WO2015159804A1 - Laminate, conductive laminate and electronic device - Google Patents

Laminate, conductive laminate and electronic device Download PDF

Info

Publication number
WO2015159804A1
WO2015159804A1 PCT/JP2015/061144 JP2015061144W WO2015159804A1 WO 2015159804 A1 WO2015159804 A1 WO 2015159804A1 JP 2015061144 W JP2015061144 W JP 2015061144W WO 2015159804 A1 WO2015159804 A1 WO 2015159804A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin oxide
indium tin
oxide layer
layer
less
Prior art date
Application number
PCT/JP2015/061144
Other languages
French (fr)
Japanese (ja)
Inventor
尚洋 眞下
和久 吉岡
富田 倫央
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016513749A priority Critical patent/JPWO2015159804A1/en
Publication of WO2015159804A1 publication Critical patent/WO2015159804A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to a laminate, a conductive laminate, and an electronic device.
  • the transparent conductive film Since the transparent conductive film has conductivity and optical transparency, it is used as a transparent electrode, a dustproof film, and an electromagnetic wave shielding film. In recent years, a transparent conductive film has attracted attention as a capacitive touch panel electrode. An indium tin oxide film is preferably used as the transparent conductive film.
  • an indium tin oxide film pattern is formed by etching. For this reason, the indium tin oxide film is required to have good etching properties. In addition, the indium tin oxide film is required to have low etching pattern visibility so that the appearance of a touch panel or the like is improved. Furthermore, the indium tin oxide film is required to have optical transparency, electrical conductivity, durability against mechanical contact, and the like.
  • an indium tin oxide film As a method for producing an indium tin oxide film, a method of performing sputtering while heating a substrate is known. According to the above method, an indium tin oxide film that is crystalline and has good conductivity and durability can be produced. However, since it is crystalline, the etching property is not good.
  • an indium tin oxide film As a method for producing an indium tin oxide film, a method of performing sputtering at room temperature and a method of performing sputtering by introducing moisture are known. According to the above method, an indium tin oxide film that is amorphous and has good etching properties can be produced. However, since it is amorphous, conductivity and durability are not good.
  • a method in which an amorphous indium tin oxide film is formed, then etched and further heat-treated to form a crystalline indium tin oxide film.
  • etching property, electroconductivity, and durability become favorable.
  • such a method is referred to as a crystallization method.
  • the transmittance increases, so the visibility of the etching pattern decreases.
  • the crystallization method when the thickness is reduced, crystallization by heat treatment becomes difficult, so that conductivity and durability are not improved.
  • electroconductivity it can improve by making the content rate of the tin oxide in indium tin oxide high.
  • crystallization by heat treatment becomes difficult, and thus conductivity is not necessarily improved.
  • Patent Document 1 Conventionally, various manufacturing methods have been proposed as a method for manufacturing a transparent conductive film (for example, see Patent Document 1). Moreover, in order to suppress peeling between the base material and the transparent conductive film, it is known to provide a base layer between the base material and the transparent conductive film (see, for example, Patent Documents 2 and 3).
  • the present invention has been made to solve the above-mentioned problems, and a crystalline indium tin oxide layer can be obtained by heat treatment, and the visibility of an etching pattern formed on the indium tin oxide layer is also improved. It aims at providing the laminated body which can be reduced. Another object of the present invention is to provide a conductive laminate having a crystalline indium tin oxide layer and having low visibility of an etching pattern formed in the indium tin oxide layer. Furthermore, this invention aims at provision of the electronic device which has such an electroconductive laminated body.
  • the laminate of the present invention has a transparent substrate, an underlayer, and an indium tin oxide layer.
  • the underlayer is laminated on the transparent substrate and contains silicon, oxygen, and nitrogen.
  • the indium tin oxide layer is laminated on the base layer and is mainly made of amorphous indium tin oxide.
  • the laminated body of the present invention has the following reflectance difference ⁇ R of 1% or less by heat treatment at a heat treatment temperature of 150 ° C. and a heat treatment time of 30 minutes.
  • the reflectance difference ⁇ R is the average reflectance R 1 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where the indium tin oxide layer exists, with the transparent substrate side being the light incident surface, and the indium tin oxide layer is It is the absolute value of the difference from the average reflectance R 2 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where it does not exist.
  • the conductive laminate of the present invention has a transparent substrate, an underlayer, and an indium tin oxide layer.
  • the underlayer is laminated on the transparent substrate and contains silicon, oxygen, and nitrogen.
  • the indium tin oxide layer is laminated on the underlayer and is mainly made of crystalline indium tin oxide.
  • the following reflectance difference ⁇ R is 1% or less.
  • the reflectance difference ⁇ R is the average reflectance R 1 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where the indium tin oxide layer exists, with the transparent substrate side being the light incident surface, and the indium tin oxide layer is It is the absolute value of the difference from the average reflectance R 2 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where it does not exist.
  • the electronic device of the present invention has the conductive laminate of the present invention.
  • an underlayer containing silicon, oxygen, and nitrogen is disposed between the transparent substrate and the amorphous indium tin oxide layer.
  • This underlayer improves the crystallization of the indium tin oxide layer by heat treatment. Moreover, the visibility of the etching pattern formed in the indium tin oxide layer is also reduced by this base layer.
  • Sectional drawing which shows an example of the laminated body of this invention.
  • Sectional drawing which shows an example of the electroconductive laminated body of this invention.
  • FIG. 1 is a cross-sectional view showing an example of the laminate of the present invention.
  • the stacked body 10 includes, for example, a transparent base material 11, an underlayer 12, and an amorphous indium tin oxide layer 13 in this order.
  • the indium tin oxide layer 13 becomes a crystalline indium tin oxide layer by heat treatment.
  • the transparent substrate 11 is, for example, polyolefin such as polyethylene or polypropylene, polyester such as polyethylene terephthalate, polybutylene terephthalate or polyethylene naphthalate, polyamide such as nylon 6 or nylon 66, polyimide, polyarylate, polycarbonate, polyacrylate or polyether. Sulphone, polysulfone, and unstretched or stretched plastic films of these copolymers are preferred.
  • the transparent base material 11 can also use another highly transparent plastic film and glass base material.
  • the transparent base material 11 may have a single layer structure or a laminated structure having two or more layers having different compositions.
  • a polyethylene terephthalate film is particularly preferable.
  • a hard coat layer, a primer layer, an undercoat layer, or the like may be provided on one or both surfaces of the transparent substrate 11.
  • the hard coat layer makes the transparent substrate 11 difficult to be damaged.
  • the primer layer improves the adhesion between the organic material and the inorganic material.
  • the undercoat layer is a refractive index adjusting layer or the like that reduces the visibility of the etching pattern formed on the indium tin oxide layer 13.
  • the transparent substrate 11 may be subjected to surface treatment such as easy adhesion treatment, plasma treatment, corona treatment and the like.
  • the thickness of the transparent substrate 11 is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 25 ⁇ m or more and 180 ⁇ m or less from the viewpoints of flexibility, durability, and the like.
  • the underlayer 12 is provided to promote crystallization of the indium tin oxide layer 13.
  • the underlayer 12 compared to a silicon oxide layer (SiO 2 layer), a silicon nitride layer (Si 3 N 4 layer), a magnesium fluoride layer (MgF 2 layer), an aluminum oxide layer (Al 2 O 3 layer), etc.
  • SiO 2 layer silicon oxide layer
  • Si 3 N 4 layer silicon nitride layer
  • MgF 2 layer magnesium fluoride layer
  • Al 2 O 3 layer aluminum oxide layer
  • crystallization can be greatly promoted.
  • the underlayer 12 contains silicon, oxygen, and nitrogen as essential components.
  • the ratio of each element can be appropriately selected according to the effect of promoting crystallization, the required refractive index, and the like.
  • another element may be included, for example, aluminum (Al) or carbon (C) may be included.
  • the underlayer 12 contains nitrogen, for example, resistance to alkalinity (hereinafter, also referred to as alkali resistance) is significantly increased as compared with an underlayer made of silicon oxide. Thereby, when passing through the process exposed to alkaline chemicals, such as an etching process, damage, such as film
  • the ratio of the number of molecules of N 2 / O 2 contained in the underlayer 12 is preferably 0.03 or more and 15 or less, and 0.05 or more and 10 The following is more preferable, and 0.07 to 5 is particularly preferable.
  • the ratio of the number of molecules can be measured by electron beam spectroscopic analysis or secondary ion mass spectrometry.
  • the refractive index of the underlayer 12 at a wavelength of 500 nm is preferably 1.48 or more, more preferably 1.49 or more.
  • the refractive index of the underlayer 12 at a wavelength of 500 nm is preferably 2.00 or less, more preferably 1.95 or less, and even more preferably 1.9 or less.
  • An arbitrary refractive index in the above range can be obtained by adjusting the ratio of silicon, oxygen, and nitrogen in the underlayer 12.
  • the refractive index of the entire constituent layer can be adjusted regardless of the refractive index of each layer (hereinafter also simply referred to as a constituent layer) constituting the laminate 10 excluding the base layer 12. Adjustment is easy.
  • the refractive index of the underlayer 12 is within the above range, the effect of reducing the visibility of the etching pattern formed on the indium tin oxide layer 13 is great.
  • the thickness of the underlayer 12 is preferably 1 nm or more. When the thickness is 1 nm or more, the effect of promoting crystallization of the indium tin oxide layer 13 is large. Moreover, when thickness is 1 nm or more, the effect of reducing the visibility of the etching pattern formed in the indium tin oxide layer 13 is large. From the viewpoint of promoting crystallization and reducing the visibility of the etching pattern, the thickness of the underlayer 12 is more preferably 3 nm or more, further preferably 5 nm or more, and particularly preferably 7 nm or more.
  • the thickness of the underlayer 12 is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less from the viewpoint of productivity.
  • the underlayer 12 may have a single layer structure or a laminated structure having two or more layers having different compositions.
  • the refractive index of the foundation layer 12 may be read as the refractive index of the foundation film layer 12 in contact with the indium oxide layer 13, and the thickness may be read as the entire film thickness of the foundation layer 12 of the lamination structure.
  • the indium tin oxide layer 13 is amorphous and becomes crystalline by heat treatment. Since it is amorphous, the etching property is improved. Moreover, durability becomes favorable by becoming crystalline by heat processing.
  • the indium tin oxide layer 13 may be patterned by etching to provide a portion 13a where the indium tin oxide layer 13 is present and a portion 13b where the indium tin oxide layer 13 is not present.
  • the indium tin oxide layer 13 may have a single layer structure, or may have a laminated structure having two or more layers having different compositions.
  • the indium tin oxide layer 13 is preferably in contact with the underlayer 12 because crystallization by heat treatment is good.
  • amorphous and crystalline materials can be distinguished by the resistance change rate.
  • the evaluation object is immersed in an HCl solution (concentration: 1.5 mol / L) for 5 minutes. From the sheet resistance before and after immersion, the rate of change in resistance (sheet resistance after immersion / sheet resistance before immersion) is determined. Those having a resistance change rate of 200% or less are crystalline, and those having a resistance change rate exceeding 200% are amorphous. When the resistance change rate is 200% or less, the crystalline portion and the amorphous portion are mixed, and when the resistance change rate is about 100%, the whole is almost crystallized.
  • the indium tin oxide layer 13 is mainly composed of indium tin oxide, which is an oxide of indium and tin.
  • examples of the oxide constituting the indium tin oxide include indium oxide, tin oxide, and a composite oxide of indium oxide and tin oxide.
  • the indium tin oxide preferably contains 5% by mass to 17% by mass of tin in terms of oxide (SnO 2 , the same applies hereinafter).
  • tin is contained in an amount of 5% by mass or more in terms of oxide, the sheet resistance when crystallized is lowered.
  • tin is contained in an amount of 17% by mass or less in terms of oxide, crystallization becomes easy.
  • the indium tin oxide preferably contains 6% by mass or more of tin in terms of oxide, more preferably 7% by mass or more, and particularly preferably 8% by mass or more. Further, the indium tin oxide preferably contains 15% by mass or less of tin in terms of oxide.
  • the indium tin oxide layer 13 is preferably made of only indium tin oxide, but can contain components other than indium tin oxide as necessary and within the limits not departing from the spirit of the present invention.
  • components other than indium tin oxide include oxides such as aluminum, zirconium, gallium, silicon, tungsten, zinc, titanium, magnesium, cerium, and germanium.
  • Content of components other than indium tin oxide layer 13 in indium tin oxide layer 13 is 10 mass% or less in the whole indium tin oxide layer 13, 5 mass% or less is preferable, and 3 mass% or less is more preferable. 1% by mass or less is particularly preferable.
  • the thickness of the indium tin oxide layer 13 is preferably 10 nm or more. When the thickness is 10 nm or more, crystallization is good and sheet resistance after crystallization is also low. From the viewpoint of crystallization and sheet resistance, the thickness is more preferably 15 nm or more. On the other hand, the thickness is preferably 40 nm or less because the film formation time is shortened and the transmittance is increased. From the viewpoint of film formation time, transmittance, and reflectance difference ⁇ R, the thickness is more preferably 35 nm or less, and further preferably 30 nm or less.
  • the indium tin oxide layer 13 is crystallized by heat treatment.
  • the heat treatment can usually be performed in the atmosphere.
  • the heat treatment temperature is preferably 100 ° C. or higher, and the heat treatment time is preferably 3 minutes or longer.
  • the heat treatment temperature is preferably 170 ° C. or less, and the heat treatment time is preferably 180 minutes or less.
  • the laminate 10 preferably has a reflectance difference ⁇ R of 1% or less when the indium oxide layer 13 is crystallized by heat treatment.
  • the heat treatment temperature is 150 ° C. and the heat treatment time is 30 minutes.
  • the reflectance difference ⁇ R after the heat treatment is 1% or less, the visibility of the etching pattern formed on the indium tin oxide layer 13 is sufficiently lowered.
  • the reflectance difference ⁇ R after the heat treatment is more preferably 0.7% or less.
  • the adjustment of the reflectance difference ⁇ R can be performed by adjusting the thickness and refractive index of each layer after the heat treatment, and in particular by adjusting the thickness and refractive index of the underlayer 12.
  • the refractive index of the underlayer 12 varies greatly depending on the proportion of the constituent elements. Thereby, the refractive index of the entire constituent layer can be easily adjusted regardless of the refractive index of the constituent layer excluding the base layer 12.
  • FIG. 2 is a cross-sectional view showing an example of the conductive laminate 20.
  • the conductive laminate 20 is obtained by heat-treating the laminate 10.
  • the conductive laminate 20 includes, for example, a transparent substrate 11, an underlayer 12, and a crystalline indium tin oxide layer 21 in this order.
  • the transparent substrate 11 and the foundation layer 12 are the same as the transparent substrate 11 and the foundation layer 12 in the laminate 10.
  • the indium tin oxide layer 21 is crystalline, durability is improved.
  • the indium tin oxide layer 21 may be provided with a portion 21a where the indium tin oxide layer 21 exists and a portion 21b where the indium tin oxide layer 21 does not exist by pattern formation by etching. Examples of the etching pattern include a large number of transparent electrodes.
  • the indium tin oxide layer 21 is preferably in contact with the underlayer 12 because crystallization is good.
  • the indium tin oxide layer 21 is mainly composed of indium tin oxide, which is an oxide of indium and tin.
  • the oxide constituting the indium tin oxide include indium oxide, tin oxide, and a composite oxide of indium oxide and tin oxide.
  • the indium tin oxide layer 21 may have a single layer structure or a laminated structure having two or more layers having different compositions.
  • the specific resistance of the indium tin oxide layer 21 is preferably 2.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. In the case of the said specific resistance, it becomes a thing suitable for an electronic device.
  • the specific resistance is preferably 2.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, and more preferably 2.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the indium tin oxide preferably contains 5% by mass to 17% by mass of tin in terms of oxide. When tin is contained in an amount of 5% by mass or more in terms of oxide, the specific resistance is lowered. On the other hand, when tin is contained in an amount of 17% by mass or less in terms of oxide, crystallization is good.
  • the indium tin oxide preferably contains 6% by mass or more of tin in terms of oxide, more preferably 7% by mass or more, and particularly preferably 8% by mass or more. Further, the indium tin oxide preferably contains 15% by mass or less of tin in terms of oxide.
  • the indium tin oxide layer 21 is preferably composed only of indium tin oxide, but can contain components other than indium tin oxide as necessary and within the limits not departing from the spirit of the present invention.
  • components other than indium tin oxide include oxides such as aluminum, zirconium, gallium, silicon, tungsten, zinc, titanium, magnesium, cerium, and germanium.
  • Content of components other than indium tin oxide 21 in indium tin oxide layer 21 is 10 mass% or less in the whole indium tin oxide layer 21, 5 mass% or less is preferable, and 3 mass% or less is more preferable. 1% by mass or less is particularly preferable.
  • the thickness of the indium tin oxide layer 21 is preferably 10 nm or more. When the thickness is 10 nm or more, crystallization is improved and sheet resistance is reduced. From the viewpoint of crystallization and sheet resistance, the thickness is more preferably 15 nm or more. On the other hand, the thickness is preferably 40 nm or less because the film formation time is shortened and the transmittance is increased. From the viewpoint of film formation time, transmittance, and reflectance difference ⁇ R, the thickness is more preferably 35 nm or less, and further preferably 30 nm or less.
  • the conductive laminate 20 preferably has the following reflectance difference ⁇ R of 1% or less.
  • the reflectance difference ⁇ R is 1% or less, the visibility of the etching pattern formed on the indium tin oxide layer 21 is sufficiently low.
  • the reflectance difference ⁇ R is preferably 0.7% or less.
  • the reflectance difference ⁇ R is the average reflectance R 1 [%] at a wavelength of 480 nm or more and 650 nm or less at the position where the indium tin oxide layer 21 exists with the transparent substrate 11 side as the light incident surface, and indium tin oxide.
  • the underlayer 12 is preferably present from the viewpoint of the visibility of the etching pattern, alkali resistance, and scratch resistance.
  • the adjustment of the reflectance difference ⁇ R can be performed by adjusting the thickness, refractive index and the like of each layer, and particularly by adjusting the thickness and refractive index of the underlayer 12.
  • the refractive index of the underlayer 12 varies greatly depending on the proportion of the constituent elements. Thereby, the refractive index of the entire constituent layer can be easily adjusted regardless of the refractive index of the constituent layer excluding the base layer 12.
  • the conductive laminate 20 is preferably used for an electronic device, for example, an electronic device having a display unit and a touch panel arranged on the front surface of the display unit.
  • the conductive laminate 20 is used as a substrate having a transparent electrode in a touch panel.
  • the touch panel include a resistive film type that specifies a touch position by contacting upper and lower electrodes, and a capacitive coupling method that senses a change in capacitance.
  • the laminated body 10 can be manufactured by forming an indium tin oxide layer 13 after forming the base layer 12 on the transparent substrate 11.
  • the film forming method is not necessarily limited, and a sputtering method, an ion plating method, and a vacuum evaporation method can be applied, and the sputtering method is particularly preferable.
  • the underlayer 12 is formed by sputtering using, for example, a sputtering target mainly made of silicon. At this time, it is preferable to adjust the ratio of the introduced gas as follows.
  • the metal mode and the transition mode are states in which a film having absorption in visible light due to lack of oxygen is to be formed.
  • the proportion of oxygen gas is preferably 0.1% by volume or more, more preferably 0.3% by volume or more, and further preferably 0.5% by volume or more with respect to the total amount of argon gas and oxygen gas.
  • the proportion of oxygen gas is preferably 30% by volume or less, more preferably 20% by volume or less, and still more preferably 10% by volume or less with respect to the total amount of argon gas and oxygen gas.
  • the reaction mode is a state in which silicon, oxygen, and nitrogen react to form a film having transparency to visible light.
  • the proportion of nitrogen gas is preferably 30% by volume or more, more preferably 40% by volume or more, and still more preferably 45% by volume or more with respect to the total amount of argon gas and nitrogen gas.
  • the ratio of nitrogen gas is preferably less than 50% by volume, more preferably 49.7% by volume or less, and further preferably 49.5% by volume or less with respect to the total amount of argon gas and nitrogen gas.
  • the ratio of argon gas and oxygen gas is adjusted so as to be in the metal mode or transition mode, and further, argon gas, oxygen gas, and nitrogen gas are introduced. It is preferable to adjust the ratio of argon gas and nitrogen gas so that the reaction mode is achieved. According to such a method, it is possible to form the underlayer 12 having a large effect of promoting crystallization of the indium tin oxide layer 13.
  • the indium tin oxide layer 13 is formed by sputtering using a sputtering target made of indium tin oxide, for example. It is preferable that a sputtering target contains 5 mass% or more and 17 mass% or less of tin in oxide conversion in indium tin oxide.
  • the indium tin oxide in the sputtering target is preferably composed of a sintered body obtained by mixing and sintering tin oxide (SnO 2 ) and indium oxide (In 2 O 3 ).
  • the indium tin oxide layer 13 is formed, for example, by introducing a mixed gas in which oxygen gas is mixed in an amount of 0.5% by volume to 10% by volume, preferably 0.8% by volume to 6% by volume in argon gas. Sputtering is preferably performed. By performing sputtering while introducing such a mixed gas, it is possible to form a film that is amorphous, can be easily crystallized by heat treatment, and has low specific resistance after crystallization.
  • the conductive laminate 20 is obtained by heat-treating the laminate 10.
  • the heat treatment can usually be performed in the atmosphere.
  • the heat treatment temperature is preferably 100 ° C. or higher, and the heat treatment time is preferably 3 minutes or longer.
  • the heat treatment temperature is preferably 170 ° C. or less, and the heat treatment time is preferably 180 minutes or less.
  • Examples 1 to 5 are examples of the present invention, and examples 6 to 9 are comparative examples of the present invention. Note that the present invention is not limited to these examples. Moreover, the thickness of each layer is calculated
  • Example 1 As a transparent substrate, a polyethylene terephthalate film having a thickness of 100 ⁇ m was prepared by subjecting the surface to an easy adhesion treatment. On this transparent substrate, a silicon oxynitride film (SiO x N y film) was formed as a base layer. The thickness of the underlayer is 10 nm. The refractive index of the underlayer is 1.49. The refractive index is a value at a wavelength of 500 nm and was measured by ellipsometry.
  • the underlayer was formed as follows. First, using a boron-doped silicon target, argon gas and oxygen gas were introduced, and pre-sputtering was performed with a DC pulse power source. The ratio of oxygen gas to the total amount of argon gas and oxygen gas is 5% by volume. The sputtering state at this time is a metal mode or a transition mode.
  • Sputtering was continued while introducing argon gas, oxygen gas, and nitrogen gas under the above conditions to form an underlayer on the transparent substrate.
  • the thickness of the underlayer was adjusted by the sputtering rate and the conveyance speed of the transparent substrate.
  • an amorphous indium tin oxide layer having a thickness of 25 nm was formed on the underlayer to obtain a test piece.
  • the ITO layer is formed by using a target (10% by mass of tin oxide (SnO 2 )) and 90% by mass of indium oxide (In 2 O 3 ) made of indium tin oxide containing 10% by mass of tin in terms of oxide.
  • a target 10% by mass of tin oxide (SnO 2 )
  • indium oxide In 2 O 3
  • argon gas and oxygen gas were introduced, and sputtering was performed by a DC power source.
  • the ratio of oxygen gas to the total amount of argon gas and oxygen gas is 1% by volume.
  • the thickness of the ITO layer was adjusted by the sputtering rate and the conveyance speed of the transparent substrate and the like.
  • Example 2 A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer formation conditions were changed and the refractive index of the base layer was changed to 1.59.
  • the formation conditions of the underlayer are as follows. In the introduction of argon gas and oxygen gas during pre-sputtering, the ratio of oxygen gas to the total amount of argon gas and oxygen gas was set to 2% by volume. The sputtering state at this time is a metal mode or a transition mode. In the subsequent introduction of argon gas, oxygen gas, and nitrogen gas during sputtering, the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 48% by volume. Note that the ratio of oxygen gas to the total amount of argon gas and oxygen gas was the same as in pre-sputtering. The state of sputtering at this time is a reaction mode.
  • Example 3 A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer formation conditions were changed and the refractive index of the base layer was changed to 1.80.
  • the formation conditions of the underlayer are as follows. In the introduction of argon gas and oxygen gas during pre-sputtering, the ratio of oxygen gas to the total amount of argon gas and oxygen gas was set to 1% by volume. The sputtering state at this time is a metal mode or a transition mode. In the subsequent introduction of argon gas, oxygen gas, and nitrogen gas during sputtering, the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 49 vol%. Note that the ratio of oxygen gas to the total amount of argon gas and oxygen gas was the same as in pre-sputtering. The state of sputtering at this time is a reaction mode.
  • Example 4 A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer formation conditions were changed and the refractive index of the base layer was changed to 1.95.
  • the formation conditions of the underlayer are as follows. In the introduction of argon gas and oxygen gas at the time of pre-sputtering, the ratio of oxygen gas to the total amount of argon gas and oxygen gas was set to 0.5% by volume. The sputtering state at this time is a metal mode or a transition mode. In the subsequent introduction of argon gas, oxygen gas, and nitrogen gas at the time of sputtering, the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 49.5% by volume. Note that the ratio of oxygen gas to the total amount of argon gas and oxygen gas was the same as in pre-sputtering. The state of sputtering at this time is a reaction mode.
  • Example 5 A base layer and an ITO layer were formed in the same manner as in Example 1 except that the thickness of the ITO layer was changed to 20 nm to obtain a test piece.
  • Example 6 A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer was changed to a silicon oxide film (SiO 2 film) to obtain a test piece.
  • the SiO 2 film was formed by sputtering with a DC pulse power source using a boron-doped silicon target, introducing argon gas and oxygen gas. The ratio of oxygen gas to the total amount of argon gas and oxygen gas was 50% by volume. The state of sputtering at this time is a reaction mode.
  • the refractive index of the underlayer is 1.47.
  • Example 7 A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer was changed to a silicon oxide film (Si 3 N 4 film) to obtain a test piece.
  • Si 3 N 4 film was formed by sputtering with a DC pulse power supply using a boron-doped silicon target and introducing argon gas and nitrogen gas. The ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 50% by volume. The state of sputtering at this time is a reaction mode.
  • the refractive index of the underlayer is 2.04.
  • Example 8 A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer was changed to an aluminum oxide film (Al 2 O 3 film) to obtain a test piece.
  • the Al 2 O 3 film was formed by sputtering with a DC pulse power source using a pure aluminum target, introducing argon gas and nitrogen gas. The ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 50% by volume. The state of sputtering at this time is a reaction mode.
  • the refractive index of the underlayer is 2.04.
  • Example 9 A test piece was produced by forming an underlayer and an ITO layer in the same manner as in Example 6 except that the thickness of the ITO layer was changed to 20 nm.
  • the test piece of each example was heat-treated in air at 150 ° C. for 30 minutes.
  • the following evaluation was performed about the test piece after heat processing.
  • the results are shown in Table 1.
  • the flow ratio (oxygen) of Examples 1 to 5 is the ratio of oxygen gas to the total amount of argon gas and oxygen gas when introducing argon gas and oxygen gas during pre-sputtering.
  • the flow ratio (nitrogen) of Examples 1 to 5 is the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas when argon gas, oxygen gas, and nitrogen gas are introduced during subsequent sputtering. is there.
  • composition analysis was performed by photoelectron spectroscopy for the underlayer 12 of Examples 1 to 5 in which the effect of reducing the sheet resistance was recognized.
  • the ratio of the number of molecules of N 2 / O 2 in the underlayer 12 of Examples 1 to 5 was 0.05 or more and 3.6 or less.
  • the molecular number ratio of N 2 / O 2 in Example 1 is 0.06
  • the molecular number ratio of N 2 / O 2 in Example 2 is 0.07
  • the molecular number ratio of N 2 / O 2 in Example 3 is 1
  • the ratio of N 2 / O 2 molecules in Example 4 and Example 4 was 3.6.
  • Example 10 is an example of the present invention
  • Example 11 is a comparative example of the present invention.
  • the transparent substrate was a polyethylene terephthalate film having a refractive index of 1.53 with respect to light having a wavelength of 500 nm and a thickness of 100 ⁇ m.
  • urethane acrylate containing a titanium oxide filler was laminated to a thickness of 1 ⁇ m as an undercoat layer.
  • the undercoat layer has a refractive index of 1.55 with respect to light having a wavelength of 500 nm.
  • a first silicon oxynitride layer having a refractive index of 1.70 with respect to light having a wavelength of 500 nm was laminated so as to have a thickness of 47 nm.
  • a second silicon oxynitride layer having a refractive index of 1.50 with respect to light having a wavelength of 500 nm was laminated on the first silicon oxynitride layer so as to have a thickness of 20 nm.
  • the base layer includes a first silicon oxynitride layer and a second silicon oxynitride layer.
  • An ITO layer having a refractive index of 1.83 with respect to light having a wavelength of 500 nm was laminated on the underlayer so as to have a thickness of 25 nm.
  • the reflectance difference ⁇ R was calculated for such a test piece.
  • the vacuum between the light source and the test piece and between the test piece and the measuring instrument is assumed to be a vacuum (refractive index is 1), and the angle between the normal of the surface of the test piece and the light traveling direction is zero. It was assumed that light was incident on the test piece from the transparent substrate side.
  • the portion of ITO layer for obtaining an average reflectivity R 2 is not present, it consisted of the transparent substrate and the underlayer. As a result, the reflectance difference ⁇ R was 0.02%.
  • Example 11 The test piece was the same as that of Example 10 except that the configuration of the underlayer was changed.
  • the underlayer was a silicon oxide layer having a refractive index of 1.47 with respect to light having a wavelength of 500 nm and a thickness of 30 nm.
  • the reflectance difference ⁇ R was calculated in the same manner as in Example 11, the reflectance difference ⁇ R was 1.35%.
  • SYMBOLS 10 Laminated body, 11 ... Transparent base material, 12 ... Underlayer, 13 ... Amorphous indium tin oxide layer, 20 ... Conductive laminated body, 21 ... Crystalline indium tin oxide layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a laminate which is capable of obtaining a crystalline indium tin oxide layer by a heat treatment, and which is capable of decreasing the visibility of an etching pattern that is formed on the indium tin oxide layer. This laminate comprises a transparent base, a foundation layer and an indium tin oxide layer. The foundation layer is laminated on the transparent base, and contains silicon, oxygen and nitrogen. The indium tin oxide layer is laminated on the foundation layer, and is mainly composed of an amorphous indium tin oxide. This laminate has a reflectance difference (∆R) of 1% or less after a heat treatment at a heat treatment temperature of 150°C with a heat treatment duration of 30 minutes. The reflectance difference (∆R) is the absolute value of the difference between the average reflectance (R1) [%] of positions where the indium tin oxide layer is present and the average reflectance (R2) [%] of positions where the indium tin oxide layer is absent.

Description

積層体、導電性積層体、および電子機器LAMINATE, CONDUCTIVE LAMINATE, AND ELECTRONIC DEVICE
 本発明は、積層体、導電性積層体、および電子機器に関する。 The present invention relates to a laminate, a conductive laminate, and an electronic device.
 透明導電膜は、導電性と光学的な透明性とを有することから、透明電極、防塵膜、電磁波遮蔽膜として使用されている。近年では、静電容量式のタッチパネル用電極として、透明導電膜が注目されている。透明導電膜として、インジウムスズ酸化物膜が好適に用いられる。 Since the transparent conductive film has conductivity and optical transparency, it is used as a transparent electrode, a dustproof film, and an electromagnetic wave shielding film. In recent years, a transparent conductive film has attracted attention as a capacitive touch panel electrode. An indium tin oxide film is preferably used as the transparent conductive film.
 静電容量式のタッチパネル用電極の場合、エッチングによりインジウムスズ酸化物膜のパターン形成が行われる。このため、インジウムスズ酸化物膜には、エッチング性が良好であることが求められる。また、インジウムスズ酸化物膜には、タッチパネル等としたときの外観が良好となるように、エッチングパターンの視認性が低いことが求められる。さらに、インジウムスズ酸化物膜には、光透過性、導電性、および機械的接触に対する耐久性等が求められる。 In the case of an electrostatic capacitance type touch panel electrode, an indium tin oxide film pattern is formed by etching. For this reason, the indium tin oxide film is required to have good etching properties. In addition, the indium tin oxide film is required to have low etching pattern visibility so that the appearance of a touch panel or the like is improved. Furthermore, the indium tin oxide film is required to have optical transparency, electrical conductivity, durability against mechanical contact, and the like.
 インジウムスズ酸化物膜の製造方法として、基板を加熱しながらスパッタリングを行う方法が知られている。上記方法によれば、結晶質であり、導電性、耐久性が良好なインジウムスズ酸化物膜を製造できる。しかし、結晶質であることから、エッチング性が良好とならない。 As a method for producing an indium tin oxide film, a method of performing sputtering while heating a substrate is known. According to the above method, an indium tin oxide film that is crystalline and has good conductivity and durability can be produced. However, since it is crystalline, the etching property is not good.
 一方、インジウムスズ酸化物膜の製造方法として、室温でスパッタリングを行う方法、水分を導入してスパッタリングを行う方法が知られている。上記方法によれば、非晶質であり、エッチング性が良好であるインジウムスズ酸化物膜を製造できる。しかし、非晶質であることから、導電性、耐久性が良好とならない。 On the other hand, as a method for producing an indium tin oxide film, a method of performing sputtering at room temperature and a method of performing sputtering by introducing moisture are known. According to the above method, an indium tin oxide film that is amorphous and has good etching properties can be produced. However, since it is amorphous, conductivity and durability are not good.
 このような課題を解決するために、非晶質のインジウムスズ酸化物膜を成膜した後、エッチングを行い、さらに熱処理を行って結晶質のインジウムスズ酸化物膜とする方法が知られている。上記方法によれば、エッチング性、導電性、耐久性が良好となる。以下、このような方法を結晶化法と記す。 In order to solve such a problem, a method is known in which an amorphous indium tin oxide film is formed, then etched and further heat-treated to form a crystalline indium tin oxide film. . According to the said method, etching property, electroconductivity, and durability become favorable. Hereinafter, such a method is referred to as a crystallization method.
 一般に、インジウムスズ酸化物膜については、厚さが薄くなるにつれて透過率が高くなることから、エッチングパターンの視認性が低くなる。しかし、結晶化法の場合、厚さが薄くなると熱処理による結晶化が困難となることから、導電性および耐久性が良好にならない。導電性については、インジウムスズ酸化物におけるスズ酸化物の含有割合を高くすることにより向上できる。しかし、スズ酸化物の含有割合がある程度まで高くなると、熱処理による結晶化が困難となるために必ずしも導電性が良好にならない。 In general, as the thickness of the indium tin oxide film decreases, the transmittance increases, so the visibility of the etching pattern decreases. However, in the case of the crystallization method, when the thickness is reduced, crystallization by heat treatment becomes difficult, so that conductivity and durability are not improved. About electroconductivity, it can improve by making the content rate of the tin oxide in indium tin oxide high. However, when the content ratio of tin oxide is increased to a certain extent, crystallization by heat treatment becomes difficult, and thus conductivity is not necessarily improved.
 従来、透明導電膜の製造方法として、各種の製造方法が提案されている(例えば、特許文献1参照)。また、基材と透明導電膜との剥離を抑制するために、基材と透明導電膜との間に下地層を設けることが知られている(例えば、特許文献2、3参照)。 Conventionally, various manufacturing methods have been proposed as a method for manufacturing a transparent conductive film (for example, see Patent Document 1). Moreover, in order to suppress peeling between the base material and the transparent conductive film, it is known to provide a base layer between the base material and the transparent conductive film (see, for example, Patent Documents 2 and 3).
特開2009-224152号公報JP 2009-224152 A 特開2002-197925号公報JP 2002-197925 A 特開2005-093318号公報JP 2005-093318 A
 本発明は、上記課題を解決するためになされたものであって、熱処理により結晶質のインジウムスズ酸化物層を得ることができ、かつインジウムスズ酸化物層に形成されたエッチングパターンの視認性も低下させることができる積層体の提供を目的とする。また、本発明は、結晶質のインジウムスズ酸化物層を有し、かつインジウムスズ酸化物層に形成されたエッチングパターンの視認性も低い導電性積層体の提供を目的とする。さらに、本発明は、このような導電性積層体を有する電子機器の提供を目的とする。 The present invention has been made to solve the above-mentioned problems, and a crystalline indium tin oxide layer can be obtained by heat treatment, and the visibility of an etching pattern formed on the indium tin oxide layer is also improved. It aims at providing the laminated body which can be reduced. Another object of the present invention is to provide a conductive laminate having a crystalline indium tin oxide layer and having low visibility of an etching pattern formed in the indium tin oxide layer. Furthermore, this invention aims at provision of the electronic device which has such an electroconductive laminated body.
 本発明の積層体は、透明基材、下地層、およびインジウムスズ酸化物層を有する。下地層は、透明基材上に積層され、珪素、酸素、および窒素を含む。インジウムスズ酸化物層は、下地層上に積層され、非晶質のインジウムスズ酸化物から主としてなる。本発明の積層体は、熱処理温度150℃かつ熱処理時間30分の熱処理により以下の反射率差ΔRが1%以下となる。反射率差ΔRは、透明基材側を光の入射面とし、インジウムスズ酸化物層が存在する位置での波長480nm以上650nm以下における平均反射率R[%]と、インジウムスズ酸化物層が存在しない位置での波長480nm以上650nm以下における平均反射率R[%]との差の絶対値である。 The laminate of the present invention has a transparent substrate, an underlayer, and an indium tin oxide layer. The underlayer is laminated on the transparent substrate and contains silicon, oxygen, and nitrogen. The indium tin oxide layer is laminated on the base layer and is mainly made of amorphous indium tin oxide. The laminated body of the present invention has the following reflectance difference ΔR of 1% or less by heat treatment at a heat treatment temperature of 150 ° C. and a heat treatment time of 30 minutes. The reflectance difference ΔR is the average reflectance R 1 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where the indium tin oxide layer exists, with the transparent substrate side being the light incident surface, and the indium tin oxide layer is It is the absolute value of the difference from the average reflectance R 2 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where it does not exist.
 本発明の導電性積層体は、透明基材、下地層、およびインジウムスズ酸化物層を有する。下地層は、透明基材上に積層され、珪素、酸素、および窒素を含む。インジウムスズ酸化物層は、下地層上に積層され、結晶質のインジウムスズ酸化物から主としてなる。本発明の導電性積層体は、以下の反射率差ΔRが1%以下である。反射率差ΔRは、透明基材側を光の入射面とし、インジウムスズ酸化物層が存在する位置での波長480nm以上650nm以下における平均反射率R[%]と、インジウムスズ酸化物層が存在しない位置での波長480nm以上650nm以下における平均反射率R[%]との差の絶対値である。 The conductive laminate of the present invention has a transparent substrate, an underlayer, and an indium tin oxide layer. The underlayer is laminated on the transparent substrate and contains silicon, oxygen, and nitrogen. The indium tin oxide layer is laminated on the underlayer and is mainly made of crystalline indium tin oxide. In the conductive laminate of the present invention, the following reflectance difference ΔR is 1% or less. The reflectance difference ΔR is the average reflectance R 1 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where the indium tin oxide layer exists, with the transparent substrate side being the light incident surface, and the indium tin oxide layer is It is the absolute value of the difference from the average reflectance R 2 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where it does not exist.
 本発明の電子機器は、本発明の導電性積層体を有する。 The electronic device of the present invention has the conductive laminate of the present invention.
 本発明では、透明基材と非晶質のインジウムスズ酸化物層との間に、珪素、酸素、および窒素を含む下地層が配置される。この下地層により、熱処理によるインジウムスズ酸化物層の結晶化が良好となる。また、この下地層により、インジウムスズ酸化物層に形成されたエッチングパターンの視認性も低下する。 In the present invention, an underlayer containing silicon, oxygen, and nitrogen is disposed between the transparent substrate and the amorphous indium tin oxide layer. This underlayer improves the crystallization of the indium tin oxide layer by heat treatment. Moreover, the visibility of the etching pattern formed in the indium tin oxide layer is also reduced by this base layer.
本発明の積層体の一例を示す断面図。Sectional drawing which shows an example of the laminated body of this invention. 本発明の導電性積層体の一例を示す断面図。Sectional drawing which shows an example of the electroconductive laminated body of this invention.
 図1は、本発明の積層体の一例を示す断面図である。
 積層体10は、例えば、透明基材11、下地層12、および非晶質のインジウムスズ酸化物層13をこの順に有する。ここで、インジウムスズ酸化物層13は、熱処理により結晶質のインジウムスズ酸化物層となる。
FIG. 1 is a cross-sectional view showing an example of the laminate of the present invention.
The stacked body 10 includes, for example, a transparent base material 11, an underlayer 12, and an amorphous indium tin oxide layer 13 in this order. Here, the indium tin oxide layer 13 becomes a crystalline indium tin oxide layer by heat treatment.
(透明基材)
 透明基材11は、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリアリレート、ポリカーボネート、ポリアクリレート、ポリエーテルサルフォン、ポリサルフォン、これらの共重合体の無延伸または延伸されたプラスチックフィルムが好ましい。なお、透明基材11には、透明性の高い他のプラスチックフィルム、ガラス基材を用いることもできる。透明基材11は、単層構造でもよいし、2以上の組成が異なる層を有する積層構造でもよい。透明基材11としては、特に、ポリエチレンテレフタレートフィルムが好ましい。
(Transparent substrate)
The transparent substrate 11 is, for example, polyolefin such as polyethylene or polypropylene, polyester such as polyethylene terephthalate, polybutylene terephthalate or polyethylene naphthalate, polyamide such as nylon 6 or nylon 66, polyimide, polyarylate, polycarbonate, polyacrylate or polyether. Sulphone, polysulfone, and unstretched or stretched plastic films of these copolymers are preferred. In addition, the transparent base material 11 can also use another highly transparent plastic film and glass base material. The transparent base material 11 may have a single layer structure or a laminated structure having two or more layers having different compositions. As the transparent substrate 11, a polyethylene terephthalate film is particularly preferable.
 透明基材11の一方または両方の表面には、ハードコート層、プライマー層、アンダーコート層等が設けられてもよい。ここで、ハードコート層は、透明基材11に傷がつきにくくするものである。プライマー層は、有機材料と無機材料との付着力を向上させるものである。アンダーコート層は、インジウムスズ酸化物層13に形成されたエッチングパターンの視認性を低下させる屈折率調整層等である。また、透明基材11には、易接着処理、プラズマ処理、コロナ処理等の表面処理が施されてもよい。透明基材11の厚さは、可撓性、耐久性等の観点から、10μm以上200μm以下が好ましく、25μm以上180μm以下がより好ましい。 A hard coat layer, a primer layer, an undercoat layer, or the like may be provided on one or both surfaces of the transparent substrate 11. Here, the hard coat layer makes the transparent substrate 11 difficult to be damaged. The primer layer improves the adhesion between the organic material and the inorganic material. The undercoat layer is a refractive index adjusting layer or the like that reduces the visibility of the etching pattern formed on the indium tin oxide layer 13. The transparent substrate 11 may be subjected to surface treatment such as easy adhesion treatment, plasma treatment, corona treatment and the like. The thickness of the transparent substrate 11 is preferably 10 μm or more and 200 μm or less, and more preferably 25 μm or more and 180 μm or less from the viewpoints of flexibility, durability, and the like.
(下地層)
 下地層12は、インジウムスズ酸化物層13の結晶化を促進するために設けられる。下地層12によれば、酸化珪素層(SiO層)、窒化珪素層(Si層)、フッ化マグネシウム層(MgF層)、酸化アルミニウム層(Al層)等に比べて、結晶化を大幅に促進できる。特に、インジウムスズ酸化物層13の厚さが薄い場合、またはインジウムスズ酸化物層13におけるスズの酸化物換算での割合が多い場合でも、良好に結晶化させることができる。
(Underlayer)
The underlayer 12 is provided to promote crystallization of the indium tin oxide layer 13. According to the underlayer 12, compared to a silicon oxide layer (SiO 2 layer), a silicon nitride layer (Si 3 N 4 layer), a magnesium fluoride layer (MgF 2 layer), an aluminum oxide layer (Al 2 O 3 layer), etc. Thus, crystallization can be greatly promoted. In particular, even when the thickness of the indium tin oxide layer 13 is small or when the ratio of tin in the indium tin oxide layer 13 is high in terms of oxide, it can be crystallized well.
 下地層12は、珪素、酸素、および窒素を必須成分として含む。なお、個々の元素の割合は、結晶化を促進する効果、必要とされる屈折率等に応じて適宜選択できる。また、さらに別の元素を含んでもよく、例えば、アルミニウム(Al)、炭素(C)を含んでもよい。 The underlayer 12 contains silicon, oxygen, and nitrogen as essential components. The ratio of each element can be appropriately selected according to the effect of promoting crystallization, the required refractive index, and the like. Furthermore, another element may be included, for example, aluminum (Al) or carbon (C) may be included.
 下地層12が窒素を含むことにより、例えば、酸化珪素からなる下地層に比べて大幅にアルカリ性に対する耐性(以下、アルカリ耐性ともいう)が高まる。これにより、エッチングプロセス等、アルカリ性の薬品中に暴露されるプロセスを経る際に、膜の剥離、欠点等のダメージを抑制することができる。また、下地層12が窒素を含むことにより、例えば、酸化珪素からなる下地層に比べて硬質になる。これにより、積層体10の耐擦傷性も向上する。 When the underlayer 12 contains nitrogen, for example, resistance to alkalinity (hereinafter, also referred to as alkali resistance) is significantly increased as compared with an underlayer made of silicon oxide. Thereby, when passing through the process exposed to alkaline chemicals, such as an etching process, damage, such as film | membrane peeling and a fault, can be suppressed. Further, since the underlayer 12 contains nitrogen, it becomes harder than an underlayer made of, for example, silicon oxide. Thereby, the abrasion resistance of the laminated body 10 is also improved.
 インジウム酸化物層13の熱処後の結晶性と抵抗値の観点から、下地層12に含まれるN/Oの分子数の比は0.03以上15以下が好ましく、0.05以上10以下がさらに好ましく、0.07以上5以下が特に好ましい。分子数の比は、電子線分光解析や二次イオン質量分析法で測定できる。 From the viewpoint of the crystallinity and resistance value of the indium oxide layer 13 after heat treatment, the ratio of the number of molecules of N 2 / O 2 contained in the underlayer 12 is preferably 0.03 or more and 15 or less, and 0.05 or more and 10 The following is more preferable, and 0.07 to 5 is particularly preferable. The ratio of the number of molecules can be measured by electron beam spectroscopic analysis or secondary ion mass spectrometry.
 下地層12の波長500nmでの屈折率は、1.48以上が好ましく、1.49以上がより好ましい。また、下地層12の波長500nmでの屈折率は、2.00以下が好ましく、1.95以下がより好ましく、1.9以下がさらに好ましい。上記した範囲の任意の屈折率は、下地層12中の珪素、酸素、窒素の割合を調整することによって得られる。下地層12の屈折率を調整することにより、下地層12を除いた積層体10を構成する各層(以下、単に構成層ともいう)の屈折率の大小にかかわらず、構成層全体の屈折率の調整が容易となる。下地層12の屈折率が上記範囲内の場合、インジウムスズ酸化物層13に形成されたエッチングパターンの視認性を低下させる効果が大きい。 The refractive index of the underlayer 12 at a wavelength of 500 nm is preferably 1.48 or more, more preferably 1.49 or more. The refractive index of the underlayer 12 at a wavelength of 500 nm is preferably 2.00 or less, more preferably 1.95 or less, and even more preferably 1.9 or less. An arbitrary refractive index in the above range can be obtained by adjusting the ratio of silicon, oxygen, and nitrogen in the underlayer 12. By adjusting the refractive index of the underlayer 12, the refractive index of the entire constituent layer can be adjusted regardless of the refractive index of each layer (hereinafter also simply referred to as a constituent layer) constituting the laminate 10 excluding the base layer 12. Adjustment is easy. When the refractive index of the underlayer 12 is within the above range, the effect of reducing the visibility of the etching pattern formed on the indium tin oxide layer 13 is great.
 下地層12の厚さは、1nm以上が好ましい。厚さが1nm以上の場合、インジウムスズ酸化物層13の結晶化を促進する効果が大きい。また、厚さが1nm以上の場合、インジウムスズ酸化物層13に形成されたエッチングパターンの視認性を低下させる効果が大きい。結晶化の促進およびエッチングパターンの視認性の低下の観点から、下地層12の厚さは、3nm以上がより好ましく、5nm以上がさらに好ましく、7nm以上が特に好ましい。下地層12の厚さは、生産性等の観点から、100nm以下が好ましく、80nm以下がより好ましく、70nm以下がさらに好ましい。なお、下地層12は、単層構造でもよいし、2以上の組成が異なる層を有する積層構造でもよい。積層構造の場合は、下地層12の屈折率は酸化インジウム層13に接する下地膜層12の屈折率、厚さは積層構造の下地層12の全体の膜厚と読み替えればよい。 The thickness of the underlayer 12 is preferably 1 nm or more. When the thickness is 1 nm or more, the effect of promoting crystallization of the indium tin oxide layer 13 is large. Moreover, when thickness is 1 nm or more, the effect of reducing the visibility of the etching pattern formed in the indium tin oxide layer 13 is large. From the viewpoint of promoting crystallization and reducing the visibility of the etching pattern, the thickness of the underlayer 12 is more preferably 3 nm or more, further preferably 5 nm or more, and particularly preferably 7 nm or more. The thickness of the underlayer 12 is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less from the viewpoint of productivity. The underlayer 12 may have a single layer structure or a laminated structure having two or more layers having different compositions. In the case of a laminated structure, the refractive index of the foundation layer 12 may be read as the refractive index of the foundation film layer 12 in contact with the indium oxide layer 13, and the thickness may be read as the entire film thickness of the foundation layer 12 of the lamination structure.
(インジウムスズ酸化物層)
 インジウムスズ酸化物層13は、非晶質であり、熱処理により結晶質となる。非晶質であることから、エッチング性が良好となる。また、熱処理により結晶質となることで、耐久性も良好となる。インジウムスズ酸化物層13には、エッチングによりパターン形成を行って、インジウムスズ酸化物層13が存在する部分13aと、インジウムスズ酸化物層13が存在しない部分13bとを設けてもよい。なお、インジウムスズ酸化物層13は、単層構造を有するものでもよいし、2以上の組成が異なる層を有する積層構造でもよい。インジウムスズ酸化物層13は、熱処理による結晶化が良好となることから、下地層12に接触することが好ましい。
(Indium tin oxide layer)
The indium tin oxide layer 13 is amorphous and becomes crystalline by heat treatment. Since it is amorphous, the etching property is improved. Moreover, durability becomes favorable by becoming crystalline by heat processing. The indium tin oxide layer 13 may be patterned by etching to provide a portion 13a where the indium tin oxide layer 13 is present and a portion 13b where the indium tin oxide layer 13 is not present. The indium tin oxide layer 13 may have a single layer structure, or may have a laminated structure having two or more layers having different compositions. The indium tin oxide layer 13 is preferably in contact with the underlayer 12 because crystallization by heat treatment is good.
 なお、非晶質、結晶質は、抵抗変化率の大きさで区別できる。まず、HCl溶液(濃度1.5mol/L)に評価対象物を5分間浸漬する。浸漬前後のシート抵抗から、抵抗変化率(浸漬後のシート抵抗/浸漬前のシート抵抗)を求める。抵抗変化率が200%以下のものを結晶質とし、抵抗変化率が200%を超えるものを非晶質とする。抵抗変化率が200%以下では、結晶質部分と非結晶質部分とが混在した状態になっており、抵抗変化率が100%程度では全体がほぼ結晶化している。 Note that amorphous and crystalline materials can be distinguished by the resistance change rate. First, the evaluation object is immersed in an HCl solution (concentration: 1.5 mol / L) for 5 minutes. From the sheet resistance before and after immersion, the rate of change in resistance (sheet resistance after immersion / sheet resistance before immersion) is determined. Those having a resistance change rate of 200% or less are crystalline, and those having a resistance change rate exceeding 200% are amorphous. When the resistance change rate is 200% or less, the crystalline portion and the amorphous portion are mixed, and when the resistance change rate is about 100%, the whole is almost crystallized.
 インジウムスズ酸化物層13は、インジウムおよびスズの酸化物であるインジウムスズ酸化物から主としてなる。インジウムスズ酸化物を構成する酸化物としては、酸化インジウム、酸化スズ、酸化インジウムと酸化スズの複合酸化物などが挙げられる。 The indium tin oxide layer 13 is mainly composed of indium tin oxide, which is an oxide of indium and tin. Examples of the oxide constituting the indium tin oxide include indium oxide, tin oxide, and a composite oxide of indium oxide and tin oxide.
 インジウムスズ酸化物は、スズを酸化物換算(SnO、以下同様)で5質量%以上17質量%以下含有することが好ましい。スズを酸化物換算で5質量%以上含有する場合、結晶化したときのシート抵抗が低くなる。一方、スズを酸化物換算で17質量%以下含有する場合、結晶化が容易となる。インジウムスズ酸化物は、スズを酸化物換算で、6質量%以上含有することがより好ましく、7質量%以上含有することがさらに好ましく、8質量%以上含有することが特に好ましい。また、インジウムスズ酸化物は、スズを酸化物換算で、15質量%以下含有することがより好ましい。 The indium tin oxide preferably contains 5% by mass to 17% by mass of tin in terms of oxide (SnO 2 , the same applies hereinafter). When tin is contained in an amount of 5% by mass or more in terms of oxide, the sheet resistance when crystallized is lowered. On the other hand, when tin is contained in an amount of 17% by mass or less in terms of oxide, crystallization becomes easy. The indium tin oxide preferably contains 6% by mass or more of tin in terms of oxide, more preferably 7% by mass or more, and particularly preferably 8% by mass or more. Further, the indium tin oxide preferably contains 15% by mass or less of tin in terms of oxide.
 インジウムスズ酸化物層13は、インジウムスズ酸化物のみからなることが好ましいが、必要に応じて、かつ本発明の趣旨に反しない限度において、インジウムスズ酸化物以外の成分を含有できる。インジウムスズ酸化物以外の成分としては、例えば、アルミニウム、ジルコニウム、ガリウム、ケイ素、タングステン、亜鉛、チタン、マグネシウム、セリウム、ゲルマニウム等の酸化物が挙げられる。インジウムスズ酸化物層13におけるインジウムスズ酸化物以外の成分の含有量は、インジウムスズ酸化物層13の全体中、10質量%以下であり、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が特に好ましい。 The indium tin oxide layer 13 is preferably made of only indium tin oxide, but can contain components other than indium tin oxide as necessary and within the limits not departing from the spirit of the present invention. Examples of components other than indium tin oxide include oxides such as aluminum, zirconium, gallium, silicon, tungsten, zinc, titanium, magnesium, cerium, and germanium. Content of components other than indium tin oxide layer 13 in indium tin oxide layer 13 is 10 mass% or less in the whole indium tin oxide layer 13, 5 mass% or less is preferable, and 3 mass% or less is more preferable. 1% by mass or less is particularly preferable.
 インジウムスズ酸化物層13の厚さは、10nm以上が好ましい。厚さが10nm以上の場合、結晶化が良好になるとともに、結晶化後のシート抵抗も低くなる。結晶化およびシート抵抗の観点から、厚さは15nm以上がより好ましい。一方、成膜時間が短くなり、かつ透過率が高くなることから、厚さは、40nm以下が好ましい。成膜時間、透過率、反射率差ΔRの観点から、厚さは35nm以下がより好ましく、30nm以下がさらに好ましい。 The thickness of the indium tin oxide layer 13 is preferably 10 nm or more. When the thickness is 10 nm or more, crystallization is good and sheet resistance after crystallization is also low. From the viewpoint of crystallization and sheet resistance, the thickness is more preferably 15 nm or more. On the other hand, the thickness is preferably 40 nm or less because the film formation time is shortened and the transmittance is increased. From the viewpoint of film formation time, transmittance, and reflectance difference ΔR, the thickness is more preferably 35 nm or less, and further preferably 30 nm or less.
 インジウムスズ酸化物層13は、熱処理により結晶化される。熱処理は、通常、大気中で行うことができる。インジウムスズ酸化物層13の結晶化が良好となることから、熱処理温度は100℃以上が好ましく、熱処理時間は3分以上が好ましい。一方、透明基材11の損傷が抑制され、かつ生産性も良好となることから、熱処理温度は170℃以下が好ましく、熱処理時間は180分以下が好ましい。 The indium tin oxide layer 13 is crystallized by heat treatment. The heat treatment can usually be performed in the atmosphere. In view of good crystallization of the indium tin oxide layer 13, the heat treatment temperature is preferably 100 ° C. or higher, and the heat treatment time is preferably 3 minutes or longer. On the other hand, since damage to the transparent substrate 11 is suppressed and productivity is improved, the heat treatment temperature is preferably 170 ° C. or less, and the heat treatment time is preferably 180 minutes or less.
 積層体10は、熱処理によってインジウム酸化物層13が結晶化したときの以下の反射率差ΔRが1%以下になることが好ましい。熱処理条件としては、例えば、熱処理温度が150℃であり、熱処理時間が30分である。熱処理後の反射率差ΔRが1%以下になる場合、インジウムスズ酸化物層13に形成されたエッチングパターンの視認性が十分に低下する。熱処理後の反射率差ΔRは、0.7%以下がより好ましい。 The laminate 10 preferably has a reflectance difference ΔR of 1% or less when the indium oxide layer 13 is crystallized by heat treatment. As heat treatment conditions, for example, the heat treatment temperature is 150 ° C. and the heat treatment time is 30 minutes. When the reflectance difference ΔR after the heat treatment is 1% or less, the visibility of the etching pattern formed on the indium tin oxide layer 13 is sufficiently lowered. The reflectance difference ΔR after the heat treatment is more preferably 0.7% or less.
 反射率差ΔRは、熱処理後の積層体10について、透明基材11側を光の入射面とし、インジウムスズ酸化物層13が存在する位置での波長480nm以上650nm以下における平均反射率R[%]と、インジウムスズ酸化物層13が存在しない位置での波長480nm以上650nm以下における平均反射率R[%]との差の絶対値(ΔR=|R-R|)である。インジウムスズ酸化物層13が存在しない場合でも、エッチングパターンの視認性や、アルカリ耐性、耐擦傷性の観点から、下地層12は存在することが好ましい。 The reflectance difference ΔR is the average reflectance R 1 at a wavelength of 480 nm or more and 650 nm or less at the position where the indium tin oxide layer 13 exists with respect to the laminated body 10 after the heat treatment, with the transparent substrate 11 side being the light incident surface. %] And an absolute value (ΔR = | R 1 −R 2 |) between the average reflectance R 2 [%] at a wavelength of 480 nm to 650 nm at a position where the indium tin oxide layer 13 is not present. Even when the indium tin oxide layer 13 is not present, the underlayer 12 is preferably present from the viewpoint of the visibility of the etching pattern, alkali resistance, and scratch resistance.
 反射率差ΔRの調整は、熱処理後の各層の厚さ、屈折率等の調整により行うことができ、特に下地層12の厚さ、屈折率等の調整により行うことができる。既に説明したように、下地層12は、構成元素の割合により、屈折率が大幅に変化する。これにより、下地層12を除いた構成層の屈折率の大小にかかわらず、構成層全体の屈折率を容易に調整できる。 The adjustment of the reflectance difference ΔR can be performed by adjusting the thickness and refractive index of each layer after the heat treatment, and in particular by adjusting the thickness and refractive index of the underlayer 12. As already described, the refractive index of the underlayer 12 varies greatly depending on the proportion of the constituent elements. Thereby, the refractive index of the entire constituent layer can be easily adjusted regardless of the refractive index of the constituent layer excluding the base layer 12.
 次に、導電性積層体20について説明する。
 図2は、導電性積層体20の一例を示す断面図である。導電性積層体20は、積層体10を熱処理して得られる。導電性積層体20は、例えば、透明基材11、下地層12、および結晶質のインジウムスズ酸化物層21を順に有する。透明基材11および下地層12は、積層体10における透明基材11および下地層12と同様である。
Next, the conductive laminate 20 will be described.
FIG. 2 is a cross-sectional view showing an example of the conductive laminate 20. The conductive laminate 20 is obtained by heat-treating the laminate 10. The conductive laminate 20 includes, for example, a transparent substrate 11, an underlayer 12, and a crystalline indium tin oxide layer 21 in this order. The transparent substrate 11 and the foundation layer 12 are the same as the transparent substrate 11 and the foundation layer 12 in the laminate 10.
 インジウムスズ酸化物層21は、結晶質であることから、耐久性が良好となる。インジウムスズ酸化物層21には、エッチングによるパターン形成により、インジウムスズ酸化物層21が存在する部分21aと、インジウムスズ酸化物層21が存在しない部分21bとが設けられていてもよい。エッチングパターンとしては、多数の透明電極等が挙げられる。インジウムスズ酸化物層21は、結晶化が良好となることから、下地層12に接触することが好ましい。 Since the indium tin oxide layer 21 is crystalline, durability is improved. The indium tin oxide layer 21 may be provided with a portion 21a where the indium tin oxide layer 21 exists and a portion 21b where the indium tin oxide layer 21 does not exist by pattern formation by etching. Examples of the etching pattern include a large number of transparent electrodes. The indium tin oxide layer 21 is preferably in contact with the underlayer 12 because crystallization is good.
 インジウムスズ酸化物層21は、インジウムおよびスズの酸化物であるインジウムスズ酸化物から主としてなる。インジウムスズ酸化物を構成する酸化物としては、酸化インジウム、酸化スズ、酸化インジウムと酸化スズの複合酸化物などが挙げられる。なお、インジウムスズ酸化物層21は、単層構造でもよいし、2以上の組成が異なる層を有する積層構造でもよい。 The indium tin oxide layer 21 is mainly composed of indium tin oxide, which is an oxide of indium and tin. Examples of the oxide constituting the indium tin oxide include indium oxide, tin oxide, and a composite oxide of indium oxide and tin oxide. The indium tin oxide layer 21 may have a single layer structure or a laminated structure having two or more layers having different compositions.
 インジウムスズ酸化物層21の比抵抗は、2.8×10-4Ω・cm以下が好ましい。上記比抵抗の場合、電子機器に好適なものとなる。比抵抗は、2.4×10-4Ω・cm以下が好ましく、2.3×10-4Ω・cm以下がより好ましい。 The specific resistance of the indium tin oxide layer 21 is preferably 2.8 × 10 −4 Ω · cm or less. In the case of the said specific resistance, it becomes a thing suitable for an electronic device. The specific resistance is preferably 2.4 × 10 −4 Ω · cm or less, and more preferably 2.3 × 10 −4 Ω · cm or less.
 インジウムスズ酸化物は、スズを酸化物換算で5質量%以上17量%以下含有することが好ましい。スズを酸化物換算で5質量%以上含有する場合、比抵抗が低くなる。一方、スズを酸化物換算で17質量%以下含有する場合、結晶化が良好となる。インジウムスズ酸化物は、スズを酸化物換算で、6質量%以上含有することがより好ましく、7質量%以上含有することがさらに好ましく、8質量%以上含有することが特に好ましい。また、インジウムスズ酸化物は、スズを酸化物換算で、15質量%以下含有することがより好ましい。 The indium tin oxide preferably contains 5% by mass to 17% by mass of tin in terms of oxide. When tin is contained in an amount of 5% by mass or more in terms of oxide, the specific resistance is lowered. On the other hand, when tin is contained in an amount of 17% by mass or less in terms of oxide, crystallization is good. The indium tin oxide preferably contains 6% by mass or more of tin in terms of oxide, more preferably 7% by mass or more, and particularly preferably 8% by mass or more. Further, the indium tin oxide preferably contains 15% by mass or less of tin in terms of oxide.
 インジウムスズ酸化物層21は、インジウムスズ酸化物のみからなることが好ましいが、必要に応じて、かつ本発明の趣旨に反しない限度において、インジウムスズ酸化物以外の成分を含有できる。インジウムスズ酸化物以外の成分としては、例えば、アルミニウム、ジルコニウム、ガリウム、ケイ素、タングステン、亜鉛、チタン、マグネシウム、セリウム、ゲルマニウム等の酸化物が挙げられる。インジウムスズ酸化物層21におけるインジウムスズ酸化物以外の成分の含有量は、インジウムスズ酸化物層21の全体中、10質量%以下であり、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が特に好ましい。 The indium tin oxide layer 21 is preferably composed only of indium tin oxide, but can contain components other than indium tin oxide as necessary and within the limits not departing from the spirit of the present invention. Examples of components other than indium tin oxide include oxides such as aluminum, zirconium, gallium, silicon, tungsten, zinc, titanium, magnesium, cerium, and germanium. Content of components other than indium tin oxide 21 in indium tin oxide layer 21 is 10 mass% or less in the whole indium tin oxide layer 21, 5 mass% or less is preferable, and 3 mass% or less is more preferable. 1% by mass or less is particularly preferable.
 インジウムスズ酸化物層21の厚さは、10nm以上が好ましい。厚さが10nm以上の場合、結晶化が良好になるとともに、シート抵抗も低くなる。結晶化およびシート抵抗の観点から、厚さは15nm以上がより好ましい。一方、成膜時間が短くなり、かつ透過率が高くなることから、厚さは、40nm以下が好ましい。成膜時間、透過率、反射率差ΔRの観点から、厚さは35nm以下がより好ましく、30nm以下がさらに好ましい。 The thickness of the indium tin oxide layer 21 is preferably 10 nm or more. When the thickness is 10 nm or more, crystallization is improved and sheet resistance is reduced. From the viewpoint of crystallization and sheet resistance, the thickness is more preferably 15 nm or more. On the other hand, the thickness is preferably 40 nm or less because the film formation time is shortened and the transmittance is increased. From the viewpoint of film formation time, transmittance, and reflectance difference ΔR, the thickness is more preferably 35 nm or less, and further preferably 30 nm or less.
 導電性積層体20は、以下の反射率差ΔRが1%以下であることが好ましい。反射率差ΔRが1%以下の場合、インジウムスズ酸化物層21に形成されたエッチングパターンの視認性が十分に低くなる。反射率差ΔRは、0.7%以下が好ましい。 The conductive laminate 20 preferably has the following reflectance difference ΔR of 1% or less. When the reflectance difference ΔR is 1% or less, the visibility of the etching pattern formed on the indium tin oxide layer 21 is sufficiently low. The reflectance difference ΔR is preferably 0.7% or less.
 反射率差ΔRは、透明基材11側を光の入射面とし、インジウムスズ酸化物層21が存在する位置での波長480nm以上650nm以下における平均反射率R[%]と、インジウムスズ酸化物層21が存在しない位置での波長480nm以上650nm以下における平均反射率R[%]との差の絶対値(ΔR=|R-R|)である。インジウムスズ酸化物層21が存在しない場合でも、エッチングパターンの視認性や、アルカリ耐性、耐擦傷性の観点から、下地層12は存在することが好ましい。 The reflectance difference ΔR is the average reflectance R 1 [%] at a wavelength of 480 nm or more and 650 nm or less at the position where the indium tin oxide layer 21 exists with the transparent substrate 11 side as the light incident surface, and indium tin oxide. This is the absolute value (ΔR = | R 1 −R 2 |) of the difference from the average reflectance R 2 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where the layer 21 does not exist. Even when the indium tin oxide layer 21 is not present, the underlayer 12 is preferably present from the viewpoint of the visibility of the etching pattern, alkali resistance, and scratch resistance.
 反射率差ΔRの調整は、各層の厚さ、屈折率等の調整により行うことができ、特に下地層12の厚さ、屈折率等の調整により行うことができる。既に説明したように、下地層12は、構成元素の割合により、屈折率が大幅に変化する。これにより、下地層12を除いた構成層の屈折率の大小にかかわらず、構成層全体の屈折率を容易に調整できる。 The adjustment of the reflectance difference ΔR can be performed by adjusting the thickness, refractive index and the like of each layer, and particularly by adjusting the thickness and refractive index of the underlayer 12. As already described, the refractive index of the underlayer 12 varies greatly depending on the proportion of the constituent elements. Thereby, the refractive index of the entire constituent layer can be easily adjusted regardless of the refractive index of the constituent layer excluding the base layer 12.
 導電性積層体20は、電子機器に好適に用いられ、例えば、表示部とこの表示部の前面に配置されるタッチパネルとを有する電子機器に好適に用いられる。特に、導電性積層体20は、タッチパネルにおける透明電極を有する基板として用いられる。タッチパネルとしては、上下の電極が接触することでタッチ位置を特定する抵抗膜式、静電容量の変化を感知する静電容量結合方式が挙げられる。 The conductive laminate 20 is preferably used for an electronic device, for example, an electronic device having a display unit and a touch panel arranged on the front surface of the display unit. In particular, the conductive laminate 20 is used as a substrate having a transparent electrode in a touch panel. Examples of the touch panel include a resistive film type that specifies a touch position by contacting upper and lower electrodes, and a capacitive coupling method that senses a change in capacitance.
 次に、積層体10、導電性積層体20の製造方法について説明する。
 積層体10は、透明基材11上に、下地層12を形成した後、インジウムスズ酸化物層13を成膜して製造できる。成膜方法は、必ずしも限定されず、スパッタリング法、イオンプレーティング法、真空蒸着法を適用でき、特にスパッタリング法が好ましい。
Next, the manufacturing method of the laminated body 10 and the electroconductive laminated body 20 is demonstrated.
The laminated body 10 can be manufactured by forming an indium tin oxide layer 13 after forming the base layer 12 on the transparent substrate 11. The film forming method is not necessarily limited, and a sputtering method, an ion plating method, and a vacuum evaporation method can be applied, and the sputtering method is particularly preferable.
 下地層12は、例えば、珪素から主としてなるスパッタリングターゲットを用いたスパッタリングにより成膜する。この際、以下のように導入ガスの割合を調整することが好ましい。 The underlayer 12 is formed by sputtering using, for example, a sputtering target mainly made of silicon. At this time, it is preferable to adjust the ratio of the introduced gas as follows.
 まず、アルゴンガスと酸素ガスとを導入して、プレスパッタリングを行うことが好ましい。この際、スパッタリングの状態が金属モードまたは遷移モードとなるように、アルゴンガスと酸素ガスとの割合を調整することが好ましい。ここで、金属モード、遷移モードは、酸素不足により可視光に吸収を有する膜が形成されるべき状態である。酸素ガスの割合は、アルゴンガスと酸素ガスとの合計量に対して、0.1体積%以上が好ましく、0.3体積%以上がより好ましく、0.5体積%以上がさらに好ましい。また、酸素ガスの割合は、アルゴンガスと酸素ガスとの合計量に対して、30体積%以下が好ましく、20体積%以下がより好ましく、10体積%以下がさらに好ましい。 First, it is preferable to perform pre-sputtering by introducing argon gas and oxygen gas. At this time, it is preferable to adjust the ratio of the argon gas and the oxygen gas so that the sputtering state becomes the metal mode or the transition mode. Here, the metal mode and the transition mode are states in which a film having absorption in visible light due to lack of oxygen is to be formed. The proportion of oxygen gas is preferably 0.1% by volume or more, more preferably 0.3% by volume or more, and further preferably 0.5% by volume or more with respect to the total amount of argon gas and oxygen gas. The proportion of oxygen gas is preferably 30% by volume or less, more preferably 20% by volume or less, and still more preferably 10% by volume or less with respect to the total amount of argon gas and oxygen gas.
 次に、アルゴンガスと酸素ガスとの割合を上記割合に維持したまま窒素ガスを導入して、すなわち、アルゴンガス、酸素ガス、および窒素ガスを導入してスパッタリングを行うことが好ましい。この際、スパッタリングの状態が反応モードとなるように、アルゴンガスと窒素ガスとの割合を調整することが好ましい。反応モードは、珪素、酸素、および窒素が反応して、可視光に透明性を有する膜が成膜されるべき状態である。窒素ガスの割合は、アルゴンガスと窒素ガスとの合計量に対して、30体積%以上が好ましく、40体積%以上がより好ましく、45体積%以上がさらに好ましい。また、窒素ガスの割合は、アルゴンガスと窒素ガスとの合計量に対して、50体積%未満が好ましく、49.7体積%以下がより好ましく、49.5体積%以下がさらに好ましい。 Next, it is preferable to perform sputtering by introducing nitrogen gas while maintaining the ratio of argon gas and oxygen gas at the above ratio, that is, introducing argon gas, oxygen gas, and nitrogen gas. At this time, it is preferable to adjust the ratio of the argon gas and the nitrogen gas so that the sputtering state becomes the reaction mode. The reaction mode is a state in which silicon, oxygen, and nitrogen react to form a film having transparency to visible light. The proportion of nitrogen gas is preferably 30% by volume or more, more preferably 40% by volume or more, and still more preferably 45% by volume or more with respect to the total amount of argon gas and nitrogen gas. Further, the ratio of nitrogen gas is preferably less than 50% by volume, more preferably 49.7% by volume or less, and further preferably 49.5% by volume or less with respect to the total amount of argon gas and nitrogen gas.
 このように、アルゴンガスと酸素ガスとを導入したときに、金属モードまたは遷移モードとなるようにアルゴンガスと酸素ガスとの割合を調整し、さらに、アルゴンガス、酸素ガス、および窒素ガスを導入したときに、反応モードとなるようにアルゴンガスと窒素ガスとの割合を調整することが好ましい。このような方法によれば、インジウムスズ酸化物層13の結晶化を促進する効果が大きい下地層12を形成できる。 Thus, when argon gas and oxygen gas are introduced, the ratio of argon gas and oxygen gas is adjusted so as to be in the metal mode or transition mode, and further, argon gas, oxygen gas, and nitrogen gas are introduced. It is preferable to adjust the ratio of argon gas and nitrogen gas so that the reaction mode is achieved. According to such a method, it is possible to form the underlayer 12 having a large effect of promoting crystallization of the indium tin oxide layer 13.
 インジウムスズ酸化物層13は、例えば、インジウムスズ酸化物からなるスパッタリングターゲットを用い、スパッタリング法により成膜する。スパッタリングターゲットは、インジウムスズ酸化物中、スズを酸化物換算で5質量%以上17質量%以下含有することが好ましい。スパッタリングターゲットにおけるインジウムスズ酸化物は、酸化スズ(SnO)と酸化インジウム(In)とを混合し焼結された焼結体からなることが好ましい。 The indium tin oxide layer 13 is formed by sputtering using a sputtering target made of indium tin oxide, for example. It is preferable that a sputtering target contains 5 mass% or more and 17 mass% or less of tin in oxide conversion in indium tin oxide. The indium tin oxide in the sputtering target is preferably composed of a sintered body obtained by mixing and sintering tin oxide (SnO 2 ) and indium oxide (In 2 O 3 ).
 インジウムスズ酸化物層13の成膜は、例えば、アルゴンガスに、0.5体積%以上10体積%以下、好ましくは0.8体積%以上6体積%以下の酸素ガスを混合した混合ガスを導入しながらスパッタリングを行うことが好ましい。このような混合ガスを導入しながらスパッタリングを行うことで、非晶質であり、熱処理による結晶化が容易で、結晶化後の比抵抗が低いものを成膜できる。 The indium tin oxide layer 13 is formed, for example, by introducing a mixed gas in which oxygen gas is mixed in an amount of 0.5% by volume to 10% by volume, preferably 0.8% by volume to 6% by volume in argon gas. Sputtering is preferably performed. By performing sputtering while introducing such a mixed gas, it is possible to form a film that is amorphous, can be easily crystallized by heat treatment, and has low specific resistance after crystallization.
 導電性積層体20は、積層体10を熱処理して得られる。熱処理は、通常、大気中で行うことができる。インジウムスズ酸化物層13の結晶化が良好となることから、熱処理温度は100℃以上が好ましく、熱処理時間は3分以上が好ましい。一方、透明基材11の損傷が抑制され、かつ生産性も良好となることから、熱処理温度は170℃以下が好ましく、熱処理時間は180分以下が好ましい。 The conductive laminate 20 is obtained by heat-treating the laminate 10. The heat treatment can usually be performed in the atmosphere. In view of good crystallization of the indium tin oxide layer 13, the heat treatment temperature is preferably 100 ° C. or higher, and the heat treatment time is preferably 3 minutes or longer. On the other hand, since damage to the transparent substrate 11 is suppressed and productivity is improved, the heat treatment temperature is preferably 170 ° C. or less, and the heat treatment time is preferably 180 minutes or less.
 以下、実施例を挙げて本発明を具体的に説明する。例1~5が本発明の実施例、例6~9が本発明の比較例である。なお、本発明はこれらの例によって限定されない。また、各層の厚さは、光学特性、または成膜速度と基材の搬送速度とから求められるものであり、実際に測定されたものではない。 Hereinafter, the present invention will be specifically described with reference to examples. Examples 1 to 5 are examples of the present invention, and examples 6 to 9 are comparative examples of the present invention. Note that the present invention is not limited to these examples. Moreover, the thickness of each layer is calculated | required from an optical characteristic or the film-forming speed | rate, and the conveyance speed of a base material, and is not actually measured.
(例1)
 透明基材として、厚さ100μmのポリエチレンテレフタレートフィルムの表面に易接着処理が施されたものを用意した。この透明基材上に、下地層として酸窒化珪素膜(SiO膜)を形成した。下地層の厚さは、10nmである。下地層の屈折率は、1.49である。屈折率は、波長500nmでの値であり、エリプソメトリーにより測定した。
(Example 1)
As a transparent substrate, a polyethylene terephthalate film having a thickness of 100 μm was prepared by subjecting the surface to an easy adhesion treatment. On this transparent substrate, a silicon oxynitride film (SiO x N y film) was formed as a base layer. The thickness of the underlayer is 10 nm. The refractive index of the underlayer is 1.49. The refractive index is a value at a wavelength of 500 nm and was measured by ellipsometry.
 なお、下地層は、以下のように形成した。まず、ボロンドープシリコンターゲットを用い、アルゴンガスおよび酸素ガスを導入して、DCパルス電源によりプレスパッタリングを行った。アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合は5体積%である。このときのスパッタリングの状態は、金属モードまたは遷移モードである。 The underlayer was formed as follows. First, using a boron-doped silicon target, argon gas and oxygen gas were introduced, and pre-sputtering was performed with a DC pulse power source. The ratio of oxygen gas to the total amount of argon gas and oxygen gas is 5% by volume. The sputtering state at this time is a metal mode or a transition mode.
 その後、上記のアルゴンガスおよび酸素ガスに加えて、窒素ガスを導入した。この際、アルゴンガスおよび窒素ガスの合計量に対する窒素ガスの割合は45体積%とした。なお、アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合はプレスパッタリングと同様(5体積%のまま)とした。このときのスパッタリングの状態は、反応モードである。 Thereafter, nitrogen gas was introduced in addition to the above argon gas and oxygen gas. At this time, the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 45% by volume. Note that the ratio of oxygen gas to the total amount of argon gas and oxygen gas was the same as in pre-sputtering (5 vol%). The state of sputtering at this time is a reaction mode.
 アルゴンガス、酸素ガス、および窒素ガスを上記条件で導入しながらスパッタリングを継続して、透明基材上に下地層を形成した。下地層の厚さは、スパッタレートおよび透明基材の搬送速度により調整した。 Sputtering was continued while introducing argon gas, oxygen gas, and nitrogen gas under the above conditions to form an underlayer on the transparent substrate. The thickness of the underlayer was adjusted by the sputtering rate and the conveyance speed of the transparent substrate.
 下地層の形成後、下地層上に厚さ25nmの非晶質のインジウムスズ酸化物層(ITO層)を形成して試験片とした。ITO層の形成は、スズを酸化物換算で10質量%含有するインジウムスズ酸化物からなるターゲット(10質量%の酸化スズ(SnO)と90質量%の酸化インジウム(In)とを混合して焼結させたターゲット)を用いて、アルゴンガスおよび酸素ガスを導入して、DC電源によりスパッタリングを行った。アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合は1体積%である。ITO層の厚さは、スパッタレートおよび透明基材等の搬送速度により調整した。 After the formation of the underlayer, an amorphous indium tin oxide layer (ITO layer) having a thickness of 25 nm was formed on the underlayer to obtain a test piece. The ITO layer is formed by using a target (10% by mass of tin oxide (SnO 2 )) and 90% by mass of indium oxide (In 2 O 3 ) made of indium tin oxide containing 10% by mass of tin in terms of oxide. Using a mixed and sintered target), argon gas and oxygen gas were introduced, and sputtering was performed by a DC power source. The ratio of oxygen gas to the total amount of argon gas and oxygen gas is 1% by volume. The thickness of the ITO layer was adjusted by the sputtering rate and the conveyance speed of the transparent substrate and the like.
(例2)
 下地層の形成条件を変更して、下地層の屈折率を1.59に変更した以外は、例1と同様にして下地層およびITO層を形成して試験片とした。なお、下地層の形成条件は以下の通りである。プレスパッタリング時のアルゴンガスおよび酸素ガスの導入では、アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合を2体積%とした。このときのスパッタリングの状態は、金属モードまたは遷移モードである。その後のスパッタリング時の、アルゴンガス、酸素ガス、および窒素ガスの導入では、アルゴンガスおよび窒素ガスの合計量に対する窒素ガスの割合を48体積%とした。なお、アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合はプレスパッタリングと同様とした。このときのスパッタリングの状態は、反応モードである。
(Example 2)
A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer formation conditions were changed and the refractive index of the base layer was changed to 1.59. The formation conditions of the underlayer are as follows. In the introduction of argon gas and oxygen gas during pre-sputtering, the ratio of oxygen gas to the total amount of argon gas and oxygen gas was set to 2% by volume. The sputtering state at this time is a metal mode or a transition mode. In the subsequent introduction of argon gas, oxygen gas, and nitrogen gas during sputtering, the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 48% by volume. Note that the ratio of oxygen gas to the total amount of argon gas and oxygen gas was the same as in pre-sputtering. The state of sputtering at this time is a reaction mode.
(例3)
 下地層の形成条件を変更して、下地層の屈折率を1.80に変更した以外は、例1と同様にして下地層およびITO層を形成して試験片とした。なお、下地層の形成条件は以下の通りである。プレスパッタリング時のアルゴンガスおよび酸素ガスの導入では、アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合を1体積%とした。このときのスパッタリングの状態は、金属モードまたは遷移モードである。その後のスパッタリング時の、アルゴンガス、酸素ガス、および窒素ガスの導入では、アルゴンガスおよび窒素ガスの合計量に対する窒素ガスの割合を49体積%とした。なお、アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合はプレスパッタリングと同様とした。このときのスパッタリングの状態は、反応モードである。
(Example 3)
A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer formation conditions were changed and the refractive index of the base layer was changed to 1.80. The formation conditions of the underlayer are as follows. In the introduction of argon gas and oxygen gas during pre-sputtering, the ratio of oxygen gas to the total amount of argon gas and oxygen gas was set to 1% by volume. The sputtering state at this time is a metal mode or a transition mode. In the subsequent introduction of argon gas, oxygen gas, and nitrogen gas during sputtering, the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 49 vol%. Note that the ratio of oxygen gas to the total amount of argon gas and oxygen gas was the same as in pre-sputtering. The state of sputtering at this time is a reaction mode.
(例4)
 下地層の形成条件を変更して、下地層の屈折率を1.95に変更した以外は、例1と同様にして下地層およびITO層を形成して試験片とした。なお、下地層の形成条件は以下の通りである。プレスパッタリング時のアルゴンガスおよび酸素ガスの導入では、アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合を0.5体積%とした。このときのスパッタリングの状態は、金属モードまたは遷移モードである。その後のスパッタリング時の、アルゴンガス、酸素ガス、および窒素ガスの導入では、アルゴンガスおよび窒素ガスの合計量に対する窒素ガスの割合を49.5体積%とした。なお、アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合はプレスパッタリングと同様とした。このときのスパッタリングの状態は、反応モードである。
(Example 4)
A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer formation conditions were changed and the refractive index of the base layer was changed to 1.95. The formation conditions of the underlayer are as follows. In the introduction of argon gas and oxygen gas at the time of pre-sputtering, the ratio of oxygen gas to the total amount of argon gas and oxygen gas was set to 0.5% by volume. The sputtering state at this time is a metal mode or a transition mode. In the subsequent introduction of argon gas, oxygen gas, and nitrogen gas at the time of sputtering, the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 49.5% by volume. Note that the ratio of oxygen gas to the total amount of argon gas and oxygen gas was the same as in pre-sputtering. The state of sputtering at this time is a reaction mode.
(例5)
 ITO層の厚さを20nmに変更した以外は、例1と同様にして下地層およびITO層を形成して試験片とした。
(Example 5)
A base layer and an ITO layer were formed in the same manner as in Example 1 except that the thickness of the ITO layer was changed to 20 nm to obtain a test piece.
(例6)
 下地層を酸化珪素膜(SiO膜)に変更した以外は、例1と同様にして下地層およびITO層を形成して試験片とした。なお、SiO膜の形成は、ボロンドープシリコンターゲットを用いて、アルゴンガスおよび酸素ガスを導入して、DCパルス電源によりスパッタリングを行った。アルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合は50体積%とした。このときのスパッタリングの状態は、反応モードである。下地層の屈折率は1.47である。
(Example 6)
A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer was changed to a silicon oxide film (SiO 2 film) to obtain a test piece. The SiO 2 film was formed by sputtering with a DC pulse power source using a boron-doped silicon target, introducing argon gas and oxygen gas. The ratio of oxygen gas to the total amount of argon gas and oxygen gas was 50% by volume. The state of sputtering at this time is a reaction mode. The refractive index of the underlayer is 1.47.
(例7)
 下地層を酸化珪素膜(Si膜)に変更した以外は、例1と同様にして下地層およびITO層を形成して試験片とした。なお、Si膜の形成は、ボロンドープシリコンターゲットを用いて、アルゴンガスおよび窒素ガスを導入して、DCパルス電源によりスパッタリングを行った。アルゴンガスおよび窒素ガスの合計量に対する窒素ガスの割合は50体積%とした。このときのスパッタリングの状態は、反応モードである。下地層の屈折率は2.04である。
(Example 7)
A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer was changed to a silicon oxide film (Si 3 N 4 film) to obtain a test piece. Note that the Si 3 N 4 film was formed by sputtering with a DC pulse power supply using a boron-doped silicon target and introducing argon gas and nitrogen gas. The ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 50% by volume. The state of sputtering at this time is a reaction mode. The refractive index of the underlayer is 2.04.
(例8)
 下地層を酸化アルミニウム膜(Al膜)に変更した以外は、例1と同様にして下地層およびITO層を形成して試験片とした。なお、Al膜の形成は、純アルミニウムターゲットを用いて、アルゴンガスおよび窒素ガスを導入して、DCパルス電源によりスパッタリングを行った。アルゴンガスおよび窒素ガスの合計量に対する窒素ガスの割合は50体積%とした。このときのスパッタリングの状態は、反応モードである。下地層の屈折率は2.04である。
(Example 8)
A base layer and an ITO layer were formed in the same manner as in Example 1 except that the base layer was changed to an aluminum oxide film (Al 2 O 3 film) to obtain a test piece. The Al 2 O 3 film was formed by sputtering with a DC pulse power source using a pure aluminum target, introducing argon gas and nitrogen gas. The ratio of nitrogen gas to the total amount of argon gas and nitrogen gas was 50% by volume. The state of sputtering at this time is a reaction mode. The refractive index of the underlayer is 2.04.
(例9)
 ITO層の厚さを20nmに変更した以外は、例6と同様にして下地層およびITO層を形成して試験片を製造した。
(Example 9)
A test piece was produced by forming an underlayer and an ITO layer in the same manner as in Example 6 except that the thickness of the ITO layer was changed to 20 nm.
 次に、各例の試験片について、大気中、150℃、30分間の熱処理を行った。熱処理後の試験片について、以下の評価を行った。結果を表1に示す。なお、表中、例1~5の流量比(酸素)は、プレスパッタリング時のアルゴンガスおよび酸素ガスの導入時のアルゴンガスおよび酸素ガスの合計量に対する酸素ガスの割合である。また、表中、例1~5の流量比(窒素)は、その後のスパッタリング時の、アルゴンガス、酸素ガス、および窒素ガスの導入時のアルゴンガスおよび窒素ガスの合計量に対する窒素ガスの割合である。 Next, the test piece of each example was heat-treated in air at 150 ° C. for 30 minutes. The following evaluation was performed about the test piece after heat processing. The results are shown in Table 1. In the table, the flow ratio (oxygen) of Examples 1 to 5 is the ratio of oxygen gas to the total amount of argon gas and oxygen gas when introducing argon gas and oxygen gas during pre-sputtering. In the table, the flow ratio (nitrogen) of Examples 1 to 5 is the ratio of nitrogen gas to the total amount of argon gas and nitrogen gas when argon gas, oxygen gas, and nitrogen gas are introduced during subsequent sputtering. is there.
[シート抵抗、比抵抗]
 熱処理前と熱処理後の試験片を10mm×10mmの大きさに切断し、ホール効果測定システム(Nanometrics社、型式:HL5500PC)を用いて、ITO層のシート抵抗を測定した。このシート抵抗を用いて、下記式(1)によりITO層の比抵抗を求めた。
 比抵抗[Ω・cm]=シート抵抗値[Ω/□]×ITO層の厚さ[cm]  ……(1)
[Sheet resistance, specific resistance]
The specimens before and after the heat treatment were cut into a size of 10 mm × 10 mm, and the sheet resistance of the ITO layer was measured using a Hall effect measurement system (Nanometrics, model: HL5500PC). Using this sheet resistance, the specific resistance of the ITO layer was determined by the following formula (1).
Specific resistance [Ω · cm] = sheet resistance value [Ω / □] × ITO layer thickness [cm] (1)
[抵抗変化率]
 熱処理後の試験片をHCl溶液(濃度1.5mol/L)に5分間浸漬した。浸漬前後のITO層のシート抵抗から、抵抗変化率(浸漬後のシート抵抗/浸漬前のシート抵抗×100[%])を求めた。抵抗変化率は、ITO層が結晶質でエッチング速度が遅くなると100%に近くなる。一方、抵抗変化率は、ITO層が非晶質でエッチング速度が速くなると200%を超えて大きくなる。なお、熱処理前の試験片についても、同様にしてITO層の抵抗値変化率を測定した。その結果、いずれも抵抗変化率が200%を超え、非晶質であることが確認された。なお、シート抵抗は、上記方法により測定した。
[Rate of change in resistance]
The test piece after the heat treatment was immersed in an HCl solution (concentration 1.5 mol / L) for 5 minutes. From the sheet resistance of the ITO layer before and after immersion, the resistance change rate (sheet resistance after immersion / sheet resistance before immersion × 100 [%]) was determined. The rate of change in resistance approaches 100% when the ITO layer is crystalline and the etching rate is slow. On the other hand, the rate of change in resistance increases beyond 200% when the ITO layer is amorphous and the etching rate increases. In addition, also about the test piece before heat processing, the resistance value change rate of the ITO layer was measured similarly. As a result, it was confirmed that the resistance change rate exceeded 200% and was amorphous. Sheet resistance was measured by the above method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例1~5のように、珪素、酸素、および窒素を含む下地層を有する場合、熱処理後のITO層の抵抗変化率が小さくなり、ITO層が十分に結晶化している。また、上記下地層を有する場合、熱処理後のITO層のシート抵抗も小さくなる。特に、例5のようにITO層が薄い場合でも、ITO層が十分に結晶化され、シート抵抗が小さくなる。また、上記下地層の場合、1.49以上1.95以下の広い範囲の屈折率が得られる。従って、ITO層にエッチングパターンが形成されている場合、他の層と合わせてITO層に形成されたエッチングパターンの視認性を低下させることが容易となる。 As in Examples 1 to 5, when the base layer containing silicon, oxygen, and nitrogen is provided, the rate of change in resistance of the ITO layer after the heat treatment is reduced, and the ITO layer is sufficiently crystallized. Moreover, when it has the said base layer, the sheet resistance of the ITO layer after heat processing also becomes small. In particular, even when the ITO layer is thin as in Example 5, the ITO layer is sufficiently crystallized and sheet resistance is reduced. Moreover, in the case of the said base layer, the refractive index of the wide range of 1.49 or more and 1.95 or less is obtained. Therefore, when the etching pattern is formed in the ITO layer, it becomes easy to reduce the visibility of the etching pattern formed in the ITO layer together with other layers.
 さらに、シート抵抗を下げる効果が認められた例1~5の下地層12を光電子分光分析で組成分析を行った。その結果、例1~5の下地層12のN/Oの分子数の比は0.05以上かつ3.6以下であった。例えば、例1のN/Oの分子数比は0.06、例2のN/Oの分子数比は0.07、例3のN/Oの分子数比は1.4、例4のN/Oの分子数比は3.6であった。 Further, composition analysis was performed by photoelectron spectroscopy for the underlayer 12 of Examples 1 to 5 in which the effect of reducing the sheet resistance was recognized. As a result, the ratio of the number of molecules of N 2 / O 2 in the underlayer 12 of Examples 1 to 5 was 0.05 or more and 3.6 or less. For example, the molecular number ratio of N 2 / O 2 in Example 1 is 0.06, the molecular number ratio of N 2 / O 2 in Example 2 is 0.07, and the molecular number ratio of N 2 / O 2 in Example 3 is 1 The ratio of N 2 / O 2 molecules in Example 4 and Example 4 was 3.6.
 次に、下記の試験片を仮定して、ITO層に形成されたエッチングパターンの視認性を計算により評価した。なお、例10が本発明の実施例であり、例11が本発明の比較例である。 Next, assuming the following test pieces, the visibility of the etching pattern formed on the ITO layer was evaluated by calculation. Note that Example 10 is an example of the present invention, and Example 11 is a comparative example of the present invention.
(例10)
 透明基材は、波長500nmの光に対する屈折率が1.53で、厚さ100μmのポリエチレンテレフタレートフィルムとした。この透明基材上に、アンダーコート層として、酸化チタンフィラーを含有するウレタンアクリルレートを1μmの厚さに積層した。アンダーコート層は、波長500nmの光に対する屈折率が1.55である。
(Example 10)
The transparent substrate was a polyethylene terephthalate film having a refractive index of 1.53 with respect to light having a wavelength of 500 nm and a thickness of 100 μm. On this transparent substrate, urethane acrylate containing a titanium oxide filler was laminated to a thickness of 1 μm as an undercoat layer. The undercoat layer has a refractive index of 1.55 with respect to light having a wavelength of 500 nm.
 このアンダーコート層上に、波長500nmの光に対する屈折率が1.70である第1の酸窒化珪素層を厚さが47nmとなるように積層した。さらに、この第1の酸窒化珪素層上に、波長500nmの光に対する屈折率が1.50である第2の酸窒化珪素層を厚さが20nmとなるように積層した。ここで、下地層は、第1の酸窒化珪素層と第2の酸窒化珪素層とから構成される。この下地層上に波長500nmの光に対する屈折率が1.83のITO層を厚さが25nmとなるように積層した。 On this undercoat layer, a first silicon oxynitride layer having a refractive index of 1.70 with respect to light having a wavelength of 500 nm was laminated so as to have a thickness of 47 nm. Further, a second silicon oxynitride layer having a refractive index of 1.50 with respect to light having a wavelength of 500 nm was laminated on the first silicon oxynitride layer so as to have a thickness of 20 nm. Here, the base layer includes a first silicon oxynitride layer and a second silicon oxynitride layer. An ITO layer having a refractive index of 1.83 with respect to light having a wavelength of 500 nm was laminated on the underlayer so as to have a thickness of 25 nm.
 このような試験片について、反射率差ΔRを計算した。計算は、光源と試験片との間、および試験片と測定器との間が真空(屈折率が1)であるとし、試験片の表面の法線と光の進行方向とのなす角度が0度で、試験片に対して透明基材側から光が入射すると仮定した。なお、平均反射率Rを求めるためのITO層が存在しない部分は、透明基材と下地層とからなるものとした。その結果、反射率差ΔRは0.02%であった。 The reflectance difference ΔR was calculated for such a test piece. In the calculation, the vacuum between the light source and the test piece and between the test piece and the measuring instrument is assumed to be a vacuum (refractive index is 1), and the angle between the normal of the surface of the test piece and the light traveling direction is zero. It was assumed that light was incident on the test piece from the transparent substrate side. The portion of ITO layer for obtaining an average reflectivity R 2 is not present, it consisted of the transparent substrate and the underlayer. As a result, the reflectance difference ΔR was 0.02%.
(例11)
 下地層の構成を変更した以外は例10と同様の試験片とした。下地層は、波長500nmの光に対する屈折率が1.47であり、かつ厚さが30nmである酸化珪素層とした。例11と同様に反射率差ΔRを計算したところ、反射率差ΔRは1.35%であった。
(Example 11)
The test piece was the same as that of Example 10 except that the configuration of the underlayer was changed. The underlayer was a silicon oxide layer having a refractive index of 1.47 with respect to light having a wavelength of 500 nm and a thickness of 30 nm. When the reflectance difference ΔR was calculated in the same manner as in Example 11, the reflectance difference ΔR was 1.35%.
 10…積層体、11…透明基材、12…下地層、13…非晶質のインジウムスズ酸化物層、20…導電性積層体、21…結晶質のインジウムスズ酸化物層。 DESCRIPTION OF SYMBOLS 10 ... Laminated body, 11 ... Transparent base material, 12 ... Underlayer, 13 ... Amorphous indium tin oxide layer, 20 ... Conductive laminated body, 21 ... Crystalline indium tin oxide layer.

Claims (9)

  1.  透明基材と、
     前記透明基材上に積層され、珪素、酸素、および窒素を含む下地層と、
     前記下地層上に積層され、非晶質のインジウムスズ酸化物から主としてなるインジウムスズ酸化物層とを有し、
     熱処理温度150℃かつ熱処理時間30分の熱処理後、前記透明基材側を光の入射面としたとき、前記インジウムスズ酸化物層が存在する位置での波長480nm以上650nm以下における平均反射率R[%]と、前記インジウムスズ酸化物層が存在しない位置での波長480nm以上650nm以下における平均反射率R[%]との差の絶対値である反射率差ΔRが1%以下となる積層体。
    A transparent substrate;
    Laminated on the transparent substrate, and an underlayer containing silicon, oxygen, and nitrogen;
    An indium tin oxide layer that is laminated on the underlayer and mainly comprises amorphous indium tin oxide;
    After heat treatment at a heat treatment temperature of 150 ° C. and a heat treatment time of 30 minutes, when the transparent substrate side is the light incident surface, the average reflectance R 1 at a wavelength of 480 nm to 650 nm at the position where the indium tin oxide layer is present. And a reflectance difference ΔR that is an absolute value of a difference between [%] and an average reflectance R 2 [%] at a wavelength of 480 nm to 650 nm at a position where the indium tin oxide layer is not present is 1% or less. body.
  2.  前記下地層と前記インジウムスズ酸化物層とが接触する請求項1記載の積層体。 The laminate according to claim 1, wherein the underlayer and the indium tin oxide layer are in contact with each other.
  3.  前記インジウムスズ酸化物層は、40nm以下の厚さを有する請求項1または2記載の積層体。 The laminate according to claim 1 or 2, wherein the indium tin oxide layer has a thickness of 40 nm or less.
  4.  前記インジウムスズ酸化物層は、スズを酸化物換算で5質量%以上17質量%以下含有する請求項1乃至3のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the indium tin oxide layer contains 5 mass% or more and 17 mass% or less of tin in terms of oxide.
  5.  透明基材と、
     前記透明基材上に積層され、珪素、酸素、および窒素を含む下地層と、
     前記下地層上に積層され、結晶質のインジウムスズ酸化物から主としてなるインジウムスズ酸化物層とを有し、
     前記透明基材側を光の入射面としたとき、前記インジウムスズ酸化物層が存在する位置での波長480nm以上650nm以下における平均反射率R[%]と、前記インジウムスズ酸化物層が存在しない位置での波長480nm以上650nm以下における平均反射率R[%]との差の絶対値である反射率差ΔRが1%以下である導電性積層体。
    A transparent substrate;
    Laminated on the transparent substrate, and an underlayer containing silicon, oxygen, and nitrogen;
    An indium tin oxide layer that is laminated on the underlayer and mainly comprises crystalline indium tin oxide;
    When the transparent substrate side is a light incident surface, an average reflectance R 1 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where the indium tin oxide layer is present, and the indium tin oxide layer is present. A conductive laminate in which a reflectance difference ΔR, which is an absolute value of a difference from an average reflectance R 2 [%] at a wavelength of 480 nm or more and 650 nm or less at a position where it is not, is 1% or less.
  6.  前記下地層と前記インジウムスズ酸化物層とが接触する請求項5記載の積層体。 The laminate according to claim 5, wherein the underlayer and the indium tin oxide layer are in contact with each other.
  7.  前記インジウムスズ酸化物層は、40nm以下の厚さを有する請求項5または6記載の導電性積層体。 The conductive laminate according to claim 5 or 6, wherein the indium tin oxide layer has a thickness of 40 nm or less.
  8.  前記インジウムスズ酸化物層は、スズを酸化物換算で5質量%以上17質量%以下含有する請求項5乃至7のいずれか1項記載の導電性積層体。 The conductive laminate according to any one of claims 5 to 7, wherein the indium tin oxide layer contains 5 mass% or more and 17 mass% or less of tin in terms of oxide.
  9.  請求項5乃至8のいずれか1項記載の導電性積層体を有する電子機器。 An electronic device having the conductive laminate according to any one of claims 5 to 8.
PCT/JP2015/061144 2014-04-15 2015-04-09 Laminate, conductive laminate and electronic device WO2015159804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513749A JPWO2015159804A1 (en) 2014-04-15 2015-04-09 LAMINATE, CONDUCTIVE LAMINATE, AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-083460 2014-04-15
JP2014083460 2014-04-15

Publications (1)

Publication Number Publication Date
WO2015159804A1 true WO2015159804A1 (en) 2015-10-22

Family

ID=54324013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061144 WO2015159804A1 (en) 2014-04-15 2015-04-09 Laminate, conductive laminate and electronic device

Country Status (3)

Country Link
JP (1) JPWO2015159804A1 (en)
TW (1) TW201545897A (en)
WO (1) WO2015159804A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034798A (en) * 1996-07-29 1998-02-10 Mitsui Petrochem Ind Ltd Transparent conductive film
JPH1148388A (en) * 1997-07-31 1999-02-23 Mitsui Chem Inc Transparent conductive film
JPH11110110A (en) * 1997-09-29 1999-04-23 Mitsui Chem Inc Transparent conductive film for touch panel
JP2005183007A (en) * 2003-12-16 2005-07-07 Dainippon Printing Co Ltd Transparent conductive sheet
JP2008310550A (en) * 2007-06-14 2008-12-25 Epson Imaging Devices Corp Capacitance input device
JP2010027294A (en) * 2008-07-16 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010137447A (en) * 2008-12-12 2010-06-24 Toyobo Co Ltd Transparent conductive laminate film
JP2012134085A (en) * 2010-12-24 2012-07-12 Nitto Denko Corp Transparent conductive film, and method for manufacturing the same
JP2013084376A (en) * 2011-10-06 2013-05-09 Nitto Denko Corp Transparent conductive film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034798A (en) * 1996-07-29 1998-02-10 Mitsui Petrochem Ind Ltd Transparent conductive film
JPH1148388A (en) * 1997-07-31 1999-02-23 Mitsui Chem Inc Transparent conductive film
JPH11110110A (en) * 1997-09-29 1999-04-23 Mitsui Chem Inc Transparent conductive film for touch panel
JP2005183007A (en) * 2003-12-16 2005-07-07 Dainippon Printing Co Ltd Transparent conductive sheet
JP2008310550A (en) * 2007-06-14 2008-12-25 Epson Imaging Devices Corp Capacitance input device
JP2010027294A (en) * 2008-07-16 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010137447A (en) * 2008-12-12 2010-06-24 Toyobo Co Ltd Transparent conductive laminate film
JP2012134085A (en) * 2010-12-24 2012-07-12 Nitto Denko Corp Transparent conductive film, and method for manufacturing the same
JP2013084376A (en) * 2011-10-06 2013-05-09 Nitto Denko Corp Transparent conductive film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.J. ALAM ET AL.: "Investigation of annealing effects on sol-gel deposited indium tin oxide thin films in different atmospheres", THIN SOLID FILMS, vol. 420-421, 2002, pages 76 - 82, XP004397825, ISSN: 0040-6090 *

Also Published As

Publication number Publication date
TW201545897A (en) 2015-12-16
JPWO2015159804A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
TWI607099B (en) Transparent conductive film and its manufacturing method
WO2012161095A1 (en) Material for conductive film, conductive film laminate, electronic apparatus, and method for producing material for conductive film, conductive film laminate and electronic apparatus
WO2015159799A1 (en) Transparent conductive film
JP5872064B2 (en) Transparent conductive film with excellent electrical characteristics and touch panel using the same
JP2013541437A (en) Transparent conductive film with excellent visibility and method for producing the same
WO2015037182A1 (en) Transparent conductive substrate and method for manufacturing transparent conductive substrate
WO2017131202A1 (en) Conductive laminate film
JPWO2014115770A1 (en) Transparent conductive substrate and method for producing the same
KR20180012730A (en) Transparent conductive film
WO2013172354A1 (en) Element for conductive film, conductive film laminated body, electronic equipment, and method of manufacturing element for conductive film and conductive film laminated body
JP6319302B2 (en) Transparent conductor and method for producing the same
JP5590922B2 (en) Substrate with transparent electrode and method for manufacturing the same
JP6151950B2 (en) Substrate with transparent electrode
JP5951372B2 (en) Touch panel and manufacturing method thereof
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
JP2010251307A (en) Method for manufacturing transparent electrode
Kim et al. Optical and electrical properties of flexible SnO2/Ag/SnO2 multilayer thin films on polyethylene terephthalate substrate
KR20200001441A (en) Ito film and transparent conductive film
WO2014157312A1 (en) Transparent conductive multilayer film and method for producing same
WO2015159804A1 (en) Laminate, conductive laminate and electronic device
WO2015072321A1 (en) Transparent conductive laminate and touch panel
WO2015087895A1 (en) Transparent conductive body
KR20160134373A (en) Conductive laminate and transparent electrode comprising thereof
JP2016177940A (en) Method for producing transparent conductive body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779992

Country of ref document: EP

Kind code of ref document: A1