JPH1034798A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH1034798A
JPH1034798A JP8198657A JP19865796A JPH1034798A JP H1034798 A JPH1034798 A JP H1034798A JP 8198657 A JP8198657 A JP 8198657A JP 19865796 A JP19865796 A JP 19865796A JP H1034798 A JPH1034798 A JP H1034798A
Authority
JP
Japan
Prior art keywords
oxynitride
transparent conductive
layer
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8198657A
Other languages
Japanese (ja)
Inventor
Masaaki Kikkai
正彰 吉開
Koichi Takahashi
浩一 高橋
Masato Koyama
正人 小山
Yuichiro Harada
祐一郎 原田
Yoshihiro Sakai
▲祥▼浩 坂井
Akira Suzuki
彰 鈴木
Akiyoshi Nakajima
明美 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8198657A priority Critical patent/JPH1034798A/en
Publication of JPH1034798A publication Critical patent/JPH1034798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film having transparency higher than that of a conventional one, high in the close bonding strength of a transparent plastic film being a base material and a transparent conductive layer and suitable for post-processing such as bending processing. SOLUTION: A membrane layer composed of metal oxynitride selected from a group consisting of silicon oxynitride, indium oxynitride, gallium oxynitride, aluminum oxynitride, tin oxynitride, boron oxynitride and chromium oxynitride is formed on the single surface of a plastic film and a transparent conductive layer is formed on the metal oxynitride membrane layer to obtain a transparent conductive film. The constitution of metal oxynitride is MOXNY (wherein M is a metal atom, X is 0.05-3.5 Y is 0.03-2.6 and X and Y are X+1.5Y>=35) and the thickness of the metal oxynitride layer is 0.1-19nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は透明導電性フィルム
に関する。詳しくは、本発明は、プラスチックフィルム
からなる基材と透明導電層との密着性に優れた透明導電
性フィルムに関する。
[0001] The present invention relates to a transparent conductive film. More specifically, the present invention relates to a transparent conductive film having excellent adhesion between a substrate made of a plastic film and a transparent conductive layer.

【0002】本発明にかかる透明導電性フィルムは、透
明導電層と基材との密着性が必要な液晶表示素子用電
極、エレクトロルミネッセンス素子(電界発光素子、以
下EL素子という)用電極、タッチパネル用電極に用い
ることが出来る。
[0002] The transparent conductive film according to the present invention is an electrode for a liquid crystal display element, an electrode for an electroluminescence element (hereinafter, referred to as an EL element), and a touch panel for a touch panel, which require adhesion between the transparent conductive layer and the substrate. It can be used for electrodes.

【0003】[0003]

【従来の技術】近年、液晶表示装置は、あらゆる分野で
使用されるようになってきており、特に、ワードプロセ
ッサやパーソナルコンピュータ、液晶表示型テレビ、電
子手帳、携帯電話、携帯型情報端末機等の電子産業分野
で数多く使用されている。このように使用分野の広がり
とともに液晶表示素子には、カラー化、大型化、軽量化
等の様々な特性が求められるようになった。このために
用いる透明導電性フィルムにも、1)軽量化出来るこ
と、2)薄型化出来ること、3)大面積化出来ること、
4)耐破損性があること、5)優れた加工性を有するこ
と、6)形状の多様化が可能であること、7)透明性が
高いことが求めれている。
2. Description of the Related Art In recent years, liquid crystal display devices have been used in various fields, and in particular, word processors, personal computers, liquid crystal display televisions, electronic notebooks, mobile phones, portable information terminals, and the like. It is widely used in the electronics industry. As the field of use has expanded, various characteristics such as colorization, enlargement, and weight reduction have been required for liquid crystal display devices. For the transparent conductive film used for this purpose, 1) the weight can be reduced, 2) the thickness can be reduced, 3) the area can be increased,
4) It is required to have breakage resistance, 5) to have excellent workability, 6) to be able to diversify shapes, and 7) to have high transparency.

【0004】従来、透明導電膜の基材としては、ガラス
が多く用いられてきたが、上記1)〜6)の条件を満た
すことが困難であるために最近ではプラスチックフィル
ムが多く用いられるようになった。また、プラスチック
フィルムを基材として用いた透明導電性フィルムは、上
記1)〜7)の特性を満たすほか、製造工程での取扱い
が容易なこと、打ち抜き加工等も可能であり、更にフィ
ルム状素材から連続生産が可能であるという特徴を有し
ている。
Conventionally, glass has been often used as a base material of a transparent conductive film. However, since it is difficult to satisfy the above conditions 1) to 6), plastic films have recently been widely used. became. A transparent conductive film using a plastic film as a base material satisfies the above-mentioned characteristics 1) to 7), is easy to handle in a manufacturing process, can be punched, and the like. Has the feature that continuous production is possible from

【0005】通常の透明導電性フィルムの要求性能とし
ては、透明性が良いこと、導電性が良いことなどが挙げ
られる。更に液晶表示素子用電極として用いる場合、ピ
ッチ間隔を狭くした場合でも加工中に透明導電層の剥離
が生じないこと、加熱処理を行っても変化が起こらない
ことが要求される。
[0005] The performance requirements of a normal transparent conductive film include good transparency and good conductivity. Further, when used as an electrode for a liquid crystal display element, it is required that the transparent conductive layer does not peel off during processing even when the pitch interval is narrowed, and that no change occurs even when heat treatment is performed.

【0006】通常透明導電層としてインジウム−錫酸化
物(以下ITOとする)を用いるが、単に透明導電層を
プラスチックフィルム上に積層するだけでは透明導電層
とプラスチックフィルムの密着性が良好でなく、しか
も、プラスチックフィルムとして、ポリエチレンテレフ
タレート(以下PETとする)を用いた場合、加熱処理
を行うとPETフィルムからオリゴマーが発生し、フィ
ルム全体が白濁するという欠点があった。
Usually, indium-tin oxide (hereinafter referred to as ITO) is used as the transparent conductive layer. However, if the transparent conductive layer is simply laminated on the plastic film, the adhesion between the transparent conductive layer and the plastic film is not good. In addition, when polyethylene terephthalate (hereinafter, referred to as PET) is used as the plastic film, oligomers are generated from the PET film when heat treatment is performed, and the entire film becomes cloudy.

【0007】そこで、密着性を改善するため、オリゴマ
ーの発生を抑制するためにプラスチックフィルムと透明
導電層の界面に中間層を設ける方法が検討されてきた。
そこで、特開昭60−146409号には、ポリエーテ
ルサルフォンフィルムとインジウムを主成分とする金属
酸化物層との界面にアクリル系紫外線硬化型樹脂層を設
ける方法が、特開昭63−319355号には高分子フ
ィルムと導電性層との間に水性ポリウレタン樹脂層を設
ける方法が、特開昭61−146533号には、高分子
フィルムと酸化インジウムを含む透明導電層の界面にイ
ンジウム以外の金属酸化物層を中間層として用いる方法
が提案されている。
Therefore, a method of providing an intermediate layer at the interface between the plastic film and the transparent conductive layer in order to improve adhesion and suppress generation of oligomers has been studied.
Japanese Patent Application Laid-Open No. Sho 60-146409 discloses a method of providing an acrylic ultraviolet curable resin layer at the interface between a polyether sulfone film and a metal oxide layer containing indium as a main component. Japanese Patent Application Laid-Open No. Sho 61-146533 discloses a method of providing an aqueous polyurethane resin layer between a polymer film and a conductive layer, and JP-A No. 61-146533 discloses a method in which an interface between a polymer film and a transparent conductive layer containing indium oxide other than indium is used. A method using a metal oxide layer as an intermediate layer has been proposed.

【0008】しかしながら、中間層にアクリル系紫外線
硬化型樹脂層、水性ポリウレタン樹脂層などの有機物層
を用いる場合には用いない場合に比べて、初期の密着性
が飛躍的に向上するものの、加熱処理を行うとこれらの
中間層の熱劣化により密着性が低下するという問題点が
あった。また、金属酸化物を中間層に用いた場合は、密
着性は向上し、加熱による熱劣化は認められないものの
これらの金属酸化物は一般的に屈折率が高いために金属
酸化物層とプラスチックフィルム界面での反射が増える
ために光線透過率が低くなり、しかもこれら金属酸化物
は硬いためにクラック、ピンホール等の欠陥が生じやす
いという問題点があり、かかる要請に応える事は困難で
あった。
However, when an organic layer such as an acrylic UV-curable resin layer or an aqueous polyurethane resin layer is used for the intermediate layer, the initial adhesion is dramatically improved as compared with the case where no organic layer is used. In this case, there is a problem that the adhesiveness is reduced due to thermal degradation of these intermediate layers. When a metal oxide is used for the intermediate layer, the adhesion is improved, and thermal deterioration due to heating is not observed. However, since these metal oxides generally have a high refractive index, the metal oxide layer and the There is a problem that the light transmittance is lowered due to an increase in the reflection at the film interface, and furthermore, these metal oxides are hard, so that defects such as cracks and pinholes are likely to occur. Was.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、これ
らの問題点を解決し、従来の透明導電性フィルムに比べ
て透明導電層とプラスチックフィルムとの密着性が大幅
に向上し、しかも光線透過率が高く、加熱による劣化も
認められない透明導電性フィルムを提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to greatly improve the adhesion between a transparent conductive layer and a plastic film as compared with a conventional transparent conductive film. An object of the present invention is to provide a transparent conductive film which has high transmittance and is not deteriorated by heating.

【0010】[0010]

【課題を解決するための手段】本発明者らはこれらの問
題を解決するために鋭意検討した結果、透明導電層とプ
ラスチックフィルムとの間の中間層に上記の金属酸窒化
物を用いると透明導電層とプラスチックフィルムとの密
着性が飛躍的に向上し、しかも薄膜の屈折率がプラスチ
ックフィルムの屈折率に近いためにプラスチックフィル
ム上に積層した場合に透明性が高くなることを見いだし
た。また、金属酸窒化物中の酸素と窒素の原子数の割合
が0.1〜10.0の範囲にある場合、薄膜中での金属
−酸素、金属−窒素の結合が適当に分散されるために薄
膜が柔らかく、加工性が大幅に向上することを見いだし
た。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve these problems, and as a result, when the above-mentioned metal oxynitride is used for the intermediate layer between the transparent conductive layer and the plastic film, the transparent layer becomes transparent. It has been found that the adhesion between the conductive layer and the plastic film is dramatically improved, and that the transparency is high when laminated on the plastic film because the refractive index of the thin film is close to that of the plastic film. Further, when the ratio of the number of atoms of oxygen and nitrogen in the metal oxynitride is in the range of 0.1 to 10.0, the metal-oxygen and metal-nitrogen bonds in the thin film are appropriately dispersed. In addition, they found that the thin film was soft and the workability was greatly improved.

【0011】即ち、本発明の第一の要旨はプラスチック
フィルムからなる基材上に透明導電層を積層した透明導
電性フィルムにおいて、基材と透明導電層との間に金属
酸窒化物(MOX Y :ただし、Mは金属原子、Xは
0.05〜3.5、Yは、0.03〜2.6かつ、X+
Y≦3.5)からなる中間層を設け、かつその中間層の
厚みが0.1〜19nmであることを特徴とする透明導
電性フィルムである。
That is, a first gist of the present invention is to provide a transparent conductive film in which a transparent conductive layer is laminated on a base made of a plastic film, wherein a metal oxynitride (MO X) is provided between the base and the transparent conductive layer. N Y : However, M is a metal atom, X is 0.05 to 3.5, Y is 0.03 to 2.6, and X +
(Y ≦ 3.5) is provided, and the thickness of the intermediate layer is 0.1 to 19 nm.

【0012】また、本発明の第二の要旨は、中間層が酸
窒化珪素、酸窒化インジウム、酸窒化ガリウム、酸窒化
アルミニウム、酸窒化錫、酸窒化ほう素、酸窒化クロム
の群から選ばれる金属酸窒化物単層もしくは2種類以上
の単層の積層体であることを特徴とし、第三の要旨は金
属酸窒化物における酸素と窒素の割合(X/Y)が、
0.1〜10.0(原子比)であることを特徴とする。
A second gist of the present invention is that the intermediate layer is selected from the group consisting of silicon oxynitride, indium oxynitride, gallium oxynitride, aluminum oxynitride, tin oxynitride, boron oxynitride, and chromium oxynitride. It is characterized in that it is a metal oxynitride single layer or a laminate of two or more types of single layers, and the third point is that the ratio of oxygen and nitrogen (X / Y) in the metal oxynitride is
0.1 to 10.0 (atomic ratio).

【0013】[0013]

【発明の実施の形態】本発明で使用するプラスチックフ
ィルムとしては、例えば、ポリエチレンテレフタレー
ト、ポリエーテルサルフォン、ポリエステル、ポリカー
ボネート、ポリアリレート、ポリアミド、及びポリ塩化
ビニールなどのホモポリマー、またはこれらの樹脂のモ
ノマーとの共重合可能なモノマーとのコポリマー等から
なるフィルムが挙げられ、これらの中から適宜選択して
使用することが出きる。好ましくはポリエチレンテレフ
タレート、ポリエーテルサルフォン、ポリカーボネー
ト、ポリアリレートである。また、該フィルムの厚みと
しては特に制限はしないが、フィルムの強度、ハンドリ
ング性から25〜250μmが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The plastic film used in the present invention includes, for example, homopolymers such as polyethylene terephthalate, polyether sulfone, polyester, polycarbonate, polyarylate, polyamide, and polyvinyl chloride; Examples of the film include a film made of a copolymer with a monomer copolymerizable with a monomer, and the film can be appropriately selected from these and used. Preferred are polyethylene terephthalate, polyether sulfone, polycarbonate, and polyarylate. Further, the thickness of the film is not particularly limited, but is preferably 25 to 250 μm from the viewpoint of the strength and the handleability of the film.

【0014】透明導電層としては従来公知の、1)金、
銀、銅、アルミニウム、パラジウム等の金属及びこれら
の合金の単層、積層体、2)酸化錫、酸化インジウム、
酸化インジウム−錫(ITO)、酸化亜鉛、ヨウ化銅等
化合物半導体及びそれらの混合物の単層、積層体、3)
前記1)、2)を組み合わせた積層膜を使用することが
出来る。
As the transparent conductive layer, conventionally known 1) gold,
Single layers and laminates of metals such as silver, copper, aluminum and palladium and alloys thereof, 2) tin oxide, indium oxide,
Single layers, laminates of compound semiconductors such as indium-tin oxide (ITO), zinc oxide, copper iodide and mixtures thereof 3)
A laminated film obtained by combining the above 1) and 2) can be used.

【0015】透明導電層の具体的な形成方法を例示する
ならば、スプレー法、金属溶射法、金属メッキ法、真空
蒸着法、イオンプレーティング法、スパッタリング法、
分子線エピタキシー法(MBE)、CVD法、プラズマ
CVD法などの方法が挙げられる。
[0015] Specific examples of the method for forming the transparent conductive layer include a spraying method, a metal spraying method, a metal plating method, a vacuum evaporation method, an ion plating method, a sputtering method, and the like.
Examples include molecular beam epitaxy (MBE), CVD, and plasma CVD.

【0016】透明導電層の厚みは通常5nm〜700n
mであり、好ましくは10nm〜300nmであり、更
に好ましくは50nm〜150nmである。厚みが上記
の範囲内にある場合には透明性、導電性ともに優れた膜
となる。一方厚みが5nmより薄い場合には透明性は高
いが導電性が悪くなり、一方、700nmより厚いと導
電性はよいが透明性が悪くなる。
The thickness of the transparent conductive layer is usually 5 nm to 700 n.
m, preferably 10 nm to 300 nm, more preferably 50 nm to 150 nm. When the thickness is within the above range, the film becomes excellent in both transparency and conductivity. On the other hand, when the thickness is less than 5 nm, the transparency is high but the conductivity is poor. On the other hand, when the thickness is more than 700 nm, the conductivity is good but the transparency is poor.

【0017】また、透明導電層とプラスチックフィルム
の界面(中間層)に金属酸窒化物層を形成する。金属酸
窒化物は有機物質であるプラスチックフィルム、無機物
質である透明導電層ともに密着性が良好であるために中
間層に用いると透明導電層の密着性が大幅に向上する。
A metal oxynitride layer is formed at the interface (intermediate layer) between the transparent conductive layer and the plastic film. Since the metal oxynitride has good adhesion to both the plastic film as an organic substance and the transparent conductive layer as an inorganic substance, when used as an intermediate layer, the adhesion of the transparent conductive layer is greatly improved.

【0018】金属酸窒化物としては、光線透過率が高
く、プラスチックフィルム、透明導電層と密着性の高い
ものが好ましい。具体的には酸窒化珪素、酸窒化インジ
ウム、酸窒化ガリウム、酸窒化アルミニウム、酸窒化
錫、酸窒化ほう素、酸窒化クロムが好ましい。
As the metal oxynitride, those having a high light transmittance and high adhesion to a plastic film and a transparent conductive layer are preferable. Specifically, silicon oxynitride, indium oxynitride, gallium oxynitride, aluminum oxynitride, tin oxynitride, boron oxynitride, and chromium oxynitride are preferable.

【0019】金属酸窒化物の形成法としては、例えば、
真空蒸着法、イオンプレーティング法、スパッタリング
法、分子線エピタキシー(MBE)法、CVD法、MO
CVD法、プラズマCVD法等の真空中において形成す
る方法が挙げられる。例えば、スパッタリング法では、
減圧下でアルゴンガス、酸素などの酸素発生物質、窒
素、アンモニア等の窒素発生物質を導入しながら、シリ
コン、インジウム、ガリウム、アルミニウム、錫、ほう
素またはクロムからなるターゲットを用いてプラスチッ
クフィルム上に金属酸窒化物の薄膜を形成する。
As a method of forming a metal oxynitride, for example,
Vacuum evaporation, ion plating, sputtering, molecular beam epitaxy (MBE), CVD, MO
A method of forming in a vacuum such as a CVD method and a plasma CVD method is given. For example, in the sputtering method,
On a plastic film using a target made of silicon, indium, gallium, aluminum, tin, boron or chromium, while introducing an oxygen generating substance such as argon gas, oxygen, nitrogen, ammonia, etc. under reduced pressure. A metal oxynitride thin film is formed.

【0020】金属酸窒化物は、MOX Y (ただし、M
は金属原子、Xは0.05〜3.5、Yは0.03〜
2.6かつ、X+Y≦3.5である。)の構成である。
また、金属酸窒化物中の酸素と窒素の割合(X/Y)
は、0.1〜10.0(原子比)が好ましく、さらには
1.0〜5.0(原子比)がより好ましい。金属酸窒化
物中の酸素と窒素の割合が上記の範囲内にある薄膜は薄
膜自身が柔軟性に富むためにピンホールなどの欠陥が生
じ難く、また、後工程として曲げ加工などを行った場合
や使用時にフィルムにストレスがかかった場合でもフィ
ルムにクラックなどの欠陥が生じにくいという特徴も有
している。また、金属酸窒化物は屈折率が比較的低いた
めに金属酸窒化物層からなる薄膜層とプラスチックフィ
ルム間での光の反射が少なくなるために光線透過率の高
い透明導電性フィルムとなり得る。酸素の割合が上記の
範囲より大きいとその薄膜は金属酸化物と同じで硬くな
り、クラックなどの欠陥が入りやすいという欠点を有
し、さらに屈折率が高くなるために光線透過率が低下す
るという欠点を有するようになる。また、窒素の割合が
上記の範囲より大きくなると、金属窒化物と同じで薄膜
の形成速度が遅くなり、しかも透明性が悪くなるという
欠点を有するようになる。金属酸窒化物層の厚みとして
は0.1〜19nmが好ましく、0.1〜12nmがさ
らに好ましく、0.1〜5nmが最も好ましい。
The metal oxynitride is MO X N Y (where M
Is a metal atom, X is 0.05 to 3.5, Y is 0.03 to
2.6 and X + Y ≦ 3.5. ).
The ratio of oxygen and nitrogen in the metal oxynitride (X / Y)
Is preferably from 0.1 to 10.0 (atomic ratio), more preferably from 1.0 to 5.0 (atomic ratio). A thin film in which the ratio of oxygen and nitrogen in the metal oxynitride is within the above range is less prone to defects such as pinholes because the thin film itself is rich in flexibility, and when a bending process or the like is performed as a post-process, It also has a feature that even when stress is applied to the film during use, defects such as cracks are unlikely to occur in the film. Further, since the metal oxynitride has a relatively low refractive index, the reflection of light between the thin film layer composed of the metal oxynitride layer and the plastic film is reduced, so that a transparent conductive film having a high light transmittance can be obtained. When the proportion of oxygen is larger than the above range, the thin film has the same hardness as the metal oxide, has a disadvantage that defects such as cracks are likely to enter, and furthermore, the light transmittance decreases because the refractive index increases. Comes with disadvantages. On the other hand, if the proportion of nitrogen is larger than the above range, there is a drawback that the formation rate of the thin film is reduced as in the case of the metal nitride, and the transparency is deteriorated. The thickness of the metal oxynitride layer is preferably 0.1 to 19 nm, more preferably 0.1 to 12 nm, and most preferably 0.1 to 5 nm.

【0021】金属酸窒化物が上記の厚みの範囲内にある
場合透明導電膜とプラスチックフィルムの密着性が良好
となり、しかも薄膜自体に柔軟性があるためにピンホー
ル・クラックなどの欠陥が生じにくい為に良好な透明導
電性フィルムとなる。金属酸窒化物の厚みが上記の範囲
より小さい場合には金属酸窒化物層の厚みが十分でない
ために透明導電層とプラスチックフィルムとの密着性が
悪くなる。また、上記の範囲より大きい場合、薄膜の可
撓性が失われ、フィルムにストレスが加わった場合にク
ラック等の欠陥が起こりやすくなり、また、薄膜自身に
よる光の吸収・反射が問題となり好ましくない。
When the metal oxynitride is in the above-mentioned thickness range, the adhesion between the transparent conductive film and the plastic film becomes good, and the thin film itself is flexible, so that defects such as pinholes and cracks are hardly generated. Therefore, a good transparent conductive film is obtained. When the thickness of the metal oxynitride is smaller than the above range, the adhesion between the transparent conductive layer and the plastic film becomes poor because the thickness of the metal oxynitride layer is not sufficient. If the thickness is larger than the above range, the flexibility of the thin film is lost, defects such as cracks are likely to occur when stress is applied to the film, and light absorption / reflection by the thin film itself becomes a problem, which is not preferable. .

【0022】また、上記の範囲内において異種の金属酸
窒化物を積層しても、金属酸窒化物または金属酸化物と
金属窒化物の混合層と、金属酸化物または金属窒化物と
を積層しても構わない。
In addition, even if different kinds of metal oxynitrides are stacked within the above range, a mixed layer of metal oxynitride or metal oxide and metal nitride and a metal oxide or metal nitride are stacked. It does not matter.

【0023】[0023]

【実施例】【Example】

実施例1 厚み125μmのポリエチレンテレフタレート(以下P
ETと略す)フィルム(帝人(株)製HSA)の片面に
酸窒化珪素(SiOX Y )から成る透明薄膜層をDC
マグネトロンスパッタリング法により2nmの厚みで形
成した。更に詳しく説明すると、空気が充満している真
空槽を1×10-3Torrまで排気した後にアルゴンガ
スを圧力3×10-3Torrまで導入し、続いて全圧が
4×10 -3Torrになるように酸素ガスを導入し、更
に全圧が5×10-3Torrになるように窒素ガスを導
入し、金属シリコンターゲットを用いてDCマグネトロ
ンスパッタリング法により該PETフィルムの片面に2
nmの厚みの酸窒化珪素層を形成した。
 Example 1 A polyethylene terephthalate having a thickness of 125 μm (hereinafter referred to as P
Abbreviated as ET) on one side of a film (HSA manufactured by Teijin Limited)
Silicon oxynitride (SiOXNY) Is DC
Shaped with a thickness of 2 nm by magnetron sputtering
Done. In more detail, the air-filled true
Empty tank 1 × 10-3After exhausting to Torr, argon gas
Pressure 3 × 10-3Torr and then the total pressure
4 × 10 -3Introduce oxygen gas to Torr,
Total pressure is 5 × 10-3Introduce nitrogen gas to Torr
DC magnetron using metal silicon target
2 on one side of the PET film by sputtering
A silicon oxynitride layer having a thickness of nm was formed.

【0024】得られた酸窒化珪素薄膜層上に酸化インジ
ウム錫(以下ITOと略す)層を真空槽を1×10-3
orrまで排気した後にアルゴンガスを圧力3×10-3
Torrまで導入し、続いて全圧が4×10-3Torr
になるように酸素ガスを導入し、インジウム−錫合金タ
ーゲットを用いてDCマグネトロンスパッタリング法に
より100nmの厚みの透明導電層を設け、透明導電性
フィルムを得た。
On the obtained silicon oxynitride thin film layer, an indium tin oxide (hereinafter abbreviated as ITO) layer was placed in a vacuum chamber at 1 × 10 −3 T.
After exhausting to orr, argon gas was supplied at a pressure of 3 × 10 −3.
Torr, followed by a total pressure of 4 × 10 −3 Torr
Then, a transparent conductive layer having a thickness of 100 nm was provided by a DC magnetron sputtering method using an indium-tin alloy target to obtain a transparent conductive film.

【0025】得られた透明導電性フィルムの全光線透過
率を日本電色(株)製NDH300Aを用いて測定し
た。また、得られた透明導電性フィルム耐屈曲性を以下
の方法で測定した。まず、サンプルを10cm×10c
mの大きさに切り出し、任意の方向にそれぞれ幅が1c
m×長さ10cmの形状の電極を銀ペーストを塗布する
ことにより間隔8cmで平行に形成した。電極間の抵抗
値の初期値を測定(R0)した後、電極間の中心部に置
いた、直径10mmのロッドの周りに透明導電層が形成
されている部分が交互に凹面、凸面になるように該透明
導電性フィルムをそれぞれ100回180゜折曲げ、電
極間の抵抗値(R)を測定した。折り曲げてテスト前後
の抵抗変化値(R/R0 )を用いて耐屈曲性を評価し
た。
The total light transmittance of the obtained transparent conductive film was measured using NDH300A manufactured by Nippon Denshoku Co., Ltd. Moreover, the bending resistance of the obtained transparent conductive film was measured by the following method. First, sample 10cm x 10c
m, and the width is 1c in each direction
Electrodes having a shape of mx 10 cm in length were formed in parallel at intervals of 8 cm by applying a silver paste. After measuring the initial value of the resistance value between the electrodes (R 0 ), the portion where the transparent conductive layer is formed around the rod having a diameter of 10 mm placed at the center between the electrodes alternately becomes concave and convex. Each of the transparent conductive films was bent at 180 degrees for 100 times, and the resistance value (R) between the electrodes was measured. After bending, the bending resistance was evaluated using the resistance change value (R / R 0 ) before and after the test.

【0026】また、光学顕微鏡を用いて400倍に拡大
した際の表面の欠陥(ピンホール、クラック等)の評価
を目視にて行い、評価値は○、×、△を用いて行った。
薄膜中の酸素と窒素の含有量、XおよびYの割合(原子
比)は、アルバック−ファイ(株)製オージェ電子分光
測定装置を用いて測定した。上記の評価結果は表1に併
せて示す。
The surface defects (pinholes, cracks, etc.) were evaluated visually using an optical microscope when magnified 400 times, and the evaluation values were evaluated using ○, ×, and Δ.
The contents of oxygen and nitrogen in the thin film and the ratio of X and Y (atomic ratio) were measured using an Auger electron spectrometer manufactured by ULVAC-PHI, Inc. The above evaluation results are also shown in Table 1.

【0027】実施例2 実施例1にて用いたPETフィルムの片面に酸窒化イン
ジウム(InOX Y)からなる薄膜層をDCマグネト
ロンスパッタリング法により3nmの厚みで形成した。
更に詳しく説明すると、空気が充満している真空槽を1
×10-3Torrまで排気した後にアルゴンガスを圧力
3×10-3Torrまで導入し、続いて全圧が4.5×
10-3Torrになるように酸素ガスを導入し、更に全
圧が5.5×10-3Torrになるようにして窒素ガス
を導入し、金属シリコンターゲットを用いてDCマグネ
トロンスパッタリング法により該PETフィルムの片面
に3nmの厚みの酸窒化インジウム層を形成した。
Example 2 On the one surface of the PET film used in Example 1, a thin film layer made of indium oxynitride (InO X N Y ) was formed with a thickness of 3 nm by DC magnetron sputtering.
More specifically, a vacuum chamber filled with air is set to 1
After exhausting to 10 -3 Torr, argon gas was introduced to a pressure of 3 10 -3 Torr, and then the total pressure was increased to 4.5 x 10 Torr.
10 introducing oxygen gas so that the -3 Torr, a nitrogen gas was introduced as further total pressure becomes 5.5 × 10 -3 Torr, the PET by DC magnetron sputtering method using a metal silicon target An indium oxynitride layer having a thickness of 3 nm was formed on one side of the film.

【0028】得られた酸窒化インジウム薄膜層上に実施
例1と同様にしてITO薄膜層を形成して透明導電性フ
ィルムを得た。得られた透明導電性フィルムの光線透過
率、耐屈曲性、表面状態、酸素と窒素の割合を実施例1
と同様にして測定した。結果を表1に併せて示す。
On the obtained indium oxynitride thin film layer, an ITO thin film layer was formed in the same manner as in Example 1 to obtain a transparent conductive film. The light transmittance, the bending resistance, the surface state, and the ratio of oxygen and nitrogen of the obtained transparent conductive film were determined in Example 1.
The measurement was performed in the same manner as described above. The results are shown in Table 1.

【0029】実施例3 酸窒化珪素層の厚みを15nmとなるように形成した以
外は実施例1と同様にして透明導電性フィルムを得た。
得られた透明導電性フィルムの光線透過率、耐屈曲性、
表面状態、酸素と窒素の割合を実施例1と同様にして測
定した。結果を表1に併せて示す。
Example 3 A transparent conductive film was obtained in the same manner as in Example 1, except that the silicon oxynitride layer was formed to have a thickness of 15 nm.
Light transmittance, bending resistance, of the obtained transparent conductive film,
The surface condition and the ratio of oxygen and nitrogen were measured in the same manner as in Example 1. The results are shown in Table 1.

【0030】実施例4 実施例1において作成した酸窒化珪素上に実施例2と同
じ条件で酸窒化インジウム層を形成した。得られた酸窒
化インジウム薄膜層上に実施例1と同様にしてITO薄
膜層を形成して透明導電性フィルムを得た。得られた透
明導電性フィルムの光線透過率、耐屈曲性、表面状態、
酸素と窒素の割合を実施例1と同様にして測定した。結
果を表1に併せて示す。
Example 4 An indium oxynitride layer was formed on the silicon oxynitride prepared in Example 1 under the same conditions as in Example 2. An ITO thin film layer was formed on the obtained indium oxynitride thin film layer in the same manner as in Example 1 to obtain a transparent conductive film. Light transmittance, bending resistance, surface state of the obtained transparent conductive film,
The ratio between oxygen and nitrogen was measured in the same manner as in Example 1. The results are shown in Table 1.

【0031】実施例5 実施例1において酸窒化珪素層を形成する際に酸素を全
圧が4.5×10-3Torrになるように導入し、更に
窒素を全圧が5×10-3Torrになるように導入した
以外は実施例1と同様にして透明導電性フィルムを得
た。得られた透明導電性フィルムの光線透過率、耐屈曲
性、表面状態、酸素と窒素の割合を実施例1と同様にし
て測定した。結果を表1に併せて示す。
[0031] Example 5 Example of oxygen when forming the silicon oxynitride layer in 1 introduced so that the total pressure becomes 4.5 × 10 -3 Torr, the total pressure further nitrogen 5 × 10 -3 A transparent conductive film was obtained in the same manner as in Example 1 except that the film was introduced so as to be Torr. The light transmittance, bending resistance, surface state, and ratio of oxygen and nitrogen of the obtained transparent conductive film were measured in the same manner as in Example 1. The results are shown in Table 1.

【0032】実施例6 実施例1にて用いたPETフィルムの片面に酸窒化クロ
ム(CrOX Y )からなる薄膜層をDCマグネトロン
スパッタリング法により3nmの厚みで形成した。更に
詳しく説明すると、空気が充満している真空槽を1×1
-3Torrまで排気した後にアルゴンガスを圧力3×
10-3Torrまで導入し、続いて全圧が4.5×10
-3Torrになるように酸素ガスを導入し、更に全圧が
5.5×10-3Torrになるようにして窒素ガスを導
入し、金属シリコンターゲットを用いてDCマグネトロ
ンスパッタリング法により該PETフィルムの片面に3
nmの厚みの酸窒化クロム層を形成した。得られた酸窒
化クロム薄膜層上に実施例1と同様にしてITO薄膜層
を形成して透明導電性フィルムを得た。得られた透明導
電性フィルムの光線透過率、耐屈曲性、表面状態、酸素
と窒素の割合を実施例1と同様にして測定した。結果を
表1に併せて示す。
Example 6 A thin film layer made of chromium oxynitride (CrO X N Y ) was formed on one side of the PET film used in Example 1 to a thickness of 3 nm by DC magnetron sputtering. More specifically, a vacuum chamber filled with air is 1 × 1
After evacuating to 0 -3 Torr, argon gas was supplied at a pressure of 3 ×.
It was introduced up to 10 -3 Torr, and then the total pressure was 4.5 × 10
Introducing oxygen gas so that the -3 Torr, a nitrogen gas was introduced as further total pressure becomes 5.5 × 10 -3 Torr, the PET film by a DC magnetron sputtering method using a metal silicon target 3 on one side of
A chromium oxynitride layer having a thickness of nm was formed. An ITO thin film layer was formed on the obtained chromium oxynitride thin film layer in the same manner as in Example 1 to obtain a transparent conductive film. The light transmittance, bending resistance, surface state, and ratio of oxygen and nitrogen of the obtained transparent conductive film were measured in the same manner as in Example 1. The results are shown in Table 1.

【0033】実施例7 実施例6において酸窒化クロム層を形成する際に酸素を
全圧が4.8×10-3Torrになるように導入し、更
に窒素を全圧が5×10-3Torrになるように導入し
た以外は実施例1と同様にして透明導電性フィルムを得
た。得られた透明導電性フィルムの光線透過率、耐屈曲
性、表面状態、酸素と窒素の割合を実施例1と同様にし
て測定した。結果を表1に併せて示す。
Example 7 In Example 6, when forming the chromium oxynitride layer, oxygen was introduced so that the total pressure became 4.8 × 10 −3 Torr, and nitrogen was further introduced at a total pressure of 5 × 10 −3 Torr. A transparent conductive film was obtained in the same manner as in Example 1 except that the film was introduced so as to be Torr. The light transmittance, bending resistance, surface state, and ratio of oxygen and nitrogen of the obtained transparent conductive film were measured in the same manner as in Example 1. The results are shown in Table 1.

【0034】実施例8 実施例6において酸窒化クロム層を形成する際に酸素を
全圧が4.2×10-3Torrになるように導入し、更
に窒素を全圧が5×10-3Torrになるように導入し
た以外は実施例1と同様にして透明導電性フィルムを得
た。得られた透明導電性フィルムの光線透過率、耐屈曲
性、表面状態、酸素と窒素の割合を実施例1と同様にし
て測定した。結果を表1に併せて示す。
Example 8 In Example 6, when forming the chromium oxynitride layer, oxygen was introduced so that the total pressure became 4.2 × 10 −3 Torr, and nitrogen was further introduced at a total pressure of 5 × 10 −3 Torr. A transparent conductive film was obtained in the same manner as in Example 1 except that the film was introduced so as to be Torr. The light transmittance, bending resistance, surface state, and ratio of oxygen and nitrogen of the obtained transparent conductive film were measured in the same manner as in Example 1. The results are shown in Table 1.

【0035】比較例1 実施例1において用いたPETフィルムの片面に、酸化
珪素(SiOX )からなる透明薄膜層をDCマグネトロ
ンスパッタリング法により2nmの厚みで形成した。更
に詳しく説明すると、空気が充満している真空槽を1×
10-3Torrまで排気した後にアルゴンガスを圧力3
×10-3Torrまで導入し、続いて全圧が4×10-3
Torrになるように酸素ガスを導入し、金属シリコン
ターゲットを用いてDCマグネトロンスパッタリング法
により該PETフィルムの片面に2nmの厚みの酸化珪
素層を形成した。得られた酸化珪素薄膜層上に実施例1
と同様にしてITO薄膜層を形成して透明導電性フィル
ムを得た。得られた透明導電性フィルムの光線透過率、
耐屈曲性、表面状態、酸素と窒素の割合を実施例1と同
様にして測定した。結果を表1に併せて示す。
Comparative Example 1 On one surface of the PET film used in Example 1, a transparent thin film layer made of silicon oxide (SiO x ) was formed with a thickness of 2 nm by DC magnetron sputtering. More specifically, a vacuum chamber filled with air is 1 ×
After evacuating to 10 -3 Torr, the argon gas was supplied at a pressure of 3
Up to × 10 -3 Torr, followed by a total pressure of 4 × 10 -3
An oxygen gas was introduced so that the pressure became Torr, and a silicon oxide layer having a thickness of 2 nm was formed on one surface of the PET film by a DC magnetron sputtering method using a metal silicon target. Example 1 on the obtained silicon oxide thin film layer
A transparent conductive film was obtained by forming an ITO thin film layer in the same manner as described above. Light transmittance of the obtained transparent conductive film,
Flex resistance, surface condition, and the ratio of oxygen and nitrogen were measured in the same manner as in Example 1. The results are shown in Table 1.

【0036】比較例2 実施例1において用いたPETフィルムの片面に、窒化
珪素(SiNX )からなる透明薄膜層をDCマグネトロ
ンスパッタリング法により2nmの厚みで形成した。更
に詳しく説明すると、空気が充満している真空槽を1×
10-3Torrまで排気した後にアルゴンガスを圧力3
×10-3Torrまで導入し、続いて全圧が4×10-3
Torrになるように窒素ガスを導入し、金属シリコン
ターゲットを用いてDCマグネトロンスパッタリング法
により該PETフィルムの片面に2nmの厚みの窒化珪
素層を形成した。得られた窒化珪素薄膜層上に実施例1
と同様にしてITO薄膜層を形成して透明導電性フィル
ムを得た。得られた透明導電性フィルムの光線透過率、
耐屈曲性、表面状態、酸素と窒素の割合を実施例1と同
様にして測定した。結果を表1に併せて示す。
Comparative Example 2 On one surface of the PET film used in Example 1, a transparent thin film layer made of silicon nitride (SiN x ) was formed with a thickness of 2 nm by DC magnetron sputtering. More specifically, a vacuum chamber filled with air is 1 ×
After evacuating to 10 -3 Torr, the argon gas was supplied at a pressure of 3
Up to × 10 -3 Torr, followed by a total pressure of 4 × 10 -3
A nitrogen gas was introduced so that the pressure became Torr, and a silicon nitride layer having a thickness of 2 nm was formed on one surface of the PET film by DC magnetron sputtering using a metal silicon target. Example 1 on the obtained silicon nitride thin film layer
A transparent conductive film was obtained by forming an ITO thin film layer in the same manner as described above. Light transmittance of the obtained transparent conductive film,
Flex resistance, surface condition, and the ratio of oxygen and nitrogen were measured in the same manner as in Example 1. The results are shown in Table 1.

【0037】比較例3 実施例1において用いたPETフィルム上に実施例1と
同様にしてITO層を設け透明導電性フィルムを得た。
得られた透明導電性フィルムの光線透過率、耐屈曲性、
表面状態、酸素と窒素の割合を実施例1と同様にして測
定した。
Comparative Example 3 An ITO layer was provided on the PET film used in Example 1 in the same manner as in Example 1 to obtain a transparent conductive film.
Light transmittance, bending resistance, of the obtained transparent conductive film,
The surface condition and the ratio of oxygen and nitrogen were measured in the same manner as in Example 1.

【0038】比較例4 酸窒化珪素層の厚みを0.05nmとなるように形成し
た以外は実施例1と同様にして透明導電性フィルムを得
た。得られた透明導電性フィルムの光線透過率、耐屈曲
性、表面状態、酸素と窒素の割合を実施例1と同様にし
て測定した。結果を表1に併せて示す。
Comparative Example 4 A transparent conductive film was obtained in the same manner as in Example 1 except that the silicon oxynitride layer was formed so as to have a thickness of 0.05 nm. The light transmittance, bending resistance, surface state, and ratio of oxygen and nitrogen of the obtained transparent conductive film were measured in the same manner as in Example 1. The results are shown in Table 1.

【0039】比較例5 酸窒化珪素層の厚みを30nmとなるように形成した以
外は実施例1と同様にして透明導電性フィルムを得た。
得られた透明導電性フィルムの光線透過率、耐屈曲性、
表面状態、酸素と窒素の割合を実施例1と同様にして測
定した。結果を表1に併せて示す。
Comparative Example 5 A transparent conductive film was obtained in the same manner as in Example 1, except that the silicon oxynitride layer was formed to have a thickness of 30 nm.
Light transmittance, bending resistance, of the obtained transparent conductive film,
The surface condition and the ratio of oxygen and nitrogen were measured in the same manner as in Example 1. The results are shown in Table 1.

【0040】[0040]

【表1】 ○ : 顕微鏡で見てクラック、ピンホールがない。 △ : 顕微鏡で見てクラック、ピンホールが少し有る。 × : 顕微鏡で見てクラック、ピンホールが沢山有る。[Table 1] : No cracks or pinholes observed under a microscope. Δ: Cracks and pinholes were slightly observed under a microscope. ×: There are many cracks and pinholes when viewed under a microscope.

【0041】[0041]

【発明の効果】透明プラスチックフィルムと透明導電層
の界面に金属酸窒化物からなる薄膜層を形成すると透明
プラスチックフィルムと透明導電層との密着性が飛躍的
に向上し、曲げ加工などの後加工に適した、しかも透明
性の高い透明導電性フィルムが得られる。
According to the present invention, when a thin film layer made of metal oxynitride is formed at the interface between the transparent plastic film and the transparent conductive layer, the adhesion between the transparent plastic film and the transparent conductive layer is greatly improved, and post-processing such as bending is performed. And a transparent conductive film having high transparency can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 祐一郎 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 坂井 ▲祥▼浩 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 鈴木 彰 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 中島 明美 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuichiro Harada 2-1-1 Tango-dori, Minami-ku, Nagoya City, Aichi Prefecture Inside Mitsui Toatsu Chemicals Co., Ltd. (72) Inventor Sakai 2-1-1, Mitsui Toatsu Chemical Co., Ltd. (72) Inventor Akira Suzuki 2-1-1, Tango-dori, Minami-ku, Nagoya-shi, Aichi Pref. Mitsui Toatsu Chemical Co., Ltd. 2-1-1 Tango-dori Ward, Mitsui Toatsu Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラスチックフィルムからなる基材上に
透明導電層を積層した透明導電性フィルムにおいて、基
材と透明導電層との間に金属酸窒化物(MO X Y :た
だし、Mは金属原子、Xは0.05〜3.5、Yは、
0.03〜2.6かつ、X+1.5Y≦3.5)層から
なる中間層を設け、かつその中間層の厚みが0.1〜1
9nmであることを特徴とする透明導電性フィルム。
1. On a substrate made of a plastic film
In a transparent conductive film laminated with a transparent conductive layer,
Metal oxynitride (MO) between the material and the transparent conductive layer XNY: Ta
However, M is a metal atom, X is 0.05 to 3.5, and Y is
0.03 to 2.6 and X + 1.5Y ≦ 3.5)
And an intermediate layer having a thickness of 0.1 to 1
A transparent conductive film having a thickness of 9 nm.
【請求項2】 中間層が酸窒化珪素、酸窒化インジウ
ム、酸窒化ガリウム、酸窒化アルミニウム、酸窒化錫、
酸窒化ほう素、酸窒化クロムの群から選ばれる金属酸窒
化物単層もしくは2種類以上の単層の積層体であること
を特徴とする請求項1記載の透明導電性フィルム。
2. An intermediate layer comprising silicon oxynitride, indium oxynitride, gallium oxynitride, aluminum oxynitride, tin oxynitride,
The transparent conductive film according to claim 1, wherein the transparent conductive film is a metal oxynitride single layer selected from the group consisting of boron oxynitride and chromium oxynitride, or a laminate of two or more single layers.
【請求項3】 金属酸窒化物における酸素と窒素の割合
(X/Y)が、0.1〜10.0(原子比)であること
を特徴とする請求項1記載の透明導電性フィルム。
3. The transparent conductive film according to claim 1, wherein the ratio (X / Y) of oxygen and nitrogen in the metal oxynitride is 0.1 to 10.0 (atomic ratio).
JP8198657A 1996-07-29 1996-07-29 Transparent conductive film Pending JPH1034798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8198657A JPH1034798A (en) 1996-07-29 1996-07-29 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8198657A JPH1034798A (en) 1996-07-29 1996-07-29 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH1034798A true JPH1034798A (en) 1998-02-10

Family

ID=16394879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8198657A Pending JPH1034798A (en) 1996-07-29 1996-07-29 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH1034798A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264245A (en) * 2001-03-09 2002-09-18 Toppan Printing Co Ltd Laminate
WO2011108552A1 (en) * 2010-03-02 2011-09-09 住友金属鉱山株式会社 Laminate, method for producing same, and functional element using same
CN102560392A (en) * 2010-12-24 2012-07-11 鸿富锦精密工业(深圳)有限公司 Aluminum and aluminum alloy surface anti-corrosion processing method and product thereof
WO2013073280A1 (en) * 2011-11-18 2013-05-23 東海ゴム工業株式会社 Film member and method for producing same
WO2015159804A1 (en) * 2014-04-15 2015-10-22 旭硝子株式会社 Laminate, conductive laminate and electronic device
US9506142B2 (en) 2011-04-28 2016-11-29 Sumitomo Riko Company Limited High density microwave plasma generation apparatus, and magnetron sputtering deposition system using the same
KR20160136109A (en) * 2015-05-19 2016-11-29 한국과학기술연구원 Tin oxynitride single crystal thin film and method for fabricating the same
CN114000104A (en) * 2021-10-13 2022-02-01 深圳市恒鼎新材料有限公司 High polymer material coating process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264245A (en) * 2001-03-09 2002-09-18 Toppan Printing Co Ltd Laminate
JP4665321B2 (en) * 2001-03-09 2011-04-06 凸版印刷株式会社 Laminated body
US9045821B2 (en) 2010-03-02 2015-06-02 Sumitomo Metal Mining Co., Ltd. Laminate, method for producing same, and functional element using same
JP2011201301A (en) * 2010-03-02 2011-10-13 Sumitomo Metal Mining Co Ltd Laminate, manufacturing method thereof, and functional element using the same
US20120325310A1 (en) * 2010-03-02 2012-12-27 Shigefusa Chichibu Laminate, method for producing same, and functional element using same
TWI484662B (en) * 2010-03-02 2015-05-11 Sumitomo Metal Mining Co A laminated body and a method for manufacturing the same, and a semiconductor light-emitting element and a solar battery using the same
WO2011108552A1 (en) * 2010-03-02 2011-09-09 住友金属鉱山株式会社 Laminate, method for producing same, and functional element using same
EP2543507A4 (en) * 2010-03-02 2017-05-17 Sumitomo Metal Mining Co., Ltd. Laminate, method for producing same, and functional element using same
CN102560392A (en) * 2010-12-24 2012-07-11 鸿富锦精密工业(深圳)有限公司 Aluminum and aluminum alloy surface anti-corrosion processing method and product thereof
US9506142B2 (en) 2011-04-28 2016-11-29 Sumitomo Riko Company Limited High density microwave plasma generation apparatus, and magnetron sputtering deposition system using the same
WO2013073280A1 (en) * 2011-11-18 2013-05-23 東海ゴム工業株式会社 Film member and method for producing same
JP2013108118A (en) * 2011-11-18 2013-06-06 Tokai Rubber Ind Ltd Film member, and method of producing the same
WO2015159804A1 (en) * 2014-04-15 2015-10-22 旭硝子株式会社 Laminate, conductive laminate and electronic device
KR20160136109A (en) * 2015-05-19 2016-11-29 한국과학기술연구원 Tin oxynitride single crystal thin film and method for fabricating the same
CN114000104A (en) * 2021-10-13 2022-02-01 深圳市恒鼎新材料有限公司 High polymer material coating process

Similar Documents

Publication Publication Date Title
JP2667680B2 (en) Transparent conductive laminate
TW201505040A (en) Transparent electroconductive film and manufacturing method therefor
JPWO2007013269A1 (en) Reflective film laminate
JP2667686B2 (en) Transparent conductive laminate
JPH11110110A (en) Transparent conductive film for touch panel
JPH1034798A (en) Transparent conductive film
JP2003109434A (en) Transparent conductive film and touch panel
JPH02213006A (en) Transparent conductive laminated body
JP2017224409A (en) Transparent conductor
JPH0862590A (en) Substrate for transparent electrode
JPH0957892A (en) Transparent conductive laminate
JP4214063B2 (en) Transparent conductive laminate and touch panel
JP2002343150A (en) Transparent electric conductive film and its manufacturing method
JP4056342B2 (en) Laminated film with reduced curl
JP2005071901A (en) Transparent conductive laminated film
JPH1148388A (en) Transparent conductive film
JPH06251632A (en) Transparent conductive film having high flexibility and manufacture thereof
JP2829003B2 (en) Transparent conductive laminate
JP2000329934A (en) Transparent electrically conductive film
JP2003098339A (en) Method for manufacturing filter for display
JP3501819B2 (en) Transparent conductive film with excellent flatness
JP2003225964A (en) Transparent conducting thin film laminate and its use application
JPH02273409A (en) Transparent conductive laminate
JP2613206B2 (en) Method for producing transparent conductive film
JP2001283645A (en) Transparent conductive film and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050712