WO2015033819A1 - 蓄電装置の放電開始時刻決定システム及び蓄電装置の放電開始時刻の決定方法 - Google Patents

蓄電装置の放電開始時刻決定システム及び蓄電装置の放電開始時刻の決定方法 Download PDF

Info

Publication number
WO2015033819A1
WO2015033819A1 PCT/JP2014/072285 JP2014072285W WO2015033819A1 WO 2015033819 A1 WO2015033819 A1 WO 2015033819A1 JP 2014072285 W JP2014072285 W JP 2014072285W WO 2015033819 A1 WO2015033819 A1 WO 2015033819A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
discharge start
start time
power
amount
Prior art date
Application number
PCT/JP2014/072285
Other languages
English (en)
French (fr)
Inventor
裕也 田中
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201480046392.3A priority Critical patent/CN105474501B/zh
Priority to EP14841771.0A priority patent/EP3043446A4/en
Priority to KR1020167008690A priority patent/KR101784641B1/ko
Priority to US14/912,294 priority patent/US20160210706A1/en
Publication of WO2015033819A1 publication Critical patent/WO2015033819A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to a power storage device discharge start time determination system and a method for determining a power storage device discharge start time for effectively using a power storage device in a building including a solar power generation device and a power storage device. .
  • Charge / discharge control of a power storage device is known for the purpose of reducing power charges and leveling a power load for a house equipped with a solar power generation device and a power storage device (Patent Documents 1-4, etc.) reference).
  • the storage battery charging / discharging device of Patent Document 1 includes an arithmetic unit that calculates an optimal charging / discharging schedule of a storage location based on constraints, and an extracting unit that extracts a similar charging / discharging schedule from past charging / discharging patterns. And. And it is the structure which can provide a choice to a resident by displaying a several charging / discharging schedule calculated by the calculating part and the extraction part on a display part.
  • Patent Document 2 discloses a system that can reduce the peak power demand using a small storage battery.
  • this patent document 2 is set as the structure which reduces a peak power demand by using together the electric power generation by a solar power generation device, and the discharge of a storage battery in the daytime time zone when a peak power demand generate
  • Patent Documents 3 and 4 a plurality of simulations in which the discharge start time of the power storage device is changed using past measurement data, and a control pattern that is optimal when evaluated in a relatively long period are described.
  • a power control system that selects from calculation results is disclosed.
  • Patent Document 2 can reduce peak power demand with a small capacity storage battery, but is a system that can be effectively used when a large capacity storage battery is installed. Absent.
  • an object of the present invention is to provide a discharge start time determination system for a power storage device and a method for determining the discharge start time of a power storage device that can lead to effective use of the power storage device with a small calculation load. Yes.
  • a storage device discharge start time determination system is a storage device discharge start time determination system in a building including a solar power generation device and a power storage device, and the solar power generation device Predicting means for predicting the amount of power generated and the power consumption of the building, a medium price range from the first time to the second time, a high price range from the second time to the third time, The power price is different from the low price range from the third time to the first time of the next day, and the power price storage means storing these switching times, and the power generation amount from the power consumption in the high price range
  • a first comparison unit that compares the required amount at a high price obtained by subtracting the value and a dischargeable capacity of the power storage device, and the first comparison unit calculates the required price at a high price to be equal to or greater than the dischargeable capacity.
  • Discharge the second time A discharge start time determining means that sets a start time and any time from the first time to before the second time when the required amount at the high price is less than the dischargeable capacity
  • the method for determining the discharge start time of the power storage device includes the middle price range from the first time to the second time, the high price range from the second time to the third time, and the next day after the third time.
  • the method for determining the discharge start time of a power storage device in a building including a solar power generation device and a power storage device when the power price is different from the low price range before the first time of the solar power generation A prediction step for predicting the power generation amount of the device and the power consumption amount of the building is compared with the required amount at the high price obtained by subtracting the power generation amount from the power consumption amount of the high price range and the dischargeable capacity of the power storage device
  • the second time is set as the discharge start time when the required amount at the high price is calculated to be greater than or equal to the dischargeable capacity in the first comparison step, and the required amount at the high price is the discharge start time.
  • the power storage device discharge start time determination system and the power storage device discharge start time determination method of the present invention configured as described above are the high-price required amount and the power storage device in the time zone when the power price calculated by the subtraction process is high. Compared with the dischargeable capacity, the discharge start time is advanced when there is a remainder in the dischargeable capacity.
  • FIG. 1 is an explanatory diagram for explaining the flow of processing of the discharge start time determination system for the storage battery 2 as the power storage device of the present embodiment.
  • FIG. 2 is an explanatory diagram illustrating a charge system in which three or more different power prices are set, which is a precondition for applying the present discharge start time determination system.
  • FIG. 3 is an explanatory diagram schematically illustrating the configuration of the entire system to which the present discharge start time determination system is connected.
  • Houses H1,..., HX as buildings controlled by this system are power grids for receiving power supply from power grids such as power plants of power companies and cogeneration facilities installed in each region. Connected to the power grid.
  • these houses H1,... are provided with a solar cell panel 1 as a solar power generation device and a power storage location 2 as a power storage device for temporarily storing electric power. Further, these houses H1,... Are connected to an external communication network N such as the Internet. Then, transmission / reception of data such as measurement values and calculation processing results, transmission / reception of control signals, and the like are performed with an external management server 5 also connected to the communication network N.
  • FIG. 4 is a block diagram showing details of the entire system schematically shown in FIG. This whole system has a configuration arranged in the house H1 as the house side and a configuration arranged in the management server 5 as the server side.
  • the house H1 to be processed mainly includes a solar cell panel 1, a storage battery 2, a measuring means 3 for measuring the power generation amount of the solar cell panel 1 and the power consumption of the house H1, and a display monitor 4 as a display device. In preparation.
  • the solar cell panel 1 installed in the house H1 is a device that generates sunlight by directly converting sunlight as solar energy into electric power using a solar cell.
  • the solar cell panel 1 is a device that can supply electric power only during a time period in which sunlight can be received. Moreover, the DC power generated by the solar cell panel 1 is normally used after being converted into AC power by a power conditioner (not shown). Specifications such as the power generation capacity of the solar battery panel 1 installed in the house H1 are stored in a later-described house information database 51 on the management server 5 side.
  • the storage battery 2 is also connected to the power conditioner in the same manner as the solar battery panel 1, and charging control and discharging control are performed.
  • the storage battery 2 is charged with electric power having a low electric power price such as night electric power supplied from the grid power network.
  • Specifications such as the storage capacity and rated output of the storage location 2 are also stored in the residence information database 51 on the management server 5 side.
  • an air conditioner such as an air conditioner
  • an illumination device such as a lighting stand or a ceiling light
  • a home appliance such as a refrigerator or a television
  • power load devices that are operated by electric power.
  • electric vehicles and plug-in hybrid cars become power load devices when they are charged for running. Moreover, when it discharges for the electric power load apparatus of the house H1 similarly to the electrical storage place 2, it becomes an electrical storage apparatus.
  • the measuring means 3 measures the amount of power actually generated by the solar cell panel 1 installed in the house H1. Moreover, the power consumption consumed by the power load device installed in the house H1 is also measured. This power consumption can be measured together with a distribution board or can be measured for each power load device.
  • Measurement by the measuring means 3 can be performed at arbitrary intervals such as seconds, minutes, or hours.
  • the measured values measured by the measuring means 3 are stored in a measured value database 52 (described later) on the management server 5 side for each measurement or every time it is aggregated in an arbitrary period such as a time unit or a day unit.
  • the display monitor 4 displays the measured value measured by the measuring unit 3, the determination result by the discharge start time determining unit 63 described later on the management server 5 side, and the like.
  • the display monitor 4 may be a dedicated terminal monitor or a screen of a general-purpose device such as a personal computer.
  • the management server 5 connected to the house H1 via the external communication network N has a communication unit 71 as a communication unit, a control unit 6 that performs various controls, and various databases (51, 51) as a storage unit. 52, 53).
  • the communication unit 71 sends specifications, measurement values, processing requests, and the like of various facilities transmitted from the house H1 to the control unit 6 of the management server 5, and data stored in various databases (51, 52, 53), It has the function of flowing the arithmetic processing result performed by the control part 6, an update program, etc. toward the house H1.
  • a house information database 51 a measured value database 52, and a power price database 53 as storage means for reading and writing data through the control unit 6.
  • the residence code (identification number) of each house H1,..., HX, the address associated with the residence code, the year of construction, the heat insulation performance, the floor plan, the electrical wiring, the member used, the solar cell Information such as the specifications of the panel 1 (power generation capacity (output)) and the specifications of the storage battery 2 (storage capacity, rated output) are stored.
  • the measurement value database 52 stores measurement value data measured by each house H1,..., HX and received by the management server 5 via the communication unit 71. This measurement value can be identified in which house H1,..., HX by being stored in the measurement value database 52 in association with the house code.
  • the data stored in the measurement value database 52 can store the data sent from the house H1 as it is, but can also store the result of calculation processing such as integration by the control unit 6. .
  • the power price database 53 as the power price storage means stores information on the power price (the power purchase price as seen from the resident side) that changes depending on the time of the day set by the power company that supplies the grid power.
  • the precondition that the discharge start time determination system of the present embodiment can be applied is that a contract is made for a charge system in which three or more different power prices are set in one day.
  • electricity prices There are three types of electricity prices: the middle price range in the evening from 17:00 to 23:00 and the low price range in the evening from 23:00 (third time) to the next day before 7:00 (first time). Is set.
  • the power price database 53 stores the time when the power price switches and the power price in each time zone.
  • the power price database 53 also stores a purchase price (a power selling price as viewed from the resident side) at which a power company or the like purchases the power generated by the solar cell panel 1.
  • the control unit 6 is provided with a predicting means 61, a comparing means 62 having a first comparing means 621 and a second comparing means 622, and a discharge start time determining means 63.
  • the structure provided in this control part 6 becomes a main structure of the discharge start time determination system of the storage battery 2 of this Embodiment.
  • the prediction means 61 is a means for predicting the power generation amount of the solar cell panel 1 and the power consumption amount of the house H1 on the day on which it is desired to determine the optimal discharge start time of the storage battery 2. For example, the power generation amount and power consumption on the next day can be predicted on the previous day. In addition, when the discharge start time to be applied in an arbitrary period (1 week, 10 days, 1 month, etc.) is determined by the previous day, an average value corresponding to the arbitrary period can be predicted.
  • the prediction by the prediction means 61 is performed based on the measurement values measured by the measurement means 3 and accumulated in the measurement value database 52. A detailed prediction method will be described later.
  • FIG. 1 is a diagram for explaining the details of the comparison means 62.
  • the dischargeable capacity X of the storage battery 2 can be calculated based on the value stored in the residence information database 51. Usually, in order to extend the life of the storage battery 2, the entire storage capacity is not discharged. Therefore, the dischargeable capacity X shown in FIG. 1 is a capacity that is set to be able to discharge 100%.
  • the curves of the photovoltaic power generation amount and the power consumption amount shown in the graph on the left side of FIG. 1 indicate the power generation amount and the power consumption amount predicted by the prediction means 61.
  • the amount of power required to be supplied from the grid power network or the storage battery 2 in each time zone indicated by the areas A, B, and C is calculated.
  • the power consumption exceeds the amount of power generation, it is necessary to receive power supply from the grid power network or the storage battery 2, so that the power amount becomes the necessary amount (A, B, C) in each time zone.
  • This required amount (A, B, C) can be calculated by subtracting the amount of photovoltaic power generation from the amount of power consumption and integrating during the time period. If the amount of photovoltaic power generation is greater than or equal to the power consumption at all times during the time period, the required amount is zero.
  • the morning requirement A indicates the amount of power that needs to be supplied in the morning time zone (medium price range) from 7 o'clock to 10 o'clock, when the electricity price is higher than at night.
  • the daytime required amount B indicates the amount of power that needs to be supplied in the daytime period (high price range) from 10:00 to 17:00 when the power price is highest during the day.
  • the evening required amount C indicates the amount of electricity that needs to be supplied in the evening time zone (medium price range) from 17:00 to before 23:00 when the electricity price is lower than in the daytime.
  • the calculation so far corresponds to step S1 of the flowchart shown on the right side of FIG.
  • the first comparison means 621 compares the dischargeable capacity X with the daytime and evening required amounts (B, C) (step S2). In other words, the first comparison means 621 discharges the sum of the daytime requirement amount B in the daytime period when the power price is the highest and the evening requirement amount C in the following evening time period as the high price hourly requirement amount (B + C). Compare with possible capacity X.
  • the second comparison means 622 determines the high price required amount from the dischargeable capacity X.
  • a surplus discharge amount Y obtained by subtracting (B + C) is calculated (step S3).
  • step S4 the morning required amount A in the morning time zone is compared with the marginal discharge amount Y as the required amount at the middle price. As a result of this comparison, if it is determined that only the required amount (A) at the middle price can be supplied with the surplus discharge amount Y (A ⁇ Y), any of the middle price range from 7:00 to before 10:00 Is determined as the discharge start time (step S6). In this step S6, 8-9 o'clock is determined as the discharge start time.
  • step S11 the measurement means 3 of the house H1 measures the power generation amount of the solar panel 1 and the power consumption of the house H1, which is the power consumption of all the power load devices installed in the house H1.
  • the measurement value is accumulated at least over a period (for example, one month) to be compared. That is, in step S11, the measured value measured in the house H1 in N-1 month (previous month) is stored in the measured value database 52.
  • step S12 it is determined whether or not there are measurement values for the past year of the house H1.
  • the measured value of N month of the previous year is As it is, it is used as a predicted value of the power generation amount and the power consumption amount for this month (N month) of this year (step S14).
  • step S15 when the house H1 is newly built or when the measuring means 3 is just installed, measured values for the past year are not accumulated. Therefore, comparison with other residences is performed in step S15.
  • the management server 5 is connected to many houses H2,..., HX in addition to the house H1 to be processed. And since the measurement means 3, ... are installed in these houses H2, ..., HX respectively, those measurement values are stored in the measurement value database 52.
  • step S16 From the measured values measured in the previous month (N-1 month) in the houses H2,..., HX, the same as the measured value in the previous month (N-1 month) of the house H1 to be processed or A house where a similar measurement value is measured is extracted as a similar house (step S16).
  • step S15 to S17 The processing from step S15 to S17 described above is the same or similar when the measured value of the previous month (N-1 month) is compared with the measured value of N-1 month one year ago in step S13. It is also performed when it is determined that it cannot be said.
  • the processing in the above steps is the prediction by the prediction means 61. Then, the optimum discharge start time is determined using the predicted power generation amount and power consumption amount of the house H1 in the current month of January (step S18).
  • FIG. 6 illustrates the predicted power generation amount and power consumption prediction value of the solar cell panel 1 predicted by the prediction means 61. That is, in the second column from the left of the table in FIG. 6, the average value of the power consumption of the house H1 in the current month N (current month) is shown as a predicted value for each hour. Moreover, the average value of the electric power generation amount of the N month (this month) of the solar cell panel 1 is shown for every time as a predicted value in the column next to it.
  • the determination result calculated in this way is output as the optimum discharge start time as shown in step S19 of FIG. That is, the determination result by the discharge start time determining unit 63 is sent from the control unit 6 to the display monitor 4 of the house H1 via the communication unit 71 and displayed as shown in FIG.
  • FIG. 7 is a diagram showing an example of the display result of the display monitor 4. Here, the current discharge start time (8:00 am) of the storage battery 2 and the state (good) of the storage battery 2 are shown, and the discharge start time at which the power rate is the cheapest is “10 am” It is displayed.
  • the resident who sees the display on the display monitor 4 can change the discharge start time of the storage battery 2 to 10:00 am if he wants to reduce the power charge as much as possible.
  • the system for determining the discharge start time of the storage battery 2 of the present embodiment configured as described above has a high-price required amount (B + C) in a time zone where the power price calculated by the subtraction process is high and the dischargeable capacity X of the storage battery 2. And the discharge start time is advanced when there is a remainder in the dischargeable capacity X.
  • the storage battery 2 is charged at a time when the power price is low (low price range) and the charged power is discharged at a time when the power price is high (high price range) or an intermediate time zone (medium price range). By using it, the electricity charge of the house H1 can be reduced.
  • the optimal discharge start time may change.
  • the optimal discharge start time may change when the season, family structure, electricity price system, etc. change. For this reason, the electric charge of the house H1 can be reduced by reviewing the optimal discharge start time from time to time or periodically. And the determination result by the discharge start time determination system of the storage battery 2 of this Embodiment becomes a suitable determination material of a resident.
  • the prediction accuracy is improved by performing the prediction based on the measurement values of the same or similar other houses H2, ..., HX. Can be increased.
  • the user can easily discharge more appropriately. This can lead to optimal discharge.
  • the charge system in which three different power prices exist in the day has been described as an example, but the present invention is not limited to this.
  • the power price and the switching time described in the above embodiment are examples, and the time when the power price changes and the number of time zones where the price is different are the management policy of the company that supplies the grid power, such as the power company, It changes depending on the policy.
  • the said embodiment demonstrated the case where the determination result of the discharge start time transmitted via the communication part 71 of the management server 5 was displayed on the display monitor 4, it is not limited to this, Electronic It can also be displayed on the screen of a mobile phone or computer via email. The resident can also know the determination result by browsing a predetermined Web page.
  • the prediction unit 61 that performs prediction based on the measurement value measured by the measurement unit 3 of the house H1 has been described.
  • the prediction unit 61 is not limited to this, and is obtained from existing statistical data. The average value obtained can also be used as the predicted value.
  • the said embodiment demonstrated only the display result of the determination by the discharge start time determination means 63 on the display monitor 4, and demonstrated the case where the setting change of the storage battery 2 performed by a resident, it is not limited to this. .
  • optimal discharge control can be automatically performed by outputting the determination result of the discharge start time to the control device of the storage battery 2.

Abstract

蓄電池(2)の放電開始時刻決定システムであって、太陽電池パネル(1)の発電量及び電力消費量を予測する予測手段(61)と、電力価格の切り替わり時刻が記憶された電力価格データベース(53)と、高価格時必要量と放電可能容量とを比較する第1比較手段(621)と、高価格時必要量が放電可能容量以上と算定された場合に第2時刻を放電開始時刻とし、高価格時必要量が前記放電可能容量未満と算定された場合に第1時刻以降第2時刻の前までのいずれかの時刻を放電開始時刻とする放電開始時刻決定手段(63)とを備えている。

Description

蓄電装置の放電開始時刻決定システム及び蓄電装置の放電開始時刻の決定方法
 本発明は、太陽光発電装置と蓄電装置とを備えた建物において、蓄電装置を有効に活用するための蓄電装置の放電開始時刻決定システム、及び蓄電装置の放電開始時刻の決定方法に関するものである。
 太陽光発電装置及び蓄電装置を備えた住宅を対象とした、電力料金の削減や電力負荷を平準化させることを目的とした蓄電装置の充放電制御が知られている(特許文献1-4など参照)。
 例えば、特許文献1の蓄電池充放電装置は、制約条件に基づいて蓄電地の最適な充放電スケジュールを演算する演算部と、過去の充放電パターンの中から類似した充放電スケジュールを抽出する抽出部とを備えている。そして、演算部と抽出部とで算定された複数の充放電スケジュールを表示部に表示させることによって、住人に選択肢が提供できる構成となっている。
 また、特許文献2には、小さな蓄電池を用いてピーク電力需要を削減することができるシステムが開示されている。この特許文献2では、ピーク電力需要が発生する昼間の時間帯に、太陽光発電装置による発電と蓄電池の放電とを併せて使用することで、ピーク電力需要を削減する構成としている。
 さらに、特許文献3,4には、過去の計測データを使用して蓄電装置の放電開始時刻を変化させた複数のシミュレーションを行い、比較的に長い期間で評価した場合に最適となる制御パターンを演算結果から選択する電力制御システムが開示されている。
特開2010-268602号公報 特開2003-79054号公報 特許第4967052号公報 特許第5232266号公報
 しかしながら、特許文献1の蓄電池充放電装置では、最適な充放電スケジュールをシミュレーションするうえに、過去の充放電スケジュールから類似するパターンを抽出する処理も行うため、演算負荷が高い。また、複数の充放電スケジュールの選択肢が提供されることにはなるが、いずれを選択するかを利用者が判断しなければならない。
 また、特許文献2に開示されたシステムは、小さな容量の蓄電池でピーク電力需要を削減することはできるが、大きな容量の蓄電池が設置された場合に、有効に活用できるようなシステムにはなっていない。
 そこで、本発明は、少ない演算負荷で蓄電装置の有効活用に導くことが可能となるような蓄電装置の放電開始時刻決定システム、及び蓄電装置の放電開始時刻の決定方法を提供することを目的としている。
 前記目的を達成するために、本発明の蓄電装置の放電開始時刻決定システムは、太陽光発電装置及び蓄電装置を備えた建物における蓄電装置の放電開始時刻決定システムであって、前記太陽光発電装置の発電量及び前記建物の電力消費量を予測する予測手段と、第1時刻以降第2時刻の前までの中価格帯と、第2時刻以降第3時刻の前までの高価格帯と、第3時刻以降翌日の第1時刻の前までの低価格帯と電力価格が異なっており、これらの切り替わり時刻が記憶された電力価格記憶手段と、前記高価格帯の前記電力消費量から前記発電量を減算した高価格時必要量と前記蓄電装置の放電可能容量とを比較する第1比較手段と、前記第1比較手段によって前記高価格時必要量が前記放電可能容量以上と算定された場合に前記第2時刻を放電開始時刻とし、前記高価格時必要量が前記放電可能容量未満と算定された場合に前記第1時刻以降前記第2時刻の前までのいずれかの時刻を放電開始時刻とする放電開始時刻決定手段とを備えたことを特徴とする。
 また、蓄電装置の放電開始時刻の決定方法は、第1時刻以降第2時刻の前までの中価格帯と、第2時刻以降第3時刻の前までの高価格帯と、第3時刻以降翌日の第1時刻の前までの低価格帯と電力価格が異なっている場合に、太陽光発電装置及び蓄電装置を備えた建物における蓄電装置の放電開始時刻の決定方法であって、前記太陽光発電装置の発電量及び前記建物の電力消費量を予測する予測ステップと、前記高価格帯の前記電力消費量から前記発電量を減算した高価格時必要量と前記蓄電装置の放電可能容量とを比較する第1比較ステップと、前記第1比較ステップにおいて前記高価格時必要量が前記放電可能容量以上と算定された場合に前記第2時刻を放電開始時刻とし、前記高価格時必要量が前記放電可能容量未満と算定された場合に前記第1時刻以降前記第2時刻の前までのいずれかの時刻を放電開始時刻とする放電開始時刻決定ステップとを備えたことを特徴とする。
 このように構成された本発明の蓄電装置の放電開始時刻決定システム及び蓄電装置の放電開始時刻の決定方法は、減算処理によって算出された電力価格が高い時間帯の高価格時必要量と蓄電装置の放電可能容量とを比較して、放電可能容量に余りが出る場合に放電開始時刻を早める。
 このため、減算という少ない演算負荷で、蓄電装置の放電可能容量を最大限に利用するという有効活用に導くことができる。
本発明の実施の形態の蓄電池の放電開始時刻決定システムの処理の流れを説明する説明図である。 3つ以上の異なる電力価格が設定された料金体系を例示する説明図である。 全体システムの構成を模式的に説明する説明図である。 本発明の実施の形態の蓄電池の放電開始時刻決定システムの構成を説明するブロック図である。 放電開始時刻決定システムが組み込まれた全体システムの処理の流れを説明するフローチャートである。 予測手段による予測結果を例示する一覧表である。 放電開始時刻決定手段による判定結果の表示例を示した説明図である。
 以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態の蓄電装置としての蓄電池2の放電開始時刻決定システムの処理の流れを説明する説明図である。
 また、図2は、本放電開始時刻決定システムが適用される前提条件となる、3つ以上の異なる電力価格が設定された料金体系を例示する説明図である。さらに、図3は、本放電開始時刻決定システムが繋がる全体システムの構成を模式的に説明する説明図である。
 まず、図3を参照しながらシステムの全体構成について説明する。このシステムによって制御される建物としての住宅H1,・・・,HXは、電力会社の発電所や地域毎に設置されたコジェネレーション設備などの系統電力から電力の供給を受けるための電力網としての系統電力網に接続されている。
 また、これらの住宅H1,・・・は、太陽光発電装置としての太陽電池パネル1と、電力を一時的に蓄えておく蓄電装置としての蓄電地2とを備えている。さらに、これらの住宅H1,・・・は、インターネットなどの外部の通信網Nに繋がっている。そして、同じく通信網Nに接続された外部の管理サーバ5との間で、計測値や演算処理結果などのデータの送受信や制御信号の送受信などが行われる。
 図4は、図3に模式的に示した全体システムの詳細について、ブロック図で示した図である。この全体システムは、住宅側としての住宅H1に配置される構成と、サーバ側としての管理サーバ5に配置される構成とを有している。
 処理対象となる住宅H1は、太陽電池パネル1と、蓄電池2と、太陽電池パネル1の発電量及び住宅H1の電力消費量を計測する計測手段3と、表示装置としての表示モニタ4とを主に備えている。
 住宅H1に設置された太陽電池パネル1は、太陽エネルギーとしての太陽光を、太陽電池を利用することによって、直接、電力に変換して発電をおこなう装置である。
 この太陽電池パネル1は、太陽光を受けることができる時間帯にのみ電力を供給することが可能な装置である。また、太陽電池パネル1によって発電された直流電力は、通常、パワーコンディショナ(図示省略)によって交流電力に変換されて使用される。この住宅H1に設置された太陽電池パネル1の発電容量などの仕様は、管理サーバ5側の後述する邸情報データベース51に記憶される。
 一方蓄電池2も、太陽電池パネル1と同様にパワーコンディショナに接続されて、充電制御及び放電制御が行われる。例えば、蓄電池2には、系統電力網から供給される夜間電力などの電力価格が安い電力を充電する。この、蓄電地2の蓄電容量や定格出力などの仕様も、管理サーバ5側の邸情報データベース51に記憶される。
 なお住宅H1には、分電盤を通して電力が供給される様々な電力負荷装置が設置される。例えば、エアコンなどの空調装置、照明スタンドやシーリングライトなどの照明装置、冷蔵庫やテレビなどの家電装置などが電力によって稼働する電力負荷装置となる。
 また、電気自動車やプラグインハイブリッドカーは、走行させるために充電をおこなう場合は電力負荷装置となる。また、蓄電地2と同様に、住宅H1の電力負荷装置のために放電させる場合は、蓄電装置となる。
 計測手段3では、住宅H1に設置された太陽電池パネル1によって実際に発電された発電量が計測される。また、住宅H1に設置された電力負荷装置によって消費された電力消費量も計測される。この電力消費量は、分電盤でまとめて計測することもできるし、電力負荷装置毎に計測することもできる。
 計測手段3による計測は、秒単位、分単位、時間単位などの任意の間隔で行うことができる。また計測手段3によって計測された計測値は、計測毎又は時間単位や日単位など任意の期間で集計した毎に、管理サーバ5側の後述する計測値データベース52に記憶される。
 表示モニタ4には、計測手段3で計測された計測値や、管理サーバ5側の後述する放電開始時刻決定手段63による判定結果などを表示させる。この表示モニタ4は、専用の端末モニタであっても、パソコンなどの汎用機器の画面であってもいずれでもよい。
 そして、住宅H1と外部の通信網Nを介して接続される管理サーバ5側には、通信手段としての通信部71と、各種制御を行う制御部6と、記憶手段としての各種データベース(51,52,53)とが主に備えられている。
 通信部71は、住宅H1から送信されてくる各種設備の仕様、計測値、処理要求などを管理サーバ5の制御部6に流すとともに、各種データベース(51,52,53)に記憶されたデータ、制御部6で行われた演算処理結果、更新プログラムなどを住宅H1に向けて流す機能を有している。
 また、制御部6を通してデータの読み書きが行われる記憶手段には、邸情報データベース51、計測値データベース52、電力価格データベース53などの各種データベースが存在する。
 例えば邸情報データベース51には、各住宅H1,・・・,HXの邸コード(識別番号)、その邸コードに関連付けられた住所、建築年、断熱性能、間取り、電気配線、使用部材、太陽電池パネル1の仕様(発電容量(出力))、蓄電池2の仕様(蓄電容量、定格出力)などの情報が記憶される。
 また、計測値データベース52には、各住宅H1,・・・,HXで計測されて通信部71を介して管理サーバ5が受信した計測値のデータが記憶される。この計測値は、邸コードに関連付けて計測値データベース52に記憶させることで、いずれの住宅H1,・・・,HXで計測された結果であるかを識別させることができる。
 さらに、計測値データベース52に記憶されるデータは、住宅H1から送られてきたデータをそのまま記憶させることもできるが、制御部6で積算するなどの演算処理を行った結果を記憶させることもできる。
 一方、電力価格記憶手段としての電力価格データベース53には、系統電力を供給する電力会社等が設定する一日の時間によって変化する電力価格(住人側から見て買電価格)に関する情報が記憶される。
 本実施の形態の放電開始時刻決定システムが適用できる前提条件は、一日のうちで3つ以上の異なる電力価格が設定された料金体系の契約を行っていることである。
 例えば、図2に示した料金体系には、7時(第1時刻)以降10時の前までの朝の中価格帯、10時(第2時刻)以降17時の前までの昼間の高価格帯、17時以降23時の前までの晩の中価格帯、23時(第3時刻)以降翌日の7時(第1時刻)の前までの夜間の低価格帯という3種類の電力価格が設定されている。
 すなわち電力価格データベース53には、電力価格が切り替わる時刻と、各時間帯の電力価格が記憶されている。また、電力価格データベース53には、太陽電池パネル1で発電した電力を電力会社等が買い取る買取価格(住人側から見て売電価格)も記憶されている。
 そして、制御部6には、予測手段61と、第1比較手段621及び第2比較手段622を有する比較手段62と、放電開始時刻決定手段63とが設けられる。この制御部6に設けられる構成が、本実施の形態の蓄電池2の放電開始時刻決定システムの主要な構成となる。
 予測手段61は、蓄電池2の最適な放電開始時刻を決めたい日の太陽電池パネル1の発電量と、住宅H1の電力消費量とを予測する手段である。例えば、前日に翌日の発電量と電力消費量を予測することができる。また、任意の期間(1週間、10日間、1ヶ月間など)に適用する放電開始時刻を前日までに決定する場合には、それら任意の期間に該当する平均値などを予測させることもできる。
 予測手段61による予測は、計測手段3によって計測されて計測値データベース52に蓄積された計測値に基づいて行われる。なお、詳細な予測方法については後述する。
 そして、予測手段61によって予測された発電量及び電力消費量と、蓄電池2の放電可能容量Xとの比較を、比較手段62において行う。図1は、比較手段62の詳細を説明するための図である。
 蓄電池2の放電可能容量Xは、邸情報データベース51に記憶された値に基づいて算定することができる。通常は、蓄電池2の寿命を延ばすために、蓄電容量のすべてを放電させることはない。よって、図1に示した放電可能容量Xは、100%放電させることができるものとして設定された容量となる。
 また、図1の左側のグラフに図示した太陽光発電量と電力消費量の曲線は、予測手段61によって予測された発電量及び電力消費量を示している。まず、A,B,Cの面積で示される、各時間帯の系統電力網又は蓄電池2からの供給が必要な電力量を算出する。
 すなわち電力消費量が発電量を上回る場合は、系統電力網又は蓄電池2から電力の供給を受ける必要があるので、その電力量が各時間帯の必要量(A,B,C)となる。この必要量(A,B,C)は、電力消費量から太陽光発電量を減算して時間帯中の積算をすることによって算出することができる。なお、時間帯中のすべての時刻で太陽光発電量が電力消費量以上であった場合は、必要量は0となる。
 ここで、朝必要量Aは、夜間よりも電力価格が上がる7時以降10時の前までの朝の時間帯(中価格帯)における供給が必要な電力量を示している。また、昼必要量Bは、一日の中で最も電力価格が高い10時以降17時の前までの昼間の時間帯(高価格帯)における供給が必要な電力量を示している。
 さらに、晩必要量Cは、昼間よりも電力価格が下がる17時以降23時の前までの晩の時間帯(中価格帯)における供給が必要な電力量を示している。ここまでの演算が、図1の右側に示したフローチャートのステップS1に該当する。
 続いて、第1比較手段621によって、放電可能容量Xと昼間及び晩の必要量(B,C)との比較を行う(ステップS2)。すなわち第1比較手段621では、電力価格が最も高い昼間の時間帯の昼必要量Bと、それに続く晩の時間帯の晩必要量Cとの合計を、高価格時必要量(B+C)として放電可能容量Xと比較する。
 この比較の結果、放電可能容量Xでは高価格時必要量(B+C)の供給しかできない(B+C≧X)と判定された場合は、高価格帯に切り替わる10時を放電開始時刻として決定する(ステップS5)。
 これに対して、放電可能容量Xが高価格時必要量(B+C)を上回っている(B+C<X)と判定された場合は、第2比較手段622によって放電可能容量Xから高価格時必要量(B+C)を減算した余裕放電量Yを算出する(ステップS3)。
 そしてステップS4では、朝の時間帯の朝必要量Aを中価格時必要量として余裕放電量Yと比較する。この比較の結果、余裕放電量Yでは中価格時必要量(A)の供給しかできない(A≧Y)と判定された場合は、中価格帯である7時以降10時の前までのいずれかの時刻を放電開始時刻として決定する(ステップS6)。このステップS6では、8~9時を放電開始時刻として決定している。
 これに対して、余裕放電量Yが中価格時必要量(A)を上回っている(A<Y)と判定された場合は、中価格帯に切り替わる7時を放電開始時刻として決定する(ステップS7)。
 次に、本実施の形態の蓄電池2の放電開始時刻決定システムが組み込まれるシステム全体の処理の流れを、図5を参照しながら説明する。
 まず、ステップS11では、住宅H1の計測手段3によって、太陽電池パネル1の発電量と住宅H1に設置されたすべての電力負荷装置の電力消費量である住宅H1の電力消費量とを計測する。
 ここで、蓄電池2のN月(当月)の最適放電開始時刻を判定する予測を行うには、少なくとも類否の比較対象とする期間(例えば1ヶ月間)にわたって計測値を蓄積させる。すなわちステップS11では、N-1月(前月)に住宅H1で計測された計測値を計測値データベース52に記憶させる。
 そして、この住宅H1が建築後13ヶ月以上経過していれば、住宅H1で実際に計測された1年前の計測値を使って、N月(当月)の予測を行うことができる。そこで、ステップS12では、住宅H1の過去1年分の計測値があるか否かの判定を行う。
 1年前のN-1月の計測値が蓄積されていた場合は、計測値データベース52から読み出して、前月(N-1月)の計測値と1年前のN-1月の計測値との比較を行う(ステップS13)。
 この比較の結果、前月(N-1月)の計測値と1年前のN-1月の計測値とが同一又は類似といえる範囲内であれば、1年前のN月の計測値をそのまま今年の当月(N月)の発電量と電力消費量の予測値として利用する(ステップS14)。
 これに対して、住宅H1が新築である場合や計測手段3を取り付けて間もない場合は、過去1年分の計測値が蓄積されていない。そこで、ステップS15で他邸との比較を行う。
 すなわち、図3に示したように、管理サーバ5には、処理対象としている住宅H1以外にも多くの住宅H2,・・・,HXが接続されている。そして、これらの住宅H2,・・・,HXにもそれぞれ計測手段3,・・・が設置されているので、計測値データベース52にはそれらの計測値が蓄積されている。
 そこで、住宅H2,・・・,HXで前月(N-1月)に計測された計測値の中から、処理対象となっている住宅H1の前月(N-1月)の計測値と同一又は類似する計測値が計測された住宅を類似邸として抽出する(ステップS16)。
 類似邸の抽出に際しては、昼必要量B、晩必要量C、朝必要量Aの順に類似する住宅を探索し、最も近い住宅を類似邸として抽出する。例えば類似邸として住宅H2が抽出されたとすると、住宅H2の過去1年分の計測値が蓄積されていれば、住宅H2の1年前のN月の計測値を住宅H1の今年の当月(N月)の発電量と電力消費量の予測値として利用する(ステップS17)。
 上述したステップS15~S17までの処理は、ステップS13で前月(N-1月)の計測値と1年前のN-1月の計測値との比較を行った場合に、同一又は類似とは言えないと判定された場合にも行われる。
 以上のステップにおける処理が予測手段61による予測となる。そして、予測された住宅H1の今年のN月の発電量と電力消費量を使って、最適放電開始時刻の判定を行う(ステップS18)。
 図6に、予測手段61によって予測された太陽電池パネル1の発電量と電力消費量の予測値を例示した。すなわち図6の表の左から2列目には、住宅H1の今年のN月(当月)の電力消費量の平均値が予測値として時間毎に示されている。また、その隣の列には、太陽電池パネル1のN月(当月)の発電量の平均値が予測値として時間毎に示されている。
 ここで、最適放電開始時刻の判定の処理の流れについては、図1を使って既に説明した。すなわち時間毎に電力消費量から発電量を減算して、供給が必要な電力量(必要量)を算出する。なお、この図6に示した表では、図1と違って発電量が電力消費量を上回る時間はなかった。
 そして、算出された時間毎の必要量を各時間帯で積算して、朝必要量A(=2.21kWh)、昼必要量B(=5.16kWh)及び晩必要量C(=7.03kWh)をそれぞれ求める(図1のステップS1)。
 続いて上述したように第1比較手段621、第2比較手段622による比較を行って、最も適切となる放電開始時刻を判定する(図1のステップS2~S7)。この図6に示した表の値に基づくと、放電可能容量Xが5.05kWhのときには、昼必要量B+晩必要量C=5.16kWh + 7.03kWh ≧ 5.05kWhとなって、放電開始時刻の判定結果は10時(ステップS2,ステップS5参照)となる。
 このようにして算出された判定結果は、図5のステップS19に示すように最適放電開始時刻として出力される。すなわち放電開始時刻決定手段63による判定結果は、図4に示すように、制御部6から通信部71を介して住宅H1の表示モニタ4に送られて表示される。
 図7は、表示モニタ4の表示結果の一例を示した図である。ここには、現在の蓄電池2の放電開始時刻(午前8時)と、蓄電池2の状態(良好)が示されるとともに、最も電力料金が安くなる放電開始時刻が「午前10時」であることが表示されている。
 そして、この表示モニタ4の表示を見た住人は、電力料金をできるだけ安くしたいと思えば、蓄電池2の放電開始時刻を午前10時に変更する設定を行うことができる。
 次に、本実施の形態の蓄電池2の放電開始時刻決定システムの作用について説明する。
 このように構成された本実施の形態の蓄電池2の放電開始時刻決定システムは、減算処理によって算出された電力価格が高い時間帯の高価格時必要量(B+C)と蓄電池2の放電可能容量Xとを比較して、放電可能容量Xに余りが出る場合に放電開始時刻を早める。
 このため、減算という少ない演算負荷で、蓄電池2の放電可能容量Xを最大限に利用するという有効活用に導くことができる。また、上記比較に加えて、減算処理によって算出された電力価格が中間にある時間帯の中価格時必要量(A)と余裕放電量Yとの比較を行うことで、より経済的な放電開始時刻を提案することができるようになる。
 すなわち、電力価格が安い時間帯(低価格帯)に蓄電池2の充電を行い、充電された電力を電力価格が高い時間帯(高価格帯)や中間となる時間帯(中価格帯)に放電して利用することで、住宅H1の電力料金を削減することができる。
 例えば、住人の生活スタイルが変化して、平日の朝の電力消費量が増加したり、休日の昼間の電力消費量が増加したりした場合は、最適放電開始時刻が変化する可能性がある。この他にも、季節、家族構成、電力価格の料金体系などが変化すると、最適放電開始時刻も変化する可能性がある。このため、時々又は定期的に最適放電開始時刻の見直しを行うことで、住宅H1の電力料金を削減できるようになる。そして、本実施の形態の蓄電池2の放電開始時刻決定システムによる判定結果は、住人の好適な判断材料となる。
 また、計測手段3によって実際にその住宅H1で蓄積された計測値に基づいて予測を行うことで、住宅H1の設備や断熱性能、住人の生活スタイル、季節、家族構成などが考慮された予測を行うことができるようになる。
 さらに、処理対象となる住宅H1において計測値が充分に蓄積されていない段階でも、同一又は類似する別の住宅H2,・・・,HXの計測値に基づいて予測を行うことで、予測精度を高めることができる。
 そして、放電開始時刻の判定結果を、端末モニタやパソコンの画面などの表示モニタ4に出力させたり、プリンタやファクシミリなどの印刷装置に出力させたりすることで、利用者を容易により適切な放電又は最適放電に導くことができる。
 以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
 例えば、前記実施の形態では、一日の中で3つの異なる電力価格が存在する料金体系を例に説明したが、これに限定されるものではない。前記実施の形態で説明した電力価格及び切り替わり時刻は例示であって、電力価格が変化する時刻や価格が異なる時間帯の数は、電力会社などの系統電力を供給する会社の経営方針やその時の政策などによって変化する。
 また、前記実施の形態では、管理サーバ5の通信部71を介して送信された放電開始時刻の判定結果を表示モニタ4に表示させる場合について説明したが、これに限定されるものではなく、電子メールを介して携帯電話やパソコンの画面などに表示させることもできる。また、住人が所定のWebページを閲覧することで判定結果を知ることもできる。
 さらに、前記実施の形態では、住宅H1の計測手段3によって計測された計測値に基づいて予測を行う予測手段61ついて説明したが、これに限定されるものではなく、既存の統計資料などから得られる平均値などを予測値とすることもできる。
 また、前記実施の形態では、放電開始時刻決定手段63による判定結果を表示モニタ4に表示させるだけで、蓄電池2の設定変更は住人が行う場合について説明したが、これに限定されるものではない。例えば、放電開始時刻の判定結果を蓄電池2の制御装置に出力させることで、自動的に最適な放電制御を行わせることもできる。
 そして、前記実施の形態では、蓄電地2の放電開始時刻決定システムについて説明したが、これに限定されるものではなく、演算装置などを部分的に使用した又はまったく使用しない蓄電装置の放電開始時刻の決定方法であってもよい。
[関連出願への相互参照]
 本出願は、2013年9月6日に日本国特許庁に出願された特願2013-185387に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (7)

  1.  太陽光発電装置及び蓄電装置を備えた建物における蓄電装置の放電開始時刻決定システムであって、
     前記太陽光発電装置の発電量及び前記建物の電力消費量を予測する予測手段と、
     第1時刻以降第2時刻の前までの中価格帯と、第2時刻以降第3時刻の前までの高価格帯と、第3時刻以降翌日の第1時刻の前までの低価格帯と電力価格が異なっており、これらの切り替わり時刻が記憶された電力価格記憶手段と、
     前記高価格帯の前記電力消費量から前記発電量を減算した高価格時必要量と前記蓄電装置の放電可能容量とを比較する第1比較手段と、
     前記第1比較手段によって前記高価格時必要量が前記放電可能容量以上と算定された場合に前記第2時刻を放電開始時刻とし、前記高価格時必要量が前記放電可能容量未満と算定された場合に前記第1時刻以降前記第2時刻の前までのいずれかの時刻を放電開始時刻とする放電開始時刻決定手段とを備えたことを特徴とする蓄電装置の放電開始時刻決定システム。
  2.  前記第1比較手段によって前記高価格時必要量が前記放電可能容量未満と算定された場合に、前記放電可能容量から前記高価格時必要量を減算した余裕放電量と前記中価格帯の前記電力消費量から前記発電量を減算した中価格時必要量とを比較する第2比較手段を備え、
     前記放電開始時刻決定手段では、前記第2比較手段によって前記中価格時必要量が前記余裕放電量未満と算定された場合に前記第1時刻を放電開始時刻とし、前記中価格時必要量が前記余裕放電量以上と算定された場合に前記第1時刻より遅い前記第2時刻の前までのいずれかの時刻を放電開始時刻とすることを特徴とする請求項1に記載の蓄電装置の放電開始時刻決定システム。
  3.  前記太陽光発電装置の発電量及び前記建物の電力消費量を計測する計測手段を備え、
     前記予測手段による予測は、前記計測手段による計測値に基づいて行われることを特徴とする請求項1又は2に記載の蓄電装置の放電開始時刻決定システム。
  4.  前記予測手段による予測は、比較対象とする期間の前記計測手段による計測値と同一又は類似する計測値が得られた別の建物における計測値に基づいて行われることを特徴とする請求項3に記載の蓄電装置の放電開始時刻決定システム。
  5.  前記放電開始時刻決定手段による判定結果が、表示装置又は印刷装置に出力されることを特徴とする請求項1乃至4のいずれか1項に記載の蓄電装置の放電開始時刻決定システム。
  6.  前記放電開始時刻決定手段による判定結果が、前記蓄電装置の制御をおこなう制御装置に出力されることを特徴とする請求項1乃至5のいずれか1項に記載の蓄電装置の放電開始時刻決定システム。
  7.  第1時刻以降第2時刻の前までの中価格帯と、第2時刻以降第3時刻の前までの高価格帯と、第3時刻以降翌日の第1時刻の前までの低価格帯と電力価格が異なっている場合に、太陽光発電装置及び蓄電装置を備えた建物における蓄電装置の放電開始時刻の決定方法であって、
     前記太陽光発電装置の発電量及び前記建物の電力消費量を予測する予測ステップと、
     前記高価格帯の前記電力消費量から前記発電量を減算した高価格時必要量と前記蓄電装置の放電可能容量とを比較する第1比較ステップと、
     前記第1比較ステップにおいて前記高価格時必要量が前記放電可能容量以上と算定された場合に前記第2時刻を放電開始時刻とし、前記高価格時必要量が前記放電可能容量未満と算定された場合に前記第1時刻以降前記第2時刻の前までのいずれかの時刻を放電開始時刻とする放電開始時刻決定ステップとを備えたことを特徴とする蓄電装置の放電開始時刻の決定方法。
PCT/JP2014/072285 2013-09-06 2014-08-26 蓄電装置の放電開始時刻決定システム及び蓄電装置の放電開始時刻の決定方法 WO2015033819A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480046392.3A CN105474501B (zh) 2013-09-06 2014-08-26 蓄电装置的放电开始时刻决定系统以及蓄电装置的放电开始时刻的决定方法
EP14841771.0A EP3043446A4 (en) 2013-09-06 2014-08-26 Discharge start time determination system for electricity storage device and discharge start time determination method for electricity storage device
KR1020167008690A KR101784641B1 (ko) 2013-09-06 2014-08-26 축전 장치의 방전 개시 시각 결정 시스템 및 축전 장치의 방전 개시 시각의 결정 방법
US14/912,294 US20160210706A1 (en) 2013-09-06 2014-08-26 Discharge start time determination system for electricity storage device and discharge start time determination method for electricity storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013185387A JP5484621B1 (ja) 2013-09-06 2013-09-06 蓄電装置の放電開始時刻決定システム
JP2013-185387 2013-09-06
JP2014027785A JP6148631B2 (ja) 2013-09-06 2014-02-17 蓄電装置の放電開始時刻決定システム

Publications (1)

Publication Number Publication Date
WO2015033819A1 true WO2015033819A1 (ja) 2015-03-12

Family

ID=59914545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072285 WO2015033819A1 (ja) 2013-09-06 2014-08-26 蓄電装置の放電開始時刻決定システム及び蓄電装置の放電開始時刻の決定方法

Country Status (6)

Country Link
US (1) US20160210706A1 (ja)
EP (1) EP3043446A4 (ja)
JP (2) JP5484621B1 (ja)
KR (1) KR101784641B1 (ja)
CN (1) CN105474501B (ja)
WO (1) WO2015033819A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065165B1 (ja) * 2015-08-26 2017-01-25 中国電力株式会社 充放電量制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201502972VA (en) * 2015-04-15 2016-11-29 Sun Electric Pte Ltd Method and system for operating a plurality of photovoltaic (pv) generating facilities connected to an electrical power grid network
JP6568413B2 (ja) * 2015-06-25 2019-08-28 シャープ株式会社 電力システム、コントローラ及び電力システムの制御方法
CN105938579A (zh) * 2016-04-14 2016-09-14 南京南瑞继保电气有限公司 一种基于峰谷分时电价的钢铁企业富余煤气优化调度方法
JP6680606B2 (ja) * 2016-04-22 2020-04-15 積水化学工業株式会社 電力制御システムおよび電力制御方法
FR3060889B1 (fr) * 2016-12-21 2020-12-04 Commissariat Energie Atomique Procede et dispositif de charge d'une batterie
KR101956791B1 (ko) * 2018-11-29 2019-03-14 주식회사 주빅스 전기요금 누진제를 고려한 주택용 태양광 발전 제어장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079054A (ja) 2001-08-31 2003-03-14 Sanyo Electric Co Ltd 蓄電池を備えた太陽光発電システム
JP2009050064A (ja) * 2007-08-17 2009-03-05 Hitachi Ltd 配電系統状態推定装置
JP2010233362A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 電力供給制御装置
JP2010268602A (ja) 2009-05-14 2010-11-25 Ntt Facilities Inc 蓄電池充放電装置及び蓄電池充放電方法
JP2011130618A (ja) * 2009-12-18 2011-06-30 Panasonic Corp 電力制御装置および電力制御方法
JP2012080748A (ja) * 2010-10-06 2012-04-19 Alpine Electronics Inc 車載用ナビゲーション装置及び車載用蓄電池の充放電制御方法
JP4967052B2 (ja) 2010-04-14 2012-07-04 積水化学工業株式会社 電力制御システム
WO2012091113A1 (ja) * 2010-12-28 2012-07-05 パナソニック株式会社 電力制御装置
JP2013132174A (ja) * 2011-12-22 2013-07-04 Sanyo Electric Co Ltd 充放電制御装置
JP5232266B2 (ja) 2011-04-21 2013-07-10 積水化学工業株式会社 電力制御システム
JP2013143816A (ja) * 2012-01-10 2013-07-22 Ntt Facilities Inc 電力供給システム、電力供給制御装置、電力供給方法及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677975B2 (ja) * 2010-05-10 2015-02-25 パナソニックIpマネジメント株式会社 制御装置、蓄電システム、制御方法およびコンピュータプログラム
JP5845474B2 (ja) * 2010-10-27 2016-01-20 パナソニックIpマネジメント株式会社 電力供給システム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079054A (ja) 2001-08-31 2003-03-14 Sanyo Electric Co Ltd 蓄電池を備えた太陽光発電システム
JP2009050064A (ja) * 2007-08-17 2009-03-05 Hitachi Ltd 配電系統状態推定装置
JP2010233362A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 電力供給制御装置
JP2010268602A (ja) 2009-05-14 2010-11-25 Ntt Facilities Inc 蓄電池充放電装置及び蓄電池充放電方法
JP2011130618A (ja) * 2009-12-18 2011-06-30 Panasonic Corp 電力制御装置および電力制御方法
JP4967052B2 (ja) 2010-04-14 2012-07-04 積水化学工業株式会社 電力制御システム
JP2012080748A (ja) * 2010-10-06 2012-04-19 Alpine Electronics Inc 車載用ナビゲーション装置及び車載用蓄電池の充放電制御方法
WO2012091113A1 (ja) * 2010-12-28 2012-07-05 パナソニック株式会社 電力制御装置
JP5232266B2 (ja) 2011-04-21 2013-07-10 積水化学工業株式会社 電力制御システム
JP2013132174A (ja) * 2011-12-22 2013-07-04 Sanyo Electric Co Ltd 充放電制御装置
JP2013143816A (ja) * 2012-01-10 2013-07-22 Ntt Facilities Inc 電力供給システム、電力供給制御装置、電力供給方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043446A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065165B1 (ja) * 2015-08-26 2017-01-25 中国電力株式会社 充放電量制御装置
WO2017033309A1 (ja) * 2015-08-26 2017-03-02 中国電力株式会社 充放電量制御装置

Also Published As

Publication number Publication date
JP5484621B1 (ja) 2014-05-07
JP2015053846A (ja) 2015-03-19
CN105474501A (zh) 2016-04-06
CN105474501B (zh) 2018-01-30
KR20160048993A (ko) 2016-05-04
JP6148631B2 (ja) 2017-06-14
JP2015053810A (ja) 2015-03-19
EP3043446A1 (en) 2016-07-13
KR101784641B1 (ko) 2017-10-11
EP3043446A4 (en) 2017-04-19
US20160210706A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6148631B2 (ja) 蓄電装置の放電開始時刻決定システム
US10559046B2 (en) Power supply management system
JP5877479B2 (ja) 電力管理システム、電力管理方法、プログラム
WO2014208059A1 (ja) 電力調整装置、電力調整方法、電力調整システム、蓄電装置、サーバ、プログラム
JP4938750B2 (ja) 消費電力予測装置、消費電力予測方法およびプログラム
WO2012144491A1 (ja) 電力制御システム
JP6676477B2 (ja) 建物の消費電力予測システム、蓄電装置の制御システム、及び蓄電装置の制御方法
JP5645442B2 (ja) 電力需要管理システムおよび電力需要管理方法
JP6918456B2 (ja) 電力制御システムおよび電力制御方法
JP6901286B2 (ja) 電力制御システム
JP5801980B2 (ja) 試算装置及び試算方法
US20190288512A1 (en) Electric power supply system and electric power supply control method
JP5622924B2 (ja) 電力需要管理システム及び電力需要管理方法
JP2020054070A (ja) 電力制御システム
JP6046054B2 (ja) 局所的エネルギ輸送網のためのエネルギ供給の管理
JP2019054584A (ja) 発電システム評価方法および発電システム評価装置
JP5969365B2 (ja) 電力制御システム
JP2017195752A (ja) 電力制御システムおよび電力制御方法
JP2020198696A (ja) 電力供給システム及び、電力管理方法
JPWO2018078802A1 (ja) 電力管理システム、制御装置及び電力管理方法
JP7254481B2 (ja) 電力制御システム
JP2018011452A (ja) 蓄電池運用方法および蓄電池運用装置
Ceseña et al. Techno-economic assessment of distribution network reliability services from microgrids
JP7260994B2 (ja) 電力制御システム
EP2851690B1 (en) Display device, display system, and display method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046392.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912294

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014841771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008690

Country of ref document: KR

Kind code of ref document: A