WO2015037369A1 - 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法 - Google Patents

偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法 Download PDF

Info

Publication number
WO2015037369A1
WO2015037369A1 PCT/JP2014/070722 JP2014070722W WO2015037369A1 WO 2015037369 A1 WO2015037369 A1 WO 2015037369A1 JP 2014070722 W JP2014070722 W JP 2014070722W WO 2015037369 A1 WO2015037369 A1 WO 2015037369A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarizing plate
birefringence
plane
polarizer
Prior art date
Application number
PCT/JP2014/070722
Other languages
English (en)
French (fr)
Inventor
剛志 黒田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US14/917,189 priority Critical patent/US10310153B2/en
Priority to KR1020167006638A priority patent/KR20160055152A/ko
Priority to CN201480049413.7A priority patent/CN105518496A/zh
Publication of WO2015037369A1 publication Critical patent/WO2015037369A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/13355Polarising beam splitters [PBS]

Definitions

  • the present invention relates to a polarizing plate, a method for manufacturing a polarizing plate, an image display device, a method for manufacturing an image display device, and a method for improving the light transmittance of a polarizing plate.
  • the liquid crystal display device Since the liquid crystal display device has features such as power saving, light weight, and thin shape, it is used in various fields in place of the conventional CRT display.
  • a liquid crystal display device is indispensable for mobile devices such as mobile phones and smartphones that are rapidly spreading in recent years.
  • Such a liquid crystal display device has, for example, a configuration in which a pair of polarizing plates are arranged on a backlight source on the viewer side and the backlight source side so as to have a crossed Nicols relationship via a liquid crystal cell.
  • the light emitted from the backlight source passes through the polarizing plate on the backlight source side, the liquid crystal cell, and the polarizing plate on the viewer side, and an image is displayed on the display screen. Is done.
  • the polarizing plate has a structure in which a polarizer and a light-transmitting substrate are laminated, and the light-transmitting substrate of the polarizing plate is a film made of a cellulose ester typified by triacetyl cellulose. Is used (see, for example, Patent Document 1). This is because cellulose ester is excellent in transparency and optical isotropy, and has almost no retardation in the plane (low retardation value). Based on advantages such as having little influence on the display quality of the device and having moderate water permeability, moisture remaining in the polarizer when manufacturing the polarizing plate can be dried through the optical laminate. It is.
  • the liquid crystal display device having such a configuration, it is important to improve the luminance of the display screen to efficiently transmit the light emitted from the backlight light source to the display screen.
  • mobile devices such as smartphones that are rapidly spreading in recent years have a direct effect on the battery duration, and therefore it is required to transmit light from the backlight light source more efficiently to the display screen.
  • a polarization separation film is provided between a backlight light source and a polarizing plate on the backlight light source side so that polarized light is incident on the polarizing plate on the backlight light source side.
  • a display screen with improved brightness is known.
  • the polarized light separation film is a film having a function of transmitting a specific polarization component and reflecting other polarization components to return to the backlight light source side.
  • the transmittance may be lowered.
  • the polyester film has an aromatic ring with a high polarizability in the molecular chain, so the intrinsic birefringence is extremely large, and the molecular chain is oriented by stretching to give excellent transparency, heat resistance and mechanical strength. This is because it has the property that birefringence easily develops. For this reason, when a polarizing plate using a light-transmitting substrate having a birefringence index in the plane such as a polyester film is used as a polarizing plate on the backlight side of a liquid crystal display device, Since the polarization state of the specific polarization component that has passed is changed, the transmittance may be reduced.
  • the present invention provides a polarizing plate excellent in light transmittance, a method for producing the polarizing plate, and an image display device even when a light-transmitting base material having a birefringence in-plane is used.
  • An object of the present invention is to provide a method for manufacturing an image display device and a method for improving the light transmittance of a polarizing plate.
  • At least a light-transmitting base material having a birefringence index in a plane and a polarizer are laminated in this order from the backlight light source side, and are arranged and used on the backlight light source side of the image display device.
  • a polarizing plate wherein polarized light is incident on a light-transmitting substrate having a birefringence in the plane, and the light-transmitting substrate having a birefringence in the plane and the above
  • polarizer means that the angle between the fast axis, which is the direction in which the refractive index of the light-transmitting substrate having a birefringence index in the plane is small, and the transmission axis of the polarizer is 0 ° ⁇ 30 ° or The polarizing plate is laminated so as to be 90 ° ⁇ 30 °.
  • the light-transmitting substrate having a birefringence in the plane and the polarizer are in a direction in which the refractive index of the light-transmitting substrate having a birefringence in the plane is small.
  • the layers are preferably laminated so that the angle formed between the phase advance axis and the transmission axis of the polarizer is 0 ° ⁇ 15 ° or 90 ° ⁇ 15 °.
  • the light-transmitting substrate having a birefringence in the plane has a refractive index (nx) in the slow axis direction, which is a direction in which the refractive index is large, and a phase advance in a direction perpendicular to the slow axis direction.
  • the difference (nx ⁇ ny) from the refractive index (ny) in the axial direction is preferably 0.01 or more.
  • the refractive index (nx) in the slow axis direction which is the direction in which the refractive index of the light-transmitting substrate having a birefringence index in the plane is large
  • the fast axis which is a direction orthogonal to the slow axis direction.
  • the refractive index (ny) in the direction and the average refractive index (N) of the light-transmitting substrate have the following relationship, and the angle formed by the fast axis and the transmission axis of the polarizer is It is preferably 0 ° ⁇ 2 °. nx>N> ny
  • the present invention provides a method for producing a polarizing plate in which at least a light-transmitting base material having a birefringence index in a plane and a polarizer are laminated in this order and are arranged and used on the backlight source side of an image display device.
  • a method of producing a polarizing plate comprising a step of laminating so that an angle between the transmission axis of the polarizer and the polarizer is 0 ° ⁇ 30 ° or 90 ° ⁇ 30 °.
  • this invention is also an image display apparatus provided with the polarizing plate of this invention mentioned above.
  • the image display device of the present invention preferably has a polarization separation film between the backlight source and the light-transmitting substrate having a birefringence in the plane.
  • the image display device of the present invention further includes, on the viewer side, an upper polarizing plate in which at least an upper light-transmitting substrate having a birefringence in the surface is provided on the upper polarizer,
  • the upper light-transmitting substrate having a birefringence in the upper polarizer and the upper polarizer are a fast axis that is a direction in which the refractive index of the upper light-transmitting substrate having a birefringence in the plane is small, and It is preferable that the angle formed by the transmission axis of the upper polarizer is not 90 °.
  • the present invention includes a polarizing plate that is used by arranging at least a light-transmitting base material having a birefringence index in a plane and a polarizer in this order and arranging them on the backlight source side of the image display device.
  • a method for manufacturing an image display device comprising: a light transmissive substrate having a birefringence in the plane; and the polarizer; and a light transmissive substrate having a birefringence in the plane having a small refractive index. And a step of laminating so that an angle formed between a fast axis as a direction and a transmission axis of the polarizer is 0 ° ⁇ 30 ° or 90 ° ⁇ 30 °. It is also a method.
  • At least a light-transmitting substrate having a birefringence in the plane and a polarizer are laminated in this order, and the light transmission of a polarizing plate used by being disposed on the backlight source side of the image display device is used.
  • a method for improving the refractive index, wherein the light-transmitting substrate having a birefringence in the plane and the polarizer are in a direction in which the refractive index of the light-transmitting substrate having a birefringence in the plane is small.
  • the light transmittance of the polarizing plate includes the fast axis that is the direction in which the refractive index of the light-transmitting substrate is small and the transmission of the polarizer. It was found that there is an angle dependency between the axes.
  • the present inventors laminated the light transmitting base material having a birefringence in the plane so that the fast axis, which is the direction in which the refractive index is small, and the transmission axis of the polarizer are in a specific angle range. It has been found that the light transmittance of the polarizing plate can be improved. And based on such knowledge, the inventors of the present invention have further intensively studied. As a result, the present inventors also dare to make a light-transmitting substrate made of a material such as cellulose ester, which has been conventionally used as an optically isotropic material. It has been found that by using a light-transmitting substrate having a birefringence index, the light transmittance can be improved as compared with using an optically isotropic material as it is, and the present invention has been completed.
  • a light-transmitting base material having a birefringence in-plane and a polarizer are laminated in this order, and are arranged and used on the backlight light source side of the image display device.
  • the light-transmitting substrate is not particularly limited as long as it has a birefringence in the plane, and examples thereof include substrates made of polycarbonate, acrylic, polyester, etc. Among them, cost and mechanical properties are particularly important. A polyester substrate that is advantageous in strength is preferred. In the following description, a light-transmitting substrate having a birefringence in the plane will be described as a polyester substrate.
  • the birefringence index is intentionally increased. It can be used by having it.
  • the refractive index (nx) in the direction in which the refractive index is large (the slow axis direction) in the plane of the polyester substrate, and the direction (the fast axis direction) perpendicular to the slow axis direction.
  • the difference nx ⁇ ny (hereinafter also referred to as ⁇ n) from the refractive index (ny) is preferably 0.01 or more.
  • ⁇ n is less than 0.01, the effect of improving transmittance may be reduced.
  • the ⁇ n is preferably 0.30 or less.
  • the more preferable lower limit of ⁇ n is 0.05, and the more preferable upper limit is 0.27.
  • the more preferable upper limit of ⁇ n is 0.25.
  • whether or not the light-transmitting substrate has an in-plane birefringence is determined by ⁇ n (nx ⁇ ny) ⁇ 0.0005 at a refractive index of a wavelength of 550 nm. It is assumed that those having birefringence and those having ⁇ n ⁇ 0.0005 do not have birefringence.
  • the birefringence can be measured by setting a measurement angle of 0 ° and a measurement wavelength of 552.1 nm using KOBRA-WR manufactured by Oji Scientific Instruments. At this time, for calculating the birefringence, the film thickness and the average refractive index are required.
  • the film thickness can be measured using, for example, a micrometer (Digital Micrometer, manufactured by Mitutoyo Corporation) or an electric micrometer (produced by Anritsu Corporation).
  • the average refractive index can be measured using an Abbe refractometer or an ellipsometer.
  • ⁇ n of TD80UL-M made by Fuji Film Co., Ltd.
  • ZF16-100 made by Nippon Zeon Co., Ltd.
  • cycloolefin polymer which is generally known as an isotropic material
  • two polarizing plates are used to determine the orientation axis direction (major axis direction) of the light-transmitting substrate, and refraction of two axes perpendicular to the orientation axis direction
  • the rate (nx, ny) can be obtained by an Abbe refractometer (NAG-4T manufactured by Atago Co., Ltd.), or after a black vinyl tape (for example, Yamato vinyl tape No200-38-21 38 mm width) is pasted on the back surface.
  • polarization measurement S-polarized light, with slow axis parallel to S-polarized light Measure the reflectivity of 5 degrees when the fast axis is parallel, and from the following formula (1) showing the relationship between the reflectivity (R) and the refractive index (n), each of the slow axis and the fast axis The refractive index (nx, ny) of the wavelength can also be calculated.
  • R (%) (1-n) 2 / (1 + n) 2 formula (1)
  • Nx is the refractive index in the slow axis direction of the light transmissive substrate
  • ny is the refractive index in the fast axis direction of the light transmissive substrate
  • nz is the refractive index in the thickness direction of the light transmissive substrate. It is. (Calculation of three-dimensional refractive index wavelength dispersion) First, a calculation method of three-dimensional refractive index wavelength dispersion will be specifically described by taking a cycloolefin polymer as an example.
  • the average refractive index wavelength dispersion of a cycloolefin polymer film having no in-plane birefringence was measured using an ellipsometer (UVISEL Horiba, Ltd.), and the results are shown in FIG. From this measurement result, the average refractive index wavelength dispersion of the cycloolefin polymer film having no in-plane birefringence was defined as the refractive index wavelength dispersion of nx, ny, and nz.
  • the film was uniaxially stretched at a free temperature at a stretching temperature of 155 ° C. to obtain a film having a birefringence in the plane.
  • the film thickness was 100 ⁇ m.
  • This free-end uniaxially stretched film was measured with a birefringence meter (KOBRA-21ADH, Oji Scientific Instruments) with four retardation values (447.6 nm, 547.0 nm, 630.6 nm) at an incident angle of 0 ° and 40 °. 743.4 nm). Based on the average refractive index (N) and retardation value at each wavelength, the three-dimensional refractive index using the Couchy or Sellmeier equation, etc., using the three-dimensional chromatic dispersion calculation software attached to the birefringence meter. The chromatic dispersion was calculated and the result is shown in FIG. In FIG. 2, ny is shown substantially overlapping with nz.
  • the refractive index wavelength dispersion (nx, ny) of polyethylene terephthalate having a birefringence in the plane was calculated using a spectrophotometer (V7100 type, automatic absolute reflectance measurement unit VAR-7010, manufactured by JASCO Corporation). Apply a black vinyl tape (for example, Yamato vinyl tape No200-38-21 38 mm width) larger than the measurement spot area on the surface opposite to the measurement surface to prevent back reflection, and then measure the polarization: S-polarized light Then, the 5-degree spectral reflectance was measured when the alignment axis of the light-transmitting substrate was installed in parallel and when the axis orthogonal to the alignment axis was installed in parallel. The results are shown in FIG.
  • the refractive index wavelength dispersion (nx, ny) was calculated from the above formula (1) showing the relationship between the reflectance (R) and the refractive index (n).
  • a direction indicating a larger reflectance (refractive index calculated by the above equation (1)) is nx (also referred to as a slow axis), and a smaller reflectance (refractive index calculated by the above equation (1)) is indicated.
  • the direction was ny (also called fast axis).
  • the orientation axis is a state in which a film having a birefringence in-plane is sandwiched between two polarizing plates placed in a crossed Nicol state on a light source, the film is rotated, and light leakage is minimized.
  • the transmission axis of the polarizing plate or the same direction as the absorption axis can be used as the orientation axis of the film.
  • the refractive index nz can be calculated from the average refractive index (N) and the above equation (2).
  • the material constituting the polyester base material is not particularly limited as long as it satisfies the above-described ⁇ n, but is synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • Examples include linear saturated polyester.
  • Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene naphthalate (polyethylene-2,6-naphthalate, polyethylene-1,4-naphthalate). , Polyethylene-1,5-naphthalate, polyethylene-2,7-naphthalate, polyethylene-2,3-naphthalate) and the like.
  • the polyester used for the polyester substrate may be a copolymer of these polyesters.
  • the polyester is mainly used (for example, a component of 80 mol% or more), and a small proportion (for example, 20 mol% or less). It may be blended with these types of resins.
  • Polyethylene terephthalate or polyethylene naphthalate is particularly preferable as the polyester because of good balance between mechanical properties and optical properties.
  • it is preferably made of polyethylene terephthalate (PET). This is because polyethylene terephthalate is highly versatile and easily available.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • the method for obtaining the polyester base material is not particularly limited as long as it satisfies the above-described ⁇ n.
  • a polyester such as the above-mentioned PET, which is a material, is melted and extruded into a sheet to form glass.
  • the method of heat-processing after transverse stretching using a tenter etc. at the temperature more than transition temperature is mentioned.
  • the transverse stretching temperature is preferably 80 to 130 ° C, more preferably 90 to 120 ° C.
  • the transverse draw ratio is preferably 2.5 to 6.0 times, more preferably 3.0 to 5.5 times.
  • the transverse draw ratio exceeds 6.0 times, the transparency of the resulting polyester base material tends to be lowered, and when the transverse draw ratio is less than 2.5 times, the draw tension becomes small.
  • the birefringence of the substrate may be reduced.
  • the unstretched polyester is subjected to transverse stretching under the above conditions using a biaxial stretching test apparatus, and then stretched in the flow direction with respect to the transverse stretching (hereinafter also referred to as longitudinal stretching). Also good.
  • the longitudinal stretching preferably has a stretching ratio of 2 times or less.
  • the value of ⁇ n may not be within the preferred range described above.
  • the treatment temperature during the heat treatment is preferably 100 to 250 ° C., more preferably 180 to 245 ° C.
  • the thickness of the polyester base material is preferably in the range of 5 to 300 ⁇ m. If it is less than 5 ⁇ m, tearing, tearing and the like are likely to occur, and the utility as an industrial material may be significantly reduced. On the other hand, if it exceeds 300 ⁇ m, the polyester base material is very rigid, the flexibility specific to the polymer film is lowered, and the practicality as an industrial material is also lowered, which is not preferable.
  • the minimum with more preferable thickness of the said polyester base material is 10 micrometers, a more preferable upper limit is 200 micrometers, and a still more preferable upper limit is 150 micrometers.
  • the polyester base material preferably has a transmittance in the visible light region of 80% or more, more preferably 84% or more.
  • the transmittance can be measured according to JIS K7361-1 (a test method for the total light transmittance of a plastic-transparent material).
  • the polyester substrate may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, and flame treatment without departing from the spirit of the present invention. Good.
  • the polarizer is not particularly limited, and for example, a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, etc. dyed and stretched with iodine or the like can be used.
  • the light transmissive substrate and the polarizer have an angle formed by a fast axis which is a direction in which the refractive index of the light transmissive substrate is small and the transmission axis of the polarizer,
  • the layers are laminated so as to be 0 ° ⁇ 30 ° or 90 ° ⁇ 30 °. Since the light transmissive substrate and the polarizer are arranged as described above, the polarizing plate of the present invention can have excellent light transmittance as described above.
  • the polarizing plate of the present invention when the angle formed by the fast axis of the light-transmitting substrate and the transmission axis of the polarizer is out of the above range, specifically when it is less than 45 ° ⁇ 15 °, the polarizing plate of the present invention
  • the light transmittance is extremely low. This is due to the following reason.
  • a polarizing plate provided with a polarization separation film between a light source and a polarizing element the direction of the polarization axis of light transmitted through the transmission axis of the polarizer and the polarization axis of polarized light transmitted through the polarization separation film are usually determined. It is installed so as to coincide with the direction.
  • a light-transmitting substrate having a birefringence in-plane is installed between the polarizer and the polarization separation film, and the fast axis of the light-transmitting substrate and the transmission axis of the polarizer Is less than 45 ° ⁇ 15 °, the polarization axis of the polarized light transmitted through the polarization separation film changes, and is absorbed by the absorption axis of the polarizer.
  • the light transmittance is extremely low.
  • the light-transmitting base material and the polarizer have an angle between a fast axis of the light-transmitting base material and a transmission axis of the polarizer of 0 ° ⁇ 15 ° or 90 °. It is preferable that the layers are laminated so as to be ⁇ 15 °. When the angle between the fast axis of the light-transmitting substrate and the transmission axis of the polarizer is in the above range, the light transmittance of the polarizing plate of the present invention is extremely good.
  • the light-transmitting base material and the polarizer have an angle of 0 ° ⁇ 5 ° between the fast axis of the light-transmitting base material and the transmission axis of the polarizer. It is more preferable that the layers are laminated. When the angle between the fast axis of the light-transmitting substrate and the transmission axis of the polarizer is in the above range, the light transmittance of the polarizing plate of the present invention is extremely good.
  • the polarized light is converted into the light transmissive group. This is because the reflectance when entering the material can be reduced.
  • the reason is as follows. That is, when polarized light transmitted through the polarization separation film enters the polarizing plate, even if the angle formed by the fast axis of the light-transmitting substrate and the transmission axis of the polarizer is 0 °, Even at 0 °, the polarized light transmitted through the polarization separation film passes through the light-transmitting substrate while maintaining its vibration direction.
  • represents the reflectance
  • na represents the in-plane refractive index of the light-transmitting substrate in the same direction as the light vibration direction.
  • (1 ⁇ na) 2 / (1 + na) 2
  • the transmittance ⁇ of the polarizing plate can be obtained by the following equation. Since the material is the same, the absorption rate ⁇ is the same value. The rate ⁇ may be reduced.
  • the light-transmitting substrate having a birefringence in the plane and the polarizer have a fast axis that is a direction in which the refractive index of the light-transmitting substrate is small and a transmission axis of the polarizer.
  • the angle formed is 0 °, light is reflected by the difference between the smallest refractive index and the refractive index of air in the plane of the light transmissive substrate, so that the reflectance can be minimized and the transmittance can be reduced. Can be raised.
  • the light-transmitting substrate having a birefringence in the plane and the polarizer have a fast axis which is a direction in which the refractive index of the light-transmitting substrate is small and a transmission axis of the polarizer.
  • the angle formed is 90 °, light is reflected by the difference between the largest refractive index and the refractive index of air in the plane of the light-transmitting substrate, so that the reflectance becomes the largest, and as a result, The transmittance decreases.
  • the refractive index (nx) in the slow axis direction which is the direction in which the refractive index of the light-transmitting substrate having a birefringence in the plane is large, and orthogonal to the slow axis direction.
  • the refractive index (ny) in the fast axis direction, which is the direction in which the light is transmitted, and the average refractive index (N) of the light-transmitting substrate have the following relationship, and the fast axis and the polarizer
  • the angle formed with the transmission axis is 0 ° ⁇ 2 °, it is most preferable because the transmittance can be improved as compared with the case where the light-transmitting substrate is used as isotropic material.
  • the polarizing plate of the present invention has a refractive index in the fast axis direction of the light-transmitting substrate on the surface opposite to the side on which the polarizer of the light-transmitting substrate having birefringence is laminated.
  • a low refractive index layer having a refractive index smaller than the refractive index ny may be provided.
  • Such a low refractive index layer is not particularly limited as long as the refractive index is smaller than the refractive index ny in the fast axis direction of the light-transmitting substrate, and includes those made of conventionally known materials. .
  • the polarized light is incident on a light-transmitting substrate having a birefringence in the plane.
  • the polarized light is not particularly limited.
  • light generated from a backlight light source of an image display device such as a liquid crystal display device is transmitted through a polarization separation film and polarized.
  • a polarization separation film is a member having a polarization separation function of transmitting only a specific polarization component and reflecting other polarization components of the light emitted from the backlight light source.
  • the polarizing plate of the present invention When the polarizing plate of the present invention is used in a liquid crystal display device, the polarizing plate of the present invention is provided between the liquid crystal cell and the polarization separation film, and the polarizing plate of the present invention selects only a specific polarizing component. Therefore, the polarizing plate of the present invention can be selectively reflected and reused by selectively reusing the polarizing component other than the specific polarizing component (the polarizing component that transmits the polarizing plate of the present invention) using the polarization separation film. The amount of light passing therethrough can be increased and the luminance of the display screen of the liquid crystal display device can be improved.
  • the polarization separation film a general film used in a liquid crystal display device can be used. Moreover, you may use a commercial item as a polarized light separation film, for example, the DBEF series by Sumitomo 3M can be used.
  • the light-transmitting substrate and the polarizer are laminated so that the fast axis of the light-transmitting substrate and the transmission axis of the polarizer are in a specific relationship. The rate will be improved.
  • Such a method of improving light transmittance by the polarizing plate of the present invention is also one of the present invention.
  • the polarizing plate of the present invention includes a light-transmitting base material having a birefringence in the plane and the polarizer, and a direction in which the refractive index of the light-transmitting base material having a birefringence in the plane is small. It can manufacture by laminating
  • a light-transmitting base material having a birefringence in the plane and a polarizer are laminated in this order, and are arranged and used on the backlight source side of the image display device.
  • a polarizing plate manufacturing method comprising: a light-transmitting substrate having a birefringence in the plane; and the polarizer, and a light-transmitting substrate having a birefringence in the plane having a small refractive index.
  • examples of the light-transmitting substrate and the polarizer having a birefringence in the plane include those similar to the polarizing plate of the present invention described above.
  • the image display device comprising the polarizing plate of the present invention described above is also one aspect of the present invention.
  • the image display device of the present invention further includes an upper polarizing plate provided on the upper polarizer with at least an upper light-transmitting substrate having a birefringence index in the plane on the viewer side,
  • the upper light-transmitting substrate having a birefringence and the upper polarizer are a fast axis that is a direction in which the refractive index of the upper light-transmitting substrate having a birefringence in the plane is small, and the upper polarization It is preferable that the angle formed by the transmission axis of the child is not 90 °.
  • the image of the present invention When the angle formed by the fast axis, which is the direction in which the refractive index of the upper light-transmitting substrate having a birefringence index in the plane is small, and the transmission axis of the upper polarizer is 90 °, the image of the present invention.
  • the transmittance of the upper polarizing plate for the light emitted from the backlight light source of the display device becomes small, and as a result, the light transmittance of the image display device of the present invention may be inferior. More preferably, it is less than 0 ° ⁇ 30 °. More preferably, it is less than 0 ° ⁇ 10 °. The reason is that the difference in refractive index when exiting from the light-transmitting substrate to the air interface is small, so that the reflectance is small, and as a result, the transmittance of the upper polarizing plate is increased.
  • the upper light-transmitting substrate and the upper polarizer constituting the upper polarizing plate and having a birefringence in the plane are the same as the light-transmitting substrate and the polarizer in the polarizing plate of the present invention described above, respectively. Is mentioned.
  • the image display device of the present invention provided with the upper polarizing plate is a liquid crystal display device provided with the upper polarizing plate on the viewer side through the liquid crystal cell and the polarizing plate of the present invention on the backlight source side. It is preferable. Moreover, it is preferable that the transmission axis of the polarizer of the polarizing plate of the present invention and the upper polarizer of the upper polarizing plate have a crossed Nicols relationship.
  • the image display device of the present invention comprises a liquid crystal cell and a backlight light source that irradiates the liquid crystal cell from the back, and the liquid crystal display device in which the polarizing plate of the present invention is formed on the backlight light source side of the liquid crystal cell. (LCD) is preferred.
  • the backlight light source is irradiated from the lower side of the polarizing plate of the present invention, and the above-described polarization separation film is formed between the backlight light source and the polarizing plate of the present invention. It may be provided between them.
  • a phase difference plate may be inserted between the liquid crystal cell and the polarizing plate of the present invention.
  • An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
  • the backlight light source in the liquid crystal display device is not particularly limited, but is preferably a white light emitting diode (white LED).
  • the display device is preferably a liquid crystal display device including a white light emitting diode as a backlight light source.
  • the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor.
  • white light-emitting diodes which are composed of a combination of blue light-emitting diodes using compound semiconductors and yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum. It is effective in improving the rate and is excellent in luminous efficiency. Further, since white LEDs with low power consumption can be widely used, it is possible to achieve an energy saving effect.
  • the image display device of the present invention can be used for display display of a television, a computer, a tablet PC, and the like, and can be particularly preferably used for the surface of a high-definition image display.
  • an image display device including a polarizing plate that is used by arranging at least a light-transmitting base material having a birefringence index in a plane and a polarizer in this order and arranged on the backlight source side of the image display device.
  • the manufacturing method is also one aspect of the present invention. That is, in the image display device manufacturing method of the present invention, at least a light-transmitting base material having a birefringence in the plane and a polarizer are laminated in this order and arranged on the backlight source side of the image display device.
  • the polarizing plate and the light-transmitting substrate having a birefringence in the plane constituting the polarizing plate and the polarizer are as described in the polarizing plate of the present invention described above. The same thing is mentioned.
  • the light-transmitting substrate and the polarizer are laminated so that the fast axis of the light-transmitting substrate and the transmission axis of the polarizer have a specific relationship.
  • the light transmittance is improved. Since the image display device of the present invention includes the polarizing plate of the present invention, the image display device of the present invention also has improved light transmittance.
  • the polarizing plate of the present invention has the above-described configuration, even when a light-transmitting substrate having a birefringence in the surface is used, it has excellent light transmittance. Even a polarizing plate using a film made of cellulose ester typified by triacetyl cellulose that does not have a phase difference in the plane in the past has an excellent transmittance by providing a birefringence. It will be a thing.
  • the light transmissive substrate A was uniaxially stretched 1.5 times at 160 ° C. to prepare a light transmissive substrate a having in-plane birefringence.
  • the refractive index nx 1.4845 at a wavelength of 550 nm
  • nz 1.4834.
  • the light transmissive substrate B was uniaxially stretched 1.5 times at 150 ° C. to produce a light transmissive substrate b having birefringence in the plane.
  • the light transmissive substrate C was uniaxially stretched 4.0 times at 120 ° C. to produce a light transmissive substrate c1 having birefringence in the plane.
  • the refractive index wavelength dispersion (nx, ny) was calculated using a spectrophotometer.
  • the light transmissive substrate C was uniaxially stretched 2.0 times at 120 ° C. to produce a light transmissive substrate c2 having birefringence in the plane.
  • the refractive index wavelength dispersion (nx, ny) was calculated using a spectrophotometer.
  • the light transmissive substrate C was adjusted at a biaxial stretching ratio at 120 ° C. to prepare a light transmissive substrate c3 having in-plane birefringence.
  • the refractive index wavelength dispersion (nx, ny) was calculated using a spectrophotometer.
  • the light-transmitting substrate C was adjusted at a biaxial stretching ratio at 120 ° C. to prepare a light-transmitting substrate c4 having in-plane birefringence.
  • the refractive index wavelength dispersion (nx, ny) was calculated using a spectrophotometer.
  • the light transmissive substrate D was uniaxially stretched 4.0 times at 120 ° C. to produce a light transmissive substrate d having birefringence in the plane.
  • the refractive index wavelength dispersion (nx, ny) was calculated using a spectrophotometer.
  • the transmittance can be calculated using a 2 ⁇ 2 matrix method, a 4 ⁇ 4 matrix method, or an extended Jones matrix method.
  • the transmittance of the polarizing plate was calculated using simulation software (LCD Master, manufactured by Shintec Co., Ltd.).
  • FIG. 4 shows the layer structure of the polarizing plate. The above calculation was performed by putting the three-dimensional refractive index wavelength dispersion of each light-transmitting substrate into the Example and Comparative Example portions of FIG.
  • the film thickness of each layer was set to 80 ⁇ m in the examples, comparative examples, and the protective film part, and 20 ⁇ m in the polarizer part.
  • FIG. 5 shows the spectrum of the light source.
  • the polarization state of the incident light was linearly polarized so as to be the same as the polarization state after passing through the polarization separation film, and the light oscillated in the transmission axis direction of the polarizer.
  • FIG. 6 shows the refractive index wavelength dispersion of the protective film used, and the protective film was an isotropic material.
  • FIG. 7 shows the refractive index and extinction coefficient of the polarizer used. In FIG. 7, the absorption axis direction and the transmission axis direction are substantially overlapped.
  • Example 1 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate a, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is 0 °, Transmittance was calculated.
  • Example 2 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate a, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is 90 °, Transmittance was calculated.
  • Example 3 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate b, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is set to 0 °. Transmittance was calculated.
  • Example 4 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate b, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is 90 °, Transmittance was calculated.
  • Example 6 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c1, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is 2 °, Transmittance was calculated.
  • Example 7 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c1, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is 30 °, Transmittance was calculated.
  • Example 8 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c1, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is set to 60 °. Transmittance was calculated.
  • Example 9 Using the three-dimensional refractive index wavelength dispersion of the light-transmitting substrate c1, the angle between the fast axis of the light-transmitting substrate and the transmission axis of the polarizer is set to 90 °. Transmittance was calculated.
  • Example 10 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c2, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is set to 0 °. Transmittance was calculated.
  • Example 11 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c2, the angle between the phase advance axis of the light transmissive substrate and the transmission axis of the polarizer is 90 °, Transmittance was calculated.
  • Example 12 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c3, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is set to 0 °. Transmittance was calculated.
  • Example 14 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c4, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is set to 0 °. Transmittance was calculated.
  • Example 15 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate c4, the angle between the phase advance axis of the light transmissive substrate and the transmission axis of the polarizer is 90 °, Transmittance was calculated.
  • Example 16 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate d, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is set to 0 °. Transmittance was calculated.
  • Example 17 Using the three-dimensional refractive index wavelength dispersion of the light transmissive substrate d, the angle between the fast axis of the light transmissive substrate and the transmission axis of the polarizer is 90 °, Transmittance was calculated.
  • Table 1 shows the results of evaluation according to Examples, Comparative Examples, and Reference Examples.
  • the transmittance when the polarization state of incident light is linearly polarized light is the transmittance of a polarizing plate having in-plane birefringence, where 100 is the transmittance when there is no in-plane birefringence for each material. Shows the rate.
  • the transmittance when the polarization state of incident light is random light is also shown as the transmittance of a polarizing plate having in-plane birefringence, where 100 is the transmittance when there is no in-plane birefringence. ing.
  • the polarizing plate according to the example in which the slow axis of the light-transmitting substrate and the transmission axis of the polarizer are within a predetermined angle range is more light transmissive than the polarizing plate according to the comparative example that is out of the angle range. It was excellent.
  • Example 1 Comparison between Example 1 and Reference Example 1, comparison between Example 3 and Reference Example 2, comparison between Examples 5, 10, 12 and Reference Example 3, comparison between Example 16 and Reference Example 4
  • the polarizing plate according to the example using the light-transmitting base material having the birefringence in the plane is more than the polarizing plate according to the comparative example using the light-transmitting base material having no in-plane birefringence. Also, the light transmission was excellent.
  • the polarizing plate of the present invention has excellent light transmittance even when a light-transmitting substrate having a birefringence in the plane is used, and has a phase difference in the conventional plane. Even a polarizing plate using a film composed of a cellulose ester typified by triacetylcellulose has a birefringence, so that the transmittance is excellent and the back of a liquid crystal display (LCD) It can be suitably used as a polarizing plate disposed on the light source side.
  • LCD liquid crystal display

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

面内に位相差を持たない光透過性基材が用いられた場合であっても、光透過率に優れる偏光板を提供する。バックライト光源側から、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置の上記バックライト光源側に配置して用いられる偏光板であって、上記面内に複屈折率を有する光透過性基材に、偏光された光が入射されるものであり、上記面内に複屈折率を有する光透過性基材と上記偏光子とは、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層されていることを特徴とする偏光板。

Description

偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
本発明は、偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法に関する。
液晶表示装置は、省電力、軽量、薄型等といった特徴を有していることから、従来のCRTディスプレイに替わり様々な分野で用いられている。特に、近年急速に普及している携帯電話やスマートフォン等のモバイル機器では、液晶表示装置が必須となっている。
このような液晶表示装置は、例えば、バックライト光源上に、観察者側とバックライト光源側とに一対の偏光板が、液晶セルを介してクロスニコルの関係となるように配置された構成が知られている。
そして、このような構成の液晶表示装置は、バックライト光源から照射された光が、バックライト光源側の偏光板、液晶セル及び観察者側の偏光板を透過し、表示画面にて映像が表示される。
通常、上記偏光板としては、偏光子と光透過性基材とが積層された構造を有し、上記偏光板の光透過性基材としては、トリアセチルセルロースに代表されるセルロースエステルからなるフィルムが用いられている(例えば、特許文献1参照)。これは、セルロースエステルは、透明性、光学等方性に優れ、面内にほとんど位相差を持たない(リタデーション値が低い)ため、入射直線偏光の振動方向を変化させることが極めて少なく、液晶表示装置の表示品質への影響が少ないことや、適度な透水性を有することから、偏光板を製造した時に偏光子に残留した水分を、光学積層体を通して乾燥させることができる等の利点に基づくものである。
しかしながら、セルロースエステルフィルムは、透湿度が高すぎるため、耐湿試験を行うと褪色による、偏光度の低下をきたすこと等の問題があった。このようなセルロースエステルフィルムの問題点から、透明性、耐熱性、機械強度に優れ、かつ、セルロースエステルフィルムに比べて安価で市場において入手が容易な、あるいは簡易な方法で製造することが可能な汎用性フィルムを保護フィルムとして用いることが望まれており、例えば、セルロースエステルフィルムの代わりとして、ポリエチレンテレフタレート等のポリエステルフィルムを利用する試みがなされている(例えば、特許文献2参照)。
ところで、このような構成の液晶表示装置において、バックライト光源から照射された光を効率よく表示画面まで透過させることは、表示画面の輝度向上に重要である。特に、近年急速に普及しているスマートフォン等のモバイル機器では、バッテリーの持続時間に直接影響するため、より効率よくバックライト光源からの光を表示画面まで透過させることが求められている。
このような液晶表示装置として、例えば、バックライト光源と該バックライト光源側の偏光板との間に、偏光分離フィルムを設ける等してバックライト光源側の偏光板に偏光された光を入射させ、表示画面の輝度を向上させたものが知られている。なお、上記偏光分離フィルムとは、特定の偏光成分を透過させるとともに、その他の偏光成分を反射してバックライト光源側に戻す機能を有するフィルムである。
ところが、このような構成の液晶表示装置のバックライト光源側の偏光板として、ポリエステルフィルムからなる保護フィルムを用いた偏光板を用いた場合、透過率が低下してしまうことがあった。これは、ポリエステルフィルムは、分子鎖中に分極率の大きい芳香族環を持つため固有複屈折が極めて大きく、優れた透明性、耐熱性、機械強度を付与させるための延伸処理による分子鎖の配向に伴って複屈折が発現しやすいという性質を有するためである。
このため、このようなポリエステルフィルムのような面内に複屈折率を有する光透過性基材を用いた偏光板を、液晶表示装置のバックライト側の偏光板として使用した場合、偏光分離フィルムを通過した特定の偏光成分の偏光状態を変化させてしまうため、透過率が低下してしまうことがあった。
特開平6-51120号公報 国際公開第2011/162198号
本発明は、上記現状に鑑み、面内に複屈折率を有する光透過性基材が用いられた場合であっても、光透過率に優れる偏光板、該偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法を提供することを目的とする。
本発明は、バックライト光源側から、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置の上記バックライト光源側に配置して用いられる偏光板であって、上記面内に複屈折率を有する光透過性基材に、偏光された光が入射されるものであり、上記面内に複屈折率を有する光透過性基材と上記偏光子とは、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層されていることを特徴とする偏光板である。
本発明の偏光板において、上記面内に複屈折率を有する光透過性基材と上記偏光子とは、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±15°又は90°±15°なるように積層されていることが好ましい。
また、上記面内に複屈折率を有する光透過性基材は、屈折率が大きい方向である遅相軸方向の屈折率(nx)と、上記遅相軸方向と直交する方向である進相軸方向の屈折率(ny)との差(nx-ny)が、0.01以上であることが好ましい。
また、上記面内に複屈折率を有する光透過性基材の屈折率が大きい方向である遅相軸方向の屈折率(nx)と、上記遅相軸方向と直交する方向である進相軸方向の屈折率(ny)と、上記光透過性基材の平均屈折率(N)とが、下記式の関係を有し、かつ、上記進相軸と偏光子の透過軸とのなす角度が0°±2°であることが好ましい。
 nx>N>ny
また、本発明は、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板の製造方法であって、上記面内に複屈折率を有する光透過性基材と上記偏光子とを、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層する工程を有することを特徴とする偏光板の製造方法でもある。
また、本発明は、上述した本発明の偏光板を備えることを特徴とする画像表示装置でもある。
本発明の画像表示装置は、バックライト光源と面内に複屈折率を有する光透過性基材との間に、偏光分離フィルムを有することが好ましい。
また、本発明の画像表示装置は、観察者側に、少なくとも、面内に複屈折率を有する上部光透過性基材が上部偏光子上に設けられた上部偏光板を更に有し、上記面内に複屈折率を有する上部光透過性基材と上記上部偏光子とは、上記面内に複屈折率を有する上部光透過性基材の屈折率が小さい方向である進相軸と、上記上部偏光子の透過軸とがなす角度が90°とならないように配置されていることが好ましい。
また、本発明は、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板を備えた画像表示装置の製造方法であって、上記面内に複屈折率を有する光透過性基材と上記偏光子とを、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層する工程を有することを特徴とする画像表示装置の製造方法でもある。
また、本発明は、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板の光透過率改善方法であって、上記面内に複屈折率を有する光透過性基材と上記偏光子とを、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層することを特徴とする偏光板の光透過率改善方法でもある。
以下に、本発明を詳細に説明する。
なお、本発明では、特別な記載がない限り、モノマー、オリゴマー、プレポリマー等の硬化性樹脂前駆体も“樹脂”と記載する。
本発明者らは、光透過性基材と偏光子とが積層され、画像表示装置のバックライト光源側に配置して用いられるとともに、偏光された光が入射される偏光板について鋭意検討した結果、面内に複屈折率を有する光透過性基材を用いた場合、偏光板の光透過率には、該光透過性基材の屈折率の小さい方向である進相軸と偏光子の透過軸との間で角度依存性があることを見出した。
すなわち、本発明者らは、面内に複屈折率を有する光透過性基材の屈折率の小さい方向である進相軸と上記偏光子の透過軸とが特定の角度範囲となるように積層することで、該偏光板の光透過率を向上させることができることを見出した。そして、このような知見に基づき本発明者らは、更に鋭意検討した結果、従来、光学等方性材料として用いられてきたセルロースエステル等の材料からなる光透過性基材に対しても、敢えて複屈折率を持たせた光透過性基材とすることにより、光学等方性材料のまま用いるよりも、光透過率を向上させることができることを見出し、本発明を完成するに至った。
本発明の偏光板は、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられるものである。
上記光透過性基材としては、面内に複屈折率を有するものであれば特に限定されず、例えば、ポリカーボネート、アクリル、ポリエステル等からなる基材が挙げられるが、なかでも、コスト及び機械的強度において有利なポリエステル基材であることが好適である。なお、以下の説明では、面内に複屈折率を有する光透過性基材をポリエステル基材として説明する。
なお、本発明の偏光板において、上記光透過性基材としては、従来、光学等方性材料として用いられていたセルロースエステル等からなる光透過性基材であっても、敢えて複屈折率を持たせることで使用することができる。
本発明の偏光板において、上記ポリエステル基材の面内において屈折率が大きい方向(遅相軸方向)の屈折率(nx)と、上記遅相軸方向と直交する方向(進相軸方向)の屈折率(ny)との差nx-ny(以下、Δnとも表記する)は、0.01以上であることが好ましい。上記Δnが0.01未満であると、透過率向上効果が少なくなることがある。一方、上記Δnは、0.30以下であることが好ましい。0.30を超えると、ポリエステル基材を過度に延伸する必要が生じるため、ポリエステル基材が裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下することがある。
以上の観点から、上記Δnのより好ましい下限は0.05、より好ましい上限は0.27である。なお、上記Δnが0.27を超えると、耐湿熱性試験でのポリエステル基材の耐久性が劣ることがある。耐湿熱性試験での耐久性が優れることから、上記Δnの更に好ましい上限は0.25である。このようなΔnを満たすことで、好適な光透過率の向上を図ることができる。
なお、本明細書において、光透過性基材が面内に複屈折率を有しているか否かは、波長550nmの屈折率において、Δn(nx-ny)≧0.0005であるものは、複屈折性を有しているとし、Δn<0.0005であるものは、複屈折性を有していないとする。複屈折率は、王子計測機器社製KOBRA-WRを用いて、測定角0°かつ測定波長552.1nmに設定して、測定を行うことができる。このとき、複屈折率算出には、膜厚、平均屈折率が必要となる。膜厚は、例えば、マイクロメーター(Digimatic Micrometer、ミツトヨ社製)や、電気マイクロメータ(アンリツ社製)を用いて測定できる。平均屈折率は、アッベ屈折率計や、エリプソメーターを用いて測定することができる。
なお、一般的に等方性材料として知られる、トリアセチルセルロースからなるTD80UL-M(富士フィルム社製)、シクロオレフィンポリマーから成るZF16-100(日本ゼオン社製)のΔnは、上記測定方法により、それぞれ、0.0000375、0.00005であり、複屈折性を有していない(等方性)と判断した。
その他、複屈折率を測定する方法として、二枚の偏光板を用いて、光透過性基材の配向軸方向(主軸の方向)を求め、配向軸方向に対して直交する二つの軸の屈折率(nx、ny)を、アッベ屈折率計(アタゴ社製 NAR-4T)によって求めることもできるし、裏面に黒ビニールテープ(例えば、ヤマトビニールテープNo200-38-21 38mm幅)を貼ってから、分光光度計(V7100型、自動絶対反射率測定ユニット、VAR-7010 日本分光社製)を用いて、偏光測定:S偏光にて、S偏光に対して、遅相軸を平行にした場合と、進相軸を平行にした場合の5度反射率を測定し、反射率(R)と屈折率(n)との関係を示す下記式(1)より、遅相軸と進相軸の各波長の屈折率(nx、ny)を算出することもできる。
R(%)=(1-n)/(1+n)  式(1)
また、平均屈折率は、アッベ屈折率計や、エリプソメーターを用いて測定することができ、光透過性フィルムの厚み方向の屈折率nzは、上記の方法によって測定した、nx、nyを用いて、下記式(2)より、計算できる。
平均屈折率N=(nx+ny+nz)/3  式(2)
ここで、nx、ny、nzの算出方法を、具体例を挙げて説明する。
なお、nxは、光透過性基材の遅相軸方向の屈折率、nyは、光透過性基材の進相軸方向の屈折率、nzは、光透過性基材の厚み方向の屈折率である。
(3次元屈折率波長分散の算出)
まずは、シクロオレフィンポリマーを例に挙げて、3次元屈折率波長分散の算出方法を具体的に説明する。
面内に複屈折率を有さないシクロオレフィンポリマーフィルムの平均屈折率波長分散を、エリプソメーター(UVISEL 堀場製作所)を用いて測定し、その結果を図1に示した。この測定結果より、面内に複屈折率を有さないシクロオレフィンポリマーフィルムの平均屈折率波長分散を、nxとny、nzの屈折率波長分散とした。
このフィルムを延伸温度155℃で自由端一軸延伸して、面内に複屈折率を有するフィルムを得た。膜厚は、100μmであった。この自由端一軸延伸したフィルムを、複屈折測定計(KOBRA-21ADH、王子計測機器)により、入射角0°及び40°のリタデーション値を4波長(447.6nm、547.0nm、630.6nm、743.4nm)で測定した。
各波長での、平均屈折率(N)と、リタデーション値とを元に、複屈折測定計付属の3次元波長分散計算ソフトを用いて、Cauchy又はSellmeierの式などを用いて、3次元屈折率波長分散を算出し、その結果を図2に示した。なお、図2中、nyはnzとほぼ重なって示されている。この結果より、面内に複屈折率を有するシクロオレフィンポリマーフィルムの3次元屈折率波長分散を得た。
(分光光度計を用いた屈折率nx、ny、nzの算出)
ポリエチレンテレフタレートを例に挙げて、分光光度計を用いた屈折率nx、ny、nzの算出方法を具体的に説明する。
面内に複屈折率を有さないポリエチレンテレフタレートの平均屈折率波長分散は、上記3次元屈折率波長分散の算出方法と同様に行った。
面内に複屈折率を有するポリエチレンテレフタレートの屈折率波長分散(nx、ny)は、分光光度計(V7100型、自動絶対反射率測定ユニットVAR-7010 日本分光社製)を用いて算出した。測定面とは反対面に、裏面反射を防止するために測定スポット面積よりも大きな幅の黒ビニールテープ(例えば、ヤマトビニールテープNo200-38-21 38mm幅)を貼ってから、偏光測定:S偏光にて、光透過性基材の配向軸を平行に設置した場合と、配向軸に対して直交する軸を平行に設置した場合との5度分光反射率を測定した。結果を図3に示す。反射率(R)と屈折率(n)との関係を示す上記式(1)より、屈折率波長分散(nx、ny)を算出した。より大きい反射率(上記式(1)により算出された屈折率)を示す方向をnx(遅相軸ともいう)とし、より小さい反射率(上記式(1)により算出された屈折率)を示す方向をny(進相軸ともいう)とした。ここで、配向軸とは、光源の上に、クロスニコル状態に設置された二枚の偏光板の間に、面内に複屈折率を有するフィルムを挟み、フィルムを回転させ、光漏れがもっとも少ない状態の時、偏光板の透過軸、又は、吸収軸と同一方向が、フィルムの配向軸とすることができる。また、屈折率nzは、上記平均屈折率(N)と上記式(2)とにより算出できる。
上記ポリエステル基材を構成する材料としては、上述したΔnを充足するものであれば特に限定されないが、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とから合成される線状飽和ポリエステルが挙げられる。かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレンナフタレート(ポリエチレン-2,6-ナフタレート、ポリエチレン-1,4-ナフタレート、ポリエチレン-1,5-ナフタレート、ポリエチレン-2,7-ナフタレート、ポリエチレン-2,3-ナフタレート)などを例示することができる。また、ポリエステル基材に用いられるポリエステルは、これらのポリエステルの共重合体であってもよく、上記ポリエステルを主体(例えば80モル%以上の成分)とし、少割合(例えば20モル%以下)の他の種類の樹脂とブレンドしたものであってもよい。上記ポリエステルとしてポリエチレンテレフタレート又はポリエチレンナフタレートが力学的物性や光学物性等のバランスが良いので特に好ましい。特に、ポリエチレンテレフタレート(PET)からなることが好ましい。ポリエチレンテレフタレートは汎用性が高く、入手が容易であるからである。本発明においてはPETのような、汎用性が極めて高いフィルムであっても、光透過率に優れる偏光板を得ることができる。更に、PETは、透明性、熱又は機械的特性に優れ、延伸加工によりΔnの制御が可能であり、固有複屈折が大きいため、比較的容易に複屈折率を持たせることができる。
上記ポリエステル基材を得る方法としては、上述したΔnを充足する方法であれば特に限定されないが、例えば、材料の上記PET等のポリエステルを溶融し、シート状に押出し成形された未延伸ポリエステルをガラス転移温度以上の温度においてテンター等を用いて横延伸後、熱処理を施す方法が挙げられる。
上記横延伸温度としては、80~130℃が好ましく、より好ましくは90~120℃である。また、横延伸倍率は2.5~6.0倍が好ましく、より好ましくは3.0~5.5倍である。上記横延伸倍率が6.0倍を超えると、得られるポリエステル基材の透明性が低下しやすくなり、横延伸倍率が2.5倍未満であると、延伸張力も小さくなるため、得られるポリエステル基材の複屈折が小さくなることがある。
また、本発明においては、二軸延伸試験装置を用いて、上記未延伸ポリエステルの横延伸を上記条件で行った後、該横延伸に対する流れ方向の延伸(以下、縦延伸ともいう)を行ってもよい。この場合、上記縦延伸は、延伸倍率が2倍以下であることが好ましい。上記縦延伸の延伸倍率が2倍を超えると、Δnの値を上述した好ましい範囲にできないことがある。
また、上記熱処理時の処理温度はしては、100~250℃が好ましく、より好ましくは180~245℃である。
上記ポリエステル基材の厚みとしては、5~300μmの範囲内であることが好ましい。5μm未満であると、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下することがある。一方、300μmを超えると、ポリエステル基材が非常に剛直であり、高分子フィルム特有のしなやかさが低下し、やはり工業材料としての実用性が低下するので好ましくない。上記ポリエステル基材の厚さのより好ましい下限は10μm、より好ましい上限は200μmであり、更に好ましい上限は150μmである。
また、上記ポリエステル基材は、可視光領域における透過率が80%以上であることが好ましく、84%以上であるものがより好ましい。なお、上記透過率は、JIS K7361-1(プラスチック-透明材料の全光透過率の試験方法)により測定することができる。
また、本発明において、上記ポリエステル基材には本発明の趣旨を逸脱しない範囲で、けん化処理、グロー放電処理、コロナ放電処理、紫外線(UV)処理、及び火炎処理等の表面処理を行ってもよい。
上記偏光子としては特に限定されず、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等を使用することができる。
本発明の偏光板において、上記光透過性基材と上記偏光子とは、上記光透過性基材の屈折率が小さい方向である進相軸と上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層されている。本発明の偏光板は、上記光透過性基材と上記偏光子とが上述のように配置されるため、上述のような光透過率を優れたものとすることができる。すなわち、上記光透過性基材の進相軸と上記偏光子の透過軸とのなす角度が上記範囲を外れる場合、具体的には、45°±15°未満である場合、本発明の偏光板の光透過率が極めて低いものとなる。これは、以下の理由によるものである。
光源と偏光素子との間に偏光分離フィルムを備えた偏光板では、通常、偏光子の透過軸を透過する光の偏光軸の方向と、偏光分離フィルムを透過した偏光された光の偏光軸の方向とは、一致するように設置されている。このため、偏光子と偏光分離フィルムとの間に、面内に複屈折率を有する光透過性基材が設置され、かつ、上記光透過性基材の進相軸と上記偏光子の透過軸とのなす角度が、45°±15°未満の範囲である場合、偏光分離フィルムを透過した偏光された光の偏光軸が変化してしまい、偏光子の吸収軸によって吸収されてしまい、偏光板の光透過率が極めて低くなってしまう。
本発明の偏光板において、上記光透過性基材と上記偏光子とは、上記光透過性基材の進相軸と上記偏光子の透過軸とのなす角度が、0°±15°又は90°±15°となるように積層されていることが好ましい。上記光透過性基材の進相軸と上記偏光子の透過軸とのなす角度が上記範囲にあることで、本発明の偏光板の光透過率が極めて良好なものとなる。
本発明の偏光板において、上記光透過性基材と上記偏光子とは、上記光透過性基材の進相軸と上記偏光子の透過軸とのなす角度が、0°±5°となるように積層されていることがさらに好ましい。上記光透過性基材の進相軸と上記偏光子の透過軸とのなす角度が上記範囲にあることで、本発明の偏光板の光透過率が極めて良好なものとなる。これは、上記光透過性基材の屈折率が小さい方向である進相軸と上記偏光子の透過軸とのなす角度が、上記の範囲のとき、偏光された光が、上記光透過性基材に入射する際の反射率を小さくすることができるからである。
この理由は、以下の理由による。
すなわち、偏光分離フィルムを透過した偏光された光が偏光板に入射する場合、上記光透過性基材の進相軸と上記偏光子の透過軸とのなす角度が0°であっても、90°であっても、上記偏光分離フィルムを透過した偏光された光は、その振動方向を保ったまま、光透過性基材を通過する。しかし、この光が、空気界面から、光透過性基材に入る場合、下記式によって反射が起こる。ここで、下記式中、ρは、反射率を示し、naは、光の振動方向と同じ方向の光透過性基材の面内の屈折率を示す。
 ρ=(1-na)/(1+na)
そして、上記偏光板の透過率τは、下記式によって求められるが、吸収率αは、材料が同じであるため、同じ値であることを考えれば、透過率τを大きくするためには、反射率ρを小さくすれば良い。
 τ=1-ρ-α
すなわち、上記面内に複屈折率を有する光透過性基材と上記偏光子とは、該光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とがなす角度が0°である場合、光は、光透過性基材の面内において、最も小さい屈折率と空気の屈折率との差によって反射が起こるため、反射率を最も小さくでき、透過率を上げることができる。一方、上記面内に複屈折率を有する光透過性基材と上記偏光子とは、該光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とがなす角度が90°である場合、光は、光透過性基材の面内において、最も大きい屈折率と空気の屈折率との差によって反射が起こるため、反射率がもっとも大きくなり、結果として、透過率が低下する。
更に、本発明の偏光板では、上記面内に複屈折率を有する光透過性基材の屈折率が大きい方向である遅相軸方向の屈折率(nx)と、上記遅相軸方向と直交する方向である進相軸方向の屈折率(ny)と、上記光透過性基材の平均屈折率(N)とが、下記式の関係を有し、かつ、上記進相軸と偏光子の透過軸とのなす角度が0°±2°であるとき、光透過性基材を等方性材料のまま用いたときよりも透過率を向上できるため最も好ましい。
 nx>N>ny
なお、本発明の偏光板は、面内に複屈折を有する光透過性基材の偏光子が積層されている側とは反対の面に、上記光透過性基材の進相軸方向の屈折率nyよりも小さな屈折率を有する低屈折率層が設けられていてもよい。このような低屈折率層としては、屈折率が上記光透過性基材の進相軸方向の屈折率nyよりも小さなものであれば特に限定されず、従来公知の材料からなるものが挙げられる。
本発明の偏光板は、上記面内に複屈折率を有する光透過性基材に、偏光された光が入射される。
本発明の偏光板において、上記偏光された光としては特に限定されないが、例えば、液晶表示装置等の画像表示装置のバックライト光源から生じた光が、偏光分離フィルムを透過して偏光された光が好適に挙げられる。なお、本発明の偏光板の光源として従来公知の偏光光源を用いてもよい。
上記偏光分離フィルムは、上記バックライト光源から出射される光のうち、特定の偏光成分のみを透過し、それ以外の偏光成分を反射する偏光分離機能を有する部材である。本発明の偏光板を液晶表示装置に用いた場合、液晶セルと偏光分離フィルムとの間に本発明の偏光板が設けられた構成となり、本発明の偏光板は、特定の偏光成分のみを選択的に透過するので、偏光分離フィルムを用いて特定の偏光成分(本発明の偏光板を透過する偏光成分)以外の偏光成分を選択的に反射させ再利用することで、本発明の偏光板を通過する光の量を多くし、上記液晶表示装置の表示画面の輝度を向上させることができる。
上記偏光分離フィルムとしては、液晶表示装置に用いられている一般的なものを用いることができる。また、偏光分離フィルムとして市販品を用いてもよく、例えば、住友スリーエム社製のDBEFシリーズを用いることができる。
本発明の偏光板は、光透過性基材と偏光子とが、光透過性基材の進相軸と偏光子の透過軸とが特定の関係となるように積層されているため、光透過率が改善されたものとなる。このような本発明の偏光板による光透過率改善方法もまた、本発明の一つである。
また、本発明の偏光板は、上記面内に複屈折率を有する光透過性基材と上記偏光子とを、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層することで製造することができる。このような本発明の偏光板を製造する方法もまた、本発明の一つである。
すなわち、本発明の偏光板の製造方法は、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板の製造方法であって、上記面内に複屈折率を有する光透過性基材と上記偏光子とを、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層する工程を有することを特徴とする。
本発明の画像表示装置の製造方法において、上記面内に複屈折率を有する光透過性基材と偏光子としては、上述した本発明の偏光板と同様のものが挙げられる。
また、上記面内に複屈折率を有する光透過性基材と上記偏光子との積層は、公知の接着剤を介して行うことが好ましい。
上述した本発明の偏光板を備えてなる画像表示装置もまた、本発明の一つである。
本発明の画像表示装置は、観察者側に、少なくとも、面内に複屈折率を有する上部光透過性基材が上部偏光子上に設けられた上部偏光板を更に有し、上記面内に複屈折率を有する上部光透過性基材と上記上部偏光子とは、上記面内に複屈折率を有する上部光透過性基材の屈折率が小さい方向である進相軸と、上記上部偏光子の透過軸とがなす角度が90°とならないように配置されていることが好ましい。上記面内に複屈折率を有する上部光透過性基材の屈折率が小さい方向である進相軸と、上記上部偏光子の透過軸とがなす角度が90°であると、本発明の画像表示装置のバックライト光源から出射した光の上記上部偏光板の透過率が小さくなり、その結果、本発明の画像表示装置の光透過率が劣ることがある。
より好ましくは、0°±30°未満。0°±10°未満がさらに好ましい。
理由は、光透過性基材から、空気界面に出る時の屈折率差が小さくなるため、反射率が小さくなり、結果、上部偏光板の透過率が上がるためである。
上記上部偏光板を構成する、面内に複屈折率を有する上部光透過性基材及び上部偏光子としては、それぞれ上述した本発明の偏光板における光透過性基材及び偏光子と同様のものが挙げられる。
上記上部偏光板を備えた本発明の画像表示装置としては、液晶セルを介して観察者側に上部偏光板を、バックライト光源側に本発明の偏光板を、それぞれ備えた液晶表示装置であることが好ましい。また、本発明の偏光板の偏光子と上部偏光板の上部偏光子とは、透過軸がクロスニコルの関係にあることが好ましい。
本発明の画像表示装置は、液晶セルと、該液晶セルを背面から照射するバックライト光源とを備え、上記液晶セルのバックライト光源側に、本発明の偏光板が形成されてなる液晶表示装置(LCD)であることが好ましい。
本発明の画像表示装置が液晶表示装置の場合、上記バックライト光源は、本発明の偏光板の下側から照射されるが、上述した偏光分離フィルムがバックライト光源と本発明の偏光板との間に設けられていてもよい。また、液晶セルと本発明の偏光板との間に位相差板が挿入されてよい。この液晶表示装置の各層間には必要に応じて接着剤層が設けられてよい。
ここで、本発明が上記光学積層体有する液晶表示装置の場合、該液晶表示装置において、バックライト光源としては特に限定されないが、白色発光ダイオード(白色LED)であることが好ましく、本発明の画像表示装置は、バックライト光源として白色発光ダイオードを備えた液晶表示装置であることが好ましい。
上記白色LEDとは、蛍光体方式、すなわち化合物半導体を使用した青色光又は紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子のことである。なかでも、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードは、連続的で幅広い発光スペクトルを有していることから、光透過率の向上に有効であるとともに、発光効率にも優れる。また、消費電力の小さい白色LEDを広汎に利用可能になるので、省エネルギー化の効果も奏することが可能となる。
本発明の画像表示装置は、いずれの場合も、テレビジョン、コンピュータ、タブレットPCなどのディスプレイ表示に使用することができ、特に、高精細画像用ディスプレイの表面に好適に使用することができる。
また、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板を備えた画像表示装置の製造方法も本発明の一つである。
すなわち、本発明の画像表示装置の製造方法は、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板を備えた画像表示装置の製造方法であって、上記面内に複屈折率を有する光透過性基材と上記偏光子とを、上記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、上記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層する工程を有することを特徴とする。
本発明の画像表示装置の製造方法において、上記偏光板並びにそれを構成する面内に複屈折率を有する光透過性基材及び偏光子としては、上述した本発明の偏光板で説明したものと同様のものが挙げられる。
上述のように本発明の偏光板は光透過性基材と偏光子とが、光透過性基材の進相軸と偏光子の透過軸とが特定の関係となるように積層されているため、光透過率が改善されたものとなる。本発明の画像表示装置は、このような本発明の偏光板を備えたものであるため、本発明の画像表示装置も光透過率が改善されたものとなる。
本発明の偏光板は、上述した構成からなるものであるため、面内に複屈折率を有する光透過性基材が用いられた場合であっても、光透過率に優れたものとなり、また、従来の面内に位相差を持たないトリアセチルセルロースに代表されるセルロースエステルからなるフィルムが用いられた偏光板であっても、あえて、複屈折率を持たせることで、透過率が優れたものとなる。
面内に複屈折率を有さないシクロオレフィンポリマーフィルムの平均屈折率波長分散を示すグラフである。 面内に複屈折率を有するシクロオレフィンポリマーフィルムの3次元屈折率波長分散を示すグラフである。 分光光度計により測定したnx及びnyの5度反射率を示すグラフである。 実施例等における偏光板の層構成を示す模式図である。 実施例等で用いた光源のスペクトルである。 実施例等で用いた保護フィルムの屈折率波長分散を示すグラフである。 実施例等で用いた偏光子の屈折率及び消衰係数を示すグラフである。
以下に実施例及び比較例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例及び比較例のみに限定されるものではない。
(光透過性基材の作製)
(面内に複屈折率を有さない光透過性基材Aの作製)
セルロースアセテートプロピオネート(イーストマンケミカル社製CAP504-0.2)を、塩化メチレンを溶剤として固形分濃度が15%になるように溶解後、ガラス上に流延し、乾燥させ、光透過性基材Aを得た。波長550nmにおけるΔn=0.00002であり、平均屈折率N=1.4838であった。
(面内に複屈折を有する光透過性基材aの作製)
光透過性基材Aを、160℃で1.5倍自由端一軸延伸して、面内に複屈折を有する光透過性基材aを作製した。3次元屈折率波長分散を算出した結果、波長550nmにおける屈折率nx=1.4845、ny=1.4835(Δn=0.001)であり、nz=1.4834であった。
(面内に複屈折率を有さない光透過性基材Bの作製)
光透過性基材Bとして、シクロオレフィンポリマーよりなる、日本ゼオン社製未延伸ゼオノアを準備した。波長550nmにおけるΔn=0.00004であり、平均屈折率N=1.5177であった。
(面内に複屈折を有する光透過性基材bの作製)
光透過性基材Bを、150℃で1.5倍自由端一軸延伸して、面内に複屈折を有する光透過性基材bを作製した。3次元屈折率波長分散を算出した結果、波長550nmにおける屈折率nx=1.5186、ny=1.5172であり、nz=1.5173であった。
(面内に複屈折率を有さない光透過性基材Cの作製)
ポリエチレンテレフタレート材料を290℃で溶融して、ガラス上にて、ゆっくりと冷却し、光透過性基材Cを得た。波長550nmにおけるΔn=0.00035であり、平均屈折率N1.6167であった。
(面内に複屈折を有する光透過性基材c1の作製)
光透過性基材Cを、120℃で4.0倍固定端一軸延伸して、面内に複屈折を有する光透過性基材c1を作製した。分光光度計を用いて、屈折率波長分散(nx、ny)を計算した。波長550nmにおける屈折率nx=1.701、ny=1.6015であり、nz=1.5476であった。
(面内に複屈折を有する光透過性基材c2の作製)
光透過性基材Cを、120℃で2.0倍自由端一軸延伸して、面内に複屈折を有する光透過性基材c2を作製した。分光光度計を用いて、屈折率波長分散(nx、ny)を計算した。波長550nmにおける屈折率nx=1.6511、ny=1.5998であり、nz=1.5992であった。
(面内に複屈折を有する光透過性基材c3の作製)
光透過性基材Cを、120℃で二軸延伸の倍率を調整して、面内に複屈折を有する光透過性基材c3を作製した。分光光度計を用いて、屈折率波長分散(nx、ny)を計算した。波長550nmにおける屈折率nx=1.6652、ny=1.6153であり、nz=1.5696であった。
(面内に複屈折を有する光透過性基材c4の作製)
光透過性基材Cを、120℃で二軸延伸の倍率を調整して、面内に複屈折を有する光透過性基材c4を作製した。分光光度計を用いて、屈折率波長分散(nx、ny)を計算した。波長550nmにおける屈折率nx=1.6708、ny=1.6189であり、nz=1.5604であった。
(面内に複屈折率を有さない光透過性基材Dの作製)
ポリエチレンナフタレート材料を290℃で溶融して、ガラス上にて、ゆっくりと冷却し、光透過性基材Dを得た。波長550nmにおけるΔn=0.0004であり、平均屈折率N=1.6833であった。
(面内に複屈折を有する光透過性基材dの作製)
光透過性基材Dを、120℃で4.0倍固定端一軸延伸して、面内に複屈折を有する光透過性基材dを作製した。分光光度計を用いて、屈折率波長分散(nx、ny)を計算した。波長550nmにおける屈折率nx=1.8472、ny=1.6466であり、nz=1.5561であった。
(偏光板透過率の計算)
透過率の計算は、2×2行列法や4×4行列法、拡張ジョーンズ行列法を用いて計算できる。実施例、比較例、参考例においては、シミュレーションソフト(LCDMaster、シンテック社製)を用いて、偏光板の透過率を計算した。図4に偏光板の層構成を示す。図4の実施例及び比較例部分に、各光透過性基材の3次元屈折率波長分散を入れて上記計算を行った。面内に複屈折を有さないと判断した光透過性基材は、平均屈折率N=nx=ny=nzとし、面内に複屈折を有すると判断した光透過性基材は、実測値を用いた。各層の膜厚は、実施例、比較例、保護フィルム部分は80μmとし、偏光子部分は20μmとした。
図5は、光源のスペクトルである。入射する光の偏光状態は、偏光分離フィルム透過後の偏光状態と同じとなるよう、直線偏光とし、偏光子の透過軸方向に振動する光とした。
図6に、用いた保護フィルムの屈折率波長分散を示し、保護フィルムは、等方性材料とした。
図7に、用いた偏光子の屈折率及び消衰係数を示した。なお、図7中、吸収軸方向と透過軸方向とはほぼ重なって示されている。
(実施例1)
光透過性基材aの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が0°となるように設置し、偏光板の透過率を計算した。
(実施例2)
光透過性基材aの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が90°となるように設置し、偏光板の透過率を計算した。
(比較例1)
光透過性基材aの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が45°となるように設置し、偏光板の透過率を計算した。
(実施例3)
光透過性基材bの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が0°となるように設置し、偏光板の透過率を計算した。
(実施例4)
光透過性基材bの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が90°となるように設置し、偏光板の透過率を計算した。
(比較例2)
光透過性基材bの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が45°となるように設置し、偏光板の透過率を計算した。
(実施例5)
光透過性基材c1の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が0°となるように設置し、偏光板の透過率を計算した。
(実施例6)
光透過性基材c1の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が2°となるように設置し、偏光板の透過率を計算した。
(実施例7)
光透過性基材c1の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が30°となるように設置し、偏光板の透過率を計算した。
(実施例8)
光透過性基材c1の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が60°となるように設置し、偏光板の透過率を計算した。
(実施例9)
光透過性基材c1の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が90°となるように設置し、偏光板の透過率を計算した。
(比較例3)
光透過性基材c1の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が45°となるように設置し、偏光板の透過率を計算した。
(実施例10)
光透過性基材c2の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が0°となるように設置し、偏光板の透過率を計算した。
(実施例11)
光透過性基材c2の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が90°となるように設置し、偏光板の透過率を計算した。
(比較例4)
光透過性基材c2の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が45°となるように設置し、偏光板の透過率を計算した。
(実施例12)
光透過性基材c3の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が0°となるように設置し、偏光板の透過率を計算した。
(実施例13)
光透過性基材c3の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が90°となるように設置し、偏光板の透過率を計算した。
(比較例5)
光透過性基材c3の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が45°となるように設置し、偏光板の透過率を計算した。
(実施例14)
光透過性基材c4の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が0°となるように設置し、偏光板の透過率を計算した。
(実施例15)
光透過性基材c4の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が90°となるように設置し、偏光板の透過率を計算した。
(比較例6)
光透過性基材c4の3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が45°となるように設置し、偏光板の透過率を計算した。
(実施例16)
光透過性基材dの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が0°となるように設置し、偏光板の透過率を計算した。
(実施例17)
光透過性基材dの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が90°となるように設置し、偏光板の透過率を計算した。
(比較例7)
光透過性基材dの3次元屈折率波長分散を用いて、光透過性基材の進相軸と、偏光子の透過軸とのなす角度が45°となるように設置し、偏光板の透過率を計算した。
(参考例1)
光透過性基材Aの3次元屈折率波長分散を用いて、偏光板の透過率を計算した。
(参考例2)
光透過性基材Bの3次元屈折率波長分散を用いて、偏光板の透過率を計算した。
(参考例3)
光透過性基材Cの3次元屈折率波長分散を用いて、偏光板の透過率を計算した。
(参考例4)
光透過性基材Dの3次元屈折率波長分散を用いて、偏光板の透過率を計算した。
(参考例5)
入射する光の偏光状態をランダム光とした以外は、実施例5同様の方法にて、偏光板の透過率を計算した。
(参考例6)
入射する光の偏光状態をランダム光とした以外は、実施例9同様の方法にて、偏光板の透過率を計算した。
(参考例7)
入射する光の偏光状態をランダム光とした以外は、比較例3同様の方法にて、偏光板の透過率を計算した。
(参考例8)
入射する光の偏光状態をランダム光とした以外は、参考例3同様の方法にて、偏光板の透過率を計算した。
実施例、比較例及び参考例に係る各評価結果を表1に示す。
入射する光の偏光状態を直線偏光としたときの透過率は、各材料ごとに、面内に複屈折を有さない場合の透過率を100として、面内に複屈折を有する偏光板の透過率を示している。入射する光の偏光状態をランダム光とした時の透過率も同様に、面内に複屈折を有さない場合の透過率を100として、面内に複屈折を有する偏光板の透過率を示している。
Figure JPOXMLDOC01-appb-T000001
表1に示したように、実施例1、2と比較例1との比較、実施例3、4と比較例2との比較、実施例5~9と比較例3との比較、実施例10、11と比較例4との比較、実施例12、13と比較例5との比較、実施例14、15と比較例6との比較、及び、実施例16、17と比較例7との比較より、光透過性基材の遅相軸と偏光子の透過軸とが所定の角度範囲内にある実施例に係る偏光板は、当該角度範囲を外れる比較例に係る偏光板よりも光透過性に優れていた。
また、実施例1と参考例1との比較、実施例3と参考例2との比較、実施例5、10、12と参考例3との比較、実施例16と参考例4との比較より、面内に複屈折率を有する光透過性基材を用いた実施例に係る偏光板は、面内に複屈折率を有さない光透過性基材を用いた比較例に係る偏光板よりも、光透過性に優れていた。
実施例5、9、比較例3、参考例3と、参考例5~8との比較より、偏光された光が入射することにより、光透過性基材の遅相軸と偏光子の透過軸とが所定の角度範囲内にある実施例に係る偏光板は、当該角度範囲を外れる比較例に係る偏光板よりも光透過性に優れていることが確認できた。
本発明の偏光板は、面内に複屈折率を有する光透過性基材が用いられた場合であっても、光透過率に優れたものとなり、また、従来の面内に位相差を持たないトリアセチルセルロースに代表されるセルロースエステルからなるフィルムが用いられた偏光板であっても、あえて、複屈折率を持たせることで、透過率が優れたものとなり、液晶ディスプレイ(LCD)のバックライト光源側に配置される偏光板として好適に用いることができる。

Claims (10)

  1. バックライト光源側から、少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置の前記バックライト光源側に配置して用いられる偏光板であって、
    前記面内に複屈折率を有する光透過性基材に、偏光された光が入射されるものであり、
    前記面内に複屈折率を有する光透過性基材と前記偏光子とは、前記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、前記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層されている
    ことを特徴とする偏光板。
  2. 面内に複屈折率を有する光透過性基材と偏光子とは、前記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、前記偏光子の透過軸とのなす角度が、0°±15°又は90°±15°となるように積層されている請求項1記載の偏光板。
  3. 面内に複屈折率を有する光透過性基材は、屈折率が大きい方向である遅相軸方向の屈折率(nx)と、前記遅相軸方向と直交する方向である進相軸方向の屈折率(ny)との差(nx-ny)が、0.01以上である請求項1又は2記載の偏光板。
  4. 面内に複屈折率を有する光透過性基材の屈折率が大きい方向である遅相軸方向の屈折率(nx)と、前記遅相軸方向と直交する方向である進相軸方向の屈折率(ny)と、前記光透過性基材の平均屈折率(N)とが、下記式の関係を有し、かつ、
    前記進相軸と偏光子の透過軸とのなす角度が0°±2°である
    請求項1記載の偏光板。
     nx>N>ny
  5. 少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板の製造方法であって、
    前記面内に複屈折率を有する光透過性基材と前記偏光子とを、前記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、前記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層する工程を有する
    ことを特徴とする偏光板の製造方法。
  6. 請求項1、2、3又は4記載の偏光板を備えることを特徴とする画像表示装置。
  7. バックライト光源と面内に複屈折率を有する光透過性基材との間に、偏光分離フィルムを有する請求項6記載の画像表示装置。
  8. 観察者側に、少なくとも、面内に複屈折率を有する上部光透過性基材が上部偏光子上に設けられた上部偏光板を更に有し、
    前記面内に複屈折率を有する上部光透過性基材と前記上部偏光子とは、前記面内に複屈折率を有する上部光透過性基材の屈折率が小さい方向である進相軸と、前記上部偏光子の透過軸とがなす角度が90°とならないように配置されている請求項6又は7記載の画像表示装置。
  9. 少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板を備えた画像表示装置の製造方法であって、
    前記面内に複屈折率を有する光透過性基材と前記偏光子とを、前記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、前記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層する工程を有する
    ことを特徴とする画像表示装置の製造方法。
  10. 少なくとも、面内に複屈折率を有する光透過性基材と偏光子とがこの順に積層され、画像表示装置のバックライト光源側に配置して用いられる偏光板の光透過率改善方法であって、
    前記面内に複屈折率を有する光透過性基材と前記偏光子とを、前記面内に複屈折率を有する光透過性基材の屈折率が小さい方向である進相軸と、前記偏光子の透過軸とのなす角度が、0°±30°又は90°±30°となるように積層する
    ことを特徴とする偏光板の光透過率改善方法。
PCT/JP2014/070722 2013-09-10 2014-08-06 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法 WO2015037369A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/917,189 US10310153B2 (en) 2013-09-10 2014-08-06 Polarizing plate, method for manufacturing polarizing plate, image display device, method for manufacturing image display device, and method for improving transmittance of polarizing plate
KR1020167006638A KR20160055152A (ko) 2013-09-10 2014-08-06 편광판, 편광판의 제조 방법, 화상 표시 장치, 화상 표시 장치의 제조 방법 및 편광판의 광 투과율 개선 방법
CN201480049413.7A CN105518496A (zh) 2013-09-10 2014-08-06 偏光片、偏光片的制造方法、图像显示装置、图像显示装置的制造方法以及偏光片的透光率改善方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187613A JP2015055680A (ja) 2013-09-10 2013-09-10 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
JP2013-187613 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037369A1 true WO2015037369A1 (ja) 2015-03-19

Family

ID=52665488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070722 WO2015037369A1 (ja) 2013-09-10 2014-08-06 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法

Country Status (6)

Country Link
US (1) US10310153B2 (ja)
JP (1) JP2015055680A (ja)
KR (1) KR20160055152A (ja)
CN (2) CN107765358A (ja)
TW (2) TWI670528B (ja)
WO (1) WO2015037369A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122520A1 (ja) * 2014-02-17 2015-08-20 大日本印刷株式会社 積層体、積層体の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888853B2 (ja) 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
JP4962661B2 (ja) 2010-06-22 2012-06-27 東洋紡績株式会社 液晶表示装置、偏光板および偏光子保護フィルム
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
EP2711765B1 (en) 2011-05-18 2018-07-04 Toyobo Co., Ltd. Liquid crystal display device, use of polarizer, use of protective film
KR20180023953A (ko) * 2015-07-16 2018-03-07 도요보 가부시키가이샤 액정 표시 장치 및 편광판
JP6907462B2 (ja) * 2016-03-16 2021-07-21 東洋紡株式会社 液晶表示装置
JP6907463B2 (ja) * 2016-03-16 2021-07-21 東洋紡株式会社 液晶表示装置
JP6874298B2 (ja) * 2016-08-18 2021-05-19 東洋紡株式会社 液晶表示装置
JP6874297B2 (ja) * 2016-08-18 2021-05-19 東洋紡株式会社 液晶表示装置
CN108427221A (zh) * 2017-02-13 2018-08-21 斯坦雷电气株式会社 显示装置
WO2019022028A1 (ja) * 2017-07-25 2019-01-31 日本ゼオン株式会社 積層体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013917A1 (ja) * 2007-07-24 2009-01-29 Sharp Kabushiki Kaisha 液晶表示装置及び偏光板
JP2010112986A (ja) * 2008-11-04 2010-05-20 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルムの製造装置、光学フィルムおよび液晶表示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977401A (ja) * 1982-09-22 1984-05-02 Nitto Electric Ind Co Ltd 偏光板
JPH0651120A (ja) 1992-07-29 1994-02-25 Nitto Denko Corp 偏光板及び液晶表示装置
US6292242B1 (en) * 1993-12-15 2001-09-18 Ois Optical Imaging Systems, Inc. Normally white twisted nematic LCD with positive uniaxial and negative biaxial retarders
US5594568A (en) * 1993-12-15 1997-01-14 Ois Optical Imaging Systems, Inc. LCD with a pair of retardation films on one side of normally white liquid crystal layer
JP4374859B2 (ja) * 2003-01-23 2009-12-02 東レ株式会社 偏光膜用支持体フィルムおよび偏光板
US20070013844A1 (en) * 2005-07-12 2007-01-18 Nitto Denko Corporation Liquid crystal panel and liquid crystal display using the same
WO2007100117A1 (ja) * 2006-02-28 2007-09-07 Teijin Limited 積層偏光フィルム、位相差フィルム、および液晶表示装置
US20070236636A1 (en) * 2006-03-31 2007-10-11 Watson Philip E Contrast ratio enhancement optical stack
KR20080034405A (ko) * 2006-10-16 2008-04-21 다이니폰 인사츠 가부시키가이샤 위상차 필름 및 편광판
JP5393048B2 (ja) * 2007-06-29 2014-01-22 日東電工株式会社 液晶表示装置および積層偏光板ならびに偏光光源装置
TWI453123B (zh) 2007-12-03 2014-09-21 Sumitomo Chemical Co 偏光板的套組,以及使用該偏光板的套組之液晶面板及液晶顯示器
JP2009157343A (ja) * 2007-12-04 2009-07-16 Sumitomo Chemical Co Ltd 偏光板およびそれを用いた液晶表示装置
JP2009169389A (ja) * 2007-12-18 2009-07-30 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
WO2010087058A1 (ja) * 2009-01-27 2010-08-05 シャープ株式会社 液晶表示装置
JP2010217844A (ja) 2009-03-19 2010-09-30 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
RU2473942C1 (ru) * 2009-05-27 2013-01-27 Шарп Кабусики Кайся Устройство жидкокристаллического дисплея
JP5519217B2 (ja) * 2009-08-31 2014-06-11 帝人デュポンフィルム株式会社 偏光子支持基材用フィルム
JP5811431B2 (ja) 2009-09-11 2015-11-11 住友化学株式会社 偏光板および液晶表示装置
JP5568808B2 (ja) 2009-10-20 2014-08-13 住友化学株式会社 バックライトを備える液晶表示装置および液晶表示装置用光学部材セット
JP5377252B2 (ja) 2009-11-27 2013-12-25 日東電工株式会社 画像表示装置
JP4962661B2 (ja) * 2010-06-22 2012-06-27 東洋紡績株式会社 液晶表示装置、偏光板および偏光子保護フィルム
WO2013080949A1 (ja) * 2011-11-29 2013-06-06 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
KR101397702B1 (ko) * 2011-12-26 2014-05-22 제일모직주식회사 편광판 및 이를 포함하는 액정 표시 장치
KR101631350B1 (ko) * 2012-12-17 2016-06-16 제일모직주식회사 편광판 및 이를 포함하는 액정 표시 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013917A1 (ja) * 2007-07-24 2009-01-29 Sharp Kabushiki Kaisha 液晶表示装置及び偏光板
JP2010112986A (ja) * 2008-11-04 2010-05-20 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルムの製造装置、光学フィルムおよび液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122520A1 (ja) * 2014-02-17 2015-08-20 大日本印刷株式会社 積層体、積層体の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法

Also Published As

Publication number Publication date
US10310153B2 (en) 2019-06-04
US20160209564A1 (en) 2016-07-21
CN107765358A (zh) 2018-03-06
TWI670528B (zh) 2019-09-01
JP2015055680A (ja) 2015-03-23
KR20160055152A (ko) 2016-05-17
TW201510588A (zh) 2015-03-16
TW201903443A (zh) 2019-01-16
CN105518496A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2015037369A1 (ja) 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
KR101772348B1 (ko) 액정 표시 장치
TWI550319B (zh) An optical member, a polarizing plate group, and a liquid crystal display device
CN104981718B (zh) 光学构件、偏振板组及液晶显示装置
JP2010152374A (ja) 偏光子、およびそれを用いた光学フィルム、ならびにそれらを用いた画像表示装置
JPWO2015147287A1 (ja) 液晶パネル、液晶表示装置、偏光板、および偏光板保護フィルム
JP6263860B2 (ja) 光学積層体及び画像表示装置の表示品質改善方法
US11204524B2 (en) Image display device
JP2017157330A (ja) 画像表示装置
JP6059830B1 (ja) 画像表示装置
TW201816434A (zh) 光學構件
JP2008164984A (ja) 積層位相差フィルム
JP4975236B2 (ja) 偏光子、およびそれを用いた光学フィルム、ならびにそれらを用いた画像表示装置
US11860480B2 (en) Liquid crystal display device
JP2004093993A (ja) 偏光子、それを用いた光学フィルム、およびそれを用いた液晶表示装置ならびにエレクトロルミネッセンス表示装置
JP2017122904A (ja) 画像表示装置
JP2010204224A (ja) 偏光板、偏光板の製造方法、および液晶表示装置
JP2017062500A (ja) 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
JP6600612B2 (ja) 画像表示装置
WO2015122520A1 (ja) 積層体、積層体の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
JP2019132913A (ja) 積層体、表示装置、及び検査方法
JP2018077529A (ja) 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
JP2015055679A (ja) 偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び偏光板の光透過率改善方法
JP2005031557A (ja) ノルボルネン系光学補償フィルムとその製造方法
JP6600611B2 (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14917189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167006638

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14844851

Country of ref document: EP

Kind code of ref document: A1