WO2015072321A1 - Transparent conductive laminate and touch panel - Google Patents

Transparent conductive laminate and touch panel Download PDF

Info

Publication number
WO2015072321A1
WO2015072321A1 PCT/JP2014/078571 JP2014078571W WO2015072321A1 WO 2015072321 A1 WO2015072321 A1 WO 2015072321A1 JP 2014078571 W JP2014078571 W JP 2014078571W WO 2015072321 A1 WO2015072321 A1 WO 2015072321A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sio
transparent conductive
conductive laminate
transparent
Prior art date
Application number
PCT/JP2014/078571
Other languages
French (fr)
Japanese (ja)
Inventor
和久 吉岡
正行 森野
富田 倫央
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480062021.4A priority Critical patent/CN105723473A/en
Priority to JP2015547720A priority patent/JPWO2015072321A1/en
Publication of WO2015072321A1 publication Critical patent/WO2015072321A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a transparent conductive laminate and a touch panel having the same.
  • a transparent conductive laminate in which a transparent conductive film is laminated on a transparent substrate has conductivity and optical transparency, so that a transparent electrode film, an electromagnetic wave shielding film, a planar heating film, an antireflection film, etc.
  • touch panel electrode There are various types of touch panels such as a resistive film type, a capacitive coupling type, and an optical type.
  • the transparent conductive film is used in, for example, a resistance film type that identifies a touch position by contacting upper and lower electrodes, and a capacitive coupling method that senses a change in capacitance.
  • the transparent conductive film used for the resistance film type is required to have high durability because the transparent conductive films are in mechanical contact with each other on the principle of operation.
  • a base material is conventionally provided by providing a silicon oxide layer between the base material and a transparent conductive film such as indium tin oxide. Reinforcing the adhesion of the transparent conductive film to the surface has been performed.
  • the SiO 2 layer is used as the silicon oxide layer, the adhesion can be improved to some extent, but the chemical resistance such as adhesion and alkali resistance is not sufficient, and the required durability is satisfied. I wouldn't say.
  • a SiO x (x is less than 2) layer is used, although high adhesion is obtained, there is a problem in that the surface electric resistance of the transparent conductive film is changed.
  • SiO x (x is 1) having a relative refractive index in the range of 1.6 to 1.9 from the substrate side. .5 or more and less than 2) layer, and a SiO 2 layer in that order, and a transparent conductive laminate having a transparent conductive film thereon is described.
  • the transparent conductive laminate described in Patent Document 1 although adhesion and maintenance of electrical characteristics in the transparent conductive film can be both achieved, there may be a change in the color tone of transmitted light. Since the thickness is large, improvement in productivity and light transmittance has been desired.
  • the present invention provides a transparent conductive laminate in which a transparent conductive film is laminated on a base material, the adhesion between the base material and the transparent conductive film is ensured, and the electrical characteristics of the transparent conductive film are maintained, and further the light transmission characteristics It aims at providing the transparent conductive laminated body which is favorable and is excellent in chemical resistance. Furthermore, this invention aims at provision of the highly reliable touch panel provided with the above-mentioned transparent conductive laminated body.
  • the transparent conductive laminate of the present invention comprises a transparent substrate and a SiO x1 layer having a thickness of 3 to 60 nm provided on one main surface of the transparent substrate (where x1 is 1.8 or more and 2. less than 0 is. a), SiO x2 layer of the thickness provided on SiO x1 layer on the 0.2 ⁇ 5 nm (although, x2 is 1.9 to 2.0, and greater than x1. And a conductive layer mainly composed of indium tin oxide provided on the SiO x2 layer.
  • the touch panel of this invention is equipped with the transparent conductive laminated body of the said invention.
  • the transparent conductive laminate in which the transparent conductive film is laminated on the base material the adhesion between the base material and the transparent conductive film is ensured, the electrical characteristics of the transparent conductive film are maintained, and the light
  • a transparent conductive laminate having good transmission characteristics and excellent chemical resistance can be provided.
  • the reliable touch panel provided with the above-mentioned transparent conductive laminated body can be provided.
  • Transparent conductive laminate 1 and 2 are cross-sectional views showing an example of an embodiment of the transparent conductive laminate of the present invention and another example, respectively.
  • the transparent conductive laminate 10 includes a transparent substrate 1 and a SiO x1 layer 2 (provided that x1 is provided on one main surface of the transparent substrate 1 and has a thickness of 3 to 60 nm). Is 1.8 or more and less than 2.0), and the SiO x2 layer 3 having a thickness of 0.2 to 5 nm provided on the SiO x1 layer 2 (where x2 is 1.9 or more and 2.0 or less) And larger than x1), and a conductive layer 4 mainly composed of indium tin oxide provided on the SiO x2 layer 3.
  • the transparent substrate 1 has resin layers 5a and 5b on both main surfaces, and the SiO x1 layer 2, the SiO x2 layer 3, and the conductive layer on one resin layer 5a.
  • Reference numeral 4 denotes a configuration provided in that order.
  • resin layers such as the resin layers 5a and 5b shown in FIG. 2 are layers provided arbitrarily.
  • the conductive layer 4 is formed on the transparent base material 1 via the SiO x1 layer 2 and the SiO x2 layer 3 having the above-described configuration, thereby being in close contact with the transparent base material 1 and having high durability.
  • the conductive layer 4 mainly composed of indium tin oxide can be formed in the same crystalline state as that formed directly on the transparent substrate 1 by being formed in contact with the SiO x2 layer 3. Thereby, the electrical characteristics such as the sheet resistance value can be maintained at a predetermined value in the conductive layer 4.
  • the transparent conductive laminate 10 has good light transmission characteristics such as high visible light transmittance and little change in color tone of transmitted light.
  • each element which comprises the transparent conductive laminated body 10 is demonstrated.
  • a transparent substrate usually used for a transparent conductive laminate for example, a film-like or plate-like substrate made of a highly transparent material can be used without particular limitation.
  • transparent substrate 1 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6 and nylon 66, polyimide, polyarylate, polycarbonate, and poly
  • a plastic film made of a polymer or copolymer selected from (meth) acrylate, polyethersulfone, polysulfone and the like is preferable.
  • the plastic film may be a stretched film or an unstretched film.
  • a plastic film made of polyethylene terephthalate is particularly preferable as the transparent substrate 1.
  • (meth) acrylate is used as a general term for acrylate and methacrylate.
  • (meth) acryl ...” is used in the same meaning as described above.
  • the thickness of the transparent substrate 1 is appropriately selected depending on the use for which the transparent conductive laminate 10 is used. When used for a touch panel, the thickness of the transparent substrate 1 is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, from the viewpoint of flexibility and durability.
  • the main surface of the transparent substrate 1 on the side where the SiO x1 layer 2 is disposed is previously subjected to an easy adhesion treatment, a plasma treatment, a corona for the purpose of improving adhesion to the SiO x1 layer 2 and the like.
  • Surface treatment such as treatment may be performed.
  • the surface treatment may be performed on both main surfaces of the transparent substrate 1.
  • the transparent substrate 1 may have a resin layer on at least the main surface on the side where the SiO x1 layer 2 is disposed as long as the effect of the present invention is not impaired.
  • the resin layer may be provided on both main surfaces of the transparent substrate 1.
  • FIG. 2 shows a cross-sectional view of the transparent conductive laminate 10 having the resin layers 5a and 5b on both main surfaces of the transparent substrate 1 as described above.
  • the resin layer a resin layer having a function of improving the adhesion of the SiO x1 layer 2 or a function of optical adjustment or a hard coat layer which is a transparent and hard resin layer is preferable.
  • the thickness of the hard coat layer is preferably 1 to 15 ⁇ m, more preferably 1.5 to 10 ⁇ m.
  • the film thickness of the hard coat layer is preferably 1 to 15 ⁇ m, more preferably 1.5 to 10 ⁇ m.
  • the hard coat layer is made of, for example, a cured product of a curable resin that is cured by ionizing radiation or heat.
  • the curable resin cured by ionizing radiation may include an acrylic material, a polyfunctional (meth) acrylate compound such as a (meth) acrylic acid ester of a polyhydric alcohol, diisocyanate, a polyhydric alcohol, and (meth) acrylic.
  • a polyfunctional urethane (meth) acrylate compound synthesized from a hydroxy ester of an acid or the like can be used.
  • polyether resins polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins having an acrylate functional group, for example, a (meth) acryloyl group
  • a thermosetting polysiloxane resin or the like can also be used.
  • a wet film forming method is preferable, and a roll coater, a reverse roll coater, a gravure coater, a micro gravure coater, a knife coater, a bar coater, a wire bar coater, and a die coater. And a coating method using a dip coater is preferred.
  • the ionizing radiation used for curing the curable resin for example, ultraviolet rays and electron beams can be used.
  • a light source such as a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, or a xenon arc can be used.
  • electron beams emitted from various electron beam accelerators such as cockloftwald type, bandegraph type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type can be used. .
  • the SiO x1 layer 2 (where x1 is 1.8 or more and less than 2.0) is a layer having a thickness of 3 to 60 nm disposed on one main surface of the transparent substrate 1.
  • the SiO x1 layer 2 is formed through the resin layer when the transparent substrate 1 has a resin layer such as the hard coat layer as shown in FIG. 2, for example, in the case of FIG. It arrange
  • the SiO x1 layer 2 is directly disposed on the transparent substrate 1.
  • the transparent conductive multilayer body obtained have good light transmission characteristics with sufficient adhesion can be obtained between each layer Yes, and alkali resistance is also good.
  • the transparent conductive laminate when used in various applications, and the transparent conductive laminate and the electro-optic element are in contact with each other, the transparent conductive laminate has a good gas barrier against water vapor, oxygen, and the like. Sex is required. If x1 and the thickness of the SiO x1 layer 2 in SiO x1 of SiO x1 layer 2 is in the above range, gas barrier properties also good while ensuring the adhesion.
  • the gas barrier property of the transparent conductive laminate can be evaluated by using, for example, the water vapor permeability measured by the following method as an index for the water vapor barrier property. That is, if the water vapor permeability is lower than a predetermined value, it can be said that the water vapor barrier property is excellent.
  • the water vapor transmission rate can be measured by a moisture permeability test (cup method) defined in JIS Z0208 or an infrared sensor method defined in JIS K7129 B method.
  • the water vapor permeability of the transparent conductive laminate is preferably 1 g / m 2 / day or less as the water vapor permeability measured at a temperature of 40 ° C. and a humidity of 90% RH based on JIS K7129 B method, and 0.5 g / m 2 / day or less is more preferable.
  • x1 in the SiO x1 of SiO x1 layer 2 is preferably in the range of less than 2.0 A and 1.9 or more at x2 smaller value in SiO x2.
  • the thickness of the SiO x1 layer 2 is preferably 3 to 10 nm, and more preferably 4 to 7 nm.
  • the method for forming the SiO x1 layer 2 on the main surface of the transparent substrate 1 is not particularly limited as long as the SiO x1 layer having the above thickness is formed. It may be a dry film forming method or a wet film forming method.
  • the SiO x1 layer 2 is usually formed by a dry film forming method having excellent heat and heat resistance.
  • a dry film forming method a sputtering method, an ion plating method, or a vacuum deposition method is preferable, and a sputtering method is particularly preferable.
  • the SiO x1 layer 2 is formed by sputtering a boron-doped polysilicon target at a pressure of 0.1 to 0.8 Pa while introducing a mixed gas obtained by mixing an oxygen gas into an argon gas into the sputtering apparatus. Yes.
  • the thickness of the SiO x1 layer 2 can be adjusted to a predetermined thickness within the above range, and x1 can be adjusted by the voltage and the oxygen gas flow rate.
  • the refractive index of SiO x1 with respect to light having a wavelength of 550 nm is preferably approximately in the range of 1.43 to 1.55, and more preferably 1.46 to 1.53.
  • the refractive index refers to the refractive index with respect to light having a wavelength of 550 nm unless otherwise specified.
  • the refractive index of the SiO x1 in SiO x1 layer 2 may vary under the influence when further forming the SiO x2 layer 3 on the SiO x1 layer 2.
  • the refractive index of SiO x1 in SiO x1 layer, the transparent substrate 1 is formed on refers to refractive index of the SiO x1 in SiO x1 layer in a state where nothing is formed thereon.
  • the SiO x2 layer 3 disposed on the SiO x1 layer 2 has a thickness of 0.2 to 5 nm, x2 in the SiO x2 is 1.9 or more and 2.0 or less, and x2 is larger than x1. Is a layer. If the thickness of x2 and SiO x2 layer 3 in SiO x2 of SiO x2 layer 3 is in the above range, the transparent conductive laminate obtained, light transmission characteristic is good with sufficient adhesion can be obtained between each layer become. Furthermore, the film-forming property of the conductive layer 4 mainly composed of indium tin oxide formed on the SiO x2 layer 3 can be equivalent to that when directly forming the film on the transparent substrate 1. Electrical characteristics can be made sufficient.
  • x2 in SiO x2 of SiO x2 layer 3 is preferably in the range of a by 1.95 to 2.0 is greater than x1 in SiO x1, 2.0 is more preferable.
  • the thickness of the SiO x2 layer 3 is preferably 0.5 to 5 nm, more preferably 1 to 3 nm.
  • the total thickness of the SiO x1 layer 2 and the SiO x2 layer 3 is preferably 20 nm or less, and more preferably 10 nm or less.
  • the light transmission characteristics in the transparent conductive laminate 10 are further improved. That is, in the transparent conductive laminate 10, it is possible to achieve light transmission characteristics that have high visible light transmittance and little change in the color tone of transmitted light. Moreover, it is advantageous also in terms of productivity when the total thickness of the SiO x1 layer 2 and the SiO x2 layer 3 is in the above range.
  • the color tone of transmitted light can be evaluated using the value of b * in the L * a * b * display color system using a C light source based on JIS Z8729 (2004) as an index.
  • the value of b * is used as a yellowness index.
  • the value of b * in the L * a * b * display color system using a C light source based on JIS Z8729 (2004) is simply referred to as “b * value”.
  • the value of b * is preferably 1.5 or less.
  • the method of forming the SiO x2 layer 3 is not particularly limited as long as the SiO x2 layer having the above thickness is formed. It may be a dry film forming method or a wet film forming method.
  • the SiO x2 layer 3 is usually formed by a dry film forming method having excellent heat and heat resistance.
  • a dry film forming method a sputtering method, an ion plating method, or a vacuum deposition method is preferable, and a sputtering method is particularly preferable.
  • the sputtering method it is preferable to use a boron-doped polysilicon target as the sputtering target.
  • the film formation of the SiO x2 layer 3 is performed, for example, by sputtering a boron-doped polysilicon target at a pressure of 0.1 to 0.8 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas into the sputtering apparatus. Yes.
  • the thickness of the SiO x2 layer 3 is adjusted to a predetermined thickness within the above range by adjusting the power density and the sputtering time. Further, x2 is adjusted by adjusting the voltage and the oxygen gas flow rate.
  • the refractive index of SiO x2 with respect to light having a wavelength of 550 nm is preferably in the range of about 1.46 to 1.54, more preferably 1.47 to 1.52.
  • the refractive index of the SiO x2 in SiO x2 layer is formed on the SiO x1 layer, the SiO x2 layer in a state where nothing is formed thereon It refers to the refractive index of SiO x2 .
  • the conductive layer 4 mainly composed of indium tin oxide provided on the SiO x2 layer 3 a layer mainly composed of indium tin oxide used in the transparent conductive laminate is used as the transparent conductive film without any particular limitation. .
  • an amorphous layer mainly composed of amorphous indium tin oxide is laminated on the SiO x2 layer 3, and then the amorphous layer is subjected to heat treatment ( It is preferable to use as the conductive layer 4 a crystalline transparent conductive film obtained by crystallization by annealing.
  • the conductive layer 4 thus formed will be described.
  • an amorphous layer mainly composed of amorphous indium tin oxide is simply referred to as an “amorphous layer”.
  • this resistance value change rate exceeds 200%, it is evaluated as amorphous, and when the resistance value change rate is 200% or less, it is evaluated as crystalline.
  • the indium tin oxide mainly constituting the amorphous layer or the conductive layer 4 crystallized therefrom is indium and tin oxide.
  • the oxide include a mixture of indium oxide and tin oxide, indium oxide and oxide.
  • a composite oxide of tin is included.
  • the composition of indium tin oxide does not change both in the amorphous state and in the crystallized state.
  • the content of tin in the indium tin oxide used in the present invention is preferably 5.5 to 10% by mass in terms of SnO 2 .
  • the content of tin in oxide tin conversion may be referred to as tin oxide content.
  • the tin oxide content in the indium tin oxide is preferably 5.8% by mass or more, more preferably more than 6% by mass, and even more preferably 6.5% by mass or more.
  • the content is preferably 8.9% by mass or less, more preferably 8.5% by mass or less, and further preferably 8.3% by mass or less.
  • the conductive layer 4 is a layer mainly composed of indium tin oxide.
  • the phrase “consisting mainly of indium tin oxide” specifically means that the content ratio of indium tin oxide in the conductive layer 4 is 90% by mass or more. That is, the amorphous layer or the conductive layer 4 may contain a component other than indium tin oxide within a range of 10% by mass or less as necessary and within the limits not departing from the spirit of the present invention.
  • components other than indium tin oxide include oxides such as aluminum, zirconium, gallium, silicon, tungsten, zinc, titanium, magnesium, cerium, and germanium.
  • the content of components other than these indium tin oxides in the amorphous layer or the conductive layer 4 is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less.
  • the amorphous layer or the conductive layer 4 is particularly preferably made of only indium tin oxide.
  • the amorphous layer mainly composed of indium tin oxide and the conductive layer 4 have substantially the same thickness.
  • the thickness of the conductive layer 4 is preferably 10 to 50 nm, more preferably 15 to 35 nm, from the viewpoints of ease of crystallizing the amorphous layer by heat treatment and optical properties such as transmittance.
  • the conductive layer obtained by crystallizing the amorphous layer mainly composed of indium tin oxide has been described above.
  • indium tin laminated as described above is necessary.
  • An amorphous layer mainly composed of an oxide may be used as a conductive layer in an unheated state to form a transparent conductive laminate.
  • the sheet resistance value of the amorphous layer used is 200 to 500 ⁇ / ⁇ is preferable, and 300 to 450 ⁇ / ⁇ is more preferable.
  • the sheet resistance value of the conductive layer obtained by crystallizing such an amorphous layer mainly composed of indium tin oxide is preferably 50 to 200 ⁇ / ⁇ , and more preferably 70 to 160 ⁇ / ⁇ .
  • the sheet resistance value of the conductive layer in the transparent conductive laminate of the present invention is preferably 50 to 500 ⁇ / ⁇ , and preferably 70 to 450 ⁇ from the viewpoint of suppressing a decrease in transmission speed during operation accompanying an increase in the size of an electronic device such as a touch panel. / ⁇ is more preferable. Moreover, according to such a thing, etching property can also be made favorable.
  • the range of the sheet resistance value of the preferable conductive layer includes the sheet resistance value of the amorphous layer that is converted into the conductive layer by the heat treatment described above. Therefore, in the transparent conductive laminate of the present invention, the amorphous layer itself can be used as a conductive layer.
  • the conductive layer 4 in which an amorphous layer mainly composed of indium tin oxide is crystallized first, a non-crystalline state mainly composed of indium tin oxide in an amorphous state is formed on the SiO x2 layer 3 described above. A crystalline layer is formed.
  • the film forming method is not necessarily limited, but a sputtering method, an ion plating method, or a vacuum evaporation method is preferable, and a sputtering method is particularly preferable.
  • the sputtering target is used, for example, a mixed gas in which 0.5 to 10% by volume, preferably 0.8 to 6% by volume of oxygen gas is mixed with argon gas in the sputtering apparatus. Sputtering is preferably performed while being introduced into the substrate. By performing sputtering while introducing such a mixed gas, it is possible to form an amorphous layer that is amorphous, easy to crystallize by heat treatment, and low in sheet resistance when crystallized. .
  • the degree of vacuum in the sputtering apparatus Prior to the formation of the amorphous layer, the degree of vacuum in the sputtering apparatus is evacuated to 5 ⁇ 10 ⁇ 4 Pa or less, preferably 9 ⁇ 10 ⁇ 5 Pa or less, so that moisture or a transparent substrate in the sputtering apparatus is evacuated. It is preferable to have an atmosphere from which impurities such as moisture or organic gas generated from the material are removed. By reducing the presence of moisture and organic gas during film formation, crystallization by heat treatment is easy, and a sheet having a low sheet resistance when crystallized can be easily obtained.
  • the flow rate of the oxygen gas when forming the amorphous layer is preferably in the range of 0.6 to 1.4 times the flow rate when the sheet resistance value after crystallization becomes the minimum value, and 0.7
  • the range of -1.3 times is more preferable, and the range of 0.8-1.2 times is particularly preferable. Therefore, in the actual film formation of the amorphous layer, the flow rate of the oxygen gas when the sheet resistance value after crystallization becomes the minimum value in this way is obtained in advance, It is preferable to adjust the flow rate of the oxygen gas so as to be within the range. Since the optimum flow rate varies slightly depending on the film forming apparatus, an amorphous layer having a low sheet resistance value after crystallization can be effectively formed particularly by such a method.
  • the sheet resistance value of the amorphous layer thus formed is generally within the preferred range of the above-described amorphous layer, and the amorphous layer itself obtained without performing the following heat treatment if necessary. Can also be used as a conductive layer. In this way, when the amorphous layer itself is a conductive layer, a transparent conductive laminate can be obtained without performing the heat treatment described below.
  • the conductive layer 4 obtained by crystallizing the amorphous layer is formed by heat-treating such an amorphous layer and crystallizing it into a crystalline transparent conductive film.
  • the heat treatment is preferably performed, for example, in the atmosphere at 100 to 150 ° C. for 10 to 180 minutes.
  • the heat treatment temperature is 100 ° C. or more and the heat treatment time to 10 minutes or more, the amorphous layer can be effectively crystallized.
  • the heat treatment temperature is 150 ° C. or less and the heat treatment time is 180 minutes or less, sufficient crystallization can be achieved.
  • the crystallized indium tin oxide has a crystal structure of indium oxide (In 2 O 3 ), and it is preferable that tin is substituted at the site of indium.
  • the transparent conductive laminate 10 in which the SiO x1 layer 2, the SiO x2 layer 3, and the conductive layer 4 are laminated in this order on one main surface of the transparent substrate 1 shown in FIG. 1, or 2 has resin layers 5a and 5b on both main surfaces of the transparent substrate 1, and the SiO x1 layer 2, the SiO x2 layer 3, and the conductive layer 4 are laminated in this order on the resin layer 5a.
  • a transparent conductive laminate 10 is obtained.
  • the transparent conductive laminate 10 shown in FIGS. 1 and 2 has been described above, but the transparent conductive laminate of the present invention is not limited to this.
  • the transparent conductive laminate 10 can be changed or modified without departing from the spirit and scope of the present invention.
  • the transparent conductive laminate of the present invention is suitably used for electronic equipment. Examples of the electronic device include a liquid crystal display, a plasma display, and a touch panel, and a touch panel is particularly preferable.
  • the touch panel of the present invention includes the transparent conductive laminate of the present invention.
  • a touch panel has a display part and the touch panel part arrange
  • the transparent conductive laminate is used as a transparent electrode substrate having a transparent electrode in such a touch panel unit.
  • the touch panel unit may be either a resistive film type that specifies a touch position by contacting upper and lower electrodes, or a capacitive coupling type that senses a change in capacitance.
  • Example 1 is an example, and Examples 2 and 3 are comparative examples.
  • the thickness is a value obtained from optical characteristics or a sputtering film formation rate and a sputtering time, and is not an actually measured thickness.
  • the thickness is a geometric thickness.
  • Example 1 A polyethylene terephthalate (PET) film having a total thickness of 100 ⁇ m having a hard coat layer (acrylic resin layer, 8 ⁇ m) on both surfaces was used as a transparent substrate with a hard coat layer.
  • a 7 nm thick SiO x1 layer (x1 1.95) was formed on the hardcoat layer of the transparent substrate with the hardcoat layer.
  • the SiO x1 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target. The thickness of the SiO x1 layer was adjusted by adjusting the power density and the sputtering time, and x1 was adjusted by adjusting the voltage and the oxygen flow rate.
  • the SiO x2 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target.
  • the thickness of the SiO x2 layer was adjusted by adjusting the power density and the sputtering time, and x2 was adjusted by adjusting the voltage and the oxygen flow rate.
  • the SiO x1 layer, on the SiO x2 layer of PET film SiO x2 layer is formed, using a target made of indium tin oxide, while introducing a mixed gas obtained by mixing 1.4% by volume of oxygen gas to argon gas
  • DC magnetron sputtering was performed at a pressure of 0.25 Pa to form an amorphous layer having a thickness of 23 nm.
  • the indium tin oxide target is composed of a sintered body obtained by mixing and sintering 10% by mass of tin oxide (SnO 2 ) and 90% by mass of indium oxide (In 2 O 3 ).
  • the thickness of the amorphous layer was adjusted by adjusting the power density and the sputtering time.
  • the content of tin in terms of oxide in the amorphous layer is estimated to be about 10% by mass.
  • the obtained laminate was cut into a size of 100 mm ⁇ 100 mm, and the sheet resistance value was measured by the method described later.
  • the obtained laminated body can be used as a transparent conductive laminated body as it is, in this example, this laminated body was heat-treated in the atmosphere at 150 ° C. for 30 minutes to produce a transparent conductive laminated body.
  • the SiO x1 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target.
  • the thickness of the SiO x1 layer was adjusted by adjusting the power density and the sputtering time, and x1 was adjusted by adjusting the voltage and the oxygen flow rate.
  • a conductive layer mainly composed of indium tin oxide was formed on the SiO x1 layer directly in the same manner as in Example 1 without forming the SiO x2 layer.
  • the amorphous layer mainly composed of indium tin oxide was cut into a size of 100 mm ⁇ 100 mm before the heat treatment and the sheet resistance value was measured in the same manner as in Example 1, and then the heat treatment was performed.
  • a transparent conductive laminate was produced.
  • the SiO x2 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target.
  • the thickness of the SiO x2 layer was adjusted by adjusting the power density and the sputtering time, and x2 was adjusted by adjusting the discharge voltage and the oxygen flow rate.
  • a conductive layer mainly composed of indium tin oxide was formed on the SiO x2 layer in the same manner as in Example 1.
  • the amorphous layer mainly composed of indium tin oxide was cut into a size of 100 mm ⁇ 100 mm before the heat treatment and the sheet resistance value was measured in the same manner as in Example 1, and then the heat treatment was performed.
  • a transparent conductive laminate was produced.
  • Sheet resistance value The sheet resistance value of each transparent conductive laminate having a size of 100 mm ⁇ 100 mm was measured by a four probe method using Lorester (trade name, manufactured by Mitsubishi Chemical Corporation).
  • the water vapor permeability of each transparent conductive laminate was measured according to JIS K7129 B method (infrared sensor method) using a water vapor permeability measuring device (manufactured by MOCON, product name “PERMATRAN-W 3 / 33MG”). The measurement was performed in an atmosphere of 40 ° C. and humidity 90% RH. In addition, humidity control to the transparent conductive laminated body was made into the direction which water vapor
  • the HC layer represents a hard coat layer.
  • the transparent conductive laminated body of Example 1 is a favorable result about all of color, resistance value, alkali resistance, and water vapor
  • the transparent conductive laminate (Example 1) having the laminated structure of the SiO x1 layer and the SiO x2 layer has the best result even when the total thickness of the silicon oxide layer is 10 nm. Met.
  • the silicon oxide layer is essentially a complete oxide (SiO 2 ), which has better barrier properties.
  • SiOx (x ⁇ 2) results better. Therefore, it is considered that the laminate of the SiO x1 layer and the SiO x2 layer has the highest adhesion and excellent barrier properties.
  • SYMBOLS 10 Transparent conductive laminated body, 1 ... Transparent base material, 2 ... SiOx1 layer, 3 ... SiOx2 layer, 4 ... Conductive layer, 5a, 5b ... Resin layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a transparent conductive laminate obtained by laminating a transparent conductive film on a base, wherein adhesion between the base and the transparent conductive film is ensured, while maintaining the electrical characteristics of the transparent conductive film. This transparent conductive laminate has good light transmittance characteristics and excellent chemical resistance. Also provided is a highly reliable touch panel which is provided with this transparent conductive laminate. A transparent conductive laminate which comprises a transparent base, an SiOx1 layer (wherein x1 is 1.8 or more but less than 2.0) that is provided on one main surface of the transparent base and has a thickness of 3-60 nm, an SiOx2 layer (wherein x2 is from 1.9 to 2.0 (inclusive) and larger than x1) that is provided on the SiOx1 layer and has a thickness of 0.2-5 nm, and a conductive layer that is provided on the SiOx2 layer and is mainly formed of an indium tin oxide; and a touch panel which is provided with this transparent conductive laminate.

Description

透明導電性積層体およびタッチパネルTransparent conductive laminate and touch panel
 本発明は、透明導電性積層体およびそれを有するタッチパネルに関する。 The present invention relates to a transparent conductive laminate and a touch panel having the same.
 透明な基材に透明導電膜が積層された透明導電性積層体は、導電性と光学的な透明性とを有することから、透明電極膜、電磁波遮蔽膜、面状発熱膜、反射防止膜等として使用され、近年ではタッチパネル用電極として注目されている。タッチパネルには、抵抗膜式、静電容量結合式、光学式等、多様な方式が存在する。透明導電膜は、例えば、上下の電極が接触することでタッチ位置を特定する抵抗膜式、静電容量の変化を感知する静電容量結合方式に用いられる。抵抗膜式に用いられる透明導電膜は、動作原理上、透明導電膜同士が機械的に接触することから、高い耐久性が求められる。 A transparent conductive laminate in which a transparent conductive film is laminated on a transparent substrate has conductivity and optical transparency, so that a transparent electrode film, an electromagnetic wave shielding film, a planar heating film, an antireflection film, etc. In recent years, it has attracted attention as a touch panel electrode. There are various types of touch panels such as a resistive film type, a capacitive coupling type, and an optical type. The transparent conductive film is used in, for example, a resistance film type that identifies a touch position by contacting upper and lower electrodes, and a capacitive coupling method that senses a change in capacitance. The transparent conductive film used for the resistance film type is required to have high durability because the transparent conductive films are in mechanical contact with each other on the principle of operation.
 透明導電膜として用いる透明導電性積層体に、このような高耐久性を付与するために、従来から、基材とインジウムスズ酸化物等の透明導電膜の間に酸化ケイ素層を設けて基材への透明導電膜の密着性を強化することが行われている。ここで、酸化ケイ素層としてSiO層を用いた場合には、ある程度の密着性の向上は図れるものの、密着性や耐アルカリ性等の耐薬品性は十分ではなく、求められる耐久性を満足しているとは言えなかった。また、SiO(xは2未満)層を用いた場合には、高い密着性が得られるものの透明導電膜の表面電気抵抗の変化を招く点で問題であった。 In order to impart such high durability to a transparent conductive laminate used as a transparent conductive film, a base material is conventionally provided by providing a silicon oxide layer between the base material and a transparent conductive film such as indium tin oxide. Reinforcing the adhesion of the transparent conductive film to the surface has been performed. Here, when the SiO 2 layer is used as the silicon oxide layer, the adhesion can be improved to some extent, but the chemical resistance such as adhesion and alkali resistance is not sufficient, and the required durability is satisfied. I couldn't say. In addition, when a SiO x (x is less than 2) layer is used, although high adhesion is obtained, there is a problem in that the surface electric resistance of the transparent conductive film is changed.
 そこで密着性と透明導電膜における電気特性の維持を両立させるために、例えば、特許文献1においては、基材側から相対屈折率が1.6~1.9の範囲のSiO(xは1.5以上2未満)層と、SiO層をその順に設け、その上に透明導電膜を設けた透明導電性積層体の技術が記載されている。しかしながら、特許文献1に記載の透明導電性積層体においては、密着性と透明導電膜における電気特性の維持の両立はできているものの、透過光の色調に変化を与える場合があり、さらに層の厚さが厚いことから、生産性および光透過性においても改善が望まれていた。 Therefore, in order to achieve both the adhesion and the maintenance of the electrical characteristics of the transparent conductive film, for example, in Patent Document 1, SiO x (x is 1) having a relative refractive index in the range of 1.6 to 1.9 from the substrate side. .5 or more and less than 2) layer, and a SiO 2 layer in that order, and a transparent conductive laminate having a transparent conductive film thereon is described. However, in the transparent conductive laminate described in Patent Document 1, although adhesion and maintenance of electrical characteristics in the transparent conductive film can be both achieved, there may be a change in the color tone of transmitted light. Since the thickness is large, improvement in productivity and light transmittance has been desired.
特許第4508074号公報Japanese Patent No. 4508074
 本発明は、基材に透明導電膜が積層された透明導電性積層体において、基材と透明導電膜との密着性が確保されるとともに透明導電膜の電気特性が保持され、さらに光透過特性が良好で耐薬品性に優れる透明導電性積層体の提供を目的とする。さらに、本発明は、上記した透明導電性積層体を備えた信頼性の高いタッチパネルの提供を目的とする。 The present invention provides a transparent conductive laminate in which a transparent conductive film is laminated on a base material, the adhesion between the base material and the transparent conductive film is ensured, and the electrical characteristics of the transparent conductive film are maintained, and further the light transmission characteristics It aims at providing the transparent conductive laminated body which is favorable and is excellent in chemical resistance. Furthermore, this invention aims at provision of the highly reliable touch panel provided with the above-mentioned transparent conductive laminated body.
 本発明の透明導電性積層体は、透明基材と、前記透明基材の一方の主面上に設けられた厚さが3~60nmのSiOx1層(ただし、x1は1.8以上2.0未満である。)と、前記SiOx1層上に設けられた厚さが0.2~5nmのSiOx2層(ただし、x2は1.9以上2.0以下であり、かつx1より大きい。)と、前記SiOx2層上に設けられたインジウムスズ酸化物を主体とする導電層と、を有する。
 また、本発明のタッチパネルは上記本発明の透明導電性積層体を備える。
The transparent conductive laminate of the present invention comprises a transparent substrate and a SiO x1 layer having a thickness of 3 to 60 nm provided on one main surface of the transparent substrate (where x1 is 1.8 or more and 2. less than 0 is. a), SiO x2 layer of the thickness provided on SiO x1 layer on the 0.2 ~ 5 nm (although, x2 is 1.9 to 2.0, and greater than x1. And a conductive layer mainly composed of indium tin oxide provided on the SiO x2 layer.
Moreover, the touch panel of this invention is equipped with the transparent conductive laminated body of the said invention.
 本発明によれば、基材に透明導電膜が積層された透明導電性積層体において、基材と透明導電膜との密着性が確保されるとともに透明導電膜の電気特性が保持され、さらに光透過特性が良好で耐薬品性に優れる透明導電性積層体が提供できる。さらに、本発明によれば、上記した透明導電性積層体を備えた信頼性の高いタッチパネルが提供できる。 According to the present invention, in the transparent conductive laminate in which the transparent conductive film is laminated on the base material, the adhesion between the base material and the transparent conductive film is ensured, the electrical characteristics of the transparent conductive film are maintained, and the light A transparent conductive laminate having good transmission characteristics and excellent chemical resistance can be provided. Furthermore, according to this invention, the reliable touch panel provided with the above-mentioned transparent conductive laminated body can be provided.
本発明の透明導電性積層体の実施形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the transparent conductive laminated body of this invention. 本発明の透明導電性積層体の実施形態の別の一例を示す断面図である。It is sectional drawing which shows another example of embodiment of the transparent conductive laminated body of this invention.
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is limited to the following description and is not interpreted.
[透明導電性積層体]
 図1および図2は、それぞれ本発明の透明導電性積層体の実施形態の一例および別の一例を示す断面図である。
[Transparent conductive laminate]
1 and 2 are cross-sectional views showing an example of an embodiment of the transparent conductive laminate of the present invention and another example, respectively.
 図1および図2において、透明導電性積層体10は、透明基材1と、透明基材1の一方の主面上に設けられた厚さが3~60nmのSiOx1層2(ただし、x1は1.8以上2.0未満である。)と、SiOx1層2上に設けられた厚さが0.2~5nmのSiOx2層3(ただし、x2は1.9以上2.0以下であり、かつx1より大きい。)と、SiOx2層3上に設けられたインジウムスズ酸化物を主体とする導電層4と、を有する。 1 and 2, the transparent conductive laminate 10 includes a transparent substrate 1 and a SiO x1 layer 2 (provided that x1 is provided on one main surface of the transparent substrate 1 and has a thickness of 3 to 60 nm). Is 1.8 or more and less than 2.0), and the SiO x2 layer 3 having a thickness of 0.2 to 5 nm provided on the SiO x1 layer 2 (where x2 is 1.9 or more and 2.0 or less) And larger than x1), and a conductive layer 4 mainly composed of indium tin oxide provided on the SiO x2 layer 3.
 図2に示す透明導電性積層体10は、透明基材1が両主面上に樹脂層5a、5bを有し、一方の樹脂層5a上にSiOx1層2、SiOx2層3および導電層4がその順に設けられた構成である。なお、本発明の透明導電性積層体において、図2に示す樹脂層5a、5bのような樹脂層は、任意に設けられる層である。 In the transparent conductive laminate 10 shown in FIG. 2, the transparent substrate 1 has resin layers 5a and 5b on both main surfaces, and the SiO x1 layer 2, the SiO x2 layer 3, and the conductive layer on one resin layer 5a. Reference numeral 4 denotes a configuration provided in that order. In the transparent conductive laminate of the present invention, resin layers such as the resin layers 5a and 5b shown in FIG. 2 are layers provided arbitrarily.
 導電層4は、上記構成のSiOx1層2とSiOx2層3を介して透明基材1上に形成されることで、透明基材1と強固に密着して高い耐久性を有する。また、インジウムスズ酸化物を主体とする導電層4は、SiOx2層3に接する形で形成されることで、透明基材1上に直接形成される場合と同様の結晶状態で形成され得る。これにより、導電層4においてシート抵抗値等の電気特性が所定の値に保持できる。また、透明導電性積層体10は、可視光透過率が高く、透過光の色調の変化が少ない等の良好な光透過特性を有する。
 以下、透明導電性積層体10を構成する各要素について説明する。
The conductive layer 4 is formed on the transparent base material 1 via the SiO x1 layer 2 and the SiO x2 layer 3 having the above-described configuration, thereby being in close contact with the transparent base material 1 and having high durability. In addition, the conductive layer 4 mainly composed of indium tin oxide can be formed in the same crystalline state as that formed directly on the transparent substrate 1 by being formed in contact with the SiO x2 layer 3. Thereby, the electrical characteristics such as the sheet resistance value can be maintained at a predetermined value in the conductive layer 4. The transparent conductive laminate 10 has good light transmission characteristics such as high visible light transmittance and little change in color tone of transmitted light.
Hereinafter, each element which comprises the transparent conductive laminated body 10 is demonstrated.
 透明基材1としては、透明導電性積層体に通常用いられる透明基材、例えば透明性の高い材料からなるフィルム状または板状の基材が特に制限なく使用可能である。このような透明基材1としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリアリレート、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリサルホン等から選ばれる重合体または共重合体からなるプラスチックフィルムが好ましい。該プラスチックフィルムは延伸されたフィルムであってもよく無延伸のフィルムでもよい。透明基材1としては、これらの中でも特にポリエチレンテレフタレートからなるプラスチックフィルムが好ましい。 As the transparent substrate 1, a transparent substrate usually used for a transparent conductive laminate, for example, a film-like or plate-like substrate made of a highly transparent material can be used without particular limitation. Examples of such transparent substrate 1 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6 and nylon 66, polyimide, polyarylate, polycarbonate, and poly A plastic film made of a polymer or copolymer selected from (meth) acrylate, polyethersulfone, polysulfone and the like is preferable. The plastic film may be a stretched film or an unstretched film. Among these, a plastic film made of polyethylene terephthalate is particularly preferable as the transparent substrate 1.
 なお、本明細書において「(メタ)アクリレート」は、アクリレートとメタクリレートを総称する用語として用いる。以下、「(メタ)アクリ…」は上記同様の意味で用いられる。 In this specification, “(meth) acrylate” is used as a general term for acrylate and methacrylate. Hereinafter, “(meth) acryl ...” is used in the same meaning as described above.
 透明基材1の厚さは、透明導電性積層体10が用いられる用途により適宜選択される。タッチパネルに用いる場合、可撓性や耐久性等の観点から、透明基材1の厚さは、10~200μmが好ましく、20~150μmがより好ましい。 The thickness of the transparent substrate 1 is appropriately selected depending on the use for which the transparent conductive laminate 10 is used. When used for a touch panel, the thickness of the transparent substrate 1 is preferably 10 to 200 μm, more preferably 20 to 150 μm, from the viewpoint of flexibility and durability.
 また、透明基材1の、少なくともSiOx1層2が配設される側の主面には、SiOx1層2との密着性を向上させる等の目的で、予め易接着処理、プラズマ処理、コロナ処理等の表面処理が施されていてもよい。なお、該表面処理は、透明基材1の両方の主面に施されていてもよい。 In addition, at least the main surface of the transparent substrate 1 on the side where the SiO x1 layer 2 is disposed is previously subjected to an easy adhesion treatment, a plasma treatment, a corona for the purpose of improving adhesion to the SiO x1 layer 2 and the like. Surface treatment such as treatment may be performed. The surface treatment may be performed on both main surfaces of the transparent substrate 1.
 さらに、透明基材1は、必要に応じて、本発明の効果を損なわない範囲で、少なくともSiOx1層2が配設される側の主面上に、樹脂層を有していてもよい。なお、樹脂層は、透明基材1の両方の主面上に設けられてもよい。図2は、このように透明基材1の両方の主面上に樹脂層5a、5bを有する透明導電性積層体10の断面図を示すものである。樹脂層としては、SiOx1層2の密着性を向上させる機能または、光学調整の機能等を有する樹脂層や、透明かつ硬質な樹脂層であるハードコート層が好ましい。 Furthermore, the transparent substrate 1 may have a resin layer on at least the main surface on the side where the SiO x1 layer 2 is disposed as long as the effect of the present invention is not impaired. The resin layer may be provided on both main surfaces of the transparent substrate 1. FIG. 2 shows a cross-sectional view of the transparent conductive laminate 10 having the resin layers 5a and 5b on both main surfaces of the transparent substrate 1 as described above. As the resin layer, a resin layer having a function of improving the adhesion of the SiO x1 layer 2 or a function of optical adjustment or a hard coat layer which is a transparent and hard resin layer is preferable.
 ハードコート層の厚さは、1~15μmが好ましく、1.5~10μmがより好ましい。ハードコート層の膜厚を1μm以上とすることで、ハードコート層の形成により期待される効果を得ることができる。また、膜厚を15μm以下とすることで、ハードコート層の成膜効率の低下を抑制できるとともに、クラックの発生も抑制できる。 The thickness of the hard coat layer is preferably 1 to 15 μm, more preferably 1.5 to 10 μm. By setting the film thickness of the hard coat layer to 1 μm or more, it is possible to obtain the expected effect due to the formation of the hard coat layer. Further, by setting the film thickness to 15 μm or less, it is possible to suppress a decrease in the film formation efficiency of the hard coat layer and to suppress the occurrence of cracks.
 ハードコート層は、例えば、電離放射線や熱により硬化する硬化性樹脂の硬化物より構成される。電離放射線により硬化する硬化性樹脂は、アクリル系材料を含んでもよく、多価アルコールの(メタ)アクリル酸エステルのような多官能の(メタ)アクリレート化合物、ジイソシアネートと多価アルコールおよび(メタ)アクリル酸のヒドロキシエステル等から合成されるような多官能のウレタン(メタ)アクリレート化合物を使用できる。またこれらの他にも、アクリレート系の官能基、例えば、(メタ)アクリロイル基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等を使用できる。また、熱硬化型のポリシロキサン樹脂等も使用できる。 The hard coat layer is made of, for example, a cured product of a curable resin that is cured by ionizing radiation or heat. The curable resin cured by ionizing radiation may include an acrylic material, a polyfunctional (meth) acrylate compound such as a (meth) acrylic acid ester of a polyhydric alcohol, diisocyanate, a polyhydric alcohol, and (meth) acrylic. A polyfunctional urethane (meth) acrylate compound synthesized from a hydroxy ester of an acid or the like can be used. In addition to these, polyether resins, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins having an acrylate functional group, for example, a (meth) acryloyl group can be used. A thermosetting polysiloxane resin or the like can also be used.
 透明基材の塗布面への上記硬化性樹脂の塗布方法としては、湿式成膜法が好ましく、ロールコーター、リバースロールコーター、グラビアコーター、マイクログラビアコーター、ナイフコーター、バーコーター、ワイヤーバーコーター、ダイコーター、ディップコーターを用いた塗布方法が好ましい。 As a method for applying the curable resin to the application surface of the transparent substrate, a wet film forming method is preferable, and a roll coater, a reverse roll coater, a gravure coater, a micro gravure coater, a knife coater, a bar coater, a wire bar coater, and a die coater. And a coating method using a dip coater is preferred.
 上記硬化性樹脂の硬化に用いる電離放射線としては、例えば、紫外線、電子線を使用できる。紫外線硬化の場合は、高圧水銀灯、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク等の光源が利用できる。また、電子線硬化の場合はコックロフトワルト型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される電子線が利用できる。 As the ionizing radiation used for curing the curable resin, for example, ultraviolet rays and electron beams can be used. In the case of ultraviolet curing, a light source such as a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, or a xenon arc can be used. In the case of electron beam curing, electron beams emitted from various electron beam accelerators such as cockloftwald type, bandegraph type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type can be used. .
 SiOx1層2(ただし、x1は1.8以上2.0未満である。)は、上記透明基材1の一方の主面上に配設される厚さ3~60nmの層である。SiOx1層2は、透明基材1が、図2に示すように上記ハードコート層等の樹脂層を有する場合は該樹脂層を介して、例えば、図2の場合、透明基材1の両主面上に配設された樹脂層5a、5bのうちの一方の樹脂層5aを介して配設される。図1に示すように透明基材1が、樹脂層を有しない場合は、SiOx1層2は透明基材1上に直接配設される。 The SiO x1 layer 2 (where x1 is 1.8 or more and less than 2.0) is a layer having a thickness of 3 to 60 nm disposed on one main surface of the transparent substrate 1. The SiO x1 layer 2 is formed through the resin layer when the transparent substrate 1 has a resin layer such as the hard coat layer as shown in FIG. 2, for example, in the case of FIG. It arrange | positions through one resin layer 5a of the resin layers 5a and 5b arrange | positioned on the main surface. As shown in FIG. 1, when the transparent substrate 1 does not have a resin layer, the SiO x1 layer 2 is directly disposed on the transparent substrate 1.
 SiOx1層2のSiOx1におけるx1およびSiOx1層2の厚さが上記範囲にあれば、得られる透明導電性積層体において、各層間に十分な密着性が得られるとともに光透過特性が良好であり、かつ耐アルカリ性も良好となる。 If the thickness of x1 and SiO x1 layer 2 in SiO x1 of SiO x1 layer 2 is in the above range, the transparent conductive multilayer body obtained, have good light transmission characteristics with sufficient adhesion can be obtained between each layer Yes, and alkali resistance is also good.
 さらに、透明導電性積層体が各種用途で使用される際に、透明導電性積層体と電気光学素子とが接する構成になる場合、透明導電性積層体には、水蒸気、酸素等に対する良好なガスバリア性が求められる。SiOx1層2のSiOx1におけるx1およびSiOx1層2の厚さが上記範囲にあれば、密着性を確保しつつガスバリア性も良好となる。 Furthermore, when the transparent conductive laminate is used in various applications, and the transparent conductive laminate and the electro-optic element are in contact with each other, the transparent conductive laminate has a good gas barrier against water vapor, oxygen, and the like. Sex is required. If x1 and the thickness of the SiO x1 layer 2 in SiO x1 of SiO x1 layer 2 is in the above range, gas barrier properties also good while ensuring the adhesion.
 透明導電性積層体のガスバリア性は、例えば、水蒸気バリア性については、以下の方法で測定される水蒸気透過度を指標にして評価できる。すなわち、該水蒸気透過度が所定の値よりも低ければ水蒸気バリア性に優れるといえる。水蒸気透過度は、JIS Z0208に規定される透湿度試験(カップ法)、または、JIS K7129 B法に規定される赤外センサー法等によって測定可能である。透明導電性積層体の水蒸気透過度は、JIS K7129 B法に基づき、温度40℃、湿度90%RHで測定される水蒸気透過度として、1g/m/day以下が好ましく、0.5g/m/day以下がより好ましい。 The gas barrier property of the transparent conductive laminate can be evaluated by using, for example, the water vapor permeability measured by the following method as an index for the water vapor barrier property. That is, if the water vapor permeability is lower than a predetermined value, it can be said that the water vapor barrier property is excellent. The water vapor transmission rate can be measured by a moisture permeability test (cup method) defined in JIS Z0208 or an infrared sensor method defined in JIS K7129 B method. The water vapor permeability of the transparent conductive laminate is preferably 1 g / m 2 / day or less as the water vapor permeability measured at a temperature of 40 ° C. and a humidity of 90% RH based on JIS K7129 B method, and 0.5 g / m 2 / day or less is more preferable.
 また、これらの観点から、SiOx1層2のSiOx1におけるx1は、SiOx2におけるx2より小さい値であって1.9以上2.0未満の範囲にあることが好ましい。SiOx1層2の厚さは3~10nmが好ましく、4~7nmがより好ましい。 Further, from these viewpoints, x1 in the SiO x1 of SiO x1 layer 2 is preferably in the range of less than 2.0 A and 1.9 or more at x2 smaller value in SiO x2. The thickness of the SiO x1 layer 2 is preferably 3 to 10 nm, and more preferably 4 to 7 nm.
 透明基材1の主面上へのSiOx1層2の形成は、上記厚さのSiOx1層が形成される限り方法は特に制限されない。乾式成膜法であってもよく、湿式成膜法であってもよい。SiOx1層2は、通常、耐湿熱性に優れる乾式成膜法で形成される。乾式成膜法としては、スパッタリング法、イオンプレーティング法、または真空蒸着法が好ましく、特にスパッタリング法が好ましい。 The method for forming the SiO x1 layer 2 on the main surface of the transparent substrate 1 is not particularly limited as long as the SiO x1 layer having the above thickness is formed. It may be a dry film forming method or a wet film forming method. The SiO x1 layer 2 is usually formed by a dry film forming method having excellent heat and heat resistance. As the dry film forming method, a sputtering method, an ion plating method, or a vacuum deposition method is preferable, and a sputtering method is particularly preferable.
 スパッタリング法を適用する場合、スパッタリングターゲットとしてボロンドープポリシリコンターゲットを用いることが好ましい。SiOx1層2の成膜は、例えば、アルゴンガスに酸素ガスを混合した混合ガスをスパッタ装置内に導入しながら、0.1~0.8Paの圧力でボロンドープポリシリコンターゲットをスパッタすることで行える。上記スパッタリングにおいて、電力密度とスパッタ時間とを調整することで、SiOx1層2の厚さを上記範囲内の所定の厚さに調整でき、電圧と酸素ガス流量でx1を調整することができる。 When the sputtering method is applied, it is preferable to use a boron-doped polysilicon target as the sputtering target. For example, the SiO x1 layer 2 is formed by sputtering a boron-doped polysilicon target at a pressure of 0.1 to 0.8 Pa while introducing a mixed gas obtained by mixing an oxygen gas into an argon gas into the sputtering apparatus. Yes. In the sputtering, by adjusting the power density and sputtering time, the thickness of the SiO x1 layer 2 can be adjusted to a predetermined thickness within the above range, and x1 can be adjusted by the voltage and the oxygen gas flow rate.
 このようにして得られるSiOx1層2におけるSiOx1の波長550nmの光に対する屈折率は、概ね1.43~1.55の範囲が好ましく、1.46~1.53がより好ましい。以下、屈折率は特に断りのない限り、波長550nmの光に対する屈折率をいう。なお、SiOx1層2におけるSiOx1の屈折率は、SiOx1層2の上にさらにSiOx2層3を形成する際に影響を受けて変わりうる。本明細書において、SiOx1層におけるSiOx1の屈折率は、透明基材1上に形成され、その上に何も形成されていない状態でのSiOx1層におけるSiOx1の屈折率をいう。 In the SiO x1 layer 2 thus obtained, the refractive index of SiO x1 with respect to light having a wavelength of 550 nm is preferably approximately in the range of 1.43 to 1.55, and more preferably 1.46 to 1.53. Hereinafter, the refractive index refers to the refractive index with respect to light having a wavelength of 550 nm unless otherwise specified. The refractive index of the SiO x1 in SiO x1 layer 2 may vary under the influence when further forming the SiO x2 layer 3 on the SiO x1 layer 2. In this specification, the refractive index of SiO x1 in SiO x1 layer, the transparent substrate 1 is formed on, refers to refractive index of the SiO x1 in SiO x1 layer in a state where nothing is formed thereon.
 SiOx1層2上に配設されるSiOx2層3は、厚さが0.2~5nmであり、SiOx2における、x2が1.9以上2.0以下であり、かつx2がx1より大きい層である。
 SiOx2層3のSiOx2におけるx2およびSiOx2層3の厚さが上記範囲にあれば、得られる透明導電性積層体において、各層間に十分な密着性が得られるとともに光透過特性が良好となる。さらに、SiOx2層3上に形成されるインジウムスズ酸化物を主体とする導電層4の成膜性を、透明基材1上に直接成膜する場合と同等とでき、それにより導電層4の電気特性を十分なものとできる。
The SiO x2 layer 3 disposed on the SiO x1 layer 2 has a thickness of 0.2 to 5 nm, x2 in the SiO x2 is 1.9 or more and 2.0 or less, and x2 is larger than x1. Is a layer.
If the thickness of x2 and SiO x2 layer 3 in SiO x2 of SiO x2 layer 3 is in the above range, the transparent conductive laminate obtained, light transmission characteristic is good with sufficient adhesion can be obtained between each layer Become. Furthermore, the film-forming property of the conductive layer 4 mainly composed of indium tin oxide formed on the SiO x2 layer 3 can be equivalent to that when directly forming the film on the transparent substrate 1. Electrical characteristics can be made sufficient.
 また、これらの観点から、SiOx2層3のSiOx2におけるx2は、SiOx1におけるx1より大きい値であって1.95~2.0の範囲にあることが好ましく、2.0がより好ましい。SiOx2層3の厚さは0.5~5nmが好ましく、1~3nmがより好ましい。 Further, from these viewpoints, x2 in SiO x2 of SiO x2 layer 3 is preferably in the range of a by 1.95 to 2.0 is greater than x1 in SiO x1, 2.0 is more preferable. The thickness of the SiO x2 layer 3 is preferably 0.5 to 5 nm, more preferably 1 to 3 nm.
 ここで、透明導電性積層体10において、上記SiOx1層2の厚さとSiOx2層3の厚さの合計は20nm以下が好ましく、10nm以下がより好ましい。SiOx1層2とSiOx2層3の合計の厚さが該範囲にあることで透明導電性積層体10における光透過特性はより良好になる。すなわち、透明導電性積層体10において、可視光透過率が高く、透過光の色調に変化の少ない光透過特性を達成できる。また、SiOx1層2とSiOx2層3の合計の厚さが上記範囲であると生産性の点でも有利である。 Here, in the transparent conductive laminate 10, the total thickness of the SiO x1 layer 2 and the SiO x2 layer 3 is preferably 20 nm or less, and more preferably 10 nm or less. When the total thickness of the SiO x1 layer 2 and the SiO x2 layer 3 is in this range, the light transmission characteristics in the transparent conductive laminate 10 are further improved. That is, in the transparent conductive laminate 10, it is possible to achieve light transmission characteristics that have high visible light transmittance and little change in the color tone of transmitted light. Moreover, it is advantageous also in terms of productivity when the total thickness of the SiO x1 layer 2 and the SiO x2 layer 3 is in the above range.
 なお、透過光の色調は、JIS Z8729(2004年)に基づくC光源を用いたL*a*b*表示色系におけるb*の値を指標に評価できる。b*の値は黄色みの指標として用いられる。本明細書において、JIS Z8729(2004年)に基づくC光源を用いたL*a*b*表示色系におけるb*の値を、単に「b*の値」いう。本発明の透明導電性積層体において、b*の値は1.5以下が好ましい。 The color tone of transmitted light can be evaluated using the value of b * in the L * a * b * display color system using a C light source based on JIS Z8729 (2004) as an index. The value of b * is used as a yellowness index. In this specification, the value of b * in the L * a * b * display color system using a C light source based on JIS Z8729 (2004) is simply referred to as “b * value”. In the transparent conductive laminate of the present invention, the value of b * is preferably 1.5 or less.
 SiOx2層3の形成は、上記厚さのSiOx2層が形成される限り方法は特に制限されない。乾式成膜法であってもよく、湿式成膜法であってもよい。SiOx2層3は、通常、耐湿熱性に優れる乾式成膜法で形成される。乾式成膜法としては、スパッタリング法、イオンプレーティング法、または真空蒸着法が好ましく、特にスパッタリング法が好ましい。 The method of forming the SiO x2 layer 3 is not particularly limited as long as the SiO x2 layer having the above thickness is formed. It may be a dry film forming method or a wet film forming method. The SiO x2 layer 3 is usually formed by a dry film forming method having excellent heat and heat resistance. As the dry film forming method, a sputtering method, an ion plating method, or a vacuum deposition method is preferable, and a sputtering method is particularly preferable.
 スパッタリング法を適用する場合、スパッタリングターゲットとしてボロンドープポリシリコンターゲットを用いることが好ましい。SiOx2層3の成膜は、例えば、アルゴンガスに酸素ガスを混合した混合ガスをスパッタ装置内に導入しながら、0.1~0.8Paの圧力でボロンドープポリシリコンターゲットをスパッタすることで行える。上記スパッタリングにおいて、電力密度とスパッタ時間とを調整することで、SiOx2層3の厚さを上記範囲内の所定の厚さに調整する。また、電圧と酸素ガス流量を調整することでx2を調整する。 When the sputtering method is applied, it is preferable to use a boron-doped polysilicon target as the sputtering target. The film formation of the SiO x2 layer 3 is performed, for example, by sputtering a boron-doped polysilicon target at a pressure of 0.1 to 0.8 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas into the sputtering apparatus. Yes. In the sputtering, the thickness of the SiO x2 layer 3 is adjusted to a predetermined thickness within the above range by adjusting the power density and the sputtering time. Further, x2 is adjusted by adjusting the voltage and the oxygen gas flow rate.
 このようにして得られるSiOx2層3におけるSiOx2の波長550nmの光に対する屈折率は、概ね1.46~1.54の範囲が好ましく、1.47~1.52がより好ましい。なお、SiOx2層におけるSiOx2の屈折率は、上記SiOx1層におけるSiOx1の屈折率と同様、SiOx1層上に形成され、その上に何も形成されていない状態でのSiOx2層におけるSiOx2の屈折率をいう。 In the SiO x2 layer 3 thus obtained, the refractive index of SiO x2 with respect to light having a wavelength of 550 nm is preferably in the range of about 1.46 to 1.54, more preferably 1.47 to 1.52. The refractive index of the SiO x2 in SiO x2 layer, similar to the refractive index of SiO x1 in the SiO x1 layer, is formed on the SiO x1 layer, the SiO x2 layer in a state where nothing is formed thereon It refers to the refractive index of SiO x2 .
 上に説明したSiOx1の屈折率と、このSiOx2の屈折率を比べるとその差が小さいことがわかる。SiOx1とSiOx2の屈折率差が小さいことにより、SiOx1層2とSiOx2層3の界面における反射が抑制され、透明導電性積層体におけるb*の値を低く抑えることが可能となる。 When the refractive index of SiO x1 described above is compared with the refractive index of SiO x2 , it can be seen that the difference is small. Since the refractive index difference between SiO x1 and SiO x2 is small, reflection at the interface between the SiO x1 layer 2 and the SiO x2 layer 3 is suppressed, and the value of b * in the transparent conductive laminate can be suppressed low.
 SiOx2層3の上に設けられるインジウムスズ酸化物を主体とする導電層4は、透明導電膜として、透明導電性積層体に用いられるインジウムスズ酸化物を主体とする層が特に制限なく用いられる。 As the conductive layer 4 mainly composed of indium tin oxide provided on the SiO x2 layer 3, a layer mainly composed of indium tin oxide used in the transparent conductive laminate is used as the transparent conductive film without any particular limitation. .
 本発明の透明導電性積層体においては、例えば、上記SiOx2層3の上に非晶質状態のインジウムスズ酸化物を主体とする非晶質層を積層した後、該非晶質層を熱処理(アニール)により結晶化させて得られる結晶性の透明導電膜を導電層4として用いることが好ましい。以下、このようにして形成される導電層4について説明する。以下の説明において、非晶質状態のインジウムスズ酸化物を主体とする非晶質層を単に「非晶質層」という。 In the transparent conductive laminate of the present invention, for example, an amorphous layer mainly composed of amorphous indium tin oxide is laminated on the SiO x2 layer 3, and then the amorphous layer is subjected to heat treatment ( It is preferable to use as the conductive layer 4 a crystalline transparent conductive film obtained by crystallization by annealing. Hereinafter, the conductive layer 4 thus formed will be described. In the following description, an amorphous layer mainly composed of amorphous indium tin oxide is simply referred to as an “amorphous layer”.
 ここで、非晶質、結晶質は、HCl溶液(濃度1.5mol/L)に5分間浸漬する前後で抵抗値を測定して求められる抵抗値変化率、具体的には、(浸漬後の抵抗値/浸漬前の抵抗値)×100(%)により求められる抵抗値変化率で評価される。この抵抗値変化率が200%を超える場合は非晶質、また抵抗値変化率が200%以下の場合は結晶質であると評価する。 Here, for amorphous and crystalline, the resistance value change rate obtained by measuring the resistance value before and after immersing in an HCl solution (concentration 1.5 mol / L) for 5 minutes, specifically, Resistance value / resistance value before immersion) × 100 (%) It is evaluated by a resistance value change rate obtained by (%). When this resistance value change rate exceeds 200%, it is evaluated as amorphous, and when the resistance value change rate is 200% or less, it is evaluated as crystalline.
 非晶質層またはこれが結晶化した導電層4を主として構成するインジウムスズ酸化物はインジウムおよびスズの酸化物であり、該酸化物としては、例えば、酸化インジウムおよび酸化スズの混合物、酸化インジウムと酸化スズの複合酸化物が挙げられる。インジウムスズ酸化物の組成は非晶質状態においても結晶化状態においても変わるものではない。 The indium tin oxide mainly constituting the amorphous layer or the conductive layer 4 crystallized therefrom is indium and tin oxide. Examples of the oxide include a mixture of indium oxide and tin oxide, indium oxide and oxide. A composite oxide of tin is included. The composition of indium tin oxide does not change both in the amorphous state and in the crystallized state.
 本発明に用いるインジウムスズ酸化物におけるスズの酸化物換算での含有量は、SnO換算で5.5~10質量%が好ましい。なお、以下、インジウムスズ酸化物におけるスズの酸化物換算(SnO換算)での含有量を、スズ酸化物含有量と記す場合がある。インジウムスズ酸化物におけるスズ酸化物含有量は5.8質量%以上が好ましく、6質量%を超えることがより好ましく、6.5質量%以上がさらに好ましい。また、該含有量は、8.9質量%以下が好ましく、8.5質量%以下がより好ましく、8.3質量%以下がさらに好ましい。インジウムスズ酸化物におけるスズ酸化物含有量が上記範囲にあると、非晶質状態から熱処理による結晶化が容易であり、結晶化させたときのシート抵抗値が低く、かつ膜厚の増加も抑制されたものとできる。 The content of tin in the indium tin oxide used in the present invention is preferably 5.5 to 10% by mass in terms of SnO 2 . Hereinafter, the content of tin in oxide tin conversion (SnO 2 conversion) may be referred to as tin oxide content. The tin oxide content in the indium tin oxide is preferably 5.8% by mass or more, more preferably more than 6% by mass, and even more preferably 6.5% by mass or more. In addition, the content is preferably 8.9% by mass or less, more preferably 8.5% by mass or less, and further preferably 8.3% by mass or less. When the content of tin oxide in the indium tin oxide is in the above range, crystallization by heat treatment from the amorphous state is easy, the sheet resistance value when crystallized is low, and the increase in film thickness is also suppressed. It can be done.
 導電層4はインジウムスズ酸化物を主体とする層である。インジウムスズ酸化物を主体とするとは、具体的には、導電層4におけるインジウムスズ酸化物の含有割合が90質量%以上であることをいう。すなわち、非晶質層または導電層4は、必要に応じて、かつ本発明の趣旨に反しない限度において、インジウムスズ酸化物以外の成分を10質量%以内の範囲で含有してもよい。インジウムスズ酸化物以外の成分としては、例えば、アルミニウム、ジルコニウム、ガリウム、ケイ素、タングステン、亜鉛、チタン、マグネシウム、セリウム、ゲルマニウム等の酸化物が挙げられる。非晶質層または導電層4における、これらインジウムスズ酸化物以外の成分の含有量は5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましい。非晶質層または導電層4は、インジウムスズ酸化物のみからなることが特に好ましい。 The conductive layer 4 is a layer mainly composed of indium tin oxide. The phrase “consisting mainly of indium tin oxide” specifically means that the content ratio of indium tin oxide in the conductive layer 4 is 90% by mass or more. That is, the amorphous layer or the conductive layer 4 may contain a component other than indium tin oxide within a range of 10% by mass or less as necessary and within the limits not departing from the spirit of the present invention. Examples of components other than indium tin oxide include oxides such as aluminum, zirconium, gallium, silicon, tungsten, zinc, titanium, magnesium, cerium, and germanium. The content of components other than these indium tin oxides in the amorphous layer or the conductive layer 4 is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less. The amorphous layer or the conductive layer 4 is particularly preferably made of only indium tin oxide.
 ここでインジウムスズ酸化物を主体とする非晶質層と導電層4の厚さは略同じである。導電層4の厚さとしては、非晶質層を熱処理して結晶化する際の容易性および透過率等の光学特性の観点から、10~50nmが好ましく、15~35nmがより好ましい。 Here, the amorphous layer mainly composed of indium tin oxide and the conductive layer 4 have substantially the same thickness. The thickness of the conductive layer 4 is preferably 10 to 50 nm, more preferably 15 to 35 nm, from the viewpoints of ease of crystallizing the amorphous layer by heat treatment and optical properties such as transmittance.
 以上、インジウムスズ酸化物を主体とする非晶質層を結晶化させた導電層について説明したが、本発明の透明導電性積層体においては、必要に応じて上記のように積層されたインジウムスズ酸化物を主体とする非晶質層を未熱処理状態で導電層として用いて透明導電性積層体としてもよい。 The conductive layer obtained by crystallizing the amorphous layer mainly composed of indium tin oxide has been described above. However, in the transparent conductive laminate of the present invention, indium tin laminated as described above is necessary. An amorphous layer mainly composed of an oxide may be used as a conductive layer in an unheated state to form a transparent conductive laminate.
 インジウムスズ酸化物を主体とする非晶質層を熱処理により結晶化させて導電層とする場合に、用いる非晶質層のシート抵抗値は、結晶化の容易さの観点から、200~500Ω/□が好ましく、300~450Ω/□がより好ましい。また、このようなインジウムスズ酸化物を主体とする非晶質層を結晶化して得られる導電層のシート抵抗値は、50~200Ω/□が好ましく、70~160Ω/□がより好ましい。 When an amorphous layer mainly composed of indium tin oxide is crystallized by heat treatment to form a conductive layer, the sheet resistance value of the amorphous layer used is 200 to 500Ω / □ is preferable, and 300 to 450Ω / □ is more preferable. The sheet resistance value of the conductive layer obtained by crystallizing such an amorphous layer mainly composed of indium tin oxide is preferably 50 to 200Ω / □, and more preferably 70 to 160Ω / □.
 本発明の透明導電性積層体における導電層のシート抵抗値は、タッチパネル等の電子機器の大型化に伴う操作時の伝達速度の低下抑制の観点から、50~500Ω/□が好ましく、70~450Ω/□がより好ましい。また、このようなものによれば、エッチング性も良好とできる。上記好ましい導電層のシート抵抗値の範囲には、上記した熱処理により導電層とされる非晶質層のシート抵抗値が含まれる。よって、本発明の透明導電性積層体においては、該非晶質層自体を導電層として用いることが可能である。 The sheet resistance value of the conductive layer in the transparent conductive laminate of the present invention is preferably 50 to 500Ω / □, and preferably 70 to 450Ω from the viewpoint of suppressing a decrease in transmission speed during operation accompanying an increase in the size of an electronic device such as a touch panel. / □ is more preferable. Moreover, according to such a thing, etching property can also be made favorable. The range of the sheet resistance value of the preferable conductive layer includes the sheet resistance value of the amorphous layer that is converted into the conductive layer by the heat treatment described above. Therefore, in the transparent conductive laminate of the present invention, the amorphous layer itself can be used as a conductive layer.
 インジウムスズ酸化物を主体とする非晶質層を結晶化した導電層4を形成するには、まず上で説明したSiOx2層3上に非晶質状態のインジウムスズ酸化物を主体とする非晶質層を成膜する。成膜方法は、必ずしも限定されないが、スパッタリング法、イオンプレーティング法、または真空蒸着法が好ましく、特にスパッタリング法が好ましい。 In order to form the conductive layer 4 in which an amorphous layer mainly composed of indium tin oxide is crystallized, first, a non-crystalline state mainly composed of indium tin oxide in an amorphous state is formed on the SiO x2 layer 3 described above. A crystalline layer is formed. The film forming method is not necessarily limited, but a sputtering method, an ion plating method, or a vacuum evaporation method is preferable, and a sputtering method is particularly preferable.
 スパッタリング法を適用する場合、酸化スズ(SnO)と酸化インジウム(In)とを混合して焼結されたインジウムスズ酸化物の焼結体からなるスパッタリングターゲットを用いることが好ましい。非晶質層の成膜は、該スパッタリングターゲットを用いて、例えば、アルゴンガスに0.5~10体積%、好ましくは0.8~6体積%の酸素ガスを混合した混合ガスをスパッタ装置内に導入しながらスパッタを行うことが好ましい。このような混合ガスを導入しながらスパッタを行うことで、非晶質であって、かつ熱処理による結晶化が容易で、結晶化させたときのシート抵抗値が低い非晶質層を成膜できる。 When applying the sputtering method, it is preferable to use a sputtering target made of a sintered body of indium tin oxide obtained by mixing and sintering tin oxide (SnO 2 ) and indium oxide (In 2 O 3 ). For forming the amorphous layer, the sputtering target is used, for example, a mixed gas in which 0.5 to 10% by volume, preferably 0.8 to 6% by volume of oxygen gas is mixed with argon gas in the sputtering apparatus. Sputtering is preferably performed while being introduced into the substrate. By performing sputtering while introducing such a mixed gas, it is possible to form an amorphous layer that is amorphous, easy to crystallize by heat treatment, and low in sheet resistance when crystallized. .
 また、非晶質層の成膜に先だって、スパッタ装置内の真空度を5×10-4Pa以下、好ましくは9×10-5Pa以下となるまで排気し、スパッタ装置内の水分や透明基材等から発生する水分または有機ガス等の不純物を取り除いた雰囲気とすることが好ましい。成膜中の水分や有機ガスの存在を低減することで、熱処理による結晶化が容易で、結晶化させたときのシート抵抗値が低いものを得やすくなる。 Prior to the formation of the amorphous layer, the degree of vacuum in the sputtering apparatus is evacuated to 5 × 10 −4 Pa or less, preferably 9 × 10 −5 Pa or less, so that moisture or a transparent substrate in the sputtering apparatus is evacuated. It is preferable to have an atmosphere from which impurities such as moisture or organic gas generated from the material are removed. By reducing the presence of moisture and organic gas during film formation, crystallization by heat treatment is easy, and a sheet having a low sheet resistance when crystallized can be easily obtained.
 非晶質層を成膜するときの酸素ガスの流量は、結晶化後のシート抵抗値が最低値となるときの流量に対して0.6~1.4倍の範囲が好ましく、0.7~1.3倍の範囲がより好ましく、特に0.8~1.2倍の範囲が好ましい。したがって、実際の非晶質層の成膜では、予めこのようにして結晶化後のシート抵抗値が最低値となるときの酸素ガスの流量を求めておき、この酸素ガスの流量に対して上記範囲内となるように酸素ガスの流量を調整して行うことが好ましい。最適流量は成膜装置によっても若干異なることから、特にこのような方法によることで結晶化後のシート抵抗値の低い非晶質層を効果的に成膜できる。 The flow rate of the oxygen gas when forming the amorphous layer is preferably in the range of 0.6 to 1.4 times the flow rate when the sheet resistance value after crystallization becomes the minimum value, and 0.7 The range of -1.3 times is more preferable, and the range of 0.8-1.2 times is particularly preferable. Therefore, in the actual film formation of the amorphous layer, the flow rate of the oxygen gas when the sheet resistance value after crystallization becomes the minimum value in this way is obtained in advance, It is preferable to adjust the flow rate of the oxygen gas so as to be within the range. Since the optimum flow rate varies slightly depending on the film forming apparatus, an amorphous layer having a low sheet resistance value after crystallization can be effectively formed particularly by such a method.
 このようにして成膜される非晶質層のシート抵抗値は、概ね上記した非晶質層における好ましい範囲内にあり、必要に応じて以下の熱処理を施さず得られた非晶質層自体を導電層とすることも可能である。このように非晶質層自体を導電層とする場合には、以下に説明する熱処理を実行することなく、透明導電性積層体が得られる。 The sheet resistance value of the amorphous layer thus formed is generally within the preferred range of the above-described amorphous layer, and the amorphous layer itself obtained without performing the following heat treatment if necessary. Can also be used as a conductive layer. In this way, when the amorphous layer itself is a conductive layer, a transparent conductive laminate can be obtained without performing the heat treatment described below.
 非晶質層を結晶化した導電層4は、このような非晶質層を熱処理して結晶化させて結晶性透明導電膜とすることで形成される。熱処理は、例えば、大気中、100~150℃で10~180分間行うことが好ましい。熱処理温度を100℃以上、また熱処理時間を10分間以上とすることで、非晶質層を効果的に結晶化させることができる。また、熱処理温度は150℃以下、また熱処理時間は180分間以下とすることで充分に結晶化でき、これ以下とすることで透明基材等の損傷を抑制でき、また生産性も向上できる。なお、結晶化されたインジウムスズ酸化物は酸化インジウム(In)の結晶構造を持ち、インジウムのサイトにスズが置換していることが好ましい。 The conductive layer 4 obtained by crystallizing the amorphous layer is formed by heat-treating such an amorphous layer and crystallizing it into a crystalline transparent conductive film. The heat treatment is preferably performed, for example, in the atmosphere at 100 to 150 ° C. for 10 to 180 minutes. By setting the heat treatment temperature to 100 ° C. or more and the heat treatment time to 10 minutes or more, the amorphous layer can be effectively crystallized. Further, when the heat treatment temperature is 150 ° C. or less and the heat treatment time is 180 minutes or less, sufficient crystallization can be achieved. Note that the crystallized indium tin oxide has a crystal structure of indium oxide (In 2 O 3 ), and it is preferable that tin is substituted at the site of indium.
 このようにして、図1に示される、透明基材1の一方の主面上に、SiOx1層2、SiOx2層3、導電層4がこの順に積層された透明導電性積層体10、または、図2に示される、透明基材1の両主面上に樹脂層5a、5bを有し、樹脂層5a上に、SiOx1層2、SiOx2層3、導電層4がこの順に積層された透明導電性積層体10が得られる。 Thus, the transparent conductive laminate 10 in which the SiO x1 layer 2, the SiO x2 layer 3, and the conductive layer 4 are laminated in this order on one main surface of the transparent substrate 1 shown in FIG. 1, or 2 has resin layers 5a and 5b on both main surfaces of the transparent substrate 1, and the SiO x1 layer 2, the SiO x2 layer 3, and the conductive layer 4 are laminated in this order on the resin layer 5a. A transparent conductive laminate 10 is obtained.
 以上、図1および図2に示される透明導電性積層体10について説明したが、本発明の透明導電性積層体はこれに限定されない。本発明の趣旨および範囲を逸脱することのない範囲で透明導電性積層体10を変更または変形することができる。本発明の透明導電性積層体は、電子機器に好適に用いられる。電子機器としては、液晶ディスプレイ、プラズマディスプレイ、タッチパネル等が挙げられ、特にタッチパネルが好ましい。 The transparent conductive laminate 10 shown in FIGS. 1 and 2 has been described above, but the transparent conductive laminate of the present invention is not limited to this. The transparent conductive laminate 10 can be changed or modified without departing from the spirit and scope of the present invention. The transparent conductive laminate of the present invention is suitably used for electronic equipment. Examples of the electronic device include a liquid crystal display, a plasma display, and a touch panel, and a touch panel is particularly preferable.
[タッチパネル]
 本発明のタッチパネルは、上記本発明の透明導電性積層体を備える。タッチパネルは、例えば、表示部とこの表示部の前面に配置されるタッチパネル部とを有する。透明導電性積層体は、このようなタッチパネル部における透明電極を有する透明電極基板として用いられる。タッチパネル部としては、上下の電極が接触することでタッチ位置を特定する抵抗膜式、静電容量の変化を感知する静電容量結合方式のいずれであってもよい。
[Touch panel]
The touch panel of the present invention includes the transparent conductive laminate of the present invention. A touch panel has a display part and the touch panel part arrange | positioned in the front surface of this display part, for example. The transparent conductive laminate is used as a transparent electrode substrate having a transparent electrode in such a touch panel unit. The touch panel unit may be either a resistive film type that specifies a touch position by contacting upper and lower electrodes, or a capacitive coupling type that senses a change in capacitance.
 以下、実施例を挙げて本発明の実施形態を具体的に説明する。なお、本発明はこれらの実施例によって限定されない。また、例1が実施例であり、例2、例3が比較例である。厚さは、光学特性あるいはスパッタ成膜レートとスパッタ時間から求めた値であり、実際に測定した厚さではない。なお、厚さは、幾何学的厚さである。 Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited by these Examples. In addition, Example 1 is an example, and Examples 2 and 3 are comparative examples. The thickness is a value obtained from optical characteristics or a sputtering film formation rate and a sputtering time, and is not an actually measured thickness. The thickness is a geometric thickness.
(例1)
 両面にハードコート層(アクリル樹脂層、8μm)を有する合計厚さ100μmのポリエチレンテレフタレート(PET)フィルムをハードコート層付き透明基材として用いた。該ハードコート層付き透明基材のハードコート層上に、厚さ7nmのSiOx1層(x1=1.95)を形成した。SiOx1層は、ボロンドープポリシリコンターゲットを用い、アルゴンガスに酸素ガスを混合した混合ガスを導入しつつ、0.2Paの圧力でACマグネトロンスパッタを行って形成した。なお、SiOx1層の厚さの調整は、電力密度とスパッタ時間とを調整して行い、x1の調整は、電圧と酸素流量とを調整して行った。
(Example 1)
A polyethylene terephthalate (PET) film having a total thickness of 100 μm having a hard coat layer (acrylic resin layer, 8 μm) on both surfaces was used as a transparent substrate with a hard coat layer. A 7 nm thick SiO x1 layer (x1 = 1.95) was formed on the hardcoat layer of the transparent substrate with the hardcoat layer. The SiO x1 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target. The thickness of the SiO x1 layer was adjusted by adjusting the power density and the sputtering time, and x1 was adjusted by adjusting the voltage and the oxygen flow rate.
 上記のSiOx1層上に厚さ3nmのSiOx2層(x2=2.0)を形成した。SiOx2層は、ボロンドープポリシリコンターゲットを用い、アルゴンガスに酸素ガスを混合した混合ガスを導入しつつ、0.2Paの圧力でACマグネトロンスパッタを行って形成した。SiOx2層の厚さの調整は、電力密度とスパッタ時間とを調整して行い、x2の調整は電圧と酸素流量とを調整して行った。 A SiO x2 layer (x2 = 2.0) having a thickness of 3 nm was formed on the SiO x1 layer. The SiO x2 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target. The thickness of the SiO x2 layer was adjusted by adjusting the power density and the sputtering time, and x2 was adjusted by adjusting the voltage and the oxygen flow rate.
 上記SiOx1層、SiOx2層が形成されたPETフィルムのSiOx2層上に、インジウムスズ酸化物からなるターゲットを用い、アルゴンガスに1.4体積%の酸素ガスを混合した混合ガスを導入しつつ、0.25Paの圧力でDCマグネトロンスパッタを行って、厚さ23nmの非晶質層を形成した。インジウムスズ酸化物ターゲットは、10質量%の酸化スズ(SnO)と90質量%の酸化インジウム(In)とを混合し焼結させた焼結体からなる。また、非晶質層の厚さの調整は、電力密度とスパッタ時間とを調整して行った。なお、非晶質層におけるスズの酸化物換算での含有量はおよそ10質量%と推定される。 The SiO x1 layer, on the SiO x2 layer of PET film SiO x2 layer is formed, using a target made of indium tin oxide, while introducing a mixed gas obtained by mixing 1.4% by volume of oxygen gas to argon gas However, DC magnetron sputtering was performed at a pressure of 0.25 Pa to form an amorphous layer having a thickness of 23 nm. The indium tin oxide target is composed of a sintered body obtained by mixing and sintering 10% by mass of tin oxide (SnO 2 ) and 90% by mass of indium oxide (In 2 O 3 ). The thickness of the amorphous layer was adjusted by adjusting the power density and the sputtering time. The content of tin in terms of oxide in the amorphous layer is estimated to be about 10% by mass.
 得られた積層体を100mm×100mmのサイズに切断して、後述の方法でシート抵抗値を測定した。得られた積層体をそのまま透明導電性積層体とできるが、本例においては、この積層体について、大気中で150℃、30分間の熱処理を行って透明導電性積層体を製造した。 The obtained laminate was cut into a size of 100 mm × 100 mm, and the sheet resistance value was measured by the method described later. Although the obtained laminated body can be used as a transparent conductive laminated body as it is, in this example, this laminated body was heat-treated in the atmosphere at 150 ° C. for 30 minutes to produce a transparent conductive laminated body.
(例2)
 例1と同様の透明基材上に、厚さ10nmのSiOx1層(x1=1.95)を形成した。SiOx1層は、ボロンドープポリシリコンターゲットを用い、アルゴンガスに酸素ガスを混合した混合ガスを導入しつつ、0.2Paの圧力でACマグネトロンスパッタを行って形成した。なお、SiOx1層の厚さの調整は、電力密度とスパッタ時間とを調整して行い、x1の調整は、電圧と酸素流量の調整で行った。SiOx1層の上に、SiOx2層を形成せずに直接、例1と同様にしてインジウムスズ酸化物を主体とする導電層の形成を行った。
(Example 2)
On the same transparent substrate as in Example 1, a 10 nm thick SiO x1 layer (x1 = 1.95) was formed. The SiO x1 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target. The thickness of the SiO x1 layer was adjusted by adjusting the power density and the sputtering time, and x1 was adjusted by adjusting the voltage and the oxygen flow rate. A conductive layer mainly composed of indium tin oxide was formed on the SiO x1 layer directly in the same manner as in Example 1 without forming the SiO x2 layer.
 導電層の形成に際しては、例1と同様にインジウムスズ酸化物を主体とする非晶質層を熱処理する前に100mm×100mmのサイズに切断してシート抵抗値を測定した後、熱処理を行って透明導電性積層体を製造した。 In the formation of the conductive layer, the amorphous layer mainly composed of indium tin oxide was cut into a size of 100 mm × 100 mm before the heat treatment and the sheet resistance value was measured in the same manner as in Example 1, and then the heat treatment was performed. A transparent conductive laminate was produced.
(例3)
 例1と同様の透明基材上に、SiOx1層を形成せずに直接、厚さ10nmのSiOx2層(x2=2.0)を形成した。SiOx2層は、ボロンドープポリシリコンターゲットを用い、アルゴンガスに酸素ガスを混合した混合ガスを導入しつつ、0.2Paの圧力でACマグネトロンスパッタを行って形成した。SiOx2層の厚さの調整は、電力密度とスパッタ時間とを調整して行い、x2の調整は放電電圧と酸素流量とを調整して行った。SiOx2層の上に例1と同様にしてインジウムスズ酸化物を主体とする導電層の形成を行った。
(Example 3)
A SiO x2 layer (x2 = 2.0) having a thickness of 10 nm was directly formed on the transparent substrate similar to Example 1 without forming the SiO x1 layer. The SiO x2 layer was formed by performing AC magnetron sputtering at a pressure of 0.2 Pa while introducing a mixed gas obtained by mixing oxygen gas into argon gas using a boron-doped polysilicon target. The thickness of the SiO x2 layer was adjusted by adjusting the power density and the sputtering time, and x2 was adjusted by adjusting the discharge voltage and the oxygen flow rate. A conductive layer mainly composed of indium tin oxide was formed on the SiO x2 layer in the same manner as in Example 1.
 導電層の形成に際しては、例1と同様にインジウムスズ酸化物を主体とする非晶質層を熱処理する前に100mm×100mmのサイズに切断してシート抵抗値を測定した後、熱処理を行って透明導電性積層体を製造した。 In the formation of the conductive layer, the amorphous layer mainly composed of indium tin oxide was cut into a size of 100 mm × 100 mm before the heat treatment and the sheet resistance value was measured in the same manner as in Example 1, and then the heat treatment was performed. A transparent conductive laminate was produced.
 上記の各例で得られた透明導電性積層体をついて以下の評価を行った。結果を表1に示す。
(b*値)
 JIS Z8729(2004年)に基づき、C光源により透明導電性積層体の導電層側から入射した光の透過率スペクトル(380~780nm)を、分光光度計(東京電色社製、TC-1800 MKIII)を用いて測定して、L*a*b*値を算出した。b*値を表1に示す。
The following evaluation was performed about the transparent conductive laminated body obtained by said each example. The results are shown in Table 1.
(B * value)
Based on JIS Z8729 (2004), a transmittance spectrum (380 to 780 nm) of light incident from the conductive layer side of the transparent conductive laminate by a C light source is measured with a spectrophotometer (TC-1800 MKIII, manufactured by Tokyo Denshoku Co., Ltd.). ) To calculate L * a * b * values. The b * values are shown in Table 1.
(シート抵抗値)
 100mm×100mmのサイズの各透明導電性積層体を、Lorester(三菱化学社製、商品名)を用いて四探針法によりシート抵抗値を測定した。
(Sheet resistance value)
The sheet resistance value of each transparent conductive laminate having a size of 100 mm × 100 mm was measured by a four probe method using Lorester (trade name, manufactured by Mitsubishi Chemical Corporation).
(耐アルカリ性)
 各透明導電性積層体を、5.6質量%の水酸化カリウム水溶液(40℃)に3分間浸漬した後、透明導電性積層体の導電層側表面におけるクラックの有無を目視で確認し、以下の基準により判定を行った。
 ○:クラックが全く確認されない。
 ×:僅かでもクラックが確認される。
(Alkali resistance)
After each transparent conductive laminate was immersed in a 5.6 mass% potassium hydroxide aqueous solution (40 ° C.) for 3 minutes, the presence or absence of cracks on the conductive layer side surface of the transparent conductive laminate was visually confirmed. Judgment was made according to the criteria.
○: No cracks are confirmed.
X: Even a slight crack is confirmed.
(水蒸気バリア性)
 各透明導電性積層体の水蒸気透過度を水蒸気透過度測定装置(MOCON社製、製品名「PERMATRAN-W 3/33MG」)を用い、JIS K7129 B法(赤外センサー法)に準じて、温度40℃、湿度90%RHの雰囲気下で測定した。なお、透明導電性積層体への調湿は、成膜面側から基材側へ水蒸気が透過する方向とした。水蒸気透過度が0.5g/m/day以下であれば、良好な水蒸気バリア性を有するといえる。
(Water vapor barrier property)
The water vapor permeability of each transparent conductive laminate was measured according to JIS K7129 B method (infrared sensor method) using a water vapor permeability measuring device (manufactured by MOCON, product name “PERMATRAN-W 3 / 33MG”). The measurement was performed in an atmosphere of 40 ° C. and humidity 90% RH. In addition, humidity control to the transparent conductive laminated body was made into the direction which water vapor | steam permeate | transmits from the film-forming surface side to the base material side. If the water vapor permeability is 0.5 g / m 2 / day or less, it can be said that the water vapor barrier property is good.
Figure JPOXMLDOC01-appb-T000001
*表1中、HC層はハードコート層を示す。
Figure JPOXMLDOC01-appb-T000001
* In Table 1, the HC layer represents a hard coat layer.
 表1から、例1の透明導電性積層体は、色味、抵抗値、耐アルカリ性、水蒸気バリア性のいずれについても良好な結果であることがわかる。なお、水蒸気バリア性については、酸化ケイ素層の総膜厚が同じ10nmであっても、SiOx1層とSiOx2層との積層構造を有する透明導電性積層体(例1)が最も良好な結果であった。酸化ケイ素層は本来、例3に示すように完全な酸化物(SiO)になっている方がバリア性に優れるが、バリア性と基材との密着性とを両立させる場合、SiOx(x<2)のほうが結果的によくなる。従って、SiOx1層とSiOx2層との積層体が最も密着性が高く、かつバリア性に優れると考えられる。 From Table 1, it turns out that the transparent conductive laminated body of Example 1 is a favorable result about all of color, resistance value, alkali resistance, and water vapor | steam barrier property. As for the water vapor barrier property, the transparent conductive laminate (Example 1) having the laminated structure of the SiO x1 layer and the SiO x2 layer has the best result even when the total thickness of the silicon oxide layer is 10 nm. Met. As shown in Example 3, the silicon oxide layer is essentially a complete oxide (SiO 2 ), which has better barrier properties. However, when both barrier properties and adhesion to the substrate are compatible, SiOx (x <2) results better. Therefore, it is considered that the laminate of the SiO x1 layer and the SiO x2 layer has the highest adhesion and excellent barrier properties.
 10…透明導電性積層体、1…透明基材、2…SiOx1層、3…SiOx2層、4…導電層、5a,5b…樹脂層。 DESCRIPTION OF SYMBOLS 10 ... Transparent conductive laminated body, 1 ... Transparent base material, 2 ... SiOx1 layer, 3 ... SiOx2 layer, 4 ... Conductive layer, 5a, 5b ... Resin layer.

Claims (5)

  1.  透明基材と、
     前記透明基材の一方の主面上に設けられた厚さが3~60nmのSiOx1層(ただし、x1は1.8以上2.0未満である。)と、
     前記SiOx1層上に設けられた厚さが0.2~5nmのSiOx2層(ただし、x2は1.9以上2.0以下であり、かつx1より大きい。)と、
     前記SiOx2層上に設けられたインジウムスズ酸化物を主体とする導電層と、
    を有する透明導電性積層体。
    A transparent substrate;
    A SiO x1 layer (provided that x1 is 1.8 or more and less than 2.0) having a thickness of 3 to 60 nm provided on one main surface of the transparent substrate;
    SiO x2 layer thickness provided in the SiO x1 layer on the 0.2 ~ 5 nm (although, x2 is 1.9 or more and 2.0 or less, and x1 is greater than.) And,
    A conductive layer mainly composed of indium tin oxide provided on the SiO x2 layer;
    A transparent conductive laminate comprising:
  2.  前記SiOx1層の厚さが3~10nmである請求項1記載の透明導電性積層体。 The transparent conductive laminate according to claim 1, wherein the thickness of the SiO x1 layer is 3 to 10 nm.
  3.  前記SiOx1層の厚さと前記SiOx2層の厚さの合計が10nm以下である請求項1または2記載の透明導電性積層体。 The transparent conductive laminate according to claim 1 or 2, wherein the total thickness of the SiO x1 layer and the SiO x2 layer is 10 nm or less.
  4.  前記透明基材と前記SiOx1層との間に樹脂層を有する請求項1~3のいずれか1項記載の透明導電性積層体。 The transparent conductive laminate according to any one of claims 1 to 3, further comprising a resin layer between the transparent substrate and the SiO x1 layer.
  5.  請求項1~4のいずれか1項に記載の透明導電性積層体を備えるタッチパネル。 A touch panel comprising the transparent conductive laminate according to any one of claims 1 to 4.
PCT/JP2014/078571 2013-11-14 2014-10-28 Transparent conductive laminate and touch panel WO2015072321A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480062021.4A CN105723473A (en) 2013-11-14 2014-10-28 Transparent conductive laminate and touch panel
JP2015547720A JPWO2015072321A1 (en) 2013-11-14 2014-10-28 Transparent conductive laminate and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235856 2013-11-14
JP2013-235856 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072321A1 true WO2015072321A1 (en) 2015-05-21

Family

ID=53057260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078571 WO2015072321A1 (en) 2013-11-14 2014-10-28 Transparent conductive laminate and touch panel

Country Status (4)

Country Link
JP (1) JPWO2015072321A1 (en)
CN (1) CN105723473A (en)
TW (1) TW201528291A (en)
WO (1) WO2015072321A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177570A (en) * 2019-04-22 2020-10-29 住友化学株式会社 Touch sensor panel and optical laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230028599A (en) 2020-02-03 2023-02-28 닛토덴코 가부시키가이샤 Transparent electroconductive layer, transparent electroconductive sheet, touch sensor, light control element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shield member, and image display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021826A (en) * 2001-07-10 2003-01-24 Nippon Sheet Glass Co Ltd Substrate with ito coating film and method for manufacturing the same
WO2008015840A1 (en) * 2006-08-03 2008-02-07 Nitto Denko Corporation Transparent conductive laminate and touch panel equipped with it
JP2010184478A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Multilayer film and method for manufacturing the same
JP2011249263A (en) * 2010-05-31 2011-12-08 Reiko Co Ltd Transparent conductive film with good durability
WO2013069162A1 (en) * 2011-11-11 2013-05-16 株式会社カネカ Substrate with transparent electrode, method for producing same, and touch panel
WO2013100031A1 (en) * 2011-12-27 2013-07-04 積水化学工業株式会社 Light transmissive conductive film and capacitance-type touch panel using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484347B2 (en) * 2000-10-12 2010-06-16 尾池工業株式会社 Transparent conductive film and touch panel
JP2005294084A (en) * 2004-04-01 2005-10-20 Oike Ind Co Ltd Transparent conductive film
CN102776476B (en) * 2012-07-24 2014-05-07 深圳南玻显示器件科技有限公司 Composite film for touch screen and production method of composite film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021826A (en) * 2001-07-10 2003-01-24 Nippon Sheet Glass Co Ltd Substrate with ito coating film and method for manufacturing the same
WO2008015840A1 (en) * 2006-08-03 2008-02-07 Nitto Denko Corporation Transparent conductive laminate and touch panel equipped with it
JP2010184478A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Multilayer film and method for manufacturing the same
JP2011249263A (en) * 2010-05-31 2011-12-08 Reiko Co Ltd Transparent conductive film with good durability
WO2013069162A1 (en) * 2011-11-11 2013-05-16 株式会社カネカ Substrate with transparent electrode, method for producing same, and touch panel
WO2013100031A1 (en) * 2011-12-27 2013-07-04 積水化学工業株式会社 Light transmissive conductive film and capacitance-type touch panel using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177570A (en) * 2019-04-22 2020-10-29 住友化学株式会社 Touch sensor panel and optical laminate
JP7469852B2 (en) 2019-04-22 2024-04-17 東友ファインケム株式会社 Touch sensor panel and optical laminate

Also Published As

Publication number Publication date
JPWO2015072321A1 (en) 2017-03-16
TW201528291A (en) 2015-07-16
CN105723473A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5585143B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
WO2012161095A1 (en) Material for conductive film, conductive film laminate, electronic apparatus, and method for producing material for conductive film, conductive film laminate and electronic apparatus
WO2013172354A1 (en) Element for conductive film, conductive film laminated body, electronic equipment, and method of manufacturing element for conductive film and conductive film laminated body
WO2015159799A1 (en) Transparent conductive film
JP5417698B2 (en) Method for producing functional film
WO2015166723A1 (en) Transparent conductive film
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
WO2017131202A1 (en) Conductive laminate film
TW201539276A (en) Transparent conductor and touch panel
JP2010184478A (en) Multilayer film and method for manufacturing the same
WO2016153034A1 (en) Transparent conductor and touch panel
JP5515554B2 (en) Method for producing transparent conductive thin film
WO2014064939A1 (en) Transparent conductor
WO2015072321A1 (en) Transparent conductive laminate and touch panel
JP2016134320A (en) Transparent conductive body and touch panel
JP2018022634A (en) Transparent conductor
JP5951372B2 (en) Touch panel and manufacturing method thereof
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
CN110636943B (en) Transparent conductive film and image display device
JP6097117B2 (en) Laminates and films
WO2015159804A1 (en) Laminate, conductive laminate and electronic device
JP5895089B1 (en) Heat ray shielding laminate and window glass using the laminate
JP2016177940A (en) Method for producing transparent conductive body
KR20230154984A (en) Transparent conductive piezoelectric laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863028

Country of ref document: EP

Kind code of ref document: A1