WO2015033871A1 - ポリ-ガンマ-グルタミン酸の生産方法 - Google Patents

ポリ-ガンマ-グルタミン酸の生産方法 Download PDF

Info

Publication number
WO2015033871A1
WO2015033871A1 PCT/JP2014/072740 JP2014072740W WO2015033871A1 WO 2015033871 A1 WO2015033871 A1 WO 2015033871A1 JP 2014072740 W JP2014072740 W JP 2014072740W WO 2015033871 A1 WO2015033871 A1 WO 2015033871A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
strain
pga
medium
glycerin
Prior art date
Application number
PCT/JP2014/072740
Other languages
English (en)
French (fr)
Inventor
健太 増田
澤田 和久
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201480034820.0A priority Critical patent/CN105555946A/zh
Priority to KR1020157036269A priority patent/KR102265998B1/ko
Publication of WO2015033871A1 publication Critical patent/WO2015033871A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/10Bacillus licheniformis

Definitions

  • the present invention relates to a method for producing poly-gamma-glutamic acid and a microorganism used therefor.
  • Poly-gamma-glutamic acid (hereinafter also referred to as “PGA” in the present specification) is a polymer compound in which a carboxyl group at the ⁇ position and an amino group at the ⁇ position of glutamic acid are bonded by a peptide bond. PGA may also be called ⁇ -polyglutamic acid. PGA is known as a viscous substance produced by Bacillus subtilis var. Natto and has recently attracted attention as a new polymer material due to various properties.
  • microorganisms that produce PGA include some Bacillus bacteria including natto and related species, and halophilic archaeon Natrialba aegyptiaca (see Non-Patent Document 1). Further, it is known that these PGA-producing bacteria include microorganisms having different glutamic acid dependence on PGA productivity (see Non-Patent Document 2). That is, there are microorganisms that require glutamic acid in PGA production and microorganisms that do not require glutamic acid.
  • the Bacillus subtilis TAM-4 strain produces PGA independent of glutamate using glucose, fructose, galactose, saccharose, lactose, maltose, xylose, and glycerin as sole carbon sources, respectively.
  • glycerin among the carbon sources, the production capacity of PGA of Bacillus subtilis TAM-4 strain is 0.6 g / L / 4 days. Therefore, it is considered that the PGA productivity of Bacillus subtilis TAM-4 has not achieved a sufficient production amount from an industrial viewpoint.
  • Non-Patent Document 3 the Bacillus licheniformis A35 strain that produces PGA in a glutamate-independent manner has glucose, fructose, maltose, galactose, lactose, sucrose, and xylose, respectively. PGA is produced as a carbon source. However, it is described that Bacillus licheniformis A35 strain does not produce PGA under the condition that glycerin is the only carbon source.
  • Non-Patent Document 2 describes that the Bacillus licheniformis ATCC9945a strain produces PGA in a glutamate-dependent manner.
  • Non-Patent Document 4 describes that the Bacillus licheniformis ATCC9945a strain produces PGA independent of glutamate.
  • Non-Patent Document 4 does not confirm that Bacillus licheniformis ATCC9945a strain produces PGA using glycerin as the sole carbon source.
  • Non-Patent Document 5 describes that the Bacillus licheniformis ATCC9945a strain uses glycerin as the sole carbon source and does not produce PGA.
  • the Bacillus licheniformis WBL-3 strain a mutant of the Bacillus licheniformis ATCC9945a strain, produced 8.9 g / L / 4 days of PGA under the condition that glycerin is the only carbon source. It has been described in Non-Patent Document 6 that it has the property.
  • Glutamic acid can be produced by fermentation using biomass as a raw material, and is used as a food material or feed.
  • Microorganisms that can efficiently produce PGA, which is a useful polymer material, without using glutamic acid as a raw material, are beneficial from the viewpoint of avoiding competition with food, or from the viewpoint of industrial production costs. it is conceivable that.
  • glycerin is desired to be effectively used as a by-product generated during the production of biofuels.
  • a microorganism that efficiently produces PGA independent of glutamic acid using these glycerins as the only carbon source can be found, it is considered that the utility value is high from an industrial viewpoint.
  • the present invention relates to a microorganism identified by accession number NITE BP-01552, NITE BP-01551, NITE BP-01553, NITE BP-01554, or NITE BP-01555.
  • the present invention also relates to a method for producing PGA, wherein the microorganism is cultured to produce PGA.
  • An object of the present invention is to provide a wild-type microorganism excellent in PGA production ability. Another object of the present invention is to provide a wild-type microorganism capable of high production of PGA using glycerin as a sole carbon source even in the absence of glutamic acid. Moreover, this invention makes it a subject to provide the production method of PGA in which the high production of PGA is possible.
  • the present inventors have conducted intensive studies in view of the above problems. As a result, even in the absence of glutamic acid, a wild-type microorganism capable of high production of PGA using glycerin as a sole carbon source was found. The present invention has been completed based on this finding.
  • the microorganism of the present invention is superior in PGA-producing ability as compared with conventional wild-type microorganisms having PGA-producing ability.
  • the microorganism of the present invention can produce PGA at a high rate using glycerin as the sole carbon source even in the absence of glutamic acid.
  • the method for producing PGA of the present invention using the microorganism enables high production of PGA.
  • wild-type microorganism refers to a microorganism that has been isolated or isolated from the natural world and has not been subjected to artificial mutation treatment or artificial genetic recombination.
  • the microorganism of the present invention is a wild-type microorganism that is excellent in PGA-producing ability as compared with conventional wild-type microorganisms having PGA-producing ability.
  • the microorganism of the present invention is a wild-type microorganism capable of producing PGA with high yield using glycerin as a sole carbon source even in the absence of glutamic acid.
  • the PGA production method of the present invention using the microorganism enables high production of PGA.
  • the Bacillus licheniformis KSM-PG121 strain was incorporated on February 28, 2013 by the National Institute of Technology and Evaluation Technology for Microorganisms (2-5 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan). -8) was deposited under the accession number NITE BP-01552.
  • the Bacillus licheniformis KSM-PG115 strain was deposited on February 28, 2013 at the National Institute for Product Evaluation Technology Patent Microorganism Depositary Center (2-5-8, Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan). Deposited at BP-01551.
  • Bacillus Richeniformis KSM-FFA033 strain was deposited on February 28, 2013 at the National Institute for Product Evaluation Technology Patent Microorganisms Depositary Center (2-5-8, Kazusa Kamashichi, Kisarazu City, Chiba, Japan). Deposited at BP-01553.
  • Bacillus licheniformis KSM-FFA036 was accepted on February 28, 2013 by the National Institute for Product Evaluation Technology Patent Microorganisms Deposit Center (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan) under the accession number NITE. Deposited at BP-01554.
  • Bacillus licheniformis KSM-FFA039 strain was deposited on February 28, 2013 at the National Institute for Product Evaluation Technology Patent Microorganisms Depositary Center (2-5-8, Kazusa Kamashichi, Kisarazu, Chiba, Japan). Deposited at BP-01555, respectively.
  • These microorganisms of the present invention are all wild type microorganisms. Further, all of these microorganisms of the present invention are classified as Bacillus licheniformis in taxonomics.
  • the Bacillus licheniformis KSM-PG121 strain has 16S rDNA consisting of the base sequence represented by SEQ ID NO: 7.
  • the Bacillus licheniformis KSM-PG121 strain has 16S rDNA consisting of a base sequence having a homology of 99.5% or more, preferably 99.8% or more with the base sequence represented by SEQ ID NO: 7.
  • the Bacillus licheniformis KSM-PG121 strain has a deletion, substitution, or substitution of 1 to 14, preferably 1 to 7, more preferably 1 to 3, nucleotides in the nucleotide sequence represented by SEQ ID NO: 7.
  • the Bacillus licheniformis KSM-PG115 strain has 16S rDNA consisting of the base sequence represented by SEQ ID NO: 8.
  • the Bacillus licheniformis KSM-PG115 strain has 16S rDNA consisting of a base sequence having a homology of 99.5% or more, preferably 99.8% or more, with the base sequence represented by SEQ ID NO: 8.
  • the Bacillus licheniformis KSM-PG115 strain has a deletion, substitution, or insertion of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in the base sequence represented by SEQ ID NO: 8.
  • it has 16S rDNA consisting of an added base sequence.
  • the Bacillus licheniformis KSM-FFA033 strain has 16S rDNA consisting of the base sequence represented by SEQ ID NO: 9.
  • the Bacillus licheniformis KSM-FFA033 strain has 16S rDNA consisting of a base sequence having a homology of 99.5% or more, preferably 99.8% or more with the base sequence represented by SEQ ID NO: 9.
  • the Bacillus licheniformis KSM-FFA033 strain has a deletion, substitution, or insertion of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in the base sequence represented by SEQ ID NO: 9.
  • it has 16S rDNA consisting of an added base sequence.
  • the Bacillus licheniformis KSM-FFA036 strain has 16S rDNA consisting of the base sequence represented by SEQ ID NO: 10.
  • the Bacillus licheniformis KSM-FFA036 strain has 16S rDNA consisting of a base sequence having a homology of 99.5% or more, preferably 99.8% or more, with the base sequence represented by SEQ ID NO: 10.
  • the Bacillus licheniformis KSM-FFA036 strain has a deletion, substitution, or insertion of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in the base sequence represented by SEQ ID NO: 10.
  • it has 16S rDNA consisting of an added base sequence.
  • the Bacillus licheniformis KSM-FFA039 strain has 16S rDNA consisting of the base sequence represented by SEQ ID NO: 11.
  • the Bacillus licheniformis KSM-FFA039 strain has 16S rDNA comprising a base sequence having a homology of 99.5% or more, preferably 99.8% or more with the base sequence represented by SEQ ID NO: 11.
  • the Bacillus licheniformis KSM-FFA039 strain has a deletion, substitution, or insertion of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in the base sequence represented by SEQ ID NO: 11.
  • it has 16S rDNA consisting of an added base sequence.
  • the homology of the nucleotide sequence is defined in “BLAST” in the menu “Nucleotide” of the public database NCIMB (National Center for Biotechnology Information, http://www.ncbi.nlm.gov/). It can be calculated using “Basic BLAST”.
  • BLAST National Center for Biotechnology Information
  • NCIMB National Center for Biotechnology Information, http://www.ncbi.nlm.gov/.
  • Basic BLAST National Center for Biotechnology Information, http://www.ncbi.nlm.gov/.
  • Genetyx-Win gene information processing software, manufactured by Genetics
  • the homology of the base sequence was calculated between the base sequence represented by SEQ ID NO: 7 and the base sequence represented by SEQ ID NO: 8 by the homology analysis program of Genetyx-Win (Genetic Information Processing Software, manufactured by Genetics). . As a result, the homology was 100% between the base sequence represented by SEQ ID NO: 7 and the base sequence represented by SEQ ID NO: 8. This result indicates that the 16S rDNA comprising the base sequence represented by SEQ ID NO: 7 and the 16S rDNA comprising the base sequence represented by SEQ ID NO: 8 are substantially the same 16S rDNA.
  • each of the microorganisms of the present invention has the mycological properties shown in Table 1 below.
  • the microorganism of the present invention has a property of non-assimilating dulcitol as a common property. Therefore, it is preferable that the microorganism of the present invention does not have dulcitol utilization as a mycological property. Further, as shown in Table 1, the Bacillus licheniformis KSM-PG121 strain and the Bacillus licheniformis KSM-PG115 strain have substantially the same properties as the mycological properties described in Table 1.
  • the microorganism of the present invention is cultured in a medium containing glycerin as a sole carbon source in the absence of glutamic acid to produce PGA.
  • a medium containing glycerin as a sole carbon source in the absence of glutamic acid to produce PGA.
  • glycerin as a sole carbon source in the absence of glutamic acid to produce PGA.
  • 1.2 g / 4 per liter of the medium is used.
  • Tables 2 and 3 below show 7.5% glycerol-M medium and 10% glycerol-M medium, respectively.
  • the microorganism of the present invention depends on the culture conditions, growth is suppressed under conditions in which glycerin in the medium is present at a high concentration, that is, a standard reference strain (for example, Bacillus licheniformis ATCC9945a strain). Even in an environment where it is recognized, growth is difficult to be suppressed. That is, the microorganism of the present invention preferably has a higher degree of growth than the reference strain under high glycerin concentration conditions. Specifically, when the culture is performed using a medium having a glycerin content of 15% (w / v), the growth rate of a reference strain (for example, Bacillus licheniformis ATCC9945a strain) is 100%.
  • a reference strain for example, Bacillus licheniformis ATCC9945a strain
  • the growth degree of the microorganism of the invention is preferably 115% or more, preferably 120% or more, more preferably 150% or more.
  • the microorganism of the present invention when cultured using a medium having a glycerin content of 20% (w / v), the microorganism of the present invention when the growth of a reference strain (eg, Bacillus licheniformis ATCC9945a strain) is 100% It is preferable that the degree of growth is 120% or more, preferably 200% or more, more preferably 280% or more.
  • the culture of the microorganism of the present invention when cultured using a medium having a glycerin content of 15% (w / v) is cultured using a medium having a glycerin content of 10% (w / v) is cultured using a medium having a glycerin content of 10% (w / v) It is preferable that the growth rate is 85% or more, preferably 95% or more, more preferably 100% or more, and still more preferably 120% or more.
  • the growth rate of the microorganism of the present invention when cultured using a medium having a glycerin content of 20% (w / v) is cultured using a medium having a glycerin content of 10% (w / v) It is preferable that it is 30% or more, preferably 40% or more, more preferably 50% or more, still more preferably 55% or more, particularly preferably 70% or more.
  • the “growth degree” can be relatively calculated by measuring the absorbance (OD 600 ) of the culture solution after culturing.
  • the microorganism of the present invention was isolated and obtained by a usual method. Specifically, using a medium containing glycerin as the only carbon source, culturing in the absence of glutamic acid, selecting and isolating wild-type microorganisms with higher PGA production compared to other microorganisms , Acquired.
  • the Bacillus licheniformis WBL-3 strain described in Non-Patent Document 6 has a high PGA productivity of 8.9 g / L / 4 days.
  • the Bacillus licheniformis WBL-3 strain is not a wild type microorganism but a mutant type microorganism, and the wild type microorganism of the present invention is different from the Bacillus licheniformis WBL-3 strain. More specifically, the Bacillus licheniformis WBL-3 strain is a mutant of the Bacillus licheniformis ATCC9945a strain, and the Bacillus licheniformis ATCC9945a strain was irradiated with He-Ne laser. Yes.
  • the PGA production method of the present invention produces PGA using the microorganism of the present invention described above.
  • the microorganism of the present invention is superior in PGA-producing ability compared to conventional wild-type microorganisms. Therefore, according to the PGA production method of the present invention, high production of PGA is possible.
  • the microorganism of the present invention can produce PGA at a high rate using glycerin as the sole carbon source even in the absence of glutamic acid. As described above, glutamic acid is widely used as a raw material for food. Therefore, according to the production method of PGA of the present invention, high production of PGA can be achieved at low cost without competing with food production.
  • the microorganism of the present invention is cultured in an appropriate medium, and PGA produced outside the cells is recovered from the medium.
  • a medium containing saccharides such as glycerin, glucose, fructose, maltose, xylose, mannose, galactose, sucrose, starch and the like as a carbon source for producing PGA can be used.
  • the culture medium which contains various organic acids, such as a citric acid and an acetic acid, or its salt, glutamic acid or its salt, etc. as a carbon source for producing PGA can be used.
  • a carbon source for producing PGA as a carbon source for producing PGA, one of the carbon sources may be used, or two or more thereof may be used in combination.
  • a medium comprising glycerin as a carbon source, a medium not containing glutamic acid and containing glycerin as a sole carbon source, a group comprising glycerin as a main carbon source, organic acid, glutamic acid and salts thereof A medium using at least one selected from the above as an auxiliary carbon source can be preferably used.
  • “main carbon source” and “auxiliary carbon source” indicate the size of each carbon source in the medium.
  • the medium used in the method for producing PGA of the present invention may contain various natural products such as soybean protein, nitrogen sources such as amino acids, polypeptone, tryptone, ammonium chloride, ammonium sulfate, ammonium nitrate and urea. Furthermore, the medium used in the method for producing PGA of the present invention may contain inorganic salts such as sodium salt, magnesium salt, calcium salt, potassium salt and other necessary nutrients, trace metal salts and the like. The medium used in the method for producing PGA of the present invention may be a synthetic medium or a natural medium.
  • the microorganism of the present invention can produce a high amount of PGA using glycerin as a carbon source even in the absence of glutamic acid. Therefore, it is preferable from the viewpoint of production cost to produce PGA by culturing the microorganism of the present invention in a medium that does not contain glutamic acid and contains glycerin as a carbon source, or a medium that contains glycerin as the only carbon source.
  • the glycerin used for the production of PGA may be a commercially available product, or glycerin produced as a by-product during the production of biofuel or the like.
  • glycerin produced as a by-product By using glycerin produced as a by-product, secondary effects such as energy reduction for surplus substance processing and reduction of environmental pollution due to disposal can be obtained, leading to reduction of environmental load. Furthermore, since glycerin produced as a by-product can be purchased at a low cost, it is preferable from the viewpoint of production cost.
  • the glycerin content in the medium can be appropriately selected according to the microorganism species to be used. Specifically, it is preferably 1% (w / v) or more, more preferably 5% (w / v) or more, still more preferably 10% (w / v) or more, and 30% (w / v) or less. Preferably, 20% (w / v) or less is more preferable.
  • the culture conditions for the microorganism can be appropriately selected according to the microorganism to be used.
  • the optimum temperature is preferably 20 ° C. or higher (preferably 25 ° C. or higher, more preferably 30 ° C. or higher) and 50 ° C. or lower (preferably 45 ° C. or lower, more preferably 40 ° C. or lower).
  • the optimum pH is preferably 5 or more (preferably 5.5 or more, more preferably 6.5 or more) and 8 or less (preferably 7.5 or less, more preferably 7 or less).
  • the number of days of culture is 1 day or more (preferably 3 days or more, more preferably 4 days or more) after inoculation with the inoculum.
  • the culture method is not particularly limited, and examples include shaking culture, stirring culture, aeration culture, and stationary culture.
  • the method for removing the cells include a method by centrifugation, a method using microfiltration or an ultrafiltration membrane, an electrodialysis method, a method of recovering as a precipitate by maintaining the pH near the isoelectric point of PGA, and the like. It is done. In the present invention, the above methods can be used in appropriate combination.
  • the target PGA can be isolated and recovered by gel filtration chromatography, ion exchange chromatography, chloroform / methanol extraction method, hexane extraction method, ethanol extraction method or the like.
  • the PGA produced by the present invention can be used for various uses such as cosmetics, pharmaceuticals, foods, water purification agents, water retention materials, thickeners and the like.
  • the production cost of PGA can be greatly reduced.
  • the present invention further discloses a microorganism and a method for producing PGA as follows.
  • the microorganism specified by the accession number NITE BP-01552 is a nucleotide sequence represented by SEQ ID NO: 7 or a nucleotide sequence represented by SEQ ID NO: 7 and 99.5% or more, preferably 99.8% or more.
  • 16S consisting of a base sequence having homology or a base sequence in which deletion, substitution, insertion or addition of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in SEQ ID NO: 7 has rDNA
  • the microorganism identified by the accession number NITE BP-01551 has a nucleotide sequence represented by SEQ ID NO: 8, or a homology of 99.5% or more, preferably 99.8% or more, with the nucleotide sequence represented by SEQ ID NO: 8.
  • a 16S rDNA consisting of a base sequence having a deletion, substitution, insertion or addition of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in SEQ ID NO: 8.
  • the microorganism specified by the accession number NITE BP-01553 has a nucleotide sequence represented by SEQ ID NO: 9 or a homology of 99.5% or more, preferably 99.8% or more with the nucleotide sequence represented by SEQ ID NO: 9.
  • a 16S rDNA consisting of a base sequence having a deletion, substitution, insertion or addition of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in SEQ ID NO: 9.
  • the microorganism specified by the accession number NITE BP-01554 has a nucleotide sequence represented by SEQ ID NO: 10, or a homology of 99.5% or more, preferably 99.8% or more, with the nucleotide sequence represented by SEQ ID NO: 10.
  • a 16S rDNA consisting of a base sequence having a deletion, substitution, insertion or addition of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in SEQ ID NO: 10.
  • the microorganism specified by the accession number NITE BP-01555 has a nucleotide sequence represented by SEQ ID NO: 11, or a homology of 99.5% or more, preferably 99.8% or more, with the nucleotide sequence represented by SEQ ID NO: 11.
  • a 16S rDNA consisting of a base sequence having a deletion, substitution, insertion or addition of 1 to 14, preferably 1 to 7, more preferably 1 to 3 bases in SEQ ID NO: 11.
  • a microorganism identified by accession number NITE BP-01552 has a 16S rDNA consisting of the base sequence represented by SEQ ID NO: 7, and a microorganism identified by accession number NITE BP-01551 is the base represented by SEQ ID NO: 8.
  • the microorganism according to item. ⁇ 4> The ⁇ 1> to ⁇ 3>, wherein the 16S rDNA comprising the nucleotide sequence represented by SEQ ID NO: 7 and the 16S rDNA comprising the nucleotide sequence represented by SEQ ID NO: 8 are substantially the same 16S rDNA.
  • the microorganism according to any one of the above. ⁇ 5> The microorganism according to any one of ⁇ 1> to ⁇ 4>, wherein the microorganism is Bacillus licheniformis.
  • ⁇ 6> The microorganism according to any one of ⁇ 1> to ⁇ 5>, wherein the microorganism is a wild-type microorganism.
  • ⁇ 7> The microorganism according to any one of ⁇ 1> to ⁇ 6>, wherein each of the microorganisms has the mycological properties described in Table 1.
  • ⁇ 8> The microorganism according to any one of ⁇ 1> to ⁇ 7>, wherein each of the microorganisms has a property of non-assimilating dulcitol.
  • microorganism specified by the accession number NITE BP-01552 and the microorganism specified by the accession number NITE BP-01551 have substantially the same properties as the bacteriological properties described in Table 1 above.
  • the ability of the microorganism to produce PGA per liter of the medium is preferably 1.2 g / 4 days or more. Is 3.0 g / 4 days or more, more preferably 4.0 g / 4 days or more, and still more preferably 6.0 g / 4 days or more, according to any one of the above ⁇ 1> to ⁇ 10> Microorganisms.
  • ⁇ 12> When cultured using a medium having a glycerin content of 15% (w / v), the growth rate of the microorganism is 115% or more when the growth rate of Bacillus licheniformis ATCC9945a strain is 100%.
  • ⁇ 13> When cultured using a medium having a glycerin content of 20% (w / v), the growth rate of the microorganism is 120% or more when the growth rate of the Bacillus licheniformis ATCC9945a strain is 100%.
  • the microorganism according to any one of ⁇ 1> to ⁇ 12> which is preferably 200% or more, more preferably 280% or more.
  • the growth degree of the microorganism when cultivated using a medium having a glycerin content of 15% (w / v) is obtained by culturing using a medium having a glycerin content of 10% (w / v).
  • ⁇ 15> The growth degree of the microorganism when cultivated using a medium having a glycerin content of 20% (w / v) is obtained by culturing using a medium having a glycerin content of 10% (w / v). Any one of the above ⁇ 1> to ⁇ 14>, which is 30% or more of the degree of growth, preferably 40% or more, more preferably 50% or more, further preferably 55% or more, and particularly preferably 70% or more.
  • ⁇ 16> The microorganism according to any one of ⁇ 1> to ⁇ 15>, which is specified by an accession number NITE BP-01552 or NITE BP-01551.
  • ⁇ 17> A method for producing PGA, wherein the microorganism according to any one of ⁇ 1> to ⁇ 16> is cultured to produce PGA.
  • the method for producing PGA according to ⁇ 17> wherein the microorganism is cultured using a medium containing glycerin as a carbon source.
  • the microorganism is cultured using a medium containing glycerin as a main carbon source and at least one selected from the group consisting of an organic acid, glutamic acid and a salt thereof as an auxiliary carbon source, ⁇ 17> Or the production method of PGA as described in ⁇ 18>.
  • PGA production method The method for producing PGA according to ⁇ 17> or ⁇ 18>, wherein the microorganism is cultured using a medium not containing glutamic acid and containing glycerin as a sole carbon source.
  • the glycerin content in the medium is 1% (w / v) or more, preferably 5% (w / v) or more, more preferably Any one of ⁇ 18> to ⁇ 20>, which is 10% (w / v) or more, preferably 30% (w / v) or less, more preferably 20% (w / v) or less.
  • PGA production method ⁇ 22> The method for producing PGA according to any one of ⁇ 18> to ⁇ 21>, wherein the glycerin contained in the medium is glycerin produced as a by-product during production of biofuel or the like.
  • Test Example 1 Acquisition of microorganisms Soil samples and food samples collected in various places in Japan were added to 4.0 mL of 0.85% (w / v) sodium chloride aqueous solution sterilized in advance, and the mixture was stirred and mixed at 80 ° C. A heat treatment was performed for 30 minutes to prepare a sample stock solution. A sample diluted solution was prepared by diluting this sample stock solution 10 ⁇ 2 times and 10 ⁇ 4 times using the same sodium chloride aqueous solution.
  • LB agar medium (medium composition: 1.0% (w / v) Bacto trypton (Becton, Dickinson and Company), 0.5% (w / v) Yeast extract (Becton, Dickinson and Company), 0% (w / v) sodium chloride, 1.5% (w / v) agar) and Margaritis agar medium (medium composition: 3.82% (w / v) sodium glutamate monohydrate, 1.0% ( w / v) ammonium sulfate, 3.06% (w / v) trisodium citrate dihydrate, 2.0% (w / v) glycerol, 0.05% (w / v) magnesium sulfate heptahydrate 0.005% (w / v) iron chloride hexahydrate, 0.02% (w / v) calcium chloride heptahydrate, 0.003% (w / v) manganese sulfate
  • Example 1 A -80 ° C storage sample of the microorganism selected in Test Example 1 was streaked on an LB agar medium, and allowed to stand at 30 ° C overnight.
  • Non-patent document 2 describes the obtained single colony as a GB medium (medium composition: 1.0% (w / v) Far East Peptone (Kyokuto Pharmaceutical), 1.0% (w / v) pre-media normal bouillon medium (Kyokuto Pharmaceutical Co., Ltd.), 0.5% (w / v) sodium chloride (Wako Pure Chemical Industries, Ltd., adjusted to pH 7.0) is inoculated into 5 mL, and cultured with shaking at 30 ° C. and 250 rpm for 18 to 24 hours. It was.
  • glycerol-M medium (medium composition: 7.5% (w / v) glycerol, 1.8% (w / v) ammonium chloride, 0.15% (w / v) dipotassium hydrogen phosphate 0.035% (w / v) magnesium sulfate heptahydrate, 0.005% (w / v) manganese sulfate pentahydrate, 3.0% (w / v) calcium carbonate) in 30 mL 0.6 mL (2% (v / v)) was inoculated and subjected to shaking culture at 30 ° C. and 150 rpm for 4 days. Thereafter, the PGA productivity of each strain was measured. Table 4 shows the results of PGA productivity of each strain.
  • the microorganism of the present invention exhibits higher PGA productivity than the known Bacillus subtilis TAM-4 strain. It was confirmed.
  • the Bacillus licheniformis ATCC9945a reference strain which is a known strain, also newly produces PGA independent of glutamate using glycerol as the sole carbon source, contrary to the contents described in Non-Patent Document 5. Confirmed.
  • Example 2 Including the other microorganisms selected in Test Example 1, the microorganisms shown in Table 5 below were smeared on the LB agar medium and left to stand at 30 ° C. overnight. The obtained single colony was inoculated into 5 mL of LB medium, and cultured with shaking at 30 ° C. and 250 rpm for 18 to 24 hours. Further, 30 mL of 7.5% glycerin-M medium was inoculated with 0.6 mL (2% (v / v)) of the above culture solution, followed by shaking culture at 37 ° C. and 210 rpm for 4 days. Thereafter, the PGA productivity of each strain was measured. Table 5 shows the results of PGA productivity of each strain.
  • the microorganism of the present invention exhibits higher PGA productivity by changing the seed medium composition and the culture condition with respect to the experimental conditions of Non-Patent Document 2.
  • the microorganism of the present invention is more efficient in a glutamate-independent manner using glycerin as the sole carbon source, compared to the reference strain Bacillus licheniformis ATCC9945a reference strain. It was confirmed that production of PGA was possible.
  • Example 3 The microorganism selected in Test Example 1 was streaked on the LB agar medium and left to stand at 30 ° C. overnight. The obtained single colony was treated with 5 mL of LB medium and 10% glycerin-M medium (medium composition: 10% (w / v) glycerin, 1.8% (w / v) ammonium chloride, 0.15% (w / v ) Dipotassium hydrogen phosphate, 0.035% (w / v) magnesium sulfate heptahydrate, 0.005% (w / v) manganese sulfate pentahydrate, 3% (w / v) calcium carbonate)
  • microorganisms of the present invention particularly the Bacillus licheniformis KSM-PG121 strain, exhibited higher PGA productivity by optimizing the culture conditions such as glycerin concentration.
  • Example 4 The microorganism selected in Test Example 1 was streaked on the LB agar medium and left to stand at 30 ° C. overnight. The obtained single colony was inoculated into 5 mL of LB medium, and cultured with shaking at 30 ° C. and 250 rpm for 18 to 24 hours.
  • GC-E medium medium composition: 8% (w / v) glycerin, 1.84% (w / v) trisodium citrate dihydrate, 0.7% (w / v) ammonium chloride, 05% (w / v) dipotassium hydrogen phosphate, 0.05% (w / v) magnesium sulfate heptahydrate, 0.0148% (w / v) manganese sulfate pentahydrate, 0.015% ( w / v) calcium chloride dihydrate, 0.00017% (w / v) zinc sulfate heptahydrate, 0.000043% (w / v) copper sulfate monohydrate, 0.000006% (w / v) v) Cobalt chloride hexahydrate, 0.00073% (w / v) calcium chloride heptahydrate, 0.000006% (w / v) sodium molybdate dihydrate) (2% (vv
  • the microorganism of the present invention has a high production of PGA. It was possible.
  • Example 5 The microorganism selected in Test Example 1 was streaked on the LB agar medium and left to stand at 30 ° C. overnight. The obtained single colony was inoculated into 5 mL of LB medium, and cultured with shaking at 30 ° C. and 250 rpm for 18 to 24 hours.
  • GCM-E medium medium composition: 8% (w / v) glycerin, 1.84% (w / v) trisodium citrate dihydrate, 2.54% (w / v) sodium glutamate monohydrate , 0.7% (w / v) ammonium chloride, 0.05% (w / v) dipotassium hydrogen phosphate, 0.05% (w / v) magnesium sulfate heptahydrate, 0.0148% ( w / v) manganese sulfate pentahydrate, 0.015% (w / v) calcium chloride dihydrate, 0.00017% (w / v) zinc sulfate heptahydrate, 0.000043% (w / v) v) Copper sulfate monohydrate, 0.000006% (w / v) cobalt chloride hexahydrate, 0.00073% (w / v) calcium chloride heptahydrate, 0.000006% (w w v
  • the microorganism of the present invention has a high PGA content. Production was possible.
  • Test Example 2 Measurement of Microorganism Growth
  • the microorganism selected in Test Example 1 was smeared on an LB agar medium, and cultured at 30 ° C. overnight.
  • the obtained single colony was inoculated into 5 mL of LB medium, and cultured with shaking at 30 ° C. and 250 rpm for 18 to 24 hours.
  • M / MOPS medium containing 10%, 15% and 20% glycerin (medium composition: 10.0 to 20.0% (w / v) glycerin, 1.8% (w / v) ammonium chloride, 0 15% (w / v) dipotassium hydrogen phosphate, 0.035% (w / v) magnesium sulfate heptahydrate, 0.005% (w / v) manganese sulfate pentahydrate, 100 mM MOPS buffer (Monophorinopropanesulfonic acid, pH 7.0)) was inoculated with 5 mL of the culture solution (0.05 mL (1% (v / v))), followed by shaking culture at 37 ° C.
  • MOPS buffer Monophorinopropanesulfonic acid, pH 7.0
  • the results are shown in Table 9. Further, the growth degree of the reference strain at each glycerin concentration was defined as 100, and the relative values of the growth degrees at 15% and 20% glycerin concentrations were measured. The results are shown in parentheses in Table 9.
  • the Bacillus licheniformis ATCC9945a strain which is the reference strain, greatly decreased in growth under high concentration glycerin conditions.
  • the microorganisms of the present invention showed little decrease in the degree of growth under high concentration glycerin conditions. Furthermore, in the microorganism of the present invention, even if the degree of growth at 15% glycerin is 90% or more of the degree of growth at 10% glycerin, or 90% or less, the degree of growth at 20% glycerin is 10%. It was characteristic that it was 50% or more of the degree.
  • these properties may be a common feature of strains exhibiting high PGA productivity using glycerin as the sole carbon source even in the absence of glutamic acid.
  • the growth of the microorganism of the present invention in a medium containing glycerin concentration of 10% to 20% may be a common feature compared to the reference strain, Bacillus licheniformis ATCC9945a. .
  • the growth degree of the microorganism of the present invention in a medium containing a glycerin concentration of 10% to 20% is 109% or more compared to the reference strain.
  • Test Example 3 Mycological Properties Mycological properties of each strain of Bacillus licheniformis (KSM-PG121 strain, KSM-PG115 strain, KSM-FFA033 strain, KSM-FFA036 strain, and KSM-FFA039 strain) was examined. The results are shown in Table 10.
  • Bacillus licheniformis ATCC9945a the strain selected in Test Example 1 and the known strain, Bacillus licheniformis ATCC9945a reference strain. It was. Specifically, the Bacillus licheniformis KSM-PG115 and KSM-PG121 strains have assimilability to L-sorbose, L-rhamnose, dulcitol, D-melibiose, inulin, D-raffinose and gluconic acid. First of all, it is different from the reference stock of Bacillus licheniformis ATCC9945a.
  • Bacillus licheniformis KSM-FFA033, KSM-FFA036 and KSM-FFA039 strains have no assimilability to dulcitol, N-acetylglucosamine and D-lactose, and the reference strain Bacillus licheniformis Miss ATCC9945a strain.
  • Bacillus licheniformis KSM-FFA036 strain has no assimilability to D-melibiose and D-turanose, and is different from the Bacillus licheniformis ATCC9945a reference strain.
  • Bacillus licheniformis KSM-FFA039 strain has no assimilability to L-sorbose and gentiobiose, and is different from the reference strain Bacillus licheniformis ATCC9945a.
  • the Bacillus licheniformis ATCC 9945a reference strain has ducitol assimilability.
  • the strain selected in Test Example 1 does not have ducitol-utilizing properties in common, and even in the absence of glutamic acid, a strain exhibiting high PGA productivity using glycerin as the sole carbon source. This suggests the possibility of a common feature.
  • the Bacillus licheniformis KSM-PG121 strain and the Bacillus licheniformis KSM-PG115 strain have substantially the same properties as the mycological properties shown in Table 10. It is suggested that these mycological properties may be characteristic of Bacillus licheniformis, which shows particularly high PGA productivity when cultured using a medium that does not contain glutamic acid and contains glycerin as the sole carbon source. It was.
  • Test Example 4 Analysis of 16S rDNA base sequence of each strain About each strain of Bacillus licheniformis (KSM-PG115 strain, KSM-PG121 strain, KSM-FFA033 strain, KSM-FFA036 strain, and KSM-FFA039 strain) The bacteriological identification by 16S rDNA base sequence was performed.
  • a 16S rDNA region was prepared by performing PCR reaction using primers 27f and 1525r of the nucleotide sequences shown in Table 11 as a template for PCR reaction using a 30-fold diluted cryopreserved bacterial body in 1 mM TE buffer (pH 8.0). A full-length DNA fragment was amplified.
  • TaKaRa LA Taq (Takara Bio) was used as the DNA polymerase. PCR reaction conditions were as follows: after denaturing the template DNA at 95 ° C for 5 minutes, 30 cycles of 95 ° C for 1 minute, 55 ° C for 30 seconds, 72 ° C for 2 minutes, and then 72 ° C for 2 minutes Constant temperature. With respect to the obtained DNA fragment of about 1.5 kb of 16S rDNA region, using the primers 27f, f2L ( ⁇ ), 926f, rE1L, r2L ′, and 1525r of the nucleotide sequences shown in Table 11 as DNA primers for sequencing, Sequence analysis was performed.
  • the prepared sequence sample was subjected to sequence analysis using a DNA sequencer (trade name: ABI 3130xl Genetic Analyzer, Life Technologies) to determine the base sequence.
  • the base sequence of 16S rDNA of Bacillus licheniformis KSM-PG121 strain is shown in SEQ ID NO: 7.
  • the base sequence of 16S rDNA of Bacillus licheniformis KSM-PG115 strain is shown in SEQ ID NO: 8.
  • the base sequence of 16S rDNA of Bacillus licheniformis KSM-FFA033 strain is shown in SEQ ID NO: 9.
  • the base sequence of 16S rDNA of Bacillus licheniformis KSM-FFA036 strain is shown in SEQ ID NO: 10.
  • the base sequence of 16S rDNA of Bacillus licheniformis KSM-FFA039 strain is shown in SEQ ID NO: 11.
  • Each base sequence obtained was fragmented into 1 using Genetyx-Win (gene information processing software, manufactured by Genetics).
  • the homology of the base sequence is determined between the base sequence represented by SEQ ID NO: 7 and the base sequence represented by SEQ ID NO: 8 using the homology analysis program of Genetyx-Win (gene information processing software, manufactured by Genetics). Calculated. As a result, the homology was 100% between the base sequence represented by SEQ ID NO: 7 and the base sequence represented by SEQ ID NO: 8 as the base sequence.
  • the 16S rDNA consisting of the base sequence shown in SEQ ID NO: 7 and the 16S rDNA consisting of the base sequence shown in SEQ ID NO: 8 are substantially the same 16S rDNA, and the KSM-PG121 strain and KSM-PG115 The strains were found to have the same 16S rDNA.
  • Sequence homology search uses "Basic BLAST” in “BLAST” in the menu “Nucleotide” of the public database NCIMB (National Center for Biotechnology Information, http://www.ncbi.nlm.gov/) , “Nucleotide blast” was selected from the BLAST program. “Reference genomic sequences (refseq_genomics)” is specified for the database to be searched, “Highly similar sequences (megablast)” is specified for the selection program, and related species are estimated based on the homology search results of each base sequence. Is shown in Table 12.
  • Bacillus licheniformis KSM-PG115 strain was commissioned on February 28, 2013 to the Patent Microorganism Depositary Center for Product Evaluation Technology (2-5-8, Kazusa Kamashichi, Kisarazu, Chiba, Japan). Deposited under the number NITE BP-01551.
  • Bacillus licheniformis KSM-FFA033 strain was established on February 28, 2013 by the National Institute for Product Evaluation Technology Patent Microorganism Depositary Center (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan). Deposited under accession number NITE BP-01553.
  • Bacillus licheniformis KSM-FFA036 strain was commissioned on February 28, 2013 to the Patent Microorganisms Depositary Center for Product Evaluation Technology (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan). Deposited under the number NITE BP-01554.
  • Bacillus licheniformis KSM-FFA039 strain was commissioned on February 28, 2013 to the Patent Microorganism Depositary Center for Product Evaluation Technology, Japan (Kazusa Kamashichi 2-5-8, Kisarazu, Chiba, Japan). Deposited under the number NITE BP-01555.
  • Test Example 5 Identification of polymer substance in culture supernatant sample Culture sample after completion of culture was subjected to centrifugation (model name: himacCF15RX, Hitachi Koki) at 14,800 rpm for 30 minutes at room temperature. The high molecular substance contained in the obtained sample supernatant after centrifugation was identified. Collect 0.5 to 1.0 mL of the supernatant sample to be analyzed in a test tube with a screw cap (trade name: ST-15S, JEOL Rika Glass), and add 2 volumes of ethanol to this supernatant sample. Newly added. The sample stirred and mixed with the touch mixer was allowed to stand at 4 ° C. overnight.
  • This dried solid sample was dissolved again in 0.5 mL of distilled water, 0.5 mL of concentrated hydrochloric acid was added thereto, and the mixture was stirred and sealed with nitrogen, followed by heat treatment at 105 to 110 ° C. for 16 hours. After the heat treatment, hydrochloric acid and water were distilled off in a fume hood under a nitrogen stream (about 6 hours), and the resulting dried product was used as a hydrolysis sample.
  • Commercially available PGA molecular weight: 880 k, Meiji Food Materia
  • L-Glutamic acid and D-Glutamic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • the obtained hydrolyzed sample was appropriately diluted, and various amino acids in the sample were analyzed and glutamic acid was quantified using a fully automatic amino acid analyzer (model name: L-8900, Hitachi High-Technologies). Further, using an L-glutamic acid measurement kit (Yamasa Soy Sauce), the amount of L-glutamic acid was measured according to the method described in the protocol attached to the kit. In the measurement by a fully automatic amino acid analyzer, the total amount of optically active isomers (D / L) was obtained as a quantitative result. From this, the difference obtained by subtracting the quantitative result obtained with the L-glutamic acid measurement kit was defined as the amount of D-glutamic acid. These results are shown in Table 13.
  • the polymer substance in the culture supernatant was judged to be PGA. Furthermore, the D: L ratio of PGA produced by each strain of Bacillus licheniformis (KSM-PG115 strain, KSM-PG121 strain, KSM-FFA033 strain, KSM-FFA036 strain, and KSM-FFA039 strain) It was close to the D: L ratio of PGA produced by Bacillus licheniformis reported so far.
  • Test Example 6 PGA Quantification Method
  • the PGA prepared in Examples 1 to 5 was quantified by the following method.
  • the culture solution sample of the evaluation culture performed in Examples 1 to 5 was subjected to centrifugation (model name: himacCF15RX, Hitachi Koki) for 30 minutes at 14,800 rpm at room temperature to prepare a culture supernatant sample. .
  • This supernatant sample was appropriately diluted with 0.1 M sodium sulfate, and pretreated to remove insolubles using MULTI SCREEN MNHV45 (MILLIPORE, 0.45 ⁇ m Durapore membrane).
  • MILLIPORE 0.45 ⁇ m Durapore membrane
  • TSKGel G4000PWXL and TSKGel G6000PWXL (trade name, Tosoh) were used as analytical columns.
  • the eluent used was 0.1 M sodium sulfate, the flow rate was 1.0 mL / min, the column temperature was 50 ° C., and the UV detection wavelength was 210 nm.
  • concentration test a calibration curve prepared using PGA (Meiji Food Material) having a molecular weight of 880,000 was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 受託番号NITE BP-01552、NITE BP-01551、NITE BP-01553、NITE BP-01554、又はNITE BP-01555で特定される微生物、及び前記微生物を培養してポリ-ガンマ-グルタミン酸を生産するポリ-ガンマ-グルタミン酸の生産方法。

Description

ポリ-ガンマ-グルタミン酸の生産方法
 本発明は、ポリ-ガンマ-グルタミン酸の生産方法、及びこれに用いる微生物に関する。
 ポリ-ガンマ-グルタミン酸(以下、本明細書において「PGA」ともいう)は、グルタミン酸のγ位のカルボキシル基とα位のアミノ基がペプチド結合によって結合した高分子化合物である。また、PGAはγ-ポリグルタミン酸と呼称される場合もある。PGAは、納豆菌(Bacillus subtilis var.natto)が産生する粘性物質として知られており、種々の性質から近年新たな高分子素材として注目されている。
 PGAを産生する微生物としては、納豆菌を含む一部のBacillus属細菌とその近縁種、さらに好塩古細菌ナトリアルバ・エジプチアキア(Natrialba aegyptiaca)などが挙げられる(非特許文献1参照)。また、これらPGA生産菌には、PGAの生産性に対するグルタミン酸依存性が異なる微生物があることが知られている(非特許文献2参照)。すなわち、PGA生産においてグルタミン酸を必要とする微生物と、グルタミン酸を必要としない微生物が存在するとされる。
 従来の知見によれば、枯草菌(Bacillus subtilis)TAM-4株は、グルコース、フルクトース、ガラクトース、サッカロース、ラクトース、マルトース、キシロース、グリセリンをそれぞれ唯一の炭素源としてグルタミン酸非依存的にPGAを生産することが記載されている(非特許文献2参照)。しかしながら、前記炭素源のうちグリセリンを用いた条件では、枯草菌TAM-4株のPGAの生産能力は0.6g/L/4日である。そのため、枯草菌TAM-4株のPGA生産性は工業的な観点からは充分な生産量を達成していないと考えられる。
 また、非特許文献3によれば、グルタミン酸非依存的にPGAを生産するバシラス・リシェニフォルミス(Bacillus licheniformis)A35株は、グルコース、フルクトース、マルトース、ガラクトース、ラクトース、スクロース、キシロースをそれぞれ唯一の炭素源としてPGAを生産する。しかし、グリセリンを唯一の炭素源とする条件では、バシラス・リシェニフォルミスA35株はPGAを生産しないことが記載されている。
 また、非特許文献2において、バシラス・リシェニフォルミスATCC9945a株はグルタミン酸依存的にPGAを生産すると記載されている。一方で、非特許文献4においては、バシラス・リシェニフォルミスATCC9945a株はグルタミン酸非依存的にPGAを生産することが記載されている。しかし非特許文献4には、バシラス・リシェニフォルミスATCC9945a株がグリセリンを唯一の炭素源としてPGAを生産することは確かめられていない。またさらに、非特許文献5において、バシラス・リシェニフォルミスATCC9945a株はグリセリンを唯一の炭素源として、PGAを生産しないことが記載されている。
 一方で、バシラス・リシェニフォルミスATCC9945a株の変異株であるバシラス・リシェニフォルミスWBL-3株は、グリセリンを唯一の炭素源とする条件で、8.9g/L/4日のPGA生産性を有することが、非特許文献6に記載されている。
 このように、従来知見によれば、グリセリンを唯一の炭素源として、グルタミン酸非依存的に効率よくPGAを生産する微生物に関する情報は不明確である。さらには、グリセリンを唯一の炭素源として、グルタミン酸非依存的に効率よくPGAを生産する野生株はほとんど知られていない。
 グルタミン酸は、バイオマスを原料とする発酵法により生産することができ、食品素材又は飼料として利用されている。このようなグルタミン酸を原料に使用せず、有用な高分子素材であるPGAが効率よく生産できる微生物は、食糧との競合を避けるといった視点、あるいは工業的にみた生産コストの視点からも有益であると考えられる。
 またさらに、近年グリセリンは、バイオ燃料などの製造時に生じる副産物として、その有効利用が望まれている。そこで、これらグリセリンを唯一の炭素源として、グルタミン酸非依存的に効率よくPGAを生産する微生物が見出せれば、産業的にみて利用価値が高いと考えられる。
Ashiuchi,M.,et al.,Appl.Microbiol.Biotechnol.,2002,vol.59,p.9-14 Ito,Y.,et al.,Biosci.Biotec.Biochem.,1996,vol.60,p.1239-1242 Cheng,C.,et al.,Agric.Biol.Chem.,1989,vol.53,p.2369-2375 Birrer,G.A.,et al.,Int.J.Biol.Macromol.,1994,vol.16,p.265-275 Birrer,G.A.,et al.,,Polym.Mater.Sci.Eng.,1992,vol.67,p.134-136 Guocheng Du,et al.,Process Biochemistry,2005,vol.40,p.2143-2147
 本発明は、受託番号NITE BP-01552、NITE BP-01551、NITE BP-01553、NITE BP-01554、又はNITE BP-01555で特定される微生物に関する。
 また本発明は、前記微生物を培養してPGAを生産する、PGAの生産方法に関する。
 本発明は、PGA生産能に優れる、野生型の微生物を提供することを課題とする。
 また本発明は、グルタミン酸の非存在下であっても、グリセリンを唯一の炭素源としてPGAの高生産が可能な、野生型の微生物を提供することを課題とする。
 また本発明は、PGAの高生産が可能な、PGAの生産方法を提供することを課題とする。
 本発明者らは、上記課題に鑑み鋭意検討を行った。その結果、グルタミン酸の非存在下であっても、グリセリンを唯一の炭素源としてPGAの高生産が可能な野生型の微生物を見出した。
 本発明はこの知見に基づき完成されたものである。
 本発明の微生物は、PGA生産能を有する従来の野生型の微生物と比較してPGA生産能に優れる。
 また本発明の微生物は、グルタミン酸の非存在下であっても、グリセリンを唯一の炭素源としてPGAの高生産が可能である。
 さらに前記微生物を用いる本発明のPGAの生産方法は、PGAの高生産が可能である。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 本明細書において「野生型の微生物」とは、自然界より分離又は単離した微生物であり、人工的変異処理や人工的遺伝子組換え操作を施していない状態の微生物を意味する。
 本発明の微生物は、PGA生産能を有する従来の野生型の微生物と比較してPGA生産能に優れる、野生型の微生物である。また本発明の微生物は、グルタミン酸の非存在下であっても、グリセリンを唯一の炭素源としてPGAの高生産が可能な、野生型の微生物である。
 さらに前記微生物を用いる本発明のPGAの生産方法は、PGAの高生産を可能とする。
 以下、本発明について詳細に説明する。
 本発明の微生物のうち、バシラス・リシェニフォルミスKSM-PG121株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01552で寄託された。
 バシラス・リシェニフォルミスKSM-PG115株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01551で寄託された。
 バシラス・リシェニフォルミスKSM-FFA033株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01553で寄託された。
 バシラス・リシェニフォルミスKSM-FFA036株は2013年2月28日付で独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01554で寄託された。
 バシラス・リシェニフォルミスKSM-FFA039株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01555で、それぞれ寄託された。
 これら本発明の微生物はいずれも野生型の微生物である。さらに、これら本発明の微生物はいずれも、分類学上バシラス・リシェニフォルミスに分類される。
 次に、本発明の微生物が有する16S rDNAについて説明する。
 バシラス・リシェニフォルミスKSM-PG121株は、配列番号7で示される塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-PG121株は、配列番号7で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-PG121株は、配列番号7で示される塩基配列において1~14個、好ましくは1~7個、より好ましくは1~3個、の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有する。
 バシラス・リシェニフォルミスKSM-PG115株は、配列番号8で示される塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-PG115株は、配列番号8で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-PG115株は、配列番号8で示される塩基配列において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16SrDNAを有する。
 バシラス・リシェニフォルミスKSM-FFA033株は、配列番号9で示される塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-FFA033株は、配列番号9で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-FFA033株は、配列番号9で示される塩基配列において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有する。
 バシラス・リシェニフォルミスKSM-FFA036株は、配列番号10で示される塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-FFA036株は、配列番号10で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-FFA036株は、配列番号10で示される塩基配列において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有する。
 バシラス・リシェニフォルミスKSM-FFA039株は、配列番号11で示される塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-FFA039株は、配列番号11で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列からなる16S rDNAを有する。あるいはバシラス・リシェニフォルミスKSM-FFA039株は、配列番号11で示される塩基配列において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有する。
 ここで本発明において、塩基配列の相同性は、公開されたデータベースNCIMB(National Center for Biotechnology Information、http://www.ncbi.nlm.gov/)のメニュー”Nucleotide”内の”BLAST”のなかにある”Basic BLAST”を用い算出できる。あるいは、Genetyx-Win(遺伝子情報処理ソフトウェア、ゼネティックス社製)のホモロジー解析プログラムを用いて、Unit size(k-tuple)を6として解析を行うことにより塩基配列の相同性を算出することもできる。
 なお、配列番号7で示される塩基配列と配列番号8で示される塩基配列との間で、Genetyx-Win(遺伝子情報処理ソフトウェア、ゼネティックス社製)のホモロジー解析プログラムにより塩基配列の相同性を算出した。その結果、配列番号7で示される塩基配列と配列番号8で示される塩基配列との間で、相同性は100%であった。この結果は、配列番号7で示される塩基配列からなる16S rDNAと、配列番号8で示される塩基配列からなる16S rDNAは、実質的に同一の16S rDNAであることを示している。
 次に、本発明の微生物の菌学的性質について説明する。
 本発明の微生物はそれぞれ、下記表1に示す菌学的性質を有する。
Figure JPOXMLDOC01-appb-I000002
 表1に示すように、本発明の微生物は共通の性質として、ダルシトール非資化性の性質を有する。よって、本発明の微生物は、菌学的性質としてダルシトール資化性を有さないことが好ましい。
 さらに表1に示すように、バシラス・リシェニフォルミスKSM-PG121株とバシラス・リシェニフォルミスKSM-PG115株は、表1に記載の菌学的性質について実質的に同じ性質を有する。
 本発明の微生物は、グルタミン酸の非存在下、グリセリンを唯一の炭素源として含む培地で培養してPGAを生産する。具体的には、培養条件にもよるが、下記に示す組成の7.5%グリセリン-M培地又は10%グリセリン-M培地を用いて前記微生物を培養したとき、培地1L当たり1.2g/4日以上、好ましくは3.0g/4日以上、より好ましくは4.0g/4日以上、さらに好ましくは6.0g/4日以上、のPGAの生産能を有する野生型の微生物である。
 以下に、7.5%グリセリン-M培地及び10%グリセリン-M培地を下記表2及び3に示す。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 本発明の微生物は、培養条件にもよるが、培地中のグリセリンが高濃度に存在する条件、すなわち、標準的な基準株(例えば、バシラス・リシェニフォルミスATCC9945a株など)では生育の抑制が認められるような環境においても、生育が抑制されにくい。すなわち本発明の微生物は、グリセリン高濃度条件下において、基準株よりも生育度が高いことが好ましい。
 具体的には、グリセリン含有量が15%(w/v)の培地を用いて培養した場合、基準株(例えば、バシラス・リシェニフォルミスATCC9945a株)の生育度を100%としたときの本発明の微生物の生育度は115%以上、好ましくは120%以上、より好ましくは150%以上、であることが好ましい。あるいは、グリセリン含有量が20%(w/v)の培地を用いて培養した場合、基準株(例えば、バシラス・リシェニフォルミスATCC9945a株)の生育度を100%としたときの本発明の微生物の生育度は120%以上、好ましくは200%以上、より好ましくは280%以上、であることが好ましい。
 また、グリセリン含有量が15%(w/v)の培地を用いて培養したときの本発明の微生物の生育度が、グリセリン含有量が10%(w/v)の培地を用いて培養したときの生育度の85%以上、好ましくは95%以上、より好ましくは100%以上、さらに好ましくは120%以上、であることが好ましい。あるいは、グリセリン含有量が20%(w/v)の培地を用いて培養したときの本発明の微生物の生育度が、グリセリン含有量が10%(w/v)の培地を用いて培養したときの生育度の30%以上、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは55%以上、特に好ましくは70%以上、であることが好ましい。
 なお、本明細書において「生育度」は、培養後の培養液の吸光度(OD600)を測定することで相対的に算出できる。
 本発明の微生物は、通常の方法により単離、取得した。
 具体的には、グリセリンを唯一の炭素源として含む培地を用いて、グルタミン酸の非存在下で培養し、他の微生物と比較してPGAの生産量が高い野生型の微生物を選択し、単離、取得した。
 前述したように、非特許文献6に記載されているバシラス・リシェニフォルミスWBL-3株は、8.9g/L/4日という高いPGA生産性を有する。しかしバシラス・リシェニフォルミスWBL-3株は野生型の微生物ではなく変異型の微生物であり、本発明の野生型の微生物はバシラス・リシェニフォルミスWBL-3株とは異なる。
 具体的に説明すると、バシラス・リシェニフォルミスWBL-3株はバシラス・リシェニフォルミスATCC9945a株の変異株であり、バシラス・リシェニフォルミスATCC9945a株に対してHe-Neレーザー照射を行っている。
 本発明のPGAの生産方法は、前述した本発明の微生物を用いてPGAの生産を行う。
 前述したように、本発明の微生物は、従来の野生型の微生物と比較してPGA生産能に優れる。したがって本発明のPGAの生産方法によれば、PGAの高生産が可能である。
 また本発明の微生物は、グルタミン酸の非存在下であっても、グリセリンを唯一の炭素源としてPGAの高生産が可能である。前述したように、グルタミン酸は食料の原料として広く用いられている。したがって本発明のPGAの生産方法によれば、食糧生産と競合せず、低コストでのPGAの高生産を可能とする。
 本発明の微生物を用いてPGAを生産する際には、適切な培地において本発明の微生物を培養し、菌体外に生産されたPGAを培地から回収する。
 培地としては、グリセリン、グルコース、フルクトース、マルトース、キシロース、マンノース、ガラクトース、シュークロース、デンプンなどの糖類を、PGAを生産するための炭素源として含む培地を使用することができる。また、クエン酸、酢酸などの各種有機酸又はその塩、並びにグルタミン酸又はその塩などを、PGAを生産するための炭素源として含む培地を使用することができる。本発明のPGAの生産方法において、PGAを生産するための炭素源としては、前記炭素源のうち1種を用いてもよいし、2種以上を組合せて用いてもよい。本発明のPGAの生産方法において、グリセリンを炭素源として含む培地、グルタミン酸を含まずグリセリンを唯一の炭素源とする培地、グリセリンを主な炭素源とし、有機酸、グルタミン酸及びこれらの塩からなる群より選ばれる少なくとも1種を補助的な炭素源とする培地、などを好ましく用いることができる。ここで、「主な炭素源」及び「補助的な炭素源」とは培地中の各炭素源の含有量の大小を示すものである。
 本発明のPGAの生産方法で用いる培地には、必要により、各種大豆タンパクなどの天然物、アミノ酸、ポリペプトン、トリプトン、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウムや尿素などの窒素源などを含有させてもよい。さらに本発明のPGAの生産方法で用いる培地には、ナトリウム塩、マグネシウム塩、カルシウム塩、カリウム塩などの無機塩類及びその他必要な栄養源、微量金属塩などを含有させてもよい。また、本発明のPGAの生産方法で用いる培地は、合成培地でもよいし天然培地でもよい。
 本発明の微生物は、グルタミン酸の非存在下であってもグリセリンを炭素源としてPGAの高生産が可能である。従って、グルタミン酸を含まずグリセリンを炭素源として含む培地、又はグリセリンを唯一の炭素源として含む培地で本発明の微生物を培養してPGAを生産することが、生産コストの観点から好ましい。
 PGAの生産に用いるグリセリンは、市販品であってもよく、バイオ燃料などの製造時に副産物として生じるグリセリンであってもよい。副産物として生じるグリセリンを用いることで、余剰物質処理にかかるエネルギー低減、廃棄による環境汚染の低減といった副次的な効果が得られ、環境負荷の低減にもつながる。さらに、副産物として生じるグリセリンは安価に購入できるので、生産コストの観点からも好ましい。
 本発明のPGAの生産方法において、PGAを生産するための炭素源としてグリセリンを用いる場合、培地中のグリセリン含有量は、使用する微生物種に応じて適宜選択することができる。具体的には、1%(w/v)以上が好ましく、5%(w/v)以上がより好ましく、10%(w/v)以上がよりさらに好ましく、30%(w/v)以下が好ましく、20%(w/v)以下がより好ましい。
 前記微生物の培養条件は、使用する微生物等に応じて適宜選択することができる。具体的には、至適温度は、好ましくは20℃以上(好ましくは25℃以上、より好ましくは30℃以上)、50℃以下(好ましくは45℃以下、より好ましくは40℃以下)である。至適pHは、好ましくは5以上(好ましくは5.5以上、より好ましくは6.5以上)、8以下(好ましくは7.5以下、より好ましくは7以下)である。また、培養日数は、種菌接種後、1日以上(好ましくは3日以上、より好ましくは4日以上)である。培養方法に特に制限はないが、振とう培養、攪拌培養、通気培養、静置培養などが挙げられる。
 培地中に蓄積されたPGAを回収する際には、PGAを生産させた微生物菌体を除去する必要がある。菌体を除去する方法としては、遠心分離による方法、精密ろ過や限外ろ過膜を用いる方法、電気透析法、pHをPGAの等電点付近に維持することで沈殿として回収する方法などが挙げられる。本発明では上記方法を適宜組み合わせて用いることも可能である。
 また、培地からのPGAの回収方法についても特に制限はなく、生産された物質を単離、回収する際に通常用いられる方法で行うことができる。例えば、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、クロロホルム/メタノール抽出法、ヘキサン抽出法、エタノール抽出法などにより目的のPGAを単離、回収することができる。
 本発明により生産されたPGAは、化粧品、医薬品、食品、水質浄化剤、保水材料、増粘剤などの様々な用途に使用することができる。特に、本発明の微生物のPGAの生産性は他の微生物と比較して優れているので、PGAの生産コストを大幅に低減することができる。
 上述した実施形態に関し、本発明はさらに以下微生物、及びPGAの生産方法を開示する。
<1>受託番号NITE BP-01552、NITE BP-01551、NITE BP-01553、NITE BP-01554、又はNITE BP-01555で特定される微生物。
<2>受託番号NITE BP-01552で特定される微生物が、配列番号7で示される塩基配列、又は配列番号7で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列、若しくは配列番号7において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有し、
 受託番号NITE BP-01551で特定される微生物が、配列番号8で示される塩基配列、又は配列番号8で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列、若しくは配列番号8において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有し、
 受託番号NITE BP-01553で特定される微生物が、配列番号9で示される塩基配列、又は配列番号9で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列、若しくは配列番号9において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有し、
 受託番号NITE BP-01554で特定される微生物が、配列番号10で示される塩基配列、又は配列番号10で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列、若しくは配列番号10において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有し、
 受託番号NITE BP-01555で特定される微生物が、配列番号11で示される塩基配列、又は配列番号11で示される塩基配列と99.5%以上、好ましくは99.8%以上、の相同性を有する塩基配列、若しくは配列番号11において1~14個、好ましくは1~7個、より好ましくは1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rDNAを有する、
前記<1>項に記載の微生物。
<3>受託番号NITE BP-01552で特定される微生物が配列番号7で示される塩基配列からなる16S rDNAを有し、受託番号NITE BP-01551で特定される微生物が配列番号8で示される塩基配列からなる16S rDNAを有し、受託番号NITE BP-01553で特定される微生物が配列番号9で示される塩基配列からなる16S rDNAを有し、受託番号NITE BP-01554で特定される微生物が配列番号10で示される塩基配列からなる16S rDNAを有し、受託番号NITE BP-01555で特定される微生物が配列番号11で示される塩基配列からなる16S rDNAを有する、前記<1>又は<2>項に記載の微生物。
<4>配列番号7で示される塩基配列からなる16S rDNAと、配列番号8で示される塩基配列からなる16S rDNAが、実質的に同一の16S rDNAである、前記<1>~<3>のいずれか1項に記載の微生物。
<5>前記微生物がバシラス・リシェニフォルミスである、前記<1>~<4>のいずれか1項に記載の微生物。
<6>前記微生物が野生型の微生物である、前記<1>~<5>のいずれか1項に記載の微生物。
<7>前記微生物がそれぞれ前記表1に記載の菌学的性質を有する、前記<1>~<6>のいずれか1項に記載の微生物。
<8>前記微生物がそれぞれダルシトール非資化性の性質を有する、前記<1>~<7>のいずれか1項記載の微生物。
<9>受託番号NITE BP-01552で特定される微生物と受託番号NITE BP-01551で特定される微生物が互いに、前記表1に記載の菌学的性質について実質的に同じ性質を有する、前記<1>~<8>のいずれか1項に記載の微生物。
<10>前記微生物が、グルタミン酸の非存在下、グリセリンを唯一の炭素源として含む培地で培養してPGAを生産する、前記<1>~<9>のいずれか1項に記載の微生物。
<11>前記7.5%グリセリン-M培地又は10%グリセリン-M培地を用いて前記微生物を培養したとき、培地1L当たりの前記微生物のPGAの生産能が1.2g/4日以上、好ましくは3.0g/4日以上、より好ましくは4.0g/4日以上、さらに好ましくは6.0g/4日以上、である、前記<1>~<10>のいずれか1項に記載の微生物。
<12>グリセリン含有量が15%(w/v)の培地を用いて培養した場合、バシラス・リシェニフォルミスATCC9945a株の生育度を100%としたときの前記微生物の生育度が115%以上、好ましくは120%以上、より好ましくは150%以上、である、前記<1>~<11>のいずれか1項に記載の微生物。
<13>グリセリン含有量が20%(w/v)の培地を用いて培養した場合、バシラス・リシェニフォルミスATCC9945a株の生育度を100%としたときの前記微生物の生育度が120%以上、好ましくは200%以上、より好ましくは280%以上、である、前記<1>~<12>のいずれか1項に記載の微生物。
<14>グリセリン含有量が15%(w/v)の培地を用いて培養したときの前記微生物の生育度が、グリセリン含有量が10%(w/v)の培地を用いて培養したときの生育度の85%以上、好ましくは95%以上、より好ましくは100%以上、さらに好ましくは120%以上、である、前記<1>~<13>のいずれか1項に記載の微生物。
<15>グリセリン含有量が20%(w/v)の培地を用いて培養したときの前記微生物の生育度が、グリセリン含有量が10%(w/v)の培地を用いて培養したときの生育度の30%以上、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは55%以上、特に好ましくは70%以上、である、前記<1>~<14>のいずれか1項に記載の微生物。
<16>受託番号NITE BP-01552又はNITE BP-01551で特定される、前記<1>~<15>のいずれか1項に記載の微生物。
<17>前記<1>~<16>のいずれか1項に記載の微生物を培養してPGAを生産する、PGAの生産方法。
<18>グリセリンを炭素源として含む培地を用いて前記微生物を培養する、前記<17>項に記載のPGAの生産方法。
<19>グリセリンを主な炭素源とし、有機酸、グルタミン酸及びこれらの塩からなる群より選ばれる少なくとも1種を補助的な炭素源とする培地を用いて前記微生物を培養する、前記<17>又は<18>項に記載のPGAの生産方法。
<20>グルタミン酸を含まず、グリセリンを唯一の炭素源として含む培地を用いて前記微生物を培養する、前記<17>又は<18>項に記載のPGAの生産方法。
<21>PGAを生産するための培地中の炭素源としてグリセリンを用いる場合、培地中のグリセリン含有量が1%(w/v)以上、好ましくは5%(w/v)以上、より好ましくは10%(w/v)以上、好ましくは30%(w/v)以下、より好ましくは20%(w/v)以下、である、前記<18>~<20>のいずれか1項に記載のPGAの生産方法。
<22>培地に含まれる前記グリセリンが、バイオ燃料などの製造時に副産物として生じるグリセリンである、前記<18>~<21>のいずれか1項に記載のPGAの生産方法。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。また、製造元を記載しない試薬には、一般に入手可能な試薬を使用することができる。
試験例1 微生物の取得
 予め滅菌した4.0mLの0.85%(w/v)塩化ナトリウム水溶液に国内各地で収集した土壌試料及び食品試料を添加し、攪拌、混合した後、80℃にて30分間加熱処理を行い、試料原液を調製した。この試料原液を、同様の塩化ナトリウム水溶液を用いて、10-2倍、10-4倍に希釈した試料希釈液を調製した。続いて、LB寒天培地(培地組成:1.0%(w/v)Bacto trypton(Becton,Dickinson and Company)、0.5%(w/v)Yeast extract(Becton,Dickinson and Company)、1.0%(w/v)塩化ナトリウム、1.5%(w/v)寒天)及びMargaritis寒天培地(培地組成:3.82%(w/v)グルタミン酸ナトリウム1水和物、1.0%(w/v)硫酸アンモニウム、3.06%(w/v)クエン酸3ナトリウム2水和物、2.0%(w/v)グリセロール、0.05%(w/v)硫酸マグネシウム7水和物、0.005%(w/v)塩化鉄6水和物、0.02%(w/v)塩化カルシウム7水和物、0.003%(w/v)硫酸マンガン4-5水和物、0.1%(w/v)リン酸水素2カリウム、0.1%(w/v)リン酸水素2ナトリウム12水和物、0.00005%(w/v)ビオチン、0.01%(w/v)L-トリプトファン、1.5%(w/v)寒天)に、前記試料原液及び試料希釈液を200μLずつ塗沫した後、30℃にて2~4日間培養した。恒温で培養した後、寒天培地上に出現したコロニーを選抜した。さらに、菌株純化のため、選抜したコロニーを土壌試料及び食品試料の塗沫に用いた同組成の寒天培地に白金耳に画線塗沫し、30℃にて2~4日間培養した。寒天培地上で単一コロニーとして生育した菌体を白金耳にて採取し、これらを20%(w/v)のグリセロールを含有するLB培地(培地組成:1.0%(w/v)Bacto trypton(Becton,Dickinson and Company)、0.5%(w/v)Yeast extract(Becton,Dickinson and Company)、1.0%(w/v)塩化ナトリウム)に懸濁した後、-80℃にて凍結保存した。
実施例1
 試験例1で選抜した微生物の-80℃保存試料をLB寒天培地上に画線塗沫し、30℃にて一晩静置培養した。得られた単一コロニーを非特許文献2記載のGB培地(培地組成:1.0%(w/v)極東ペプトン(極東製薬工業)、1.0%(w/v)プレメディア 普通ブイヨン培地(極東製薬工業)、0.5%(w/v)塩化ナトリウム(和光純薬工業)、pH7.0に調整)5mLに接種し、30℃、250rpmにて18~24時間振とう培養を行った。さらに7.5%グリセリン-M培地(培地組成:7.5%(w/v)グリセロール、1.8%(w/v)塩化アンモニウム、0.15%(w/v)リン酸水素2カリウム、0.035%(w/v)硫酸マグネシウム7水和物、0.005%(w/v)硫酸マンガン5水和物、3.0%(w/v)炭酸カルシウム)30mLに前記培養液0.6mL(2%(v/v))を接種し、30℃、150rpmで4日間、振盪培養を行った。その後、各菌株のPGA生産性を測定した。
 各菌株のPGA生産性の結果を表4に示す。
Figure JPOXMLDOC01-appb-I000005
 表4に示すように、非特許文献2と同様の実験条件下で培養を行った結果、公知のバシラス・サブチリスTAM-4株と比較して、本発明の微生物は高いPGA生産性を示すことを確認した。
 また、公知の菌株であるバシラス・リシェニフォルミスATCC9945a基準株においても、非特許文献5に記載の内容に反して、グリセリンを唯一の炭素源として、グルタミン酸非依存的にPGA生産することを新たに確認した。
実施例2
 試験例1で選抜した他の微生物を含め、下記表5に示す微生物を、LB寒天培地上に画線塗沫し、30℃にて一晩静置培養した。得られた単一コロニーをLB培地5mLに接種し、30℃、250rpmにて18~24時間振とう培養を行った。さらに7.5%グリセリン-M培地30mLに前記培養液0.6mL(2%(v/v))を接種し、37℃、210rpmで4日間、振盪培養を行った。その後、各菌株のPGA生産性を測定した。
 各菌株のPGA生産性の結果を表5に示す。
Figure JPOXMLDOC01-appb-I000006
 表5に示すように、非特許文献2の実験条件に対して種培地組成の変更、及び培養条件の変更により、本発明の微生物はより高いPGA生産性を示すことを確認した。
 また、培養条件を至適化することで、公知菌株であるバシラス・リシェニフォルミスATCC9945a基準株と比べ、本発明の微生物は、グリセリンを唯一の炭素源として、グルタミン酸非依存的に効率のよいPGAの生産が可能であることを確認した。
実施例3
 試験例1で選抜した微生物をLB寒天培地上に画線塗沫し、30℃にて一晩静置培養した。得られた単一コロニーをLB培地5mLと10%グリセリン-M培地(培地組成:10%(w/v)グリセリン、1.8%(w/v)塩化アンモニウム、0.15%(w/v)リン酸水素2カリウム、0.035%(w/v)硫酸マグネシウム7水和物、0.005%(w/v)硫酸マンガン5水和物、3%(w/v)炭酸カルシウム)の混合培地(LB培地:M培地=2:8、以下「LM培地」とする)に接種し、30℃、250rpmにて18~24時間振とう培養を行った。さらにこの培養液をOD600が約0.1になるよう、前記培養液を10%グリセリン-M培地30mLに接種し、30℃、210rpmで5日間、振盪培養を行った。その後、各菌株のPGA生産性を測定した。
 各菌株のPGA生産性の結果を表6に示す。
Figure JPOXMLDOC01-appb-I000007
 表6に示すように、本発明の微生物、特にバシラス・リシェニフォルミスKSM-PG121株は、グリセリン濃度などの培養条件を最適化することでさらに高いPGA生産性を示すことを確認した。
実施例4
 試験例1で選抜した微生物をLB寒天培地上に画線塗沫し、30℃にて一晩静置培養した。得られた単一コロニーをLB培地5mLに接種し、30℃、250rpmにて18~24時間振とう培養を行った。さらにGC-E培地(培地組成:8%(w/v)グリセリン、1.84%(w/v)クエン酸3ナトリウム2水和物、0.7%(w/v)塩化アンモニウム、0.05%(w/v)リン酸水素2カリウム、0.05%(w/v)硫酸マグネシウム7水和物、0.0148%(w/v)硫酸マンガン5水和物、0.015%(w/v)塩化カルシウム2水和物、0.00017%(w/v)硫酸亜鉛7水和物、0.000043%(w/v)硫酸銅1水和物、0.000006%(w/v)塩化コバルト6水和物、0.00073%(w/v)塩化カルシウム7水和物、0.000006%(w/v)モリブデン酸ナトリウム2水和物)30mLに前記培養液0.6mL(2%(v/v))を接種し、37℃、210rpmで4日間、振盪培養を行った。その後、各菌株のPGA生産性を測定した。
 各菌株のPGA生産性の結果を表7に示す。
Figure JPOXMLDOC01-appb-I000008
 表7に示すように、グリセリンを主な炭素源とし、有機酸を補助的な炭素源として含む培地を用いて本発明の微生物を培養した場合においても、本発明の微生物はPGAの高生産が可能であった。
実施例5
 試験例1で選抜した微生物をLB寒天培地上に画線塗沫し、30℃にて一晩静置培養した。得られた単一コロニーをLB培地5mLに接種し、30℃、250rpmにて18~24時間振とう培養を行った。さらにGCM-E培地(培地組成:8%(w/v)グリセリン、1.84%(w/v)クエン酸3ナトリウム2水和物、2.54%(w/v)グルタミン酸ナトリウム1水和物、0.7%(w/v)塩化アンモニウム、0.05%(w/v)リン酸水素2カリウム、0.05%(w/v)硫酸マグネシウム7水和物、0.0148%(w/v)硫酸マンガン5水和物、0.015%(w/v)塩化カルシウム2水和物、0.00017%(w/v)硫酸亜鉛7水和物、0.000043%(w/v)硫酸銅1水和物、0.000006%(w/v)塩化コバルト6水和物、0.00073%(w/v)塩化カルシウム7水和物、0.000006%(w/v)モリブデン酸ナトリウム2水和物)30mLに前記培養液0.6mL(2%(v/v))を接種し、37℃、210rpmで4日間、振盪培養を行った。その後、各菌株のPGA生産性を測定した。
 各菌株のPGA生産性の結果を表8に示す。
Figure JPOXMLDOC01-appb-I000009
 表8に示すように、グリセリンを主な炭素源とし、有機酸及びグルタミン酸を補助的な炭素源として含む培地を用いて本発明の微生物を培養した場合においても、本発明の微生物はPGAの高生産が可能であった。
試験例2 微生物の生育度の測定
 試験例1で選抜した微生物をLB寒天培地上に画線塗沫し、30℃にて一晩静置培養した。得られた単一コロニーをLB培地5mLに接種し、30℃、250rpmにて18~24時間振とう培養を行った。さらに10%、15%、20%のグリセリンを含有するM/MOPS培地(培地組成:10.0~20.0%(w/v)グリセリン、1.8%(w/v)塩化アンモニウム、0.15%(w/v)リン酸水素2カリウム、0.035%(w/v)硫酸マグネシウム7水和物、0.005%(w/v)硫酸マンガン5水和物、100mM MOPS緩衝液(モノホリノプロパンスルホン酸、pH7.0))5mLに前記培養液0.05mL(1%(v/v))を接種し、37℃、250rpmで4日間、振盪培養を行った。
 基準株であるバシラス・リシェニフォルミスATCC9945a株を10%グリセリン-M/MOPS培地で培養した場合の生育度(OD600)を100とし、各菌株の生育度を相対値で測定した。その結果を表9に示した。また、各グリセリン濃度における前記基準株の生育度を100として、15%及び20%グリセリン濃度それぞれにおける生育度の相対値で測定した。その結果を表9のカッコ内に示した。
Figure JPOXMLDOC01-appb-I000010
 表9に示すように、基準株であるバシラス・リシェニフォルミスATCC9945a株は、高濃度グリセリン条件では生育度が大きく低下した。これに対し、本発明の微生物は高濃度グリセリン条件における生育度の低下が少なかった。
 さらに、本発明の微生物において、グリセリン15%における生育度がグリセリン10%における生育度の90%以上であるか、もしくは90%以下であっても、グリセリン20%における生育度がグリセリン10%における生育度の50%以上であることが特徴的であった。すなわちこれらの性質は、グルタミン酸の非存在下であってもグリセリンを唯一の炭素源として高いPGA生産性を示す株の、共通の特徴である可能性が示唆された。
 また、基準株のバシラス・リシェニフォルミスATCC9945a株に比較し、グリセリン濃度10%~20%を含む培地における本発明の微生物の生育度が高いことが共通の特徴である可能性が示唆された。具体的には、グリセリン濃度10%~20%を含む培地における本発明の微生物の生育度が基準株と比較して、109%以上であることが、特徴であった。
試験例3 菌学的諸性質
 前記バシラス・リシェニフォルミスの各菌株(KSM-PG121株、KSM-PG115株、KSM-FFA033株、KSM-FFA036株、及びKSM-FFA039株)の菌学的性質の検討を行った。その結果を表10に示す。
Figure JPOXMLDOC01-appb-I000011
 糖からの酸及びガスの生成に関して、特定の糖類に対する資化性が、試験例1で選抜した菌株と公知菌株であるバシラス・リシェニフォルミスATCC9945a基準株との間で相違することが確認された。
 具体的には、バシラス・リシェニフォルミスKSM-PG115株及びKSM-PG121株は、L-ソルボース、L-ラムノース、ダルシトール、D-メリビオース、イヌリン、D-ラフィノース及びグルコン酸に対する資化性を有さず、バシラス・リシェニフォルミスATCC9945a基準株と相違している。
 また、バシラス・リシェニフォルミスKSM-FFA033、KSM-FFA036及びKSM-FFA039株は、ダルシトール、N-アセチルグルコサミン及びD-ラクトースに対する資化性を有さず、基準株であるバシラス・リシェニフォルミスATCC9945a株と相違している。
 また、バシラス・リシェニフォルミスKSM-FFA036株は、D-メリビオース及びD-ツラノースに対する資化性を有さず、バシラス・リシェニフォルミスATCC9945a基準株と相違している。
 さらに、バシラス・リシェニフォルミスKSM-FFA039株は、L-ソルボース及びゲンチオビオースに対する資化性を有さず、基準株であるバシラス・リシェニフォルミスATCC9945a株と相違している。
 表10に示すように、バシラス・リシェニフォルミスATCC9945a基準株はダルシトール資化性を有する。これに対して、試験例1で選抜した菌株は、共通してダルシトール資化性を有さず、グルタミン酸の非存在下であってもグリセリンを唯一の炭素源として高いPGA生産性を示す株の、共通の特徴である可能性が示唆された。
 さらに表10に示すように、バシラス・リシェニフォルミスKSM-PG121株とバシラス・リシェニフォルミスKSM-PG115株は、表10に示す菌学的性質について実質的に同じ性質を有する。これらの菌学的性質は、グルタミン酸を含まずグリセリンを唯一の炭素源として含む培地を用いて培養した場合、特に高いPGA生産性を示すバシラス・リシェニフォルミスの特徴である可能性が示唆された。
試験例4 各菌株の16S rDNA塩基配列の解析
 前記バシラス・リシェニフォルミスの各菌株(KSM-PG115株、KSM-PG121株、KSM-FFA033株、KSM-FFA036株、及びKSM-FFA039株)について、16S rDNA塩基配列による菌学的同定を行った。
 凍結保存菌体を1mM TEバッファー(pH8.0)にて30倍希釈したものをPCR反応の鋳型とし、表11に示す塩基配列のプライマー27f及び1525rを使用してPCR反応を行い、16S rDNA領域の全長DNA断片を増幅した。DNAポリメラーゼは、TaKaRa LA Taq(タカラバイオ)を用いた。PCR反応条件は、95℃で5分間、鋳型DNAを変性させた後、95℃で1分間、55℃で30秒間、72℃で2分間を1サイクルとして30サイクル行い、さらに72℃で2分間恒温した。得られた16S rDNA領域約1.5kbのDNA断片について、表11に示す塩基配列の、プライマー27f、f2L(-)、926f、rE1L、r2L'、及び1525rをそれぞれシークエンス用プライマーとして用い、DNA塩基配列の解析を行った。尚、シークエンス解析試料の調製には、BigDye Terminator v3.1 Cycle Sequencing Kit(Life Technologies)を用い、添付プロトコールに従い試料調製を行った。解析前の試料精製には、Montage SEQ96 Sequencing Reaction Cleanp kit(Merck Millipore)を使用した。
Figure JPOXMLDOC01-appb-I000012
 調製したシークエンス試料は、DNAシークエンサー(商品名:ABI 3130xl Genetic Analyzer、Life Technologies)を用いて配列解析を行い、塩基配列を決定した。バシラス・リシェニフォルミスKSM-PG121株の16S rDNAの塩基配列を配列番号7に示す。バシラス・リシェニフォルミスKSM-PG115株の16S rDNAの塩基配列を配列番号8に示す。バシラス・リシェニフォルミスKSM-FFA033株の16S rDNAの塩基配列を配列番号9に示す。バシラス・リシェニフォルミスKSM-FFA036株の16S rDNAの塩基配列を配列番号10に示す。バシラス・リシェニフォルミスKSM-FFA039株の16S rDNAの塩基配列を配列番号11に示す。
 得られた各塩基配列をGenetyx-Win(遺伝子情報処理ソフトウェア、ゼネティックス社製)を用いて1断片化した。なお、配列番号7で示される塩基配列と配列番号8で示される塩基配列との間で、Genetyx-Win(遺伝子情報処理ソフトウェア、ゼネティックス社製)のホモロジー解析プログラムを用いて塩基配列の相同性を算出した。その結果、配列番号7で示される塩基配列と配列番号8は塩基配列で示される塩基配列との間で、相同性は100%であった。この結果より、配列番号7で示される塩基配列からなる16S rDNAと、配列番号8で示される塩基配列からなる16S rDNAは、実質的に同一の16S rDNAであり、KSM-PG121株及びKSM-PG115株は同一の16S rDNAを有することが認められた。
 配列の相同性検索は、公開データベースNCIMB(National Center for Biotechnology Information、http://www.ncbi.nlm.gov/)のメニュー”Nucleotide”内の”BLAST”のなかにある”Basic BLAST”を用い、BLASTプログラムから”nucleotide blast”を選択した。検索対象のデータベースに”Reference genomic sequences(refseq_genomics)、選択プログラムに”Highly similar sequences(megablast)”を指定し、各塩基配列の相同性検索結果を基に近縁種の推定を行った。その結果を表12に示す。
Figure JPOXMLDOC01-appb-I000013
 16S rDNA塩基配列解析の結果、前記菌株の全てがバシラス・リシェニフォルミス ATCC14580株と最も相同性の高い16S rDNAの塩基配列を有していることが明らかとなった。
 従って、前記菌株は菌学的性質と併せ、バシラス・リシェニフォルミスに類縁の安全性の高い微生物株であると判断した。
 なお、バシラス・リシェニフォルミス KSM-PG121株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01552で寄託された。また、バシラス・リシェニフォルミス KSM-PG115株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01551で寄託された。また、バシラス・リシェニフォルミス KSM-FFA033株は、2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01553で寄託された。また、バシラス・リシェニフォルミス KSM-FFA036株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01554で寄託された。また、バシラス・リシェニフォルミス KSM-FFA039株は2013年2月28日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-01555で寄託された。
試験例5 培養液上清試料中の高分子物質の同定
 培養終了後の培養液試料を、室温にて14,800rpmで30分間の遠心分離(機種名:himacCF15RX、日立工機)に供し、得られた遠心分離後の試料上清中に含まれる高分子物質について同定を行った。
 分析対象となる上清試料0.5~1.0mLをスクリューキャップ付き試験管(商品名:ST-15S、日本電子理化硝子)に採取し、この上清試料に対して2倍容のエタノールを新たに加えた。タッチミキサーで攪拌、混合した試料を4℃で一晩恒温放置した。その後、4℃、3,000rpmで30分間の遠心分離(機種名:himacCF7D2、日立工機)に供し、沈殿画分を回収した。続いて、沈澱画分を0.5mLの1%NaCl溶液に再度溶解し、2倍容のエタノールを添加し、生成した沈澱画分を上記同様の遠心分離条件にて回収した。回収した沈殿生成物は遠心エバポレーター(機種名:CVE-200D、EYELA)にて乾固させ、回収した固形分の重量を測定した。この乾固試料を蒸留水0.5mLにて再度溶解させ、これに0.5mLの濃塩酸を加え攪拌後、窒素封入し、105~110℃にて16時間加熱処理を行った。加熱処理後、ドラフト内で窒素気流下で塩酸及び水分を留去し(約6時間)、得られた乾固物を加水分解試料とした。
 なお、PGA標品として市販PGA(分子量880k、明治フードマテリア)、加水分解試料の対照として、L-Glutamic acid及びD-Glutamic acid(和光純薬工業社製)を使用した。
 続いて、得られた加水分解試料を適宜希釈して、全自動アミノ酸分析装置(機種名:L-8900、日立ハイテクノロジーズ)にて試料中の各種アミノ酸分析、及びグルタミン酸の定量を行った。また、L-グルタミン酸測定キット(ヤマサ醤油)を用い、キット添付のプロトコール記載の方法に準じ、L-グルタミン酸量の測定を行った。全自動アミノ酸分析装置による測定では、光学活性異性体(D/L)の総量を定量結果として得た。これよりL-グルタミン酸測定キットにて得られた定量結果を差し引いた差分をD-グルタミン酸量とした。これらの結果を表13に示す。
Figure JPOXMLDOC01-appb-I000014
 上記方法により、グルタミン酸以外のアミノ酸はほとんど検出されなかったことから、培養上清中高分子物質をPGAと判断した。
 さらに、バシラス・リシェニフォルミスの各菌株(KSM-PG115株、KSM-PG121株、KSM-FFA033株、KSM-FFA036株、及びKSM-FFA039株)が生産したPGAのD:L比は、これまでに報告されている、バシラス・リシェニフォルミスが生産したPGAのD:L比と近い値であった。
試験例6 PGAの定量法
 実施例1~5で調製したPGAの定量は、下記に示す方法により行った。
 実施例1~5にて実施した評価培養の培養液試料を、室温にて14,800rpmで30分間の遠心分離(機種名:himacCF15RX、日立工機)に供し、培養液上清試料を調製した。この上清試料を0.1M硫酸ナトリウムにて適宜希釈し、MULTI SCREEN MNHV45(MILLIPORE製、0.45μmデュラポア膜)を用いて不溶物を除くための前処理を行った。この調製試料をHPLC分析試料とし、ゲルろ過カラムを用いたサイズ排除クロマトグラフィーを行った。分析カラムには、TSKGel G4000PWXL及びTSKGel G6000PWXL(商品名、東ソー)を用いた。溶離液は、0.1M硫酸ナトリウムを使用し、流速を1.0mL/分、カラム温度を50℃、UV検出波長を210nmとした。尚、濃度検定には、分子量88万のPGA(明治フードマテリアル)を用いて作成した検量線を用いた。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2013年9月3日に日本国で特許出願された特願2013-182367、及び2014年8月27日に日本国で特許出願された特願2014-172346に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (8)

  1.  受託番号NITE BP-01552、NITE BP-01551、NITE BP-01553、NITE BP-01554、又はNITE BP-01555で特定される微生物。
  2.  受託番号NITE BP-01552で特定される微生物が配列番号7で示される塩基配列からなる16S rDNAを有し、
     受託番号NITE BP-01551で特定される微生物が配列番号8で示される塩基配列からなる16S rDNAを有し、
     受託番号NITE BP-01553で特定される微生物が配列番号9で示される塩基配列からなる16S rDNAを有し、
     受託番号NITE BP-01554で特定される微生物が配列番号10で示される塩基配列からなる16S rDNAを有し、
     受託番号NITE BP-01555で特定される微生物が配列番号11で示される塩基配列からなる16S rDNAを有する、
    請求項1に記載の微生物。
  3.  前記微生物が、グルタミン酸の非存在下、グリセリンを唯一の炭素源として含む培地で培養してポリ-ガンマ-グルタミン酸を生産する、請求項1又は2に記載の微生物。
  4.  前記微生物が下記表1記載の菌学的性質を有する、請求項1~3のいずれか1項に記載の微生物。
    Figure JPOXMLDOC01-appb-I000001
  5.  受託番号NITE BP-01552又はNITE BP-01551で特定される、請求項1~4のいずれか1項に記載の微生物。
  6.  請求項1~5のいずれか1項に記載の微生物を培養してポリ-ガンマ-グルタミン酸を生産する、ポリ-ガンマ-グルタミン酸の生産方法。
  7.  グリセリンを炭素源として含む培地を用いて前記微生物を培養する、請求項6に記載のポリ-ガンマ-グルタミン酸の生産方法。
  8.  グルタミン酸を含まず、グリセリンを唯一の炭素源として含む培地を用いて前記微生物を培養する、請求項6又は7に記載のポリ-ガンマ-グルタミン酸の生産方法。
PCT/JP2014/072740 2013-09-03 2014-08-29 ポリ-ガンマ-グルタミン酸の生産方法 WO2015033871A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480034820.0A CN105555946A (zh) 2013-09-03 2014-08-29 聚γ-谷氨酸的生产方法
KR1020157036269A KR102265998B1 (ko) 2013-09-03 2014-08-29 폴리-감마-글루탐산의 생산 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-182367 2013-09-03
JP2013182367 2013-09-03
JP2014-172346 2014-08-27
JP2014172346A JP6388388B2 (ja) 2013-09-03 2014-08-27 ポリ−ガンマ−グルタミン酸の生産方法

Publications (1)

Publication Number Publication Date
WO2015033871A1 true WO2015033871A1 (ja) 2015-03-12

Family

ID=52628345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072740 WO2015033871A1 (ja) 2013-09-03 2014-08-29 ポリ-ガンマ-グルタミン酸の生産方法

Country Status (4)

Country Link
JP (1) JP6388388B2 (ja)
KR (1) KR102265998B1 (ja)
CN (1) CN105555946A (ja)
WO (1) WO2015033871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089496A (zh) * 2023-08-22 2023-11-21 轩凯生物科技(山东)有限公司 一株具有噬菌体抗性的地衣芽孢杆菌及其在制备聚谷氨酸中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371810B2 (ja) * 2016-08-25 2018-08-08 花王株式会社 ポリ−ガンマ−グルタミン酸の生産方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402977A (zh) * 2008-04-02 2009-04-08 广东省微生物研究所 一种γ-聚谷氨酸的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.HOPPENSACK ET AL., FEMS MICROBIOLOGY LETTERS, vol. 218, 2003, pages 39 - 45 *
G.A.BIRRER ET AL., INT.J.BIOL.MACROMOL., vol. 16, no. 5, 1994, pages 265 - 275 *
G.DU ET AL., PROCESS BIOCHEMISTRY, vol. 40, 2005, pages 2143 - 2147 *
Y.H.KO ET AL., BIOTECHNOLOGY AND BIOENGINEERING, vol. 57, no. 4, 1998, pages 430 - 437 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089496A (zh) * 2023-08-22 2023-11-21 轩凯生物科技(山东)有限公司 一株具有噬菌体抗性的地衣芽孢杆菌及其在制备聚谷氨酸中的应用

Also Published As

Publication number Publication date
KR20160047431A (ko) 2016-05-02
JP6388388B2 (ja) 2018-09-12
JP2015070834A (ja) 2015-04-16
CN105555946A (zh) 2016-05-04
KR102265998B1 (ko) 2021-06-16

Similar Documents

Publication Publication Date Title
EP2054502B2 (en) Novel engineered microorganism producing homo-succinic acid and method for preparing succinic acid using the same
WO2002026961A2 (en) Production process of surfactin
JP6371810B2 (ja) ポリ−ガンマ−グルタミン酸の生産方法
JP3921866B2 (ja) L−グルタミン酸生産菌及びl−グルタミン酸の製造法
JP6388388B2 (ja) ポリ−ガンマ−グルタミン酸の生産方法
CN112779203A (zh) 高产l-半胱氨酸的基因工程菌及其构建与应用
Bajaj et al. Sequential optimization Approach for Enhanced production of poly (γ-glutamic acid) from Newly Isolated Bacillus subtilis
KR100670166B1 (ko) 폴리감마글루탐산을 생산하는 신규 바실러스 서브틸리스ch-10 균주와 이를 이용한 폴리감마글루탐산의 제조방법
CN112725252B (zh) 一种单鼠李糖脂生产菌株及其应用
JP5022044B2 (ja) 新規ウリカーゼの製造方法
JP4307837B2 (ja) アミド類を生成するための微生物学的方法
KR102128031B1 (ko) 메탄균과의 공동배양을 통해 적응 진화된 대장균 및 이를 이용하여 폐글리세롤로부터 숙신산을 제조하는 방법
WO2015019674A1 (ja) ムコール属由来のフラビンアデニンジヌクレオチド結合型グルコースデヒドロゲナーゼの生産方法
JP4489598B2 (ja) D−アミノアシラーゼ
Agafonova et al. Methylobacillus caricis sp. nov., an obligate methylotroph isolated from roots of sedge (Carex sp.)
JP6558767B2 (ja) ハロモナス菌を用いたピルビン酸の製造方法
JP4395005B2 (ja) 低重合度ε−ポリ−L−リジンを生産する菌株及びそれを用いた低重合度ε−ポリ−L−リジンの製造法
CN112941001B (zh) 双鼠李糖脂生产菌株、构建方法及其应用
JP2019126309A (ja) 新規ラクトナーゼ
JP5053648B2 (ja) 新規ウリカーゼの製造方法
JP5748661B2 (ja) ジフルクトース・ジアンヒドリドiii合成酵素
JP4379897B2 (ja) アリイナーゼ及びこれを用いるアリシンの製造法
JP2007174947A (ja) 酵母株および乳酸の製造方法
JP5159319B2 (ja) 新規ヒダントイナーゼ及びn−カルバモイル−d−アミノ酸の製造方法
CN117165549A (zh) 一种胱硫醚-γ-合酶突变体及其应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034820.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036269

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842641

Country of ref document: EP

Kind code of ref document: A1