WO2015037182A1 - Transparent conductive substrate and method for manufacturing transparent conductive substrate - Google Patents

Transparent conductive substrate and method for manufacturing transparent conductive substrate Download PDF

Info

Publication number
WO2015037182A1
WO2015037182A1 PCT/JP2014/004104 JP2014004104W WO2015037182A1 WO 2015037182 A1 WO2015037182 A1 WO 2015037182A1 JP 2014004104 W JP2014004104 W JP 2014004104W WO 2015037182 A1 WO2015037182 A1 WO 2015037182A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
transparent
conductive substrate
layer
film
Prior art date
Application number
PCT/JP2014/004104
Other languages
French (fr)
Japanese (ja)
Inventor
昭造 河添
Original Assignee
ロック技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロック技研工業株式会社 filed Critical ロック技研工業株式会社
Priority to KR1020167007142A priority Critical patent/KR102214745B1/en
Priority to JP2015536433A priority patent/JP6106756B2/en
Priority to CN201480049430.0A priority patent/CN105556618B/en
Publication of WO2015037182A1 publication Critical patent/WO2015037182A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Definitions

  • the present invention relates to a transparent conductive substrate that can be used as a touch panel, an electrode for a solar cell, an electrode for an EL device, an electrode for a light emitting diode, a heater, or a substrate for electromagnetic wave / electrostatic shielding, and the transparent conductive substrate It relates to the manufacturing method.
  • a transparent conductive substrate in which a transparent metal oxide conductive layer (ITO, ZnO, etc.) is formed on a transparent substrate is transparent and conductive, and thus, a touch panel, a solar cell, an EL device, an electromagnetic wave / electrostatic shield, or It is used for ultraviolet / infrared shields.
  • a transparent metal oxide conductive layer ITO, ZnO, etc.
  • the transparent conductive substrate on which the conventional metal oxide conductive layer (ITO, ZnO, etc.) is formed has the following problems 1) to 3).
  • the metal oxide conductive layer surface has a large amount of light reflection of visible light and poor transparency.
  • the metal oxide conductive layer absorbs light in the vicinity of near-ultraviolet light, the transmittance at a light wavelength smaller than 450 nm decreases and it becomes yellow.
  • the surface resistance of the large-sized touch panel, the electrode for a solar cell, the electrode for an EL device, the electrode for a light emitting diode, and the heater needs to be reduced. In order to reduce the surface resistance, the thickness of the metal oxide conductive layer is increased.
  • the conventional transparent conductive substrate has a total light transmittance of about 88% when the surface resistance is 100 ⁇ / ⁇ , for example, but in order to increase the film thickness when the surface resistance is 100 ⁇ / ⁇ or less,
  • the properties of the above 1) and 2) are significantly reduced. Further, due to the problems 1) and 2), when the metal oxide conductive layer is used by pattern etching, the difference between the portion with the pattern and the portion without the pattern can be clearly recognized. 3) Since the ITO film is a thin film, scratches due to rubbing occur during transport, processing, and use, and defects such as conductivity deterioration, disconnection, and appearance deterioration occur.
  • Patent Document 1 after performing a high frequency sputter etching process on the surface of a polyethylene terephthalate film, a transparent conductive thin film is formed, and then a transparent dielectric thin film having a film thickness of 10 nm or more is formed on this thin film.
  • a method of producing the characterized transparent conductive film is described. In this manufacturing method, the formation of a dielectric thin film is intended to improve the scratch resistance and the transparency.
  • a transparent conductive thin film is formed on one side of a transparent film substrate having a thickness of 2 to 120 ⁇ m, and a transparent dielectric thin film is further formed on the conductive thin film, and the other side is formed
  • a transparent conductive laminate in which a transparent substrate is bonded via a transparent pressure-sensitive adhesive layer is described.
  • the formation of the dielectric thin film improves the transparency and the scratch resistance, and also improves the hitting characteristics.
  • the transparent dielectric thin film is an electrical insulating layer, so the metal oxide conductive layer and the electrode provided on the dielectric thin film layer (conductive paste, The conductivity between metal layers etc.) was very poor, and the conductivity was unstable. Further, pattern etching of the metal oxide conductive layer (ITO) film has been difficult due to the presence of the insulating layer.
  • ITO metal oxide conductive layer
  • the transparent conductive base material which provided the dielectric material thin film layer in the metal oxide conductive layer needs the electrode for etching of an ITO film, a lead, etc. like a touch panel, a solar cell, EL device, or a light emitting diode. Applications are limited because it is unsuitable for various applications.
  • Patent Document 3 proposes a transparent conductive substrate in which a transparent conductive thin film layer and a transparent metal oxide layer are laminated in this order on one side or both sides of a substrate in order to improve the conventional problems.
  • the transparent metal oxide layer has a large number of fine pores penetrating to the front and back surfaces, and the pore diameter of the pores on the opposite side is larger than the pore diameter of the pores in the surface in contact with the transparent conductive thin film. doing.
  • the transparent conductive substrate of Patent Document 3 has the following problems. When an Ag paste electrode is formed on the transparent metal oxide layer, the contact resistance between the electrode and the transparent conductive thin film layer is high.
  • the method of forming microvoids according to Patent Document 3 has the following problems because it uses the “oblique vacuum deposition method”.
  • the sputter deposition method by a "sputter deposition machine” is usually used for formation of a transparent conductive thin film layer, since a "diagonal vacuum deposition machine” must be separately introduced, equipment investment and manufacturing cost increase.
  • the oblique deposition method it is necessary to narrow the deposition incidence angle, and the deposition area is significantly reduced, so that the deposition adhesion efficiency of the transparent metal oxide material is significantly reduced (usually several percent). Therefore, in the case of an expensive material such as Si, SiO 2 or SiO x , the cost of materials is significantly increased, the processing speed is decreased, and the cost of manufacturing is increased.
  • the present inventors form the transparent metal oxide layer on the transparent conductive thin film layer by interspersing particles, reduce the coverage of the transparent conductive thin film layer by the transparent metal layer, and make the interparticle transparent.
  • the conductivity of the transparent conductive thin film layer and the metal electrode on the transparent metal oxide layer is significantly increased without lowering the transparency, and the index matching property and the scratch resistance are improved.
  • the inventors of the present invention have found that, by setting the degree of vacuum in sputter deposition to 5 to 20 Pa, particles of a particle diameter suitable for the transparent metal oxide layer can be scattered.
  • the present invention has been completed based on these findings and has been further studied repeatedly, and the conductivity of the transparent conductive thin film layer such as ITO and the electrode such as metal and metal paste is high and the transparency is also high. It is an object of the present invention to provide a transparent conductive substrate which is excellent in index matching property, scratch resistance and etching property.
  • the transparent conductive substrate of the present invention according to claim 1 is a transparent conductive substrate in which a transparent conductive thin film layer and a transparent metal oxide layer are laminated in this order on one side or both sides of the substrate, It is characterized in that the transparent metal oxide layer is formed by interspersing particles.
  • the present invention according to claim 2 is that, in the transparent conductive substrate according to claim 1, the coverage of the transparent conductive thin film layer by the transparent metal oxide layer is 60 to 1%. It features.
  • the present invention according to claim 3 is characterized in that, in the transparent conductive substrate according to claim 1 or 2, the surface resistance of the transparent conductive thin film layer is 100 ( ⁇ / ⁇ ) or less. .
  • the present invention according to claim 4 is the transparent conductive substrate according to any one of claims 1 to 3, wherein the visible light surface reflectance of the transparent metal oxide layer and the visible light of the substrate It is characterized in that the difference with the light ray surface reflectance is less than 4%.
  • the particle diameter of the particles is 20 to 800 nm, and the distance between the particles is 20 to 2000 nm. It is characterized by The invention according to claim 6 is characterized in that, in the transparent conductive substrate according to claim 5, the particle diameter of the particles is 30 to 250 nm, and the distance between the particles is 30 to 1280 nm.
  • a metal electrode is laminated on the transparent conductive thin film layer.
  • the method for producing a transparent conductive substrate of the present invention according to claim 8 is a method for producing a transparent conductive substrate in which a transparent conductive thin film layer and a transparent metal oxide layer are laminated in this order on one side or both sides of the substrate.
  • the method is characterized in that the transparent metal oxide layer is formed of particles having a particle size in the range of 30 to 800 nm by sputter deposition under a vacuum degree of 2.5 to 20 Pa.
  • the touch panel of the present invention according to claim 9 is characterized by comprising the transparent conductive substrate according to any one of claims 1 to 7.
  • the solar cell of the present invention according to claim 10 is characterized by comprising the transparent conductive substrate according to any one of claims 1 to 7.
  • the heater of the present invention according to claim 11 comprises the transparent conductive substrate according to any one of claims 1 to 7.
  • the electromagnetic wave / electrostatic shield substrate of the present invention according to claim 12 is characterized by comprising the transparent conductive substrate according to any one of claims 1 to 7.
  • the EL device of the present invention according to claim 13 is characterized in that the transparent conductive substrate according to any one of claims 1 to 7 is used as an electrode.
  • the light emitting diode of the present invention according to claim 14 is characterized in that the transparent conductive substrate according to any one of claims 1 to 7 is used as an electrode.
  • the transparent electromagnetic wave reflecting material of the present invention according to claim 15 is characterized in that the transparent conductive substrate according to any one of claims 1 to 6 is used.
  • the transparent infrared reflective material of the present invention according to claim 16 is characterized in that the transparent conductive substrate according to any one of claims 1 to 6 is used.
  • the transparent conductive substrate of the present invention has high conductivity between the transparent conductive thin film layer and the metal electrode, is excellent in transparency, index matching property, scratch resistance, can be etched, and is the next generation transparent
  • a conductive substrate, a method of manufacturing the transparent conductive substrate, a touch panel using the same, and the like can be provided.
  • the schematic diagram which shows the cross section of the transparent conductive base material in one Embodiment of this invention The schematic diagram which shows the cross section of the general electrostatic capacitance type touch panel using the transparent conductive base material in this embodiment
  • Typical surface photograph of transparent conductive film by scanning electron microscope Typical surface photograph of transparent conductive film by scanning electron microscope
  • FIG. 1 is a schematic view showing a cross section of a transparent conductive substrate in an embodiment of the present invention.
  • the transparent conductive substrate 10 in the present embodiment has a transparent conductive thin film layer 12 and a transparent metal oxide layer 13 laminated in this order on one surface or both surfaces of the substrate 11, that is, at least one surface of the substrate 11. Is configured.
  • a metal electrode 20 is provided on the transparent metal oxide layer 13.
  • the substrate 11 for example, glass, various plastic films or sheets (plates) having transparency can be used.
  • plastic films and sheets for example, those containing polyester, polycarbonate, polyamide, polyimide, polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl alcohol, polyacrylate, polyarylate, or polyphenylene sulfide as a resin component are used.
  • polyester is particularly preferable, and among polyesters, polyethylene terephthalate is particularly preferable.
  • the thickness of the substrate 11 is not particularly limited, and can be set according to the product characteristics.
  • the thickness of the film is usually 6 to 400 ⁇ m, preferably about 20 to 200 ⁇ m, and the thickness of the sheet (plate) is usually about 400 ⁇ m to 5 mm.
  • the surface of the substrate 11 may be subjected to corona treatment, flame treatment, plasma treatment or the like as a pretreatment before forming the transparent conductive thin film layer 12 on the substrate 11. Physical processing may be performed.
  • an index matching (IM) layer may be formed in advance on the surface of the substrate 11, and the transparent conductive thin film layer 12 may be formed on the IM layer.
  • the IM layer may be formed as a single layer on the surface of the base material 11, but a plurality of layers such as two layers or three layers may be formed with different refractive indices of light. Although the number of layers is not particularly limited, it is better to reduce the number in consideration of cost, productivity, stability and the like.
  • the IM layer in a single layer or the first IM layer in a plurality of layers uses a material having a refractive index greater than that of the substrate 11.
  • MoO having a refractive index of 1.85 to 2.1 is used as the first IM layer in the IM layer or plural layers in a single layer.
  • SiO X a refractive index of 1.6-2.0, the refractive index can be used Al 2 O 3 is 1.64.
  • high refractive materials such as TiO 2 , Ta 2 O 5 , ZrO 2 or Nb 2 O 5 can be used.
  • a material having a refractive index smaller than that of the first IM layer is suitable.
  • SiO 2 or other SiO x having a refractive index of 1.47 may be used. it can.
  • the combination of these refractive indices and the selection of the material are not particularly limited.
  • the formation method of IM layer can use a well-known vacuum evaporation method, sputtering method, the coating method, the printing method etc., and another method may be used.
  • the easy adhesion layer and the hard coat layer may be formed on one side or both sides of the substrate 11.
  • dust removal and cleaning may be performed by solvent cleaning or ultrasonic cleaning.
  • the material of the transparent conductive thin film layer 12 is not particularly limited as long as it has transparency and conductivity, and, for example, indium oxide containing tin oxide (also referred to as ITO) and tin oxide containing antimony Zinc oxide, metal Ag, carbon or the like can be used.
  • ITO indium oxide containing tin oxide
  • tin oxide containing antimony Zinc oxide, metal Ag, carbon or the like can be used as a method of forming the transparent conductive thin film layer 12.
  • conventionally known techniques such as a vacuum evaporation method, a sputtering method, or an ion plating method can be used.
  • materials having conductivity such as indium oxide containing tin oxide (also referred to as ITO), tin oxide containing antimony, zinc oxide, metal Ag, or carbon can be used as transparent resin in the form of nano- or micron-level particles.
  • Conventionally known techniques such as a coating method and a printing method can be used by mixing. In terms of transparent conductivity,
  • the thickness of the transparent conductive thin film layer 12 is not particularly limited, but is usually 5 to 2000 nm, preferably 10 to 1000 nm. Within this range, both conductivity and transparency are excellent. Also, in order to improve the adhesion of the transparent metal oxide layer 13, plasma treatment or the like on the surface of the transparent conductive thin film layer 12 as a pretreatment before forming the transparent metal oxide layer 13 on the transparent conductive thin film layer 12 You may
  • the transparent metal oxide layer 13 is formed by interspersing particles 13 a. That is, the respective particles 13a are provided discontinuously at certain intervals. However, a plurality of particles 13a may be adjacent to each other or may overlap with each other.
  • the transparent conductive thin film layer 12 is exposed on the surface of the transparent metal oxide layer 13, and the particles 13a do not cover the entire transparent conductive thin film layer 12.
  • the particle diameter of the particles 13a is preferably in the range of 20 to 800 nm, and a remarkable effect can be confirmed in at least the range of 30 to 250 nm. When the particle size of the particles 13a is smaller than 20 nm, improvement in transparency can not be expected, and when the particle size is larger than 800 nm, the haze value increases.
  • the transmittance is lowered and the resolution of characters and images is lowered, which is not preferable.
  • the distance between the adjacent particles 13a is preferably in the range of 20 to 2000 nm, and a remarkable effect can be confirmed in at least the range of 30 to 1280 nm.
  • the transparent metal oxide layer 13 is not a continuous film in which the particles 13a are connected to each other, but a discontinuous film in which adjacent particles 13a have an interval of 30 nm or more. In consideration of the etching of the transparent conductive thin film layer 12 and the conductivity between the transparent metal oxide layer 13 and the metal electrode 20, it is preferable to increase the distance between adjacent particles 13a to expose the transparent conductive thin film layer 12 .
  • the spacing between adjacent particles 13a may not be uniform in the range of 20 to 2000 nm, and a partially overlapped state may occur, or a spacing exceeding 2000 nm may partially occur.
  • the average thickness of the transparent metal oxide layer 13 is a thickness for optically improving the transmittance, and can be measured by a contact surface roughness tester in general.
  • the material of the transparent metal oxide layer 13 may be any material that can form a transparent metal oxide layer.
  • TiO 2 , Ta 2 O 5 , ZrO 2 , SiO x , SiO 2 , Al 2 O 3 , SnO 2 , In 2 O 3 , MgO, MoO 3 are used.
  • the transmittance improvement or It is preferable because it is easy to use.
  • These transparent metal oxide layers 13 are electrically insulating materials, and they may be used singly or as a mixture of two or more, adjusted to have a desired refractive index.
  • the particles 13a forming the metal oxide layer 13 may be mixed with a transparent resin, or a necessary refractive material may be made of a transparent resin.
  • the transparent metal oxide layer 13 can be formed, for example, by the method described later.
  • the surface area of the transparent conductive thin film layer 12 can be determined as ⁇ 100 (%) (where r is the particle size).
  • the surface coverage is set in the range of 1 to 80%, preferably 2 to 60%. The lower the surface coverage, the lower the contact resistance with the metal electrode 20, and the better the etchability of the transparent conductive thin film layer 12.
  • the formation method of the transparent metal oxide layer 13 can use conventionally well-known techniques, such as a vacuum evaporation method, sputtering method, or ion plating method. Moreover, the formation method of the transparent metal oxide layer 13 can mix the particle
  • the transparent metal oxide layer 13 is formed of particles 13 a having a particle diameter in the range of 20 to 800 nm by sputter deposition at a degree of vacuum of 2.5 to 20 Pa.
  • the metal electrode 20 As a material of the metal electrode 20, for example, an alloy or metal paste composed of a single element or two or more elements such as Cu, Ag, Al, Au, Ni, Ni / Cr, Cr, and Ti can be used.
  • the thickness of the metal electrode 20 is not particularly limited, but is usually 0.01 to 50 ⁇ m, preferably 0.02 to 25 ⁇ m.
  • a conventionally known method can be used to form the metal electrode 20.
  • a plating method, a vacuum evaporation method, a sputtering method can be used, and a printing and coating method can be used for the metal paste.
  • Ni, Cr, Ti, Mo, C, Au, Ag, and any of these alloys, or Cu may be provided under and over the metal electrode 20 for the purpose of protecting the metal electrode 20, if necessary.
  • Layers of Ni / Ni alloy or Cu / Cr alloy and layers of these oxides may be provided.
  • a hard coat layer or an antiglare layer may be provided on the side opposite to the ITO surface of the transparent conductive substrate 10 of the present invention on the ITO side.
  • a transparent adhesive layer or the like may be provided and attached to another substrate. Also good.
  • the ITO / transparent metal layer of the present invention may be provided on both sides of the PET.
  • the transparent conductive substrate 10 of the present embodiment can be used as a transparent electrode of a touch panel, an electrode for a solar cell, an electrode for an EL device, an electrode for a light emitting diode, a heater, or a substrate for electromagnetic wave / electrostatic shielding.
  • the transparent conductive substrate 10 of the present embodiment can be used as an upper electrode and / or a lower electrode of a resistive film type or capacitive type touch panel, and the touch panel is disposed on the front surface of a liquid crystal display
  • a display device having a touch panel function can be obtained.
  • the transparent conductive substrate 10 of this embodiment can be suitably used as a low resistance (surface resistance R: 100 to 5 ⁇ / ⁇ ) of a capacitive touch panel, and in particular as an electrode of a large projected capacitive touch panel. It can be used suitably.
  • the transparent conductive substrate 10 of the present embodiment can reflect electromagnetic waves and heat rays (infrared rays) by setting the surface resistance R to 10 ( ⁇ / ⁇ ) or less, a transparent electromagnetic wave reflecting material or a transparent material can be used. It can be used as an infrared reflector.
  • the transparent electromagnetic wave reflecting material can be used, for example, as a display window material of an electric device generating an electromagnetic wave or a window material for checking the inside of the device in order to prevent electromagnetic wave leakage from the inside of the electric device.
  • the transparent electromagnetic wave reflecting material can be used, for example, as a window material of a building or a housing in order to prevent electromagnetic wave penetration from the outside.
  • the transparent infrared reflective material can be used, for example, as a display window material of an electric device that generates infrared light or a window material for internal confirmation of the device, in order to prevent infrared leakage from the inside of the electric device.
  • the transparent infrared reflective material can be used, for example, as a window material of a building or a housing to prevent infrared penetration from the outside.
  • FIG. 2 is a schematic diagram which shows the cross section of the general electrostatic capacitance type touch panel using the transparent conductive base material in this embodiment.
  • the transparent conductive substrate 10 in the present embodiment is attached to the glass 30.
  • the glass 30 may be bonded to the transparent metal oxide layer 13 in addition to the case where the glass 30 is bonded to the substrate 11.
  • the position is detected by the charge change of the touch panel electrode surface.
  • FIG. 3 is a schematic view of a general projected capacitive touch panel using a transparent conductive substrate according to the present embodiment.
  • a capacitive touch panel can be configured using two transparent conductive substrates 10 in which a matrix-like conductive pattern is formed by the transparent conductive thin film layer 12. Since the conductive pattern formed on one of the transparent conductive substrates 10 is connected vertically, the vertical position is detected, and the conductive pattern formed on the other transparent conductive substrate 10 is connected horizontally. The lateral position can be detected and the intersection point can be recognized as the pressed position.
  • the ITO film (transparent conductive thin film layer 12) using a film substrate includes a crystallized (crystal) ITO film and an amorphous ITO film, which can be used as necessary.
  • Crystallized (Crystal) ITO film is formed by sputtering and vacuum evaporation of ITO film, followed by heating and annealing (usually 150 ° C or more, about 50 minutes) in air for the purpose of improving transparency and reducing resistance.
  • annealing usually 150 ° C or more, about 50 minutes
  • the amorphous ITO film is formed by sputtering and vacuum evaporation of the ITO film, and is not annealed. Two types of films will be described below with reference to examples.
  • the double-sided hard coat PET film base material was used for the purpose of the haze increase prevention of the PET film base material at the time of annealing.
  • the total light transmittance of the double-sided hard-coated PET film substrate is about 91%, and the temperature of the film substrate at the time of sputter deposition is normal temperature. Moreover, the usual magnetron electrode method was used for the sputtering method here.
  • Example 2 (crystallization (crystal) ITO film)
  • a Si target was used on the ITO film, and a SiO 2 film having a thickness of about 70 nm was formed by sputter deposition under a vacuum degree of about 10 Pa in an Ar gas atmosphere containing about 3% of O 2 gas.
  • a film crystallized ITO film was formed in the same manner as in Example 1 except for the above.
  • Example 3 (Crystallized (Crystalline) ITO Film) The degree of vacuum at the time of Si sputter deposition on the ITO film was 5 Pa. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above.
  • Example 4 crystal (crystallization (crystal) ITO film)
  • the degree of vacuum at the time of sputter deposition of Si on the ITO film was set to 2.5 Pa.
  • a film crystallized ITO film was formed in the same manner as in Example 1 except for the above.
  • Example 2 The degree of vacuum at the time of Si sputter deposition on the ITO film was 0.4 Pa.
  • a film crystallized ITO film was formed in the same manner as in Example 1 except for the above. When the crystallized ITO film was formed, curling occurred in the base material, and a crack was generated in the deposited film, so that it was not possible to form the intended transparent conductive base material 10.
  • Example 3 The vacuum degree at the time of Si sputter deposition on the ITO film was set to 1 Pa. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above. When the crystallized ITO film was formed, curling occurred in the base material, and a crack was generated in the deposited film, so that it was not possible to form the intended transparent conductive base material 10.
  • Example 5 (amorphous ITO film)
  • the degree of vacuum is 0.1 to 0.9 Pa (in Ar gas atmosphere containing about 1% of O 2 gas)
  • Ar gas atmosphere containing about 1% of O 2 gas
  • a Si target is used on the ITO film, and a SiO 2 film with a thickness of about 95 nm is formed by sputter deposition at a degree of vacuum of 5 to 20 Pa (about 10 Pa) in an Ar gas atmosphere containing about 3% of O 2 gas.
  • the total light transmittance of the PET film substrate at this time was about 90%.
  • Example 6 (amorphous ITO film)
  • the degree of vacuum at the time of sputtering using a Si target was 5 Pa.
  • a target amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
  • Example 7 (amorphous ITO film)
  • the degree of vacuum at the time of sputtering using a Si target was 2.5 Pa.
  • a target amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
  • Example 5 The degree of vacuum at the time of Si sputter deposition on the ITO film was 0.4 Pa. An amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
  • Example 6 The vacuum degree at the time of Si sputter deposition on the ITO film was set to 1 Pa. An amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
  • Total light transmittance The total light transmittance of the transparent conductive film was measured using Suga Test Instruments Co., Ltd. HGM-2DP.
  • Etching test of ITO film Using a nitric acid-based ITO etching solution, measure the time until the ITO film is etched (visual and electrical resistance of the film surface is> 10E ⁇ 6 ⁇ / ⁇ ) at liquid temperatures of 20 ° C and 50 ° C. did. In addition, what can not be etched in 40 minutes was displayed as> 40 minutes, and it was judged that etching was not possible. Whether or not the etching was possible was also confirmed with other etching solutions such as sulfuric acid type, hydrochloric acid type and oxalic acid type.
  • the above transparent conductive film is cut into 1 cm width, and two Cu electrodes (10 mm width, about 180 nm thickness) by ordinary sputter deposition are formed so that the distance between the electrodes is 1 cm, both The resistance Rb between the electrodes was measured by the two-terminal method.
  • Index matching between ITO film and substrate The ITO film was partially etched using the transparent conductive film prepared in this example and the comparative example, and the surface reflectance of the surface of the transparent metal oxide layer and the surface of the etched portion (PET film substrate) was measured for each light wavelength ⁇ , 400 nm, 550 nm, and 660 nm.
  • a measured value is a value also including the reflectance of the vapor deposition opposite surface (substrate back surface).
  • the difference ( ⁇ R) in reflectance between the transparent metal oxide layer surface and the etched portion for each wavelength is 4% or less, it is difficult to distinguish visually, so the index matching property is considered to be good. More preferably, the difference in reflectance ( ⁇ R) is 2% or less.
  • Example 1 As also shown in the photographs of FIG. 6 to FIG. 8, in the SiO x layer on the ITO film, particles having a particle diameter of about 190 nm are dispersed at an average spacing of about 890 nm. The coverage of the ITO film surface by the SiO x layer was about 2%. As a result, the contact resistance between the Ag paste electrode and the ITO film, and the contact resistance between the vapor deposition Cu electrode and the ITO film were both good at zero. In the case of the Ag paste electrode, Comparative Example 4 in which the Ag paste electrode was directly formed on the ITO film showed that there is a contact resistance (about 5 ⁇ ) unique to the Ag paste in which Ag particles are dispersed.
  • Example 2 In this example, a SiO 2 layer was formed on the ITO film. The surface observation with a scanning electron microscope was equivalent to FIG. From this, the shape and dispersion of the SiO 2 layer on the ITO film are the same as in Example 1. The same effect as in Example 1 was also obtained on the coverage of the ITO film surface by the SiO 2 layer, the contact resistance between the electrodes, the etching property, and the scratch resistance. In addition, the total light transmittance was also improved as high as 91%.
  • Example 3 In the present example, the Si sputter conditions of Example 1 were changed. According to scanning electron microscopy, in the SiO x layer, particles having a particle size of about 100 nm were dispersed at an average spacing of about 190 nm. The coverage of the ITO film surface with the SiO x layer increased to about 20%. From this, it was found that the contact resistance between the Ag paste electrode and the ITO increases by 1 ⁇ (about 20%) and the etching time also increases (about 20%), but it is still within the practical range. It was also confirmed that etching could be performed with other etching solutions. On the other hand, the scratch resistance (Rb / RO) was good with almost no change at 1.0. In addition, the total light transmittance was also improved as high as 91%. In addition, if the coverage of the ITO film surface is about 20% or less, the surface resistance RO of the ITO film can be measured by a four-terminal measuring device.
  • Example 4 In the present example, the Si sputter conditions of Example 1 were changed. According to scanning electron microscopy, in the SiO x layer, particles of about 80 nm in diameter were dispersed at an average spacing of about 50 nm. The coverage of the ITO film surface with the SiO x layer increased to about 60%. From this, it was found that the contact resistance between the Ag paste electrode and the ITO increases by 5 ⁇ , and the etching time also increases by about twice, but it is still within the practical range. It was also confirmed that etching could be performed with other etching solutions. On the other hand, the scratch resistance (Rb / RO) was good with almost no change at 1.0. In addition, the total light transmittance was also improved as high as 91%.
  • Example 2 In Example 1, the degree of vacuum at the time of sputter deposition of Si was changed to 0.4 Pa and 1 Pa, respectively. Except for this, a crystal ITO film substrate was formed in the same manner. In any case, curling and cracking of the deposited film occurred during heating and curing after sputter deposition (both of the curling and cracking of Comparative Example 2 were larger than those of Comparative Example 3), and the desired amorphous ITO film substrate It turned out that it can not create.
  • SiO x film thickness as thick as approximately 90 nm, and predicted since the SiO 2 film of Comparative Examples 5 and 6 created in the same vacuum degree is a continuous film, SiO x film of this comparative example also is a continuous film It can be predicted. From this, it was found from the results of Examples 1 and 3 that in the case of 160 ° C. high temperature curing, the SiO x film could not form the intended amorphous ITO film substrate unless it was a discontinuous film.
  • Example 5 (amorphous ITO film substrate)
  • the surface observation by scanning electron microscopy was similar to the photographs shown in FIG. 6 to FIG.
  • the particle size, interval dispersion, coverage, etc. of the SiO 2 layer on the ITO film were the same as in Examples 1 and 2.
  • the coverage of the ITO film surface with the SiO 2 layer was also found to be about 2% as well.
  • the contact resistance between the Ag paste and the vapor deposition Cu electrode and the ITO film, the etching property of the ITO film, the scratch resistance and the like were also good as in the above example.
  • an amorphous ITO film reduced in resistance (40 ⁇ / ⁇ ) can be formed by increasing the film thickness of ITO to about 90 nm, and a PET film substrate is formed by forming a SiO 2 layer about 95 nm thick on the ITO film.
  • the total light transmittance could be improved as high as about 90.5%.
  • the high temperature annealing (crystallization) step for reducing the resistance is not necessary. From this, it is not necessary to consider the thermal damage of the film substrate to be used, and there is an advantage that a wide range of substrates can be used without particularly requiring an expensive haze preventing substrate, a high heat resistant substrate and the like.
  • Example 6 amorphous ITO film substrate
  • the degree of vacuum at the time of sputter deposition of the SiO 2 layer was changed to 5 Pa.
  • the surface observation results were the same as in Example 3, and the coverage of the SiO 2 layer was also about 20%. Other characteristics were also good as in the other examples.
  • Comparative example 4 In this comparative example, only the ITO film without the SiO 2 layer was used. The total light transmittance in this case was as low as 79%, much worse than the PET film substrate (about 90%). In addition, the scratch resistance (Rb / RO) is 2.0, and the ITO film is easily scratched. As a result of the above, there is a need for improvement. The other properties were the same as in Comparative Example 1.
  • Example 4 In Example 4, the degree of vacuum at the time of sputter deposition of Si was changed to 0.4 Pa and 1 Pa, respectively. Except for this, an amorphous ITO film substrate was formed by the same method. As a result of surface observation, the SiO 2 film was a completely continuous film, and the coverage of the SiO 2 film was about 100%. The surface resistance of the ITO film of the present substrate could not be measured by the four-terminal measurement method. Moreover, even if it uses Ag paste electrode and vapor deposition Cu electrode, contact resistance is as high as 1 * 10E6 ((ohm)), and it can not use it for the use which requires an electrode. Moreover, it turned out that the etching by etching liquid is also practically impossible. In addition, it was not able to etch also by other etching liquid.
  • Example 7 the Si sputter conditions of the fifth embodiment are changed.
  • the SiO 2 layer particles of about 80 nm in diameter were dispersed at an average spacing of about 60 nm.
  • the coverage of the ITO film surface with the SiO 2 layer increased to about 50%. From this, it was found that the contact resistance between the Ag paste electrode and the ITO increases by 3 ⁇ , and the etching time also increases by about twice, but it is still within the practical range. It was also confirmed that etching could be performed with other etching solutions.
  • the scratch resistance (Rb / RO) was good with almost no change at 1.0. In addition, the total light transmittance was also improved as high as 90.5%.

Abstract

This transparent conductive substrate comprises a transparent conductive thin-film layer (12) and a transparent metal-oxide layer (13) laminated, in that order, to one or both surfaces of a substrate (11), and the transparent metal-oxide layer (13) comprises scattered particles (13a). This results in a transparent conductive substrate that exhibits a high level of conductivity between a transparent conductive thin-film layer comprising ITO or the like and an electrode comprising a metal, a metal paste, or the like. In addition, said transparent conductive substrate is highly transparent, exhibits good index-matching performance, resists abrasion well, and etches well.

Description

透明導電性基材及び透明導電性基材の製造方法Transparent conductive substrate and method for producing transparent conductive substrate
 本発明は、タッチパネル、太陽電池用電極、ELデバイス用電極、発光ダイオード用電極、ヒーター、又は電磁波/静電シールド用基材に用いることができる透明導電性基材及びこの透明導電性基材の製造方法に関する。 The present invention relates to a transparent conductive substrate that can be used as a touch panel, an electrode for a solar cell, an electrode for an EL device, an electrode for a light emitting diode, a heater, or a substrate for electromagnetic wave / electrostatic shielding, and the transparent conductive substrate It relates to the manufacturing method.
 透明基板上に透明な金属酸化物導電層(ITO、ZnOなど)を形成した透明導電性基材は、透明で導電性があることにより、タッチパネル、太陽電池、ELデバイス、電磁波/静電気シールド、又は紫外/赤外線シールドに用いられている。 A transparent conductive substrate in which a transparent metal oxide conductive layer (ITO, ZnO, etc.) is formed on a transparent substrate is transparent and conductive, and thus, a touch panel, a solar cell, an EL device, an electromagnetic wave / electrostatic shield, or It is used for ultraviolet / infrared shields.
 しかしながら、従来の金属酸化物導電層(ITO、ZnOなど)を形成した透明導電性基材には次の1)から3)の課題があった。
 1)金属酸化物導電層面は可視光の光反射量が大きく透明性が悪い。
 2)金属酸化物導電層は近紫外線近辺の光を吸収するため450nmより小さい光波長での透過率が減少し、黄色に着色する。
 大型タッチパネル、太陽電池用電極、ELデバイス用電極、発光ダイオード用電極、及びヒーターは、表面抵抗を小さくする必要がある。表面抵抗を小さくするためには、金属酸化物導電層の膜厚を厚くする。従来の透明導電性基材は、例えば表面抵抗が100Ω/□の場合、全光線透過率が約88%であるが、表面抵抗を100Ω/□以下とする場合は、膜厚を厚くするため、上記1)及び2)の特性は著しく低下する。
 また上記1)及び2)の課題のため、金属酸化物導電層をパターンエッチングして使用する場合、パターンが有る部分と無い部分の差が明確に認識できてしまう。
 3)ITO膜は薄膜であるため、搬送時、加工時、及び使用時に擦れによるキズが発生し、導電性劣化、断線、外観劣化等の不良が発生していた。
However, the transparent conductive substrate on which the conventional metal oxide conductive layer (ITO, ZnO, etc.) is formed has the following problems 1) to 3).
1) The metal oxide conductive layer surface has a large amount of light reflection of visible light and poor transparency.
2) Since the metal oxide conductive layer absorbs light in the vicinity of near-ultraviolet light, the transmittance at a light wavelength smaller than 450 nm decreases and it becomes yellow.
The surface resistance of the large-sized touch panel, the electrode for a solar cell, the electrode for an EL device, the electrode for a light emitting diode, and the heater needs to be reduced. In order to reduce the surface resistance, the thickness of the metal oxide conductive layer is increased. The conventional transparent conductive substrate has a total light transmittance of about 88% when the surface resistance is 100 Ω / □, for example, but in order to increase the film thickness when the surface resistance is 100 Ω / □ or less, The properties of the above 1) and 2) are significantly reduced.
Further, due to the problems 1) and 2), when the metal oxide conductive layer is used by pattern etching, the difference between the portion with the pattern and the portion without the pattern can be clearly recognized.
3) Since the ITO film is a thin film, scratches due to rubbing occur during transport, processing, and use, and defects such as conductivity deterioration, disconnection, and appearance deterioration occur.
 これらの課題を改良する目的で、ITO膜面上にITOより光の屈折率の小さい透明な層(SiO、Al、透明樹脂等)を形成した物が提案されていた(例えば、特許文献1及び2)。 In order to improve these problems, a transparent layer (SiO 2 , Al 2 O 3 , transparent resin, etc.) having a smaller light refractive index than ITO has been proposed on the ITO film surface (for example, Patent documents 1 and 2).
 特許文献1には、ポリエチレンテレフタレートフィルムの表面に高周波スパッタエッチング処理を施した後に、透明な導電性薄膜を形成し、次いでこの薄膜上に膜厚10nm以上の透明な誘電体薄膜を形成することを特徴とする透明導電性フィルムの製造法が記載されている。この製造法では、誘電体薄膜の形成により耐擦傷性の向上と透明性の改善が図られている。 According to Patent Document 1, after performing a high frequency sputter etching process on the surface of a polyethylene terephthalate film, a transparent conductive thin film is formed, and then a transparent dielectric thin film having a film thickness of 10 nm or more is formed on this thin film. A method of producing the characterized transparent conductive film is described. In this manufacturing method, the formation of a dielectric thin film is intended to improve the scratch resistance and the transparency.
 特許文献2には、厚さが2~120μmの透明なフィルム基材の一方の面に透明な導電性薄膜とさらにこの導電性薄膜の上に透明な誘電体薄膜を形成し、他方の面に透明な粘着剤層を介して透明基体を貼り合わせた透明導電性積層体が記載されている。この透明導電性積層体では、誘電体薄膜の形成により透明性および耐擦傷性が向上し、打点特性の改善も図られている。 In Patent Document 2, a transparent conductive thin film is formed on one side of a transparent film substrate having a thickness of 2 to 120 μm, and a transparent dielectric thin film is further formed on the conductive thin film, and the other side is formed A transparent conductive laminate in which a transparent substrate is bonded via a transparent pressure-sensitive adhesive layer is described. In this transparent conductive laminate, the formation of the dielectric thin film improves the transparency and the scratch resistance, and also improves the hitting characteristics.
 このような層の形成により上記課題を改善できたものの、透明な誘電体薄膜が電気絶縁層であるために、金属酸化物導電層と、誘電体薄膜層上に設けた電極(導電ぺースト、金属層等)間の導電性が非常に悪く、また導電性は不安定であった。また金属酸化物導電層(ITO)膜のパターンエッチングは、絶縁層があるため困難であった。 Although the above problems could be solved by the formation of such a layer, the transparent dielectric thin film is an electrical insulating layer, so the metal oxide conductive layer and the electrode provided on the dielectric thin film layer (conductive paste, The conductivity between metal layers etc.) was very poor, and the conductivity was unstable. Further, pattern etching of the metal oxide conductive layer (ITO) film has been difficult due to the presence of the insulating layer.
 これらのことより、金属酸化物導電層に誘電体薄膜層を設けた透明導電性基材は、タッチパネル、太陽電池、ELデバイス、又は発光ダイオードのように、ITO膜のエッチングやリード用電極が必要な用途には不向きであるため、用途が限定されていた。 From these things, the transparent conductive base material which provided the dielectric material thin film layer in the metal oxide conductive layer needs the electrode for etching of an ITO film, a lead, etc. like a touch panel, a solar cell, EL device, or a light emitting diode. Applications are limited because it is unsuitable for various applications.
 特許文献3は、従来の問題点を改良する目的で、基材の片面又は両面に透明導電性薄膜層と透明金属酸化物層とをこの順で積層した透明導電性基材を提案している。そして、透明金属酸化物層は、表裏面に貫通する多数の微細空孔を有し、透明導電性薄膜と接する面の空孔の孔径に対して、反対側の面の空孔の孔径を大きくしている。
 特許文献3の透明導電性基材には以下の問題点が有った。
 透明金属酸化物層上にAgペースト電極を形成した場合、電極と透明導電性薄膜層との接触抵抗が高い。
 透明導電性薄膜層の表面空孔率が小さいため透明導電性薄膜層のエッチング時間が長い。
 特許文献3による微細空孔の形成方法には「斜め真空蒸着法」を用いるため、以下の問題点を持つ。
 透明導電性薄膜層の形成には通常「スパッタ蒸着機」によるスパッタ蒸着法を用いるが、「斜め真空蒸着機」を別途に導入しなければならないため、設備投資や製造原価が増加する。
 斜め蒸着法は、蒸着入射角を狭くする必要があり、蒸着面積が著しく縮小されるため、透明金属酸化物材料の蒸着付着効率が著しく低下(通常数%)する。そのため、Si、SiO、SiO等高価な材料の場合、材料原価が大幅に上がる、処理速度が遅くなる等、製造原価が増加する。
Patent Document 3 proposes a transparent conductive substrate in which a transparent conductive thin film layer and a transparent metal oxide layer are laminated in this order on one side or both sides of a substrate in order to improve the conventional problems. . The transparent metal oxide layer has a large number of fine pores penetrating to the front and back surfaces, and the pore diameter of the pores on the opposite side is larger than the pore diameter of the pores in the surface in contact with the transparent conductive thin film. doing.
The transparent conductive substrate of Patent Document 3 has the following problems.
When an Ag paste electrode is formed on the transparent metal oxide layer, the contact resistance between the electrode and the transparent conductive thin film layer is high.
Since the surface porosity of the transparent conductive thin film layer is small, the etching time of the transparent conductive thin film layer is long.
The method of forming microvoids according to Patent Document 3 has the following problems because it uses the “oblique vacuum deposition method”.
Although the sputter deposition method by a "sputter deposition machine" is usually used for formation of a transparent conductive thin film layer, since a "diagonal vacuum deposition machine" must be separately introduced, equipment investment and manufacturing cost increase.
In the oblique deposition method, it is necessary to narrow the deposition incidence angle, and the deposition area is significantly reduced, so that the deposition adhesion efficiency of the transparent metal oxide material is significantly reduced (usually several percent). Therefore, in the case of an expensive material such as Si, SiO 2 or SiO x , the cost of materials is significantly increased, the processing speed is decreased, and the cost of manufacturing is increased.
特開平2-27617号公報Japanese Patent Application Laid-Open No. 2-27617 特開平2-213006号公報Japanese Patent Laid-Open No. 2-213006 国際公開第2011/142392号International Publication No. 2011/142392
 本発明者らは、透明導電性薄膜層上の透明金属酸化物層を、粒子を点在させることで形成し、透明導電性薄膜層の透明金属層による被覆率を少なくし、粒子間に透明導電性薄膜を露出させることにより、透明導電性薄膜層と透明金属酸化物層上の金属電極聞の導電性を、透明性を落とすことなく大幅に上げ、インデックスマッチング性や耐擦傷性を高めることができるという知見を得た。
 また、本発明者らは、スパッタ蒸着における真空度を5~20Paとすることで、透明金属酸化物層に適した粒径の粒子を点在させることができるという知見を得た。
The present inventors form the transparent metal oxide layer on the transparent conductive thin film layer by interspersing particles, reduce the coverage of the transparent conductive thin film layer by the transparent metal layer, and make the interparticle transparent. By exposing the conductive thin film, the conductivity of the transparent conductive thin film layer and the metal electrode on the transparent metal oxide layer is significantly increased without lowering the transparency, and the index matching property and the scratch resistance are improved. We have found that we can
Furthermore, the inventors of the present invention have found that, by setting the degree of vacuum in sputter deposition to 5 to 20 Pa, particles of a particle diameter suitable for the transparent metal oxide layer can be scattered.
 そこで本発明は、これら知見に基づき、更に検討を重ねて完成されたものであり、ITO等の透明導電性薄膜層と、金属および金属ペースト等の電極との導電性が高い上に、透明性、インデックスマッチング性、耐擦傷性、エッチング性も良好な透明導電性基材を提供することを目的とする。 Therefore, the present invention has been completed based on these findings and has been further studied repeatedly, and the conductivity of the transparent conductive thin film layer such as ITO and the electrode such as metal and metal paste is high and the transparency is also high. It is an object of the present invention to provide a transparent conductive substrate which is excellent in index matching property, scratch resistance and etching property.
 請求項1記載の本発明の透明導電性基材は、基材の片面又は両面に、透明導電性薄膜層及び透明金属酸化物層をこの順で積層した透明導電性基材であって、前記透明金属酸化物層を、粒子を点在させることで形成したことを特徴とする。
 請求項2記載の本発明の本発明は、請求項1に記載の透明導電性基材において、前記透明金属酸化物層による前記透明導電性薄膜層の被覆率を60~1%としたことを特徴とする。
 請求項3記載の本発明は、請求項1又は請求項2に記載の透明導電性基材において、前記透明導電性薄膜層の表面抵抗を100(Ω/□)以下としたことを特徴とする。
 請求項4記載の本発明の本発明は、請求項1から請求項3のいずれかに記載の透明導電性基材において、前記透明金属酸化物層の可視光線表面反射率と前記基材の可視光線表面反射率との差を4%未満としたことを特徴とする。
 請求項5記載の本発明は、請求項1から請求項4のいずれかに記載の透明導電性基材において、前記粒子の粒径を20~800nm、前記粒子の間隔を20~2000nmとしたことを特徴とする。
 請求項6記載の本発明は、請求項5に記載の透明導電性基材において、前記粒子の前記粒径を30~250nm、前記粒子の前記間隔を30~1280nmとしたことを特徴とする。
 請求項7記載の本発明は、請求項1から請求項6のいずれかに記載の透明導電性基材において、前記透明導電性薄膜層の上に金属電極を積層したことを特徴とする。
 請求項8記載の本発明の透明導電性基材の製造方法は、基材の片面又は両面に、透明導電性薄膜層及び透明金属酸化物層をこの順で積層した透明導電性基材の製造方法であって、前記透明金属酸化物層を、真空度2.5~20Paでスパッタ蒸着により粒径が30~800nmの範囲にある粒子で形成することを特徴とする。
 請求項9記載の本発明のタッチパネルは、請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とする。
 請求項10記載の本発明の太陽電池は、請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とする。
 請求項11記載の本発明のヒーターは、請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とする。
 請求項12記載の本発明の電磁波/静電シールド用基材は、請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とする。
 請求項13記載の本発明のELデバイスは、請求項1から請求項7のいずれかに記載の透明導電性基材を電極として用いたことを特徴とする。
 請求項14記載の本発明の発光ダイオードは、請求項1から請求項7のいずれかに記載の透明導電性基材を電極として用いたことを特徴とする。
 請求項15記載の本発明の透明電磁波反射材は、請求項1から請求項6のいずれかに記載の透明導電性基材を用いたことを特徴とする。
 請求項16記載の本発明の透明赤外線反射材は、請求項1から請求項6のいずれかに記載の透明導電性基材を用いたことを特徴とする。
The transparent conductive substrate of the present invention according to claim 1 is a transparent conductive substrate in which a transparent conductive thin film layer and a transparent metal oxide layer are laminated in this order on one side or both sides of the substrate, It is characterized in that the transparent metal oxide layer is formed by interspersing particles.
The present invention according to claim 2 is that, in the transparent conductive substrate according to claim 1, the coverage of the transparent conductive thin film layer by the transparent metal oxide layer is 60 to 1%. It features.
The present invention according to claim 3 is characterized in that, in the transparent conductive substrate according to claim 1 or 2, the surface resistance of the transparent conductive thin film layer is 100 (Ω / □) or less. .
The present invention according to claim 4 is the transparent conductive substrate according to any one of claims 1 to 3, wherein the visible light surface reflectance of the transparent metal oxide layer and the visible light of the substrate It is characterized in that the difference with the light ray surface reflectance is less than 4%.
According to a fifth aspect of the present invention, in the transparent conductive substrate according to any one of the first to fourth aspects, the particle diameter of the particles is 20 to 800 nm, and the distance between the particles is 20 to 2000 nm. It is characterized by
The invention according to claim 6 is characterized in that, in the transparent conductive substrate according to claim 5, the particle diameter of the particles is 30 to 250 nm, and the distance between the particles is 30 to 1280 nm.
According to a seventh aspect of the present invention, in the transparent conductive substrate according to any one of the first to sixth aspects, a metal electrode is laminated on the transparent conductive thin film layer.
The method for producing a transparent conductive substrate of the present invention according to claim 8 is a method for producing a transparent conductive substrate in which a transparent conductive thin film layer and a transparent metal oxide layer are laminated in this order on one side or both sides of the substrate. The method is characterized in that the transparent metal oxide layer is formed of particles having a particle size in the range of 30 to 800 nm by sputter deposition under a vacuum degree of 2.5 to 20 Pa.
The touch panel of the present invention according to claim 9 is characterized by comprising the transparent conductive substrate according to any one of claims 1 to 7.
The solar cell of the present invention according to claim 10 is characterized by comprising the transparent conductive substrate according to any one of claims 1 to 7.
The heater of the present invention according to claim 11 comprises the transparent conductive substrate according to any one of claims 1 to 7.
The electromagnetic wave / electrostatic shield substrate of the present invention according to claim 12 is characterized by comprising the transparent conductive substrate according to any one of claims 1 to 7.
The EL device of the present invention according to claim 13 is characterized in that the transparent conductive substrate according to any one of claims 1 to 7 is used as an electrode.
The light emitting diode of the present invention according to claim 14 is characterized in that the transparent conductive substrate according to any one of claims 1 to 7 is used as an electrode.
The transparent electromagnetic wave reflecting material of the present invention according to claim 15 is characterized in that the transparent conductive substrate according to any one of claims 1 to 6 is used.
The transparent infrared reflective material of the present invention according to claim 16 is characterized in that the transparent conductive substrate according to any one of claims 1 to 6 is used.
 本発明の透明導電性基材は、透明導電性薄膜層と金属電極間の導電性が高い上に、透明性、インデックスマッチング性、耐擦傷性に優れ、エッチングも可能であり、次世代の透明導電性基材、この透明導電性基材の製造方法、及びこれを用いたタッチパネルなどを提供することができる。 The transparent conductive substrate of the present invention has high conductivity between the transparent conductive thin film layer and the metal electrode, is excellent in transparency, index matching property, scratch resistance, can be etched, and is the next generation transparent A conductive substrate, a method of manufacturing the transparent conductive substrate, a touch panel using the same, and the like can be provided.
本発明の一実施形態における透明導電性基材の断面を示す模式図The schematic diagram which shows the cross section of the transparent conductive base material in one Embodiment of this invention 本実施形態における透明導電性基材を用いた一般的な静電容量式タッチパネルの断面を示す模式図The schematic diagram which shows the cross section of the general electrostatic capacitance type touch panel using the transparent conductive base material in this embodiment 本実施形態における透明導電性基材を用いた一般的な投影静電容量方式のタッチパネルの模式図A schematic view of a general projected capacitive touch panel using a transparent conductive substrate in the present embodiment 各実施例の評価結果を示す図Chart showing the evaluation results of each example 各実施例の評価結果を示す図Chart showing the evaluation results of each example 走査電子顕微鏡よる透明導電性フィルムの代表的な表面写真Typical surface photograph of transparent conductive film by scanning electron microscope 走査電子顕微鏡よる透明導電性フィルムの代表的な表面写真Typical surface photograph of transparent conductive film by scanning electron microscope 走査電子顕微鏡よる透明導電性フィルムの代表的な表面写真Typical surface photograph of transparent conductive film by scanning electron microscope
 以下、本発明の透明導電性基材及び透明導電性基材の実施方法について詳細に説明する。 Hereinafter, the implementation method of the transparent conductive substrate of this invention and a transparent conductive substrate is demonstrated in detail.
 図1は、本発明の一実施形態における透明導電性基材の断面を示す模式図である。
 本実施形態における透明導電性基材10は、基材11の片面又は両面、すなわち基材11の少なくとも一方の面に、透明導電性薄膜層12、透明金属酸化物層13をこの順で積層して構成される。透明金属酸化物層13の上には金属電極20を設ける。
FIG. 1 is a schematic view showing a cross section of a transparent conductive substrate in an embodiment of the present invention.
The transparent conductive substrate 10 in the present embodiment has a transparent conductive thin film layer 12 and a transparent metal oxide layer 13 laminated in this order on one surface or both surfaces of the substrate 11, that is, at least one surface of the substrate 11. Is configured. A metal electrode 20 is provided on the transparent metal oxide layer 13.
 基材11には、例えば、ガラス、透明性を有する各種のプラスチックフィルム若しくはシート(板)を使用できる。プラスチックフィルム及びシートには、例えば、樹脂成分としてポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリビニルアルコール、ポリアクリレート、ポリアリレート、又はポリフェニレンサルファイドを含むものを用いることができる。これらの中でも、ポリエステルが特に好ましく、ポリエステルの中でもポリエチレンテレフタレートが特に好ましい。
 基材11の厚みは特に限定されず、製品特性に応じて設定できる。
 フィルムでは、通常6~400μm、好ましくは20~200μm程度の厚みであり、シート(板)では、通常400μm~5mm程度の厚みである。
For the substrate 11, for example, glass, various plastic films or sheets (plates) having transparency can be used. For plastic films and sheets, for example, those containing polyester, polycarbonate, polyamide, polyimide, polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl alcohol, polyacrylate, polyarylate, or polyphenylene sulfide as a resin component are used. Can. Among these, polyester is particularly preferable, and among polyesters, polyethylene terephthalate is particularly preferable.
The thickness of the substrate 11 is not particularly limited, and can be set according to the product characteristics.
The thickness of the film is usually 6 to 400 μm, preferably about 20 to 200 μm, and the thickness of the sheet (plate) is usually about 400 μm to 5 mm.
 透明導電性薄膜層12の密着性を向上させるため、基材11上に透明導電性薄膜層12を形成する前の予備処理として、基材11表面にコロナ処理、火炎処理、又はプラズマ処理等の物理処理を施しても良い。
 また、基材11の表面に、あらかじめインデックスマッチング(IM)層を形成し、このIM層の上に透明導電性薄膜層12を形成してもよい。基材11の表面にあらかじめIM層を形成することで、透明導電性薄膜層12をエッチングして使用する場合、パターンが有る部分と無い部分の差を小さくでき、パターン部を判別しにくくできる。
 IM層は、基材11の表面に、1層形成してもよいが、2層、3層のように複数層、光の屈折率の異なる層を形成してもよい。層数は、特に限定しないが、コスト、生産性、安定性等を考慮すると少ない方が良い。一般には、単層におけるIM層又は複数層における1層目のIM層は、基材11の屈折率より大きい屈折率を持つ材料を用いる。基材11の屈折率が1.3~1.6の場合には、単層におけるIM層又は複数層における1層目のIM層には、屈折率が1.85~2.1であるMoO、屈折率が1.6~2.0であるSiO、屈折率が1.64であるAlを用いることができる。なお、MoO、SiO、又はAl以外には、TiO、Ta、ZrO、又はNb等の高屈折材料を用いることができる。
 また複数層における2層目のIM層には、1層目のIM層より小さい屈折率を持つ材料が適しており、例えば、屈折率が1.47であるSiOやその他SiOxを用いることができる。なお、これらの屈折率の組み合わせや材料の選択は特に限定しない。
 なお、IM層の形成方法には、公知の真空蒸着法、スパッタリング法、塗工法、又は印刷法等を用いることができ、その他の方法であってもよい。
 また、基材11の片面又は両面に、易接着層及びハードコート層を形成しても良い。透明導電性薄膜層12を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより除塵、洗浄しても良い。
In order to improve the adhesion of the transparent conductive thin film layer 12, the surface of the substrate 11 may be subjected to corona treatment, flame treatment, plasma treatment or the like as a pretreatment before forming the transparent conductive thin film layer 12 on the substrate 11. Physical processing may be performed.
Alternatively, an index matching (IM) layer may be formed in advance on the surface of the substrate 11, and the transparent conductive thin film layer 12 may be formed on the IM layer. By forming the IM layer on the surface of the base material 11 in advance, when the transparent conductive thin film layer 12 is etched and used, the difference between the portion with the pattern and the portion without the pattern can be reduced, and the pattern portion can be difficult to distinguish.
The IM layer may be formed as a single layer on the surface of the base material 11, but a plurality of layers such as two layers or three layers may be formed with different refractive indices of light. Although the number of layers is not particularly limited, it is better to reduce the number in consideration of cost, productivity, stability and the like. In general, the IM layer in a single layer or the first IM layer in a plurality of layers uses a material having a refractive index greater than that of the substrate 11. When the refractive index of the substrate 11 is 1.3 to 1.6, MoO having a refractive index of 1.85 to 2.1 is used as the first IM layer in the IM layer or plural layers in a single layer. 3, SiO X a refractive index of 1.6-2.0, the refractive index can be used Al 2 O 3 is 1.64. Besides MoO 3 , SiO x or Al 2 O 3 , high refractive materials such as TiO 2 , Ta 2 O 5 , ZrO 2 or Nb 2 O 5 can be used.
For the second IM layer in multiple layers, a material having a refractive index smaller than that of the first IM layer is suitable. For example, SiO 2 or other SiO x having a refractive index of 1.47 may be used. it can. The combination of these refractive indices and the selection of the material are not particularly limited.
In addition, the formation method of IM layer can use a well-known vacuum evaporation method, sputtering method, the coating method, the printing method etc., and another method may be used.
In addition, the easy adhesion layer and the hard coat layer may be formed on one side or both sides of the substrate 11. Before forming the transparent conductive thin film layer 12, if necessary, dust removal and cleaning may be performed by solvent cleaning or ultrasonic cleaning.
 透明導電性薄膜層12の材料は、透明性と導電性を有しているものであれば特に限定されないが、例えば、酸化錫を含有する酸化インジウム(ITOとも呼ぶ)、アンチモンを含有する酸化錫、酸化亜鉛、金属Ag、又はカーボン等を用いることができる。
 透明導電性薄膜層12の形成方法としては、真空蒸着法、スパッタリング法、又はイオンプレーティング法など従来公知の技術を使用することができる。また、酸化錫を含有する酸化インジウム(ITOとも呼ぶ)、アンチモンを含有する酸化錫、酸化亜鉛、金属Ag、又はカーボン等の導電性を有する材料を、ナノ又はミクロンレベルの粒子として、透明樹脂に混合し、塗工法や印刷法など従来公知の技術を使用することができる。なお、透明導電性、膜の安定性、及び生産安定性の面からは、スパッタリング法を用いることが好ましい。
The material of the transparent conductive thin film layer 12 is not particularly limited as long as it has transparency and conductivity, and, for example, indium oxide containing tin oxide (also referred to as ITO) and tin oxide containing antimony Zinc oxide, metal Ag, carbon or the like can be used.
As a method of forming the transparent conductive thin film layer 12, conventionally known techniques such as a vacuum evaporation method, a sputtering method, or an ion plating method can be used. In addition, materials having conductivity such as indium oxide containing tin oxide (also referred to as ITO), tin oxide containing antimony, zinc oxide, metal Ag, or carbon can be used as transparent resin in the form of nano- or micron-level particles. Conventionally known techniques such as a coating method and a printing method can be used by mixing. In terms of transparent conductivity, film stability, and production stability, sputtering is preferably used.
 透明導電性薄膜層12の厚さは、特に限定されるものではないが、通常5~2000nm、好ましくは10~1000nmである。この範囲であれば導電性及び透明性の両方に優れる。
 また、透明金属酸化物層13の密着性を向上させるため、透明導電性薄膜層12上に透明金属酸化物層13を形成する前の予備処理として、透明導電性薄膜層12表面にプラズマ処理等を施しても良い。
The thickness of the transparent conductive thin film layer 12 is not particularly limited, but is usually 5 to 2000 nm, preferably 10 to 1000 nm. Within this range, both conductivity and transparency are excellent.
Also, in order to improve the adhesion of the transparent metal oxide layer 13, plasma treatment or the like on the surface of the transparent conductive thin film layer 12 as a pretreatment before forming the transparent metal oxide layer 13 on the transparent conductive thin film layer 12 You may
 透明金属酸化物層13は、粒子13aを点在させることで形成している。すなわちそれぞれの粒子13aは、ある間隔で不連続に設けている。ただし、複数の粒子13aが隣り合うか重なり合った状態が生じてもよい。透明金属酸化物層13の表面には、透明導電性薄膜層12が露出しており、粒子13aによって透明導電性薄膜層12全体を覆わない。
 粒子13aの粒径は20~800nmの範囲であることが好ましく、少なくとも30~250nmの範囲で顕著な効果を確認できた。粒子13aの粒径は、20nmより小さい場合には透明性の向上が期待できず、粒径が800nmより大きくなるとヘイズ値が増加する。従って、透明導電性基材10を透明電極として用いた場合、透過率が低下し、文字や像の解像度等が低下するため、好ましくない。
 また、隣り合う粒子13aの間隔は、20~2000nmの範囲であることが好ましく、少なくとも30~1280nmの範囲で顕著な効果を確認できた。透明金属酸化物層13は、粒子13a同士がつながる連続膜でなく、隣り合う粒子13aが30nm以上の間隔を有する不連続膜とする。透明導電性薄膜層12のエッチング、及び透明金属酸化物層13と金属電極20との導電性を考慮すると、隣り合う粒子13aの間隔を大きくし、透明導電性薄膜層12を露出させることが好ましい。なお、隣り合う粒子13aの間隔は2000nmを越えると透過率や耐擦傷性等の向上が期待できない。隣り合う粒子13aの間隔は、20~2000nmの範囲であれば均一でなくてよく、一部分で重なり合った状態が生じてもよく、一部分で2000nmを越える間隔が生じてもよい。
The transparent metal oxide layer 13 is formed by interspersing particles 13 a. That is, the respective particles 13a are provided discontinuously at certain intervals. However, a plurality of particles 13a may be adjacent to each other or may overlap with each other. The transparent conductive thin film layer 12 is exposed on the surface of the transparent metal oxide layer 13, and the particles 13a do not cover the entire transparent conductive thin film layer 12.
The particle diameter of the particles 13a is preferably in the range of 20 to 800 nm, and a remarkable effect can be confirmed in at least the range of 30 to 250 nm. When the particle size of the particles 13a is smaller than 20 nm, improvement in transparency can not be expected, and when the particle size is larger than 800 nm, the haze value increases. Therefore, when the transparent conductive substrate 10 is used as a transparent electrode, the transmittance is lowered and the resolution of characters and images is lowered, which is not preferable.
Further, the distance between the adjacent particles 13a is preferably in the range of 20 to 2000 nm, and a remarkable effect can be confirmed in at least the range of 30 to 1280 nm. The transparent metal oxide layer 13 is not a continuous film in which the particles 13a are connected to each other, but a discontinuous film in which adjacent particles 13a have an interval of 30 nm or more. In consideration of the etching of the transparent conductive thin film layer 12 and the conductivity between the transparent metal oxide layer 13 and the metal electrode 20, it is preferable to increase the distance between adjacent particles 13a to expose the transparent conductive thin film layer 12 . If the distance between adjacent particles 13a exceeds 2000 nm, improvement in transmittance, abrasion resistance and the like can not be expected. The spacing between adjacent particles 13a may not be uniform in the range of 20 to 2000 nm, and a partially overlapped state may occur, or a spacing exceeding 2000 nm may partially occur.
 また、透明金属酸化物層13の平均厚さは、光学的に透過率を向上するための厚みであり、通常接触式表面粗さ計で測定できる。 Further, the average thickness of the transparent metal oxide layer 13 is a thickness for optically improving the transmittance, and can be measured by a contact surface roughness tester in general.
 透明金属酸化物層13の材質としては、透明な金属酸化物の層を形成できるものであればよい。例えば、TiO、Ta、ZrO、SiO、SiO、Al、SnO、In、MgO、MoO3、を用いる。しかし、透明金属酸化物層13の光の屈折率n1が透明導電性薄膜層12の光の屈折率n2(ITOのn2=2.0~2.2)より小さくなるものが、透過率向上や使用し易いとの理由から好ましい。例えば、MoO(1.85~2.1)、SiO(n1=1.6~2.0)、SiO(n1=1.47)、Al(n1=1.64)等、特にSiO(n1=1.6~2.0)、SiO(n1=1.47)を用いる。これらの透明金属酸化物層13は電気絶縁材料であり、これらを単独又は2種以上を混合して、好みの屈折率になるように調整して使用してもよい。
 また上記金属酸化物層13を形成する粒子13aを透明樹脂に混合し、又は透明樹脂で必要な屈折材料を作成してもよい。上記、透明金属酸化物層13は、例えば後記の様な方法により形成できる。
The material of the transparent metal oxide layer 13 may be any material that can form a transparent metal oxide layer. For example, TiO 2 , Ta 2 O 5 , ZrO 2 , SiO x , SiO 2 , Al 2 O 3 , SnO 2 , In 2 O 3 , MgO, MoO 3 are used. However, when the refractive index n1 of the light of the transparent metal oxide layer 13 is smaller than the refractive index n2 of the light of the transparent conductive thin film layer 12 (n2 of ITO = 2.0 to 2.2), the transmittance improvement or It is preferable because it is easy to use. For example, MoO 3 (1.85 to 2.1), SiO x (n1 = 1.6 to 2.0), SiO 2 (n1 = 1.47), Al 2 O 3 (n1 = 1.64), etc. In particular, SiO x (n 1 = 1.6 to 2.0) and SiO 2 (n 1 = 1.47) are used. These transparent metal oxide layers 13 are electrically insulating materials, and they may be used singly or as a mixture of two or more, adjusted to have a desired refractive index.
The particles 13a forming the metal oxide layer 13 may be mixed with a transparent resin, or a necessary refractive material may be made of a transparent resin. The transparent metal oxide layer 13 can be formed, for example, by the method described later.
 透明金属酸化物層13による透明導電性薄膜層12の表面被覆率は、透明金属酸化物層13の表面積S={(1/2×r×1/2×r×π)×粒子13aの個数}/透明導電性薄膜層12の表面積×100(%)(ただしrは粒径)として求めることができる。表面被覆率は、1~80%、好ましくは2~60%の範囲で設定する。表面被覆率が低い方が金属電極20との接触抵抗が低く、また透明導電性薄膜層12のエッチング性も良い。 The surface coverage of the transparent conductive thin film layer 12 by the transparent metal oxide layer 13 is the surface area S of the transparent metal oxide layer 13 = {(1/2 × r × 1/2 × r × π) × number of particles 13 a The surface area of the transparent conductive thin film layer 12 can be determined as × 100 (%) (where r is the particle size). The surface coverage is set in the range of 1 to 80%, preferably 2 to 60%. The lower the surface coverage, the lower the contact resistance with the metal electrode 20, and the better the etchability of the transparent conductive thin film layer 12.
 透明金属酸化物層13の形成方法は、真空蒸着法、スパッタリング法、又はイオンプレーティング法など従来公知の技術を使用することができる。また、透明金属酸化物層13の形成方法は、ナノ又はミクロンレベルの粒子13aを、透明樹脂に混合し、塗工法や印刷法などの従来公知の技術を使用することができる。なお、微小粒径のコントロール性が良く、生産安定性の面からはスパッタリング法が適している。また透明導電性薄膜層12の形成にはスパッタリング法を用いることが多く、スパッタリング法によれば、同一の設備で透明導電性薄膜層12と透明金属酸化物層13とを処理できる。
 透明金属酸化物層13は、真空度2.5~20Paでスパッタ蒸着により、粒径が20~800nmの範囲にある粒子13aで形成する。
The formation method of the transparent metal oxide layer 13 can use conventionally well-known techniques, such as a vacuum evaporation method, sputtering method, or ion plating method. Moreover, the formation method of the transparent metal oxide layer 13 can mix the particle | grains 13a of nano level or a micron level with transparent resin, and can use conventionally well-known techniques, such as the coating method and the printing method. In addition, the controllability of the fine particle diameter is good, and the sputtering method is suitable from the viewpoint of production stability. In addition, sputtering is often used to form the transparent conductive thin film layer 12. According to the sputtering method, the transparent conductive thin film layer 12 and the transparent metal oxide layer 13 can be treated with the same equipment.
The transparent metal oxide layer 13 is formed of particles 13 a having a particle diameter in the range of 20 to 800 nm by sputter deposition at a degree of vacuum of 2.5 to 20 Pa.
 金属電極20の材料としては、例えば、Cu、Ag、Al、Au、Ni、Ni/Cr、Cr、Ti等の単体又は2種以上からなる合金や金属ペーストを用いることができる。
 金属電極20の厚さは、特に限定されないが、通常0.01~50μm、好ましくは0.02~25μmである。
As a material of the metal electrode 20, for example, an alloy or metal paste composed of a single element or two or more elements such as Cu, Ag, Al, Au, Ni, Ni / Cr, Cr, and Ti can be used.
The thickness of the metal electrode 20 is not particularly limited, but is usually 0.01 to 50 μm, preferably 0.02 to 25 μm.
 金属電極20の形成には、従来公知の方法を使用でき、例えば、メッキ法、真空蒸着法、スパッタリング法を使用でき、金属ペーストには印刷、塗工する方法を使用できる。
 また、必要に応じて、上記金属電極20の保護を目的に、金属電極20の下及び上に、Ni、Cr、Ti、Mo、C、Au、Ag、及びこれらの合金のいずれか、又はCu/Ni合金若しくはCu/Cr合金等の層及びこれらの酸化物の層を設けても良い。
 また、必要に応じて本発明の透明導電性基材10のITO面と反対側PET面にハードコート層やアンチグレア層を設けても良く、透明粘着層等を設けて、他の基板に張り合わせても良い。また、PET両面に本発明のITO/透明金属層をそれぞれ設けても良い。
A conventionally known method can be used to form the metal electrode 20. For example, a plating method, a vacuum evaporation method, a sputtering method can be used, and a printing and coating method can be used for the metal paste.
In addition, Ni, Cr, Ti, Mo, C, Au, Ag, and any of these alloys, or Cu may be provided under and over the metal electrode 20 for the purpose of protecting the metal electrode 20, if necessary. Layers of Ni / Ni alloy or Cu / Cr alloy and layers of these oxides may be provided.
In addition, if necessary, a hard coat layer or an antiglare layer may be provided on the side opposite to the ITO surface of the transparent conductive substrate 10 of the present invention on the ITO side. A transparent adhesive layer or the like may be provided and attached to another substrate. Also good. In addition, the ITO / transparent metal layer of the present invention may be provided on both sides of the PET.
 本実施形態の透明導電性基材10は、タッチパネル、太陽電池用電極、ELデバイス用電極、発光ダイオード用電極、ヒーター、又は電磁波/静電シールド用基材などの透明電極として用いることができる。具体的には、本実施形態の透明導電性基材10を抵抗膜方式や静電容量方式のタッチパネルの上部電極及び/又は下部電極として用いることができ、このタッチパネルを液晶ディスプレイの前面に配置することでタッチパネル機能を有する表示装置が得られる。中でも本実施形態の透明導電性基材10は静電容量方式のタッチパネルの低抵抗(表面抵抗R:100~5Ω/□)として好適に使用でき、特に投影静電容量方式の大型タッチパネルの電極として好適に使用できる。
 また、本実施形態の透明導電性基材10は、表面抵抗Rを10(Ω/□)以下とすることで、電磁波や熱線(赤外線)を反射することができるので、透明電磁波反射材や透明赤外線反射材として使用できる。
 透明電磁波反射材は、電気機器内部からの電磁波漏洩防止のために、例えば電磁波が発生する電気機器の表示用窓材や機器内部確認用窓材に使用できる。また、透明電磁波反射材は、外部からの電磁波浸入防止のために、例えば建物や筐体の窓材に使用できる。
 透明赤外線反射材は、電気機器内部からの赤外線漏洩防止のために、例えば赤外線が発生する電気機器の表示用窓材や機器内部確認用窓材に使用できる。また、透明赤外線反射材は、外部からの赤外線浸入防止のために、例えば建物や筐体の窓材に使用できる。
The transparent conductive substrate 10 of the present embodiment can be used as a transparent electrode of a touch panel, an electrode for a solar cell, an electrode for an EL device, an electrode for a light emitting diode, a heater, or a substrate for electromagnetic wave / electrostatic shielding. Specifically, the transparent conductive substrate 10 of the present embodiment can be used as an upper electrode and / or a lower electrode of a resistive film type or capacitive type touch panel, and the touch panel is disposed on the front surface of a liquid crystal display Thus, a display device having a touch panel function can be obtained. Above all, the transparent conductive substrate 10 of this embodiment can be suitably used as a low resistance (surface resistance R: 100 to 5 Ω / □) of a capacitive touch panel, and in particular as an electrode of a large projected capacitive touch panel. It can be used suitably.
Moreover, since the transparent conductive substrate 10 of the present embodiment can reflect electromagnetic waves and heat rays (infrared rays) by setting the surface resistance R to 10 (Ω / □) or less, a transparent electromagnetic wave reflecting material or a transparent material can be used. It can be used as an infrared reflector.
The transparent electromagnetic wave reflecting material can be used, for example, as a display window material of an electric device generating an electromagnetic wave or a window material for checking the inside of the device in order to prevent electromagnetic wave leakage from the inside of the electric device. In addition, the transparent electromagnetic wave reflecting material can be used, for example, as a window material of a building or a housing in order to prevent electromagnetic wave penetration from the outside.
The transparent infrared reflective material can be used, for example, as a display window material of an electric device that generates infrared light or a window material for internal confirmation of the device, in order to prevent infrared leakage from the inside of the electric device. In addition, the transparent infrared reflective material can be used, for example, as a window material of a building or a housing to prevent infrared penetration from the outside.
 図2は、本実施形態における透明導電性基材を用いた一般的な静電容量式タッチパネルの断面を示す模式図である。
 図2では、本実施形態における透明導電性基材10をガラス30に貼り合わせている。図2に示すように、基材11にガラス30を貼り合わせる場合の他、透明金属酸化物層13にガラス30を貼り合わせてもよい。
 駆動時にはユーザーが透明導電性基材10上の任意の位置を指で触れることで、タッチパネル電極表面の電荷変化により位置を検出する。
FIG. 2: is a schematic diagram which shows the cross section of the general electrostatic capacitance type touch panel using the transparent conductive base material in this embodiment.
In FIG. 2, the transparent conductive substrate 10 in the present embodiment is attached to the glass 30. As shown in FIG. 2, the glass 30 may be bonded to the transparent metal oxide layer 13 in addition to the case where the glass 30 is bonded to the substrate 11.
At the time of driving, when the user touches an arbitrary position on the transparent conductive substrate 10 with a finger, the position is detected by the charge change of the touch panel electrode surface.
 図3に、本実施形態における透明導電性基材を用いた一般的な投影静電容量方式のタッチパネルの模式図を示す。図3に示すように、透明導電性薄膜層12によってマトリクス状の導電パターンを形成した2枚の透明導電性基材10を用いて、静電容量方式のタッチパネルを構成することができる。一方の透明導電性基材10に形成された導電パターンは縦に接続されているので縦位置を検出し、他方の透明導電性基材10に形成された導電パターンは横に接続されているので横位置を検出して、交点を押された位置として認識できる。 FIG. 3 is a schematic view of a general projected capacitive touch panel using a transparent conductive substrate according to the present embodiment. As shown in FIG. 3, a capacitive touch panel can be configured using two transparent conductive substrates 10 in which a matrix-like conductive pattern is formed by the transparent conductive thin film layer 12. Since the conductive pattern formed on one of the transparent conductive substrates 10 is connected vertically, the vertical position is detected, and the conductive pattern formed on the other transparent conductive substrate 10 is connected horizontally. The lateral position can be detected and the intersection point can be recognized as the pressed position.
 以下、本発明の実施例について説明する。なお、本発明はこれら実施例になんら限定されるものではない。
 フィルム基材を用いたITO膜(透明導電性薄膜層12)には、結晶化(クリスタル)ITO膜とアモルファスITO膜とがあり、必要に応じて用いることができる。
 結晶化(クリスタル)ITO膜は、ITO膜をスパッタ及び真空蒸着後、透明性向上及び低抵抗化を目的に大気中で加熱、アニール(通常150℃以上、約50分)処理して形成することができる。
 アモルファスITO膜は、ITO膜をスパッタ及び真空蒸着して形成され、アニール処理は行わない。
 以下に2種類の膜について、実施例を挙げて説明する。
Hereinafter, examples of the present invention will be described. The present invention is not limited to these examples.
The ITO film (transparent conductive thin film layer 12) using a film substrate includes a crystallized (crystal) ITO film and an amorphous ITO film, which can be used as necessary.
Crystallized (Crystal) ITO film is formed by sputtering and vacuum evaporation of ITO film, followed by heating and annealing (usually 150 ° C or more, about 50 minutes) in air for the purpose of improving transparency and reducing resistance. Can.
The amorphous ITO film is formed by sputtering and vacuum evaporation of the ITO film, and is not annealed.
Two types of films will be described below with reference to examples.
(実施例1(結晶化(クリスタル)ITO膜))
 両面ハードコート処理したPETフィルム基材の片面上に、SnOを10wt%含有するITOターゲットを用い、約1%のOガスを含むArガス雰囲気中、真空度0.1~0.9Pa(約0.6Pa)で、スパッタ蒸着により、表面抵抗R=170(Ω/□)のITO膜(厚さ約40nm)を形成した。次いで、このITO膜上に、Siターゲットを用い、約1.7%のOガスを含むArガス雰囲気中、真空度約10Paで、スパッタ蒸着により、厚さ約90nmのSiO(x=>1~<2)膜を形成した。その後、約160℃の加熱雰囲気にした大気中で、約50分加熱し表面抵抗R=60(Ω/□)のフィルム結晶化ITO膜を形成した。なお、アニール時のPETフィルム基材のヘイズ増加防止を目的として、両面ハードコートPETフィルム基材を用いた。
Example 1 (Crystallized (Crystalline) ITO Film)
Using an ITO target containing 10 wt% of SnO 2 on one side of a double-sided hard-coated PET film substrate, a vacuum degree of 0.1 to 0.9 Pa (in an Ar gas atmosphere containing about 1% of O 2 gas) An ITO film (about 40 nm thick) with a surface resistance R = 170 (Ω / □) was formed by sputter deposition at about 0.6 Pa). Then, on this ITO film, a Si target is used, and sputtering is performed at a vacuum degree of about 10 Pa in an Ar gas atmosphere containing about 1.7% of O 2 gas to form SiO x (x => about 90 nm thick). 1 to <2) A film was formed. Thereafter, the film was heated for about 50 minutes in the atmosphere at a heating atmosphere of about 160 ° C. to form a film crystallized ITO film having a surface resistance R = 60 (Ω / □). In addition, the double-sided hard coat PET film base material was used for the purpose of the haze increase prevention of the PET film base material at the time of annealing.
 両面ハードコート処理したPETフィルム基材の全光線透過率は約91%であり、スパッタ蒸着時のフィルム基材温度は常温である。またここでのスパッタ方法には通常のマグネトロン電極法を用いた。 The total light transmittance of the double-sided hard-coated PET film substrate is about 91%, and the temperature of the film substrate at the time of sputter deposition is normal temperature. Moreover, the usual magnetron electrode method was used for the sputtering method here.
(実施例2(結晶化(クリスタル)ITO膜))
 ITO膜上にSiターゲットを用い、約3%のOガスを含むArガス雰囲気中、真空度約10Paで、スパッタ蒸着により、厚さ約70nmのSiO膜を形成した。それ以外は実施例1と同様な方法でフィルム結晶化ITO膜を形成した。
(Example 2 (crystallization (crystal) ITO film))
A Si target was used on the ITO film, and a SiO 2 film having a thickness of about 70 nm was formed by sputter deposition under a vacuum degree of about 10 Pa in an Ar gas atmosphere containing about 3% of O 2 gas. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above.
(実施例3(結晶化(クリスタル)ITO膜))
 ITO膜上のSiスパッタ蒸着時の真空度を5Paにした。それ以外は実施例1と同様な方法でフィルム結晶化ITO膜を形成した。
Example 3 (Crystallized (Crystalline) ITO Film)
The degree of vacuum at the time of Si sputter deposition on the ITO film was 5 Pa. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above.
(実施例4(結晶化(クリスタル)ITO膜))
 ITO膜上のSiスパッタ蒸着時の真空度を2.5Paにした。それ以外は実施例1と同様な方法でフィルム結晶化ITO膜を形成した。
(Example 4 (crystallization (crystal) ITO film))
The degree of vacuum at the time of sputter deposition of Si on the ITO film was set to 2.5 Pa. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above.
(比較例1)
 ITO膜上にSiO膜を形成しない。それ以外は実施例1と同様な方法でフィルム結晶化ITO膜を形成した。
(Comparative example 1)
No SiO x film is formed on the ITO film. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above.
(比較例2)
 ITO膜上のSiスパッタ蒸着時の真空度を0.4Paにした。それ以外は実施例1と同様な方法でフィルム結晶化ITO膜を形成した。結晶化ITO膜を作成時基材にカールが発生して、蒸着膜にクラックが発生し、目的とする透明導電性基材10を作成できなかった。
(Comparative example 2)
The degree of vacuum at the time of Si sputter deposition on the ITO film was 0.4 Pa. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above. When the crystallized ITO film was formed, curling occurred in the base material, and a crack was generated in the deposited film, so that it was not possible to form the intended transparent conductive base material 10.
(比較例3)
 ITO膜上のSiスパッタ蒸着時の真空度を1Paにした。それ以外は実施例1と同様な方法でフィルム結晶化ITO膜を形成した。結晶化ITO膜を作成時基材にカールが発生して、蒸着膜にクラックが発生し、目的とする透明導電性基材10を作成できなかった。
(Comparative example 3)
The vacuum degree at the time of Si sputter deposition on the ITO film was set to 1 Pa. A film crystallized ITO film was formed in the same manner as in Example 1 except for the above. When the crystallized ITO film was formed, curling occurred in the base material, and a crack was generated in the deposited film, so that it was not possible to form the intended transparent conductive base material 10.
(実施例5(アモルファスITO膜))
 両面ハードコート無しのPETフィルム基材の片面上に、SnOを10wt%含有するITOターゲットを用い、約1%のOガスを含むArガス雰囲気中、真空度0.1~0.9Pa(約0.6Pa)で、スパッタ蒸着により、表面抵抗R=40(Ω/□)のITO膜(厚さ約90nm)を形成した。次いで、ITO膜上にSiターゲットを用い、約3%のOガスを含むArガス雰囲気中、真空度5~20Pa(約10Pa)で、スパッタ蒸着により、厚さ約95nmのSiO膜を形成し、目的とするアモルファスITOフィルム基材を形成した。
 この時のPETフィルム基材の全光線透過率は約90%であった。
(Example 5 (amorphous ITO film))
Using an ITO target containing 10 wt% of SnO 2 on one side of a PET film substrate without double-sided hard coating, the degree of vacuum is 0.1 to 0.9 Pa (in Ar gas atmosphere containing about 1% of O 2 gas) At about 0.6 Pa, an ITO film (about 90 nm thick) with a surface resistance R = 40 (Ω / □) was formed by sputter deposition. Next, a Si target is used on the ITO film, and a SiO 2 film with a thickness of about 95 nm is formed by sputter deposition at a degree of vacuum of 5 to 20 Pa (about 10 Pa) in an Ar gas atmosphere containing about 3% of O 2 gas. To form an intended amorphous ITO film substrate.
The total light transmittance of the PET film substrate at this time was about 90%.
(実施例6(アモルファスITO膜))
 Siターゲットを用いたスパッタ時の真空度を5Paにした。それ以外は実施例5と同様な方法で、目的とするアモルファスITOフィルム基材を形成した。
(Example 6 (amorphous ITO film))
The degree of vacuum at the time of sputtering using a Si target was 5 Pa. A target amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
(実施例7(アモルファスITO膜))
 Siターゲットを用いたスパッタ時の真空度を2.5Paにした。それ以外は実施例5と同様な方法で、目的とするアモルファスITOフィルム基材を形成した。
(Example 7 (amorphous ITO film))
The degree of vacuum at the time of sputtering using a Si target was 2.5 Pa. A target amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
(比較例4)
 ITO膜上にSiO膜を形成しない。それ以外は実施例5と同様な方法でアモルファスITOフィルム基材を形成した。
(Comparative example 4)
No SiO 2 film is formed on the ITO film. An amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
(比較例5)
 ITO膜上のSiスパッタ蒸着時の真空度を0.4Paにした。それ以外は実施例5と同様な方法でアモルファスITOフィルム基材を形成した。
(Comparative example 5)
The degree of vacuum at the time of Si sputter deposition on the ITO film was 0.4 Pa. An amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
(比較例6)
 ITO膜上のSiスパッタ蒸着時の真空度を1Paにした。それ以外は実施例5と同様な方法でアモルファスITOフィルム基材を形成した。
(Comparative example 6)
The vacuum degree at the time of Si sputter deposition on the ITO film was set to 1 Pa. An amorphous ITO film substrate was formed in the same manner as in Example 5 except for the above.
 得られた透明導電性フィルムについて、以下の評価を行い、得られた結果を図4及び図5に示した。
 また、走査電子顕微鏡よる代表的な表面写真を図6から図8に示した。
The following evaluation was performed about the obtained transparent conductive film, and the obtained result was shown in FIG.4 and FIG.5.
Further, representative surface photographs by a scanning electron microscope are shown in FIG. 6 to FIG.
(評価方法)
1)金属酸化物層(SiO、SiO)膜の表面観察:
 ITO膜及びSiO及びSiO膜上から走査電子顕微鏡(日本電子株式会社製 JSM-6490(LA))により観察を行った。そして、SiO及びSiO層の平均粒径、粒子の間隔、金属酸化物層の表面被覆率を求めた。金属酸化物層の表面被覆率は、次のように求めることができる。
 透明金属酸化物層の表面積{(1/2×r×1/2×r×π)×単位測定面積中の粒子個数}/透明導電性薄膜層の表面積(単位測定面積)×100(%)(ただしrは粒子の直径(粒径)である。)
(Evaluation method)
1) Surface observation of metal oxide layer (SiO x , SiO 2 ) film:
The observation was performed on the ITO film and the SiO x and SiO 2 films with a scanning electron microscope (JSM-6490 (LA) manufactured by JEOL Ltd.). The calculated average particle size of the SiO x and SiO 2 layers, the spacing particles, the surface coverage of the metal oxide layer. The surface coverage of the metal oxide layer can be determined as follows.
Surface area of transparent metal oxide layer {(1/2 × r × 1/2 × r × π) × number of particles in unit measurement area} / surface area of transparent conductive thin film layer (unit measurement area) × 100 (%) (Where r is the particle diameter (particle size))
2)表面抵抗RO(Ω/□):
 4端子測定法を用いて、ITO膜上及び金属酸化物(SiO、SiO)膜上からの表面抵抗を測定し、それぞれの膜の表面抵抗ROとした。
2) Surface resistance RO (Ω / □):
The surface resistances on the ITO film and the metal oxide (SiO x , SiO 2 ) film were measured using a four-terminal measurement method, and the surface resistances RO of the respective films were used.
3)電極とITO聞の接触電気抵抗Rs(Ω):
 上記透明導電性フィルムを5cm幅に切断し、幅方向に幅10mmのAgペースト電極を、電極間距離がそれぞれ5cmとなるよう2本形成した。そして、両電極間の抵抗Raを2端子法で測定し、Rs=Ra-ROで求めた。Agペースト電極とは、約10μm厚、藤倉化成(株)製、ドータイトFA401CA使用、印刷後キュアー温度は約130℃×30分である。また、Agペースト電極に代えて、通常のスパッタ蒸着によるCu電極(10mm幅、約180nm厚)を用いて、同様の方法でRs=Ra-ROで求めた。
3) Contact resistance Rs (Ω) of electrode and ITO:
The transparent conductive film was cut into a width of 5 cm, and two Ag paste electrodes having a width of 10 mm were formed in the width direction so that the distance between the electrodes was 5 cm. Then, the resistance Ra between both electrodes was measured by the two-terminal method, and it was determined by Rs = Ra−RO. The Ag paste electrode is about 10 μm thick, using Dotite FA401CA manufactured by Fujikura Kasei Co., Ltd., and the curing temperature after printing is about 130 ° C. × 30 minutes. In addition, the Ag paste electrode was used, and Cu electrode (10 mm width, about 180 nm thickness) by ordinary sputter deposition was used to obtain Rs = Ra−RO in the same manner.
4)全光線透過率
 スガ試験機(株)HGM-2DPを用いて、透明導電性フィルムの全光線透過率を測定した。
4) Total light transmittance The total light transmittance of the transparent conductive film was measured using Suga Test Instruments Co., Ltd. HGM-2DP.
5)ITO膜のエッチング試験:
 硝酸系ITO用エッチング液を用いて、液温20℃及び50℃の場合に、ITO膜がエッチングされる(目視及び膜表面の電気抵抗が>10E×6Ω/□になる)までの時間を測定した。
 なお、40分でエッチングできないものを>40分と表示し、エッチング不可と判断した。
 その他のエッチング液、例えば、硫酸系、塩酸系、シュウ酸系でもエッチングの可否を確認した。
5) Etching test of ITO film:
Using a nitric acid-based ITO etching solution, measure the time until the ITO film is etched (visual and electrical resistance of the film surface is> 10E × 6Ω / □) at liquid temperatures of 20 ° C and 50 ° C. did.
In addition, what can not be etched in 40 minutes was displayed as> 40 minutes, and it was judged that etching was not possible.
Whether or not the etching was possible was also confirmed with other etching solutions such as sulfuric acid type, hydrochloric acid type and oxalic acid type.
6)耐擦傷性:
 新東科学社製のヘイドン表面性測定機を用いて、(a)擦傷子:ガーゼ(日本薬局方タイプI)、(b)加重:100g/cm、(c)擦傷速度:30cm/分、(d)擦傷回数:100回(往復50回)の条件で薄膜表面を擦った。その後に、膜表面抵抗Rbを測定し、初期の膜表面抵抗ROに対する変化率(Rb/RO)を求めて、耐擦傷性を評価した。尚、表面抵抗測定は、上記透明導電性フィルムを1cm幅に切断し、通常のスパッタ蒸着によるCu電極(10mm幅、約180nm厚)を電極間距離がそれぞれ1cmとなるよう2本形成し、両電極間の抵抗Rbを2端子法で測定した。
6) Scratch resistance:
Using a Haydon surface property measurement machine manufactured by Shinto Scientific Co., Ltd., (a) scuffing agent: gauze (Japanese Pharmacopoeia type I), (b) weighting: 100 g / cm 2 , (c) abrasion speed: 30 cm / min (D) Number of abrasions: The thin film surface was rubbed under the conditions of 100 times (50 times in both directions). Thereafter, the film surface resistance Rb was measured, and the rate of change (Rb / RO) relative to the initial film surface resistance RO was determined to evaluate the scratch resistance. In the surface resistance measurement, the above transparent conductive film is cut into 1 cm width, and two Cu electrodes (10 mm width, about 180 nm thickness) by ordinary sputter deposition are formed so that the distance between the electrodes is 1 cm, both The resistance Rb between the electrodes was measured by the two-terminal method.
7)ITO膜と基材のインデックスマッチング性:
 本実施例及び比較例で作成した、透明導電性フィルムを用いて、一部ITO膜をエッチングし、透明金属酸化層表面とエッチング部(PETフィルム基材)表面の表面反射率を各光波長λ、400nm、550nm、660nmについて測定した。なお、測定値は蒸着反対面(基材裏面)の反射率も含んだ値である。
 透明金属酸化層表面とエッチング部の各波長ごとの反射率の差(ΔR)が4%以下の場合、目視でも判別しにくいため、インデックスマッチング性良好とした。なお、反射率の差(ΔR)が2%以下であることが更に好ましい。
7) Index matching between ITO film and substrate:
The ITO film was partially etched using the transparent conductive film prepared in this example and the comparative example, and the surface reflectance of the surface of the transparent metal oxide layer and the surface of the etched portion (PET film substrate) was measured for each light wavelength λ , 400 nm, 550 nm, and 660 nm. In addition, a measured value is a value also including the reflectance of the vapor deposition opposite surface (substrate back surface).
In the case where the difference (ΔR) in reflectance between the transparent metal oxide layer surface and the etched portion for each wavelength is 4% or less, it is difficult to distinguish visually, so the index matching property is considered to be good. More preferably, the difference in reflectance (ΔR) is 2% or less.
8)スパッタ蒸着膜(ITO、SiO、SiO)厚測定:
 ガラス基材上に蒸着膜の有り無し部分を形成し、接触式表面粗さ計を用いてスパッタ膜厚を測定した。
8) Measurement of sputter deposited film (ITO, SiO 2 , SiO x ) thickness:
The presence or absence of a vapor deposition film was formed on a glass substrate, and the sputtered film thickness was measured using a contact-type surface roughness meter.
 図4に示す各実施例の評価結果、図5に示すインデックスマッチング性を用いて以下に考察する。 The evaluation results of the respective embodiments shown in FIG. 4 and the index matching shown in FIG. 5 will be considered below.
(結晶化(クリスタル)ITO膜)
(実施例1)
 図6から図8の写真にも示すように、ITO膜上のSiO層には、粒径約190nmの粒子が平均約890nmの間隔で分散している。またSiO層による、ITO膜表面の被覆率は約2%であった。これにより、Agペースト電極とITO膜間の接触抵抗、及び蒸着Cu電極とITO膜間の接触抵抗は、共に0で良好であった。Agペースト電極の場合、ITO膜上に直接Agペースト電極を形成した比較例4から、Ag粒子を分散したAgペースト固有の、接触抵抗(約5Ω)が有ることが分かった。よって5Ωを超える部分を増加分と見なした。
 また、ITO膜のエッチング性も良好であることが分かった。また、その他のエッチング液でもエッチングできることを確認した。
 一方、耐擦傷性(Rb/RO)は、1.1で殆ど変化がないことから、良好であった。
 また、低抵抗化(60Ω/□)したITO膜上にSiO層を形成することにより、PET基材と同様、全光線透過率を91%と高く向上できた。
(Crystallization (Crystal) ITO film)
Example 1
As also shown in the photographs of FIG. 6 to FIG. 8, in the SiO x layer on the ITO film, particles having a particle diameter of about 190 nm are dispersed at an average spacing of about 890 nm. The coverage of the ITO film surface by the SiO x layer was about 2%. As a result, the contact resistance between the Ag paste electrode and the ITO film, and the contact resistance between the vapor deposition Cu electrode and the ITO film were both good at zero. In the case of the Ag paste electrode, Comparative Example 4 in which the Ag paste electrode was directly formed on the ITO film showed that there is a contact resistance (about 5 Ω) unique to the Ag paste in which Ag particles are dispersed. Therefore, a portion exceeding 5 Ω was regarded as an increase.
It was also found that the etchability of the ITO film was good. Moreover, it confirmed that it could etch also with other etching liquid.
On the other hand, the scratch resistance (Rb / RO) was good since there was almost no change at 1.1.
Further, by forming the SiO x layer on the low resistance (60 Ω / □) ITO film, the total light transmittance can be improved as high as 91% as in the case of the PET substrate.
(実施例2)
 本実施例では、ITO膜上にSiO層を形成した。走査電子顕微鏡による表面観察は図6と同等であった。このことからITO膜上のSiO層の形状、及び分散は実施例1と同じである。また、SiO層による、ITO膜表面の被覆率、電極間の接触抵抗、エッチング性、耐擦傷性についても実施例1と同様の効果を得た。また全光線透過率も91%と高く向上できた。
(Example 2)
In this example, a SiO 2 layer was formed on the ITO film. The surface observation with a scanning electron microscope was equivalent to FIG. From this, the shape and dispersion of the SiO 2 layer on the ITO film are the same as in Example 1. The same effect as in Example 1 was also obtained on the coverage of the ITO film surface by the SiO 2 layer, the contact resistance between the electrodes, the etching property, and the scratch resistance. In addition, the total light transmittance was also improved as high as 91%.
(実施例3)
 本実施例では、実施例1のSiスパッツタ条件を変更した。走査電子顕微鏡観察によると、SiO層には、粒径約100nmの粒子が平均約190nmの間隔で分散していた。SiO層によるITO膜表面の被覆率は約20%まで増加した。このことからAgペースト電極とITO間の接触抵抗は1Ω(約20%)増加する、またエッチング時間も(約20%)増加することが分かったが、まだ実用的な範囲である。またその他のエッチング液でもエッチングできることを確認した。
 一方、耐擦傷性(Rb/RO)は1.0で殆ど変化がなく良好であった。
 また全光線透過率も91%と高く向上できた。
 また、ITO膜表面の被覆率が約20%以下であれば、ITO膜の表面抵抗ROが4端子測定器で測定できる。
(Example 3)
In the present example, the Si sputter conditions of Example 1 were changed. According to scanning electron microscopy, in the SiO x layer, particles having a particle size of about 100 nm were dispersed at an average spacing of about 190 nm. The coverage of the ITO film surface with the SiO x layer increased to about 20%. From this, it was found that the contact resistance between the Ag paste electrode and the ITO increases by 1 Ω (about 20%) and the etching time also increases (about 20%), but it is still within the practical range. It was also confirmed that etching could be performed with other etching solutions.
On the other hand, the scratch resistance (Rb / RO) was good with almost no change at 1.0.
In addition, the total light transmittance was also improved as high as 91%.
In addition, if the coverage of the ITO film surface is about 20% or less, the surface resistance RO of the ITO film can be measured by a four-terminal measuring device.
(実施例4)
 本実施例では、実施例1のSiスパッツタ条件を変更した。走査電子顕微鏡観察によると、SiO層には、粒径約80nmの粒子が平均約50nmの間隔で分散していた。SiO層によるITO膜表面の被覆率は約60%まで増加した。このことからAgペースト電極とITO間の接触抵抗は5Ω増加する、またエッチング時間も2倍程度増加することが分かったが、まだ実用的な範囲である。またその他のエッチング液でもエッチングできることを確認した。
 一方、耐擦傷性(Rb/RO)は1.0で殆ど変化がなく良好であった。
 また全光線透過率も91%と高く向上できた。
 また、ITO膜表面の被覆率が約60%程度になれば、4端子測定器によるSiO膜上からの表面抵抗RO測定値は、誤差が大きくなることが分かった。これは4端子測定器の測定端子先端とITO膜部との間に存在するSiO粒子(絶縁物)による電気接触面積の違いにより生じるものと思われる。
 一方、上記Agペースト、蒸着Cu電極を用いたRO測定では60(Ω/□)となり、この方が膜の表面抵抗測定には好ましいことが分かった。
(Example 4)
In the present example, the Si sputter conditions of Example 1 were changed. According to scanning electron microscopy, in the SiO x layer, particles of about 80 nm in diameter were dispersed at an average spacing of about 50 nm. The coverage of the ITO film surface with the SiO x layer increased to about 60%. From this, it was found that the contact resistance between the Ag paste electrode and the ITO increases by 5 Ω, and the etching time also increases by about twice, but it is still within the practical range. It was also confirmed that etching could be performed with other etching solutions.
On the other hand, the scratch resistance (Rb / RO) was good with almost no change at 1.0.
In addition, the total light transmittance was also improved as high as 91%.
In addition, it was found that when the coverage of the ITO film surface becomes about 60%, the surface resistance RO measured value from the SiO x film by the four-terminal measuring device has a large error. This is considered to be caused by the difference in the electrical contact area due to the SiO x particles (insulator) existing between the measuring terminal tip of the four-terminal measuring instrument and the ITO film portion.
On the other hand, in RO measurement using the above-mentioned Ag paste and a vapor deposition Cu electrode, it was 60 (Ω / □), and it was found that this is preferable for measuring the surface resistance of the film.
(比較例1)
 本比較例では、蒸着膜がITO膜のみを用いた。この場合の全光線透過率は84%と低く、PET基材よりはるかに悪い。
 また耐擦傷性(Rb/RO)=2.0倍となり、ITO膜にキズが付きやすい。
 Ag粒子を分散したAgペースト電極の場合、本材料特有の、接触抵抗(約5Ω)があることが分かった。よって本比較例の場合5Ωを超える部分が接触抵抗の増加分と見なせる。一方蒸着Cu電極の場合には、接触抵抗は0Ωで問題無い。
(Comparative example 1)
In this comparative example, only the ITO film was used as the vapor deposition film. The total light transmittance in this case is as low as 84%, much worse than the PET substrate.
In addition, the scratch resistance (Rb / RO) is 2.0 times, and the ITO film is easily scratched.
In the case of an Ag paste electrode in which Ag particles are dispersed, it was found that there is a contact resistance (about 5 Ω) unique to this material. Therefore, in the case of this comparative example, a portion exceeding 5 Ω can be regarded as an increase in the contact resistance. On the other hand, in the case of the vapor deposition Cu electrode, the contact resistance is 0 Ω and there is no problem.
(比較例2、3)
 実施例1において、Siのスパッタ蒸着時の真空度をそれぞれ0.4Pa、1Paに変更した。それ以外は、同様の方法でクリスタルITOフィルム基材を形成した。
 いずれも、スパッタ蒸着後の加熱キュアー時に、カール、蒸着膜のクラックが発生し(比較例2の方が比較例3に比べカール、クラックともに大であった)、目的とするアモルファスITOフィルム基材を作成できないことが分かった。
 特に、SiO膜厚は約90nmと厚く、同一真空度で作成した比較例5、6のSiO膜が連続膜であることから予測して、本比較例のSiO膜も連続膜であると予測できる。
 このことから160℃高温キュアーの場合SiO膜は実施例1、3の結果から、不連続膜にしないと、目的とするアモルファスITOフィルム基材を作成できないことが分かった。
(Comparative Examples 2 and 3)
In Example 1, the degree of vacuum at the time of sputter deposition of Si was changed to 0.4 Pa and 1 Pa, respectively. Except for this, a crystal ITO film substrate was formed in the same manner.
In any case, curling and cracking of the deposited film occurred during heating and curing after sputter deposition (both of the curling and cracking of Comparative Example 2 were larger than those of Comparative Example 3), and the desired amorphous ITO film substrate It turned out that it can not create.
In particular, SiO x film thickness as thick as approximately 90 nm, and predicted since the SiO 2 film of Comparative Examples 5 and 6 created in the same vacuum degree is a continuous film, SiO x film of this comparative example also is a continuous film It can be predicted.
From this, it was found from the results of Examples 1 and 3 that in the case of 160 ° C. high temperature curing, the SiO x film could not form the intended amorphous ITO film substrate unless it was a discontinuous film.
(実施例5(アモルファスITOフィルム基材))
 走査電子顕微鏡観察による表面観察は図6から図8に示す写真と同様であった。ITO膜上のSiO層の粒径、間隔分散、被覆率等は実施例1、2と同じ結果であった。
 またSiO層によるITO膜表面の被覆率も同様に約2%であることが分かった。これにより、Agペースト及び蒸着Cu電極とITO膜間の接触抵抗、ITO膜のエッチング性、耐擦傷性等も上記実施例同様に良好であった。
 また、その他のエッチング液でもエッチングできることを確認した。
 一方、ITOの膜厚を約90nmと厚くすることにより低抵抗化(40Ω/□)したアモルファスITO膜が形成でき、ITO膜上にSiO層を約95nm厚形成することにより、PETフィルム基材と同様、全光線透過率を約90.5%と高く向上できた。
 また、本実施例によると、低抵抗化のための高温アニール(結晶化)工程が必要無い。
 このことから、使用するフィルム基材の熱ダメージを考慮する必要も無く、高価なヘイズ防止基材、高耐熱性基材等も特に必要なく広範囲な基材が使用できる利点がある。
(Example 5 (amorphous ITO film substrate))
The surface observation by scanning electron microscopy was similar to the photographs shown in FIG. 6 to FIG. The particle size, interval dispersion, coverage, etc. of the SiO 2 layer on the ITO film were the same as in Examples 1 and 2.
In addition, the coverage of the ITO film surface with the SiO 2 layer was also found to be about 2% as well. As a result, the contact resistance between the Ag paste and the vapor deposition Cu electrode and the ITO film, the etching property of the ITO film, the scratch resistance and the like were also good as in the above example.
Moreover, it confirmed that it could etch also with other etching liquid.
On the other hand, an amorphous ITO film reduced in resistance (40 Ω / □) can be formed by increasing the film thickness of ITO to about 90 nm, and a PET film substrate is formed by forming a SiO 2 layer about 95 nm thick on the ITO film. Similarly to the above, the total light transmittance could be improved as high as about 90.5%.
Further, according to the present embodiment, the high temperature annealing (crystallization) step for reducing the resistance is not necessary.
From this, it is not necessary to consider the thermal damage of the film substrate to be used, and there is an advantage that a wide range of substrates can be used without particularly requiring an expensive haze preventing substrate, a high heat resistant substrate and the like.
(実施例6(アモルファスITOフィルム基材))
 本実施例では、SiO層のスパッタ蒸着時の真空度を5Paに変化させた。表面観察結果は実施例3と同様であり、SiO層の被覆率も同様の約20%であった。その他の特性も他の実施例同様良好な結果であった。
(Example 6 (amorphous ITO film substrate))
In this example, the degree of vacuum at the time of sputter deposition of the SiO 2 layer was changed to 5 Pa. The surface observation results were the same as in Example 3, and the coverage of the SiO 2 layer was also about 20%. Other characteristics were also good as in the other examples.
(比較例4)
 本比較例では、SiO層の無い、ITO膜のみを用いた。この場合の全光線透過率は79%と低く、PETフィルム基材(約90%)よりはるかに悪かった。
 また耐擦傷性(Rb/RO)=2.0となり、ITO膜にキズが付きやすい。以上の結果、改良の必要がある。
 他の特性は比較例1と同様であった。
(Comparative example 4)
In this comparative example, only the ITO film without the SiO 2 layer was used. The total light transmittance in this case was as low as 79%, much worse than the PET film substrate (about 90%).
In addition, the scratch resistance (Rb / RO) is 2.0, and the ITO film is easily scratched. As a result of the above, there is a need for improvement.
The other properties were the same as in Comparative Example 1.
(比較例5,6)
 実施例4において、Siのスパッタ蒸着時の真空度をそれぞれ0.4Pa、1Paに変更した。それ以外は、同様の方法でアモルファスITOフィルム基材を形成した。
 表面観察結果、SiO膜は完全な連続膜であり、SiO膜の被覆率は約100%であった。
 本基材のITO膜の表面抵抗は4端子測定法では測定不可であった。また、Agペースト電極、蒸着Cu電極を用いても接触抵抗は1×10E6(Ω)と高く、電極を必要とする用途には使用不可である。
 また、エッチング液によるエッチングも実用的には不可であることが分かった。なお、その他のエッチング液でもエッチングできなかった。
(Comparative Examples 5 and 6)
In Example 4, the degree of vacuum at the time of sputter deposition of Si was changed to 0.4 Pa and 1 Pa, respectively. Except for this, an amorphous ITO film substrate was formed by the same method.
As a result of surface observation, the SiO 2 film was a completely continuous film, and the coverage of the SiO 2 film was about 100%.
The surface resistance of the ITO film of the present substrate could not be measured by the four-terminal measurement method. Moreover, even if it uses Ag paste electrode and vapor deposition Cu electrode, contact resistance is as high as 1 * 10E6 ((ohm)), and it can not use it for the use which requires an electrode.
Moreover, it turned out that the etching by etching liquid is also practically impossible. In addition, it was not able to etch also by other etching liquid.
(実施例7)
 本実施例では、実施例5のSiスパッツタ条件を変更した。走査電子顕微鏡観察によると、SiO層には、粒径約80nmの粒子が平均約60nmの間隔で分散していた。SiO層によるITO膜表面の被覆率は約50%まで増加した。このことからAgペースト電極とITO間の接触抵抗は3Ω増加する、またエッチング時間も2倍程度増加することが分かったが、まだ実用的な範囲である。またその他のエッチング液でもエッチングできることを確認した。
 一方、耐擦傷性(Rb/RO)は1.0で殆ど変化がなく良好であった。
 また全光線透過率も90.5%と高く向上できた。
 また、ITO膜表面の被覆率が約50%程度になれば、実施例4同様、4端子測定器によるSiO膜上からの表面抵抗RO測定値は、誤差が大きくなることが分かった。
 一方、上記Agペースト、蒸着Cu電極を用いたRO測定では40(Ω/□)となり、この方が膜の表面抵抗測定には好ましいことが分かった。
(Example 7)
In the present embodiment, the Si sputter conditions of the fifth embodiment are changed. According to scanning electron microscopy, in the SiO 2 layer, particles of about 80 nm in diameter were dispersed at an average spacing of about 60 nm. The coverage of the ITO film surface with the SiO 2 layer increased to about 50%. From this, it was found that the contact resistance between the Ag paste electrode and the ITO increases by 3 Ω, and the etching time also increases by about twice, but it is still within the practical range. It was also confirmed that etching could be performed with other etching solutions.
On the other hand, the scratch resistance (Rb / RO) was good with almost no change at 1.0.
In addition, the total light transmittance was also improved as high as 90.5%.
Also, it was found that, when the coverage of the ITO film surface is about 50%, as in Example 4, the error in the surface resistance RO measurement value from the SiO 2 film by the four-terminal measuring device is large.
On the other hand, it became 40 (ohm / square) in RO measurement using the said Ag paste and vapor deposition Cu electrode, and it turned out that this is more preferable for surface resistance measurement of a film | membrane.
(インデックスマッチング性)
 タッチパネル電極用の場合、高透明性である上に、ITO膜のパターンエッチング後、パターン部の有り、無し部分を判別しにくくする必要がある。
 各光波長(λ:400、550、660nm)における可視光線表面反射率を分光反射率計で測定した。結果を図5に示す。
 各波長の反射率の差ΔRが2%未満のものを、インデックスマッチング性良好を○、それ以上有るものを不良を×、とした。
 ここで、透明金属層表面の反射率をR1、基材表面の反射率をR2とすると、ΔR=|R1-R2|(%)である。
 図5に示すように、実施例1~7においては、ΔR<1%で、いずれも良好であった。
 比較例5、6もインデックスマッチング性においては良好であったが、電極との接触抵抗に大きな問題があり、電極を必要とする場合には使用できない。
 一方、比較例1、4はインデックスマッチング性が不良であった。
 これ等のことから、低抵抗ITO膜上に約90~95nm厚みのSiO又はSiO膜を形成すればインデックスマッチング性も向上する。
(Index matching)
In the case of a touch panel electrode, in addition to high transparency, it is necessary to make it difficult to distinguish the presence or absence of a pattern portion after pattern etching of an ITO film.
The visible light surface reflectance at each light wavelength (λ: 400, 550, 660 nm) was measured with a spectroreflectometer. The results are shown in FIG.
When the difference ΔR in reflectance of each wavelength is less than 2%, the index matching property is good, and the one with more than that is bad.
Here, assuming that the reflectance of the transparent metal layer surface is R1 and the reflectance of the base material surface is R2, ΔR = | R1-R2 | (%).
As shown in FIG. 5, in Examples 1 to 7, all were good at ΔR <1%.
The comparative examples 5 and 6 were also good in index matching, but there was a big problem in the contact resistance with the electrode and can not be used when the electrode is required.
On the other hand, Comparative Examples 1 and 4 had poor index matching.
From these facts, if a SiO x or SiO 2 film having a thickness of about 90 to 95 nm is formed on the low resistance ITO film, the index matching property is also improved.
(タッチパネル)
 実施例1~3の透明導電性基材を使用することにより、図2、3に示す構成のタッチパネルを作ることができる。
(Touch panel)
By using the transparent conductive substrates of Examples 1 to 3, a touch panel having the configuration shown in FIGS. 2 and 3 can be made.
 10 透明導電性基材
 11 基材
 12 透明導電性薄膜層
 13 透明金属酸化物層
 13a 粒子
 20 金属電極層
 30 ガラス
DESCRIPTION OF SYMBOLS 10 Transparent conductive base material 11 Base material 12 Transparent conductive thin film layer 13 Transparent metal oxide layer 13a particle 20 Metal electrode layer 30 Glass

Claims (16)

  1.  基材の片面又は両面に、透明導電性薄膜層及び透明金属酸化物層をこの順で積層した透明導電性基材であって、前記透明金属酸化物層を、粒子を点在させることで形成したことを特徴とする透明導電性基材。 It is a transparent conductive substrate in which a transparent conductive thin film layer and a transparent metal oxide layer are laminated in this order on one side or both sides of the base material, and the transparent metal oxide layer is formed by scattering particles. A transparent conductive substrate characterized in that
  2.  前記透明金属酸化物層による前記透明導電性薄膜層の被覆率を60~1%としたことを特徴とする請求項1に記載の透明導電性基材。 The transparent conductive substrate according to claim 1, wherein a coverage of the transparent conductive thin film layer by the transparent metal oxide layer is set to 60 to 1%.
  3.  前記透明導電性薄膜層の表面抵抗を100(Ω/□)以下としたことを特徴とする請求項1又は請求項2に記載の透明導電性基材。 The surface resistance of the said transparent conductive thin film layer was 100 (ohm / square) or less, The transparent conductive base material of Claim 1 or Claim 2 characterized by the above-mentioned.
  4.  前記透明金属酸化物層の可視光線表面反射率と前記基材の可視光線表面反射率との差を4%未満としたことを特徴とする請求項1から請求項3のいずれかに記載の透明導電性基材。 The difference between the visible light surface reflectance of the transparent metal oxide layer and the visible light surface reflectance of the substrate is less than 4%. The transparent according to any one of claims 1 to 3, Conductive substrate.
  5.  前記粒子の粒径を20~800nm、前記粒子の間隔を20~2000nmとしたことを特徴とする請求項1から請求項4のいずれかに記載の透明導電性基材。 The transparent conductive substrate according to any one of claims 1 to 4, wherein the particle diameter of the particles is 20 to 800 nm, and the distance between the particles is 20 to 2000 nm.
  6.  前記粒子の前記粒径を30~250nm、前記粒子の前記間隔を30~1280nmとしたことを特徴とする請求項5に記載の透明導電性基材。 The transparent conductive substrate according to claim 5, wherein the particle diameter of the particles is 30 to 250 nm, and the distance between the particles is 30 to 1280 nm.
  7.  前記透明導電性薄膜層の上に金属電極を積層したことを特徴とする請求項1から請求項6のいずれかに記載の透明導電性基材。 The metal electrode was laminated | stacked on the said transparent conductive thin film layer, The transparent conductive base material in any one of the Claims 1-6 characterized by the above-mentioned.
  8.  基材の片面又は両面に、透明導電性薄膜層及び透明金属酸化物層をこの順で積層した透明導電性基材の製造方法であって、前記透明金属酸化物層を、真空度2.5~20Paでスパッタ蒸着により粒径が30~800nmの範囲にある粒子で形成することを特徴とする透明導電性基材の製造方法。 It is a manufacturing method of the transparent conductive substrate which laminated the transparent conductive thin film layer and the transparent metal oxide layer in this order on one side or both sides of a substrate, and the above-mentioned transparent metal oxide layer is vacuum degree 2.5 1. A method for producing a transparent conductive substrate, comprising particles having a particle diameter in the range of 30 to 800 nm by sputter deposition at ̃20 Pa.
  9.  請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とするタッチパネル。 A touch panel comprising the transparent conductive substrate according to any one of claims 1 to 7.
  10.  請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とする太陽電池。 A solar cell comprising the transparent conductive substrate according to any one of claims 1 to 7.
  11.  請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とするヒーター。 A heater comprising the transparent conductive substrate according to any one of claims 1 to 7.
  12.  請求項1から請求項7のいずれかに記載の透明導電性基材を備えたことを特徴とする電磁波/静電シールド用基材。 An electromagnetic wave / electrostatic shield substrate comprising the transparent conductive substrate according to any one of claims 1 to 7.
  13.  請求項1から請求項7のいずれかに記載の透明導電性基材を電極として用いたことを特徴とするELデバイス。 An EL device using the transparent conductive substrate according to any one of claims 1 to 7 as an electrode.
  14.  請求項1から請求項7のいずれかに記載の透明導電性基材を電極として用いたことを特徴とする発光ダイオード。 A light emitting diode using the transparent conductive substrate according to any one of claims 1 to 7 as an electrode.
  15.  請求項1から請求項6のいずれかに記載の透明導電性基材を用いたことを特徴とする透明電磁波反射材。 A transparent electromagnetic wave reflector comprising the transparent conductive substrate according to any one of claims 1 to 6.
  16.  請求項1から請求項6のいずれかに記載の透明導電性基材を用いたことを特徴とする透明赤外線反射材。 A transparent infrared reflector comprising the transparent conductive substrate according to any one of claims 1 to 6.
PCT/JP2014/004104 2013-09-10 2014-08-06 Transparent conductive substrate and method for manufacturing transparent conductive substrate WO2015037182A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167007142A KR102214745B1 (en) 2013-09-10 2014-08-06 Transparent conductive substrate and method for manufacturing transparent conductive substrate
JP2015536433A JP6106756B2 (en) 2013-09-10 2014-08-06 Transparent conductive substrate and method for producing transparent conductive substrate
CN201480049430.0A CN105556618B (en) 2013-09-10 2014-08-06 The manufacture method of transparent conductive base and transparent conductive base

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187759 2013-09-10
JP2013-187759 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037182A1 true WO2015037182A1 (en) 2015-03-19

Family

ID=52665316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004104 WO2015037182A1 (en) 2013-09-10 2014-08-06 Transparent conductive substrate and method for manufacturing transparent conductive substrate

Country Status (5)

Country Link
JP (1) JP6106756B2 (en)
KR (1) KR102214745B1 (en)
CN (1) CN105556618B (en)
TW (1) TWI635515B (en)
WO (1) WO2015037182A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058827A (en) * 2015-09-15 2017-03-23 株式会社村田製作所 Touch panel and electronic device
WO2017196022A1 (en) * 2016-05-09 2017-11-16 엘지이노텍(주) Light emitting element
JP2018098024A (en) * 2016-12-13 2018-06-21 パイオニア株式会社 Light-emitting device
JP2020001232A (en) * 2018-06-27 2020-01-09 ロック技研工業株式会社 ITO film and transparent conductive film
WO2020122150A1 (en) * 2018-12-12 2020-06-18 日東電工株式会社 Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber
CN116345179A (en) * 2023-05-31 2023-06-27 鹏城实验室 Transparent window with intelligent regulation and control function for high-frequency communication signals and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109986599B (en) * 2017-12-29 2020-10-02 北京纳米能源与系统研究所 Triboelectric intelligent skin, manipulator and robot
KR102058865B1 (en) * 2018-04-12 2019-12-24 (주)아이엠 Heating device using hyper heat accelerator and method for manufacturing the same
TWI738433B (en) * 2020-01-09 2021-09-01 致伸科技股份有限公司 Light source module and electrical device using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205925A (en) * 1985-03-08 1986-09-12 Fujitsu Ltd Processing method of transparent electrode
JPS6433811A (en) * 1987-04-04 1989-02-03 Gunze Kk Transparent conductive film and its manufacture
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2008242314A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Optical film, polarizing plate and image display apparatus
JP2011517501A (en) * 2008-03-14 2011-06-09 ナノ−シー,インク. Carbon nanotube transparent conductive inorganic nanoparticle hybrid thin films for transparent conductive applications
WO2013021965A1 (en) * 2011-08-11 2013-02-14 東レ株式会社 Laminate, transparent conductive laminate, touch panel, and method for producing laminate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2944668B2 (en) 1988-07-15 1999-09-06 日東電工株式会社 Manufacturing method of transparent conductive film
JP2846887B2 (en) 1989-02-10 1999-01-13 日東電工株式会社 Transparent conductive laminate
KR950009972B1 (en) * 1991-07-04 1995-09-04 Mitsubishi Electric Corp Cylinder identifying apparatus for a multi-cylinder internal combustion engine
CN100565248C (en) * 2007-03-29 2009-12-02 郭爱军 Novel anti-reflection conductive film
KR101778081B1 (en) 2010-05-12 2017-09-13 메이한 신꾸 고교 가부시키가이샤 transparent conductive substrate
KR20140032349A (en) * 2010-10-29 2014-03-14 도레이 카부시키가이샤 Method for manufacturing liquid dispersion of carbon-nanotube aggregates
US20120024362A1 (en) * 2011-05-31 2012-02-02 Primestar Solar, Inc. Refractive index matching of thin film layers for photovoltaic devices and methods of their manufacture
CN102200654A (en) * 2011-06-07 2011-09-28 南京福莱克斯光电科技有限公司 Integrated touch display device and making method thereof
EP2748827A4 (en) * 2011-08-24 2015-05-27 Innova Dynamics Inc Patterned transparent conductors and related manufacturing methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205925A (en) * 1985-03-08 1986-09-12 Fujitsu Ltd Processing method of transparent electrode
JPS6433811A (en) * 1987-04-04 1989-02-03 Gunze Kk Transparent conductive film and its manufacture
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2008242314A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Optical film, polarizing plate and image display apparatus
JP2011517501A (en) * 2008-03-14 2011-06-09 ナノ−シー,インク. Carbon nanotube transparent conductive inorganic nanoparticle hybrid thin films for transparent conductive applications
WO2013021965A1 (en) * 2011-08-11 2013-02-14 東レ株式会社 Laminate, transparent conductive laminate, touch panel, and method for producing laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058827A (en) * 2015-09-15 2017-03-23 株式会社村田製作所 Touch panel and electronic device
WO2017196022A1 (en) * 2016-05-09 2017-11-16 엘지이노텍(주) Light emitting element
US10847678B2 (en) 2016-05-09 2020-11-24 Lg Innotek Co., Ltd. Light emitting device that includes a light-transmissive conductive layer
JP2018098024A (en) * 2016-12-13 2018-06-21 パイオニア株式会社 Light-emitting device
JP2020001232A (en) * 2018-06-27 2020-01-09 ロック技研工業株式会社 ITO film and transparent conductive film
JP7116994B2 (en) 2018-06-27 2022-08-12 ロック技研工業株式会社 ITO film and transparent conductive film
WO2020122150A1 (en) * 2018-12-12 2020-06-18 日東電工株式会社 Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber
CN116345179A (en) * 2023-05-31 2023-06-27 鹏城实验室 Transparent window with intelligent regulation and control function for high-frequency communication signals and manufacturing method thereof
CN116345179B (en) * 2023-05-31 2023-08-18 鹏城实验室 Transparent window with intelligent regulation and control function for high-frequency communication signals and manufacturing method thereof

Also Published As

Publication number Publication date
CN105556618A (en) 2016-05-04
KR102214745B1 (en) 2021-02-09
TW201523640A (en) 2015-06-16
JPWO2015037182A1 (en) 2017-03-02
JP6106756B2 (en) 2017-04-05
CN105556618B (en) 2018-04-03
KR20160053941A (en) 2016-05-13
TWI635515B (en) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2015037182A1 (en) Transparent conductive substrate and method for manufacturing transparent conductive substrate
JP5101719B2 (en) Transparent conductive film, method for producing the same, and touch panel provided with the same
JP5122670B2 (en) Method for producing transparent conductive film
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JPH09150477A (en) Transparent conductive laminate
JP2011194679A (en) Transparent and conductive laminate, method for manufacturing same, and touch panel
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
WO2013141374A1 (en) Light-transmitting electroconductive film, method for producing same, and use therefor
KR20180095549A (en) Metal layer laminated transparent conductive film and touch sensor using the same
JP6292225B2 (en) Transparent conductor
JP2014168938A (en) Transparent laminate
JP2010212085A (en) Transparent conductive thin film
US8795786B2 (en) Transparent conductive substrate
TWI683017B (en) ITO film and transparent conductive film
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
TW562736B (en) Multilayer antireflection coating with a transparent conductive layer
JP2007302909A (en) Thin film and electrode made of the same
JP5192792B2 (en) Transparent conductive film and manufacturing method thereof
JP5926170B2 (en) Light transmissive conductive film, method for producing the same, and use thereof
JP2016177940A (en) Method for producing transparent conductive body
TW200903020A (en) Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer
WO2015159804A1 (en) Laminate, conductive laminate and electronic device
JPWO2014188683A1 (en) Electrode substrate for touch panel, touch panel including the same, and display panel
JP2016108581A (en) Production method of transparent electric conductor
JP2009211888A (en) Transparent conductive film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049430.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536433

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167007142

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14844512

Country of ref document: EP

Kind code of ref document: A1