최소값 사이에 하나 이상의 변곡점을 두어 맵핑을 비선형으로 설정할 수 있다. 도 4에서는 맵핑시 하나의 변곡점(좌표 : TH_X, TH_Y)을 두어 가속 페달 지령과 속도 지령의 맵핑이 2단으로 구성되어 있다. TH_X, TH,Y 지점 아래에서는 가속 페달 지령이 속도 지령에 완만하게 맵핑되어 있는데 이러한 맵핑은 저속주행 및 저속작업에서 작업기계의 정밀도를 높여줄 수 있다. 이와 함께, 저속주행 및 저속 작업에서 전기모터의 회생 제동이 더 효율적으로 작동하므로 회생에너지를 더 효율적으로 발생시킬 수 있다.
또한 본 발명의 작업기계는 상기 제어부가 맵핑된 속도 지령에 따라 전기 모터의 가속과 감속을 제어하는 동안, 설정된 속도 기울기를 이용하여 감속시 발생되는 회생에너지를 조정할 수 있게 된다. 즉, 본 발명에 따른 전기적 브레이킹을 사용시 브레이킹 모드별로 속도지령 감소 기울기를 바꿈으로써 각 모드별로 브레이킹력을 다르게 설정할 수 있다. 따라서 이를 가속도 법칙에 대입하면 회생 에너지량을 조정할 수 있음을 의미한다. 이 때 발생된 회생에너지는 에너지 저장 장치에 저장되고, 저장된 상기 회생에너지는 이후 주행 또는 작업에 이용될 수 있다.
도 4에서, 크립 속도(Creep Speed)는 가속 페달 지령이 인지되는 시점(TH_0)에서 전기모터의 최저 속도를 나타낸다. 이를 통해 차량의 최저 속도를 조정할 수 있다. 이와 대응하여, 가속 페달 지령이 최대로 입력되는 경우에 속도 지령도 최대 속도로 설정될 수 있다. 다만 가속 페달 지령이 인지되는 시점(TH_0), 크립 속도, 최대 속도는 주행 조건과 작업 환경에 따라 다양하게 설정될 수 있다.
도 5는 본 발명의 일 실시예에 따른 지령(command) 구현의 블록 다이어그램이다.
도 5에 도시된 지령 구현의 블록 다이어그램은 가속 지령을 통해 작업기계의 속도가 어떻게 변화될 수 있는지를 예시적으로 보여주며, 이에 따라 본 발명에 따른 작업기계는 가속과 감속을 조절할 수 있다. 사용자가 작업기계의 가속 페달을 조작하는 경우 가속 센서에 의해 가속 페달 지령이 입력되고, 가속 페달 지령은 제어부에 의해 속도 지령으로 맵핑되며, 맵핑된 속도 지령은 현재 속도와 부호를 비교(판별)하게 된다(S10).
(S10)단계에서 속도 지령과 현재 속도의 부호가 다른 경우 작업기계의 속도기 감소(S50)하도록 처리되며, 속도 지령과 현재 속도의 부호가 같은 경우 작업기계의 속도를 가속할지 또는 감속할지 여부를 결정하는 단계로 진행된다(S20).
(S20)단계에서 속도 지령이 0보다 작은 경우 (S30)단계로 진행되고, (S30)단계에서는 가속지령이 계산되게 된다. 이때 가속 지령은 다음과 같이 계산된다.
"가속 지령 = │속도 지령│+ 현재 속도"
(S20)단계에서 속도 지령이 0과 같거나 0보다 큰 경우 (S31)단계로 진행되고, 이때 가속 지령은 다음과 같이 계산된다.
"가속 지령 = 속도 지령 - 현재 속도"
이후 (S40)단계에서 가속 지령 = 0 인 경우 작업기계의 속도가 유지(S51)되도록 처리되고, 엑셀지령이 0이 아닌 경우 속도가 증가(S52)하도록 처리된다.
본 발명에 따른 작업기계는 위와 같은 흐름에 의해 주행 또는 작업이 가속 또는 감속될 수 있으며, 속도 지령이 속도를 증가시키는 경우 설정된 기울기로 속도가 증가하고, 반대의 경우 설정된 기울기로 감소한다. 결국 가속 페달이 회생 브레이크로 동작하는 것과 마찬가지이기 때문에, 작업기계가 주행 또는 작업 중에 가속 페달을 느슨하게 하는 경우 설정된 기울기로 속도가 감소하며, 즉 브레이크가 걸린 것과 같은 현상이 발생하며, 전기모터에 회생에너지가 발생하게 된다. 이러한 메커니즘에 의해 본 발명은 특히 저속 주행 및 저속 작업에서 속도 제어가 용이하며, 전기모터의 회생 제동이 더 효율적으로 작동하므로 회생에너지를 더 효율적으로 발생시킬 수 있다.
상기와 같은 하이브리드 작업기계는 장치와 대응되는 다음과 같은 방법에 의해서 구동될 수 있다. 하이브리드 작업기계는 전기 모터가 엔진에 의해 구동되는 발전기 및 회생에너지를 저장하는 에너지 저장장치 중 어느 하나 이상에 의해 구동되며, 가속 센서가 가속 페달 지령을 감지하는 단계, 제어부가 저속주행 작업시 가속 페달 지령을 속도 지령에 맵핑시키는 단계, 상기 제어부가 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 단계, 상기 전기모터의 감속에 따라 회생에너지가 발생하는 단계를 포함하여 구동되게 된다.
본 발명에 의하면, 하이브리드 작업기계의 구동 시스템에 사용되는 전기 모터의 가감속 제어를 통하여 저속시 미세 작업에 대한 편의성과 안전성을 높임과 동시에 하이브리드 시스템에서 감속시 발생하는 회생에너지를 기존보다 최대화하여 에너지 효율이 높은 하이브리드 작업기계를 제공할 수 있다.

Claims (11)

  1. 전기 모터가 엔진에 의해 구동되는 발전기 및 회생에너지를 저장하는 에너지 저장장치 중 어느 하나 이상에 의해 구동되는 하이브리드 작업 기계에 있어서,
    상기 전기모터를 구동하기 위한 모터드라이브;
    가속 페달 지령을 감지하는 가속 센서; 및
    저속주행 작업시 가속 페달 지령을 속도 지령에 맵핑시키며, 모터드라이브를 통해 주행유닛을 제어 가능한 제어부;를 포함하며,
    상기 제어부는 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하며,
    상기 전기모터의 감속에 따라 회생에너지를 발생시키는 하이브리드 작업기계.
  2. 제 1항에 있어서,
    저속주행 작업 중 전기모터의 정교한 가감속 제어가 필요한 경우,
    상기 제어부는 가속 센서가 감지하는 최소값과 최대값을 설정하며, 상기 최소값과 최대값 사이에서 가속 페달 지령을 선형적으로 속도 지령에 맵핑하고, 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 것을 특징으로 하는 하이브리드 작업기계.
  3. 제 1항에 있어서,
    저속주행 작업 중 전기모터의 정교한 가감속 제어가 필요한 경우,
    상기 제어부는 가속 센서가 감지하는 최소값과 최대값을 설정하며, 상기 가속 페달 지령이 임계값 미만인 경우 속도 지령을 0으로 맵핑하며, 상기 가속 페달 지령이 임계값인 경우 미리 설정된 최저 스피드(creep speed)로 속도 지령을 맵핑하며, 상기 가속 페달 지령이 임계값을 초과하는 경우 가속 페달 지령의 최대값까지 속도 지령을 맵핑하고, 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 것을 특징으로 하는 하이브리드 작업기계.
  4. 제 3항에 있어서,
    상기 가속 페달 지령이 임계값을 초과하는 경우 가속 페달 지령의 최대값까지 속도 지령을 맵핑할 때, 상기 제어부가 최소한 하나 이상의 변곡점을 포함하여 속도 지령을 맵핑하는 것을 특징으로 하는, 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 것을 특징으로 하는 하이브리드 작업기계.
  5. 제 1항 내지 4항 중 어느 한 항에 있어서,
    상기 제어부가 맵핑된 속도 지령에 따라 전기 모터의 가감속을 제어하는 동안, 설정된 속도 기울기를 이용하여 감속시 발생되는 회생에너지를 조정할 수 있는 하이브리드 작업기계.
  6. 제1항에 있어서,
    발생된 상기 회생에너지를 에너지 저장 장치에 저장하고,
    저장된 상기 회생에너지를 이후 작업에 이용할 수 있는 것을 특징으로 하는 하이브리드 작업기계.
  7. 전기 모터가 엔진에 의해 구동되는 발전기 및 회생에너지를 저장하는 에너지 저장장치 중 어느 하나 이상에 의해 구동되는 하이브리드 작업기계를 제어하는 방법에 있어서,
    가속 센서가 가속 페달 지령을 감지하는 단계;
    제어부가 저속주행 작업시 가속 페달 지령을 속도 지령에 맵핑시키는 단계;
    상기 제어부가 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 단계;
    상기 전기모터의 감속에 따라 회생에너지가 발생하는 단계;를 포함하는 하이브리드 작업기계 제어방법.
  8. 제7항에 있어서,
    상기 제어부가 가속 센서가 감지하는 최소값과 최대값을 설정하는 단계;
    상기 제어부가 상기 최소값과 최대값 사이에서 가속 페달 지령을 선형적으로 속도 지령에 맵핑하고, 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 단계;를 더 포함하는 하이브리드 작업기계 제어방법.
  9. 제 7항에 있어서,
    상기 제어부는 가속 센서가 감지하는 최소값과 최대값을 설정하며, 상기 가속 페달 지령이 임계값 미만인 경우 속도 지령을 0으로 맵핑하며, 상기 가속 페달 지령이 임계값인 경우 미리 설정된 최저 스피드(creep speed)로 속도 지령을 맵핑하며, 상기 가속 페달 지령이 임계값을 초과하는 경우 가속 페달 지령의 최대값까지 속도 지령을 맵핑하고, 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 단계;를 더 포함하는 하이브리드 작업기계 제어방법.
  10. 제 9항에 있어서,
    상기 제어부는 상기 가속 페달 지령이 임계값을 초과하는 경우 가속 페달 지령의 최대값까지 속도 지령을 맵핑할 때, 상기 제어부가 최소한 하나 이상의 변곡점을 포함하여 속도 지령을 맵핑하는 것을 특징으로 하는, 맵핑된 속도 지령에 따라 상기 전기모터의 가감속을 제어하는 단계;를 더 포함하는 하이브리드 작업기계 제어방법.
  11. 제7항 내지 10항 중 어느 한 항에 있어서,
    발생된 상기 회생에너지를 에너지 저장 장치에 저장하고,
    저장된 상기 회생에너지를 이후 작업에 이용할 수 있는 것을 특징으로 하는 하이브리드 작업기계 제어방법.
PCT/KR2013/008174 2013-09-10 2013-09-10 하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치 WO2015037751A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20155334.4A EP3680139B1 (en) 2013-09-10 2013-09-10 Method for controlling a hybrid construction machine
EP13893665.3A EP3045363B1 (en) 2013-09-10 2013-09-10 Method and device for sensory control of a hybrid construction machine
US14/917,999 US9656573B2 (en) 2013-09-10 2013-09-10 Method and device for sensory control of hybrid operation machine
PCT/KR2013/008174 WO2015037751A1 (ko) 2013-09-10 2013-09-10 하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치
CN201380080832.2A CN105705393B (zh) 2013-09-10 2013-09-10 用于混合动力操作机械的传感控制的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/008174 WO2015037751A1 (ko) 2013-09-10 2013-09-10 하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2015037751A1 true WO2015037751A1 (ko) 2015-03-19

Family

ID=52665844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008174 WO2015037751A1 (ko) 2013-09-10 2013-09-10 하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치

Country Status (4)

Country Link
US (1) US9656573B2 (ko)
EP (2) EP3045363B1 (ko)
CN (1) CN105705393B (ko)
WO (1) WO2015037751A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE539496C2 (en) * 2014-10-29 2017-10-03 Scania Cv Ab Method and system for decelerating a vehicle
CN106828195B (zh) * 2017-02-28 2018-08-03 杭州衡源汽车科技有限公司 一种轻型电动车辆制动控制方法和系统
DE102017221986A1 (de) * 2017-12-06 2019-06-06 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Elektrofahrzeugs oder eines Hybridfahrzeugs
GB2571323B (en) * 2018-02-26 2020-11-18 Jaguar Land Rover Ltd Accelerator pedal maps
WO2019162225A1 (en) 2018-02-26 2019-08-29 Jaguar Land Rover Limited A controller for a vehicle
GB2587715B (en) * 2018-02-26 2021-10-06 Jaguar Land Rover Ltd Accelerator pedal maps
DE102018203624A1 (de) * 2018-03-09 2019-09-12 Zf Friedrichshafen Ag Antrieb für eine Arbeitsmaschine
US11084369B2 (en) * 2019-02-26 2021-08-10 Deere & Company Hybrid transmission module for work vehicles
DE102020206466A1 (de) 2020-05-25 2021-11-25 Zf Friedrichshafen Ag Verfahren zum Betreiben eines elektrischen Antriebsstrangs einer Arbeitsmaschine, elektrischer Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337490A (ja) * 1999-05-27 2000-12-05 Komatsu Ltd 作業用車両及びその車速制御方法
US6302823B1 (en) * 1997-12-04 2001-10-16 Continental Teves Ag & Co., Ohg Method and device for maneuvering motor vehicles
JP2002213266A (ja) * 2001-01-16 2002-07-31 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2006230101A (ja) * 2005-02-17 2006-08-31 Honda Motor Co Ltd トルクアシスト制御装置
KR20080054531A (ko) 2006-12-13 2008-06-18 두산인프라코어 주식회사 휠로더 주행장치
KR20100022555A (ko) * 2008-08-20 2010-03-03 현대자동차주식회사 하이브리드 차량의 모터 토크 제어 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414310B2 (ja) * 1998-09-25 2003-06-09 トヨタ自動車株式会社 エンジンの始動制御装置
US6371885B1 (en) 1999-04-01 2002-04-16 Komatsu Ltd. Working vehicle and vehicle speed control method thereof, variable power engine and power setting method thereof, and vehicle with variable power engine and power control method thereof
EP1782991B1 (en) * 1999-06-25 2008-10-22 Kobelco Construction Machinery Co., Ltd. Hybrid construction machine and control apparatus thereof
TWI302501B (en) 2005-02-15 2008-11-01 Honda Motor Co Ltd Power control unit
US20080148993A1 (en) * 2006-12-08 2008-06-26 Tom Mack Hybrid propulsion system and method
JP4228085B2 (ja) * 2007-02-07 2009-02-25 トヨタ自動車株式会社 車両およびその制御方法、動力出力装置およびその制御方法、ならびに駆動装置およびその制御方法
JP2008207690A (ja) * 2007-02-27 2008-09-11 Toyota Motor Corp 車両用駆動装置の制御装置
JP4258556B2 (ja) * 2007-03-24 2009-04-30 トヨタ自動車株式会社 ハイブリッド車両用駆動装置の制御装置
JP4957475B2 (ja) * 2007-09-13 2012-06-20 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5329574B2 (ja) * 2011-01-25 2013-10-30 住友重機械工業株式会社 ハイブリッド型建設機械
CA2847670A1 (en) * 2011-09-05 2013-03-14 Honda Motor Co., Ltd. Control system and control method for hybrid vehicle
US9096115B2 (en) * 2011-11-17 2015-08-04 Caterpillar Inc. System and method for energy recovery
JP5783080B2 (ja) * 2012-02-13 2015-09-24 株式会社デンソー ハイブリッド車両の制御装置
CA2872608C (en) 2012-06-08 2017-05-02 Volvo Construction Equipment Ab Apparatus for controlling a cascaded hybrid construction machine system and a method therefor
JP2014104846A (ja) * 2012-11-27 2014-06-09 Toyota Motor Corp ハイブリッド車両の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302823B1 (en) * 1997-12-04 2001-10-16 Continental Teves Ag & Co., Ohg Method and device for maneuvering motor vehicles
JP2000337490A (ja) * 1999-05-27 2000-12-05 Komatsu Ltd 作業用車両及びその車速制御方法
JP2002213266A (ja) * 2001-01-16 2002-07-31 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2006230101A (ja) * 2005-02-17 2006-08-31 Honda Motor Co Ltd トルクアシスト制御装置
KR20080054531A (ko) 2006-12-13 2008-06-18 두산인프라코어 주식회사 휠로더 주행장치
KR20100022555A (ko) * 2008-08-20 2010-03-03 현대자동차주식회사 하이브리드 차량의 모터 토크 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045363A4

Also Published As

Publication number Publication date
US9656573B2 (en) 2017-05-23
EP3680139B1 (en) 2022-08-24
EP3680139A1 (en) 2020-07-15
CN105705393A (zh) 2016-06-22
EP3045363B1 (en) 2021-01-06
EP3045363A4 (en) 2017-05-03
US20160221466A1 (en) 2016-08-04
EP3045363A1 (en) 2016-07-20
CN105705393B (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
WO2015037751A1 (ko) 하이브리드 작업 기계의 감각성 제어를 위한 방법 및 장치
CN111791711B (zh) 能量回收控制方法、装置、控制器及电动汽车
JP2796039B2 (ja) 電気自動車の制動装置
US10675985B2 (en) Fuel cell system mounted on vehicle and control method thereof
CN104943678B (zh) 车辆用控制装置
EP2228492A1 (en) Hybrid construction machine
CN103946092A (zh) 混合动力车辆的控制装置
JP5312557B2 (ja) 電源管理装置、電源管理方法、および、電源管理システム
KR20120015346A (ko) 적어도 하나의 전기 모터가 제공된 차량의 휘일들에 적용되는 토크를 제어하는 시스템
JP2019115226A (ja) 電動車両の制御装置、制御方法および制御システム
CN102336148A (zh) 电动车动能回收控制系统、方法及电动车
DE112011104791B4 (de) Fahrzeug und Steuerungsverfahren für Fahrzeug
US11745741B2 (en) Vehicle monitoring strategy for detecting unintended acceleration during speed control
US10293708B2 (en) Recuperative brake on a vehicle
JPH08308020A (ja) 補助加速装置および補助制動装置
WO2014104700A1 (ko) 하이브리드 건설기계의 에너지 저장 장치의 충전 시스템
CN113165637B (zh) 车辆控制方法及车辆控制装置
US20180222326A1 (en) Vehicular power source device and method of controlling vehicular power source device
KR20230083357A (ko) 하이브리드 차량의 회생 제동 제어 방법 및 그 제어 장치
CN203805714U (zh) 一种纯电动汽车电子辅助制动系统
KR100902941B1 (ko) 전기자동차의 최대속도 제한방법
KR100256737B1 (ko) 전기 자동차의 충전장치 및 방법
JP2008013061A (ja) 油圧制動力の低下速度を考慮に入れた油圧/回生制動組合せ車輌
WO2022092368A1 (ko) 전기이륜차 및 그의 속도 제어방법
US10730508B2 (en) Hybrid vehicle and control method for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893665

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013893665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893665

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14917999

Country of ref document: US