WO2015037663A1 - 太陽電池調整システム、関連する方法、及び、最小電流検出及び制御システム - Google Patents

太陽電池調整システム、関連する方法、及び、最小電流検出及び制御システム Download PDF

Info

Publication number
WO2015037663A1
WO2015037663A1 PCT/JP2014/074072 JP2014074072W WO2015037663A1 WO 2015037663 A1 WO2015037663 A1 WO 2015037663A1 JP 2014074072 W JP2014074072 W JP 2014074072W WO 2015037663 A1 WO2015037663 A1 WO 2015037663A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
voltage
current
diode
inductor
Prior art date
Application number
PCT/JP2014/074072
Other languages
English (en)
French (fr)
Inventor
将年 鵜野
明夫 久木田
Original Assignee
独立行政法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013188658A external-priority patent/JP6152602B2/ja
Priority claimed from JP2013212217A external-priority patent/JP6201182B2/ja
Application filed by 独立行政法人宇宙航空研究開発機構 filed Critical 独立行政法人宇宙航空研究開発機構
Priority to US14/917,449 priority Critical patent/US10340699B2/en
Priority to CN201480061332.9A priority patent/CN105706013B/zh
Publication of WO2015037663A1 publication Critical patent/WO2015037663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a partial shadow compensator that pseudo-equalizes the electrical characteristics of each solar cell module when a partial shadow occurs in a string (solar cell module chain) configured by connecting a plurality of solar cell modules in series.
  • a string solar cell module chain
  • a solar cell is a cell that converts light energy into electric power by utilizing the photovoltaic effect, and typically has a structure in which a p-type semiconductor and an n-type semiconductor are joined and electrodes are attached. ing.
  • the operating characteristics of a solar cell change depending on the sunshine conditions and temperature, and the relationship between the voltage applied to the solar cell, the current flowing through the solar cell, and the power generated from the solar cell is generally shown in FIG. It can be represented by an operating characteristic curve as shown in FIG.
  • a solar cell can generate maximum power at a certain operating voltage, and in order to make maximum use of solar energy in a solar power generation system using the solar cell. It is necessary to operate the solar cell module at a maximum power point (MPP: Maximum Power Point) using a power conditioner or the like.
  • MPP Maximum Power Point
  • Shadow module When a plurality of solar cell modules are connected in series to form a string, a shadow is applied to some of the solar cell modules (such shadows are hereinafter referred to as “partial shadows”).
  • partial shadows There is a possibility that the solar cell module characteristics vary, and a shaded solar cell module (hereinafter referred to as “shadow module”) may be reverse-biased.
  • a string is often used after connecting a bypass diode in parallel with each solar cell module constituting the string, but when a partial shadow occurs, it is connected to the shadow module. It is known that when the bypass diode is turned on, the shadow module cannot generate power, so that available power is greatly reduced.
  • the power conditioner converts the string into a true MPP (FIG. 2).
  • a non-optimal point point C in FIG. 2 different from the point B in the middle.
  • T. Shimizu, O, Hashimoto, and G. Kimura “A novel high-performance utility-interactive photovoltaic inverter system,” IEEE Trans. Power Electron., Vol. 18, No. 2, pp.704-711, Mar. 2003.
  • T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe “Generation control circuit for photovoltaic modules,” IEEE Trans. Power Electron., Vol. 16, No. 3, pp.293-300, May 2001.
  • S. Qin and R. C. N. Pilawa-Podgurski “Sub-module differential power processing for photovoltaic applications,” IEEE Applied Power Electron. Conf. Expo., Pp.101-108, 2013. J. T. Stauth, M.
  • the partial shadow compensation device artificially equalizes the electrical characteristics of all solar cell modules by transmitting power from the solar cell module without shadow (hereinafter referred to as “sunshine module”) to the shadow module. Therefore, even when a partial shadow occurs, each solar cell module can be operated with MPP by a normal power conditioner without using a micro inverter, an MPP search algorithm, or the like.
  • a partial shadow compensation device a method using a bidirectional buck-boost converter shown in FIGS. 3a and 3b, a method using a switched capacitor converter shown in FIG. 4, and the like have been proposed.
  • the circuit configuration of these partial shadow compensators is basically the same as the voltage equalization circuit for storage cells connected in series, but as will be described later, the characteristics of the partial shadow compensator are the same as those of the storage cell equalization circuit. It is preferable that the characteristics are slightly different.
  • the circuit configuration tends to become dramatically more complicated with the increase in the number of solar cell modules connected in series, and the power transmission is adjacent to the adjacent solar cells. Since it is limited between the battery modules, when the number of solar cell modules in series is large, there also arises a problem that loss increases in the process of power transmission via a plurality of solar cell modules.
  • the partial shadow compensation apparatus has a simple circuit configuration and a low ripple current output.
  • FIG. 5 shows representative examples of the electrical characteristics of the sunshine module and the shadow module.
  • the voltage at the MPP of the solar cell module depends on the irradiation intensity of sunlight, and the MPP voltage V MP decreases as the intensity decreases.
  • VMP is somewhat lower than in the case where it has not occurred. Therefore, in order to make maximum use of the power that can be generated by all the solar cell modules when a partial shadow occurs, the shadow module has a lower voltage than the sunshine module as shown by the broken line A in FIG. It is desirable to operate with.
  • the conventional voltage equalization circuit for power storage cells connected in series operates so that the voltages of all the power storage cells become uniform, when this is used as it is as a partial shadow compensation device, the broken line in FIG. As shown by B, the voltage of each solar cell module becomes equal. For this reason, there is a possibility that the power of each solar cell module cannot be utilized to the maximum extent. In the state where the voltage of each solar cell module is equal, the sunshine module can operate at the maximum power point, while the shadow module operates at a point away from the maximum power point, so the power of the shadow module is effectively utilized. Can not do it.
  • two series-connected diodes are connected in parallel to each of first to n-th (n is an integer of 2 or more) capacitors connected in series.
  • the first to n-th solar cell modules given as solar cell modules in series are connected in series, and the total voltage applied to each of the first to n-th solar cell modules is input.
  • a solar cell adjustment system including an inverter having a capacitive element and an inductive element that converts the input total voltage into an AC voltage and outputs the AC voltage to a multi-stage voltage doubler rectifier circuit.
  • the solar cell adjustment system it is possible to operate the shadow module with an operating voltage lower than that of the sunshine module while supplying a compensation current to the shadow module among the solar cell modules constituting the string.
  • the capacitance and inductive elements included in the inverter, the intermediate capacitor included in the multistage voltage doubler rectifier circuit, and the resistance generated in each current path are generated. Due to the impedance, a voltage drop occurs in the shadow module in which current flows preferentially from the multistage voltage doubler rectifier circuit. As will be described later, this voltage drop can be expressed by using an equivalent output resistance Rout .
  • the voltage V MP at the MPP of the shadow module is greater than the voltage V MP at the MPP of the sunshine module (assuming that the operating environment other than sunshine and the structure of the solar cell module are the same). Low. Therefore, if the solar cell adjustment system of the present invention is operated while adjusting the sunshine module in the string to operate near the MPP using a power conditioner, a DC-DC converter, a load, etc., the operating voltage of the shadow module Is also adjusted toward the voltage V MP of the MPP.
  • the inverter preferably includes means for changing the frequency of the AC voltage.
  • the impedance depends on the frequency of the AC voltage output from the inverter. Therefore, if this can be changed, the operating voltage of the shadow module can also be changed. As a result, the operating point of the shadow module can be made closer to the MPP.
  • a switch is conceivable, but not limited to this, any means may be used.
  • an input circuit having a switch that receives a total voltage applied to each of the first to n-th solar cell modules and outputs a voltage corresponding to a switching state of the switch;
  • the inverter can be configured such that the resonant circuit transforms an alternating voltage with a transformer and then outputs the transformed voltage to a multistage voltage doubler rectifier circuit. Since the voltage drop of the shadow module due to the impedance described above is considered to depend on the magnitude of the current flowing into the shadow module, the magnitude of the current is obtained by transforming the AC voltage with a transformer and then outputting it to the multistage voltage doubler rectifier circuit. Can be changed, the voltage drop in the shadow module can also be changed.
  • the input circuit is configured by connecting a flywheel diode in parallel to each of the first and second switches connected in series, and the switch that is turned on among the first and second switches is changed over time.
  • a DC voltage is input between both ends of the first and second switches, the first terminal at the midpoint of the first and second switches and the both ends of the second switch
  • a rectangular wave voltage is output between the second terminal and the second terminal on the side different from the first terminal
  • the resonance circuit includes the first terminal and the third terminal.
  • a third terminal and a fourth terminal connected to the second terminal when receiving an input of a rectangular wave voltage from the input circuit AC voltage is output between the
  • The may be configured to output the multi-stage voltage doubler rectifier circuit on which is transformed by the transformer. This is a configuration corresponding to a typical aspect of the present invention shown in FIG.
  • a second multistage voltage doubler rectifier circuit comprising n + 1 to 2n intermediate capacitors connected to the midpoint of two series-connected diodes in each of the n + 1 to 2n diode pairs, Capacitive element that receives the input of the total voltage applied to each of the first to nth solar cell modules, converts the input total voltage into an AC voltage, transforms the AC voltage with a transformer, and outputs the converted voltage And an inverter having an inductive element, one end of the secondary winding of the transformer is connected to the first multistage voltage doubler rectifier circuit, and the secondary winding The other end is connected to a second multi-stage voltage doubler rectifier circuit, a solar cell adjustment system (the present second invention).
  • the ripple current flowing through the solar cell module can be reduced as will be described in detail in the embodiments described later. It becomes possible.
  • the inverter preferably includes means for changing the frequency of the AC voltage. If the frequency can be changed, the magnitude of the impedance causing the voltage drop of the shadow module can be changed, and the operating voltage of the shadow module can also be changed.
  • a means for changing the frequency of the AC voltage a switch is conceivable, but not limited to this, any means may be used.
  • the inverter includes: (1) a switch that receives a total voltage applied to each of the first to n-th solar cell modules and outputs a voltage corresponding to a switch switching state; And (2) a resonant circuit including a capacitive element and an inductive element that converts the voltage output from the input circuit into an AC voltage, transforms the AC voltage using a transformer, and outputs the AC voltage. It can comprise. It is an example of the system of this 2nd invention which uses a switch as a means to change the frequency of alternating voltage.
  • the input circuit is configured by connecting a flywheel diode in parallel to each of the first and second switches connected in series, and among the first and second switches, By switching a switch to be turned on with time, when a DC voltage is input between both ends of the first and second switches, a first terminal at an intermediate point between the first and second switches;
  • the second switch is configured to output a rectangular wave voltage between the two terminals of the second switch and the second terminal on the side different from the first terminal.
  • An inductor connected in series between the terminal and the third terminal and a capacitor in the resonance circuit, and when receiving a rectangular wave voltage input from the input circuit, the third terminal and the second terminal AC connected to the connected fourth terminal Outputs pressure, can be configured to output in terms of the transformer further an AC voltage by a transformer.
  • this invention controls the operation state of a solar cell module chain
  • a method of measuring output power of a solar cell module chain, changing a frequency of an AC voltage output by an inverter, and measuring output power of a solar cell module chain after changing the frequency If the output power measured after the frequency change is higher than the output power measured before the change, the frequency is increased again if the change is a frequency increase, and the change is a frequency decrease.
  • the method of controlling the operating state of the solar cell module chain by repeating the frequency change is provided (the third invention of the present invention). If the operating state of the solar cell module chain is controlled by this method, the inverter outputs the AC while adjusting the sunshine module in the string to operate near the MPP using a power conditioner, DC-DC converter, load, etc. By adjusting the frequency of the voltage, the shadow module can be adjusted to operate near the MPP. That is, the sunshine module and the shadow module can be adjusted toward different MPP voltages V MP .
  • the total voltage of the first to n-th (n is an integer of 2 or more) solar cell modules connected in series and the voltage applied to each of the first to n-th solar cell modules is input.
  • the output voltage generated by converting the total voltage according to the on / off time ratio of the switch is the lowest voltage among the first to nth solar cell modules.
  • a solar cell adjustment system comprising: an output circuit configured to output to one or more solar cell modules and to output current preferentially to one or more solar cell modules having the lowest voltage. Provided (this invention 4th invention).
  • the present inventor has so far invented a one-stone equalization circuit in which a step-up / step-down converter is connected in multiple stages for storage cells connected in series (Patent Document 5).
  • This system can be operated with one switch, that is, it can be operated with one switch, and all others can be configured with passive elements, greatly simplifying the circuit configuration compared to various conventional cell voltage equalization circuits. It was possible to do.
  • the present inventor can use the circuit of this system for the solar cell string to supply a compensation current from the sunshine module to the shadow module to operate the string at a high output. I found it to function as a device.
  • the input circuit includes: (i) an input capacitor to which the total voltage is input; (ii) an inductor connected in series to the input capacitor; and (iii) between the input capacitor and the inductor. And (iv) an output circuit comprising a diode and an inductor connected to the anode of the diode, and in parallel with each of the first to nth solar cell modules A first to nth diode-inductor circuit connected in series, connected in series so as not to interrupt a current of polarity from each inductor to the diode; (V) The midpoint between the diode and the inductor in each of the first to nth diode-inductor circuits and the input circuit Inductor and an intermediate point between the switch, each of which is connected between the can be configured to the first comprises a capacitor of the n, the.
  • FIG. 41 it is an example of the solar cell adjustment system of the present invention configured by connecting the output side circuit portion of the SEPIC converter to the
  • the input circuit includes: (i) an input capacitor to which the total voltage is input; (ii) a switch connected in series to the input capacitor; and (iii) an input capacitor and a switch. And an output circuit comprising (iv) a diode and an inductor connected to the cathode of the diode, and is connected in parallel to each of the first to nth solar cell modules.
  • the input circuit includes (i) a first closed circuit including an input capacitor and an inductor, and (ii) a second closed circuit including an energy transfer capacitor and a primary winding.
  • the output circuit is composed of (iii) a diode and an inductor connected to the cathode of the diode, and is parallel to each of the first to nth solar cell modules.
  • the solar cell adjustment system of this invention comprised based on a Cuk converter. Since the Cuk converter is an “inverting converter” in which the input and output polarities are switched, a configuration is adopted in which the polarity of the voltage is inverted between the primary and secondary windings as described above.
  • the solar cell adjustment system includes (i) a minimum compensation current detector for detecting a minimum compensation current among compensation currents flowing into each of the first to nth solar cell modules via the output circuit. And (ii) a comparator for comparing the minimum compensation current with the reference current, and (iii) a time ratio control means for controlling the time ratio of the switch based on the result of the comparison.
  • the equalization circuit of the system that can be operated by one switch, invented by the present inventor, is used for the solar cell string, thereby supplying a compensation current from the sunshine module to the shadow module to increase the string. Can be operated with output.
  • a cell voltage equalization circuit in principle operates so that all the cell voltages are automatically equalized, when these cell voltage equalization circuits are applied as a partial shadow compensator, they will be described later. If the control is not appropriately performed as described above, an excessive compensation current is supplied not only to the shadow module but also to the sunshine module, which may cause unnecessary power loss in the partial shadow compensation apparatus. Therefore, in order to effectively use the power generated by each solar cell module, it is desirable to use a partial shadow compensator together with an appropriate control method. As described above, the occurrence of such loss can be suppressed by using the configuration in which the minimum compensation current is detected, compared with the reference current, and the switch time ratio is controlled based on the comparison result.
  • a first compensation current detector configured to detect (i) a pull-up resistor connected between the power source and the comparator; and (ii) a compensation current flowing into the first to nth solar cell modules, respectively.
  • a detector connected to a compensation current sensor that detects a minimum compensation current among the first to n-th compensation current sensors. When the inner diode is turned on, a voltage corresponding to the minimum compensation current can be input to the comparator. It is an example of the structure which uses an analog circuit for detecting the minimum compensation current.
  • a signal indicating a current detection value output from the first to nth compensation current sensors described above is converted into a digital signal via an A / D converter and then compared.
  • the same function can be achieved by a configuration in which the current value detected by each compensation current sensor is compared by the comparator, the minimum current is specified by the comparator, and the reference current and the minimum current are compared by the comparator.
  • the “minimum compensation current detector” is composed of first to nth compensation current sensors, an A / D converter, and a comparator. The comparison between the reference current and the minimum compensation current is performed.
  • the comparator to be performed and the comparator for comparing the current detection value of each compensation current sensor may be the same or different.
  • the present invention also includes first to n-th solar cell modules (n is an integer of 2 or more) connected in series, a diode and an inductor connected to the anode of the diode, and the first to n-th solar cells.
  • n is an integer of 2 or more
  • 1st to nth diode-inductor circuits connected in parallel to each of the modules, wherein the first to nth diode-inductor circuits are connected in series so as not to cut off current of polarity from each inductor to the diode.
  • a first output comprising: n diode-inductor circuits; and first to n-th capacitors respectively connected to intermediate points of the diodes and the inductors in each of the first to n-th diode-inductor circuits.
  • a second output comprising: a 2n diode-inductor circuit; and an n + 1th to 2nth capacitor respectively connected to a midpoint between the diode and the inductor in each of the n + 1th to 2nth diode-inductor circuits.
  • the input of the total voltage of the voltage applied to the circuit and each of the first to nth solar cell modules is received, the input total voltage is converted into an AC voltage, and the AC voltage is transformed by a transformer and then output. And an inverter having a capacitive element and an inductive element, and one end of the secondary winding of the transformer is connected to the first output circuit. Is, the other end of the secondary winding is connected to a second output circuit, to provide a solar cell adjustment system (the present 5 invention. FIG. 54, corresponding to the common cathode configuration shown in FIG. 59.).
  • a relatively large ripple current tends to flow according to the connection position of the cells.
  • the operating point of a solar cell generally depends greatly on the current, and the operating voltage tends to become uneasy when a large ripple current is superimposed. Therefore, a power converter (power conditioner) used for a solar cell is used. N) is preferred for low ripple current characteristics. Therefore, when the cell voltage equalization circuit is applied as a partial shadow compensation device, it is desirable to modify the circuit so as to have a low ripple current characteristic. As will be described in detail in Examples described later, the ripple current flowing in the solar cell module can be reduced by using the solar cell adjustment system according to the fifth invention.
  • the present invention comprises first to n-th (n is an integer of 2 or more) solar cell modules connected in series, and an inductor connected to a diode and a cathode of the diode.
  • 1st to nth diode-inductor circuits connected in parallel to each of the 1st to nth solar cell modules, so as not to cut off current of polarity from each diode to the inductor.
  • First to nth capacitors connected in series to the intermediate points of the diode and the inductor in the first to nth diode-inductor circuits and the first to nth diode-inductor circuits, respectively.
  • a first output circuit comprising: a diode and an inductor connected to the cathode of the diode; n + 1 to 2n diode-inductor circuits connected in parallel to each of the n solar cell modules, and connected in series so as not to cut off currents of polarity from each diode toward the inductor, N + 1 to 2n diode-inductor circuits, and n + 1 to 2n capacitors respectively connected to the midpoints of the diodes and inductors in each of n + 1 to 2n diode-inductor circuits.
  • the input total voltage is converted into an AC voltage, and the AC voltage is transformed by a transformer.
  • a secondary winding of a transformer comprising an inverter with a capacitive element and an inductive element that outputs above
  • a solar cell adjustment system is provided in which one end is connected to the first output circuit and the other end of the secondary winding is connected to the second output circuit (corresponding to the common anode configuration shown in FIGS. 57 and 60). ).
  • the system of the fifth invention can operate on the same principle even if the arrangement order of the diode and the inductor in each diode-inductor circuit is exchanged.
  • the inverter comprises a switch chain formed by connecting a first switch and a second switch in series, and two capacitors in the inverter connected in series, and a capacitor connected in parallel to the switch chain. And a half-bridge type by connecting a primary winding of the transformer between the midpoint of the two switches in the switch chain and the midpoint of the two capacitors in the inverter in the capacitor chain. It is possible to configure as an inverter so that a voltage applied to the primary winding is transformed and applied to the secondary winding.
  • the inverter is connected to the first switch chain formed by connecting the first switch and the second switch in series, and the third switch and the fourth switch connected in series. And comprising a second switch chain connected in parallel to the first switch chain, and further comprising an intermediate point between the first and second switches, an intermediate point between the third and fourth switches,
  • the primary winding of the transformer By connecting the primary winding of the transformer between them, it can be configured as a full bridge type inverter, and the voltage applied to the primary winding can be transformed and applied to the secondary winding.
  • the minimum compensation current is detected from among the compensation currents flowing into each of the first to nth solar cell modules via the first and second output circuits.
  • a minimum compensation current detector (ii) a comparator for comparing the minimum compensation current with a reference current, and (iii) current control means for controlling the output current of the inverter based on the comparison result.
  • the solar cell adjustment system of the fifth invention also detects the minimum compensation current, compares it with the reference current, and controls the time ratio of the switches included in the inverter based on the comparison result.
  • the minimum compensation current detector includes (i) a pull-up resistor connected between the power source and the comparator, and (ii) the first to nth solar cells. (Iii) a pull-up resistor between each of the first to n-th compensation current sensors and (iii) a pull-up resistor and the first to n-th compensation current sensors, each detecting a compensation current flowing into the module; The first to nth detector diodes connected to each other so as not to cut off the current flowing to the compensation current sensor, and further comprising the smallest compensation current among the first to nth compensation current sensors.
  • the voltage corresponding to the minimum compensation current can be input to the comparator.
  • the first to nth compensation current sensors, the A / D converter, and the comparator may be configured as a minimum compensation current detector. Is possible.
  • the present invention further includes a pull-up resistor connected to a power source, and first to n-th current sensors that respectively detect currents flowing through first to n-th (n is an integer of 2 or more) circuit elements; A first to nth diode connected between the pullup resistor and each of the first to nth current sensors so as not to interrupt a current flowing from the pullup resistor to the current sensor; And a comparator connected to the resistor, and a diode connected to the current sensor that detects the minimum current among the first to n-th current sensors is turned on, so that a voltage corresponding to the minimum current is obtained.
  • a minimum current detection system that is input to a comparator and configured to compare the minimum current with a reference current (the sixth invention of the present application).
  • Such a minimum current detection system is not limited to the above-described solar cell module, detects a current flowing through an arbitrary circuit element, detects a minimum current among currents flowing through a plurality of circuit elements, and compares it with a reference current. Can be used for With such a configuration, it is possible to check whether or not the current flowing through an element other than the target circuit element is below a reference.
  • the present invention detects a current flowing through a pull-up resistor connected to a power source and first to nth (n is an integer of 2 or more) circuit elements, 1st to n-th current sensors, a pull-up resistor and first to n-th current sensors, respectively, are connected to each other so as not to cut off a current flowing from the pull-up resistor to the current sensor.
  • n-th diode To n-th diode, a comparator connected to the pull-up resistor, and current control means for controlling a current flowing through the first to n-th circuit elements.
  • Hazuki current control means is configured to control the current flowing from the first to the circuit elements of the n, it provides minimum current control system.
  • the mode is provided with means for controlling the current flowing through the circuit elements based on the comparison result.
  • the output voltage of the converter that changes in accordance with the switch time ratio is applied to a plurality of circuit elements (solar cell module, storage cell, resistor, inductor, etc. are arbitrary) (that is, according to the time ratio).
  • the current control means can be configured as a switch control circuit, and the switch control circuit is used to control the switch time ratio. By doing so, the current flowing through each circuit element can be controlled.
  • the operating voltage of the shadow module can be relatively lowered compared to the voltage of the sunshine module when the partial shadow occurs, so the electric characteristics of the solar cell when the partial shadow occurs are taken into account.
  • the equivalent output resistance R out By appropriately setting the equivalent output resistance R out , both the sunshine module and the shadow module can be operated in the vicinity of the MPP even when a partial shadow occurs. That is, the solar cell adjustment system of the present invention functions as a partial shadow compensation device. Also, the same purpose can be achieved by controlling the frequency of the partial shadow compensator according to the occurrence state of the partial shadow and adjusting the equivalent output resistance Rout (to make each module operate near the MPP even when the partial shadow occurs). It is possible to achieve.
  • the main circuit of the partial shadow compensator is a two-stone type configuration using two switches, and the other can be configured with only passive components.
  • the circuit configuration can be greatly simplified.
  • it is possible to reduce the ripple current which flows into a solar cell module by making the multistage voltage doubler rectifier circuit which comprises this partial shadow compensation apparatus into a symmetrical structure.
  • the solar cell adjustment system of this invention If the solar cell adjustment system of this invention is used, it will become possible to operate
  • the main circuit of the partial shadow compensator according to the present invention has a circuit configuration that can be configured by a small number of switches (at least one), and the others can be configured by only passive components. Compared with the conventional partial shadow compensation device, the circuit configuration can be greatly simplified.
  • the compensation current supplied to the sunshine module is minimized while the compensation current is supplied from the partial shadow compensation device to the shadow module. Therefore, it is possible to minimize the power loss generated in the partial shadow compensation device.
  • This minimum current detection system and control system can be used to detect and control the current flowing in any circuit element, not limited to the solar cell module.
  • the ripple component of the electric current supplied with respect to each solar cell module can be significantly reduced by making the output part of the partial shadow compensation apparatus by this invention into a multistage connection current doubler structure.
  • the graph showing the operating characteristic of a general solar cell The graph showing the relationship between the voltage V String applied to the entire string, the current I String flowing through the entire string, and the output power Power of the entire string in the case where the partial shadow has occurred and not.
  • Graph showing the operating characteristics of the sunshine module and the shadow module The conceptual diagram of the solar cell adjustment system of this invention.
  • the circuit diagram of the solar cell adjustment system which is one Embodiment of this invention.
  • the alternating current equivalent circuit diagram of the circuit part shown in FIG. 11 among the solar cell adjustment systems of FIG. The graph showing the example of a characteristic of the solar cell module at the time of sunlight amount fluctuation
  • the circuit block diagram used for the experiment which represents the state where only the solar cell module PV1 is shaded in a pseudo manner.
  • the graph which shows the result of the operation experiment of the solar cell adjustment system performed using the solar cell array simulator (output characteristic of the shadow module PV1 when changing a switching frequency).
  • the graph which shows the result of the operation experiment of the solar cell adjustment system performed using the solar cell array simulator (operating characteristic of each module).
  • the graph which shows the result of the operation experiment of the whole solar cell module chain
  • strand using the solar cell adjustment system of this invention The flowchart which shows an example of the operating state control method of a solar cell module chain
  • the alternating current equivalent circuit diagram of the circuit part shown in FIG. 24 among the solar cell adjustment systems of FIG. The circuit diagram of the solar cell adjustment system which is one Embodiment of this invention.
  • the circuit diagram of the solar cell adjustment system which is one Embodiment of this invention.
  • route of the electric current which flows during the period of the mode 1 when the solar cell adjustment system of FIG. The circuit diagram of a half-bridge type cell.
  • the circuit diagram of a SEPIC converter The circuit diagram of a Zeta converter.
  • the circuit diagram of a Cuk converter The circuit diagram of the solar cell adjustment system based on a SEPIC converter which is one Embodiment of this invention.
  • 1 is a circuit diagram of a solar cell adjustment system based on a Zeta converter, which is an embodiment of the present invention.
  • route of the electric current which flows during the ON period of a switch, when the solar cell adjustment system of FIG. The figure which shows the path
  • Image of current supply during partial shadow compensation when overcompensated).
  • FIG. 1 is a circuit diagram of a solar cell adjustment system using a half-bridge inverter and a common cathode multistage connection current doubler, which is an embodiment of the present invention.
  • the wave form diagram showing the time change of the electric current which flows through each element when the solar cell adjustment system of FIG. 54 is operated, and the voltage applied to each element.
  • 1 is a circuit diagram of a solar cell adjustment system using a half-bridge inverter and a common anode multistage connection current doubler, which is an embodiment of the present invention.
  • 1 is a circuit diagram of a solar cell adjustment system using a full bridge inverter and a common cathode multi-stage connection current doubler, which is an embodiment of the present invention.
  • 1 is a circuit diagram of a solar cell adjustment system using a full-bridge inverter and a common anode multistage connection current doubler, which is an embodiment of the present invention.
  • each capacitor is mainly described as a single power storage element, but these are any elements that can be charged / discharged, modules composed of a plurality of elements, or any device configured using these modules. There may be. The capacity of each power storage element may also be different.
  • a solar cell module chain (string) is configured by four solar cell modules.
  • the solar cell module chain is not limited to four and can be configured by an arbitrary series number.
  • Each switch will be described below as a semiconductor switch such as a MOSFET, but any electronic switch or mechanical switch may be used.
  • FIG. 6 shows a conceptual diagram of a solar cell adjustment system according to the present invention, which is configured using series solar cell modules PV1 to PV4.
  • V PV1 to V PV4 and I PV1 to I PV4 represent voltages applied to the solar cell modules PV1 to PV4 and currents output from them, respectively, and I eq1 to I eq4 represent solar cells, respectively.
  • It represents the current supplied from the PV pseudo-equalizer for the modules PV1 to PV4.
  • I string represents a current flowing through the entire solar cell module chain composed of the solar cell modules PV1 to PV4, and this current is output to a load (not shown) connected to the solar cell module chain. It contributes to the current I Load and the input current I eq-in to the PV pseudo-equalizer.
  • V String is a voltage applied to both ends of the solar cell module chain.
  • the PV pseudo-equalizer is supplied with V String, which is the total voltage of V PV1 to V PV4 , as input voltage, and is also supplied with input current I eq-in from the solar cell modules PV1 to PV4. Since the respective solar cell modules are connected in series, all the solar cell modules PV1 to PV4 operate so as to pass the current I String having the same magnitude. However, as shown in FIG. 5, since the current that can be supplied by the shadow module is smaller than that of the sunshine module, in many cases, the shadow module cannot supply the current of I String .
  • the DC-DC converter shown in FIG. 7 is a step-up converter. If the time ratio of the switch Q DC-DC (the ratio of the on period to the entire switching period) is D, the output voltage V String of the solar cell module chain and the load During the voltage V Load , (1) The relationship holds. For example, when a constant voltage load is used, V Load becomes constant. Therefore, the DC-DC converter control circuit controls the time ratio D while detecting the power generated by the solar cell module chain or each solar cell module by the detection circuit.
  • the voltage of each solar cell module can be controlled so that the maximum power can be obtained.
  • the voltage shown by the broken line B in FIG. 5 should be applied.
  • the current flowing through the sunshine module exceeds the maximum current that the shadow module can flow. Therefore, the current corresponding to the maximum power of the sunshine module cannot flow through the shadow module, and it is impossible to obtain the maximum power from the shadow module without any current compensation means.
  • the solar cell adjustment system of the present invention uses the PV pseudo-equalizer to supply the compensation current I eq to the shadow module so that the shadow module can also supply the I String current in a pseudo manner.
  • the shadow module PV1 is supplied with the compensation current I eq1 from the PV pseudo-equalizer. . Therefore, since the current I PV1 and the compensation current I eq1 supplied by the shadow module PV1 flow, (2) The solar cell module chain can pass the current I String represented by
  • FIG. 8 shows a first embodiment of the solar cell adjustment system of the present invention for series solar cell modules PV1 to PV4.
  • the circuit configuration of FIG. 8 is an example in which the PV pseudo-equalizer of FIGS. 6 and 7 includes a series resonance inverter and a multistage voltage doubler rectifier circuit.
  • a capacitor Cr and an inductor Lr are connected in series to a half-bridge type cell formed by connecting flywheel diodes Da and Db in parallel to switches Qa and Qb connected in series. It is configured by connecting and further providing a transformer between the multistage voltage doubler rectifier circuit.
  • i Sa and i Sb represent currents flowing through the switches Qa and Qb
  • V DSa and V DSb represent voltages applied to the switches Qa and Qb
  • i Lr flows through the inductor Lr.
  • V TP and V TS represent the primary voltage and secondary voltage of the transformer, respectively.
  • numerals 1 to 4 in the series resonance type inverter correspond to terminal numbers given for convenience.
  • the multi-stage voltage doubler rectifier circuit includes capacitors Cout1 to Cout4 connected in series and two diodes connected in series to each capacitor in parallel. Intermediate capacitors C1 to C4 are formed by connecting capacitors to intermediate points in each of the two diodes connected in series.
  • i C1 to i C4 in FIG. 8 represent currents flowing through the intermediate capacitors C1 to C4, respectively.
  • the number of capacitors connected in series is not limited to four and may be any number of two or more.
  • the series resonance inverter is driven by the solar cell modules PV1 to PV4 connected in series, and supplies a sine wave AC current to the multistage voltage doubler rectifier circuit at the transformer secondary winding.
  • the multistage voltage doubler rectifier circuit is driven by the sinusoidal alternating current, and operates to preferentially distribute power to the lowest voltage module among the solar cell modules connected in series during operation. .
  • the voltage of the shadow module is generally lower than the voltage of the other solar modules. Therefore, by using this partial shadow compensation device, power can be distributed from all modules (including the shadow module) to the shadow module, and the power shortage in the shadow module can be compensated.
  • the detailed operation principle will be described.
  • V GSa and V GSb represent gate voltages of the switches Qa and Qb, respectively, and i D1 and i D2 represent currents flowing through the diodes D1 and D2, respectively.
  • mode 2 For convenience, the operation of mode 2 will be described first (FIG. 10a).
  • the switch Qa is turned on and the switch Qb is turned off, and the resonance circuit including the capacitor Cr and the inductor Lr is positive.
  • a voltage (voltage rising in the direction of the arrow indicating V DSb in FIG. 8; see the graph of V DSb in FIG. 9) is output.
  • a positive current (current flowing in the direction of the arrow indicating i Lr in FIG. 8) flows from the solar cell modules PV1 to PV4 to the capacitor Cr and the inductor Lr through the on-state switch Qa.
  • i Lr changes in a sine wave shape (see the graph of i Lr in FIG. 9).
  • An AC voltage is applied to the primary winding of the transformer, which is transformed and output as a secondary voltage to the multistage voltage doubler rectifier circuit (see the graph of VTS in FIG. 9).
  • the compensation current due to the secondary voltage flows preferentially into the shadow module PV1 (and into the sunshine module PV2 on the path in this embodiment).
  • the current flowing through the switch Qa in mode 2 is commutated to the flywheel diode Db, and the operation shifts to mode 3 (FIG. 10b).
  • the voltage V DSb input to the resonance circuit is zero (see the graph of V DSb in FIG. 9), but due to the resonance phenomenon, the current i Lr flowing through the inductor Lr continuously changes in a sine wave shape (FIG. (Refer to the graph of i Lr in 9). Since switching is performed at a frequency higher than the resonance frequency, the current i Lr flowing through the inductor Lr is still positive when the mode 3 is shifted.
  • the current i Lr is continuous at the time of transition to mode 3, while the current i Sa equal to i Lr in mode 2 becomes zero simultaneously with the transition to mode 3 (See i Sa graph in FIG. 9).
  • the current i Sb that was zero in mode 2 has the same magnitude as i Lr simultaneously with the transition to mode 3 (defining the polarity of current i Sb as shown in FIG. 8). Therefore , the sign of the current i Sb is opposite to that of the current i Lr (see the graphs of the currents i Sb and i Lr in FIG. 9).
  • the path of current flowing from the multistage voltage doubler rectifier circuit to the solar cell module chain is the same as the path during the mode 2 period.
  • the voltage V Dsb input to the resonance circuit is zero (see the graph of V DSb in FIG. 9), as in the mode 3, but the inductor Lr is caused by the resonance phenomenon.
  • the current i Lr flowing through the current continues to change in a sine wave shape (see the graph of i Lr in FIG. 9).
  • the polarity of i Lr is opposite to that of modes 2 and 3
  • the polarity of the AC voltage input to the multistage voltage doubler rectifier circuit is also opposite (see the graph of V TS in FIG. 9). Accordingly, the path of the current flowing through the multistage voltage doubler rectifier circuit and the solar cell module chain also changes as shown in FIG. 10c.
  • the intermediate capacitor C1 is discharged through the diode D2, and this discharge current flows through the solar module PV2 in the opposite direction to the modes 2 and 3.
  • the inductor Lr is an inductive element
  • the current i Lr is continuous at the time of transition to mode 1, while the current i Sb that is equal in magnitude to i Lr in mode 4 is zero at the time of transition to mode 1.
  • the current i Sa that was zero in mode 4 becomes equal to i Lr simultaneously with the transition to mode 1 (see the graphs of currents i Sa and i Lr in FIG. 9).
  • the path of the current flowing from the multistage voltage doubler rectifier circuit to the solar cell module chain is the same as the path during the mode 4 period.
  • the switch Qa is turned on.
  • the operation shifts to mode 2 at the timing when the current i Lr of the inductor Lr switches to positive. Thereafter, each mode is similarly realized with time.
  • the elements through which current flows in the multistage voltage doubler rectifier circuit in the state where the solar cell module PV1 is shaded are the intermediate capacitor C1 and the diodes D1 and D2, which are the solar cells.
  • the element is paired with the module PV1.
  • the point that the current flows only in the element paired with the shadow module is basically the same when the other solar cell module is shaded.
  • the compensation current is supplied to the shadow module by turning on the element corresponding to the shadow module.
  • a solar cell module chain is connected to the multistage voltage doubler rectifier circuit. Even if there is variation between solar cell module voltages due to the presence of partial shadows, the total voltage of the solar cell module voltages is input to the inverter, and the AC voltage generated by the inverter is passed through the multistage voltage doubler rectifier circuit.
  • the compensation current is preferentially passed through the shadow module having a low voltage. By releasing the self output current and the compensation current from the shadow module, the high output current of the entire solar cell module chain can be maintained.
  • the shadow module since the compensation current supplied to the shadow module is released as the output current of the solar cell module chain, the shadow module is not “charged” by this compensation current and the voltage of the solar cell module is not equalized. . Thereby, the compensation current continues to flow preferentially in the shadow module having a low voltage. At this time, due to capacitors, inductors, and resistors present in the inverter and the multistage voltage doubler rectifier circuit, impedance is generated on the compensation current path, thereby causing a voltage drop in the shadow module. With the above mechanism, the shadow module maintains the voltage relatively low compared to the voltage of the sunshine module. Further, by controlling the impedance value, the magnitude of the voltage drop can be adjusted to guide the shadow module to the vicinity of the MPP. Hereinafter, this point will be described in detail.
  • FIG. 11 shows voltage waveforms of respective parts related to the above operation and their sinusoidal approximate waveforms obtained by first harmonic approximation.
  • PV-m and PV-n in FIG. 11 correspond to the shadow module PV1 and the sunshine module PV2 in this embodiment.
  • the R r, r m, r n represents the resistance component occurring in the respective current paths.
  • the capacitors Cout1 and Cout2 are omitted.
  • the input voltage V DSb is (3) Is approximated by a sinusoidal voltage with an amplitude V m-in represented by
  • the potentials V A and V B (see FIG. 11) with respect to the ground of the intermediate points of the diodes D1 and D2 and the intermediate points of the diodes D3 and D4 are V PV ⁇ m + V D , V PV-n + V PV-m + V D (The voltage of the solar cell modules PV-m and PV-n is V PV-m and V PV-n , respectively, and the forward voltage drop of the diode is V D )), when the odd-numbered diodes are turned on, they are -V D and V PV-m -V D , respectively.
  • the potentials V A and V B are rectangular wave voltages having amplitudes of V PV ⁇ m + 2V D and V PV ⁇ n + 2V D , respectively, in the above operation. Similar to the input voltage V DSb , these voltages are also approximated by sinusoidal voltages by first harmonic approximation. Here, the amplitudes of the potentials V A and V B are respectively (4) (5) It approximates with the sinusoidal voltage represented by these.
  • the solar cell adjustment system of the present invention is equivalent to the equivalent of FIG. 12 using a virtual AC power source that generates sinusoidal voltages with amplitudes V m-in , V mA , and V mB obtained by the first harmonic approximation. It can be replaced with a circuit.
  • V m-in , V mA , and V mB in FIG. 12 correspond to the amplitude of the AC voltage generated by each AC power source.
  • Z r , Z m , and Z n in FIG. 12 respectively represent the impedance due to the resistor R r , the capacitor C r , and the inductor L r in FIG.
  • V m-in, V mA , V mB input each voltage V in, the voltage of the shadow modules PV-m V PV-m, the voltage V PV sunshine modules PV-n -n is reflected, in the equivalent circuit of FIG. 12, the power supplied by the input voltage V in is a series circuit composed of a resistor R r , a capacitor C r , and an inductor L r (Z r in FIG. 12). And a series circuit (represented by Z m in FIG. 12) comprising a capacitor C m and a resistor r m on the transformer secondary side (multistage voltage doubler rectifier circuit side). ) And a series circuit (represented by Z n in FIG. 12) composed of a capacitor C n and a resistor r n , respectively, to distribute power to the shadow module PV-m and the sunshine module PV-n. I can understand.
  • the virtual AC source virtual AC power supply and the amplitude V mB amplitude V mA, respectively through a series circuit represented by Z m and Z n, are connected in common to the transformer secondary winding. Therefore, if the amplitudes V mA and V mB have the same magnitude, the phases of the corresponding virtual AC power supplies are equal, and the impedances Z m and Z n are equal, the virtual AC power supply having the amplitude V mA and the amplitude V It can be seen that equal current flows through the mB virtual AC power supply.
  • the solar cell module PV-m is a shadow module.
  • the operating voltage of the shadow module is lower than the operating voltages of the other solar modules. Therefore, by using this solar cell adjustment system, power is redistributed from all the solar cell modules connected in series to the shadow module (that is, a solar cell module having a low voltage among the solar cell modules connected in series). This makes it possible to compensate for the power shortage in the shadow module.
  • the impedance of each part depends on the switching frequency of the switches Qa and Qb.
  • a voltage drop occurs due to the impedance Z m as the compensation current I eqm flowing into the shadow module PV-m increases, and the shadow module PV-m
  • the voltage V PV-m is considered to decrease.
  • a resistance hereinafter referred to as “equivalent output resistance R out ” that causes a voltage drop of the shadow module occurs in the circuit. It can be considered.
  • the voltage of the shadow module can be relatively lowered as compared with the sunshine module, that is, the MPP when the partial shadow occurs while keeping the voltage of the sunshine module relatively high.
  • the operating state of the shadow module can be guided to the vicinity.
  • V MP of a solar cell module greatly depends on the amount of solar radiation, and typically, as shown in FIG. 13, the operating characteristics change according to the amount of sunlight.
  • the trajectory of V MP can be approximated by a straight line as shown by the broken line in FIG. 13.
  • the slope of this straight line is defined as follows. (13)
  • V MP and I MP are the voltage and current at the MPP in the sunshine module
  • V MP-shaded and I MP-shaded are the voltage and current at the MPP at a certain amount of sunshine, which is smaller than the sunshine amount. is there.
  • the compensation current I eq is supplied to the shadow module so that all modules can output the same current I String in a pseudo manner. Is supplied. That is, when the sunshine module and the shadow module operate at voltages of V MP and V MP-shaded and generate currents of I MP and I MP-shaded , the compensation current I eq is expressed as ⁇ I MP in the equation (13). It will be equivalent.
  • the system of FIG. 14 was operated by alternately switching the state in which only the switch Qa was on and the state in which only the switch Qb was on at a fixed frequency.
  • the system is operated while changing the resistance value of the variable resistor, the current value is measured using the current flowing through the variable resistor as a compensation current, and the voltage of the capacitor Cout1 (V PV1 is expressed in a pseudo manner) is also measured. Their correlation was approximated by a straight line.
  • the equivalent output resistance Rout for a specific frequency was calculated as the ratio of the change in the current value and the change in the voltage value (slope of the approximate curve).
  • the equivalent output resistance R out is calculated by the above method, and the output power that changes according to the pseudo V PV1 (with respect to the variable resistor Rout1) Power) and power conversion efficiency (ratio of power input from the external DC power supply and power consumed by the variable resistor Rout1) were measured.
  • the measurement results are shown in the graph of FIG.
  • the relationship between the output current and the output voltage can be approximated by a straight line at any switching frequency, and the equivalent output resistance R out is calculated from the approximate straight line as written in FIG.
  • the equivalent output resistance R out also changed with the frequency.
  • a solar cell array simulator (Egilent Technologies, E4350B) was connected as a solar cell module PV1 to PV4 to a system having the same circuit configuration as in FIG. .
  • V of the solar cell modules PV2 to PV4 is assumed.
  • MP and I MP were set to 12V and 4.0A by the simulator, respectively, and V MP-shaded and I MP-shaded of the solar cell module PV1 were set to 9.0V and 2.0A, respectively.
  • FIG. 16 shows operating characteristic curves of the sunshine modules PV2 to PV4 and the shadow module PV1 obtained in this experiment.
  • PV1 (w / Eq) represents the pseudo operation characteristic of the shadow module PV1 including the compensation current in the current value
  • PV1 (w / o Eq) represents the true operation characteristic of the shadow module PV1.
  • the pseudo operating point of the shadow module PV1 (the operating point when the current is defined by the total current of the compensation current and the output current of the shadow module PV1, and the voltage is defined by the voltage of the shadow module PV1) and Actual operating points are point B and point C in FIG.
  • FIG. 17 shows the measurement results of characteristics of the entire solar cell module chain when the solar cell adjustment system is used and when the solar cell adjustment system is used, which is measured by connecting the solar cell array simulator to a load.
  • V String 35V and around 50V
  • V String 45V vicinity
  • the compensation current is supplied to the shadow module using the equivalent output resistance Rout at a fixed switching frequency, and the voltage of the shadow module is changed to the voltage of the sunshine module by the effect of impedance.
  • the operation of lowering relative to each other was explained.
  • the characteristics of the solar cell are greatly affected not only by the amount of solar radiation but also by the temperature, and the characteristics deteriorate when used for a longer period of time.
  • the value of RPV shown in FIG. 13 also changes.
  • the equation (16) in order to make maximum use of the power of the shadow module in the solar cell adjustment system of the present invention, it is necessary to appropriately set R out in consideration of the value of R PV .
  • R out cannot be dynamically adjusted at a fixed switching frequency, it is not possible to cope with a change in R PV due to characteristic change / deterioration.
  • an output power detection circuit for measuring the total power of the solar cell modules PV1 to PV4 (power of the solar cell module chain) is connected to the solar cell adjustment system.
  • the total power detected by the output power detection circuit is transmitted to the output power comparison circuit, and is stored in the comparison circuit for at least a predetermined period.
  • the output power comparison circuit is configured to compare two output power values measured at different measurement timings among the stored output powers.
  • a signal indicating the comparison result (which output power measured earlier or output power measured later) is transmitted to the switch control circuit.
  • the switch control circuit switches between a state in which only one of the switches Qa and Qb is turned on and a state in which only the other is turned on (optionally with a dead time when both switches are turned off) at a specific frequency.
  • the circuit for controlling the switches Qa and Qb has a function of increasing and decreasing the frequency.
  • the ascending width and descending width may be input to the switch control circuit as fixed values in advance, or may be input from an external circuit (not shown) at an arbitrary timing. Further, the switch control circuit stores whether the frequency change made last is an increase or a decrease for at least a predetermined period.
  • the switch control circuit receives the comparison result from the output power comparison circuit, and when the output power measured after the output power measured earlier is larger than the previous frequency change, If the output power measured earlier is larger than the output power measured later, the next frequency change is configured to be the reverse of the previous frequency change. If the output power is the same, the next frequency change may be the same as the previous one, or vice versa, which is determined in advance by setting).
  • the output power detection circuit measures the initial value P 0 of the output power of the solar cell module chain (I String ⁇ V String or load current I Load ⁇ V String ) (Step 2001).
  • the switch control circuit increases the switching frequency (that is, increases R out ) (step 2002).
  • the output power detection circuit again measures the output power P 1 of the solar cell module chain (step 2003).
  • the output power comparison circuit receives and stores the measured powers P 0 and P 1 from the detection circuit, and compares the magnitudes of both power values. If P 1 > P 0 , the process returns to the first step 2001 of the flowchart again, and the switch control circuit further increases the switching frequency and repeats the same operation.
  • the switch control circuit decreases the switching frequency and operates to decrease R out (step 2005). Even in that case, the output power detection circuit measures the power P 2 and P 3 of the solar cell string before and after the frequency change (steps 2004 and 2006), and the output power comparison circuit determines the magnitude relationship between P 2 and P 3. .
  • the switch control circuit increases or decreases the frequency based on the comparison result as shown in the flowchart.
  • the output power is measured again after the comparison of the powers P 0 and P 1 and the comparison of the powers P 2 and P 3 , but this measurement may be omitted. That is, the flowchart of FIG. 20 may be modified as shown in FIG.
  • the output power comparison circuit stores the P 1 in the P 0 memory.
  • the switch control circuit performs step 2002 after erasing the measured value stored in the area and stored in the memory area of P 1 .
  • the switch control circuit After lowering the switching frequency in step 2005 and measuring the power P 3 in step 2006, if P 3 > P 2 , the output power comparison circuit stores the P 3 in the memory area of P 2 , After erasing the measurement value stored in the memory area of P 3 , the switch control circuit performs step 2005. Similarly, after the switching frequency is lowered in step 2005 and the power P 3 is measured in step 2006, if P 3 > P 2 does not hold, the output power comparison circuit stores the P 3 in the memory area of P 0. , After erasing the measurement value stored in the memory area of P 3 , the switch control circuit performs step 2002.
  • step 2002 and step 2005 may be interchanged.
  • FIG. 22 shows an example of how the operating point of the shadow module changes when the switching frequency is changed (that is, when R out is changed).
  • the switching frequency is increased and Rout is increased based on the flowchart of FIG.
  • the switching frequency is further increased based on the flowchart, and R out is further increased.
  • the operating point of the shadow module moves to c, and as a result, the output power of the solar cell string decreases.
  • the switching frequency is lowered to reduce R out .
  • the operating point of the shadow module returns to the point b again, and the output power of the solar cell string increases. Therefore, the switching frequency is further lowered based on the flowchart to further reduce R out .
  • the power of the solar cell string decreases.
  • the operating point of the shadow module fluctuates from a to c as the frequency changes (R out changes).
  • the shadow module can be operated near the maximum power point even when there is a characteristic change / deterioration in the solar cell module by performing control based on the flowchart of FIG. 20 or FIG. It becomes possible.
  • the solar cell adjustment system of the present invention can operate on the same principle.
  • FIG. 23d shows.
  • the current flowing through the switch Qa in the mode 2 is commutated to the flywheel diode Db, and the operation shifts to the mode 3 (FIG. 23b).
  • the voltage V DSb input to the resonance circuit becomes zero, but the current i Lr flowing through the inductor Lr continuously changes in a sine wave shape due to the resonance phenomenon. Since switching is performed at a frequency higher than the resonance frequency, the current i Lr flowing through the inductor Lr is still positive when the mode 3 is shifted. Since the inductor Lr is an inductive element, the current i Lr is continuous at the time of transition to mode 3, while the current i Sa that is equal to i Lr in mode 2 becomes zero simultaneously with the transition to mode 3.
  • the current i Sb that was zero in mode 2 has a magnitude equal to i Lr simultaneously with the transition to mode 3.
  • the path of current flowing from the multistage voltage doubler rectifier circuit to the solar cell module chain is the same as the path during the mode 2 period.
  • the voltage V DSb input to the resonance circuit is zero as in the mode 3, but the current i Lr flowing through the inductor Lr continues to change in a sine wave shape due to the resonance phenomenon.
  • the polarity of i Lr is opposite to that of modes 2 and 3, and the polarity of the AC voltage input to the multistage voltage doubler rectifier circuit is also opposite. Accordingly, the path of the current flowing through the multistage voltage doubler rectifier circuit and the solar cell module chain also changes as shown in FIG. 23c.
  • the capacitor C3 is discharged through the diode D6, and this discharge current is supplied to the shadow module PV3 as a compensation current.
  • the inductor Lr is an inductive element
  • the current i Lr is continuous at the time of transition to mode 1, while the current i Sb that is equal in magnitude to i Lr in mode 4 is zero at the time of transition to mode 1. It becomes.
  • the current i Sa that was zero in mode 4 becomes equal to i Lr simultaneously with the transition to mode 1.
  • the path of the current flowing from the multistage voltage doubler rectifier circuit to the solar cell module chain is the same as the path during the mode 4 period.
  • the switch Qa is turned on.
  • the operation shifts to mode 2 at the timing when the current i Lr of the inductor Lr switches to positive. Thereafter, each mode is similarly realized with time.
  • the total voltage of the solar cell module voltage is input to the inverter, and the AC voltage generated by the inverter is converted to the solar cell via the multistage voltage doubler rectifier circuit.
  • the compensation current can be preferentially passed to the shadow module PV3 having a low voltage.
  • the shadow module PV3 can be led to the vicinity of the MPP by controlling the value of this impedance.
  • FIG. 24 shows the voltage waveform of each part related to the above operation and the approximated sinusoidal waveform obtained by the first harmonic approximation.
  • PV-m in FIG. 24 corresponds to the shadow module PV3 in this embodiment.
  • R r and r m represent resistance components generated in the respective current paths.
  • the capacitor Cout3 is omitted as in FIG.
  • the input voltage V DSb and the voltage indicated by V A in FIG. 24 are approximated by sinusoidal voltages whose amplitudes are expressed by the above formulas (3) and (4), respectively, by first harmonic approximation. Can do.
  • the solar cell adjustment system of the present invention can be replaced with the equivalent circuit of FIG. V m-in and V mA in FIG. 25 correspond to the amplitude of the AC voltage generated by each AC power supply.
  • the equivalent output resistance Rout can be adjusted according to the flowcharts of FIGS. 20 and 21, for example.
  • FIG. 26 shows a second embodiment of the solar cell adjustment system of the present invention. This is a circuit configuration in which the ripple current flowing in each module can be reduced by adopting a symmetrical circuit configuration using the second multi-stage voltage doubler rectifier circuit in addition to the first embodiment shown in FIG.
  • the compensation current via the transformer secondary winding flows only through the shadow module PV1.
  • the discharge current of the intermediate capacitor C3b via the transformer secondary winding flows into the shadow module PV3 as a compensation current via the diode D6b.
  • This current charges the intermediate capacitor C3a via the diode D5a.
  • the discharge current of the intermediate capacitor C3a via the transformer secondary winding is compensated for the shadow module PV3 via the diode D6a.
  • this current flows in and charges the capacitor intermediate C3b via the diode D5b, the compensation current similarly flows only in the shadow module PV3.
  • the current is supplied from the transformer secondary winding only to the shadow module, and the current from the transformer secondary winding does not flow to the other sunshine modules.
  • the ripple current in the sunshine module can be reduced.
  • the solar cell adjustment system of FIG. 26 it is on the compensation current path due to the capacitors, inductors, and resistors existing in the inverter and the multistage voltage doubler rectifier circuit.
  • the impedance is generated, a voltage drop occurs in the shadow module. Therefore, the shadow module is maintained at a relatively low voltage compared to the voltage of the sunshine module, and the impedance value is controlled by frequency control based on the flowcharts of FIGS. 20 and 21, for example. It is also possible to guide the shadow module near the MPP by adjusting the magnitude of the voltage drop.
  • a load is normally connected to the solar cell module chain via a DC-DC converter or the like (FIG. 7).
  • the voltage drop applied to the shadow module is adjusted by adjusting the frequency of the switches Qa and Qb in FIG. 26 while adjusting the voltage applied to the entire solar cell module chain by controlling the DC-DC converter. Then, all the solar cell modules are brought closer to different MPPs for each module.
  • the specific circuit configuration of the solar cell adjustment system of the present invention is not limited to the configuration shown in FIGS. 8 and 27, and can be appropriately changed within the scope of the present invention.
  • connection point between the inverter and the multistage voltage doubler rectifier circuit can be arbitrarily selected.
  • FIG. 28 shows a circuit configuration of the solar cell adjustment system of the present invention, which is obtained by changing the connection point in the circuit configuration of FIG.
  • a system having such a circuit configuration can also operate on the same principle as in the above-described embodiment.
  • the solar cell adjustment system of the present invention can be configured without using a transformer.
  • FIG. 30 shows an example of the circuit configuration of such a system.
  • the solar cell module PV1 when the solar cell module PV1 is shaded, it flows in the circuit when the switches Qa and Qb are switched on and off according to the graph of V GS in FIG.
  • Current paths in the modes 2 to 4 and 1 are shown in FIGS. 31a to 31d.
  • the compensation current flows in mode 3 (FIG. 31b) and mode 1 (FIG. 31d), while the compensation current supplied to the sunshine module is zero if the average of modes 1 to 4 is averaged. It is.
  • the voltage drop occurs in the shadow module. Therefore, the shadow module is maintained in a low voltage state, and the impedance value is controlled by frequency control based on, for example, the flowcharts of FIGS. It is also possible to guide the module to the vicinity of the MPP. As a typical usage mode, a load is connected via a DC-DC converter or the like as shown in FIG. It is also possible to adjust the voltage drop of the shadow module by adjusting the frequency of this, and to bring all the solar cell modules closer to different MPPs for each module.
  • an inverter is configured by connecting a half-bridge cell and a resonance circuit formed by connecting a capacitor Cr and an inductor Lr in series.
  • the inverter used in the system is not limited to this. If the inverter can convert the voltage of the solar cell module chain into an alternating voltage and input the alternating voltage to the multistage voltage doubler rectifier circuit, the system of the present invention can be operated on the same principle.
  • a full bridge type cell (FIG. 33) may be used instead of the half bridge type cell (FIG. 32).
  • a switch set in which switches Qa and Qb are connected in series and a switch set in which switches Qc and Qd are connected in series are connected in parallel, and flywheel diodes Da to Dd are connected to each switch.
  • flywheel diodes Da to Dd are connected to each switch.
  • a parallel resonance circuit (FIG. 35), a series-parallel resonance circuit (FIG. 36), an LLC circuit (FIG. 37), etc.
  • a conductor is provided between terminals 3 and 4 in the figure, this is wound around the core, and a secondary winding is wound around the core to form a transformer. By doing so, it is possible to transform the AC voltage applied between the terminals 3 and 4 and output it to the multistage voltage doubler rectifier circuit connected to both ends of the secondary winding.
  • the equivalent output resistance Rout is controlled by changing the switching frequency.
  • the frequency control is impossible, it is generated on the compensation current path as described above. Since the voltage drop of the shadow module and the shadow module are not "charged", the shadow module voltage can be at least lower than the voltage of the sunshine module, so that the shadow module is closer to the MPP than before. It is possible to lead to.
  • each capacitor is mainly described as a single power storage element, but these are any elements that can be charged / discharged, modules composed of a plurality of elements, or any device configured using these modules. There may be. The capacity of each power storage element and the characteristics of other circuit elements such as diodes and inductors may be different.
  • a string solar cell module chain
  • Each switch will be described below as a semiconductor switch such as a MOSFET, but any electronic switch may be used.
  • FIG. 38 shows a conceptual diagram of a solar cell adjustment system according to the present invention, which is constituted by using serial solar cell modules PV1 to PV4.
  • V PV1 to V PV4 and I PV1 to I PV4 represent the voltages of the solar cell modules PV1 to PV4 and currents output from them, respectively
  • I eq1 to I eq4 represent the solar cell modules PV1 to PV1 to PV4, respectively. It represents the current supplied from the PV pseudo-equalizer to PV4.
  • I string represents the current flowing through the entire string consists of the solar cell modules PV1 ⁇ PV4, this current, the load current I Load output a load that is connected to the string to (not shown), PV This contributes to the input current I eq-in to the pseudo-equalizer.
  • V String is a voltage applied across the string.
  • the PV pseudo-equalizer is supplied with V String, which is the total voltage of V PV1 to V PV4 , as input voltage, and is also supplied with input current I eq-in from the solar cell modules PV1 to PV4. Since the respective solar cell modules are connected in series, all the solar cell modules PV1 to PV4 operate so as to pass the current I String having the same magnitude. However, since the current that can be supplied by the shadow module is smaller than that of the sunshine module, in many cases, the shadow module cannot supply the current of I String .
  • the usage mode of the solar cell adjustment system there is a configuration in which a load is connected to a string via a DC-DC converter as shown in FIG.
  • the DC-DC converter shown in FIG. 39 is a step-up converter, and if the time ratio of the switch Q DC-DC (the ratio of the ON period to the entire switching period) is D, the string output voltage V String and the load voltage V Load In between (17) The relationship holds. For example, when a constant voltage load is used, V Load is constant. Therefore, by detecting the power generated by the string or each solar cell module by the detection circuit, by controlling the time ratio D by the DC-DC converter control circuit, The voltage of each solar cell module can be controlled so that the maximum power can be obtained.
  • the voltage indicated by V mp in FIG. 1 should be applied.
  • the current often exceeds the maximum current that the shadow module can carry. Therefore, the current corresponding to the maximum power of the sunshine module cannot flow through the shadow module, and it is impossible to obtain the maximum power from the shadow module without any current compensation means.
  • the solar cell adjustment system of the present invention supplies the compensation current I eq to the shadow module so that the shadow module can also supply the I String current in a pseudo manner.
  • the solar cell adjustment system according to the fourth aspect of the present invention is obtained by connecting the step-up / down converter of any one of the SEPIC, Zeta, and Cuk converters shown in FIGS. 40a to 40c to the string as described later. It is done. Since the Cuk converter is an “inverting converter” in which the polarity of input and output is switched, when applied to the solar cell adjustment system of the fourth invention of the present invention, a configuration using a transformer as shown in FIG. There is a need.
  • FIGS. 40a to 40c Solar cell adjustment system of the present invention obtained by connecting any of the SEPIC, Zeta, and Cuk converters shown in FIGS. 40a to 40c to multi-stage solar cell modules PV1 to PV4 in series.
  • FIGS. 38 and 39 First to third embodiments of the present invention are shown in FIGS.
  • the PV pseudo-equalizer in FIGS. 38 and 39 is composed of circuit elements other than the solar cell modules PV1 to PV4 in FIGS. C1 to C4 are capacitors, D1 to D4 are diodes, L1 to L4 are inductors, Cin is an input capacitor, Q is a switch, and Lin is an inductor.
  • Ca in FIG. 43 represents an energy transfer capacitor.
  • FIG. 43 represents an energy transfer capacitor.
  • i Lin represents a current flowing through the inductor Lin
  • i L1 to i L4 represent currents flowing through the inductors L1 to L4
  • i D1 to i D4 represent currents flowing through the diodes D1 to D4, respectively.
  • I C1 to i C4 represent currents flowing through the capacitors C1 to C4, respectively.
  • the current flowing through each element in the circuits of FIGS. 42 and 43 is also represented by the same symbol.
  • the solar cell adjustment system shown in FIGS. 41 to 43 is different from the SEPIC converter shown in FIG. 40a, the Zeta converter shown in FIG. 40b, and the Cuk converter shown in FIG. Corresponds to a configuration in which a circuit portion constituted by a diode D and an inductor Lout is connected to each of the solar cell modules PV1 to PV4 in multiple stages.
  • the input capacitor Cin is connected to the solar cell modules PV1 to PV4, and the solar cell adjustment system preferentially supplies the compensation current to the low voltage module among the PV1 to PV4 solar cell modules.
  • the solar cell modules are connected in series to form a string, the shadow module voltage is lower than that of other solar modules. Therefore, all modules can be obtained by using the solar cell adjustment system of the present invention.
  • the power can be redistributed from the shadow module (including the shadow module) to the shadow module to compensate for the power shortage in the shadow module.
  • the switch Q by repeatedly switching the switch Q on and off, the voltage input from the solar cell modules PV1 to PV4 to the input capacitor Cin is converted, and the highest voltage among the solar cell modules PV1 to PV4 as will be described later. Is output for low modules.
  • a circuit including the input capacitor Cin, the switch Q, and the inductor Lin is referred to as an input circuit.
  • the input capacitor Cin, the switch Q, the inductor Lin, energy A circuit composed of the transmission capacitor Ca and a primary winding connected in series to the transmission capacitor Ca is called an input circuit.
  • a circuit including capacitors C1 to C4, diodes D1 to D4, and inductors L1 to L4 is called an output circuit.
  • capacitors C1 to C4 and diodes are used.
  • a circuit composed of D1 to D4, inductors L1 to L4, and a secondary winding is called an output circuit.
  • FIG. 41 shows the solar cell adjustment system shown in FIG. 41. As shown in FIG. 39, it is assumed that a voltage is applied to the entire string by connecting a load via a DC-DC converter or the like, and only the solar cell module PV2 is shaded.
  • the solar cell adjustment system is operated by repeatedly switching the switch Q on and off. 44 shows the waveform of the current flowing through each element and the voltage applied to each element at this time, and FIGS. 45a and 45b show the paths of the current flowing through the system during the on period and the off period of the switch Q. .
  • v DS represents the voltage applied to the switch Q.
  • FIG. 45a shows the path and polarity (direction) of the current flowing through the circuit via each element by a solid line and a broken line with arrows.
  • 45a represents the ripple current flowing through the inductors L1, L3, and L4 and the capacitors C1, C3, and C4, and the direction thereof is switched in the ON period and the OFF period of the switch Q, respectively.
  • arrows are attached to both ends of the broken line. Has been.
  • the currents flowing out of the solar cell modules PV1 to PV4 are input to the input capacitor Cin.
  • the input capacitor Cin discharges the inductor Lin, energy is stored in Lin, and the current i Lin increases linearly (see the graph of i Lin in FIG. 44).
  • the capacitor C2 discharges the inductor L2, energy is stored in the inductor L2, and the current i L2 increases linearly (see the graphs of i L2 and i C2 in FIG. 44).
  • a current flows from the inductor L2 to the shadow module PV2 via the diode D2, whereby the energy stored in the inductor L2 during the ON period of the switch Q is released to the shadow module PV2.
  • This current also decreases linearly as the inductor L2 loses energy (see the graph of iL2 in FIG. 44).
  • the current flowing out of the solar cell modules PV1 to PV4 is input to the input capacitor Cin, and at the same time, the ripple currents are supplied to the inductors L1, L3, L4 and the capacitors C1, C3, C4. (Refer to the graphs of i Li and i Ci in FIG. 44).
  • the compensation current is supplied from the solar cell modules PV1 to PV4 to the shadow module PV2 by the above-described current, and high output is achieved as a whole string.
  • a charge / discharge current flows through each capacitor during one switching cycle.
  • the current flowing through the capacitors C1, C3 and C4 is sufficiently small because it is only a ripple current component, but a relatively large charge / discharge current flows through the capacitor C2.
  • the current of the capacitor C2 flows through the solar cell module PV1
  • the current of the capacitor C2 flows through the solar cell modules PV1 and PV2.
  • the current of each module greatly fluctuates with operation, that is, a large ripple current flows.
  • the operating voltage of a solar cell greatly depends on the current (FIG. 1), when a relatively large ripple current flows through the module, the operating voltage becomes unstable. This problem can be solved by a system shown in Example 4 described later.
  • the duty ratio D is defined as the ratio of the ON period of the switch to the switching period of the switch Q (0 ⁇ D ⁇ 1 as is clear from this definition).
  • the voltage output to the shadow module PV2 in the steady state of the solar cell adjustment system is determined according to the voltage V String applied to the input capacitor Cin and the time ratio D.
  • the output voltage to the shadow module PV2 is specifically derived.
  • V PV1 to V PV4 of the solar cell modules PV1 to PV4 are considered to be constant over one switching period.
  • the V String is (19) It is expressed.
  • time averages of the voltages of the capacitors C1 to C4 with respect to the switching cycle are V C1 to V C4 . Since the time averages of the voltages of the inductors Lin and L1 to L4 are all zero in the steady state, the following relational expressions hold among V String , V PV1 to V PV4 , and V C1 to V C4 . (20)
  • the output voltage obtained by converting the total voltage V String of the voltages of the solar cell modules PV1 to PV4 according to the time ratio D is the shadow module PV2.
  • a current is preferentially output to the shadow module PV2.
  • Above (22) includes a voltage V PV2 voltage V String and shadow module PV2 of entire string in the formula does not include the voltage of the other individual sunshine module. This suggests that the operation of the solar cell conditioning system of the present invention is mainly determined by the entire string and the shadow module.
  • FIG. 46a and FIG. 46b show current paths realized in the on period and the off period of the switch Q when the system of FIG. 42 is operated.
  • the current flowing out from the solar cell modules PV1 to PV4 is input to the input capacitor Cin.
  • the input capacitor Cin discharges the inductor Lin, energy is stored in Lin, and the current i Lin increases linearly.
  • the capacitor C2 discharges the inductor L2, energy is stored in the inductor L2, and the current i L2 increases linearly.
  • the diode D2 corresponding to the shadow module PV2 having the lowest voltage is conducted.
  • the energy stored in the inductor Lin during the ON period of the switch Q is released during the OFF period of the switch Q, but the output current that bears this energy charges the capacitor C2.
  • This current decreases linearly as the inductor Lin loses energy.
  • a current flows from the inductor L2 to the shadow module PV2 via the diode D2, whereby the energy stored in the inductor L2 during the ON period of the switch Q is released to the shadow module PV2. This current also decreases linearly as inductor L2 loses energy.
  • FIG. 47a and FIG. 47b show current paths realized in the on period and off period of the switch Q when the system of FIG. 43 is operated.
  • the current flowing out of the solar cell modules PV1 to PV4 is input to the input capacitor Cin.
  • the input capacitor Cin discharges the inductor Lin, energy is stored in Lin, and the current i Lin increases linearly.
  • the capacitor Ca outputs a voltage to the primary winding, which is transformed by a transformer and applied to the output circuit.
  • the capacitor C2 discharges the inductor L2, energy is stored in the inductor L2, and the current i L2 increases linearly.
  • the diode D2 corresponding to the shadow module PV2 having the lowest voltage is conducted.
  • the energy stored in the inductor Lin during the ON period of the switch Q is released during the OFF period of the switch Q, but the output current that bears this energy charges the capacitor Ca.
  • This current decreases linearly as the inductor Lin loses energy.
  • a current flows from the inductor L2 to the shadow module PV2 via the diode D2, whereby the energy stored in the inductor L2 during the ON period of the switch Q is released to the shadow module PV2.
  • the capacitor C2 is charged by the current from the transformer secondary winding.
  • the compensation current can be supplied to the shadow module according to the same principle, and the same applies when there are a plurality of shadow modules.
  • the compensation current can be supplied according to the principle of.
  • the solar cell modules PV1 and PV2 are shaded, their voltages are the same, and the solar modules PV3 and PV4 have a higher voltage than the shadow module voltage. The operation of will be described.
  • the current flowing out from the solar cell modules PV1 to PV4 is input to the input capacitor Cin.
  • the input capacitor Cin discharges the inductor Lin, energy is stored in Lin, and the current i Lin increases linearly.
  • the capacitors C1 and C2 discharge the inductors L1 and L2, respectively, energy is stored in the inductors L1 and L2, and the currents i L1 and i L2 increase linearly.
  • the diodes D1, D2 corresponding to the shadow modules PV1, PV2 having the lowest voltage are conducted. That is, the energy stored in the inductor Lin during the ON period of the switch Q is released during the OFF period of the switch Q, but the output current carrying this energy is affected by the lowest voltage via the capacitor C1 and the diode D1. It flows preferentially into the module PV1 and via the capacitor C2 and the diode D2 into the shadow module PV2 with the lowest voltage. This current decreases linearly as the inductor Lin loses energy. In addition, currents flow from the inductors L1 and L2 to the shadow modules PV1 and PV2 via the diodes D1 and D2, respectively. As a result, the energy stored in the inductors L1 and L2 during the ON period of the switch Q is the shadow module. Released into PV1 and PV2. This current also decreases linearly as the inductors L1, L2 lose energy.
  • the compensation current is preferentially supplied to the shadow modules PV1 and PV2.
  • the solar cell adjustment system of the present invention is not limited to the configuration based on these, and an output circuit portion of an arbitrary converter can be provided in multiple stages. It can be configured by connecting.
  • the operation of the solar cell adjustment system according to the fourth aspect of the present invention has been theoretically explained above the minimum current detection and control system .
  • the compensation current supplied preferentially to the shadow module having the lowest voltage is considered, but in reality, the compensation current supplied to other modules may not be zero.
  • the magnitude of the compensation current supplied to the solar cell modules PV1 to PV4 can be adjusted as a whole by controlling the duty ratio of the switch.
  • a system for detecting the compensation current and adjusting the magnitude thereof will be described.
  • 49a to 49c show images of supply of compensation current when the solar cell adjustment system of the present invention (including the system described in Example 4 described later) is used.
  • PV1 and PV2 are shaded among PV1 to PV4 of the four series solar cell modules, and PV1 is shaded over a wider range.
  • the solar cell adjustment system is equivalently depicted as outputting the same voltage V e to each solar cell module.
  • FIG. 49a is a supply image of compensation current at the time of overcompensation. While compensation currents I eq1 and I eq2 are supplied to PV 1 and PV 2 according to the degree of shadow, relatively large compensation currents I eq3 and I eq4 are also applied to PV 3 and PV 4 which are sunshine modules. Is being supplied. Since PV 3 and PV 4 do not need to be compensated, a compensation current is supplied, and therefore unnecessary power conversion loss due to these compensation currents occurs inside the partial shadow compensation device. become.
  • FIG. 49b is an image of supplying a compensation current when compensation is insufficient. Since no compensation current is supplied to the solar modules PV 3 and PV 4 , unnecessary power loss as in the overcompensation of FIG. 49a does not occur. However, no compensation current is supplied to PV 2 that originally needs compensation, and furthermore, the compensation current for PV 1 is also insufficient, so that the influence of the partial shadow cannot be completely compensated.
  • FIG. 49c shows a supply image of compensation current at the time of optimal compensation.
  • PV 1 and PV 2 are supplied with compensation currents I eq1 and I eq2 according to the degree of shadow
  • PV 3 and PV 4 which are sunshine modules are supplied with only small compensation currents I eq3 and I eq4 It is a state that has been.
  • a slight compensation current is supplied even to the sunshine module having a high voltage, and therefore a sufficient compensation current is always supplied to the shadow module having a low voltage.
  • the compensation current supplied to the sunshine module is very small, it is possible to minimize unnecessary power conversion loss caused by these compensation currents.
  • FIG. 50 shows an example of the minimum current control system that can be used to realize the optimum compensation of FIG. 49c.
  • the minimum current control system includes a pull-up resistor connected to the power source Vcc, first to fourth current sensors for detecting compensation currents flowing through the solar cell modules PV1 to PV4, respectively, a pull-up resistor and a first Between the first to fourth current sensors, the first to fourth diodes connected to the current sensor so as not to cut off the current flowing from the pull-up resistor to the current sensor, and the error connected to the pull-up resistor.
  • An amplifier component
  • a time ratio control circuit current control means for controlling the compensation current flowing through the solar cell modules PV1 to PV4 by controlling the time ratio of the switch Q of the solar cell adjustment system.
  • the first to fourth current sensors are connected to the diodes D1 to D4, for example, so that the compensation currents I eq1 to I flowing in the solar cell modules PV1 to PV4 respectively. Detect eq4 .
  • Each current sensor converts the detected current value into a voltage (for example, converts 1 A into 1 V) and outputs the voltage. If the compensation currents flowing through the solar cell modules PV1 to PV4 are 1.3 A, 0.6 A, 0.1 A, and 0.1 A, respectively, the first to fourth current sensors are 1.3 V, 0, respectively. Outputs 6V, 0.1V, and 0.1V voltages.
  • the third and fourth diodes connected to the third and fourth current sensors that output the lowest voltage become conductive.
  • the current flowing from the power source Vcc through the pull-up resistor to the conducting diode flows into the resistor connected between the current sensor and the diode.
  • the error amplifier outputs an error signal based on the comparison between the minimum compensation current I eq-min and the reference current I ref input from the outside, and the error signal is input to the time ratio control circuit. If the error represented by I ref -I eq-min is negative, the time ratio control circuit may decrease the time ratio of the switch Q in FIGS. If the error is positive, increase the time ratio of the switch Q to increase the compensation current as a whole (generate a pulse-width modulated wave with a larger on-period ratio) ) To bring the error closer to zero. By repeating the above operation, the operation state of the solar cell adjustment system can be brought close to the optimum compensation state of FIG. 49c.
  • the circuit that performs control by detecting the minimum compensation current I eq-min using an analog circuit has been described, but the same control can be easily realized even when digital control is used.
  • the voltage signals from the first to fourth current sensors are converted into digital signals via an A / D converter (not shown), and then input to a second comparator (not shown). performing a comparison of the current value by the comparator identifies a minimum compensation current I eq-min, may be input a signal indicating a minimum compensation current I eq-min to the error amplifier.
  • the said minimum electric current control system is applicable not only to the solar cell adjustment system of this invention but with respect to the arbitrary circuits provided with the several circuit element. If a system similar to FIG. 50 or using the above-described digital control is connected to each of a plurality of arbitrary circuit elements, not limited to the solar cell module (in FIG. 50, each current sensor is connected to the solar cell module PV1 ⁇ It is connected to any circuit element, not limited to PV 4. Note that the number of circuit elements may be any number other than 4, and each circuit element does not have to be the same type of element). The minimum current among the flowing currents is specified and compared with the reference current, and the current flowing through the circuit element can be controlled based on the comparison result.
  • control of current flowing through circuit elements may be time ratio control of switches included in the circuit as in the above example.
  • the resistance value may be changed via an arbitrary control circuit (not shown; an example of “current control means”).
  • a system obtained by removing current control means such as a duty ratio control circuit from the minimum current control system of the present invention can be operated alone as the minimum current detection system of the present invention.
  • FIGS. 51 and 52a to 52d Examples of experimental results using the solar cell adjustment system of the present invention shown in FIG. 41 are shown in FIGS. 51 and 52a to 52d.
  • the capacitance of the input capacitor Cin used in the experiment is 20 ⁇ F
  • the inductance of the inductor Lin is 100 ⁇ H
  • the inductance of the inductors L1 to L4 is 33 ⁇ H
  • the capacitance of the capacitors C1 to C4 is 20 ⁇ F
  • the on-resistance of the switch Q is 39 m ⁇
  • the diodes D1 to The forward voltage drop of D4 was 0.65 V
  • the switching frequency of the switch Q was 100 kHz.
  • FIGS. 49a to 49c the experiment was performed with the characteristics of each module set as shown in FIG. 51, assuming that the solar cell modules PV1 and PV2 were shaded.
  • solar cell modules PV1 to PV4 solar cell array simulators (manufactured by Agilent Technologies, E4350B) were used.
  • 52a to 52d show individual characteristics of each module at the time of compensation.
  • FIG. 53 is a comparison of string characteristics with and without the solar cell adjustment system of the present invention.
  • the solar cell adjustment system When the solar cell adjustment system is not used (broken line graph; when bypass diodes are connected in parallel to the solar cell modules PV1 to PV4), three MPPs exist and the maximum power that can be extracted is about 40 W (V String ⁇ 30V).
  • the solar cell adjustment system solid line graph
  • C1a to C4a, C1b to C4b represent capacitors
  • L1a to L4a, L1b to L4b represent inductors
  • D1a to D4a, D1b to D4b represent diodes, and consist of these
  • the secondary of the transformer A multistage connection current doubler connected to the winding is connected to the solar cell modules PV1 to PV4.
  • the multistage connection current doubler is equivalent to a CDL multistage connection circuit shown in FIG. 41 arranged symmetrically with respect to each module.
  • R-Bias is a bias resistor for preventing the voltage value of each capacitor from becoming an indefinite value.
  • a half-bridge inverter receives the total voltage of the solar cell modules PV1 to PV4, generates a rectangular AC voltage by alternately switching on and off the switches Qa and Qb, and generates the AC voltage transformed through the transformer. Output to a multi-stage current doubler.
  • i L1a ⁇ i L4a, i L1b ⁇ i L4b inductor L1a ⁇ L4a represents the current flowing through each of the L1b ⁇ L4b, i D1a ⁇ i D4a, i D1b ⁇ i D4b diodes D1a ⁇ D4a , D1b to D4b , i C1a to i C4a , i C1b to i C4b represent currents flowing to the capacitors C1a to C4a and C1b to C4b, respectively, and I eq-in is input from the string to the half-bridge inverter.
  • diodes D in a symmetrically arranged CDL circuit have cathodes connected in common (ie, cathodes of diodes D1a and D1b, cathodes of diodes D2a and D2b, diodes D3a, Although the cathode of D3b and the cathodes of diodes D4a and D4b are connected in common (shown in FIG. 57), the common anode shown in FIG. 57 (FIG. 57) can be operated similarly.
  • FIG. 55 shows the waveform of the current flowing through and the voltage applied to each element
  • FIGS. 56a to 56d show the paths of the current flowing in the system during the modes 1 to 4 realized during operation.
  • v GSa and v GSb represent the gate voltages of the switches Qa and Qb, respectively.
  • the switches Qa and Qb are alternately turned on as shown in the graph of v GS in FIG. 55, whereby a rectangular wave AC voltage is applied to the transformer primary winding as shown in the graph of v P.
  • the voltage of the transformer secondary winding fluctuates according to the four operation modes shown in the graph of v GS , and the multistage connection current doubler circuit is driven by the voltage, and FIGS. 56a (mode 1) to 56d (mode 4)
  • FIGS. 56a (mode 1) to 56d mode 4
  • FIGS. 56a to 56d As shown in FIG.
  • the current path through which only the ripple current component flows is indicated by a broken line.
  • arrows are attached to both ends of the current path whose direction is switched during the same mode period.
  • mode 2 For convenience, the operation of mode 2 will be described first (FIG. 56b).
  • the switch Qa is turned on and the switch Qb is turned off, and a constant positive voltage (v P is shown in FIG. 54) with respect to the capacitor Cbk, the inductor Lkg, and the primary winding.
  • the voltage rising in the direction of the arrow (see the graph of v P in FIG. 55) is output.
  • the current flowing through the inductor Lkg increases linearly (refer to the graph of i Lkg in FIG. 55).
  • the voltage applied to the primary winding is transformed by a transformer to drive a multistage connected current doubler circuit.
  • a compensation current flows into the shadow module PV2 via the capacitor C2a and the diode D2a due to the voltage applied via the transformer, and this current flows to the inductor L2b and the capacitor C2b. These currents also increase linearly with the positive voltage (see the corresponding graph in FIG. 55).
  • the shadow module PV2 is also supplied with a compensation current generated by the inductor L2a releasing energy. This current decreases as the inductor L2a loses energy (see the graph of i L2a in FIG. 55).
  • the current flowing in the shadow module PV2 during the mode 2 by the operation of the solar cell adjustment system corresponds to the sum of i L2a and i L2b .
  • the current that flows in the inductors other than the inductors L2a and L2b corresponding to the shadow module PV2 in the multistage connection current doubler is only the ripple current component.
  • the switch Qb is zero at the same time as the polarity of i Lkg is reversed. Turned on with voltage.
  • the winding voltage of the transformer in mode 3 is 0, and the diodes D2a and D2b become conductive as the inductors L2a and L2b supply the compensation current to the shadow module PV2 in the multistage connection current doubler.
  • i L2a and i L2b decrease (see the graphs of i L2a and i L2b in FIG. 55).
  • the compensation current supplied from the solar cell adjustment system to the shadow module PV2 corresponds to the sum of i L2a and i L2b .
  • the operation shifts to the next mode 4.
  • the switch Qa is turned off and the switch Qb is turned on, and a constant negative voltage (in FIG. 54, with respect to the capacitor Cbk, the inductor Lkg, and the primary winding).
  • the voltage rising in the direction of the arrow indicating v P is positive (see the graph of v P in FIG. 55).
  • the current flowing through the inductor Lkg linearly decreases (absolute value increases) (see the graph of i Lkg in FIG. 55).
  • the voltage applied to the primary winding is transformed by a transformer to drive a multistage connected current doubler circuit.
  • a compensation current flows into the shadow module PV2 via the capacitor C2b and the diode D2b by the voltage applied via the transformer, and this current flows to the inductor L2a and the capacitor C2a.
  • the absolute values of these currents also increase linearly with the negative voltage (see the corresponding graph in FIG. 55).
  • the shadow module PV2 is also supplied with a compensation current generated by the inductor L2b releasing energy. This current decreases as the inductor L2b loses energy (see the graph of iL2b in FIG. 55).
  • the current flowing in the shadow module PV2 during the mode 4 by the operation of the solar cell adjustment system corresponds to the sum of i L2a and i L2b .
  • the current that flows in the inductors other than the inductors L2a and L2b corresponding to the shadow module PV2 in the multistage connection current doubler is only the ripple current component.
  • the switch Qa is zero voltage at the same time as the polarity of i Lkg is reversed. Is turned on.
  • the winding voltage of the transformer in mode 1 is 0, and the diodes D2a and D2b become conductive as the inductors L2a and L2b supply the compensation current to the shadow module PV2 in the multi-stage connection current doubler.
  • i L2a and i L2b decrease (see the graphs of i L2a and i L2b in FIG. 55).
  • the compensation current supplied from the solar cell adjustment system to the shadow module PV2 corresponds to the sum of i L2a and i L2b .
  • the operation shifts to the next mode 2. Thereafter, each mode is similarly realized with time.
  • the charge / discharge current of the capacitor flows to the solar cell module through different current paths according to the operation mode, so that each module is exposed to a relatively large ripple current and operates.
  • the voltage may become unstable.
  • the current flowing to the shadow module PV2 is always equal to the sum of the currents of the inductors L2a and L2b, and as can be seen from the current paths of FIGS. 56a to 56d, the capacitor C2a , C2b does not flow for modules other than PV2. Therefore, it is possible to significantly reduce the ripple current flowing in each module during operation as compared with the embodiment of FIGS.
  • mode 2 For convenience, the operation of mode 2 will be described first (FIG. 58b).
  • the switch Qa is turned on and the switch Qb is turned off, and a constant positive voltage (v P in FIG. 57 is shown) with respect to the capacitor Cbk, the inductor Lkg, and the primary winding. Voltage rising in the direction of the arrow.) Is output. As a result, the current flowing through the inductor Lkg increases linearly.
  • the voltage applied to the primary winding is transformed by a transformer to drive a multistage connected current doubler circuit.
  • a compensation current flows into the shadow module PV2 via the capacitor C2a and the inductor L2a due to the voltage applied via the transformer, and this current flows to the diode D2b and the capacitor C2b.
  • the absolute values of these currents also increase linearly with the positive voltage.
  • the shadow module PV2 is also supplied with a compensation current generated by the inductor L2b releasing energy. This current decreases as inductor L2b loses energy.
  • the current flowing in the shadow module PV2 during the mode 2 by the operation of the solar cell adjustment system corresponds to the sum of i L2a and i L2b .
  • the current that flows in the inductors other than the inductors L2a and L2b corresponding to the shadow module PV2 in the multistage connection current doubler is only the ripple current component.
  • the winding voltage of the transformer in mode 3 is 0, and the diodes D2a and D2b become conductive as the inductors L2a and L2b supply the compensation current to the shadow module PV2 in the multistage connection current doubler. As the inductors L2a and L2b release energy, i L2a and i L2b decrease. Even during the period of mode 3, as in the period of mode 2, the compensation current supplied from the solar cell adjustment system to the shadow module PV2 corresponds to the sum of i L2a and i L2b . As soon as the current i D2b of the diode D2b becomes 0, the operation shifts to the next mode 4.
  • the switch Qa is turned off and the switch Qb is turned on.
  • a constant negative voltage ( The voltage rising in the direction of the arrow indicating v P is positive.) is output.
  • the current flowing through the inductor Lkg decreases linearly (the absolute value increases).
  • the voltage applied to the primary winding is transformed by a transformer to drive a multistage connected current doubler circuit.
  • a compensation current flows into the shadow module PV2 via the capacitor C2b and the inductor L2b due to the voltage applied via the transformer, and this current flows to the diode D2a and the capacitor C2a.
  • the absolute values of these currents also increase linearly with the negative voltage.
  • the shadow module PV2 is also supplied with a compensation current generated by the inductor L2a releasing energy. This current decreases as inductor L2a loses energy.
  • the current flowing in the shadow module PV2 during the mode 4 by the operation of the solar cell adjustment system corresponds to the sum of i L2a and i L2b .
  • the current that flows in the inductors other than the inductors L2a and L2b corresponding to the shadow module PV2 in the multistage connection current doubler is only the ripple current component.
  • the winding voltage of the transformer in mode 1 is 0, and the diodes D2a and D2b become conductive as the inductors L2a and L2b supply the compensation current to the shadow module PV2 in the multi-stage connection current doubler. As the inductors L2a and L2b release energy, i L2a and i L2b decrease. Even during the period of mode 1, as in the period of mode 4, the compensation current supplied from the solar cell adjustment system to the shadow module PV2 corresponds to the sum of i L2a and i L2b . As soon as the current i D2a of the diode D2a becomes 0, the operation shifts to the next mode 2. Thereafter, each mode is similarly realized with time.
  • the half-bridge type inverter is used as the inverter.
  • Other inverters such as a bridge inverter or an asymmetric herb bridge inverter may be used.
  • 59 and 60 show circuit configurations of the solar cell adjustment system of the present invention configured using a full bridge inverter. Even when a full bridge inverter is used, an alternating voltage similar to v p in FIG. 55 can be output by alternately switching between the switches Q1 and Q4 being on and the switches Q2 and Q3 being on.
  • the compensation current can be supplied to the shadow module while reducing the ripple current by operating the multi-stage current doubler on the same principle as the circuit of FIG.
  • the minimum current control system of FIG. 50 can also be used for the solar cell adjustment systems of FIG. 54, FIG. 57, FIG. 59, and FIG.
  • the length of the period during which the switches Qa and Qb are turned on is shown in FIG.
  • the length of the period in which the switches Q1, Q4 are turned on and the length of the period in which the switches Q2, Q3 are turned on are controlled by the time ratio control circuit in FIG.
  • the output current can be controlled, and the compensation current flowing through each solar cell module can be adjusted.
  • the present invention can be widely applied to a power source constituting a solar cell string by connecting solar cell modules in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

(課題)複数の太陽電池モジュールの直列接続により構成されるストリングにおいて部分影が発生した場合にも全体としての出力電流を維持するための、システム、関連する方法、及び、最小電流検出及び制御システムを提供する。 (解決手段)ストリングの出力電圧をインバータに入力して交流電圧に変換し、多段倍電圧整流回路を介してストリングに印加することにより、影モジュールに補償電流を優先的に供給してストリング全体の出力電流を維持すると同時に補償電流の経路上で発生するインピーダンスにより影モジュールの動作電圧を降下させる。さらに、各種コンバータの出力側回路部分を太陽電池モジュールに多段接続してなり、コンバータ部分から影モジュールに優先的に補償電流を供給するシステム等を提供する。

Description

太陽電池調整システム、関連する方法、及び、最小電流検出及び制御システム
 本発明は、複数の太陽電池モジュールの直列接続により構成されるストリング(太陽電池モジュール鎖)において、部分影が発生した場合に各太陽電池モジュールの電気特性を擬似的に均等化する部分影補償装置に関する。
 太陽電池は、光起電力効果を利用して光エネルギーを電力に変換する電池であり、典型的には、p型半導体とn型半導体とを接合して電極等を取り付けてなる構造を有している。太陽電池は日照条件や温度に応じてその動作特性が変化するのであり、太陽電池に印加される電圧と太陽電池を流れる電流、及び太陽電池から発生する電力の関係は、一般的には図1に示すような動作特性曲線により表すことができる。図1の動作特性曲線が示すとおり、太陽電池は或る動作電圧にて最大電力を発生することができるのであり、太陽電池を用いた太陽光発電システムにおいて太陽光エネルギーを最大限に活用するためには、パワーコンディショナ等を用いて太陽電池モジュールを最大電力点(MPP:Maximum Power Point)で動作させる必要がある。
 複数枚の太陽電池モジュールを直列に接続し、ストリングを構成して使用する場合、一部の太陽電池モジュールに影がかかる(このような影を、以下「部分影」と呼ぶ。)ために各太陽電池モジュール特性にばらつきが生じ、影のかかった太陽電池モジュール(以下、「影モジュール」と呼ぶ。)が逆バイアスされてしまう可能性がある。逆バイアスを防止するべく、一般的には、ストリングを構成する各太陽電池モジュールと並列にバイパスダイオードを接続した上でストリングを使用することが多いが、部分影発生時においては影モジュールに接続されたバイパスダイオードが導通することにより影モジュールが電力を発生できない状態となってしまうため、利用可能な電力が大幅に低下してしまうことが知られている。また、部分影の発生状況に応じて、ストリング全体の動作特性曲線上に複数のMPPが発生するため(図2中のB点とC点)、パワーコンディショナがストリングを真のMPP(図2中のB点)とは異なる非最適点(図2中のC点)で動作させてしまう可能性がある。
特開2012-028435号公報 特開2004-047585号公報 特開2013-105318号公報 特開2011-228598号公報 特開2012-186881号公報
T. Shimizu, O, Hashimoto, and G. Kimura, "A novel high-performance utility-interactive photovoltaic inverter system," IEEE Trans. Power Electron., Vol. 18, No. 2, pp.704-711, Mar. 2003. T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe, "Generation control circuit for photovoltaic modules," IEEE Trans. Power Electron., Vol. 16, No. 3, pp.293-300, May 2001. S. Qin and R. C. N. Pilawa-Podgurski, "Sub-module differential power processing for photovoltaic applications," IEEE Applied Power Electron. Conf. Expo., pp.101-108, 2013. J. T. Stauth, M. D. Seeman, and K. Kesarwani, "Resonant switched-capacitor converters for sub-module distributed photovoltaic power management," IEEE Trans. Power Electron., Vol. 28, No. 3, pp.1189-1198, Mar. 2013. 鵜野、久木田、「多段倍電圧整流回路を用いた二石式直列共振形セル電圧バランス回路」、電気学会論文誌D、社団法人電気学会、平成25年4月、Vol.133 No.4 pp.475-483
 部分影によるこれらの悪影響を低減する手段として、マイクロコンバータ/インバータによる太陽電池モジュール毎の個別制御、動作点走査を用いた真のMPP探索アルゴリズムを付加した制御の開発等が行われている。しかし、マイクロコンバータ/インバータ方式では太陽電池モジュール毎に電力変換器が必要となるため高コスト化する傾向にあり、一方、動作点走査を用いたMPP探索アルゴリズムは制御の複雑化や応答性低下、電力抽出率の低下など、依然として大きな課題を有している。その他多数の解決手法も提案されているが、膨大なデータ量に基づく演算や情報検出システムが必要となるためコストの増加が予想される。
 部分影による特性劣化を防止する各種の部分影補償装置が提案されている。部分影補償装置は影のかかっていない太陽電池モジュール(以下、「日照モジュール」と呼ぶ。)から影モジュールへと電力伝送を行うことで擬似的に全ての太陽電池モジュールの電気的特性を均等化できるため、部分影発生時においてもマイクロインバータやMPP探索アルゴリズム等を用いることなく、通常のパワーコンディショナによって各太陽電池モジュールをMPPで動作させることができる。部分影補償装置としては図3a,図3bに示す双方向昇降圧コンバータを用いた方式や図4に示すスイッチトキャパシタコンバータを用いた方式等が提案されている。これらの部分影補償装置の回路構成は基本的には直列接続された蓄電セル用の電圧均等化回路と同様であるが、後述のとおり、部分影補償装置の特性は蓄電セル用均等化回路の特性とは若干異なることが好ましい。これらの部分影補償装置の方式では、複数個のスイッチが必要なため太陽電池モジュールの直列接続数の増加に伴い回路構成が飛躍的に複雑化する傾向にあり、且つ、電力伝送が隣接する太陽電池モジュール間に限られているため、太陽電池モジュールの直列数が多い場合には複数の太陽電池モジュールを経由して電力伝送が行われる過程で損失が大きくなるという問題も生じる。
 太陽光発電システムには、十年以上に亘る長期運転が求められることが多いため、信頼性確保が重要である。また、太陽電池モジュールに電流リプルが重畳している場合、一般的には太陽電池モジュールの動作点が周期的にMPPから逸脱してしまう。信頼性向上のためには回路の簡素化が有効であり、リプル電流の低減はMPP動作の安定化のために必要不可欠である。以上の背景に鑑みれば、部分影補償装置としては、簡素な回路構成を備え、且つリプル電流出力が低い方式が望ましい。
 図5に日照モジュールならびに影モジュールの電気的特性の代表例を示す。一般的に、太陽電池モジュールのMPPにおける電圧は太陽光の照射強度に依存し、強度が弱まるにつれてMPPの電圧VMPも低下する。部分影が発生している場合においては、図5に示すように、発生していない場合と比較してVMPも幾分低くなる。よって、部分影が発生している場合において全ての太陽電池モジュールの発電可能な電力を最大限に利用するためには、図5中の破線Aで示すように影モジュールを日照モジュールよりも低い電圧で動作させることが望ましい。しかしながら、直列接続された蓄電セル用の従来の電圧均等化回路は全ての蓄電セルの電圧が均一になるよう動作するため、これを部分影補償装置としてそのまま用いた場合は、図5中の破線Bで示すように各太陽電池モジュールの電圧が均等となる。このため、各太陽電池モジュールの電力を最大限に活用できなくなる可能性がある。各太陽電池モジュールの電圧が均等な状態においては、日照モジュールは最大電力点で動作可能な一方、影モジュールは最大電力点から離れた点で動作しているため、影モジュールの電力を有効に活用することができない。
 以上の課題に鑑み、本発明は、直列接続された第1から第n(nは2以上の整数)のキャパシタの各々に対して、2つの直列接続されたダイオードが並列に接続され、更に、2つの直列接続されたダイオードの各々における中間点に中間キャパシタが接続された、多段倍電圧整流回路と、第k(k=1,2,…n)のキャパシタに対して並列接続された第kの太陽電池モジュールとして与えられる第1から第nの太陽電池モジュールを直列接続してなる、太陽電池モジュール鎖と、第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、入力された合計電圧を交流電圧に変換し、交流電圧を多段倍電圧整流回路に出力する、容量性素子と誘導性素子とを備えたインバータとを備えた、太陽電池調整システムを提供する(本件第1発明)。
 上記太陽電池調整システムによれば、ストリングを構成する太陽電池モジュールのうち影モジュールに補償電流を供給しつつ、影モジュールを日照モジュールよりも低い動作電圧で動作させることが可能となる。具体的には、後述の実施例で詳しく説明するとおり、インバータに含まれる容量性素子と誘導性素子、多段倍電圧整流回路に含まれる中間キャパシタ、及び各電流経路に生じる抵抗に起因して発生するインピーダンスにより、多段倍電圧整流回路から電流が優先的に流れ込む影モジュールに電圧降下が発生する。後述のとおり、この電圧降下は等価出力抵抗Routを用いて表すことができる。既に述べたとおり、影モジュールのMPPにおける電圧VMPは、(温度等、日照以外の動作環境、及び太陽電池モジュールの構造が同一であると仮定すれば)日照モジュールのMPPにおける電圧VMPよりも低い。したがって、パワーコンディショナやDC-DCコンバータ、負荷等を用いてストリング内の日照モジュールがMPP付近で動作するよう調整しつつ、本発明の太陽電池調整システムを動作させれば、影モジュールの動作電圧もMPPの電圧VMPに向かって調整されることになる。
 上記インバータは、交流電圧の周波数を変更する手段を備えることが好ましい。後述の実施例で詳しく説明するとおり、上記インピーダンスはインバータから出力される交流電圧の周波数に依存するので、これを変更することができれば影モジュールの動作電圧も変更できることになる。これにより影モジュールの動作点をMPPに更に近づけることが可能となる。交流電圧の周波数を変更する手段としては、スイッチが考えられるが、これに限らず任意の手段を用いてよい。
 上記インバータを、(1)第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、スイッチの切り替え状態に応じた電圧を出力する、スイッチを備えた入力回路と、(2)入力回路から出力された電圧を交流電圧に変換し、多段倍電圧整流回路に対して交流電圧を出力する、容量性素子と誘導性素子とを備えた共振回路とを備えるよう構成することができる。交流電圧の周波数を変更する手段としてスイッチを用いる、本発明のシステムの一例である。このようなインバータを用いて本発明のシステムを構成すれば、入力回路でスイッチング周波数に応じた矩形波状の電圧を発生させ、これを共振回路で更に変換することにより正弦波状の交流電圧を出力する、等の態様でインバータから交流電圧を出力することが可能となる。
 上記共振回路がトランスにより交流電圧を変圧した上で多段倍電圧整流回路に出力するよう、上記インバータを構成することができる。上述のインピーダンスによる影モジュールの電圧降下は当該影モジュールに流れ込む電流の大きさに依存すると考えられるため、トランスにより交流電圧を変圧してから多段倍電圧整流回路に出力することで当該電流の大きさを変更することができれば、影モジュールにおける電圧降下も変更できる。
 (1)上記入力回路を、直列接続された第1及び第2のスイッチの各々にフライホイールダイオードを並列接続することにより構成し、第1及び第2のスイッチのうちオンとするスイッチを経時的に切り替えることによって、第1及び第2のスイッチの両端間に直流電圧が入力されたときに、第1及び第2のスイッチの中間点にある第1の端子と、第2のスイッチの両端のうち第1の端子とは異なる側にある、第2の端子と、の間に矩形波状の電圧を出力するよう構成し、(2)上記共振回路を、第1の端子と第3の端子との間で直列接続されたインダクタと共振回路内キャパシタとを備え、入力回路から矩形波状の電圧の入力を受けたときに、第3の端子と、第2の端子に接続された第4の端子と、の間に交流電圧を出力し、更に交流電圧をトランスにより変圧した上で多段倍電圧整流回路に出力するよう構成することができる。図8に示される、本発明の典型的な一態様に対応する構成である。
 また本発明は、第1から第n(nは2以上の整数)の太陽電池モジュールを直列接続してなる、太陽電池モジュール鎖と、第k(k=1,2,…n)の太陽電池モジュールに対して並列接続された第kのキャパシタとして与えられる、第1から第nのキャパシタと、2つの直列接続されたダイオードからなり、第k(k=1,2,…n)のキャパシタに対して並列接続された第kのダイオードペアとして与えられる、第1から第nのダイオードペアと、第1から第nのダイオードペア各々における2つの直列接続されたダイオードの中間点に接続された、第1から第nの中間キャパシタと、を備えた第1の多段倍電圧整流回路と、第k(k=1,2,…n)の前記太陽電池モジュールに対して並列接続された第n+kのキャパシタとして与えられる、第n+1から第2nのキャパシタと、2つの直列接続されたダイオードからなり、第n+kのキャパシタに対して並列接続された第n+kのダイオードペアとして与えられる、第n+1から第2nのダイオードペアと、第n+1から第2nのダイオードペア各々における2つの直列接続されたダイオードの中間点に接続された、第n+1から第2nの中間キャパシタと、を備えた第2の多段倍電圧整流回路と、第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、入力された合計電圧を交流電圧に変換し、交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えたインバータとを備え、トランスの二次巻線の一端が第1の多段倍電圧整流回路に接続され、二次巻線の他端が第2の多段倍電圧整流回路に接続された、太陽電池調整システムを提供する(本件第2発明)。
 このような太陽電池調整システムによっても、ストリングを構成する太陽電池モジュールのうち影モジュールに補償電流を供給しつつ、影モジュールを日照モジュールよりも低い動作電圧で動作させることが可能である。さらに、本件第2発明の太陽電池調整システムの一例として、図26に示されるとおり上記システムを構成すれば、後述の実施例において詳しく説明するとおり、太陽電池モジュールに流れるリプル電流を低減させることが可能となる。
 本件第2発明においても、上記インバータは交流電圧の周波数を変更する手段を備えることが好ましい。周波数を変更することができれば、影モジュールの電圧降下を引き起こすインピーダンスの大きさを変更し、当該影モジュールの動作電圧も変更できる。交流電圧の周波数を変更する手段としては、スイッチが考えられるが、これに限らず任意の手段を用いてよい。
 本件第2発明において、上記インバータを、(1)第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、スイッチの切り替え状態に応じた電圧を出力する、スイッチを備えた入力回路と、(2)入力回路から出力された電圧を交流電圧に変換し、交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えた共振回路とを備えるよう構成することができる。交流電圧の周波数を変更する手段としてスイッチを用いる、本件第2発明のシステムの一例である。
 本件第2発明においても、(1)上記入力回路を、直列接続された第1及び第2のスイッチの各々にフライホイールダイオードを並列接続することにより構成し、第1及び第2のスイッチのうちオンとするスイッチを経時的に切り替えることによって、第1及び第2のスイッチの両端間に直流電圧が入力されたときに、第1及び第2のスイッチの中間点にある第1の端子と、第2のスイッチの両端のうち第1の端子とは異なる側にある、第2の端子と、の間に矩形波状の電圧を出力するよう構成し、(2)上記共振回路を、第1の端子と第3の端子との間で直列接続されたインダクタと共振回路内キャパシタとを備え、入力回路から矩形波状の電圧の入力を受けたときに、第3の端子と、第2の端子に接続された第4の端子と、の間に交流電圧を出力し、更に交流電圧をトランスにより変圧した上で出力するよう構成することができる。
 また本発明は、本件第1発明及び第2発明の太陽電池調整システムのうち、交流電圧の周波数を変更する手段を備えたいずれかのシステムを用いて、太陽電池モジュール鎖の動作状態を制御する方法であって、太陽電池モジュール鎖の出力電力を計測する段階と、インバータにより出力される交流電圧の周波数を変更する段階と、周波数を変更した後に、太陽電池モジュール鎖の出力電力を計測する段階と、周波数を変更した後に計測された出力電力が、変更する前に計測された出力電力よりも高い場合に、変更が周波数の上昇であったならば周波数を再び上昇させ、変更が周波数の下降であったならば周波数を再び下降させる段階と、周波数を変更した後に計測された出力電力が、変更する前に計測された出力電力よりも低い場合に、変更が周波数の上昇であったならば周波数を下降させ、変更が周波数の下降であったならば周波数を上昇させる段階とを備え、太陽電池モジュール鎖の出力電力の計測と、インバータにより出力される交流電圧の周波数の変更と、を繰り返すことにより太陽電池モジュール鎖の動作状態を制御する方法を提供する(本件第3発明)。この方法により太陽電池モジュール鎖の動作状態を制御すれば、パワーコンディショナやDC-DCコンバータ、負荷等を用いてストリング内の日照モジュールがMPP付近で動作するよう調整しつつ、インバータが出力する交流電圧の周波数を調整することにより影モジュールがMPP付近で動作するよう調整することが可能となる。すなわち、日照モジュールと影モジュールとを、互いに異なるMPPの電圧VMPに向かって調整することが可能となる。
 さらに、本発明は、直列接続された第1から第n(nは2以上の整数)の太陽電池モジュールと、第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧が入力される、入力回路と、定常状態において、スイッチのオン、オフの時比率に応じて合計電圧を変換することにより生成される出力電圧を、第1から第nの太陽電池モジュールのうち最も電圧の低い1以上の太陽電池モジュールに対して出力するとともに、最も電圧の低い1以上の太陽電池モジュールに対して優先的に電流を出力するよう構成された、出力回路とを備えた、太陽電池調整システムを提供する(本件第4発明)。
 本発明者はこれまでに、直列接続された蓄電セル用に昇降圧コンバータを多段接続した一石式均等化回路を発明してきた(特許文献5)。この方式は一石式、すなわち1つのスイッチで動作可能であり、その他は全て受動素子で回路を構成することができるため、各種従来のセル電圧均等化回路と比較して回路構成を大幅に簡素化することが可能であった。本発明者は、この方式の回路を太陽電池ストリングに用いることにより、日照モジュールから影モジュールへと補償電流を供給してストリングを高出力で動作させられること、すなわち上記方式の回路が部分影補償装置として機能することを発見した。
 本件第4発明においては、入力回路を、(i)上記合計電圧が入力される入力キャパシタと、(ii)入力キャパシタに対して直列接続されたインダクタと、(iii)入力キャパシタとインダクタとの間に接続されたスイッチとを備えるよう構成し、また出力回路を、(iv)ダイオードとダイオードのアノードに接続されたインダクタとからなり、第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのインダクタからダイオードへと向かう極性の電流を遮断しないよう直列接続された、第1から第nのダイオード-インダクタ回路と、(v)第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点と、入力回路におけるインダクタとスイッチとの中間点と、の間にそれぞれが接続された、第1から第nのキャパシタと、を備えるよう構成することができる。図41に示されるとおり、SEPICコンバータの出力側回路部分を第1から第nの太陽電池モジュールに対して多段接続することにより構成される、本発明の太陽電池調整システムの一例である。
 また本件第4発明においては、入力回路を、(i)上記合計電圧が入力される入力キャパシタと、(ii)入力キャパシタに対して直列接続されたスイッチと、(iii)入力キャパシタとスイッチとの間に接続されたインダクタとを備えるよう構成し、また出力回路を、(iv)ダイオードとダイオードのカソードに接続されたインダクタとからなり、第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、第1から第nのダイオード-インダクタ回路と、(v)第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点と、入力回路におけるスイッチとインダクタとの中間点と、の間にそれぞれが接続された、第1から第nのキャパシタと、を備えるよう構成することができる。図42に示されるとおり、Zetaコンバータの出力側回路部分を第1から第nの太陽電池モジュールに対して多段接続することにより構成される、本発明の太陽電池調整システムの一例である。
 また本件第4発明においては、入力回路を、(i)入力キャパシタとインダクタとを備えた第1の閉回路と、(ii)エネルギー伝送キャパシタと一次巻線とを備えた第2の閉回路とを、スイッチを介して接続してなるよう構成し、出力回路を、(iii)ダイオードとダイオードのカソードに接続されたインダクタとからなり、第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、第1から第nのダイオード-インダクタ回路と、(iv)第1のダイオード-インダクタ回路のダイオードのアノードに一端が接続された二次巻線と、(v)第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点と二次巻線の他端との間にそれぞれが接続された、第1から第nのキャパシタと、を備えるよう構成し、一次巻線に印加される電圧の極性を反転させて二次巻線に印加するよう構成することができる。図43に示されるとおり、Cukコンバータに基づいて構成される本発明の太陽電池調整システムの一例である。Cukコンバータは入出力の極性が入れ替わる「反転型コンバータ」であるため、上記のとおり一次、二次巻線間で電圧の極性を反転させる構成がとられている。
 本件第4発明の太陽電池調整システムには、(i)出力回路を介して第1から第nの太陽電池モジュールの各々に流れ込む補償電流のうち、最小の補償電流を検出する最小補償電流検出器と、(ii)最小の補償電流と基準電流を比較する比較器と、(iii)比較の結果に基づき、スイッチの時比率を制御する、時比率制御手段とを備えることが望ましい。
 既に述べたとおり、本発明者により発明された、1つのスイッチで動作可能な方式の均等化回路を太陽電池ストリングに用いることにより、日照モジュールから影モジュールへと補償電流を供給してストリングを高出力で動作させることができる。しかし、このようなセル電圧均等化回路は原理的に全てのセル電圧が自動的に均一となるよう動作するため、これらのセル電圧均等化回路を部分影補償装置として応用する場合には、後述のように適切に制御を行わなければ影モジュールのみならず日照モジュールに対しても過剰な補償電流が供給されて、部分影補償装置内で不要な電力損失を招く恐れがある。よって、各太陽電池モジュールの発電電力を有効活用するためには適切な制御手法とともに部分影補償装置を用いることが望ましい。上記のとおり、最小補償電流を検出し、これを基準電流と比較し、比較結果に基づきスイッチの時比率を制御する構成を用いれば、そのような損失の発生を抑えることができる。
 最小補償電流検出器を、(i)電源と比較器との間に接続されたプルアップ抵抗器と、(ii)第1から第nの太陽電池モジュールに流れ込む補償電流をそれぞれ検出する、第1から第nの補償電流センサと、(iii)プルアップ抵抗器と第1から第nの補償電流センサのそれぞれの間に、プルアップ抵抗器から補償電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nの検出器内ダイオードとを備えるよう構成し、更に、第1から第nの補償電流センサのうち最小の補償電流を検出した補償電流センサ、に接続された検出器内ダイオードが導通することにより、最小の補償電流に対応する電圧が比較器に対して入力されるよう構成することができる。最小補償電流を検出するための、アナログ回路を用いる構成の一例である。
 上記アナログ回路を用いる構成以外にも、例えば上述の第1から第nの補償電流センサから出力される、電流検出値を示す信号をA/Dコンバータを介してデジタル信号へと変換した上で比較器へと入力し、比較器で各補償電流センサの電流検出値を比較して最小電流を特定し、更に比較器において基準電流と当該最小電流を比較するような構成によっても、同様の機能を得ることができる(この場合、「最小補償電流検出器」は、第1から第nの補償電流センサ、A/Dコンバータ、及び比較器から構成される。基準電流と最小補償電流との比較を行う比較器と、各補償電流センサの電流検出値を比較する比較器は、同一のものであっても別個のものであってもよい。)。
 また本発明は、直列接続された第1から第n(nは2以上の整数)の太陽電池モジュールと、ダイオードとダイオードのアノードに接続されたインダクタとからなり、第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのインダクタからダイオードへと向かう極性の電流を遮断しないよう直列接続された、第1から第nのダイオード-インダクタ回路と、第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第1から第nのキャパシタと、を備えた第1の出力回路と、ダイオードとダイオードのアノードに接続されたインダクタとからなり、第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第n+1から第2nのダイオード-インダクタ回路であって、それぞれのインダクタからダイオードへと向かう極性の電流を遮断しないよう直列接続された、第n+1から第2nのダイオード-インダクタ回路と、第n+1から第2nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第n+1から第2nのキャパシタと、を備えた第2の出力回路と、第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、入力された合計電圧を交流電圧に変換し、交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えたインバータとを備え、トランスの二次巻線の一端が第1の出力回路に接続され、二次巻線の他端が第2の出力回路に接続された、太陽電池調整システムを提供する(本件第5発明。図54,図59に示すコモンカソード構成に対応。)。
 上述のセル電圧均等化回路ではセルの接続位置に応じて比較的大きなリプル電流が流れる傾向にある。上述のとおり、一般的に太陽電池の動作点は電流に大きく依存し大きなリプル電流が重畳した状態では動作電圧が不安的になる傾向があるため、太陽電池用として用いられる電力変換器(パワーコンディショナ等)は低リプル電流特性が好まれる。よって、セル電圧均等化回路を部分影補償装置として応用する場合には、低リプル電流特性を有するよう回路を変形することが望ましい。後述の実施例において詳しく説明するとおり、本件第5発明に従う太陽電池調整システムを用いれば、太陽電池モジュールに流れるリプル電流を低減させることが可能となる。
 本件第5発明の別の態様として、本発明は、直列接続された第1から第n(nは2以上の整数)の太陽電池モジュールと、ダイオードとダイオードのカソードに接続されたインダクタとからなり、第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、第1から第nのダイオード-インダクタ回路と、第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第1から第nのキャパシタと、を備えた第1の出力回路と、ダイオードとダイオードのカソードに接続されたインダクタとからなり、第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第n+1から第2nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、第n+1から第2nのダイオード-インダクタ回路と、第n+1から第2nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第n+1から第2nのキャパシタと、を備えた第2の出力回路と、第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、入力された合計電圧を交流電圧に変換し、交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えたインバータとを備え、トランスの二次巻線の一端が第1の出力回路に接続され、二次巻線の他端が第2の出力回路に接続された、太陽電池調整システムを提供する(図57,図60に示すコモンアノード構成に対応。)。
 後述の実施例において説明するとおり、各ダイオード-インダクタ回路におけるダイオードとインダクタの並び順を交換しても、本件第5発明のシステムは同様の原理で動作可能である。
 本件第5発明において、上記インバータを、第1のスイッチと第2のスイッチとを直列接続してなるスイッチ鎖と、2つのインバータ内キャパシタを直列接続してなり、スイッチ鎖に並列接続されたキャパシタ鎖とを備えるよう構成し、更に、スイッチ鎖における2つのスイッチの中間点と、キャパシタ鎖における2つのインバータ内キャパシタの中間点と、の間にトランスの一次巻線を接続することによりハーフブリッジ型インバータとして構成し、一次巻線に印加される電圧を変圧して二次巻線に印加するよう構成することが可能である。
 あるいは、本件第5発明において、上記インバータを、第1のスイッチと第2のスイッチとを直列接続してなる第1のスイッチ鎖と、第3のスイッチと第4のスイッチとを直列接続してなり、第1のスイッチ鎖に並列接続された第2のスイッチ鎖とを備えるよう構成し、更に、第1,第2のスイッチの中間点と、第3,第4のスイッチの中間点と、の間にトランスの一次巻線を接続することによりフルブリッジ型インバータとして構成し、一次巻線に印加される電圧を変圧して二次巻線に印加するよう構成することが可能である。
 本件第5発明の太陽電池調整システムにおいては、(i)第1,第2の出力回路を介して第1から第nの太陽電池モジュールの各々に流れ込む補償電流のうち、最小の補償電流を検出する最小補償電流検出器と、(ii)最小の補償電流と基準電流を比較する比較器と、(iii)比較の結果に基づき、インバータの出力電流を制御する、電流制御手段とを備えることが望ましい。本件第4発明と同様に、本件第5発明の太陽電池調整システムにおいても、最小補償電流を検出し、これを基準電流と比較し、比較結果に基づき、インバータに含まれるスイッチの時比率を制御する等してインバータの出力電流を制御する構成を用いれば、過剰な補償電流が供給されることによる不要な電力損失を避けることができる。
 本件第5発明の太陽電池調整システムにおいても、最小補償電流検出器を、(i)電源と比較器との間に接続されたプルアップ抵抗器と、(ii)第1から第nの太陽電池モジュールに流れ込む補償電流をそれぞれ検出する、第1から第nの補償電流センサと、(iii)プルアップ抵抗器と前記第1から第nの補償電流センサのそれぞれの間に、プルアップ抵抗器から補償電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nの検出器内ダイオードとを備えるよう構成し、更に、第1から第nの補償電流センサのうち最小の補償電流を検出した補償電流センサ、に接続された検出器内ダイオードが導通することにより、最小の補償電流に対応する電圧が比較器に対して入力されるよう構成することができる。既に述べたとおり、このようなアナログ回路を用いる構成以外にも、例えば上述のとおり第1から第nの補償電流センサ、A/Dコンバータ、及び比較器から最小補償電流検出器を構成することが可能である。
 本発明は更に、電源に接続されたプルアップ抵抗器と、第1から第n(nは2以上の整数)の回路要素に流れる電流をそれぞれ検出する、第1から第nの電流センサと、プルアップ抵抗器と第1から第nの電流センサのそれぞれの間に、プルアップ抵抗器から電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nのダイオードと、プルアップ抵抗器に接続された比較器とを備え、第1から第nの電流センサのうち最小の電流を検出した電流センサ、に接続されたダイオードが導通することにより、最小の電流に対応する電圧が比較器に対して入力され、比較器が最小の電流と基準電流とを比較するよう構成されている、最小電流検出システムを提供する(本件第6発明)。
 このような最小電流検出システムは、上述の太陽電池モジュールに限らず、任意の回路要素に流れる電流を検出し、複数の回路要素に流れる電流のうち最小の電流を検出して基準電流と比較するために用いることができる。このような構成により、目的の回路要素以外の要素に流れる電流が基準以下であるかをチェックすること等が可能となる。
 本発明は更に本件第6発明の更なる態様として、電源に接続されたプルアップ抵抗器と、第1から第n(nは2以上の整数)の回路要素に流れる電流をそれぞれ検出する、第1から第nの電流センサと、プルアップ抵抗器と第1から第nの電流センサのそれぞれの間に、プルアップ抵抗器から電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nのダイオードと、プルアップ抵抗器に接続された比較器と、第1から第nの回路要素に流れる電流を制御する、電流制御手段とを備え、第1から第nの電流センサのうち最小の電流を検出した電流センサ、に接続されたダイオードが導通することにより、最小の電流に対応する電圧が比較器に対して入力され、比較器が最小の電流と基準電流とを比較し、比較の結果に基づき電流制御手段が第1から第nの回路要素に流れる電流を制御するよう構成されている、最小電流制御システムを提供する。
 複数の回路要素に流れる電流のうち最小の電流を検出して基準電流と比較するための構成に加え、比較結果に基づき回路要素に流れる電流を制御するための手段を備えた態様である。一例として、スイッチの時比率に応じて変化するコンバータの出力電圧を複数の回路要素(太陽電池モジュール、蓄電セル、抵抗器、インダクタ等、任意である。)へと印加する(すなわち時比率に応じて複数の回路要素に流れる電流が変化する)システムに対して上記最小電流制御システムを用いる場合、電流制御手段はスイッチ制御回路として構成可能であり、スイッチ制御回路を用いてスイッチの時比率を制御することにより、各回路要素に流れる電流を制御することができる。
(本件第1~第3発明)
 本発明の太陽電池調整システムを用いれば、部分影発生時に影モジュールの動作電圧を日照モジュールの電圧と比べて相対的に下げることができるため、部分影発生時の太陽電池の電気特性を加味し、等価出力抵抗Routを適切に設定することにより、部分影発生時においても日照モジュールと影モジュールの両方をMPP近傍で動作させることが可能となる。すなわち、本発明の太陽電池調整システムは部分影補償装置として機能する。また、部分影の発生状況に応じて部分影補償装置の周波数を制御し、等価出力抵抗Routを調整することでも同様の目的(部分影発生時においても各モジュールをMPP近傍で動作させる)を達成することが可能である。典型的な一態様において、部分影補償装置の主回路は、2つのスイッチを用いる二石式の構成であり、その他は受動部品のみで構成可能なため、各種従来の部分影補償装置と比較して回路構成を大幅に簡素化することが可能である。また、本部分影補償装置を構成する多段倍電圧整流回路を対称型構成とすることで、太陽電池モジュールに流れるリプル電流を低減することが可能である。
(本件第4~第6発明)
 本発明の太陽電池調整システムを用いれば、部分影発生時に日照モジュールから影モジュールへと補償電流を供給することにより太陽電池ストリング全体として高出力で動作することが可能となる。すなわち本発明の太陽電池調整システムは部分影補償装置として機能する。典型的な態様において、本発明による部分影補償装置の主回路は少数個のスイッチ(最低1個)で構成可能な回路構成を有しており、その他は受動部品のみで構成可能なため、各種従来の部分影補償装置と比較して回路構成を大幅に簡素化することが可能である。また、本発明の提案する最小電流検出システムや最小電流制御システムを用いることで、部分影補償装置から影モジュールに対して補償電流を供給しつつ、日照モジュールに対して供給される補償電流を最小化することにより部分影補償装置内で発生する電力損失を最小限に抑えることが可能である。この最小電流検出システム、制御システムは、太陽電池モジュールに限らず任意の回路要素に流れる電流を検出、制御するために利用可能である。また、本発明による部分影補償装置の出力部分を多段接続カレントダブラ構成とすることによって、各太陽電池モジュールに対して供給される電流のリプル成分を大幅に低減することが可能である。
一般的な太陽電池の動作特性を表すグラフ。 部分影が発生している場合、していない場合のそれぞれにおける、ストリング全体に印加される電圧VString、ストリング全体を流れる電流IString、及びストリング全体の出力電力Powerの関係を表すグラフ。 昇降圧コンバータを用いた従来方式の部分影補償装置の回路図。 マルチステージ昇降圧コンバータを用いた従来方式の部分影補償装置の回路図。 スイッチトキャパシタコンバータを用いた従来の部分影補償装置の回路図。 日照モジュールと影モジュールの、それぞれの動作特性を表すグラフ。 本発明の太陽電池調整システムの概念図。 本発明の太陽電池調整システムとDC-DCコンバータとを併用した構成の回路図。 本発明の一実施形態である太陽電池調整システムの回路図。 図8の太陽電池調整システムを動作させたときの、各素子を流れる電流、及び各素子に印加される電圧の時間変化を表わす波形図。 太陽電池モジュールPV1に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード2の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード3の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード4の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード1の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態での、図8の太陽電池調整システム内の各部における矩形波状電圧波形と、これらの一次高調波近似から得られる正弦波状波形を示す図。 図8の太陽電池調整システムのうち、図11に示された回路部分の交流等価回路図。 日照量変動時における太陽電池モジュールの特性例を表すグラフ。 太陽電池モジュールPV1のみに影がかかっている状態を擬似的に表す、実験に用いた回路構成図。 太陽電池アレイ・シミュレータを用いて行った、太陽電池調整システムの動作実験の結果を示すグラフ(スイッチング周波数を変化させたときの、影モジュールPV1の出力特性)。 太陽電池アレイ・シミュレータを用いて行った、太陽電池調整システムの動作実験の結果を示すグラフ(各モジュールの動作特性)。 太陽電池アレイ・シミュレータを用いて行った、太陽電池モジュール鎖全体の動作実験の結果を示すグラフ(太陽電池調整システムを用いたとき、用いないときの動作特性の比較)。 動作実験で、太陽電池調整システムを用いないときに各太陽電池モジュールに接続されたバイパスダイオードの接続態様を示す図。 本発明の太陽電池調整システムを用いて太陽電池モジュール鎖の動作状態を制御するためのシステム構成例。 本発明による、太陽電池モジュール鎖の動作状態制御方法の一例を示すフローチャート。 本発明による、太陽電池モジュール鎖の動作状態制御方法の一例を示すフローチャート。 スイッチング周波数を変動させた際(即ちRoutを変動させた際)における影モジュールの動作点の変化の様子の一例を示す図。 太陽電池モジュールPV3に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード2の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV3に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード3の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV3に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード4の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV3に影がかかっている状態で図8の太陽電池調整システムを動作させたとき、モード1の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV3に影がかかっている状態での、図8の太陽電池調整システム内の各部における矩形波状電圧波形と、これらの一次高調波近似から得られる正弦波状波形を示す図。 図8の太陽電池調整システムのうち、図24に示された回路部分の交流等価回路図。 本発明の一実施形態である太陽電池調整システムの回路図。 太陽電池モジュールPV1に影がかかっている状態で図26の太陽電池調整システムを動作させたとき、モード2の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図26の太陽電池調整システムを動作させたとき、モード3の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図26の太陽電池調整システムを動作させたとき、モード4の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図26の太陽電池調整システムを動作させたとき、モード1の期間中において流れる電流の経路を示す図。 本発明の一実施形態である太陽電池調整システムの回路図。 太陽電池モジュールPV1に影がかかっている状態で図28の太陽電池調整システムを動作させたとき、モード2の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図28の太陽電池調整システムを動作させたとき、モード3の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図28の太陽電池調整システムを動作させたとき、モード4の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図28の太陽電池調整システムを動作させたとき、モード1の期間中において流れる電流の経路を示す図。 本発明の一実施形態である太陽電池調整システムの回路図。 太陽電池モジュールPV1に影がかかっている状態で図30の太陽電池調整システムを動作させたとき、モード2の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図30の太陽電池調整システムを動作させたとき、モード3の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図30の太陽電池調整システムを動作させたとき、モード4の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1に影がかかっている状態で図30の太陽電池調整システムを動作させたとき、モード1の期間中において流れる電流の経路を示す図。 ハーフブリッジ型セルの回路図。 フルブリッジ型セルの回路図。 直列共振回路の回路図。 並列共振回路の回路図。 直並列共振回路の回路図。 LLC回路の回路図。 本発明の太陽電池調整システムの概念図。 本発明の太陽電池調整システムとDC-DCコンバータとを併用した構成の回路図。 SEPICコンバータの回路図。 Zetaコンバータの回路図。 Cukコンバータの回路図。 本発明の一実施形態である、SEPICコンバータを基礎とした太陽電池調整システムの回路図。 本発明の一実施形態である、Zetaコンバータを基礎とした太陽電池調整システムの回路図。 本発明の一実施形態である、Cukコンバータを基礎とした太陽電池調整システムの回路図。 図41の太陽電池調整システムを動作させたときの、各素子を流れる電流、及び各素子に印加される電圧の時間変化を表わす波形図。 太陽電池モジュールPV2に影がかかっている状態で図41の太陽電池調整システムを動作させたとき、スイッチのオン期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図41の太陽電池調整システムを動作させたとき、スイッチのオフ期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図42の太陽電池調整システムを動作させたとき、スイッチのオン期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図42の太陽電池調整システムを動作させたとき、スイッチのオフ期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図43の太陽電池調整システムを動作させたとき、スイッチのオン期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図43の太陽電池調整システムを動作させたとき、スイッチのオフ期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1,PV2に影がかかっている状態で図41の太陽電池調整システムを動作させたとき、スイッチのオン期間中において流れる電流の経路を示す図。 太陽電池モジュールPV1,PV2に影がかかっている状態で図41の太陽電池調整システムを動作させたとき、スイッチのオフ期間中において流れる電流の経路を示す図。 部分影補償時における電流供給のイメージ図(過剰補償時)。 部分影補償時における電流供給のイメージ図(補償不足時)。 部分影補償時における電流供給のイメージ図(最適補償時)。 図49cに示される最適補償を実現するための、最小電流制御システムの構成図。 実験に用いた各太陽電池モジュールの特性。 本発明の太陽電池調整システムを動作させたときの、太陽電池モジュールPV1の動作特性に関する実験結果。 本発明の太陽電池調整システムを動作させたときの、太陽電池モジュールPV2の動作特性に関する実験結果。 本発明の太陽電池調整システムを動作させたときの、太陽電池モジュールPV3の動作特性に関する実験結果。 本発明の太陽電池調整システムを動作させたときの、太陽電池モジュールPV4の動作特性に関する実験結果。 本発明の太陽電池調整システムを用いた場合、用いなかった場合にそれぞれ測定した、ストリングの動作特性を示す実験結果。 本発明の一実施形態である、ハーフブリッジインバータとコモンカソード多段接続カレントダブラを用いた太陽電池調整システムの回路図。 図54の太陽電池調整システムを動作させたときの、各素子を流れる電流、及び各素子に印加される電圧の時間変化を表わす波形図。 太陽電池モジュールPV2に影がかかっている状態で図54の太陽電池調整システムを動作させたとき、モード1の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図54の太陽電池調整システムを動作させたとき、モード2の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図54の太陽電池調整システムを動作させたとき、モード3の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図54の太陽電池調整システムを動作させたとき、モード4の期間中において流れる電流の経路を示す図。 本発明の一実施形態である、ハーフブリッジインバータとコモンアノード多段接続カレントダブラを用いた太陽電池調整システムの回路図。 太陽電池モジュールPV2に影がかかっている状態で図57の太陽電池調整システムを動作させたとき、モード1の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図57の太陽電池調整システムを動作させたとき、モード2の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図57の太陽電池調整システムを動作させたとき、モード3の期間中において流れる電流の経路を示す図。 太陽電池モジュールPV2に影がかかっている状態で図57の太陽電池調整システムを動作させたとき、モード4の期間中において流れる電流の経路を示す図。 本発明の一実施形態である、フルブリッジインバータとコモンカソード多段接続カレントダブラを用いた太陽電池調整システムの回路図。 本発明の一実施形態である、フルブリッジインバータとコモンアノード多段接続カレントダブラを用いた太陽電池調整システムの回路図。
(本件第1~第3発明)
 これより図面を用いて、本件第1~第3発明に係る太陽電池調整システム、及び太陽電池モジュール鎖の動作状態制御方法を説明する。但し、本件第1~第3発明に係る太陽電池調整システム、及び太陽電池モジュール鎖の動作状態制御方法の構成は、各図面にて示される特定の具体的構成へと限定されるわけではなく、本発明の範囲内で適宜変更可能である。例えば、以下において各キャパシタは主に単独の蓄電素子であるとして説明するが、これらは充放電可能な任意の素子、複数の素子からなるモジュール、あるいはそれらモジュールを用いて構成される任意の装置であってもよい。各蓄電素子の容量も、それぞれ異なっていてよい。また以下の実施例では4つの太陽電池モジュールにより太陽電池モジュール鎖(ストリング)が構成されるが、4に限らず任意の直列数で太陽電池モジュール鎖を構成できる。各スイッチについても、以下においてはMOSFETなどの半導体スイッチであるとして説明するが、任意の電子スイッチ、あるいは機械式スイッチを用いることも可能である。
 太陽電池調整システムの概念
 4直列の太陽電池モジュールPV1~PV4を用いて構成される、本発明による太陽電池調整システムの概念図を図6に示す。図6中、VPV1~VPV4,IPV1~IPV4は、それぞれ太陽電池モジュールPV1~PV4に印加される電圧、及びそれらから出力される電流を表し、Ieq1~Ieq4は、それぞれ太陽電池モジュールPV1~PV4に対してPV疑似均等化器から供給される電流を表す。Istringは、太陽電池モジュールPV1~PV4から構成される太陽電池モジュール鎖全体に流れる電流を表し、この電流が、太陽電池モジュール鎖に対して接続される負荷(不図示)へと出力される負荷電流ILoadと、PV擬似均等化器への入力電流Ieq-inとに寄与する。VStringは太陽電池モジュール鎖の両端に印加される電圧である。
 PV擬似均等化器にはVPV1~VPV4の合計電圧であるVStringが入力電圧として印加され、また太陽電池モジュールPV1~PV4からの入力電流Ieq-inが供給される。各太陽電池モジュールは直列に接続されているため、全ての太陽電池モジュールPV1~PV4が同一の大きさの電流IStringを流そうと動作する。しかし、図5で示したように、影モジュールの供給可能な電流は日照モジュールのそれと比較して小さいため、多くの場合において影モジュールはIStringの電流を供給できなくなってしまう。
 太陽電池調整システムの利用態様の例としては、図7に示すとおり、DC-DCコンバータを介して太陽電池モジュール鎖に負荷を接続する構成が挙げられる。図7に示すDC-DCコンバータは昇圧形コンバータであり、スイッチQDC-DCの時比率(スイッチング周期全体に対するオン期間の割合)をDとすれば、太陽電池モジュール鎖の出力電圧VStringと負荷電圧VLoadの間には、
Figure JPOXMLDOC01-appb-M000001
            (1)
の関係が成り立つ。例えば定電圧負荷を用いる場合VLoadは一定となるため、検出回路によって太陽電池モジュール鎖、あるいは各太陽電池モジュールの発生する電力を検出しつつ、DC-DCコンバータ制御回路によって時比率Dを制御することにより、最大電力が得られるよう各太陽電池モジュールの電圧を制御することができる。日照モジュールから最大電力を得るためには図5の破線Bで示される電圧を印加するべきであるが、このとき日照モジュールに流れる電流は影モジュールが流しうる最大電流を超えている。したがって、日照モジュールの最大電力に対応する電流は影モジュールを流れることができず、一切の電流補償手段がないならば影モジュールから最大電力を得ることは不可能となる。
 本発明の太陽電池調整システムは、PV擬似均等化器を用いることにより、影モジュールも擬似的にIStringの電流を供給可能となるよう影モジュールに対して補償電流Ieqを供給する。例えば太陽電池モジュールPV1に影がかかっており、日照モジュールPV2~PV4が流そうとする電流を供給することができない場合、影モジュールPV1にはPV擬似均等化器から補償電流Ieq1が供給される。したがって、影モジュールPV1からは自己が供給する電流IPV1と補償電流Ieq1とが流れるため、
Figure JPOXMLDOC01-appb-M000002
            (2)
で表される電流IStringを、太陽電池モジュール鎖が流しうることとなる。
 太陽電池調整システムの構成
 4直列の太陽電池モジュールPV1~PV4に対する本発明の太陽電池調整システムの第1の実施形態を図8に示す。図8の回路構成は、図6,図7のPV擬似均等化器が直列共振形インバータと多段倍電圧整流回路により構成される例である。
 直列共振形インバータ
 直列共振形インバータは、直列接続されたスイッチQa,Qbの各々にフライホイールダイオードDa,Dbを並列接続することにより構成されるハーフブリッジ型セルに、キャパシタCrとインダクタLrとを直列接続し、更に多段倍電圧整流回路との間にトランスを設けることにより構成される。ここで、図8中、iSa,iSbはスイッチQa,Qbにそれぞれ流れる電流を表し、VDSa,VDSbはスイッチQa,Qbそれぞれに印加される電圧を表し、iLrはインダクタLrに流れる電流を表し、VTP,VTSは、それぞれトランスの一次電圧、二次電圧を表す。なお、図8中、直列共振形インバータ内の1~4の数字は、便宜上付けられた端子番号に対応する。
 多段倍電圧整流回路
 多段倍電圧整流回路は、直列接続されたキャパシタCout1~Cout4と、各々のキャパシタに対して2つの直列接続されたダイオードを並列に接続してなる、ダイオードD1~D8と、2つの直列接続されたダイオードの各々における中間点にキャパシタを接続してなる、中間キャパシタC1~C4とから構成される。ここで、図8中、iC1~iC4は、中間キャパシタC1~C4にそれぞれ流れる電流を表す。なお、キャパシタの直列接続数は、4に限らず2以上の任意の数であってよい。
 太陽電池調整システムの動作
 直列共振形インバータは直列接続された太陽電池モジュールPV1~PV4により駆動され、多段倍電圧整流回路に対してトランス二次巻線の部位において正弦波状の交流電流を供給する。一方、多段倍電圧整流回路はその正弦波状の交流電流により駆動され、動作時においては直列接続された太陽電池モジュールの中で電圧の最も低いモジュールに対して優先的に電力を分配するよう動作する。図7に示すとおり負荷を接続する等して、直列接続された太陽電池モジュールを使用する場合、一般的に影モジュールの電圧はその他の日照モジュールの電圧よりも低くなる。したがって、本部分影補償装置を用いることで全モジュール(影モジュールも含む)から影モジュールへと電力を分配し、影モジュールにおける電力不足分を補償することができる。以下、詳細な動作原理について説明を行う。
 太陽電池調整システムの動作
 図7に示すとおり、DC-DCコンバータを介して負荷を接続する等して、太陽電池モジュール鎖全体に電圧が印加されており、太陽電池モジュールPV1にのみ影がかかっているとする。従来の一般的な共振形インバータと同様に、キャパシタCrとインダクタLrからなる直列回路の共振周波数よりも高いスイッチング周波数で、スイッチQaのみがオンの状態とスイッチQbのみがオンの状態とを、両スイッチについて50%以下の時比率で交互に切り替える。このようにして本発明の太陽電池調整システムを動作させたときに各素子を流れる電流、及び各素子に印加される電圧の波形を図9に示し、動作中に実現される4つのモード期間中にシステム内を流れる電流の経路を図10a~図10bに示す(キャパシタCout1~Cout4は平滑キャパシタとして機能するため、これらに流れる電流は無視する)。なお、図9のグラフ中、VGSa,VGSbは、スイッチQa,Qbのゲート電圧をそれぞれ表し、iD1,iD2はダイオードD1,D2に流れる電流をそれぞれ表す。
 便宜上、まずモード2の動作を説明する(図10a)。モード2の期間中においては、図9中、VGSのグラフが示すとおり、スイッチQaがオンとされ、スイッチQbがオフとされており、キャパシタCr及びインダクタLrを含む共振回路に対して、正電圧(図8中、VDSbを示す矢印の向きに上昇する電圧。図9中、VDSbのグラフ参照。)が出力される。これによりキャパシタCr及びインダクタLrに正の電流(図8中、iLrを示す矢印の向きに流れる電流。太陽電池モジュールPV1~PV4から、オン状態のスイッチQaを通ってキャパシタCr及びインダクタLrへと流れ込む。)が流れる。キャパシタCrとインダクタLrの共振現象により、iLrは正弦波状に変化する(図9中、iLrのグラフ参照。)。トランスの一次巻線には交流電圧が印加され、これが変圧されて二次電圧として多段倍電圧整流回路に出力される(図9中、VTSのグラフ参照。)。二次電圧による補償電流は影モジュールPV1に(及び、本実施例においては経路上にある日照モジュールPV2に)優先的に流れ込む。
 スイッチQaをオフとすることにより、モード2においてスイッチQaを流れていた電流がフライホイールダイオードDbへと転流し、動作はモード3へと移行する(図10b)。このとき、共振回路に入力される電圧VDSbはゼロとなるが(図9中、VDSbのグラフ参照。)、共振現象により、インダクタLrを流れる電流iLrは引き続き正弦波状に変化する(図9中、iLrのグラフ参照。)。共振周波数よりも高い周波数でスイッチングを行っているため、モード3への移行時において、インダクタLrを流れる電流iLrは依然として正である。インダクタLrが誘導性素子であるため、電流iLrはモード3への移行時において連続である一方、モード2においてiLrと等しかった電流iSaは、モード3への移行と同時にゼロとなる(図9中、iSaのグラフ参照。)。これに対応して、モード2においてゼロであった電流iSbが、モード3への移行と同時にiLrと等しい大きさを有することとなる(図8に示すとおり電流iSbの極性を定義しているため、電流iSbと電流iLrの正負は逆となる。図9中、電流iSb,iLrのグラフ参照。)。多段倍電圧整流回路から太陽電池モジュール鎖へと流れる電流の経路は、モード2の期間中における経路と同様である。
 モード3の期間中に、スイッチQbがオンとされる。インダクタLrの電流iLrが負に切り替わるタイミングで、動作はモード4へと移行する(図10c)。
 モード4の期間中においては、モード3の期間中と同様に、共振回路に入力される電圧VDsbはゼロであるが(図9中、VDSbのグラフ参照。)、共振現象により、インダクタLrを流れる電流iLrは引き続き正弦波状に変化する(図9中、iLrのグラフ参照。)。モード4においてはiLrの極性がモード2,3と逆であり、多段倍電圧整流回路に対して入力される交流電圧の極性も逆となる(図9中、VTSのグラフ参照。)。これに伴い、多段倍電圧整流回路及び太陽電池モジュール鎖を流れる電流の経路も、図10cに示すとおり変化する。中間キャパシタC1がダイオードD2を介して放電しており、この放電電流は、モード2,3とは逆向きに日照モジュールPV2を流れる。
 スイッチQbをオフとすることにより、モード4においてスイッチQbを流れていた電流がフライホイールダイオードDaへと転流し、動作はモード1へと移行する(図10d)。このとき、インダクタLrを含む共振回路に対して、ほぼ一定の正電圧vDSbが出力される(図9中、vDSbのグラフ参照。)。共振周波数よりも高い周波数でスイッチングを行っているため、モード1への移行時においてインダクタLrを流れる電流iLrは負であるが、上記正電圧vDSb、及び共振現象により経時的に上昇する。インダクタLrが誘導性素子であるため、電流iLrはモード1への移行時において連続である一方、モード4においてiLrと大きさが等しかった電流iSbは、モード1への移行と同時にゼロとなる(図9中、iSbのグラフ参照。)。これに対応して、モード4においてゼロであった電流iSaが、モード1への移行と同時にiLrと等しくなる(図9中、電流iSa,iLrのグラフ参照。)。多段倍電圧整流回路から太陽電池モジュール鎖へと流れる電流の経路は、モード4の期間中における経路と同様である。
 モード1の期間中に、スイッチQaがオンとされる。インダクタLrの電流iLrが正に切り替わるタイミングで、動作はモード2へと移行する。以降、同様に各モードが経時的に実現される。
 図10a~図10dに示したように、太陽電池モジュールPV1に影がかかった状態で、多段倍電圧整流回路内において電流が流れる素子は中間キャパシタC1、ダイオードD1,D2であり、これらは太陽電池モジュールPV1と対になる素子である。影モジュールと対になる素子のみに電流が流れる点は、他の太陽電池モジュールに影がかかった場合も基本的に同様である。図10a~図10dから明らかなように、影モジュールに対応する素子が導通することで影モジュールに対して補償電流が供給される。
 一方、図10a~図10dに示す電流経路によれば、多段倍電圧整流回路からは日照モジュールPV2に対しても電流が流れていることが分かる(後述のとおり、例えば太陽電池モジュールPV3が影モジュールとなる場合、このような電流は生じない。)。ただし、多段倍電圧整流回路から日照モジュールPV2へと供給される電流は、モード1~4全体について平均をとればゼロである(図9中、iC1のグラフ参照。)。すなわち日照モジュールPV2に対して正味の補償電流は流れない。しかし、この電流は日照モジュールPV2に対してリプル電流として重畳するため、日照モジュールPV2の動作電圧がリプル電流により変動し不安定化する恐れがある。リプル電流を低減しうる回路構成については、後述の実施例2にて説明を行う。
 太陽電池調整システムの動作の、理論的考察
 直列共振形インバータと多段倍電圧整流回路を組み合わせたシステムは、本発明者による、先の出願(特願2012-046569)に係る発明でも用いられていた(非特許文献5も参照。)。先の出願においては、多段倍電圧整流回路に接続された蓄電セル鎖のセル電圧にばらつきがある場合に、当該蓄電セル鎖の合計セル電圧を直列共振形インバータに入力し、インバータが発生した交流電圧を、多段倍電圧整流回路を介して当該蓄電セル鎖に入力することによって、電圧の低い蓄電セルを充電してセル電圧を均等化していた。
 これに対し、本発明においては、多段倍電圧整流回路に太陽電池モジュール鎖が接続される。部分影の存在により太陽電池モジュール電圧間にばらつきがある場合であっても、当該太陽電池モジュール電圧の合計電圧をインバータに入力し、インバータが発生した交流電圧を、多段倍電圧整流回路を介して当該太陽電池モジュール鎖に入力することによって、電圧の低い影モジュールに優先的に補償電流を流す。影モジュールから自己の出力電流と補償電流が放出されることにより、太陽電池モジュール鎖全体としての高い出力電流を維持することができる。
 すなわち、影モジュールに供給される補償電流は太陽電池モジュール鎖の出力電流として放出されるため、この補償電流により影モジュールが「充電されて」太陽電池モジュールの電圧が均等化されることにはならない。これにより、電圧の低い影モジュールには優先的に補償電流が流れ続ける。このとき、インバータ及び多段倍電圧整流回路内に存在するキャパシタやインダクタ、及び抵抗に起因して、補償電流の経路上にインピーダンスが発生することにより、影モジュールに電圧降下が生じる。以上のメカニズムによって影モジュールは電圧を日照モジュールの電圧と比べて相対的に低い状態に維持される。また、インピーダンスの値を制御することにより、上記電圧降下の大きさを調整して影モジュールをMPP近傍に導くことも可能となる。以下、この点について詳しく説明する。
 図11に、上記動作に関連する各部の電圧波形と、一次高調波近似により得られる、それらの正弦波状近似波形を示す。ただし、図11中のPV-m,PV-nは、本実施例における影モジュールPV1と日照モジュールPV2に相当する。またRr,rm,rnは、それぞれの電流経路に生じる抵抗成分を表す。なお、図11ではキャパシタCout1,Cout2を省いた。
 キャパシタCrとインダクタLrよりなる直列共振回路に対する入力電圧VDSbは振幅Vin=VPV1+VPV2+VPV3+VPV4の矩形波状電圧であるため、一次高調波近似により正弦波状電圧に近似することができる。ここでは、入力電圧VDSbを、
Figure JPOXMLDOC01-appb-M000003
            (3)
で表される振幅Vm-inの正弦波状電圧で近似する。
 また、図8中、ダイオードD1,D2の中間点、及びダイオードD3,D4の中間点のグラウンドに対する電位VA及びVB(図11参照)は、偶数番号のダイオードが導通するときにはそれぞれVPV-m+VD,VPV-n+VPV-m+VDであり(太陽電池モジュールPV-m,PV-nの電圧をそれぞれVPV-m,VPV-nとし、ダイオードの順方向電圧降下をVDとした。)、奇数番号のダイオードが導通するときにはそれぞれ-VD,VPV-m-VDである。すなわち電位VA及びVBは、上記動作においては、それぞれ振幅がVPV-m+2VDとVPV-n+2VDの矩形波状電圧である。入力電圧VDSbと同様に、これらの電圧も一次高調波近似により正弦波状電圧で近似する。ここでは、上記電位VA及びVBを、それぞれ振幅が
Figure JPOXMLDOC01-appb-M000004
                 (4)
Figure JPOXMLDOC01-appb-M000005
                 (5)
で表される正弦波状電圧で近似する。
 上記のとおり一次高調波近似により得られる振幅Vm-in,Vm-A,Vm-Bの正弦波状電圧を発生させる、仮想的な交流電源を用いて、本発明の太陽電池調整システムを図12の等価回路で置き換えることができる。図12中のVm-in,Vm-A,Vm-Bは、それぞれの交流電源が発生させる交流電圧の振幅に対応する。また、図12中のZr,Zm,Znは、それぞれ図11中の抵抗Rr、キャパシタCr、及びインダクタLrによるインピーダンス、抵抗rm及びキャパシタCmによるインピーダンス、抵抗rn及びキャパシタCnによるインピーダンスであり、それぞれ次式で表される。
Figure JPOXMLDOC01-appb-M000006
                 (6)
Figure JPOXMLDOC01-appb-M000007
                 (7)
Figure JPOXMLDOC01-appb-M000008
                 (8)
ただしjは虚数単位を表し、Rr,rm,rnはそれぞれ同符号で表される抵抗の大きさを表し、Cr,Cm,Cnはそれぞれ同符号で表されるキャパシタの容量を表し、Lrは同符号で表されるインダクタのインダクタンスを表し、ωはスイッチQa,Qbのスイッチングの角周波数を表す。
 太陽電池調整システムが動作する(図10a~図10dに示す電流が0A以上で流れる)ためには、図12に示される各部のインピーダンスがゼロの場合を想定し、次式を満足する必要がある。
Figure JPOXMLDOC01-appb-M000009
                 (9)
Figure JPOXMLDOC01-appb-M000010
                 (10)
ただしNはトランスの巻き数比である(一次巻線の巻き数:二次巻線の巻き数=N:1)。
 上記(3)~(5)式と(9),(10)式より、
Figure JPOXMLDOC01-appb-M000011
                 (11)
Figure JPOXMLDOC01-appb-M000012
                 (12)
が得られる。
 (3)~(5)式が示すとおり、Vm-in,Vm-A,Vm-Bはそれぞれ入力電圧Vin、影モジュールPV-mの電圧VPV-m、日照モジュールPV-nの電圧VPV-nを反映していることから、図12の等価回路においては、入力電圧Vinによって供給された電力が、抵抗Rr、キャパシタCr、インダクタLrからなる直列回路(図12中Zrで表される。)を介してトランスに伝達され、更にトランス二次側(多段倍電圧整流回路側)で、キャパシタCmと抵抗rmからなる直列回路(図12中Zmで表される。)と、キャパシタCnと抵抗rnからなる直列回路(図12中Znで表される。)をそれぞれ介して、影モジュールPV-mと日照モジュールPV-nへとそれぞれ電力が分配されると理解できる。
 ここにおいて、振幅Vm-Aの仮想交流電源と振幅Vm-Bの仮想交流電源は、それぞれZmとZnで表される直列回路を介して、トランス二次巻線に対し共通に接続されている。したがって、仮に振幅Vm-A,Vm-Bが同じ大きさであり、それらに対応する仮想交流電源の位相が等しく、且つ、インピーダンスZm,Znが等しければ、振幅Vm-Aの仮想交流電源と振幅Vm-Bの仮想交流電源には等しい電流が流れることが分かる。また、振幅Vm-A,Vm-Bは(4),(5)で示したように各太陽電池モジュールの電圧VPV-m,VPV-nを反映しているため、太陽電池モジュール間に電圧差が発生している場合には電圧の低い太陽電池モジュールに対して優先的に電流が流れることが分かる。本実施例においては太陽電池モジュールPV-mが影モジュールであり、一般的に、直列接続した太陽電池モジュール鎖においては影モジュールの動作電圧がその他の日照モジュールの動作電圧よりも低くなる。したがって、本太陽電池調整システムを用いることにより、直列接続した全太陽電池モジュールから影モジュール(すなわち、直列接続された太陽電池モジュールのうち電圧の低い太陽電池モジュール)に対して電力を再分配することにより、影モジュールにおける電力不足分を補償することが可能となる。
 また、式(6)~(8)に示したように、各部のインピーダンスはスイッチQa,Qbのスイッチング周波数に依存する。本発明の太陽電池調整システムを固定周波数にて動作させた場合、影モジュールPV-mに流れ込む補償電流Ieqmの増加に伴い、インピーダンスZmに起因して電圧降下が起こり、影モジュールPV-mの電圧VPV-mは低下すると考えられる。言い換えれば、本発明の太陽電池調整システムによって影モジュールに補償電流を供給するとき、回路内には影モジュールの電圧降下を引き起こす抵抗(以下、「等価出力抵抗Rout」と呼ぶ。)が発生するとみなせる。等価出力抵抗Routを利用すれば、影モジュールの電圧を日照モジュールと比べて相対的に低下させることができ、すなわち日照モジュールの電圧を相対的に高く保ちつつ、部分影が発生したときのMPP近傍へと影モジュールの動作状態を導くことができる。
 一般的に、太陽電池モジュールのVMPは日射量に大きく依存し、典型的には図13に示すように、日照量に応じて動作特性が変化する。日射量の比較的高い領域においては、VMPの軌跡は図13中の破線が示すとおり直線で近似できる。この直線の傾きを次のように定義する。
Figure JPOXMLDOC01-appb-M000013
                   (13)
ただし、VMP,IMPは、日照モジュールにおけるMPPでの電圧と電流であり、VMP-shaded,IMP-shadedは、上記日照量よりも小さい、ある日照量におけるMPPでの電圧と電流である。
 図6を用いて説明したように、本発明の太陽電池調整システムを用いた際には、疑似的に全てのモジュールが同一の電流IStringを出力可能となるよう、影モジュールに補償電流Ieqが供給される。すなわち、日照モジュールと影モジュールがそれぞれVMPとVMP-shadedの電圧で動作しておりIMPとIMP-shadedの電流を発生する場合、補償電流Ieqは(13)式のΔIMPに相当することになる。
 例として、本実施例のように4直列の太陽電池モジュールのうち1つの太陽電池モジュールに影がかかった場合を考える。このとき影モジュールには補償電流Ieqが供給されるが、Ieqの増加に伴う出力電圧低下分をIeq×Routの形式で表せると仮定すると、上記(11),(12)式から次式が得られる。
Figure JPOXMLDOC01-appb-M000014
                   (14)
 上記(14)式は、補償電流が全く流れていない時点(Ieq=0)や、補償電流が小さく補償が不十分な時点でも成り立つ式である。十分な補償電流が流れている状態では、電圧のつり合いにより以下の(15)式が成り立つ。
Figure JPOXMLDOC01-appb-M000015
                   (15)
 上記(15)式中でIeq=ΔIMPとすると、(13)式を用いて、
Figure JPOXMLDOC01-appb-M000016
                   (16)
が得られる。太陽電池調整システムの等価出力抵抗Routが(16)式を満たす場合、日照モジュールのみならず、影モジュールもその時の最大電力点電圧近傍で動作させることが可能になる。
 太陽電池調整システムの動作に関する実験
 図8の回路構成を備えた本発明の太陽電池調整システムについて、以下のとおり実験を行った。
 (等価出力抵抗Routの測定)
 まず、図8の回路構成を備えた太陽電池調整システムを構築した。なお、中間キャパシタC1~C4の容量は33μFであり、平滑キャパシタCout1~Cout4の容量は66μFであり、ダイオードD1~D8は順方向電圧降下VD=0.43Vのショットキーダイオードであり、キャパシタCrの容量は220nFであり、インダクタLrのインダクタンスは18.6μHであり、トランスの一次巻線の巻き数は23、二次巻線の巻き数は6であった(巻き数比N=23/6)。
 次に、太陽電池モジュールPV1~PV4を取り除き、直列共振形インバータの入力部(スイッチ群Qa,Qbの両端)に外部直流電源を接続し、更にキャパシタCout1に対してのみ可変抵抗器Rout1を接続することで、太陽電池モジュールPV1のみに影がかかっている状態を擬似的に構成した(図14)。
 スイッチQaのみがオンの状態とスイッチQbのみがオンの状態とを固定周波数で交互に切り替えて、図14のシステムを動作させた。可変抵抗器の抵抗値を変化させつつシステムを動作させ、可変抵抗器を流れる電流を補償電流として電流値を測定し、併せてキャパシタCout1の電圧(VPV1を擬似的に表す。)を測定し、それらの相関を直線で近似した。当該電流値の変化と当該電圧値の変化の比(近似曲線の傾き)として特定周波数に対する等価出力抵抗Routを算出した。
 さまざまな固定周波数(85kHz,93.5kHz,102kHz,110.5kHz)について、上記方法により等価出力抵抗Routを算出するとともに、擬似的なVPV1に応じて変化する出力電力(可変抵抗器Rout1に対する電力)と電力変換効率(外部直流電源から入力される電力と可変抵抗器Rout1で消費される電力の比)を測定した。測定結果を図15のグラフに表す。いずれのスイッチング周波数においても出力電流-出力電圧の関係は概ね直線で近似可能であり、近似直線から図15中に書き込まれているとおり等価出力抵抗Routを算出した。上述のとおり、太陽電池調整システム内の各部のインピーダンスには周波数依存性があるため、等価出力抵抗Routも周波数とともに変化した。
 (太陽電池モジュール、及び太陽電池モジュール鎖の動作特性の測定)
 次に、太陽電池モジュールPV1~PV4として太陽電池アレイ・シミュレータ(Agilent Technologies社製、E4350B)を図8と同じ回路構成のシステムに接続し、部分影が発生している状態を擬似的に実現した。具体的には、4つの(擬似)太陽電池モジュールPV1~PV4により構成される太陽電池モジュール鎖の中で太陽電池モジュールPV1にのみ影がかかった場合を想定し、太陽電池モジュールPV2~PV4のVMPとIMPはそれぞれ12V,4.0Aにシミュレータで設定し、太陽電池モジュールPV1のVMP-shadedとIMP-shadedはそれぞれ9.0V,2.0Aと設定した。このような条件の下、スイッチQa,Qbのスイッチング周波数を85kHzとして(Rout=595mΩ)、太陽電池モジュール鎖に印加する電圧を変えつつ太陽電池調整システムを動作させた。
 図16に、この実験で得られた日照モジュールPV2~PV4と影モジュールPV1それぞれの動作特性曲線を示す。PV1(w/ Eq)は、補償電流を電流値に含めた、影モジュールPV1の擬似的な動作特性を表し、PV1(w/o Eq)は影モジュールPV1の真の動作特性を表す。IString=4.0Aで太陽電池モジュール鎖を動作させたとき、太陽電池モジュールPV2~PV4の動作点は図16中のA点となる。一方、太陽電池調整システムは影モジュールPV1の発生電流と補償電流Ieq1の合計が4.0Aとなるよう動作する。よって、太陽電池調整システムにより補償された影モジュールPV1の擬似的動作点はIString=4.0Aの直線上に存在することになる。(16)式より、影モジュールPV1の擬似的動作点(補償電流と影モジュールPV1の出力電流との合計電流で電流を規定し、影モジュールPV1の電圧で電圧を規定した時の動作点)ならびに実動作点は図16中のB点ならびにC点となる。図16中の斜め破線はIString=4.0A時におけるRout=595mΩの特性を表したものであり、影モジュールPV1の動作点がこの直線上に存在することを意味している。
 図17は、上記太陽電池アレイ・シミュレータを負荷に接続して測定した、太陽電池調整システムを用いた場合と用いない場合における、太陽電池モジュール鎖全体としての特性の測定結果である。太陽電池調整システムを用いない場合(図18に示すとおりバイパスダイオードを用いた場合)は、部分影の影響により2つの最大電力点(VString=35Vと50V近傍)が存在したのに対して、太陽電池調整システムを用いた場合は1つの最大電力点(VString=45V近傍)のみであった。得られる最大電力も太陽電池調整システムを用いた場合は158W程度であり、用いない場合の140W程度と比べて向上している。
 これらの実験により、日照モジュールのVMPと影モジュールのVMP-shadedが大きく異なる条件の下でも、太陽電池調整システムの等価出力抵抗Routを活用することでいずれのモジュールも最大電力点近傍で動作可能であることが示された。
 太陽電池モジュール鎖の動作状態制御方法
 以上では、固定のスイッチング周波数における等価出力抵抗Routを利用して影モジュールに補償電流を供給し、且つインピーダンスの効果により影モジュールの電圧を日照モジュールの電圧と比べて相対的に降下させるという動作について説明を行った。しかしながら、太陽電池の特性は日射量のみならず温度にも大きく影響を受け、更に長期の使用においては特性が劣化する。これらの特性変化・劣化に伴い、図13で示したRPVの値も変化する。(16)式で示したように、本発明の太陽電池調整システムにおいて影モジュールの電力を最大限に活用するためにはRPVの値を考慮してRoutを適切に設定する必要がある。しかし、固定のスイッチング周波数ではRoutを動的に調整できないため、特性変化・劣化に伴うRPVの変化に対応することができない。
 この問題には、太陽電池モジュールの特性変化・劣化に伴うRPVの変動に応じて直列共振インバータのスイッチング周波数を変化させ、等価出力抵抗Routを随時調節することで対処できる。スイッチング周波数を変化させることにより等価出力抵抗Routを調節しつつ太陽電池調整システムを動作させるためのシステム構成、及びフローチャートを図19,図20に示す。
 図19に示すとおり、太陽電池調整システムには、太陽電池モジュールPV1~PV4の合計電力(太陽電池モジュール鎖の電力)を測定するための出力電力検出回路が接続される。出力電力検出回路で検出された合計電力は出力電力比較回路に送信され、少なくとも所定期間は当該比較回路に記憶される。出力電力比較回路は、記憶された出力電力のうち、異なる測定タイミングで測定された2つの出力電力値の比較を行うよう構成されている。比較結果(先に測定された出力電力と後に測定された出力電力のどちらが大きいか)を示す信号は、スイッチ制御回路に送信される。
 スイッチ制御回路は、スイッチQa,Qbのいずれか一方のみがオンとなった状態と他方のみがオンとなった状態とを(任意で両スイッチがオフのデッドタイムを設けつつ)特定の周波数で切り替えるよう、スイッチQa,Qbを制御する回路であり、特に周波数を上昇及び下降させる機能を有している。上昇幅、下降幅は、あらかじめ固定値としてスイッチ制御回路に入力されていてもよいし、任意のタイミングで外部回路(不図示)から入力可能であってもよい。さらにスイッチ制御回路は、少なくとも所定期間は、最後に行った周波数の変更が上昇であったか下降であったかを記憶する。スイッチ制御回路は、出力電力比較回路から比較結果を受信し、先に測定された出力電力よりも後に測定された出力電力の方が大きかった場合には、次回の周波数変更を前回の周波数変更と同様の変更とし、後に測定された出力電力よりも先に測定された出力電力の方が大きかった場合には、次回の周波数変更を前回の周波数変更と逆の変更とするよう構成される(両出力電力が同じであった場合は、次回の周波数変更を前回と同じにしても、逆にしてもよい。どちらにするかは、あらかじめ設定により決められているとする。)。
 次に、図19のシステムを用いた太陽電池モジュール鎖の動作状態制御方法を図20のフローチャートに従い説明する。なお、各ステップの実行タイミングは、任意のクロック回路(不図示)等を用いて制御されているものとする。
 まず、太陽電池モジュール鎖の出力電力(IString×VString、もしくは負荷電流ILoad×VString)の初期値P0を出力電力検出回路が測定する(ステップ2001)。次にスイッチ制御回路が、スイッチング周波数を上昇(すなわちRoutを増大)させる(ステップ2002)。その後、出力電力検出回路が再び太陽電池モジュール鎖の出力電力P1を測定する(ステップ2003)。出力電力比較回路は測定された電力P0,P1を検出回路から受信して記憶しており、両電力値の大きさを比較する。P1>P0であれば再びフローチャートの最初のステップ2001に戻り、スイッチ制御回路はスイッチング周波数を更に上昇させ、同じ動作を繰り返す。P1<P0であれば、スイッチ制御回路は逆にスイッチング周波数を減少させRoutが低下する方向へと動作させる(ステップ2005)。その際においても周波数の変動前後における太陽電池ストリングの電力P2とP3を出力電力検出回路が計測し(ステップ2004,2006)、出力電力比較回路がP2,P3の大小関係を判断する。スイッチ制御回路は、比較結果に基づいてフローチャートに示されているとおり周波数を上昇又は下降させる。
 なお、図20のフローチャートにおいては電力P0,P1の比較、及び電力P2,P3の比較の後に出力電力が再び測定されることとなっているが、この測定は省いてもよい。すなわち、図20のフローチャートを図21のように修正してもよい。図21のフローチャートに従うとき、例えばステップ2002でスイッチング周波数を上げてステップ2003で電力P1を測定した後、P1>P0だった場合に、出力電力比較回路が当該P1をP0のメモリ領域に記憶し、P1のメモリ領域に記憶された測定値を消去してから、スイッチ制御回路がステップ2002を行う。同様に、ステップ2005でスイッチング周波数を下げてステップ2006で電力P3を測定した後、P3>P2だった場合に、出力電力比較回路が当該P3をP2のメモリ領域に記憶し、P3のメモリ領域に記憶された測定値を消去してから、スイッチ制御回路がステップ2005を行う。同様に、ステップ2005でスイッチング周波数を下げてステップ2006で電力P3を測定した後、P3>P2でなかった場合に、出力電力比較回路が当該P3をP0のメモリ領域に記憶し、P3のメモリ領域に記憶された測定値を消去してから、スイッチ制御回路がステップ2002を行う。なお、ステップ2003,2006の次に行われる電力値の比較で両電力が等しかった場合には、最大電力点に到達したとして処理を終了してもよいし、動作特性の変化に備えてスタートまで戻り処理を再開してもよい。また、ステップ2002とステップ2005を入れ替えてもよい。
 スイッチング周波数を変動させた際(即ちRoutを変動させた際)における影モジュールの動作点の変化の様子の一例を図22に示す。ここでは便宜上、影モジュールの特性のみを描いている。影モジュールの初期の動作点がaであった場合に、図20又は図21のフローチャートに基づきスイッチング周波数を増大させRoutを増大させたとする。その結果、影モジュールの動作点がbに移行し、結果として太陽電池ストリングの出力電力は増加するため、フローチャートに基づきスイッチング周波数を更に増大させ、Routを更に増大させる。その結果、影モジュールの動作点はcに移動するため、結果として太陽電池ストリングの出力電力は低下する。よって、フローチャートに基づき、今度はスイッチング周波数を下げてRoutを低減させる。その結果、影モジュールの動作点は再びb点に戻り、太陽電池ストリングの出力電力は上昇するため、フローチャートに基づきスイッチング周波数を更に下げてRoutを更に低減させる。その結果、動作点はaに移動するため太陽電池ストリングの電力は低下する。以上のように、周波数の変動(Routの変動)に伴い影モジュールの動作点はa~cで変動する。影モジュールの動作点は変動するものの、図20又は図21のフローチャートに基づき制御を行うことで太陽電池モジュールに特性変化・劣化があった場合においても影モジュールを最大電力点近傍で動作させることが可能となる。
 太陽電池モジュールPV1以外に影がかかっている場合
 以上においては、図8の回路中で主に太陽電池モジュールPV1に影がかかっている場合について説明したが、他のモジュールに影がかかっている場合であっても、本発明の太陽電池調整システムは同様の原理で動作可能である。
 一例として、太陽電池モジュールPV3に影がかかっている場合に、図9のVGSのグラフに従ってスイッチQa,Qbのオンオフを切り替えたときに回路内を流れる、各モードでの電流の経路を図23a~図23dに示す。
 まずモード2の期間中(図23a)においては、図9中、VGSのグラフが示すとおり、スイッチQaがオンとされ、スイッチQbがオフとされており、キャパシタCr及びインダクタLrを含む共振回路に対して、正電圧(図8中、VDSbを示す矢印の向きに上昇する電圧)が出力される。これによりキャパシタCr及びインダクタLrに正の電流(図8中、iLrを示す矢印の向きに流れる電流。太陽電池モジュールPV1~PV4から、オン状態のスイッチQaを通ってキャパシタCr及びインダクタLrへと流れ込む。)が流れる。キャパシタCrとインダクタLrの共振現象により、iLrは正弦波状に変化する。トランスの一次巻線には交流電圧が印加され、これが変圧されて二次電圧として多段倍電圧整流回路に出力される。この二次電圧により、キャパシタC3が充電される。
 スイッチQaをオフとすることにより、モード2においてスイッチQaを流れていた電流がフライホイールダイオードDbへと転流し、動作はモード3へと移行する(図23b)。このとき、共振回路に入力される電圧VDSbはゼロとなるが、共振現象により、インダクタLrを流れる電流iLrは引き続き正弦波状に変化する。共振周波数よりも高い周波数でスイッチングを行っているため、モード3への移行時において、インダクタLrを流れる電流iLrは依然として正である。インダクタLrが誘導性素子であるため、電流iLrはモード3への移行時において連続である一方、モード2においてiLrと等しかった電流iSaは、モード3への移行と同時にゼロとなる。これに対応して、モード2においてゼロであった電流iSbが、モード3への移行と同時にiLrと等しい大きさを有することとなる。多段倍電圧整流回路から太陽電池モジュール鎖へと流れる電流の経路は、モード2の期間中における経路と同様である。
 モード3の期間中に、スイッチQbがオンとされる。インダクタLrの電流iLrが負に切り替わるタイミングで、動作はモード4へと移行する(図23c)。
 モード4の期間中においては、モード3の期間中と同様に、共振回路に入力される電圧VDSbはゼロであるが、共振現象により、インダクタLrを流れる電流iLrは引き続き正弦波状に変化する。モード4においてはiLrの極性がモード2,3と逆であり、多段倍電圧整流回路に対して入力される交流電圧の極性も逆となる。これに伴い、多段倍電圧整流回路及び太陽電池モジュール鎖を流れる電流の経路も、図23cに示すとおり変化する。キャパシタC3がダイオードD6を介して放電しており、この放電電流は、補償電流として影モジュールPV3に供給される。
 スイッチQbをオフとすることにより、モード4においてスイッチQbを流れていた電流がフライホイールダイオードDaへと転流し、動作はモード1へと移行する(図23d)。このとき、インダクタLrを含む共振回路に対して、ほぼ一定の正電圧vDSbが出力される。共振周波数よりも高い周波数でスイッチングを行っているため、モード1への移行時においてインダクタLrを流れる電流iLrは負であるが、上記正電圧vDSb、及び共振現象により経時的に上昇する。インダクタLrが誘導性素子であるため、電流iLrはモード1への移行時において連続である一方、モード4においてiLrと大きさが等しかった電流iSbは、モード1への移行と同時にゼロとなる。これに対応して、モード4においてゼロであった電流iSaが、モード1への移行と同時にiLrと等しくなる。多段倍電圧整流回路から太陽電池モジュール鎖へと流れる電流の経路は、モード4の期間中における経路と同様である。
 モード1の期間中に、スイッチQaがオンとされる。インダクタLrの電流iLrが正に切り替わるタイミングで、動作はモード2へと移行する。以降、同様に各モードが経時的に実現される。
 このように、太陽電池モジュールPV3に影がかかっている場合も、当該太陽電池モジュール電圧の合計電圧をインバータに入力し、インバータが発生した交流電圧を、多段倍電圧整流回路を介して当該太陽電池モジュール鎖に入力することによって、電圧の低い影モジュールPV3に優先的に補償電流を流すことができる。また補償電流の経路上に発生するインピーダンスにより、影モジュールPV3に電圧降下が生じるため、このインピーダンスの値を制御することにより影モジュールPV3をMPP近傍に導くことも可能となる。
 図11と同様に、太陽電池モジュールPV3に影がかかっているときの、上記動作に関連する各部の電圧波形と、一次高調波近似により得られる、それらの正弦波状近似波形を図24に示す。ただし、図24中のPV-mは、本実施例における影モジュールPV3に相当する。またRr,rmは、それぞれの電流経路に生じる抵抗成分を表す。なお、図24でも、図11と同様にキャパシタCout3を省いた。
 この場合も、一次高調波近似により、入力電圧VDSbと図24中のVAで示される電圧を、それぞれ振幅が上記式(3)と(4)で表される正弦波状電圧で近似することができる。これら正弦波状電圧を発生させる仮想的な交流電源を用いて、本発明の太陽電池調整システムを図25の等価回路で置き換えることができる。図25中のVm-in,Vm-Aは、それぞれの交流電源が発生させる交流電圧の振幅に対応する。また、図25中のZr,Zmは、それぞれ図24中の抵抗Rr、キャパシタCr、及びインダクタLrによるインピーダンス、抵抗rm及びキャパシタCmによるインピーダンスであり、それぞれ上記(6),(7)式で表される。上記式(9)~(16)を用いて既に説明した理由から、今の場合においても太陽電池調整システムの等価出力抵抗Routが(16)式を満たす場合に、日照モジュールのみならず、影モジュールも最大電力点電圧近傍で動作させることが可能になる。等価出力抵抗Routの調整は、例えば図20,図21のフローチャートに従って行うことができる。
 本発明の太陽電池調整システムの、第2の実施形態を図26に示す。図8で示した第1の実施形態に更に第2の多段倍電圧整流回路を用いて対称型の回路構成をとることで各モジュールに流れるリプル電流を低減可能とした回路構成である。
 図26に示す本発明の太陽電池調整システムにおいて、太陽電池モジュールPV1に影がかかっている場合に、図9のVGSのグラフに従ってスイッチQa,Qbのオンオフを切り替えたときに回路内を流れる、各モード2~4,1での電流の経路を図27a~図27dに示す。ただし、キャパシタCout1a~Cout4a,Cout1b~Cout4bは省略する。モード2,3においては、トランス二次巻線を経由した中間キャパシタC1bの放電電流がダイオードD2bを介して影モジュールPV1に補償電流として流れ込み、またこの電流がダイオードD1aを経由して中間キャパシタC1aを充電する(図27a,図27b)。モード4,1においては、トランス二次巻線を経由した中間キャパシタC1aの放電電流がダイオードD2aを経由して影モジュールPV1に補償電流として流れ込み、またこの電流がダイオードD1bを経由して中間キャパシタC1bを充電する(図27c,図27d)。なお、各素子を流れる電流や各素子に印加される電圧の基本的な動作波形は図9に示したものと同一である。
 図10a~図10dで示した、第1の実施形態における電流経路では、多段倍電圧整流回路から影モジュールPV1に補償電流を供給する際に日照モジュールPV2にも電流が流れていた(トランス二次巻線を経由して供給される電流)。多段倍電圧整流回路から日照モジュールPV2に供給される平均電流は0であるため日照モジュールPV2には実質的に補償電流は供給されないが、リプル電流は図示のとおり流れる。このリプル電流成分が大きいと、日照モジュールPV2の動作点がVMP近傍で変動し、動作が不安定になる恐れがある。
 対照的に、図27a~図27bに示す電流経路において、トランス二次巻線を経由した補償電流は影モジュールPV1のみを流れる。太陽電池モジュールPV3に影がかかっている場合も、モード2,3においては、トランス二次巻線を経由した中間キャパシタC3bの放電電流がダイオードD6bを介して影モジュールPV3に補償電流として流れ込み、またこの電流がダイオードD5aを経由して中間キャパシタC3aを充電し、またモード4,1においては、トランス二次巻線を経由した中間キャパシタC3aの放電電流がダイオードD6aを経由して影モジュールPV3に補償電流として流れ込み、またこの電流がダイオードD5bを経由してキャパシタ中間C3bを充電するため、同様に補償電流は影モジュールPV3のみを流れる。
 このように、第2の実施形態では影モジュールに対してのみトランス二次巻線から電流が供給され、その他の日照モジュールに対してはトランス二次巻線からの電流が流れないため、第1の実施形態と比較して日照モジュールにおけるリプル電流を低減することが可能となる。
 また、図8に示したシステムと同様に、図26の太陽電池調整システムにおいても、インバータ及び多段倍電圧整流回路内に存在するキャパシタやインダクタ、及び抵抗に起因して、補償電流の経路上にインピーダンスが発生することにより、影モジュールに電圧降下が生じる。したがって影モジュールは日照モジュールの電圧と比べて相対的に電圧の低い状態に維持されるし、またインピーダンスの値を、例えば図20,図21のフローチャートに基づいた周波数制御によって制御することにより、上記電圧降下の大きさを調整して影モジュールをMPP近傍に導くことも可能となる。なお、図26には記載されていないが、通常太陽電池モジュール鎖には別途DC-DCコンバータ等を介して負荷を接続する(図7)。典型的な使用態様としては、DC-DCコンバータの制御により太陽電池モジュール鎖全体に印加される電圧を調整しつつ、図26中のスイッチQa,Qbの周波数調整により影モジュールの電圧降下を調整して、全ての太陽電池モジュールをモジュールごとに異なるMPPへと近づける。
(具体的回路構成のバリエーション)
 本発明の太陽電池調整システムの具体的回路構成は、図8や図27に示した構成に限らず、本発明の範囲内で適宜変更可能である。
 例えば、インバータと多段倍電圧整流回路との接続点は任意に選択可能である。一例として、図8の回路構成において上記接続点を変更してなる、本発明の太陽電池調整システムの回路構成を図28に示す。このような回路構成のシステムも、上述の実施形態と同様の原理で動作可能である。
 図28に示す本発明の太陽電池調整システムにおいて、太陽電池モジュールPV1に影がかかっている場合に、図9のVGSのグラフに従ってスイッチQa,Qbのオンオフを切り替えたときに回路内を流れる、各モード2~4,1での電流の経路を図29a~図29dに示す。モード2,3においては、トランス二次巻線を経由したキャパシタC1の放電電流がダイオードD2を介して影モジュールPV1に補償電流として流れ込む(図29a,図29b)。モード4,1においては、トランス二次巻線を経由した電流がダイオードD1を経由して中間キャパシタC1を充電する(図29c,図29d)。各素子を流れる電流や各素子に印加される電圧の基本的な動作波形は図9に示したものと同一である。
 その他の変更例として、トランスを用いずに本発明の太陽電池調整システムを構成することも可能である。図30に、そのようなシステムの回路構成の一例を示す。
 図30に示す本発明の太陽電池調整システムにおいて、太陽電池モジュールPV1に影がかかっている場合に、図9のVGSのグラフに従ってスイッチQa,Qbのオンオフを切り替えたときに回路内を流れる、各モード2~4,1での電流の経路を図31a~図31dに示す。影モジュールPV1に対しては、モード3(図31b),モード1(図31d)で補償電流が流れ込む一方で、日照モジュールへと供給される補償電流はモード1~4全体の平均をとればゼロである。
 図8に示したシステムと同様に、図28,図30の太陽電池調整システムにおいても、インバータ及び多段倍電圧整流回路内に存在するキャパシタやインダクタ、及び抵抗に起因して、補償電流の経路上にインピーダンスが発生することにより、影モジュールに電圧降下が生じる。したがって影モジュールは電圧の低い状態に維持されるし、またインピーダンスの値を、例えば図20,図21のフローチャートに基づいた周波数制御によって制御することにより、上記電圧降下の大きさを調整して影モジュールをMPP近傍に導くことも可能となる。典型的な使用態様として、図7に示すとおりDC-DCコンバータ等を介して負荷を接続し、DC-DCコンバータの制御により太陽電池モジュール鎖全体に印加される電圧を調整しつつ、Qa,Qbの周波数調整により影モジュールの電圧降下を調整して、全ての太陽電池モジュールをモジュールごとに異なるMPPへと近づけることも可能である。
 その他、上述の各実施例においては、ハーフブリッジ型セル、及び、キャパシタCrとインダクタLrとを直列接続してなる共振回路を接続することによりインバータを構成していたが、本発明の太陽電池調整システムに用いられるインバータはこれに限らない。太陽電池モジュール鎖の電圧を交流電圧へと変換し、多段倍電圧整流回路に当該交流電圧を入力することができるインバータであれば、同様の原理で本発明のシステムを動作させることができる。
 例えば、ハーフブリッジ型セル(図32)の代わりにフルブリッジ型セル(図33)を用いてもよい。フルブリッジセル型は、スイッチQa,Qbを直列接続してなるスイッチ組と、スイッチQc,Qdを直列接続してなるスイッチ組と、を並列接続し、さらに各々のスイッチにフライホイールダイオードDa~Ddを並列接続することにより構成される。スイッチQa,Qbの両端間(スイッチQc,Qdの両端間)に電圧Vinが入力された状態で、スイッチQa及びQdをオンとする状態と、スイッチQb及びQcをオンとする状態と、の間で接続状態を経時的に切り替えることによって、端子1,2の間には、ピーク電圧Vin、ボトム電圧-Vinの矩形状の電圧が出力される。なお、入力回路としてフルブリッジ型セルを用いる場合、後段にはトランスを備えた共振回路を用いる等して、フルブリッジ回路と多段倍電圧整流回路との電圧レベルを独立させる必要がある。
 また、キャパシタCrとインダクタLrとを直列接続してなる共振回路(図34)の代わりには、並列共振回路(図35)、直並列共振回路(図36)、LLC回路(図37)等を用いても、入力された直流電圧を交流電圧に変換して本発明の太陽電池調整システムを動作させることが可能である。いずれの共振回路を用いる場合も、図中の端子3,4の間に導線を設け、これをコアに対して巻回し、更に二次巻線をコアに対して巻回することによりトランスを形成すれば、端子3,4の間に印加される交流電圧を変圧した上で、二次巻線の両端に接続される多段倍電圧整流回路へと出力することが可能となる。
 なお、以上の実施例においてはスイッチング周波数を変更することにより等価出力抵抗Routを制御する例について説明したが、周波数制御が不可能であったとしても、上述のとおり補償電流の経路上に発生するインピーダンスによる電圧降下や影モジュールが「充電」されないことに起因して、影モジュールの電圧を少なくとも日照モジュールの電圧より低くすることが可能であるので、従来よりも影モジュールをMPPに近い動作点に導くことは可能である。
(本件第4~第6発明)
 これより図面を用いて、本件第4~第6発明に係る太陽電池調整システム、最小電流検出システム、及び最小電流制御システムを説明する。但し、本件第4~第6発明に係る各システムの構成は、各図面にて示される特定の具体的構成へと限定されるわけではなく、本発明の範囲内で適宜変更可能である。例えば、以下において各キャパシタは主に単独の蓄電素子であるとして説明するが、これらは充放電可能な任意の素子、複数の素子からなるモジュール、あるいはそれらモジュールを用いて構成される任意の装置であってもよい。各蓄電素子の容量や、ダイオード、インダクタ等、その他の回路素子の特性も、それぞれ異なっていてよい。また以下の実施例では4つの太陽電池モジュールによりストリング(太陽電池モジュール鎖)が構成されるが、4に限らず任意の直列数でストリングを構成できる。各スイッチについても、以下においてはMOSFETなどの半導体スイッチであるとして説明するが、任意の電子スイッチを用いることも可能である。
 太陽電池調整システムの概念
 4直列の太陽電池モジュールPV1~PV4を用いて構成される、本発明による太陽電池調整システムの概念図を図38に示す。図38中、VPV1~VPV4,IPV1~IPV4は、それぞれ太陽電池モジュールPV1~PV4の電圧、及びそれらから出力される電流を表し、Ieq1~Ieq4は、それぞれ太陽電池モジュールPV1~PV4に対してPV疑似均等化器から供給される電流を表す。Istringは、太陽電池モジュールPV1~PV4から構成されるストリング全体に流れる電流を表し、この電流が、ストリングに対して接続される負荷(不図示)へと出力される負荷電流ILoadと、PV疑似均等化器への入力電流Ieq-inとに寄与する。VStringはストリングの両端に印加される電圧である。
 PV疑似均等化器にはVPV1~VPV4の合計電圧であるVStringが入力電圧として印加され、また太陽電池モジュールPV1~PV4からの入力電流Ieq-inが供給される。各太陽電池モジュールは直列に接続されているため、全ての太陽電池モジュールPV1~PV4が同一の大きさの電流IStringを流そうと動作する。しかし、影モジュールの供給可能な電流は日照モジュールのそれと比較して小さいため、多くの場合において影モジュールはIStringの電流を供給できなくなってしまう。
 太陽電池調整システムの利用態様の例としては、図39に示すとおり、DC-DCコンバータを介してストリングに負荷を接続する構成が挙げられる。図39に示すDC-DCコンバータは昇圧形コンバータであり、スイッチQDC-DCの時比率(スイッチング周期全体に対するオン期間の割合)をDとすれば、ストリングの出力電圧VStringと負荷電圧VLoadの間には、
Figure JPOXMLDOC01-appb-M000017
                (17)
の関係が成り立つ。例えば定電圧負荷を用いる場合VLoadは一定となるため、検出回路によってストリング、あるいは各太陽電池モジュールの発生する電力を検出しつつ、DC-DCコンバータ制御回路によって時比率Dを制御することにより、最大電力が得られるよう各太陽電池モジュールの電圧を制御することができる。日照モジュールの動作特性曲線が図1のグラフで表される場合、日照モジュールから最大電力を得るためには図1中Vmpで示される電圧を印加するべきであるが、このとき日照モジュールに流れる電流は、多くの場合影モジュールが流しうる最大電流を超えている。したがって、日照モジュールの最大電力に対応する電流は影モジュールを流れることができず、一切の電流補償手段がないならば影モジュールから最大電力を得ることは不可能となる。
 本発明の太陽電池調整システムは、PV疑似均等化器を用いることにより、影モジュールも疑似的にIStringの電流を供給可能となるよう影モジュールに対して補償電流Ieqを供給する。例えば太陽電池モジュールPV2に影がかかっている場合、日照モジュールPV1,PV3,PV4はIStringの電流を供給可能なため、IPV1=IPV3=IPV4=IStringとなる一方、影モジュールPV2にはPV疑似均等化器から補償電流Ieq2が供給される。したがって、影モジュールPV2からは自己が供給する電流IPV2と補償電流Ieq2とが流れるため、
Figure JPOXMLDOC01-appb-M000018
                (18)
で表される電流IStringを、ストリングが流しうることとなる。
 本件第4発明に係る太陽電池調整システムは、一例において、図40a~図40cに示すSEPIC,Zeta,Cukコンバータのいずれかの昇降圧コンバータを、後述のとおりストリングに対して多段接続することにより得られる。なお、Cukコンバータは入出力の極性が入れ替わる「反転型コンバータ」であるため、本件第4発明の太陽電池調整システムに応用する場合には図40cに示すようにトランスを用いた構成を基礎とする必要がある。
 太陽電池調整システムの構成
 4直列の太陽電池モジュールPV1~PV4に対して図40a~図40cに示すSEPIC,Zeta,Cukコンバータのいずれかを多段接続することにより得られる、本発明の太陽電池調整システムの第1~第3の実施形態を図41~図43に示す。図38,図39中のPV疑似均等化器が、図41~図43中、太陽電池モジュールPV1~PV4以外の回路要素により構成されている。C1~C4はキャパシタ、D1~D4はダイオード、L1~L4はインダクタであり、Cinは入力キャパシタ、Qはスイッチ、Linはインダクタを表す。図43中のCaはエネルギー伝送キャパシタを表す。ここで、図41中、iLinはインダクタLinに流れる電流を表し、iL1~iL4はインダクタL1~L4にそれぞれ流れる電流を表し、iD1~iD4はダイオードD1~D4にそれぞれ流れる電流を表し、iC1~iC4はキャパシタC1~C4にそれぞれ流れる電流を表す。図42,図43の回路中で各素子を流れる電流も同様の記号で表わす。
 図41~図43の太陽電池調整システムは、それぞれ図40aに示したSEPICコンバータ、図40bに示したZetaコンバータ、及び図40cに示したCukコンバータの回路において、入力電源Vinをストリングとし、キャパシタC-ダイオードD-インダクタLoutにより構成される回路部分を各太陽電池モジュールPV1~PV4に多段接続した構成に対応する。
 入力キャパシタCinは太陽電池モジュールPV1~PV4に接続されており、太陽電池調整システムはPV1~PV4の各太陽電池モジュールのうち、電圧の低いモジュールに対して優先的に補償電流を供給する。一般的に、太陽電池モジュールを直列に接続してストリングを構成して使用する場合、影モジュールの電圧はその他の日照モジュールよりも低くなるため、本発明の太陽電池調整システムを用いることで全モジュール(影モジュールも含む)から影モジュールへと電力を再分配し、影モジュールにおける電力不足分を補償することができる。
 具体的には、スイッチQのオン、オフを繰り返し切り替えることにより、太陽電池モジュールPV1~PV4から入力キャパシタCinへと入力された電圧が変換され、後述のとおり太陽電池モジュールPV1~PV4のうち最も電圧の低いモジュールに対して出力される。以下、図41,図42の構成においては入力キャパシタCin、スイッチQ、及びインダクタLinから構成される回路を入力回路と呼び、図43の構成においては、入力キャパシタCin、スイッチQ、インダクタLin、エネルギー伝送キャパシタCa、及びこれに直列接続された一次巻線から構成される回路を入力回路と呼ぶ。また図41,図42の構成においては、キャパシタC1~C4、ダイオードD1~D4、及びインダクタL1~L4から構成される回路を出力回路と呼び、図43の構成においては、キャパシタC1~C4、ダイオードD1~D4、インダクタL1~L4、及び二次巻線から構成される回路を出力回路と呼ぶ。以下、図41~図43に示す太陽電池調整システムの詳細な動作原理について説明を行う。
 太陽電池調整システムの動作
 まず、図41に示す太陽電池調整システムについて説明する。図39に示すとおり、DC-DCコンバータを介して負荷を接続する等して、ストリング全体に電圧が印加されており、太陽電池モジュールPV2にのみ影がかかっているとする。スイッチQのオン、オフを繰り返し切り替えることにより、太陽電池調整システムを動作させる。このとき各素子を流れる電流、及び各素子に印加される電圧の波形を図44に示し、スイッチQのオン期間中、オフ期間中にシステム内を流れる電流の経路を図45a,図45bに示す。なお、図44のグラフ中、vDSはスイッチQに印加される電圧を表す。
 まず、スイッチQがオンである期間中の電流について、図45aを用いて説明する。図45aは、各素子を経由して回路内を流れる電流の経路、及び極性(向き)を、矢印付きの実線及び破線で表したものである。なお、図45a中の破線はインダクタL1,L3,L4及びコンデンサC1,C3,C4を流れるリプル電流を表しているが、その向きはスイッチQのオン期間内、及びオフ期間内のそれぞれにおいて切り替わるものであるため(図44中、iLi及びiCiのグラフ参照。これらはi=2以外のインダクタLi,キャパシタCiに流れる電流を表す。)、これに対応して当該破線の両端に矢印が付されている。
 図45aに示されるとおり、太陽電池モジュールPV1~PV4から流れ出した電流は入力キャパシタCinへと入力される。同時に入力キャパシタCinはインダクタLinに対して放電を行い、Linにエネルギーが蓄えられ、その電流iLinは直線的に増加する(図44中、iLinのグラフ参照)。さらに、キャパシタC2はインダクタL2に対して放電を行い、インダクタL2にエネルギーが蓄えられ、その電流iL2は直線的に増加する(図44中、iL2及びiC2のグラフ参照)。
 次に、スイッチQがオフである期間中の電流について、図45bを用いて説明する。図45bに示すとおり、スイッチQのオフ期間中、最低電圧の影モジュールPV2に対応するダイオードD2のみが導通されている。すなわち、スイッチQのオン期間中にインダクタLinが蓄えたエネルギーはスイッチQのオフ期間中に放出されるが、このエネルギーを担う出力電流は、キャパシタC2及びダイオードD2を経由して最も電圧の低い影モジュールPV2へと優先的に流れ込む。この電流は、インダクタLinがエネルギーを失うにつれて直線的に減少する(図44中、iLin,iC2及びiD2のグラフ参照)。また、インダクタL2からはダイオードD2を経由して影モジュールPV2へと電流が流れ込み、これにより、スイッチQのオン期間中にインダクタL2が蓄えたエネルギーは影モジュールPV2へと放出される。この電流も、インダクタL2がエネルギーを失うにつれて直線的に減少する(図44中、iL2のグラフ参照)。なお、スイッチQのオフ期間中においても、太陽電池モジュールPV1~PV4から流れ出した電流は入力キャパシタCinへと入力されており、同時にインダクタL1,L3,L4及びキャパシタC1,C3,C4にはリプル電流が流れている(図44中、iLi及びiCiのグラフ参照)。
 スイッチQにおけるオン、オフのスイッチングを繰り返すことにより、上述した電流によって太陽電池モジュールPV1~PV4から影モジュールPV2へと補償電流が供給され、ストリング全体として高出力が達成される。
 上述のとおり、スイッチングの1周期の間に各キャパシタには充放電電流が流れる。キャパシタC1,C3,C4に流れる電流はリプル電流成分のみであるため十分小さいが、キャパシタC2には比較的大きな充放電電流が流れる。スイッチQのオン期間中、キャパシタC2の電流は太陽電池モジュールPV1を経由して流れる一方、スイッチQのオフ期間中、キャパシタC2の電流は太陽電池モジュールPV1,PV2に流れる。このように、動作に伴い各モジュール(図45a,図45bの例の場合、太陽電池モジュールPV1とPV2)の電流は大きく変動するのであり、すなわち大きなリプル電流が流れることになる。一般的に、太陽電池の動作電圧は電流に大きく依存するため(図1)、モジュールに比較的大きなリプル電流が流れる場合その動作電圧が不安定になってしまう。この問題に関しては、後述の実施例4に示すシステムによって解決可能である。
 ここで、時比率Dを、スイッチQのスイッチング周期に対するスイッチのオン期間の割合として定義する(この定義より明らかなとおり、0≦D≦1である。)。太陽電池調整システムの定常状態において影モジュールPV2に出力される電圧は、入力キャパシタCinに印加される電圧VStringと上記時比率Dとに応じて決定される。以下、具体的に影モジュールPV2への出力電圧を導出する。
 太陽電池モジュールPV1~PV4の電圧VPV1~VPV4は、スイッチングの一周期に亘って一定であるとみなす。
このとき、上記VStringは、
Figure JPOXMLDOC01-appb-M000019
                   (19)
と表される。
 また、キャパシタC1~C4の電圧の、スイッチング周期に関する時間平均をVC1~VC4とする。定常状態においてインダクタLin,及びL1~L4の電圧の時間平均は全てゼロとなるため、VString,VPV1~VPV4,及びVC1~VC4の間には以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000020
                   (20)
 さらに、上記各インダクタにおいて印加される電圧と時間の積の、上記スイッチング周期に亘る合計は定常状態においてゼロとなるため、以下の関係式が成立する(ダイオードの順方向電圧降下をVDとする。)。
Figure JPOXMLDOC01-appb-M000021
                   (21)
 上記(20),(21)式を用いれば、最低電圧の影モジュールPV2への出力電圧VPV2を以下のとおり表すことができる。
Figure JPOXMLDOC01-appb-M000022
                   (22)
 太陽電池調整システムの定常状態においては、上記(22)式に示されるとおり、太陽電池モジュールPV1~PV4の電圧の合計電圧VStringを時比率Dに応じて変換してなる出力電圧が影モジュールPV2へと出力されるとともに、影モジュールPV2に対して優先的に電流が出力される。上記(22)式中にはストリング全体の電圧VStringと影モジュールPV2の電圧VPV2が含まれており、その他の個別の日照モジュールの電圧は含まれていない。これはすなわち、本発明の太陽電池調整システムの動作は主にストリング全体と影モジュールにより決定されることを示唆している。
 図42に示すZetaコンバータに基づくシステム、及び図43に示すCukコンバータに基づくシステムも同様の原理で動作し、太陽電池モジュールPV1~PV4の合計電圧VStringを、時比率Dに応じて変換した上で影モジュールに対して出力しつつ、当該影モジュールに優先的に電流を出力する。
 図42のシステムを動作させたときにスイッチQのオン期間とオフ期間とでそれぞれ実現される電流経路を、図46a,図46bに示す。
 まず、スイッチQのオン期間中(図46a)、太陽電池モジュールPV1~PV4から流れ出した電流は入力キャパシタCinへと入力される。同時に入力キャパシタCinはインダクタLinに対して放電を行い、Linにエネルギーが蓄えられ、その電流iLinは直線的に増加する。さらに、キャパシタC2はインダクタL2に対して放電を行い、インダクタL2にエネルギーが蓄えられ、その電流iL2は直線的に増加する。
 次に、スイッチQのオフ期間中(図46b)、最低電圧の影モジュールPV2に対応するダイオードD2が導通されている。スイッチQのオン期間中にインダクタLinが蓄えたエネルギーはスイッチQのオフ期間中に放出されるが、このエネルギーを担う出力電流はキャパシタC2を充電する。この電流は、インダクタLinがエネルギーを失うにつれて直線的に減少する。また、インダクタL2からはダイオードD2を経由して影モジュールPV2へと電流が流れ込み、これにより、スイッチQのオン期間中にインダクタL2が蓄えたエネルギーは影モジュールPV2へと放出される。この電流も、インダクタL2がエネルギーを失うにつれて直線的に減少する。なお、スイッチQのオフ期間中においても、太陽電池モジュールPV1~PV4から流れ出した電流は入力キャパシタCinへと入力されており、同時にインダクタL1,L3,L4及びキャパシタC1,C3,C4にはリプル電流が流れている。
 ここで、定常状態において各インダクタの電圧の時間平均は全てゼロとなること、及び各インダクタにおいて印加される電圧と時間の積の、上記スイッチング周期に亘る合計は定常状態においてゼロとなることを利用して、上記(20),(21)と同様に以下の(23),(24)式が得られる。
Figure JPOXMLDOC01-appb-M000023
                   (23)
Figure JPOXMLDOC01-appb-M000024
                   (24)
 上記(23),(24)式を用いれば、最低電圧の影モジュールPV2への出力電圧VPV2を以下のとおり表すことができる。
Figure JPOXMLDOC01-appb-M000025
                   (25)
 図43のシステムを動作させたときにスイッチQのオン期間とオフ期間とでそれぞれ実現される電流経路を、図47a,図47bに示す。
 まず、スイッチQのオン期間中(図47a)、太陽電池モジュールPV1~PV4から流れ出した電流は入力キャパシタCinへと入力される。同時に入力キャパシタCinはインダクタLinに対して放電を行い、Linにエネルギーが蓄えられ、その電流iLinは直線的に増加する。さらに、キャパシタCaは、一次巻線に対して電圧を出力し、これがトランスで変圧されて出力回路に印加される。出力回路において、キャパシタC2はインダクタL2に対して放電を行い、インダクタL2にエネルギーが蓄えられ、その電流iL2は直線的に増加する。
 次に、スイッチQのオフ期間中(図47b)、最低電圧の影モジュールPV2に対応するダイオードD2が導通されている。スイッチQのオン期間中にインダクタLinが蓄えたエネルギーはスイッチQのオフ期間中に放出されるが、このエネルギーを担う出力電流はキャパシタCaを充電する。この電流は、インダクタLinがエネルギーを失うにつれて直線的に減少する。また、インダクタL2からはダイオードD2を経由して影モジュールPV2へと電流が流れ込み、これにより、スイッチQのオン期間中にインダクタL2が蓄えたエネルギーは影モジュールPV2へと放出される。またトランス二次巻線からの電流によりキャパシタC2が充電される。なお、スイッチQのオフ期間中においても、太陽電池モジュールPV1~PV4から流れ出した電流は入力キャパシタCinへと入力されており、同時にインダクタL1,L3,L4及びキャパシタC1,C3,C4にはリプル電流が流れている。
 ここで、定常状態において各インダクタの電圧の時間平均は全てゼロとなること、及び各インダクタにおいて印加される電圧と時間の積の、上記スイッチング周期に亘る合計は定常状態においてゼロとなることを利用して、上記(20),(21)と同様に以下の(26),(27)式が得られる。
Figure JPOXMLDOC01-appb-M000026
                   (26)
ここで、Nはトランスの一次巻線と二次巻線の比である。
Figure JPOXMLDOC01-appb-M000027
                   (27)
 上記(26),(27)式を用いれば、最低電圧の影モジュールPV2への出力電圧VPV2を以下のとおり表すことができる。
Figure JPOXMLDOC01-appb-M000028
                   (28)
 以上、SEPIC,Zeta,Cukコンバータを基礎とする太陽電池調整システムにおいて、太陽電池モジュールPV1~PV4のうち、特にPV2に影がかかっている場合の動作を説明した。影がかかっているモジュールがPV1,PV3,PV4のいずれかである場合にも、同様の原理により影モジュールに補償電流を供給することができるし、また影モジュールが複数個ある場合にも、同様の原理により補償電流を供給することができる。
 一例として、太陽電池モジュールPV1,PV2に影がかかり、その電圧が同じ大きさになっており、且つ日照モジュールPV3,PV4の電圧は影モジュール電圧より高いときの、図41に示す太陽電池調整システムの動作を説明する。
 まず、スイッチQがオンである期間中(図48a)、太陽電池モジュールPV1~PV4から流れ出した電流は入力キャパシタCinへと入力される。同時に入力キャパシタCinはインダクタLinに対して放電を行い、Linにエネルギーが蓄えられ、その電流iLinは直線的に増加する。さらに、キャパシタC1,C2はインダクタL1,L2に対してそれぞれ放電を行い、インダクタL1,L2にエネルギーが蓄えられ、その電流iL1,iL2は直線的に増加する。
 次に、スイッチQがオフである期間中(図48b)、最低電圧の影モジュールPV1,PV2に対応するダイオードD1,D2が導通されている。すなわち、スイッチQのオン期間中にインダクタLinが蓄えたエネルギーはスイッチQのオフ期間中に放出されるが、このエネルギーを担う出力電流は、キャパシタC1及びダイオードD1を経由して最も電圧の低い影モジュールPV1へと、及び、キャパシタC2及びダイオードD2を経由して最も電圧の低い影モジュールPV2へと、優先的に流れ込む。この電流は、インダクタLinがエネルギーを失うにつれて直線的に減少する。また、インダクタL1,L2からは、それぞれダイオードD1,D2を経由して影モジュールPV1,PV2へと電流が流れ込み、これにより、スイッチQのオン期間中にインダクタL1,L2が蓄えたエネルギーは影モジュールPV1,PV2へと放出される。この電流も、インダクタL1,L2がエネルギーを失うにつれて直線的に減少する。
 この場合、定常状態における各素子電圧間の関係は、上記(19),(20)式、及び以下の(29)式で表される。
Figure JPOXMLDOC01-appb-M000029
                   (29)
 これらを解くことにより、以下の(30)式が得られる。
Figure JPOXMLDOC01-appb-M000030
                   (30)
 すなわち、太陽電池モジュールPV2のみに影がかかっていたときと同様に、影モジュールPV1,PV2には、VStringが変換されてなる出力電圧{D/(1-D)}VString-VDが出力されるのであり、このような状態において影モジュールPV1,PV2へと優先的に補償電流が供給される。
 複数の影モジュールに対しても補償電流を供給できる点は、図42,図43の太陽電池調整システムにおいても同様である。また、ここではSEPIC,Zeta,Cukコンバータを基礎とする構成について説明したが、本発明の太陽電池調整システムはこれらを基礎とする構成に限られるわけではなく、任意のコンバータの出力回路部分を多段接続することにより構成可能である。
 最小電流の検出及び制御システム
 以上、本件第4発明の太陽電池調整システムの動作を理論的に説明した。上記説明においては最低電圧の影モジュールに対して優先的に供給される補償電流のみを考えたが、実際にはこれ以外のモジュールに供給される補償電流もゼロとはならない場合がある。太陽電池モジュールPV1~PV4に供給される補償電流の大きさは、スイッチの時比率を制御することにより全体的に調整することができる。以下、補償電流を検出してその大きさを調整するためのシステムを説明する。
 図49a~図49cに、本発明の太陽電池調整システム(後述の実施例4において説明するシステムを含む。)を用いた際における補償電流の供給イメージを示す。ここでは例として、4直列の太陽電池モジュールのPV1~PV4のうちPV1とPV2に影が掛かっており、PV1の方がより広範囲に渡って影が掛かっているものとする。また、ここでは太陽電池調整システムは各太陽電池モジュールに対して等しい電圧Veを出力するものとして等価的に描かれている。
 図49aは過剰補償時における補償電流の供給イメージである。PV1とPV2には影の程度に応じて補償電流Ieq1とIeq2が供給される一方で、日照モジュールであるPV3とPV4に対しても比較的大きな補償電流Ieq3とIeq4が供給されている状態である。PV3とPV4は補償される必要性が無いにも関わらず補償電流が供給されているため、これらの補償電流分に起因した不要な電力変換損失が部分影補償装置の内部で発生することになる。
 これに対して、図49bは補償不足時における補償電流の供給イメージである。日照モジュールであるPV3とPV4に対しては補償電流が供給されないため、図49aの過剰補償時のような不要な電力損失は発生しない。しかし、本来補償を必要としているPV2に補償電流が供給されておらず、更にはPV1に対する補償電流も不十分であるため、部分影による影響を完全に補償することが出来ない。
 図49cは最適補償時における補償電流の供給イメージである。PV1とPV2には影の程度に応じた補償電流Ieq1とIeq2を供給する一方、日照モジュールであるPV3とPV4に対しては微小な補償電流Ieq3とIeq4のみが供給されている状態である。最適補償時においては電圧の高い日照モジュールに対しても補償電流が若干供給されている状態であるため、電圧の低い影モジュールに対しては十分な補償電流が常に供給されていることになる。また、日照モジュールに供給される補償電流は微小なため、これらの補償電流に起因する不要な電力変換損失を最小限に抑えることが可能である。
 図49cの最適補償を実現するために用いることができる、最小電流制御システムの一例を図50に示す。最小電流制御システムは、電源Vccに接続されたプルアップ抵抗器と、太陽電池モジュールPV1~PV4に流れる補償電流をそれぞれ検出する、第1から第4の電流センサと、プルアップ抵抗器と第1から第4の電流センサのそれぞれの間に、プルアップ抵抗器から電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第4のダイオードと、プルアップ抵抗器に接続されたエラーアンプ(比較器)と、太陽電池調整システムのスイッチQの時比率を制御して太陽電池モジュールPV1~PV4に流れる補償電流を制御する、時比率制御回路(電流制御手段)と、を備える。
 以下、最小電流制御システムの動作を説明する。図41の太陽電池調整システムを例にとれば、第1から第4の電流センサは、ダイオードD1~D4に接続される等して、それぞれ太陽電池モジュールPV1~PV4に流れる補償電流Ieq1~Ieq4を検出する。各電流センサは、検出された電流値を電圧に変換(例えば1Aを1Vに変換する。)して出力する。太陽電池モジュールPV1~PV4に流れる補償電流が、それぞれ1.3A,0.6A,0.1A,0.1Aであったならば、第1から第4の電流センサは、それぞれ1.3V,0.6V,0.1V,0.1Vの電圧を出力する。このとき、最低電圧を出力する第3,第4の電流センサと接続された第3,第4のダイオードが導通する。電源Vccからプルアップ抵抗器を経て導通したダイオードに流れ込んだ電流は、電流センサと当該ダイオードとの間に接続された抵抗器へと流れ込む。なお、第1~第4の電流センサがシンクとして動作する場合には、これら抵抗器は不要である。
 0.1Aの最低補償電流を検出して0.1Vの電圧を出力した第3,第4の電流センサにより、電源Vccからプルアップ抵抗器を介してエラーアンプへと至る経路には0.1Vのバイアスがかかる。したがって、電源Vccの電圧が5.0Vであったとすれば、プルアップ抵抗器の電圧降下は4.9Vとなる。この電圧降下に対応する信号(すなわち、補償電流Ieq1~Ieq4のうち最小補償電流値Ieq-min=0.1Aを示す信号)がエラーアンプに入力される。
 エラーアンプは最小補償電流Ieq-minと、外部から入力された基準電流Irefとの比較に基づいて誤差信号を出力し、その誤差信号が時比率制御回路に入力される。時比率制御回路は、Iref-Ieq-minで表わされる誤差が負であれば、補償電流を全体的に小さくするべく、図41~図43のスイッチQの時比率を下げたり(オン期間の割合がより小さいパルス幅変調波を発生)、誤差が正であれば補償電流を全体的に大きくするべくスイッチQの時比率を上げたり(オン期間の割合がより大きいパルス幅変調波を発生)して、誤差をゼロに近づける。以上の動作を繰り返し行うことにより、太陽電池調整システムの動作状態を図49cの最適補償状態に近づけることができる。
 この最小電流制御システムを用いて本発明の太陽電池調整システムを動作させるとIeq-min=Irefとなるよう動作するため、上述のように太陽電池調整システム内の不要な電力変換損失を最小限に抑えるためにはIref≒0と設定することが望ましい。なお、ここでは、アナログ回路を用いて最小補償電流Ieq-minを検出して制御を行う回路について説明を行ったが、デジタル制御を用いた場合でも容易に同様の制御を実現可能である。例えば、第1から第4の電流センサからの電圧信号を、A/Dコンバータ(不図示)を介してデジタル信号に変換してから第2の比較器(不図示)に入力し、第2の比較器で電流値の比較を行って最低補償電流Ieq-minを特定し、最低補償電流Ieq-minを示す信号をエラーアンプに入力してもよい。
 なお、上記最小電流制御システムは、本発明の太陽電池調整システムに限らず、複数の回路要素を備えた任意の回路に対して適用可能である。太陽電池モジュールに限らず、任意の複数の回路要素のそれぞれに、図50と同様の、あるいは上記デジタル制御を用いたシステムを接続すれば(図50において、各電流センサを、太陽電池モジュールPV1~PV4に限らず任意の回路要素に接続する。なお、回路要素の数は4以外の任意の数であってよいし、各回路要素が同種の要素である必要はない。)、回路要素にそれぞれ流れる電流のうち最小の電流を特定して基準電流と比較し、比較結果に基づいて、回路要素に流れる電流を制御することができる。ここにおける「回路要素に流れる電流の制御」とは、上述の例と同様に回路内に含まれるスイッチの時比率制御であってもよいし、例えば各回路要素に可変抵抗が接続されている場合には、任意の制御回路(不図示。「電流制御手段」の一例。)を介してその抵抗値を変更することであってもよい。また、本発明の最小電流制御システムから、時比率制御回路等の電流制御手段を除いたシステムも、本発明の最小電流検出システムとして単独で動作可能である。
 本発明の太陽電池調整システムを用いた実験
 図41に示した本発明の太陽電池調整システムを用いた実験結果の例を、図51及び図52a~図52dに示す。なお、実験に用いた入力キャパシタCinの容量は20μF,インダクタLinのインダクタンスは100μH,インダクタL1~L4のインダクタンスは33μH,キャパシタC1~C4の容量は20μF,スイッチQのオン抵抗は39mΩ,ダイオードD1~D4の順方向電圧降下は0.65Vであり、スイッチQのスイッチング周波数は100kHzとした。また図50の最小電流制御システムも動作させ、基準電流Iref=100mAとした。
 実験時は図49a~図49cと同様、太陽電池モジュールPV1とPV2に影が発生した状況を想定して、各モジュール特性を図51のように設定して実験を行った。なお、太陽電池モジュールPV1~PV4としては太陽電池アレイ・シミュレータ(Agilent Technologies社製、E4350B)を用いた。図52a~図52dに、補償時における各モジュールの個別の特性を示す。日照モジュールPV3,PV4には100mA程度の微小な補償電流(Ieq3とIeq4)が流れている一方(図52c,図52d)、影モジュールPV1,PV2には特性に応じて相当量の補償電流(Ieq1は1.2A程度、Ieq2は0.5A程度)が流れており(図52a,図52b)、図49cで説明した最適補償の状態が実現されていることが分かる。モジュール単体の特性(図51の特性および図52a~図52d中の破線)は各モジュールで大きく異なるのに対して、補償時における各モジュールの、VPViに対するILoadの特性は等価的にほぼ同一となっていることがわかる。
 図53は、本発明の太陽電池調整システムの有無によるストリング特性を比較したものである。太陽電池調整システムを用いない場合(破線グラフ。太陽電池モジュールPV1~PV4に対してバイパスダイオードを並列接続した場合)、3つのMPPが存在しており抽出可能な最大電力は約40W(VString≒30Vの時)である。これに対して、太陽電池調整システムを用いた場合(実線グラフ)、MPPは1つのみであり、最大電力も約50W(VString≒38Vの時)と大幅に向上している。このように、本発明の太陽電池調整システムを用いることで複数のMPPの発生を防止しつつ、抽出可能な最大電力も大幅に向上させることが可能である。
 太陽電池調整システムの構成
 実施例3で説明した通り、図41~図43に示す太陽電池調整システムでは、その動作時において太陽電池モジュールに比較的大きなリプル電流が発生するため、それに伴い太陽電池の動作電圧が不安的になる恐れがある。これに対し、図54に示す回路構成の太陽電池調整システムを用いれば、部分影を補償しつつ、動作時において各太陽電池モジュールに流れるリプル電流を大幅に低減することができる。
 図54の太陽電池調整システムにおいて、C1a~C4a,C1b~C4bはキャパシタ、L1a~L4a,L1b~L4bはインダクタ、D1a~D4a,D1b~D4bはダイオードを表し、これらからなり、且つトランスの二次巻線に接続された多段接続カレントダブラが太陽電池モジュールPV1~PV4に接続されている。多段接続カレントダブラは図41に示したC-D-Lの多段接続回路を各モジュールに対して対称に配置したものと等価である。なお、R-Biasは、各キャパシタの電圧値が不定値になるのを防止するためのバイアス抵抗である。また図54の太陽電池調整システムは、スイッチQa,Qb,ダイオードDa,Db,キャパシタCa,Cb,Cbk,インダクタLkg(トランスの漏洩インダクタンスを表している。)を備え、トランスの一次巻線に接続されたハーフブリッジインバータを備えている。ハーフブリッジインバータは、太陽電池モジュールPV1~PV4の合計電圧の入力を受け、スイッチQa,Qbのオンオフを交互に切り替えることにより矩形状の交流電圧を発生させ、トランスを介して変圧された交流電圧を多段接続カレントダブラに出力する。ここで、図54中、iL1a~iL4a,iL1b~iL4bはインダクタL1a~L4a,L1b~L4bにそれぞれ流れる電流を表し、iD1a~iD4a,iD1b~iD4bはダイオードD1a~D4a,D1b~D4bにそれぞれ流れる電流を表し、iC1a~iC4a,iC1b~iC4bはキャパシタC1a~C4a,C1b~C4bにそれぞれ流れる電流を表し、Ieq-inはストリングからハーフブリッジインバータに入力される電流を表し、iQa,iQbはスイッチQa,Qbにそれぞれ流れる電流を表し、vDSa,vDSbはスイッチQa,Qbにそれぞれ印加される電圧を表し、iLkgはインダクタLkgに流れる電流を表し、vPは一次巻線に印加される電圧を表す。なお、図54は、対称に配置されたC-D-L回路におけるダイオードDがカソードを共通に接続された(すなわち、ダイオードD1a,D1bのカソード同士、ダイオードD2a,D2bのカソード同士、ダイオードD3a,D3bのカソード同士、ダイオードD4a,D4bのカソード同士がそれぞれ共通接続された)コモンカソードの形態を示しているが、後述のコモンアノードの形態(図57)も同様に動作可能である。
 太陽電池調整システムの動作
 太陽電池モジュールPV2に影がかかっているときに、スイッチQa,Qbのオン、オフを交互に繰り返し切り替えることにより図54の太陽電池調整システムを動作させた場合における、各素子を流れる電流、及び各素子に印加される電圧の波形を図55に示し、動作中に実現されるモード1~4の期間中にそれぞれシステム内を流れる電流の経路を図56a~図56dに示す。なお、図55のグラフ中、vGSa,vGSbは、それぞれスイッチQa,Qbのゲート電圧を表す。
 ハーフブリッジインバータにおいて、図55中、vGSのグラフが示すとおりスイッチQa,Qbが交互に導通することで、vPのグラフが示すとおりトランス一次巻線に矩形波交流電圧が印加される。vGSのグラフに示される4つの動作モードに応じてトランス二次巻線の電圧は変動し、その電圧により多段接続カレントダブラ回路が駆動され、図56a(モード1)~図56d(モード4)に示すとおり回路内に電流が流れる。図56a~図56d中では、リプル電流成分のみが流れる電流経路は破線で示している。また、同一モード期間中に向きが切り替わる電流の経路には、両端に矢印を付した。
 便宜上、まずモード2の動作を説明する(図56b)。モード2の期間中においては、スイッチQaがオンとされ、スイッチQbがオフとされており、キャパシタCbk,インダクタLkg,一次巻線に対して、一定の正電圧(図54中、vPを示す矢印の向きに上昇する電圧。図55中、vPのグラフ参照。)が出力される。これにより、インダクタLkgを流れる電流は直線的に増加する(図55中、iLkgのグラフ参照。)。一次巻線に印加される電圧はトランスにより変圧されて多段接続カレントダブラ回路を駆動させる。トランスを介して印加される電圧によりキャパシタC2a,ダイオードD2aを介して影モジュールPV2に補償電流が流れ込み、この電流はインダクタL2b,キャパシタC2bへと流れる。これらの電流も、上記正電圧により直線的に増加する(図55中、対応するグラフ参照。)。また影モジュールPV2には、インダクタL2aがエネルギーを放出することによる補償電流も供給される。この電流は、インダクタL2aがエネルギーを失うにつれて減少する(図55中、iL2aのグラフ参照。)。太陽電池調整システムの動作によりモード2の期間中に影モジュールPV2に流れる電流はiL2aとiL2bの和に相当する。多段接続カレントダブラ内で影モジュールPV2に対応するインダクタL2a,L2b以外のインダクタに流れる電流はリプル電流成分のみである。
 スイッチQaをターンオフすると同時にQaを流れていた電流はスイッチQbの逆並列ダイオードであるダイオードDbへと転流し、動作はモード3へと移行する(図56c)。モード3の開始時において、ダイオードDbには順方向に電流が流れ、キャパシタCbk,インダクタLkg,一次巻線に流れる電流もモード2の期間中と同じ向きであるが、キャパシタCbからの電圧により、それらの電流は直線的に低下していく。iLkgの極性が反転する前にQbに対してゲート電圧vGSbを印加しておくことで(図55中、vGSbのグラフ参照。)、iLkgの極性が反転すると同時にスイッチQbはゼロ電圧でターンオンされる。モード3におけるトランスの巻線電圧は0であり、多段接続カレントダブラ内ではインダクタL2a,L2bが影モジュールPV2へと補償電流を供給することに伴ってダイオードD2a,D2bが導通する。インダクタL2a,L2bがエネルギーを放出するに従い、iL2a,iL2bは低下する(図55中、iL2a,iL2bのグラフ参照。)。モード3の期間中においてもモード2の期間中と同様、太陽電池調整システムから影モジュールPV2に供給される補償電流はiL2aとiL2bの和に相当する。ダイオードD2aの電流iD2aが0になると同時に動作は次のモード4へと移行する。
 モード4の期間中(図56d)においては、スイッチQaがオフとされ、スイッチQbがオンとされており、キャパシタCbk,インダクタLkg,一次巻線に対して、一定の負電圧(図54中、vPを示す矢印の向きに上昇する電圧を正としている。図55中、vPのグラフ参照。)が出力される。これにより、インダクタLkgを流れる電流は直線的に低下(絶対値は増加)する(図55中、iLkgのグラフ参照。)。一次巻線に印加される電圧はトランスにより変圧されて多段接続カレントダブラ回路を駆動させる。トランスを介して印加される電圧によりキャパシタC2b,ダイオードD2bを介して影モジュールPV2に補償電流が流れ込み、この電流はインダクタL2a,キャパシタC2aへと流れる。これらの電流の絶対値も、上記負電圧により直線的に増加する(図55中、対応するグラフ参照。)。また影モジュールPV2には、インダクタL2bがエネルギーを放出することによる補償電流も供給される。この電流は、インダクタL2bがエネルギーを失うにつれて減少する(図55中、iL2bのグラフ参照。)。太陽電池調整システムの動作によりモード4の期間中に影モジュールPV2に流れる電流はiL2aとiL2bの和に相当する。多段接続カレントダブラ内で影モジュールPV2に対応するインダクタL2a,L2b以外のインダクタに流れる電流はリプル電流成分のみである。
 スイッチQbをターンオフすると同時にQbを流れていた電流はスイッチQaの逆並列ダイオードであるダイオードDaへと転流し、動作はモード1へと移行する(図56a)。モード1の開始時において、ダイオードDaには順方向に電流が流れ、キャパシタCbk,インダクタLkg,一次巻線に流れる電流もモード4の期間中と同じ向きであるが、キャパシタCaからの電圧により、それらの電流は直線的に上昇していく(絶対値は低下)。iLkgの極性が反転する前にQaに対してゲート電圧vGSaを印加しておくことで(図55中、vGSaのグラフ参照。)、iLkgの極性が反転すると同時にスイッチQaはゼロ電圧でターンオンされる。モード1におけるトランスの巻線電圧は0であり、多段接続カレントダブラ内ではインダクタL2a,L2bが影モジュールPV2へと補償電流を供給することに伴ってダイオードD2a,D2bが導通する。インダクタL2a,L2bがエネルギーを放出するに従い、iL2a,iL2bは低下する(図55中、iL2a,iL2bのグラフ参照。)。モード1の期間中においてもモード4の期間中と同様、太陽電池調整システムから影モジュールPV2に供給される補償電流はiL2aとiL2bの和に相当する。ダイオードD2bの電流iD2bが0になると同時に動作は次のモード2へと移行する。以降、同様に各モードが経時的に実現される。
 既に述べたとおり、図41~図43の回路構成では動作モードに応じてキャパシタの充放電電流が異なる電流経路で太陽電池モジュールに流れるため、各モジュールは比較的大きなリプル電流に晒されてしまい動作電圧が不安定になる恐れがある。それに対して、図54の回路構成を用いた際には影モジュールPV2に対して流れる電流は常にインダクタL2a,L2bの電流の和と等しく、図56a~図56dの電流経路からも分かるとおりキャパシタC2a,C2bに対する充放電電流はPV2以外のモジュールに対しては流れない。よって、図41~図43の実施形態と比較して動作時に各モジュールに流れるリプル電流を大幅に低減することが可能となる。
 図54ではハーフブリッジインバータを用いてコモンカソード形態の多段接続カレントダブラ回路を駆動させる回路構成について説明したが、図57に示すとおり、ダイオードD1a,D1bのアノード同士、ダイオードD2a,D2bのアノード同士、ダイオードD3a,D3bのアノード同士、ダイオードD4a,D4bのアノード同士がそれぞれ共通接続されたコモンアノード形態の多段接続ダブラ回路を用いても、リプル電流を低減しつつ影モジュールに対して補償電流を供給することができる。図55のvGSのグラフが示すとおり、図54のシステムと同様にスイッチQa,Qbを交互に切り替えて図57のシステムを動作させたとき、各モード期間中に流れる電流経路を図58a(モード1)~図58d(モード4)に示す。
 便宜上、まずモード2の動作を説明する(図58b)。モード2の期間中においては、スイッチQaがオンとされ、スイッチQbがオフとされており、キャパシタCbk,インダクタLkg,一次巻線に対して、一定の正電圧(図57中、vPを示す矢印の向きに上昇する電圧。)が出力される。これにより、インダクタLkgを流れる電流は直線的に増加する。一次巻線に印加される電圧はトランスにより変圧されて多段接続カレントダブラ回路を駆動させる。トランスを介して印加される電圧によりキャパシタC2a,インダクタL2aを介して影モジュールPV2に補償電流が流れ込み、この電流はダイオードD2b,キャパシタC2bへと流れる。これらの電流の絶対値も、上記正電圧により直線的に増加する。また影モジュールPV2には、インダクタL2bがエネルギーを放出することによる補償電流も供給される。この電流は、インダクタL2bがエネルギーを失うにつれて減少する。太陽電池調整システムの動作によりモード2の期間中に影モジュールPV2に流れる電流はiL2aとiL2bの和に相当する。多段接続カレントダブラ内で影モジュールPV2に対応するインダクタL2a,L2b以外のインダクタに流れる電流はリプル電流成分のみである。
 スイッチQaをターンオフすると同時にQaを流れていた電流はスイッチQbの逆並列ダイオードであるダイオードDbへと転流し、動作はモード3へと移行する(図58c)。モード3の開始時において、ダイオードDbには順方向に電流が流れ、キャパシタCbk,インダクタLkg,一次巻線に流れる電流もモード2の期間中と同じ向きであるが、キャパシタCbからの電圧により、それらの電流は直線的に低下していく。iLkgの極性が反転する前にQbに対してゲート電圧vGSbを印加しておくことで、iLkgの極性が反転すると同時にスイッチQbはゼロ電圧でターンオンされる。モード3におけるトランスの巻線電圧は0であり、多段接続カレントダブラ内ではインダクタL2a,L2bが影モジュールPV2へと補償電流を供給することに伴ってダイオードD2a,D2bが導通する。インダクタL2a,L2bがエネルギーを放出するに従い、iL2a,iL2bは低下する。モード3の期間中においてもモード2の期間中と同様、太陽電池調整システムから影モジュールPV2に供給される補償電流はiL2aとiL2bの和に相当する。ダイオードD2bの電流iD2bが0になると同時に動作は次のモード4へと移行する。
 モード4の期間中(図58d)においては、スイッチQaがオフとされ、スイッチQbがオンとされており、キャパシタCbk,インダクタLkg,一次巻線に対して、一定の負電圧(図57中、vPを示す矢印の向きに上昇する電圧を正としている。)が出力される。これにより、インダクタLkgを流れる電流は直線的に低下(絶対値は増加)する。一次巻線に印加される電圧はトランスにより変圧されて多段接続カレントダブラ回路を駆動させる。トランスを介して印加される電圧によりキャパシタC2b,インダクタL2bを介して影モジュールPV2に補償電流が流れ込み、この電流はダイオードD2a,キャパシタC2aへと流れる。これらの電流の絶対値も、上記負電圧により直線的に増加する。また影モジュールPV2には、インダクタL2aがエネルギーを放出することによる補償電流も供給される。この電流は、インダクタL2aがエネルギーを失うにつれて減少する。太陽電池調整システムの動作によりモード4の期間中に影モジュールPV2に流れる電流はiL2aとiL2bの和に相当する。多段接続カレントダブラ内で影モジュールPV2に対応するインダクタL2a,L2b以外のインダクタに流れる電流はリプル電流成分のみである。
 スイッチQbをターンオフすると同時にQbを流れていた電流はスイッチQaの逆並列ダイオードであるダイオードDaへと転流し、動作はモード1へと移行する(図58a)。モード1の開始時において、ダイオードDaには順方向に電流が流れ、キャパシタCbk,インダクタLkg,一次巻線に流れる電流もモード4の期間中と同じ向きであるが、キャパシタCaからの電圧により、それらの電流は直線的に上昇していく(絶対値は低下)。iLkgの極性が反転する前にQaに対してゲート電圧vGSaを印加しておくことで、iLkgの極性が反転すると同時にスイッチQaはゼロ電圧でターンオンされる。モード1におけるトランスの巻線電圧は0であり、多段接続カレントダブラ内ではインダクタL2a,L2bが影モジュールPV2へと補償電流を供給することに伴ってダイオードD2a,D2bが導通する。インダクタL2a,L2bがエネルギーを放出するに従い、iL2a,iL2bは低下する。モード1の期間中においてもモード4の期間中と同様、太陽電池調整システムから影モジュールPV2に供給される補償電流はiL2aとiL2bの和に相当する。ダイオードD2aの電流iD2aが0になると同時に動作は次のモード2へと移行する。以降、同様に各モードが経時的に実現される。
 図54,図57の回路構成では、インバータとしてハーフブリッジ型インバータを用いたが、これに限らず、太陽電池モジュールPV1~PV4の合計電圧を交流電圧に変換することができるインバータであれば、フルブリッジインバータや非対称ハーブブリッジインバータ等の他のインバータを用いてもよい。図59,図60に、フルブリッジインバータを用いて構成された本発明の太陽電池調整システムの回路構成を示す。フルブリッジインバータを用いても、スイッチQ1,Q4がオンの状態とスイッチQ2,Q3がオンの状態とを交互に切り替えることにより図55中vpと同様の交流電圧を出力できるため、図54,図57の回路と同様の原理で多段接続カレントダブラを動作させてリプル電流を低減しつつ影モジュールに補償電流を供給することができる。
 なお、図54,図57,図59,図60の太陽電池調整システムに対しても、図49cの最適補償を実現するべく図50の最小電流制御システムを用いることが可能である。図50を用いて既に説明したとおり太陽電池モジュールPV1~PV4の補償電流を検出した上で、図54,図57のシステムにおいては、スイッチQa,Qbをオンとする期間の長さを、図59,図60のシステムにおいては、スイッチQ1,Q4をオンとする期間の長さと、スイッチQ2,Q3をオンとする期間の長さを、図50中の時比率制御回路で制御することにより、インバータの出力電流を制御し、各太陽電池モジュールに流れる補償電流を調整することができる。例えば図54,57の回路では、スイッチQa,Qbの時比率を大きくすると(デッドタイムを短くすると)インバータの出力電流が上がり(補償電流も上昇)、図59,60の回路ではQ1,Q4のオン期間とQ2,Q3のオン期間の時比率を大きくすると(デッドタイムを短くすると)インバータの出力電流が上がる(補償電流も上昇)。
 本発明は、太陽電池モジュールを直列に接続して太陽電池ストリングを構成する電源に広く適用できる。
(本件第1~第3発明)
PV1~PV4               太陽電池モジュール
Q1~Q8,QDC-DC,Qa~Qd      スイッチ
L1~L3,Lr,Lr1,Lr2,LDC-DC インダクタ
D1~D8,D1a~D8a,D1b~D8b,Da~Dd,DDC-DC
                      ダイオード
C1~C4,C1a~C4a,C1b~C4b,Cr,Cr1,Cr2,Cm,Cn,CDC-DC
                      キャパシタ
Cout1~Cout4,Cout1a~Cout4a,Cout1b~Cout4b
                      平滑キャパシタ
Rr,rm,rn,Rout1           抵抗成分
(本件第4~第6発明)
PV1~PV4               太陽電池モジュール
Q,Q1~Q8,QDC-DC,Qa,Qb     スイッチ
L1~L4,L1a~L4a,L1b~L4b,LDC-DC,Lin,Lout,Lkg
                      インダクタ
D,D1~D4,D1a~D4a,D1b~D4b,DDC-DC,Da,Db
                      ダイオード
C,C1~C4,C1a~C4a,C1b~C4b,CDC-DC,Cin,Cout,Ca,Cb,Cbk
                      キャパシタ
Vin,VCC                 電源
Load                  負荷
R-bias                バイアス抵抗

Claims (24)

  1.  直列接続された第1から第n(nは2以上の整数)のキャパシタの各々に対して、2つの直列接続されたダイオードが並列に接続され、更に、該2つの直列接続されたダイオードの各々における中間点に中間キャパシタが接続された、多段倍電圧整流回路と、
     第k(k=1,2,…n)の前記キャパシタに対して並列接続された第kの太陽電池モジュールとして与えられる第1から第nの太陽電池モジュールを直列接続してなる、太陽電池モジュール鎖と、
     前記第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、該入力された合計電圧を交流電圧に変換し、該交流電圧を前記多段倍電圧整流回路に出力する、容量性素子と誘導性素子とを備えたインバータと
    を備えた、太陽電池調整システム。
  2.  前記インバータが前記交流電圧の周波数を変更する手段を備えた、請求項1に記載の太陽電池調整システム。
  3.  前記インバータが、
      前記第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、スイッチの切り替え状態に応じた電圧を出力する、スイッチを備えた入力回路と、
      前記入力回路から出力された電圧を交流電圧に変換し、前記多段倍電圧整流回路に対して該交流電圧を出力する、容量性素子と誘導性素子とを備えた共振回路と
    を備えた、請求項2に記載の太陽電池調整システム。
  4.  前記共振回路が、トランスにより前記交流電圧を変圧した上で前記多段倍電圧整流回路に出力するよう構成された、請求項3に記載の太陽電池調整システム。
  5.  前記入力回路は、直列接続された第1及び第2のスイッチの各々にフライホイールダイオードを並列接続してなり、
     前記第1及び第2のスイッチのうちオンとするスイッチを経時的に切り替えることによって、該第1及び第2のスイッチの両端間に直流電圧が入力されたときに、該第1及び第2のスイッチの中間点にある第1の端子と、該第2のスイッチの両端のうち該第1の端子とは異なる側にある、第2の端子と、の間に矩形波状の電圧を出力するよう構成され、
     前記共振回路は、前記第1の端子と第3の端子との間で直列接続されたインダクタと共振回路内キャパシタとを備え、前記入力回路から矩形波状の電圧の入力を受けたときに、前記第3の端子と、前記第2の端子に接続された第4の端子と、の間に交流電圧を出力し、更に該交流電圧をトランスにより変圧した上で前記多段倍電圧整流回路に出力するよう構成された、請求項4に記載の太陽電池調整システム。
  6.  第1から第n(nは2以上の整数)の太陽電池モジュールを直列接続してなる、太陽電池モジュール鎖と、
     第k(k=1,2,…n)の前記太陽電池モジュールに対して並列接続された第kのキャパシタとして与えられる、第1から第nのキャパシタと、2つの直列接続されたダイオードからなり、第k(k=1,2,…n)の前記キャパシタに対して並列接続された第kのダイオードペアとして与えられる、第1から第nのダイオードペアと、該第1から第nのダイオードペア各々における2つの直列接続されたダイオードの中間点に接続された、第1から第nの中間キャパシタと、を備えた第1の多段倍電圧整流回路と、
     第k(k=1,2,…n)の前記太陽電池モジュールに対して並列接続された第n+kのキャパシタとして与えられる、第n+1から第2nのキャパシタと、2つの直列接続されたダイオードからなり、第n+kの前記キャパシタに対して並列接続された第n+kのダイオードペアとして与えられる、第n+1から第2nのダイオードペアと、該第n+1から第2nのダイオードペア各々における2つの直列接続されたダイオードの中間点に接続された、第n+1から第2nの中間キャパシタと、を備えた第2の多段倍電圧整流回路と、
     前記第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、該入力された合計電圧を交流電圧に変換し、該交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えたインバータと
    を備え、
     前記トランスの二次巻線の一端が前記第1の多段倍電圧整流回路に接続され、該二次巻線の他端が前記第2の多段倍電圧整流回路に接続された、太陽電池調整システム。
  7.  前記インバータが前記交流電圧の周波数を変更する手段を備えた、請求項6に記載の太陽電池調整システム。
  8.  前記インバータが、
      前記第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、スイッチの切り替え状態に応じた電圧を出力する、スイッチを備えた入力回路と、
      前記入力回路から出力された電圧を交流電圧に変換し、該交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えた共振回路と
    を備えた、請求項7に記載の太陽電池調整システム。
  9.  前記入力回路は、直列接続された第1及び第2のスイッチの各々にフライホイールダイオードを並列接続してなり、
     前記第1及び第2のスイッチのうちオンとするスイッチを経時的に切り替えることによって、該第1及び第2のスイッチの両端間に直流電圧が入力されたときに、該第1及び第2のスイッチの中間点にある第1の端子と、該第2のスイッチの両端のうち該第1の端子とは異なる側にある、第2の端子と、の間に矩形波状の電圧を出力するよう構成され、
     前記共振回路は、前記第1の端子と第3の端子との間で直列接続されたインダクタと共振回路内キャパシタとを備え、前記入力回路から矩形波状の電圧の入力を受けたときに、前記第3の端子と、前記第2の端子に接続された第4の端子と、の間に交流電圧を出力し、更に該交流電圧をトランスにより変圧した上で出力するよう構成された、請求項8に記載の太陽電池調整システム。
  10.  請求項2乃至5、及び7乃至9のいずれか一項に記載の太陽電池調整システムを用いて、前記太陽電池モジュール鎖の動作状態を制御する方法であって、
     前記太陽電池モジュール鎖の出力電力を計測する段階と、
     前記インバータにより出力される交流電圧の周波数を変更する段階と、
     前記周波数を変更した後に、前記太陽電池モジュール鎖の出力電力を計測する段階と、 前記周波数を変更した後に計測された出力電力が、変更する前に計測された出力電力よりも高い場合に、該変更が該周波数の上昇であったならば該周波数を再び上昇させ、該変更が該周波数の下降であったならば該周波数を再び下降させる段階と、
     前記周波数を変更した後に計測された出力電力が、変更する前に計測された出力電力よりも低い場合に、該変更が該周波数の上昇であったならば該周波数を下降させ、該変更が該周波数の下降であったならば該周波数を上昇させる段階と
    を備え、前記太陽電池モジュール鎖の出力電力の計測と、前記インバータにより出力される交流電圧の周波数の変更と、を繰り返すことにより該太陽電池モジュール鎖の動作状態を制御する方法。
  11.  直列接続された第1から第n(nは2以上の整数)の太陽電池モジュールと、
     前記第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧が入力される、入力回路と、
      定常状態において、スイッチのオン、オフの時比率に応じて前記合計電圧を変換することにより生成される出力電圧を、前記第1から第nの太陽電池モジュールのうち最も電圧の低い1以上の太陽電池モジュールに対して出力するとともに、
      前記最も電圧の低い1以上の太陽電池モジュールに対して優先的に電流を出力する
     よう構成された、出力回路と
     を備えた、太陽電池調整システム。
  12.  前記入力回路は、
      前記合計電圧が入力される入力キャパシタと、
      前記入力キャパシタに対して直列接続されたインダクタと、
      前記入力キャパシタと前記インダクタとの間に接続された前記スイッチと
     を備え、
     前記出力回路は、
      ダイオードと該ダイオードのアノードに接続されたインダクタとからなり、前記第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのインダクタからダイオードへと向かう極性の電流を遮断しないよう直列接続された、該第1から第nのダイオード-インダクタ回路と、
      該第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点と、前記入力回路における前記インダクタと前記スイッチとの中間点と、の間にそれぞれが接続された、第1から第nのキャパシタと、
     を備える、請求項11に記載の太陽電池調整システム。
  13.  前記入力回路は、
      前記合計電圧が入力される入力キャパシタと、
      前記入力キャパシタに対して直列接続された前記スイッチと、
      前記入力キャパシタと前記スイッチとの間に接続されたインダクタと
     を備え、
     前記出力回路は、
      ダイオードと該ダイオードのカソードに接続されたインダクタとからなり、前記第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、該第1から第nのダイオード-インダクタ回路と、
      該第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点と、前記入力回路における前記スイッチと前記インダクタとの中間点と、の間にそれぞれが接続された、第1から第nのキャパシタと、
     を備える、請求項11に記載の太陽電池調整システム。
  14.  前記入力回路は、入力キャパシタとインダクタとを備えた第1の閉回路と、エネルギー伝送キャパシタと一次巻線とを備えた第2の閉回路とを、前記スイッチを介して接続してなり、
     前記出力回路は、
      ダイオードと該ダイオードのカソードに接続されたインダクタとからなり、前記第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、該第1から第nのダイオード-インダクタ回路と、
      前記第1のダイオード-インダクタ回路のダイオードのアノードに一端が接続された二次巻線と、
      該第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点と前記二次巻線の他端との間にそれぞれが接続された、第1から第nのキャパシタと、
     を備え、前記一次巻線に印加される電圧の極性を反転させて前記二次巻線に印加するよう構成された、請求項11に記載の太陽電池調整システム。
  15.  前記出力回路を介して前記第1から第nの太陽電池モジュールの各々に流れ込む補償電流のうち、最小の補償電流を検出する最小補償電流検出器と、
     前記最小の補償電流と基準電流を比較する比較器と、
     前記比較の結果に基づき、前記スイッチの時比率を制御する、時比率制御手段と
     を備えた請求項11乃至14のいずれか一項に記載の太陽電池調整システム。
  16.  前記最小補償電流検出器は、
      電源と前記比較器との間に接続されたプルアップ抵抗器と、
      前記第1から第nの太陽電池モジュールに流れ込む補償電流をそれぞれ検出する、第1から第nの補償電流センサと、
      前記プルアップ抵抗器と前記第1から第nの補償電流センサのそれぞれの間に、該プルアップ抵抗器から該補償電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nの検出器内ダイオードと
    を備え、
     前記第1から第nの補償電流センサのうち最小の補償電流を検出した補償電流センサ、に接続された前記検出器内ダイオードが導通することにより、該最小の補償電流に対応する電圧が前記比較器に対して入力されるよう構成されている、請求項15に記載の太陽電池調整システム。
  17.  直列接続された第1から第n(nは2以上の整数)の太陽電池モジュールと、
      ダイオードと該ダイオードのアノードに接続されたインダクタとからなり、前記第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのインダクタからダイオードへと向かう極性の電流を遮断しないよう直列接続された、該第1から第nのダイオード-インダクタ回路と、
      該第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第1から第nのキャパシタと、
     を備えた第1の出力回路と、
      ダイオードと該ダイオードのアノードに接続されたインダクタとからなり、前記第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第n+1から第2nのダイオード-インダクタ回路であって、それぞれのインダクタからダイオードへと向かう極性の電流を遮断しないよう直列接続された、該第n+1から第2nのダイオード-インダクタ回路と、
      該第n+1から第2nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第n+1から第2nのキャパシタと、
     を備えた第2の出力回路と、
     前記第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、該入力された合計電圧を交流電圧に変換し、該交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えたインバータと
    を備え、
     前記トランスの二次巻線の一端が前記第1の出力回路に接続され、該二次巻線の他端が前記第2の出力回路に接続された、太陽電池調整システム。
  18.  直列接続された第1から第n(nは2以上の整数)の太陽電池モジュールと、
      ダイオードと該ダイオードのカソードに接続されたインダクタとからなり、前記第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第1から第nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、該第1から第nのダイオード-インダクタ回路と、
      該第1から第nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第1から第nのキャパシタと、
     を備えた第1の出力回路と、
      ダイオードと該ダイオードのカソードに接続されたインダクタとからなり、前記第1から第nの太陽電池モジュールのそれぞれに対して並列に接続される、第n+1から第2nのダイオード-インダクタ回路であって、それぞれのダイオードからインダクタへと向かう極性の電流を遮断しないよう直列接続された、該第n+1から第2nのダイオード-インダクタ回路と、
      該第n+1から第2nのダイオード-インダクタ回路のそれぞれにおけるダイオードとインダクタの中間点にそれぞれが接続された、第n+1から第2nのキャパシタと、
     を備えた第2の出力回路と、
     前記第1から第nの太陽電池モジュールそれぞれに印加された電圧の合計電圧の入力を受けて、該入力された合計電圧を交流電圧に変換し、該交流電圧をトランスにより変圧した上で出力する、容量性素子と誘導性素子とを備えたインバータと
    を備え、
     前記トランスの二次巻線の一端が前記第1の出力回路に接続され、該二次巻線の他端が前記第2の出力回路に接続された、太陽電池調整システム。
  19.  前記インバータは、
      第1のスイッチと第2のスイッチとを直列接続してなるスイッチ鎖と、
      2つのインバータ内キャパシタを直列接続してなり、該スイッチ鎖に並列接続されたキャパシタ鎖と
     を備え、
     前記スイッチ鎖における2つのスイッチの中間点と、前記キャパシタ鎖における2つのインバータ内キャパシタの中間点と、の間に前記トランスの一次巻線が接続されることによりハーフブリッジ型インバータとして構成され、該一次巻線に印加される電圧を変圧して前記二次巻線に印加するよう構成されている、請求項17又は18に記載の太陽電池調整システム。
  20.  前記インバータは、
      第1のスイッチと第2のスイッチとを直列接続してなる第1のスイッチ鎖と、
      第3のスイッチと第4のスイッチとを直列接続してなり、該第1のスイッチ鎖に並列接続された第2のスイッチ鎖と
     を備え、
     前記第1,第2のスイッチの中間点と、前記第3,第4のスイッチの中間点と、の間に前記トランスの一次巻線が接続されることによりフルブリッジ型インバータとして構成され、該一次巻線に印加される電圧を変圧して前記二次巻線に印加するよう構成されている、請求項17又は18に記載の太陽電池調整システム。
  21.  前記第1,第2の出力回路を介して前記第1から第nの太陽電池モジュールの各々に流れ込む補償電流のうち、最小の補償電流を検出する最小補償電流検出器と、
     前記最小の補償電流と基準電流を比較する比較器と、
     前記比較の結果に基づき、前記インバータの出力電流を制御する、電流制御手段と
     を備えた請求項17乃至20のいずれか一項に記載の太陽電池調整システム。
  22.  前記最小補償電流検出器は、
      電源と前記比較器との間に接続されたプルアップ抵抗器と、
      前記第1から第nの太陽電池モジュールに流れ込む補償電流をそれぞれ検出する、第1から第nの補償電流センサと、
      前記プルアップ抵抗器と前記第1から第nの補償電流センサのそれぞれの間に、該プルアップ抵抗器から該補償電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nの検出器内ダイオードと
    を備え、
     前記第1から第nの補償電流センサのうち最小の補償電流を検出した補償電流センサ、に接続された前記検出器内ダイオードが導通することにより、該最小の補償電流に対応する電圧が前記比較器に対して入力されるよう構成されている、請求項21に記載の太陽電池調整システム。
  23.  電源に接続されたプルアップ抵抗器と、
     第1から第n(nは2以上の整数)の回路要素に流れる電流をそれぞれ検出する、第1から第nの電流センサと、
     前記プルアップ抵抗器と前記第1から第nの電流センサのそれぞれの間に、該プルアップ抵抗器から該電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nのダイオードと、
     前記プルアップ抵抗器に接続された比較器と
    を備え、
     前記第1から第nの電流センサのうち最小の電流を検出した電流センサ、に接続された前記ダイオードが導通することにより、該最小の電流に対応する電圧が前記比較器に対して入力され、該比較器が該最小の電流と基準電流とを比較するよう構成されている、最小電流検出システム。
  24.  電源に接続されたプルアップ抵抗器と、
     第1から第n(nは2以上の整数)の回路要素に流れる電流をそれぞれ検出する、第1から第nの電流センサと、
     前記プルアップ抵抗器と前記第1から第nの電流センサのそれぞれの間に、該プルアップ抵抗器から該電流センサへと流れる電流を遮断しないようそれぞれ接続された、第1から第nのダイオードと、
     前記プルアップ抵抗器に接続された比較器と、
     前記第1から第nの回路要素に流れる電流を制御する、電流制御手段と
    を備え、
     前記第1から第nの電流センサのうち最小の電流を検出した電流センサ、に接続された前記ダイオードが導通することにより、該最小の電流に対応する電圧が前記比較器に対して入力され、該比較器が該最小の電流と基準電流とを比較し、該比較の結果に基づき前記電流制御手段が前記第1から第nの回路要素に流れる電流を制御するよう構成されている、最小電流制御システム。
PCT/JP2014/074072 2013-09-11 2014-09-11 太陽電池調整システム、関連する方法、及び、最小電流検出及び制御システム WO2015037663A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/917,449 US10340699B2 (en) 2013-09-11 2014-09-11 Solar cell adjustment system, related method, and minimum current detection and control system
CN201480061332.9A CN105706013B (zh) 2013-09-11 2014-09-11 太阳电池调整系统、相关方法及最小电流检测及控制系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-188658 2013-09-11
JP2013188658A JP6152602B2 (ja) 2013-09-11 2013-09-11 共振形インバータと多段倍電圧整流回路を用いた太陽電池部分影補償装置
JP2013-212217 2013-10-09
JP2013212217A JP6201182B2 (ja) 2013-10-09 2013-10-09 昇降圧コンバータを多段接続した太陽電池部分影補償装置

Publications (1)

Publication Number Publication Date
WO2015037663A1 true WO2015037663A1 (ja) 2015-03-19

Family

ID=52665763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074072 WO2015037663A1 (ja) 2013-09-11 2014-09-11 太陽電池調整システム、関連する方法、及び、最小電流検出及び制御システム

Country Status (3)

Country Link
US (1) US10340699B2 (ja)
CN (1) CN105706013B (ja)
WO (1) WO2015037663A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160343704A1 (en) * 2015-05-18 2016-11-24 Azur Space Solar Power Gmbh Scalable voltage source
CN108054808A (zh) * 2018-01-22 2018-05-18 北京合众汇能科技有限公司 一种超级电容模组超长时间保压电路

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207506B (zh) * 2014-06-25 2017-12-29 华为技术有限公司 一种逆变器的控制方法、装置和系统
US20160181797A1 (en) * 2014-12-17 2016-06-23 The Boeing Company Solar array simulation using common power supplies
KR101641962B1 (ko) * 2014-12-19 2016-07-26 숭실대학교산학협력단 최소 전력 추종 제어를 위한 전력 제어 방법 및 그 장치
JP6113220B2 (ja) * 2015-05-08 2017-04-12 日置電機株式会社 太陽電池検査装置および太陽電池検査方法
JP6465358B2 (ja) * 2015-07-22 2019-02-06 日本蓄電器工業株式会社 電圧均等化回路システム
KR101898587B1 (ko) * 2016-05-04 2018-09-13 엘지전자 주식회사 태양광 모듈, 및 이를 구비하는 태양광 시스템
KR101906196B1 (ko) * 2016-09-08 2018-10-10 엘지전자 주식회사 태양광 모듈
TWI612406B (zh) * 2016-10-03 2018-01-21 南通斯密特森光電科技有限公司 太陽感測裝置及其感測方法
US20180309301A1 (en) * 2017-04-21 2018-10-25 Fan Wang Solar array communications
CN107809136A (zh) * 2017-09-08 2018-03-16 北京金鸿泰科技有限公司 一种补偿组件输出电流的方法和装置
CN108304026A (zh) * 2017-11-30 2018-07-20 深圳市首航新能源有限公司 一种功率追踪方法
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
US11437854B2 (en) * 2018-02-12 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
US11259413B2 (en) 2018-04-05 2022-02-22 Abb Power Electronics Inc. Inductively balanced power supply circuit and method of manufacture
US10630190B2 (en) * 2018-08-13 2020-04-21 University Of Central Florida Research Foundation, Inc. Multi-input single-resonant tank LLC converter
US11283401B2 (en) * 2018-09-10 2022-03-22 City University Of Hong Kong System and method for determining a state of a photovoltaic panel
EP3896846B1 (en) * 2018-12-13 2023-08-16 Teikyo University Estimation method for operation voltage of solar battery cell in solar cell module and solar battery cell operation voltage estimation system
WO2020219995A1 (en) * 2019-04-25 2020-10-29 Aerovironment System and method for solar cell array diagnostics in high altitude long endurance aircraft
CN110087366B (zh) * 2019-05-25 2021-03-02 福州大学 LED照明Cuk-LLC三端口电路及其模糊预测方法
CN110389616B (zh) * 2019-07-22 2024-03-19 重庆理工大学 太阳能电池板阵列最大功率收集电路、搜索方法及电子设备
CN111244941B (zh) * 2020-01-19 2022-04-19 国网河北省电力有限公司衡水供电分公司 能源消纳系统
CN113629772A (zh) * 2021-09-09 2021-11-09 西交利物浦大学 光伏发电系统中的电压均衡装置、以及光伏发电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286072A (ja) * 2000-04-04 2001-10-12 Nagano Japan Radio Co 電圧均一化装置
JP2003333762A (ja) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd 組電池用の電圧レベル均等化装置
JP2004047585A (ja) * 2002-07-09 2004-02-12 Canon Inc 太陽光発電システム
JP2011228598A (ja) * 2010-04-23 2011-11-10 Hitachi Ltd 太陽光発電システムおよび太陽光発電制御装置
JP2012028435A (ja) * 2010-07-21 2012-02-09 Hitachi Ltd 太陽光発電システム
JP2012186881A (ja) * 2011-03-03 2012-09-27 Japan Aerospace Exploration Agency 直列接続された蓄電セルの一石式電圧均等化回路
JP2013105318A (ja) * 2011-11-14 2013-05-30 Panasonic Corp 太陽光発電用パワーコンディショナ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1047172A3 (en) 1999-04-21 2001-05-23 Nagano Japan Radio Co., Ltd. Energy transfer unit, charge unit, and power supply unit
DE102006028503A1 (de) * 2006-06-21 2007-12-27 Siemens Ag Vorrichtung und Verfahren zum Laden eines Energiespeichers
CN100514838C (zh) * 2007-08-03 2009-07-15 浙江大学 电动伺服助力转向控制器
EP2023475B1 (de) * 2007-08-04 2016-10-12 SMA Solar Technology AG Wechselrichter für eine geerdete Gleichspannungsquelle, insbesondere einen Photovoltaikgenerator
US9425783B2 (en) * 2010-03-15 2016-08-23 Tigo Energy, Inc. Systems and methods to provide enhanced diode bypass paths
JP5424337B2 (ja) * 2010-03-17 2014-02-26 独立行政法人 宇宙航空研究開発機構 時比率制御が可能な直列接続蓄電セル用均一充電器
WO2012026593A1 (ja) * 2010-08-27 2012-03-01 学校法人 幾徳学園 太陽光発電システム、太陽光発電システムに用いる制御装置、並びに、制御方法およびそのプログラム
JP5099569B1 (ja) * 2011-05-13 2012-12-19 独立行政法人 宇宙航空研究開発機構 直並列切り替え式セル電圧バランス回路のスイッチをmosfetで構成した回路及びその駆動回路
CN202167837U (zh) * 2011-08-11 2012-03-14 海信(山东)空调有限公司 一种pfc过流保护电路及应用该电路的空调器
US9785172B2 (en) * 2012-06-13 2017-10-10 Indian Institue Of Technology Bombay Switched capacitor DC-DC converter based distributed maximum power point tracking of partially shaded photovoltaic arrays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286072A (ja) * 2000-04-04 2001-10-12 Nagano Japan Radio Co 電圧均一化装置
JP2003333762A (ja) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd 組電池用の電圧レベル均等化装置
JP2004047585A (ja) * 2002-07-09 2004-02-12 Canon Inc 太陽光発電システム
JP2011228598A (ja) * 2010-04-23 2011-11-10 Hitachi Ltd 太陽光発電システムおよび太陽光発電制御装置
JP2012028435A (ja) * 2010-07-21 2012-02-09 Hitachi Ltd 太陽光発電システム
JP2012186881A (ja) * 2011-03-03 2012-09-27 Japan Aerospace Exploration Agency 直列接続された蓄電セルの一石式電圧均等化回路
JP2013105318A (ja) * 2011-11-14 2013-05-30 Panasonic Corp 太陽光発電用パワーコンディショナ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160343704A1 (en) * 2015-05-18 2016-11-24 Azur Space Solar Power Gmbh Scalable voltage source
CN108054808A (zh) * 2018-01-22 2018-05-18 北京合众汇能科技有限公司 一种超级电容模组超长时间保压电路
CN108054808B (zh) * 2018-01-22 2024-05-07 北京合众汇能科技有限公司 一种超级电容模组超长时间保压电路

Also Published As

Publication number Publication date
US20160294189A1 (en) 2016-10-06
US10340699B2 (en) 2019-07-02
CN105706013A (zh) 2016-06-22
CN105706013B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2015037663A1 (ja) 太陽電池調整システム、関連する方法、及び、最小電流検出及び制御システム
US11245367B2 (en) Multi-output supply generator for RF power amplifiers with differential capacitive energy transfer
US10110130B2 (en) Recursive DC-DC converter
JP6337280B2 (ja) コンバータと多段倍電圧整流回路を併用した、部分影補償機能を付加した統合型太陽電池用コンバータ
US10390406B2 (en) N-color scalable LED driver
US20210175805A1 (en) Regulation Loop Circuit
JP6152602B2 (ja) 共振形インバータと多段倍電圧整流回路を用いた太陽電池部分影補償装置
US11722070B2 (en) Alternating current to direct current conversion circuit
JPWO2010010710A1 (ja) 電力変換装置
JP5807283B2 (ja) 直列接続された蓄電セルの中間タップとバランス回路とdc−dcコンバータを併用した電力変換装置
US20120101645A1 (en) Power control method using orthogonal-perturbation, power generation system, and power converter
JP6201182B2 (ja) 昇降圧コンバータを多段接続した太陽電池部分影補償装置
US20180062392A1 (en) Photovoltaic device and operating point control circuit device for photovoltaic cells or other power supply elements connected in series
WO2022246540A1 (en) Modular single-stage step-up pv converter with integrated power balancing feature
CN112953202B (zh) 电压转换电路及供电系统
KR101920469B1 (ko) 쿡 컨버터 기반의 계통 연계형 단일단 인버터
JP6511686B2 (ja) コンバータ、太陽電池モジュール用コンバータシステム、及び蓄電モジュール用コンバータシステム
CN112445264B (zh) 动作电压控制电路装置
JP2010098782A (ja) 直列セルの電圧バランス補正回路および蓄電装置
CN113726174B (zh) 控制电路及应用其的谐振变换器
US20140239725A1 (en) Maximizing power output of solar panel arrays
CN111800012B (zh) 用于串联连接的多个电源单元的动作点控制电路装置
JP2005080414A (ja) 電力変換装置及びそれを用いたパワーコンディショナ
Pragallapati et al. A new voltage equalization based distributed maximum power point extraction from a PV source operating under partially shaded conditions
Liu et al. High boost DC-DC converter: HB-LDC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14917449

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14843944

Country of ref document: EP

Kind code of ref document: A1