WO2015037558A1 - 電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及び非水電解質二次電池 - Google Patents

電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2015037558A1
WO2015037558A1 PCT/JP2014/073662 JP2014073662W WO2015037558A1 WO 2015037558 A1 WO2015037558 A1 WO 2015037558A1 JP 2014073662 W JP2014073662 W JP 2014073662W WO 2015037558 A1 WO2015037558 A1 WO 2015037558A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolyte secondary
electrode mixture
secondary battery
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2014/073662
Other languages
English (en)
French (fr)
Inventor
古谷隆博
小西貴
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to JP2015536571A priority Critical patent/JP6209614B2/ja
Publication of WO2015037558A1 publication Critical patent/WO2015037558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode mixture paint used for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, a non-aqueous electrolyte secondary battery electrode, a method for producing a non-aqueous electrolyte secondary battery electrode, and the same.
  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. As mobile devices become more sophisticated, lithium ion secondary batteries tend to have higher capacities and longer lifetimes, and further research and development are underway.
  • the binder resin used for the electrode mixture layer of the non-aqueous electrolyte secondary battery is crosslinked with a crosslinking agent such as isocyanate, thereby improving the adhesion between the electrode mixture layer and the current collector. It has been proposed to improve the charge / discharge cycle characteristics of secondary batteries (see, for example, Patent Documents 1 and 2).
  • JP 2000-21408 A Japanese Patent Laid-Open No. 10-21927 (Japanese Patent No. 3564880)
  • the present invention solves the above-mentioned problem.
  • An electrode mixture paint for obtaining a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics with simple equipment, an electrode for non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte two The present invention provides a non-aqueous electrolyte secondary battery excellent in a method for producing a secondary battery electrode and charge / discharge cycle characteristics.
  • the electrode mixture paint of the present invention comprises an active hydrogen group-containing resin, an aqueous dispersion of isocyanate, and an electrode active material.
  • Another embodiment of the electrode mixture paint of the present invention is characterized by containing an active hydrogen group-containing resin, a blocked isocyanate, an organic solvent, and an electrode active material.
  • An electrode for a non-aqueous electrolyte secondary battery of the present invention includes an electrode mixture layer formed by applying the electrode mixture paint of the present invention to the surface of a current collector, and the electrode mixture layer is a crosslinked binder resin.
  • the crosslinked binder resin includes a partial structure represented by the following formula (1), and the crosslinked binder resin forms a crosslinked structure based on the partial structure.
  • the method for producing an electrode for a non-aqueous electrolyte secondary battery according to the present invention includes a step of producing an electrode mixture paint containing an active hydrogen group-containing resin, an aqueous dispersion of isocyanate, and an electrode active material, and the electrode mixture And a step of applying a paint to the surface of the current collector.
  • a method for producing an electrode for a nonaqueous electrolyte secondary battery includes a step of producing an electrode mixture paint containing an active hydrogen group-containing resin, a blocked isocyanate, an organic solvent, and an electrode active material. And a step of applying the electrode mixture paint onto the surface of the current collector.
  • the non-aqueous electrolyte secondary battery of the present invention includes the above-described electrode for a non-aqueous electrolyte secondary battery of the present invention.
  • a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics can be provided.
  • FIG. 1 is an external view showing an example of the nonaqueous electrolyte secondary battery of the present invention.
  • the electrode mixture paint of the present invention is characterized by containing an active hydrogen group-containing resin, an aqueous dispersion of isocyanate, and an electrode active material.
  • the active hydrogen group-containing resin functions as a binder resin for forming an electrode mixture layer
  • the isocyanate functions as a crosslinking agent for the binder resin. Since the electrode mixture paint of the present invention uses a crosslinking agent as an aqueous dispersion, no explosion-proof equipment is required at the time of electrode production, and the production equipment can be simplified.
  • the active hydrogen group-containing resin for example, at least one resin selected from the group consisting of carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose or salts thereof, an acrylic resin, and an amino group-containing resin is used. Can do. Since these resins have an active hydrogen group such as a carboxyl group, a hydroxyl group, and an amino group, a crosslinked product is formed by a crosslinking reaction with the isocyanate. For this reason, the adhesiveness of an electrode mixture layer and a collector and the adhesiveness between electrode active material particles can be improved.
  • the resin having an amino group for example, an acrylic copolymer obtained by copolymerizing dimethylaminomethylacrylamide and butyl acrylate can be used.
  • aqueous dispersions of isocyanate include, for example, trade names “WB40-100”, “WB40-80D”, “WT20-100”, “WT30-100”, “WE50-100” manufactured by Asahi Kasei Chemicals Corporation.
  • DIC's product names “DNW-5000”, “DNW5010”, “DNW-5100”, “DNW-5200”, “DNW-6000”, etc. "AQ-105", "AQ-130", “AQ-140”, etc. can be used.
  • the isocyanate is preferably a blocked isocyanate.
  • the blocked isocyanate is chemically very stable in a normal environment before being activated by heating or the like, and can greatly extend the pot life of the electrode mixture paint.
  • the electrode mixture paint of the present invention may contain an active hydrogen group-containing resin, a blocked isocyanate, an organic solvent, and an electrode active material. Since the electrode mixture paint of the present invention uses a blocked isocyanate, the pot life of the electrode mixture paint can be greatly extended.
  • Examples of the organic solvent used together with the water-insoluble blocked isocyanate include N-methyl-2-pyrrolidone (NMP), toluene, cyclohexanone, butyl acetate, ethyl acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, etc. Can be used.
  • NMP N-methyl-2-pyrrolidone
  • toluene toluene
  • cyclohexanone butyl acetate
  • ethyl acetate propylene glycol monomethyl ether acetate
  • dipropylene glycol monomethyl ether dipropylene glycol monomethyl ether
  • blocking agent used for the blocked isocyanate for example, dimethylpyrazole, diethyl malonate, diisopropylamine, methyl ethyl ketoxime, caprolactam and the like can be used.
  • the electrode mixture paint of the present invention may further contain a conductive material.
  • a conductive material thereby, the electroconductivity of the formed electrode mixture layer can be improved.
  • the conductive material and the electrode active material will be described later.
  • each component of the electrode mixture paint of the present invention is, for example, 0.5 to 10% by mass of an active hydrogen group-containing resin, isocyanate or block isocyanate, based on the total mass excluding the solvent of the electrode mixture paint. May be 0.01 to 3% by mass, the electrode active material may be 82 to 98% by mass, and the conductive material may be 0 to 5% by mass.
  • An electrode for a non-aqueous electrolyte secondary battery of the present invention includes an electrode mixture layer formed by applying the electrode mixture paint of the present invention described in Embodiment 1 to the surface of a current collector, and the electrode mixture layer Includes a crosslinked binder resin, the crosslinked binder resin includes a partial structure represented by the following formula (1), and the crosslinked binder resin forms a crosslinked structure based on the partial structure: To do.
  • the electrode for a nonaqueous electrolyte secondary battery of the present invention can be used for either a positive electrode or a negative electrode. Since the electrode for a non-aqueous electrolyte secondary battery of the present invention includes an electrode mixture layer formed using the electrode mixture paint of the present invention, an active hydrogen group-containing resin ( The binder resin) is crosslinked with isocyanate to form a crosslinked binder resin, and the crosslinked binder resin improves the adhesion between the electrode mixture layer and the current collector and the adhesion between the electrode active material particles. The charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery using the nonaqueous electrolyte secondary battery electrode are improved. The current collector will be described later.
  • the method for producing an electrode for a non-aqueous electrolyte secondary battery according to the present invention is an electrode for producing an electrode mixture paint comprising an active hydrogen group-containing resin, an aqueous dispersion of isocyanate or a blocked isocyanate and an organic solvent, and an electrode active material. It is characterized by comprising a mixture paint preparation step and an application step of applying the electrode mixture paint on the surface of the current collector. That is, the method for producing an electrode for a nonaqueous electrolyte secondary battery of the present invention includes a step of applying the electrode mixture paint of the present invention described in Embodiment 1 to the surface of a current collector.
  • the adhesion between the electrode mixture layer and the current collector and the adhesion between the electrode active material particles can be improved, and the electrode produced by the method for producing an electrode for a nonaqueous electrolyte secondary battery of the present invention was used.
  • the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery are improved.
  • the electrode mixture coating material preparation step is not particularly limited, and the above-described active hydrogen group-containing resin, an aqueous dispersion of isocyanate or a blocked isocyanate and an organic solvent, and an electrode active material may be mixed.
  • the application step is not particularly limited, and the electrode mixture paint may be applied to one or both sides of the current collector with a predetermined thickness and then dried to form an electrode mixture layer. Furthermore, after drying, the electrode mixture layer may be calendered as necessary.
  • the nonaqueous electrolyte secondary battery of the present invention includes the electrode for a nonaqueous electrolyte secondary battery of the present invention described in Embodiment 2 above. More specifically, a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator are provided, and the non-aqueous electrolyte secondary battery electrode of the present invention is used for at least one selected from the positive electrode and the negative electrode.
  • the nonaqueous electrolyte secondary battery excellent in charging / discharging cycling characteristics can be provided.
  • a lithium ion secondary battery will be exemplified as the non-aqueous electrolyte secondary battery of the present invention, and the components thereof will be further described.
  • the negative electrode according to the nonaqueous electrolyte secondary battery of the present invention includes, for example, a negative electrode mixture layer containing a negative electrode active material, the above-mentioned crosslinked binder resin, and a conductive material (conductive auxiliary agent) as necessary.
  • a structure having one or both sides of the body can be used.
  • ⁇ Negative electrode active material for example, natural graphite such as flaky or spherical graphite; graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB), and carbon fibers was graphitized at 2800 ° C. or higher. Artificial graphite; carbons with graphite coated on the surface of non-graphitizable carbon can be used.
  • a material containing silicon (Si) and oxygen (O) as constituent elements can also be used.
  • Binder resin before crosslinking As the binder resin before crosslinking, as described above, an active hydrogen group-containing resin such as carboxymethylcellulose (CMC), methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose or salts thereof, an acrylic resin, and a resin having an amino group should be used. Can do.
  • CMC carboxymethylcellulose
  • methylcellulose methylcellulose
  • hydroxypropylmethylcellulose hydroxyethylmethylcellulose or salts thereof
  • acrylic resin a resin having an amino group
  • the active hydrogen group-containing resin and other binder resins can be used in combination.
  • the other binder resin include styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyimide resin, and polyimide amide resin.
  • a combination of CMC and SBR is preferable. This is because by combining SBR with CMC, adhesion between the active materials and between the mixture layer and the current collector can be improved.
  • a conductive material may be further added to the negative electrode mixture layer as a conductive aid.
  • a conductive material is not particularly limited as long as it does not cause a chemical change in the battery.
  • carbon black thermal black, furnace black, channel black, ketjen black, acetylene black, etc.
  • Carbon material such as fiber
  • Metal powder pellet of copper, nickel, aluminum, silver, etc.
  • Metal material such as metal fiber
  • Polyphenylene derivative as described in JP-A-59-20971
  • Two or more species can be used.
  • ⁇ Current collector> As the current collector used for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used. Usually, a copper foil is used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit of the thickness is 5 ⁇ m in order to ensure mechanical strength. It is desirable to be.
  • the thickness of the negative electrode mixture layer is preferably 35 to 115 ⁇ m per one side of the current collector after the calendar treatment.
  • the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention includes, for example, a positive electrode mixture layer containing a positive electrode active material, the aforementioned crosslinked binder resin, a conductive material (conductive auxiliary agent), and the like on one side of the current collector. Alternatively, a structure having both sides can be used.
  • the positive electrode active material used for the positive electrode is not particularly limited, and a generally usable active material such as a lithium-containing transition metal oxide may be used.
  • a lithium-containing transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O 2. , etc.
  • Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-yz O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 are exemplified.
  • M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, Ti, Ge, and Cr, and 0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 1.0, 2.0 ⁇ z ⁇ 1.0.
  • Binder resin used for the positive electrode a resin similar to the above-described binder resin that can be used for the negative electrode can be used.
  • conductive aid used for the positive electrode the same conductive materials as those used for the negative electrode can be used.
  • the current collector used for the positive electrode can be the same as that used for a positive electrode of a conventionally known lithium ion secondary battery.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferable. .
  • the thickness of the positive electrode mixture layer is preferably 30 to 95 ⁇ m per one side of the current collector after the calendar treatment.
  • Non-aqueous electrolyte As the non-aqueous electrolyte according to the non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used.
  • the lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery.
  • inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (SO 2 F) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 7), LiN (RfOSO 2 ) 2 [where Rf is fluoroalkyl An organic lithium salt such as a group can be used.
  • the concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.
  • the organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as ⁇ -butyrolactone; dimethoxyethane, Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile; ethylene Examples thereof include sulfites such as glyco
  • the separator according to the nonaqueous electrolyte secondary battery of the present invention has a property that the pores are closed at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (ie, shutdown function). ),
  • separators used in ordinary lithium ion secondary batteries for example, microporous membranes made of polyolefin such as polyethylene (PE) and polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • Examples of the form of the nonaqueous electrolyte secondary battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • Example 1 Preparation of positive electrode> LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material: 92 parts by mass, acetylene black as a conductive auxiliary agent: 5 parts by mass, and polyvinylidene fluoride (PVDF) as a binder resin: 3 After mixing with parts by mass, add an appropriate amount of N-methyl-2-pyrrolidone (NMP) and stir uniformly with zirconia beads with a diameter of 1 mm in a ball mill for 15 hours, and then filter to remove the zirconia beads. A positive electrode mixture paint was prepared.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture paint was applied to both surfaces of an aluminum foil having a thickness of 15 ⁇ m serving as a positive electrode current collector so that the coating length was 280 mm on the front side and 210 mm on the back side, dried at 85 ° C., and further 120 Vacuum-dried at 8 ° C. for 8 hours. Then, the calender process was performed using the roll press machine, and the positive electrode precursor provided with the positive mix layer whose total thickness is 150 micrometers was produced. Then, this positive electrode precursor was cut
  • Graphite as negative electrode active material 97 parts by mass, carboxymethyl cellulose (CMC) as binder resin: 1.5 parts by mass and styrene butadiene rubber (SBR): 1.5 parts by mass, and non-blocking isocyanate cross-linking agent Asahi Kasei Chemicals Co., Ltd. isocyanate dispersion “WB40-100” (trade name): 0.1 parts by mass is mixed, an appropriate amount of ion-exchanged water is added, and zirconia beads having a diameter of 1 mm are used in a ball mill. The mixture was stirred uniformly for 15 hours, and then filtered to remove zirconia beads to prepare a negative electrode mixture paint.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the negative electrode mixture paint was applied to both sides of a 10 ⁇ m thick copper foil serving as a negative electrode current collector so that the coating length was 290 mm on the front side and 230 mm on the back side, dried at 85 ° C., and further 120 Vacuum-dried at 8 ° C. for 8 hours. Then, the calendar process was given using the roll press machine and the negative electrode precursor provided with the negative mix layer whose total thickness is 142 micrometers was produced. Thereafter, the negative electrode precursor was cut to a width of 45 mm, and a current collecting tab was attached to the negative electrode mixture uncoated portion of the negative electrode current collector to obtain a negative electrode.
  • ⁇ Battery assembly> The positive electrode and the negative electrode are superposed through a polyethylene microporous membrane separator (thickness 18 ⁇ m), wound into a spiral shape to form a wound electrode body, and the wound electrode body is crushed flatly to obtain a thickness. It was accommodated in an aluminum outer can having a size of 4 mm, a height of 50 mm, and a width of 34 mm. Next, after pouring a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / L into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7, The outer can was sealed to obtain a nonaqueous electrolyte secondary battery of this example.
  • FIG. 1 shows an external view of the obtained nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery 1 of this embodiment includes an outer can 2 that also serves as a positive electrode terminal and a lid 3, and a negative electrode terminal 5 is provided on the lid 3 via an insulating packing 4.
  • the lid 3 is provided with a nonaqueous electrolyte inlet 6 and a cleavage vent 7.
  • Example 2 Example 1 except that the cross-linking agent of the negative electrode mixture paint was changed to 0.1 parts by weight of an aqueous dispersion of block isocyanate, “Aqua BI 220” (trade name) manufactured by Baxenden, which is a block type isocyanate cross-linking agent.
  • Aqua BI 220 trade name
  • Example 3 The binder resin of the negative electrode mixture paint is all water-soluble acrylic resin (sodium hydroxide partially neutralized acrylic acid-acrylic ester copolymer: acid value 250, neutralization rate 80%, glass transition temperature 25 ° C.): 3 mass Example 1 except that the cross-linking agent was changed to 0.1 parts by weight of an aqueous dispersion of block isocyanate, “Aqua BI 220” (trade name) manufactured by Baxenden, which is a block-type isocyanate cross-linking agent. Thus, the nonaqueous electrolyte secondary battery of this example was produced.
  • water-soluble acrylic resin sodium hydroxide partially neutralized acrylic acid-acrylic ester copolymer: acid value 250, neutralization rate 80%, glass transition temperature 25 ° C.
  • Example 4 Graphite as negative electrode active material: 97 parts by mass, water-insoluble acrylic resin as binder resin (acrylic acid-acrylic ester copolymer: acid value 100, glass transition temperature 10 ° C.): 3 parts by mass, block type Non-water-soluble blocked isocyanate “7950” (trade name) manufactured by Baxenden, which is an isocyanate cross-linking agent, is mixed with 0.1 part by mass, an appropriate amount of NMP is added, and zirconia beads having a diameter of 1 mm are used in a ball mill. The mixture was stirred uniformly for 15 hours, and then filtered to remove zirconia beads to prepare a negative electrode mixture paint.
  • water-insoluble acrylic resin as binder resin (acrylic acid-acrylic ester copolymer: acid value 100, glass transition temperature 10 ° C.): 3 parts by mass
  • a nonaqueous electrolyte secondary battery of this example was produced in the same manner as in Example 1 except that the above negative electrode mixture paint was used.
  • Example 5 LiNi 1/3 Mn 1/3 Co 1/3 O 2 as positive electrode active material: 92 parts by mass, acetylene black as conductive auxiliary agent: 5 parts by mass, water-soluble acrylic resin (sodium hydroxide) as binder resin Partially neutralized acrylic acid-acrylic acid ester copolymer: acid value 250, neutralization rate 80%, glass transition temperature 25 ° C.): 3 parts by mass of block isocyanate manufactured by Baxenden, which is a block type isocyanate cross-linking agent
  • Aqueous dispersion “Aqua BI 220” (trade name): 0.1 parts by mass were mixed, and an appropriate amount of ion-exchanged water was added, and the mixture was uniformly stirred for 15 hours using zirconia beads having a diameter of 1 mm in a ball mill. The zirconia beads were removed by filtration to prepare a positive electrode mixture paint. Further, a negative electrode mixture paint was prepared in the same manner as in Example 1 except that no crosslinking agent was used.
  • a nonaqueous electrolyte secondary battery of this example was produced in the same manner as in Example 1 except that the above positive electrode mixture paint and the above negative electrode mixture paint were used.
  • Example 1 A negative electrode mixture paint was prepared in the same manner as in Example 1 except that no crosslinking agent was used. Next, a nonaqueous electrolyte secondary battery of this comparative example was produced in the same manner as in Example 1 except that the above negative electrode mixture paint was used.
  • Example 2 A negative electrode mixture paint was prepared in the same manner as in Example 3 except that no crosslinking agent was used. Next, a nonaqueous electrolyte secondary battery of this comparative example was produced in the same manner as in Example 3 except that the above negative electrode mixture paint was used.
  • Example 3 A positive electrode mixture paint was prepared in the same manner as in Example 5 except that the crosslinking agent was not used. Next, a nonaqueous electrolyte secondary battery of this comparative example was produced in the same manner as in Example 5 except that the above positive electrode mixture paint was used.
  • Table 1 shows the content of each component of the positive electrode mixture layer and the negative electrode mixture layer of the batteries of Examples 1 to 5 and Comparative Examples 1 to 3.
  • Viscosity change rate (%) [(viscosity after storage ⁇ viscosity before storage) / viscosity before storage] ⁇ 100
  • the negative electrode mixture paints of Examples 2 to 4 using blocked isocyanate as a crosslinking agent and the positive electrode mixture paint of Example 5 are negative electrode mixture paints of Example 1 using non-blocked isocyanate as a crosslinking agent. It can be seen that the rate of change in paint viscosity is small and the pot life of the paint is long.
  • the electrode using the cross-linking agent has higher water resistance of the mixture and higher adhesion between the electrode active material particles of the electrode mixture layer than the electrode not using the cross-linking agent.
  • the electrode using the cross-linking agent has a higher mixture peel strength than the electrode not using the cross-linking agent, and the electrode mixture layer has high adhesion to the current collector.
  • the batteries of Examples 1 to 5 in which a crosslinking agent was added to the electrode mixture layer were superior in charge / discharge cycle characteristics as compared to the batteries of Comparative Examples 1 to 3 in which the crosslinking agent was not added to the electrode mixture layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 本発明の電極合剤塗料は、活性水素基含有樹脂と、イソシアネートと、電極活物質とを含むことを特徴とする。また、本発明の非水電解質二次電池用電極は、上記本発明の電極合剤塗料を集電体の表面に塗布して形成した電極合剤層を備えることを特徴とする。また、本発明の非水電解質二次電池用電極の製造方法は、上記本発明の電極合剤塗料を集電体の表面に塗布する工程を備えることを特徴とする。また、本発明の非水電解質二次電池は、上記本発明の非水電解質二次電池用電極を備えることを特徴とする。

Description

電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及び非水電解質二次電池
 本発明は、リチウムイオン二次電池等の非水電解質二次電池に用いる電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及びそれらを用いた非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューター等の携帯機器の電源として広く用いられている。携帯機器の高性能化に伴ってリチウムイオン二次電池の高容量化及び長寿命化が更に進む傾向にあり、更なる研究・開発が進められている。
 このような状況下で従来から上記非水電解質二次電池の充放電サイクル特性を向上させるために種々の方策が検討されてきた。その中で非水電解質二次電池の電極合剤層に用いるバインダ樹脂をイソシアネート等の架橋剤で架橋することにより、電極合剤層と集電体との密着性を向上させて非水電解質二次電池の充放電サイクル特性を向上させることが提案されている(例えば、特許文献1、2等参照。)。
特開2000-21408号公報 特開平10-21927号公報(特許第3564880号公報)
 しかし、従来の方法では、バインダ樹脂及び架橋剤を有機溶剤に溶解して用いていたため、電極製造時に防爆設備が必要となり、製造工程が煩雑となるとともに、製造工程で発生する揮発溶剤による環境負荷も大きいという問題があった。
 本発明は上記問題を解決したもので、簡便な設備により充放電サイクル特性に優れた非水電解質二次電池を得るための電極合剤塗料、非水電解質二次電池用電極及び非水電解質二次電池用電極の製造方法並びに充放電サイクル特性に優れた非水電解質二次電池を提供するものである。
 本発明の電極合剤塗料は、活性水素基含有樹脂と、イソシアネートの水分散液と、電極活物質とを含むことを特徴とする。
 本発明の別の形態の電極合剤塗料は、活性水素基含有樹脂と、ブロックイソシアネートと、有機溶剤と、電極活物質とを含むことを特徴とする。
 本発明の非水電解質二次電池用電極は、上記本発明の電極合剤塗料を集電体の表面に塗布して形成した電極合剤層を含み、前記電極合剤層は、架橋バインダ樹脂を含み、前記架橋バインダ樹脂は、下記式(1)で示される部分構造を含み、前記架橋バインダ樹脂は、前記部分構造を基点に架橋構造を形成していることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
 本発明の非水電解質二次電池用電極の製造方法は、活性水素基含有樹脂と、イソシアネートの水分散液と、電極活物質とを含む電極合剤塗料を作製する工程と、前記電極合剤塗料を集電体の表面に塗布する工程とを含むことを特徴とする。
 本発明の別の形態の非水電解質二次電池用電極の製造方法は、活性水素基含有樹脂と、ブロックイソシアネートと、有機溶剤と、電極活物質とを含む電極合剤塗料を作製する工程と、前記電極合剤塗料を集電体の表面に塗布する工程とを含むことを特徴とする。
 本発明の非水電解質二次電池は、上記本発明の非水電解質二次電池用電極を含むことを特徴とする。
 本発明によれば、充放電サイクル特性に優れた非水電解質二次電池を提供することができる。
図1は、本発明の非水電解質二次電池の一例を示す外観図である。
 (実施形態1)
 先ず、本発明の電極合剤塗料について説明する。
 本発明の電極合剤塗料は、活性水素基含有樹脂と、イソシアネートの水分散液と、電極活物質とを含有していることを特徴とする。
 上記活性水素基含有樹脂は、電極合剤層を形成するバインダ樹脂として機能し、上記イソシアネートはそのバインダ樹脂の架橋剤として機能する。本発明の電極合剤塗料は、架橋剤を水分散液として用いているため、電極製造時に防爆設備は必要なく、製造設備を簡便にすることができる。
 上記活性水素基含有樹脂としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース又はこれらの塩、アクリル樹脂及びアミノ基を有する樹脂からなる群から選ばれる少なくとも1種の樹脂を用いることができる。これらの樹脂は、カルボキシル基、水酸基、アミノ基等の活性水素基を有しているため、上記イソシアネートとの架橋反応により架橋体となる。このため、電極合剤層と集電体との密着性及び電極活物質粒子相互間の密着性を向上できる。
 上記アミノ基を有する樹脂としては、例えば、ジメチルアミノメチルアクリルアミドとブチルアクリレート等を共重合させたアクリル共重合体等を用いることができる。
 上記イソシアネートの水分散液の市販品としては、例えば、旭化成ケミカルズ社製の商品名“WB40-100”、“WB40-80D”、“WT20-100”、“WT30-100”、“WE50-100”等、DIC社製の商品名“DNW-5000”、“DNW5010”、“DNW-5100”、“DNW-5200”、“DNW-6000”等、日本ポリウレタン社製の商品名“AQ-100”、“AQ-105”、“AQ-130”、“AQ-140”等を使用することができる。
 また、上記イソシアネートは、ブロックイソシアネートであることが好ましい。上記ブロックイソシアネートは、加熱等により活性化する前の通常環境下では化学的に非常に安定であり、電極合剤塗料のポットライフを大幅に延ばすことができる。
 上記ブロックイソシアネートの水分散液の市販品としては、例えば、Baxenden社製の商品名“Aqua BI 200”、“Aqua BI 220”等、日本ポリウレタン社製の商品名“AQ-210”、“AQ-120”、“AQ-200”等、旭化成ケミカルズ社製の商品名“WM44-L70G”等を使用することができる。
 また、本発明の電極合剤塗料は、活性水素基含有樹脂と、ブロックイソシアネートと、有機溶媒と、電極活物質とを含有していてもよい。上記本発明の電極合剤塗料は、ブロックイソシアネートを用いているため、電極合剤塗料のポットライフを大幅に延ばすことができる。
 上記有機溶媒とともに用いる非水溶性ブロックイソシアネートの市販品としては、例えば、Baxenden社製の商品名“7950”、“7951、“7960”、“7961”、“7982”、“7990”、“7991”、“7992”等、旭化成ケミカルズ社製の商品名“MF-K60B”、“SBN-700”、“MF-B60B”、“17B-60P”、“TPA-B80E”、“E402-B80B”等、日本ポリウレタン社製の商品名“コロネートAP-M”、“BI-301”、“2507”、“2513”等を使用することができる。
 また、上記非水溶性ブロックイソシアネートとともに用いる有機溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、トルエン、シクロヘキサノン、酢酸ブチル、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等を用いることができる。
 上記ブロックイソシアネートに用いるブロック剤としては、例えば、ジメチルピラゾール、ジエチルマロネート、ジイソプロピルアミン、メチルエチルケトオキシム、カプロラクタム等を用いることができる。
 更に、本発明の電極合剤塗料は、導電性材料を更に含有してもよい。これにより、形成した電極合剤層の導電性を向上できる。上記導電性材料及び上記電極活物質については後述する。
 本発明の電極合剤塗料の各成分の含有量は、例えば、上記電極合剤塗料の溶媒を除く全質量に対して、活性水素基含有樹脂が0.5~10質量%、イソシアネート又はブロックイソシアネートが0.01~3質量%、電極活物質が82~98質量%、導電性材料が0~5質量%とすればよい。
(実施形態2)
 次に、本発明の非水電解質二次電池用電極を説明する。本発明の非水電解質二次電池用電極は、実施形態1で説明した本発明の電極合剤塗料を集電体の表面に塗布して形成した電極合剤層を備え、上記電極合剤層は、架橋バインダ樹脂を含み、上記架橋バインダ樹脂は、下記式(1)で示される部分構造を含み、上記架橋バインダ樹脂は、上記部分構造を基点に架橋構造を形成していることを特徴とする。
Figure JPOXMLDOC01-appb-C000005
 本発明の非水電解質二次電池用電極は、正極、負極のいずれにも用いることができる。本発明の非水電解質二次電池用電極は、上記本発明の電極合剤塗料を用いて形成した電極合剤層を備えているため、その電極合剤層に含まれる活性水素基含有樹脂(バインダ樹脂)はイソシアネートにより架橋されて架橋バインダ樹脂を構成し、その架橋バインダ樹脂により電極合剤層と集電体との密着性及び電極活物質粒子相互間の密着性が向上し、本発明の非水電解質二次電池用電極を用いた非水電解質二次電池の充放電サイクル特性が向上する。上記集電体については後述する。
(実施形態3)
 次に、本発明の非水電解質二次電池用電極の製造方法を説明する。
 本発明の非水電解質二次電池用電極の製造方法は、活性水素基含有樹脂と、イソシアネートの水分散液又はブロックイソシアネート及び有機溶媒と、電極活物質とを含む電極合剤塗料を作製する電極合剤塗料作製工程と、上記電極合剤塗料を集電体の表面に塗布する塗布工程とを備えることを特徴とする。即ち、本発明の非水電解質二次電池用電極の製造方法は、実施形態1で説明した本発明の電極合剤塗料を集電体の表面に塗布する工程を備えている。これにより、電極合剤層と集電体との密着性及び電極活物質粒子相互間の密着性を向上でき、本発明の非水電解質二次電池用電極の製造方法で製造した電極を用いた非水電解質二次電池の充放電サイクル特性が向上する。
 上記電極合剤塗料作製工程は特に限定されず、前述の活性水素基含有樹脂と、イソシアネートの水分散液又はブロックイソシアネート及び有機溶媒と、電極活物質とを混合すればよい。
 また、上記塗布工程も特に限定されず、上記電極合剤塗料を集電体の片面又は両面に所定の厚さで塗布し、その後に乾燥等を行って電極合剤層を形成すればよい。更に、乾燥した後に、必要に応じて電極合剤層にカレンダ処理を施してもよい。
(実施形態4)
 次に、本発明の非水電解質二次電池を説明する。本発明の非水電解質二次電池は、上記実施形態2で説明した本発明の非水電解質二次電池用電極を備えていることを特徴とする。より具体的には、正極、負極、非水電解質及びセパレータを備え、上記正極及び上記負極から選ばれる少なくとも一方に、上記本発明の非水電解質二次電池用電極を用いている。これにより、前述のとおり、充放電サイクル特性に優れた非水電解質二次電池を提供できる。
 以下、本発明の非水電解質二次電池としてリチウムイオン二次電池を例示し、その構成要素をについて更に説明する。
 〔負極〕
 本発明の非水電解質二次電池に係る負極には、例えば、負極活物質、前述の架橋バインダ樹脂及び必要に応じて導電性材料(導電助剤)等を含む負極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
 <負極活物質>
 負極活物質としては、例えば、鱗片状もしくは球形状の黒鉛等の天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維等の易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;難黒鉛化炭素の表面に黒鉛をコートした炭素類等を用いることがでる。また、負極活物質としては、シリコン(Si)と酸素(O)とを構成元素に含む材料を用いることもできる。
 <バインダ樹脂>
 架橋前のバインダ樹脂としては、前述のとおり、カルボキシメチルセルロース(CMC)、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース又はこれらの塩、アクリル樹脂、アミノ基を有する樹脂等の活性水素基含有樹脂を用いることができる。
 また、上記活性水素基含有樹脂と他のバインダ樹脂とを併用することもできる。上記他のバインダ樹脂としては、例えば、スチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)、ポリイミド系樹脂、ポリイミドアミド系樹脂等を用いることができる。
 上記負極合剤層のバインダ樹脂に上記活性水素基含有樹脂と他のバインダ樹脂とを併用する場合には、CMCとSBRとの組み合わせが好ましい。CMCにSBRを組み合せることにより、活物質間及び合剤層と集電体との密着性を向上させることができるからである。
 <導電助剤>
 上記負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラック等)、炭素繊維等の炭素材料;金属粉(銅、ニッケル、アルミニウム、銀等の粉末)、金属繊維等の金属材料;ポリフェニレン誘導体(特開昭59-20971号公報に記載のもの)等の材料を、1種又は2種以上用いることができる。
 <集電体>
 上記負極に用いる集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル等を用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために厚みの下限は5μmであることが望ましい。
 <負極合剤層>
 上記負極合剤層の厚さは、カレンダ処理後において、集電体の片面あたり35~115μmであることが好ましい。上記負極合剤層の厚さを上記範囲に設定し、できるだけ厚くすることにより、非水電解質二次電池の高容量化を図ることができる。
 〔正極〕
 本発明の非水電解質二次電池に係る正極には、例えば、正極活物質、前述の架橋バインダ樹脂、導電性材料(導電助剤)等を含有する正極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
 <正極活物質>
 上記正極に用いる正極活物質としては、特に限定されず、リチウム含有遷移金属酸化物等の一般に用いることのできる活物質を使用すればよい。リチウム含有遷移金属酸化物の具体例としては、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-y2、LixNi1-yy2、LixMnyNizCo1-y-z2、LixMn24、LixMn2-yy4等が例示される。但し、上記の各構造式中において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、Al、Ti、Ge及びCrよりなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0<z<1.0である。
 <バインダ樹脂>
 上記正極に用いるバインダ樹脂としても、上記負極で用いることができる前述のバインダ樹脂と同様の樹脂を用いることができる。
 <導電助剤>
 上記正極に用いる導電助剤としても、前述の負極に用いる導電性材料と同様のものが使用できる。
 <集電体>
 上記正極に用いる集電体としては、従来から知られているリチウムイオン二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚さが10~30μmのアルミニウム箔が好ましい。
 <正極合剤層>
 上記正極合剤層の厚さは、カレンダ処理後において、集電体の片面あたり30~95μmであることが好ましい。上記正極合剤層の厚さを上記範囲に設定し、できるだけ厚くすることにより、非水電解質二次電池の高容量化を図ることができる。
 〔非水電解質〕
 本発明の非水電解質二次電池に係る非水電解質としては、リチウム塩を有機溶媒に溶解した非水電解液を使用できる。
 上記非水電解液に用いるリチウム塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解等の副反応を起こしにくいものであれば特に制限はない。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6等の無機リチウム塩、LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(SO2F)2、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(2≦n≦7)、LiN(RfOSO22〔ここで、Rfはフルオロアルキル基〕等の有機リチウム塩等を用いることができる。
 このリチウム塩の非水電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.25mol/Lとすることがより好ましい。
 上記非水電解液に用いる有機溶媒としては、上記のリチウム塩を溶解し、電池として使用される電圧範囲で分解等の副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;プロピオン酸メチル等の鎖状エステル;γ-ブチロラクトン等の環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライム等の鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル等のニトリル類;エチレングリコールサルファイト等の亜硫酸エステル類等が挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒等、高い導電率を得ることができる組み合わせで用いることが望ましい。
 〔セパレータ〕
 本発明の非水電解質二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(即ち、シャットダウン機能)を有していることが好ましく、通常のリチウムイオン二次電池等で使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
 〔電池の形態〕
 本発明の非水電解質二次電池の形態としては、スチール缶やアルミニウム缶等を外装缶として使用した筒形(角筒形や円筒形等)等が挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。
 (実施例1)
 <正極の作製>
 正極活物質であるLiNi1/3Mn1/3Co1/32:92質量部と、導電助剤であるアセチレンブラック:5質量部と、バインダ樹脂であるポリフッ化ビニリデン(PVDF):3質量部とを混合し、更に適量のN-メチル-2-ピロリドン(NMP)を添加し、ボールミルにて直径1mmのジルコニアビーズを用いて15時間均一に攪拌した後、濾過してジルコニアビーズを除去し、正極合剤塗料を調製した。次に、正極集電体となる厚さが15μmのアルミニウム箔の両面に、上記正極合剤塗料を塗布長が表側280mm、裏側210mmとなるように塗布し、85℃で乾燥した後、更に120℃で8時間真空乾燥した。その後、ロールプレス機を用いてカレンダ処理を施して、全厚が150μmの正極合剤層を備えた正極前駆体を作製した。その後、この正極前駆体を幅43mmになるように切断し、正極集電体の正極合剤未塗布部に集電タブを取り付けて正極を得た。
 <負極の作製>
 負極活物質である黒鉛:97質量部と、バインダ樹脂であるカルボキシメチルセルロース(CMC):1.5質量部及びスチレンブタジエンラバー(SBR):1.5質量部と、非ブロック型イソシアネート架橋剤である旭化成ケミカルズ社製のイソシアネートの水分散液“WB40-100”(商品名):0.1質量部とを混合し、更に適量のイオン交換水を添加し、ボールミルにて直径1mmのジルコニアビーズを用いて15時間均一に攪拌した後、濾過してジルコニアビーズを除去し、負極合剤塗料を調製した。次に、負極集電体となる厚さが10μmの銅箔の両面に、上記負極合剤塗料を塗布長が表側290mm、裏側230mmとなるように塗布し、85℃で乾燥した後、更に120℃で8時間真空乾燥した。その後、ロールプレス機を用いてカレンダ処理を施して、全厚が142μmの負極合剤層を備えた負極前駆体を作製した。その後、この負極前駆体を幅45mmになるように切断し、負極集電体の負極合剤未塗布部に集電タブを取り付けて負極を得た。
 <電池の組み立て>
 上記正極と上記負極とを、ポリエチレン製微多孔膜セパレータ(厚さ18μm)を介して重ね合わせ、渦巻状に巻回して巻回電極体とし、この巻回電極体を扁平状に押しつぶし、厚さ4mm、高さ50mm、幅34mmのアルミニウム製の外装缶に収容した。次に、エチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合した溶媒に、LiPF6を1.2mol/Lの濃度で溶解させた非水電解液を上記外装缶内に注入した後、上記外装缶を封止して、本実施例の非水電解質二次電池を得た。
 図1に得られた非水電解質二次電池の外観図を示す。図1において、本実施例の非水電解質二次電池1は、正極端子を兼ねる外装缶2と蓋3とを備え、蓋3には、絶縁パッキング4を介して負極端子5が設けられている。また、蓋3には、非水電解液注入口6及び開裂ベント7が設けられている。
 (実施例2)
 負極合剤塗料の架橋剤をブロック型イソシアネート架橋剤であるBaxenden社製のブロックイソシアネートの水分散液“Aqua BI 220”(商品名):0.1質量部に変更した以外は実施例1と同様にして、本実施例の非水電解質二次電池を作製した。
 (実施例3)
 負極合剤塗料のバインダ樹脂を全て水溶性アクリル樹脂(水酸化ナトリウム部分中和型アクリル酸-アクリル酸エステル共重合体:酸価250、中和率80%、ガラス転移温度25℃):3質量部に変更し、架橋剤をブロック型イソシアネート架橋剤であるBaxenden社製のブロックイソシアネートの水分散液“Aqua BI 220”(商品名):0.1質量部に変更した以外は実施例1と同様にして、本実施例の非水電解質二次電池を作製した。
 (実施例4)
 負極活物質である黒鉛:97質量部と、バインダ樹脂である非水溶性アクリル樹脂(アクリル酸-アクリル酸エステル共重合体:酸価100、ガラス転移温度10℃):3質量部と、ブロック型イソシアネート架橋剤であるBaxenden社製の非水溶性ブロックイソシアネート“7950”(商品名):0.1質量部とを混合し、更に適量のNMPを添加し、ボールミルにて直径1mmのジルコニアビーズを用いて15時間均一に攪拌した後、濾過してジルコニアビーズを除去し、負極合剤塗料を調製した。
 次に、上記負極合剤塗料を用いた以外は実施例1と同様にして、本実施例の非水電解質二次電池を作製した。
 (実施例5)
 正極活物質であるLiNi1/3Mn1/3Co1/32:92質量部と、導電助剤であるアセチレンブラック:5質量部と、バインダ樹脂である水溶性アクリル樹脂(水酸化ナトリウム部分中和型アクリル酸-アクリル酸エステル共重合体:酸価250、中和率80%、ガラス転移温度25℃):3質量部と、ブロック型イソシアネート架橋剤であるBaxenden社製のブロックイソシアネートの水分散液“Aqua BI 220”(商品名):0.1質量部を混合し、更に適量のイオン交換水を添加し、ボールミルにて直径1mmのジルコニアビーズを用いて15時間均一に攪拌した後、濾過してジルコニアビーズを除去し、正極合剤塗料を調製した。また、架橋剤を用いなかった以外は実施例1と同様にして、負極合剤塗料を調製した。
 次に、上記正極合剤塗料及び上記負極合剤塗料を用いた以外は実施例1と同様にして、本実施例の非水電解質二次電池を作製した。
 (比較例1)
 架橋剤を用いなかった以外は実施例1と同様にして、負極合剤塗料を調製した。次に、上記負極合剤塗料を用いた以外は実施例1と同様にして、本比較例の非水電解質二次電池を作製した。
 (比較例2)
 架橋剤を用いなかった以外は実施例3と同様にして、負極合剤塗料を調製した。次に、上記負極合剤塗料を用いた以外は実施例3と同様にして、本比較例の非水電解質二次電池を作製した。
 (比較例3)
 架橋剤を用いなかった以外は実施例5と同様にして、正極合剤塗料を調製した。次に、上記正極合剤塗料を用いた以外は実施例5と同様にして、本比較例の非水電解質二次電池を作製した。
 表1に実施例1~5及び比較例1~3の電池の正極合剤層及び負極合剤層の各成分の含有量を示す。
 次に、実施例1~5及び比較例1~3で作製した正極合剤塗料、負極合剤塗料、正極、負極及び非水電解質二次電池について下記の評価を行った。その結果も表1に合わせて示す。
 <塗料粘度変化率>
 作製した正極合剤塗料及び負極合剤塗料を30℃で1週間保存し、保存前後の25℃の粘度をB型粘度計を用いて測定した。その測定値に基づき下記式により粘度変化率を算出して、塗料の安定性を評価した。
 粘度変化率(%)=〔(保存後の粘度-保存前の粘度)/保存前の粘度〕×100
 <合剤耐水性>
 作製した正極及び負極を60℃の温水に8時間浸漬し、電極合剤層の溶解・剥離を観察し、下記基準で電極合剤層の電極活物質粒子相互間の密着性を評価した。
 評価A:電極合剤層に溶解・剥離が認められない場合
 評価B:電極合剤層に溶解・剥離が認められる場合
 <合剤剥離強度>
 作製した正極及び負極を用いて日本工業規格(JIS)Z-0237に規定する90°剥離試験を行い、電極合剤層の集電体への密着性を評価した。
 <充放電サイクル特性>
 作製した電池について、1Cの電流値で4.2Vまで定電流充電を行った後、電流値が0.1CmAになるまで4.2Vで定電圧充電する充電と、1Cの電流値で2.5Vになるまで定電流で行う放電とを1サイクルとして充放電を繰り返し、1サイクル目の放電容量に対する300サイクル目の放電容量の容量維持率を下記式により算出して、電池の充放電サイクル特性を評価した。
 容量維持率(%)=〔(1サイクル目の放電容量-300サイクル目の放電容量)/1サイクル目の放電容量〕×100
Figure JPOXMLDOC01-appb-T000006
 表1から、架橋剤としてブロックイソシアネートを使用した実施例2~4の負極合剤塗料及び実施例5の正極合剤塗料は、架橋剤として非ブロックイソシアネートを使用した実施例1の負極合剤塗料に比べて、塗料粘度変化率が小さく、塗料のポットライフが長いことが分かる。また、架橋剤を用いた電極は、架橋剤を用いない電極に比べて合剤耐水性が高く、電極合剤層の電極活物質粒子相互間の密着性が高いことが分かる。また、架橋剤を用いた電極は、架橋剤を用いない電極に比べて合剤剥離強度が大きく、電極合剤層の集電体に対する密着性が高いことが分かる。更に、電極合剤層に架橋剤を添加した実施例1~5の電池は、電極合剤層に架橋剤を添加していない比較例1~3の電池に比べて、充放電サイクル特性も優れていることが分かる。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
 1 非水電解質二次電池
 2 外装缶
 3 蓋
 4 絶縁パッキング
 5 負極端子
 6 非水電解液注入口
 7 開裂ベント

Claims (18)

  1.  活性水素基含有樹脂と、イソシアネートの水分散液と、電極活物質とを含むことを特徴とする電極合剤塗料。
  2.  前記イソシアネートが、ブロックイソシアネートである請求項1に記載の電極合剤塗料。
  3.  前記活性水素基含有樹脂が、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース又はこれらの塩、アクリル樹脂及びアミノ基を有する樹脂からなる群から選ばれる少なくとも1種の樹脂である請求項1に記載の電極合剤塗料。
  4.  導電性材料を更に含む請求項1に記載の電極合剤塗料。
  5.  請求項1に記載の電極合剤塗料を集電体の表面に塗布して形成した電極合剤層を含む非水電解質二次電池用電極であって、
     前記電極合剤層は、架橋バインダ樹脂を含み、
     前記架橋バインダ樹脂は、下記式(1)で示される部分構造を含み、
     前記架橋バインダ樹脂は、前記部分構造を基点に架橋構造を形成していることを特徴とする非水電解質二次電池用電極。
    Figure JPOXMLDOC01-appb-C000001
  6.  活性水素基含有樹脂と、ブロックイソシアネートと、有機溶剤と、電極活物質とを含むことを特徴とする電極合剤塗料。
  7.  前記活性水素基含有樹脂が、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース又はこれらの塩、アクリル樹脂及びアミノ基を有する樹脂からなる群から選ばれる少なくとも1種の樹脂である請求項6に記載の電極合剤塗料。
  8.  導電性材料を更に含む請求項6に記載の電極合剤塗料。
  9.  請求項6に記載の電極合剤塗料を集電体の表面に塗布して形成した電極合剤層を含む非水電解質二次電池用電極であって、
     前記電極合剤層は、架橋バインダ樹脂を含み、
     前記架橋バインダ樹脂は、下記式(1)で示される部分構造を含み、
     前記架橋バインダ樹脂は、前記部分構造を基点に架橋構造を形成していることを特徴とする非水電解質二次電池用電極。
    Figure JPOXMLDOC01-appb-C000002
  10.  活性水素基含有樹脂と、イソシアネートの水分散液と、電極活物質とを含む電極合剤塗料を作製する工程と、
     前記電極合剤塗料を集電体の表面に塗布する工程とを含むことを特徴とする非水電解質二次電池用電極の製造方法。
  11.  前記イソシアネートが、ブロックイソシアネートである請求項10に記載の非水電解質二次電池用電極の製造方法。
  12.  前記活性水素基含有樹脂が、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース又はこれらの塩、アクリル樹脂及びアミノ基を有する樹脂からなる群から選ばれる少なくとも1種の樹脂である請求項10に記載の非水電解質二次電池用電極の製造方法。
  13.  活性水素基含有樹脂と、ブロックイソシアネートと、有機溶剤と、電極活物質とを含む電極合剤塗料を作製する工程と、
     前記電極合剤塗料を集電体の表面に塗布する工程とを含むことを特徴とする非水電解質二次電池用電極の製造方法。
  14.  前記活性水素基含有樹脂が、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース又はこれらの塩、アクリル樹脂及びアミノ基を有する樹脂からなる群から選ばれる少なくとも1種の樹脂である請求項13に記載の非水電解質二次電池用電極の製造方法。
  15.  請求項5に記載の非水電解質二次電池用電極を含むことを特徴とする非水電解質二次電池。
  16.  請求項9に記載の非水電解質二次電池用電極を含むことを特徴とする非水電解質二次電池。
  17.  正極、負極、非水電解質及びセパレータを含む非水電解質二次電池であって、
     前記負極は、負極活物質及び架橋バインダ樹脂を含有する負極合剤層を含み、
     前記架橋バインダ樹脂は、カルボキシメチルセルロースの架橋体を含み、
     前記架橋バインダ樹脂は、下記式(1)で示される部分構造を含み、
     前記架橋バインダ樹脂は、前記部分構造を基点に架橋構造を形成していることを特徴とする非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000003
  18.  前記負極合剤層は、スチレンブタジエンラバーを更に含む請求項17に記載の非水電解質二次電池。
PCT/JP2014/073662 2013-09-13 2014-09-08 電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及び非水電解質二次電池 WO2015037558A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015536571A JP6209614B2 (ja) 2013-09-13 2014-09-08 電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及び非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190445 2013-09-13
JP2013190445 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037558A1 true WO2015037558A1 (ja) 2015-03-19

Family

ID=52665663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073662 WO2015037558A1 (ja) 2013-09-13 2014-09-08 電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及び非水電解質二次電池

Country Status (2)

Country Link
JP (1) JP6209614B2 (ja)
WO (1) WO2015037558A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520023A (ja) * 2019-03-18 2021-08-12 寧徳新能源科技有限公司Ningde Amperex Technology Limited 電気化学機器及びそれを備えた電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021408A (ja) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2002128514A (ja) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc 炭素質材料、電気二重層キャパシタ用分極性電極及び電気二重層キャパシタ
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
WO2011074269A1 (ja) * 2009-12-18 2011-06-23 昭和電工株式会社 塗工液
JP2013004371A (ja) * 2011-06-17 2013-01-07 Ube Ind Ltd 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127959A (ja) * 2011-11-18 2013-06-27 Unitika Ltd 二次電池負極用水系バインダー液、およびこれを用いてなる二次電池負極用水系ペースト、二次電池負極、二次電池
JP6055782B2 (ja) * 2011-12-26 2016-12-27 太陽ホールディングス株式会社 正極合剤、正極、およびそれを用いた非水電解質二次電池
JP2013134884A (ja) * 2011-12-26 2013-07-08 Taiyo Holdings Co Ltd 正極合剤、正極、およびそれを用いた非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021408A (ja) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2002128514A (ja) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc 炭素質材料、電気二重層キャパシタ用分極性電極及び電気二重層キャパシタ
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
WO2011074269A1 (ja) * 2009-12-18 2011-06-23 昭和電工株式会社 塗工液
JP2013004371A (ja) * 2011-06-17 2013-01-07 Ube Ind Ltd 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520023A (ja) * 2019-03-18 2021-08-12 寧徳新能源科技有限公司Ningde Amperex Technology Limited 電気化学機器及びそれを備えた電子機器
JP7075993B2 (ja) 2019-03-18 2022-05-26 寧徳新能源科技有限公司 電気化学機器及びそれを備えた電子機器

Also Published As

Publication number Publication date
JP6209614B2 (ja) 2017-10-04
JPWO2015037558A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5228576B2 (ja) リチウムイオン二次電池及び電気自動車用電源
JP5050452B2 (ja) 非水電解質二次電池
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
JP2012174569A (ja) 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法
WO2012005139A1 (ja) セラミックセパレータ及び蓄電デバイス
JP2004079327A (ja) 非水二次電池および非水二次電池用正極とその製造方法
JPH1186844A (ja) 電池用電極およびそれを用いた電池
KR101739294B1 (ko) 리튬 이차 전지용 양극, 이를 포함하는 리튬 이차 전지
JP6750196B2 (ja) 非水系リチウム電池及びその使用方法
JP2008041504A (ja) 非水電解質電池
CN112335089A (zh) 电化学装置及电池组
JP2015195195A (ja) 非水電解質二次電池
JP6656370B2 (ja) リチウムイオン二次電池および組電池
JP2007080583A (ja) 二次電池用電極と二次電池
KR101675610B1 (ko) 리튬 이차전지
KR20170084894A (ko) 리튬이차전지용 음극활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지
JP2003115324A (ja) 非水電解質電池。
JP2006066298A (ja) リチウム二次電池
KR20160054315A (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
JP6209614B2 (ja) 電極合剤塗料、非水電解質二次電池用電極、非水電解質二次電池用電極の製造方法、及び非水電解質二次電池
WO2017188043A1 (ja) リチウムイオン二次電池用電極の製造方法
JP2015187929A (ja) 非水電解質二次電池
JP4664455B2 (ja) 非水電解液二次電池
JP2000348729A (ja) リチウム二次電池用正極板、この製造方法及びこれを用いて製造したリチウム二次電池。
JP2007294654A (ja) 電気化学キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844509

Country of ref document: EP

Kind code of ref document: A1